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ABSTRACT

Three Environmental Fluid Dynamics Papers

by

Eden Furtak-Cole, Doctor of Philosophy

Utah State University, 2017

Major Professor: Joeseph Koebbe, PhD
Department: Mathematics and Statistics

Three papers are presented, applying computational fluid dynamics methods to fluid

flows in the geosciences. In the first paper, a numerical method is developed for single

phase potential flow in the subsurface. For a class of monotonically advancing flows, the

method provides a computational savings as compared to classical methods and can be

applied to problems such as forced groundwater recharge. The second paper investigates the

shear stress reducing action of an erosion control roughness array. Incompressible Navier-

Stokes simulations are performed for multiple wind angles to understand the changing

aerodynamics of individual and grouped roughness elements. In the third paper, a 1D

analytical flow model is compared with multiphase Navier-Stokes simulations in a parabolic

fissure. Sampling the numerical results allows the isolation of flow factors such as surface

tension, which are difficult to measure in physical experiments.

(72 pages)
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PUBLIC ABSTRACT

Three Environmental Fluid Dynamics Papers

Eden Furtak-Cole

Three papers are presented, applying computational fluid dynamics methods to fluid

flows in the geosciences. In the first paper, a numerical method is developed for single

phase potential flow in the subsurface. For a class of monotonically advancing flows, the

method provides a computational savings as compared to classical methods and can be

applied to problems such as forced groundwater recharge. The second paper investigates the

shear stress reducing action of an erosion control roughness array. Incompressible Navier-

Stokes simulations are performed for multiple wind angles to understand the changing

aerodynamics of individual and grouped roughness elements. In the third paper, a 1D

analytical flow model is compared with multiphase Navier-Stokes simulations in a parabolic

fissure. Sampling the numerical results allows the isolation of flow factors such as surface

tension, which are difficult to measure in physical experiments.
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INTRODUCTION

Three papers are presented pertaining to environmental fluid dynamics. Modeling,

simulation, numerical techniques, analytical methods, and physical experiments are all used

to describe flows that occur naturally in the environment. Near surface phenomenon are a

focal point, with pertinent flow examples drawn from micrometeorology and groundwater

flow in the vadose zone or lower.

In the first paper, a numerical procedure is developed for a subsurface flow model.

The model and solution procedure are directed at problems involving a variety of scales,

where saturation fronts are sharp and advance monotonically. Forced groundwater recharge

is an applicable problem, and is increasingly being employed under contemporary climate

extremes. The method is also applicable to drawdown around wells or viscous flow in cracks.

The proposed model can be applied in two or three spatial dimensions, and the procedure

has the computational efficiency to be used at the landscape scale. This is achieved by

limiting the implicit part of the solver to the saturated zone, and using a fast marching

method to advance the saturation. Saturation fronts are tracked explicitly, and the method

handles the merging of multiple fronts without issue. There are no stability limitations on

the time step of the method, so a very limited number of implicit solves can be used if

permitted by the physics of the problem.

In the second paper, flow over erosion control structures is investigated using the

Navier-Stokes equations. Flow over a field experiment, deployed on the Owens Lake playa

in California, is simulated for multiple wind angles. This field experiment was motivated by

a massive dust problem, caused by the drying of Owens Lake due to a Los Angeles aqueduct

diversion. Engineered roughness elements are considered as a last resort, where watering

and vegetation plantings are not feasible. Such dust problems continue to emerge around

the world. High wind shear drives the saltation of surface sediments, releasing small diam-

eter particulate matter into the planetary boundary layer. Due to the large footprint and

cost of engineered roughness elements, it is advantageous to maximize the efficiency of the



2

array configuration. Before this can be done, a basic understanding of their mechanism of

shear reduction needs to be developed. Turbulent flow around the array is simulated for ten

wind angles to study flow characteristics that can not be measured in the field experiment.

Additional simulations illustrate flow characteristics around single elements.

The third paper investigates basic flow assumptions of a one dimensional nonlinear dif-

fusion equation by comparing a similarity solution with numerical simulations of multiphase

flow. This work is motivated by physical Hele-Shaw experiments of viscous gravity currents.

Gravity currents occur when a density gradient exists between two fluids, resulting in grav-

ity driven movement. These experiments model a variety of natural phenomenon, present

in both the atmosphere and subsurface. For viscous spreading, we assume that these nat-

ural phenomenon operate at scales, velocities, and viscosities that allow turbulence to be

neglected. In experiments, poor agreement with one dimensional models is often observed

where the Dupuit-Forchheimer assumption is invalid. This assumption states that the one

dimensional horizontal velocity can be calculated using the gradient of hydrostatic pressure

and vertical averaging. It is difficult to separate the effects of three dimensional velocity

from the influence of surface tension and capillary. Additionally, initial conditions in ex-

periments can not be configured to match similarity solutions. Numerical simulations offer

great flexibility in all flow conditions and parameters. This allows for the isolation of flow

effects, including vertical velocity and surface tension.
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A FAST MARCHING SOLUTION PROCEDURE FOR POTENTIAL FLOW IN THE

SUBSURFACE



A fast marching solution procedure for potential flow in the subsurface

Eden Furtak-Cole

Utah State University, Department of Mathematics and Statistics, Logan, UT 84322

Geordie Richards

Utah State University, Department of Mechanical and Aerospace Engineering, Logan, UT 84322

(Dated: December 6, 2017)

A numerical method is presented to solve flow problems in porous media and viscous

spreading. A potential problem is implicitly solved, from which velocity is obtained. Satu-

ration is advanced forward using a highly efficient fast marching method. This incremental

procedure is applicable to wide variety of problems where the saturation front advances

monotonically. The method presented is free of stability constraints, tracks the moving front

explicitly, and can handle the merging or splitting of multiple fronts. The presented method

is fast enough for applications on large computational domains with variable parameters.
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I. INTRODUCTION

Viscous gravity currents occur when the density difference between two fluids causes movement

under the force of gravity or buoyancy. This takes place in a variety of natural and industrial

settings. Avalanches1 and pyrophastic flows2 gain enormous momentum due to a density difference

with air, and are miscible flows. Industrial CO2 sequestration methods34 pump brine of relatively

low density under capped aquifers, where it spreads due to a buoyancy force. Groundwater flows

provide important natural resources and are primarily driven by gravitational forces56. Many flows

of interest, such as those involving air and water, can be modeled as immiscible. Due to orders of

magnitude differences in density and viscosity, it is often reasonable to model these systems as single

phase flows. Using lubrication theory, it is possible to convert between equivalent mathematical

problems in porous media and laminar flow6. Thus, the same system of equations can be used to

model porous media flow and the flooding of cracks in fractured media or a Hele-Shaw cell7.

Many analytical approaches to single-phase immiscible flows have used the Dupuit-Forchimer

(DF) assumption, resulting in the Boussinesq8910 and Generalized Boussinesq11121314 equations.

These approaches assume horizontal-only velocity, and impose conservation on the height of the

free surface11. Similarity variables can be used to solve a large class of these non-linear diffusion

problems, in particular those with power-law boundaries and hydraulic conductivity. These typ-

ically involve initially saturated or initially dry conditions131516. This presents the problem that

the early-time free surface is close to vertical, and will produce large vertical velocities. The fitness

of the DF assumption to a particular problem exists on a continuum of free surface gradients,

and it is not clear what effects the poorly represented physics of the early time solution will have

on the later time results. This issue has motivated the use of experiments in conjunction with

analytical methods. Lab-scale experiments often take the form of a Hele-Shaw cell, where fluid

is passed between two plates in a lubercation theory setting. Hele-Shaw cells can be constructed

from clear planar17718 or curved1920 plates, and are sometimes filled with porous media such as

glass beads1820.

Numerical approaches to multiphase flow in porous media have a long history of development2122.

While these methods may be accurate, they require large amounts of computing power, and may

not be necessary for problems where the gaseous phase can be safely disregarded. A similar model

for one phase flow is the theory of potential flow2320. For problems that are not time steady, a

numerical method is required to evolve the free surface. Level set methods2425 are a relatively

new method for tracking evolving interfaces, such as the free surface between fluid phases262728.
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In short, this method works by tracking the expected time of arrival of the front on a grid of

points, rather than tracking points on the front itself. This results in a relaxation of the Courant-

Friedrichs-Lewy (CFL) condition, sub-grid accuracy, and a natural handling of free surface merging

or splitting. The fast marching method (FMM) is a special case of the level set methods, where

the monotonicity of the front can be exploited for large computational savings. Few studies have

applied level set methods to potential flow problems in groundwater dynamics. Garzon et al.29

posed a number of potential flow problems using the level set method, and presented results for

a breaking wave. Frolkovic30 applied the level set method to groundwater flow, using a immersed

interface method to extend the pressure outside the saturated zone.

We approach the problem of viscous spreading using a potential function to generate two-

dimensional velocity, and a fast marching method to advance the saturation zone. This approach

is applicable to monotonically advancing free surfaces, and can be used to model many problems

in groundwater hydrology or Hele-Shaw experiments that involve sharp interfaces. The implicitly

solved matrix problem for the potential is limited to the saturated zone, reducing the computation

cost as compared to conventional methods. Because the DF assumption is never applied, the

model retains full dimensional velocity. Moreover, the height-based potential function can easily

be constructed with field measurements of an aquifer’s phreatic surface for the generation of initial

conditions.

The paper is organized as follows. A model of flow is given in section II, the numerical proce-

dure in section III, numerical experiments are presented section IV, and the conclusions follow in

section V.

II. FLOW MODEL

We consider the flow of a liquid displacing a gaseous phase in porous media. The liquid is

considered incompressible and conservation of mass within the saturated zone dictates that the

velocity is divergence-free:

∇ · u = 0. (1)

Velocity is given by Darcy’s law,

u = −k (x)

µ
(∇p+ ρgj) , (2)
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where the permeability of the media k (x) may be a function of space, µ is the viscosity, p is

pressure, ρ is the fluid density, and g is gravity. At the free surface, we have the pressure boundary

condition,

p = p0 + (ρ−∆ρ) g (h0 − h) , (3)

where ∆ρ is the density difference between the two phases, and h is height measured from some

universal datum. For a system with a large density difference between the two phases, such as air

and water, it can safely be assumed that ρ = ∆ρ. We introduce the conserved quantity,

ϕ =
p

ρg
+ z, (4)

which has units of height and can be interpreted as conservation of head in hydrology applications.

Solving for p and substituting into eq. (2), we have

u = −k (x)

µ
(∇ρg (ϕ− z) + ρgj) , (5)

= −k (x)

µ
∇ρgϕ, (6)

Substituting this quantity into the continuity equation eq. (1) gives a PDE for potential,

∇ · (k (x)∇ϕ) = 0. (7)

Substitution of eq. (4) into eq. (2) also gives a no flow boundary condition for horizontal im-

permeable surfaces,

∂ϕ

∂z
= 0. (8)

On the free surface, we assume that the effects of phase being displaced (i.e. air) are negligible,

reducing the free surface boundary condition to,

p = p0. (9)

Substituting eq. (9) into eq. (4) gives,

ϕ =
p0
ρg

+ z. (10)



5

We observe that at the free surface, z = h and p0 can be taken as zero gauge pressure, resulting in

ϕ = h. (11)

The above approach provides a potential equation and velocity calculations within the saturated

zone. The liquid phase continuity equation is

∂

∂t
(φ (x) ρS) = −∇ (ρuS) + q S ∈ {0, 1} . (12)

Here, q is a mass change due to sinks or sources. Saturation takes on discrete values of 1 for full

saturation, and 0 for no saturation. The q term can be disregarded for fully saturated interfaces

that are spatially distant from any sources or sinks. Incompressibility and time invariant porosity

φ further simplifies the above to,

φ (x)
∂

∂t
(S) = −u · ∇ (S) . (13)

In 1-D eq. (13) reduces to the familiar problem of an advecting square wave that travels along

characteristics, in 2-D the characteristics are streamlines from the potential flow function.

A. Special Cases of the Potential Equation

Important special cases of the potential equation eq. (7) are given by the form of the permeability

function. The case of constant k results in the Laplacian potential equation,

∆ϕ = 0. (14)

Using certain flow assumptions, this can be further reduced to the Boussinesq equation20 and

solved with a variety of methods961523. Equation (14) can be solved numerically as an alternative

to the Boussinesq equation when vertical motion is significant factor in in the problem of interest.

In the case of power-law permeability, k (x) = azn. The resulting equation of potential flow is,

n

z

∂ϕ

∂z
+ ∆ϕ = 0. (15)

This is analogous to the porous medium equation13311416. The spatial variability of the permeability

is expressed as the addition of an advective term in the potential equation. The potential equation

remains linear, while the associated porous medium equation is non-linear.
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III. NUMERICAL PROCEDURE

We seek a numerical procedure to incrementally solve the system

∇ · (k (x)∇ϕ) = 0, (16a)

u = −kρg
µ
∇ϕ, (16b)

φ (x)
∂

∂t
(S) = −u · ∇ (S) . (16c)

The saturation equation is of particular interest, as we will be using the Fast Marching method to

advance the saturated zone.

A. Fast Marching Methods and Stationary Formulation

The fast marching method is a well documented method for tracking monotonically advancing

interfaces using the Eikonal equation3224. The Eikonal equation is stated,

F‖∇T‖ = 1, (17)

where T is the arrival time, and F is a speed function. Equation (17) is solved in an an upwind

manner to calculate the time T when the interface will arrive at various locations in the problem

domain. The arrival times T provide a hypersurface, whose level sets in time are solution curves

to the problem of interest. Monotonicity of the front dictates that information must move from

places with smaller arrival times, to those with larger arrival times. The domain can be divided

into three categories: points where the advancing interface has arrived, non-arrived points near

the interface, and non-arrived points far from the interface. The narrow band method allows us to

only operate on the near class of points to reduce computational cost.

Consider the interface ξ between the saturated and unsaturated zones in the solution of eq. (16c).

The interface between the saturated and non-saturated zone denotes an evolving level set function

of the form

∂

∂t
(ξ) +

u

φ (x)
· ∇ (ξ) = 0. (18)

Then eq. (17) provides the arrival time T of the front ξ moving at speed u
φ(x) for any point in the

unsaturated part of the domain. Specifically, we seek a solution to the Eikonal equation where F

has been replaced by the front speed,
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u (x) ‖∇T‖ = φ (x) . (19)

Pseudo-code for the general FMM on a rectangular grid is given in algorithm 1. In addition to

only having to operate on a small subset of the computational domain, the FMM gains efficiency

from storing the narrow band in a min heap data structure. In this complete binary tree, the

children of any node in the tree have larger arrival times than their parents. The smallest arrival

time is always at the root of the tree, and computationally trivial to find. When a node is updated,

moving up or down the tree takes at most O(log(M)) operations for an M sized narrow band32.

Algorithm 1 Fast Marching Method (FMM)

1: Define arrived, near (narrow band), and far points

2: while size(near) > 0 do

3: Let (i, j) be the index of the shortest arrival time T

4: Tag surrounding far or near points (±i, j) and (i,±j) as neighbors. Reclassify the far as near

5: Reclassify point (i, j) as arrived remove from near

6: Update the arrival times T of all points tagged as neighbors.

A variety of methods are available for computing the new arrival times T . The simplest for a

rectangular grid is the five point stencil24. Squaring both sides of eq. (19), we obtain

(∇T · u (x))2 = φ(x)2. (20)

Left and right derivatives are approximated by

D±x = ±Ti±1,j − Ti,j
∆x

, (21)

and

D±y = ±Ti,j±1 − Ti,j
∆y

. (22)

Substituting these expressions into an upwind approximation of the term ∇T · v(x) we have,

(
(max(D−x T, 0) +min(D+

x T, 0)) + (max(D−y T, 0) +min(D+
x T, 0))

)2
= 1. (23)

Expansion of this expression yields a second order polynomial which can be solved by a variety of

root finding methods.
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B. Extending the Velocity

The fast marching method frees us from the limitations of the CFL condition. However, it is

important to note that velocity is defined by eq. (16b) only inside the saturated zone. We use

the method of33 to extend the velocity using the fast marching method. This is accomplished by

creating a signed distance function in the non-saturated part of the domain, and using a weighted

average that is “upwind” with respect to distance to the front.

By solving the Eikonal equation for a constant front velocity of 1,

‖∇η‖ = 1, (24)

the resulting arrival times η are the distance from the front ξ. Initial values on ξ are defined by

the initial data η = T for the stationary problem. For the five point stencil eq. (23), distance is

approximated linearly at the subgrid-scale.

To extend a variable outside the saturated zone, we seek a solution to the problem

∇ζext · ∇η = 0, (25)

where η is the signed distance function, and ζext is a scalar extended to the non-saturated zone.

This constraint ensures the proper weighting of the spatial average, given the distance η. Since

eq. (24) is solved with the fast marching method, the extension can be calculated explicitly at the

same time as η. For the five point stencil in a 2D setting, two cases exist33. In the first case, η

is calculated from one neighbor, and ζext is simply a replication of the velocity in the neighboring

cell. In the second case, η is calculated from two neighbors. Given η, eq. (25) can be solved for

ζext at the point (i, j) as

ζext =
s−2ζ (i+ s, j) + t−2ζ (i, j + t)

s−2 + t−2
, (26)

where s and t are the distances to the neighboring cell centers in the x and y directions respectively

and can take on negative values. This calculation is performed for each velocity component in place

of ζext. Alternatively, the scalar potential function can be extended and used for an explicit velocity

calculation.

C. Time Stepping Procedure

We present the full solution algorithm in algorithm 2. We note two important aspects of

controlling the solution accuracy and reducing floating point operations.
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Algorithm 2 Solution procedure for the flow equations.

1: for t0..∆t..tend do

2: Solve eq. (16a) implicitly

3: Calculate eq. (16b) explicitly

4: Extend velocity using eq. (25)

5: Advance eq. (16c) using algorithm 1

Extensions of the velocity do not overcome the problem of large time steps, as the true velocity

changes dynamically with the free surface. The method is fast enough that for many applications

it is possible to restrict the time step with CFL condition. This is the most conservative approach,

and is dependent on mesh size. Alternatively, it is possible to restrict the time step to allow for

an arbitrary distance of front travel before recalculating the potential. At any step in algorithm 2

the appropriate time step is simply

∆t =
dmax
u?max

, (27)

where dmax is the desired maximum travel distance for a given timestep, and u?max is the maximum

velocity magnitude on the free surface.

The velocity calculation and extension need not be performed on the entire domain. In many

applications, only resolving the movement of the free surface is required. If this is the case, velocity

calculations only need to be performed on saturated cells adjacent to the free surface. Moreover,

if the time step calculation eq. (27) is used, then the velocity extension can be terminated when

the signed distance function eq. (24) reaches

η > dmax.

If a constant time step is used, velocity extension can be terminated when

η > ∆tu?max.

IV. RESULTS

We present the results of a variety of simulation test cases, including a comparison to an

analytical solution of the Boussinesq equation.
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A. Boussinesq-type Groundwater Infiltration

We compare the numerical procedure to a solution of the Boussinesq equation for a unsteady

Dirichlet boundary condition. We choose the parameters shown in table I. This corresponds to the

Boussinesq problem

∂h

∂t
=
kρg

2µ

∂2h2

∂x2
, (28)

with boundary condition,

h (0, t) = σt1.5; (29)

for which a similarity solution exists913.

TABLE I: Simulation parameters

Parameter Value

permeability k 10−6 m2

density ρ 1000 kgm−2

porosity φ 1

viscosity µ 1 Pa · s
scaling height σ 0.01 m

Results for the simulation and Boussinesq benchmark are shown in fig. 1. Excellent agreement

is observed, with small differences profile shape. In particular, the two solutions show the greatest

difference near the impermeable base. This is likely due to the vertical velocity modeled by the

potential flow system. This system produces free surface profiles that are approximately twice the

height of their width. Under these conditions, prominent vertical flow exists that is not modeled

by the Boussinesq equation.
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FIG. 1: A comparison of the Boussinesq and potential flow solutions at times t = 1, 2, 3, 4, 5. The

initial data at t = 1 is given by an analytical solution to the Boussinesq equation. A Dirichlet

boundary condition is applied to the left side, with saturation height rising as h = .01t1.5.

B. Injection in a depleted aquifer

A slight modification of the potential function allows for the simulation of injection wells. We

consider the case of a depleted aquifer with an impermeable bedrock base. Injection wells of various

location and pressure are modeled as Dirac delta functions. The resulting potential equation is,

∆ϕ =
∑

i

h′i (t) δ (x− xi, y − yi) , (30)

where h′i is the potential given at the well. For gravity driven injection this is simply the height of

water in the well, while injection with a specified pressure must be normalized by ρg.

fig. 2 shows the results of the injection problem with wells assigned potential values of 30 and

70 meters. Medium constants are given by table I, but dimension have been scaled to be realistic

in hydrological applications. The merging of the two fronts is handled well by the fast marching

method. To illustrate how the solution is embedded in a hypersurface, a surface plot of the arrival
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times is shown in fig. 3.
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FIG. 2: Time isoclines for the solution of the injection problem. Values of the potential at the

injection sites are shown.
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FIG. 3: Arrival times for the injection problem. Solution curves are level sets constructed by

cutting at various locations on the z-axis. Areas around the injection wells are initially saturated

at t = 1.

C. Flow over a tilted base

We now consider the case of a sloped aquifer or tilted Hele-Shaw cell. This is accomplished by

modifying the gravity vector such that

g = g (sin θi + cos θj) , (31)

where θ is the angle between the negative y-axis and the gravity vector. Then the Darcy velocity

is

u = −k (x)

µ
(∇p+ ρg (sin θi + cos θj)) . (32)

While the mesh topology does not need to be changed, the potential needs to be measured in the

direction of gravity. We define z? as the z coordinate under the axis rotation θ, resulting in the
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conserved quantity,

ϕ =
p

ρg
+ z?. (33)

Then eq. (6) becomes,

u = −k
µ

(∇ρg (ϕ− z?) + ρg (sin θi + cos θj)) , (34)

= −k
µ

(∇ρgϕ− ρg (sin θi + cos θj) + ρg (sin θi + cos θj)) , (35)

= −k
µ
∇ρgϕ, (36)

and the resulting potential equation,

∆ϕ = 0. (37)

This is conveniently the same result as eq. (14), with a modification to the boundary conditions.

Potential on the free surface h? is now measured in the direction of the gravity vector:

h? =
z

cos θ
, (38)

Where z is measured above some universal datum.

We present results of a simulation modeled after experiments performed in17. Fluid is injected

between two parallel plates using a potential of .23 meters. The parameters used in table I were

reused with a 50◦ rotation of the gravity vector to produce the result shown in fig. 4. This simulation

was performed on the same Cartesian mesh as used in fig. 2, with the coordinates projected to

their true locations after the solution was produced. Time isoclines of the solution are elongated

along the tilted base. Flow stagnates in the region between the injection and impermeable base.
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FIG. 4: Saturation curves in time for injection over a tilted surface.

V. CONCLUSIONS

A numerical method was developed to solve potential flow problems in the subsurface. The

method is limited to monotonically advancing flows, but is extremely fast. In a comparison with the

Boussinesq equation, the method is shown to include the effects of vertical velocity, but maintains

a similar rate of front propagation. The method is easily extended to problems where the potential

is given by solving the Poisson equation, and remains stable under changing saturation front

topologies. The method was also applied to a tilted aquifer problem by changing the gravity vector

and re-calculating the boundary conditions.
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We combine field and computational fluid dynamics (CFD) approaches to investigate the

ability of roughness elements to control sand flux and dust emissions. Few experiments have

examined the combined influences of wind angle and array configuration on shear stress

reduction on the ground surface between elements. We show that a CFD approach can

reproduce the average roughness array in a field setting. Computational results corroborate

field observations of a dramatic reduction in velocity over the first two rows of roughness

elements. We report the time averaged shear as a function of wind angle for single elements

and the experimental array. Results show effective shear reduction through a wide range of

wind angles. The array is shown to perform well at wind angles close to diagonal corridors

and poorly for wind angles close to corridors running through the element rows. Simulations

around single elements show that complicated aerodynamics play a dominant role over single

parameter estimates of shear reduction.
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I. INTRODUCTION

Wind erosion is a problem around the world, with small particulate matter being of particular

health concern to humans and livestock1234. Areas with high winds and changing land surfaces

are of particularly problematic. Roughness arrays composed of simple bluff bodies offer a flexible

and affordable way to control saltation and entertainment of particulate matter into the planetary

boundary layer5. An example of a controlled surface is the Owens lake playa, where the diversion of

water for anthropogenic uses has exposed fine lake bed sediments to high winds and various control

measures have been placed to reduce sand transport and the accompanying dust emmisions67.

Roughness elements have been most studied in the context of their effects on air flow in the urban

canopy. Scaled models have been studied in wind tunnels891011 and have included the effects of live

vegetation on affecting boundary shear stress12. To deal with the limitations of boundary conditions

and the sparsity of velocity measurements, computational fluid dynamics (CFD) simulations have

been validated against wind tunnel results. Less work has been done for the direction modeling

of field measurements. This has been performed for various configurations of single or multiple

cubes, and to validate the applicability of k − ε Reynolds averaged Navier-Stokes (RANS)1314,

large eddy simulation (LES)14151617, and DNS189 methods. In a comparison of LES and k − ε

turbulence closeures, Cheng et al. 14 found the k − ε model to be sufficient in modeling large scale

motions, such as those that would cause sediment transport. Martilli and Santiago 19 investigated

the vertical motions around roughness elements using the k − ε turbulence model in the context

of the urban canyon after experimental validation by Santiago et al. 13 . We are unaware of any

numerical studies have been directed at the use of roughness elements for erosion control or their

changing effectiveness under a rotated velocity field.

Field studies have validated the success of roughness arrays in controlling wind erosion4. How-

ever, measured saltation is time integrated over a variety of atmospheric conditions. Gillies et al. 5

conducted a field study using straw bales to stabilize the Keeler dune system in the Owens Valley,

CA. Irregular placement of elements was demonstrated to effectively remove saltating particles

from the atmosphere, meeting target sand reductions. A Gillies et al. 20 experimentally inves-

tigated shear stress within staggered cylinder arrays in the atmospheric surface layer, finding a

strong relationship between roughness density and shear reduction. Abulaiti et al. 21 conducted

similar field experiments to assess the effectiveness of plants to stabilize coastal sand dunes from

wind erosion as a function of their frontal area.

While roughness arrays have been successfully deployed to reduce wind erosion, their mechanism
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of action is not fully understood. Flow fields are difficult to measure in physical experiments without

disruption and most measurement methods result in sparse data. It is difficult to replicate turbulent

atmospheric boundary conditions in both wind tunnels and Computational Fluid Dynamics (CFD)

simulations. A common approach to predicting the boundary layer resulting from the addition of

roughness elements is to base a roughness parameter on the total frontal area of the array2223. While

this estimate can be effective in matching field measurements, it neglects the spatial distribution

of the elements and their aerodynamic properties. To fully understand why arrays of roughness

elements successfully reduce the saltation of ground level sediments, it is necessary to view the flow

field around the individual elements.

In this paper, we take a CFD approach to understanding the shear reducing action of a roughness

array. The finite volume method toolbox openFOAM2425 is employed to solve the Navier-Stokes

equations (NSE) over a replicated section of a field experiment deployed on the Owens Lake playa

in California (Gillies et al., submitted). Additional single element simulations are conducted as a

baseline to differentiate the influence of interacting shelter zones verses the sheltering of a single

element. We investigate the effectiveness of the array to decrease surface shear stress in the lee-side

shelter zone under different wind approach angles. Our approach accounts for the changing aero-

dynamics of individual elements. Moreover, we quantify the distribution of shear stress reduction

experienced by the ground surface.

II. FIELD EXPERIMENT

Engineered roughness elements (ERE) were deployed on the crusted playa surface of Owens

Lake, CA, where sand transport was known to occur. Elements were commercially available plastic

bins, with a footprint of 0.725 m× 0.45 m and a vertical height of 0.38 m. Elements were arranged

in staggered rows, with a 2.48 m spacing between elements, as shown in fig. 1. The total array

size measured 100 m × 100 m. The array was positioned so that the staggered rows are oriented

transverse to the prevailing wind direction.

Three 10 m towers were erected at locations upwind of the array, at the array edge, and 50 m

into the array. From anemometer measurements collected on the towers external to the array, we

estimate the roughness of the crusted playa at 0.05 m. Cup anemometers were placed at 20 locations

within the array at a height of 0.25 m (0.58 element height). Locations were chosen in relation to

repeating patterns within the staggered rows, as shown in fig. 2. The pattern presented in fig. 2

is repeated four times downwind into the array. In addition to cup anemometers, four wind vanes
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FIG. 1: ERE deployed at the Owens lake site.

were placed in the array between 1.24 m (ND=3.26) and 43.4 m (ND=114.21) with anemometers

at positions 1 and 4 (fig. 2), respectively, at 50.8 m (ND=133.79) and 2.1 m (ND=137.05).
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FIG. 2: Spacing and location of the anemometers relative to the roughness elements. Normalized

distance (ND=horizontal distance/element height) and normalized width (NW=lateral

distance/element height) are reported. Four wind vanes were placed at position 4.

III. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

We seek numerical solutions to the incompressible Navier-Stokes Equations (NSE) over a 30 m

wide section (NW=78.95) of the ERE experiment extending 50 m downwind into the array. The

computational domain extends from the ground to a height of 10 m to match the height of the

regional towers. The incompressible NSE are stated,

ρ
Du

Dt
= −∇p+ ρg + µ∆u, (1)

∇ · u = 0, (2)
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and represent conservation of momentum and mass, respectively. Here, ρ is fluid density, p pressure,

u velocity, and g is a gravity vector. Due to the large computational domain and need to resolve

flow between roughness elements, a k − ε turbulence model was employed. All simulations were

performed using the finite volume solver openFOAM2425. The time dependent NSE were solved

using the semi-implicit method for pressure linked equations (SIMPLE) solver, simpleFoam.

Boundary conditions were implemented following Hargreaves and Wright 26 , based on the at-

mospheric log layer presented by Richards and Hoxey 27 . At the inlet, the equations for horizontal

velocity u, turbulent kinetic k, and dissipation rate ε are

u =
u?
κ

ln

(
z + z0
z0

)
, (3)

k =
u2?√
Cµ

, (4)

ε =
u3?

κ (z + z0)
, (5)

where u? is the friction velocity, z0 the surface aerodynamic roughness length, κ von Karman’s

constant, and Cµ is an empirically determined constant from the k − ε turbulence model. The

above quantities were assigned to be zero gradient with respect to the outward normal vector of

the outlet patches.

Standard wall functions were used on the smooth surface of the roughness elements. The ground

surface was assigned a rough turbulent viscosity wall function to reflect the measured roughness

length of 0.05 m. The upper atmosphere boundary was assigned a horizontal velocity of 15 ms−1

to represent a geostrophically driven planetary boundary layer26. This value represents a common

wind speed at a 10 m height which reliably produces saltation on the ground.

IV. COMPUTATIONAL EXPERIMENTS

We perform a series of computational experiments in two settings. In both cases, we simulate

an atmospheric boundary layer over a height of 10 m. In the first, we replicate the field experiment

described in section II. After mesh generation, simulations were run for wind angles from 0◦ to 90◦

at 10◦ increments. Sampling of the velocity and surface shear were conducted on a grid oriented

parallel to the flow direction. Surface shear was sampled directly from the stress tensor.

The second computational experiment was designed to isolate the effects of a single roughness

element, as opposed to the interacting effects in the first experiment. In this experiment, nine

meshes were produced by rotating the single element geometry to the same wind angles as the
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FIG. 3: A birds-eye schematic of the computational experiment and and sampling area.

array experiment. In this case, the sampling grid was re-used on each of the meshes. A schematic

of this experiment is presented in fig. 3.

The muli-element mesh produced contained approximately 5× 108 finite volume cells. A hex-

ahedral 1 m base mesh was used, with four progressive refinement levels performed as a function

of height. All surfaces were refined to 6 levels, with three cell refinements for each level. For the

computational experiment depicted in fig. 3, the number of cells in each mesh are on the order of

107. Each mesh was generated from a 0.5 m hexahedral base mesh. Two subdivisions were per-

formed for each refinement level. Each surface was refined to a minimum of 6 levels, with additional

refinement levels of 5 and 2 performed for all cells within 1 m and 2 m of the ground, respectively.

V. RESULTS

A. Validation of Simulations With Field Data

Results for the zero degree wind angle simulation are validated against field data. A comparison

between the single velocity simulation and unsteady field conditions is made possible by normalizing

the interior velocity measurements with a velocity measurement outside of the array, defined as the

wind speed ratio WSR. Comparisons of measured vs. modeled WSR are given in fig. 4 for position

1 and 3. In both positions, the simulation results show a lower reduction in wind speed ratio. Field
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FIG. 4: WSR for positions 1 and 3.

measurements were taken using cup anemometers, which only measure velocity in the horizontal

plane. It is likely that flow separation behind the elements caused misreadings where strong vertical

flow components are neglected in the field data. By contrast, simulated wind speed was calculated

with a vector Euclidean norm, which accounts for all directions of flow. Additionally, the field

data are one minute averages of a highly unsteady wind field, which contains measurements from

a wind direction range spanning 20◦.
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FIG. 5: A boxplot of shear values, sampled 14 m to 30 m into the array. Whisker lengths

represent one interquartile range.

B. Shear Stress Reduction and Wind Angle

Field and numerical observations indicate that for all wind angles, wind speed reduction mostly

occurs within two to three rows of roughness elements. Shear was temporally averaged for the last

40 seconds of simulation to understand the effects of wind direction. We then sampled the area

from 14 m to 30 m meters into the array. This region is conservatively beyond the initial wind

profile adjustment zone and sufficiently far from the numerical influence of any outlet boundaries.

Boxplots of this sampling are shown in fig. 5. The array remains highly effective in reducing shear

for angles ranging from 0◦ to 50◦. Average shear increases as the wind angle approaches 90◦.

At this angle, wind travels between the rows without encountering obstacles, and elements are

aerodynamically aligned with their short edges facing the wind direction.

Wind angles 20◦ and 30◦ are particularly interesting, as diagonal corridors occur through the

array at an angle of approximately 26.5◦. Corridors have a width of approximately 2.77 m, as

measured from the element centers. The angles of 20◦ and 30◦ have higher shear stress variability
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(a) Streamlines through the Mean velocity field, seeded upwind of the roughness array at a height of 0.1 m.

(b) Streamlines through the Mean velocity field, seeded upwind of the roughness array at a height of 0.2 m.

FIG. 6: 6a) Near ground streamlines are channeled, and eventually collide with roughness

elements. 6b) Mid-level streamlines loose velocity in the turbulent wakes of the roughness

elements, and are eventually channeled over the tops of roughness elements. In both figures

streamlines are colored to represent magnitude of mean velocity, blue being slow and increasing

speed represented with deepening red color. Elements are arbitrarily colored by their ordering.

than the adjacent angles, but the median shear magnitude remains low. Streamlines through

the time-averaged flow field in fig. 6 illustrate the cause of this phenomenon. As streamlines

released at 0.1 m come into contact with the first row of elements (fig. 6a), they are compressed

horizontally into channels, which are later driven over elements deeper in the array. By this

mechanism shear reduction is created around the roughness elements, perpendicular to the wind

direction. Streamlines released at a height of 0.2 m, shown in fig. 6b, interact with the horseshoe

vorticies and wake that form around the elements. This results in a loss of velocity magnitude.

Streamlines that do not interact with the turbulence around the elements are weakly channeled,

and eventually driven over elements as they travel through the array.

Spatial averaging was performed on the temporally averaged data in the direction perpendicular
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to the inlet wind direction. Shear magnitude plotted as a function of depth into the array is shown

in fig. 7 for three wind angles. These three plots underscore three important aspects of array design.

In fig. 7a, the wind approaches at the angle the array was designed for. This results in a rapid

reduction of the shear, but large oscillations result as the successive rows of roughness elements are

encountered. This signal is largely dampened in the 30◦ simulation, as wind travels nearly parallel

to the diagonal corridors. At 70◦, the flow begins to align with the element rows and the elements

approach a their most aerodynamic alignment. Overall shear becomes higher as elements shelter

each other, rather than the ground surface.
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(b) Wind is nearly aligned with 26.5◦ corridors.
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(c) Wind periodically encounters rows at a high angle with elements nearly aerodynamically aligned.

FIG. 7: Mean shear magnitude, computed by temporal and transverse wind direction averaging.

The three angles encounter elements at different spatial frequencies, which are not representative

of overall array effectiveness.
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C. Changes in shear for a single rotated box

Flow around a single element was investigated to understand the role of aerodynamics under a

rotated wind field without the interaction of other objects. Figure 8 shows the mean and standard

deviation of shear measured on the same sampling grid for the ten wind direction angles. Counter-

intuitively, the average shear increases with frontal area, and the standard deviation decreases.

Though the increase is modest, this shows that the aerodynamics of the roughness elements play

a dominant role over frontal area. The cause of this phenomenon lies in the asymmetry of the

roughness elements. Figure 9 shows binned surface shear for a single element rotated by 0◦ and

50◦. In the rotated case frontal area is larger. However, most of the wake shelter is behind the

longer edge, as seen in fig. 9b. When the long edge of the box meets the wind profile head-on,

there is a significant spreading of the shelter area, as shown in fig. 9a.

The histogram in fig. 10 was constructed to identify the shear magnitudes that account for the

lack of shear reduction under rotations with the greatest frontal area. For all of the simulations,

shear magnitude distributions were largely bimodal. However, for angles where large frontal areas

are presented to the incoming flow, shear magnitude observed in the 0.1 Pa to 0.3 Pa range have a

wider spread. This accounts for both the decrease in the element’s ability shelter the surface on

the lee side, and decrease in standard deviation.
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FIG. 9: Mean time-averaged shear patterns for two wind directions. Flow is from left to right.
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VI. CONCLUDING REMARKS

Multi-angle simulations were conducted to determine the effectiveness of a roughness array in

reducing ground shear. Simulations of the array corroborated field observations of rapid decreases

in near-ground wind speeds upon entering the initial two rows of roughness elements. Additional

simulations of a single rotated elements showed that frontal area is not a mechanistic parameter

to use alone in predicting how roughness will affect the magnitude of shear stress reduction and

the size or shape of the shelter zone. These results also suggest that element geometry needs to

be considered when using roughness to modulate the surface shear stress for wind erosion control.

Consideration needs to be given to the wind regime and the shape or orientation of elements to

maximize their effectiveness to reduce surface shear stress. Flow visualization shows the upward

deflection of the wind profile upon entering the roughness array is caused by strong vertical mixing

around the elements.
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We investigate the viscous free spreading of a constant volume of liquid in a fissure with

a parabolic cross section. A 1D flow model is derived that can be solved with similarity

variables and a variety of ODE methods. Governing assumptions are tested against a 3D

Navier-Stokes two phase flow simulation. Comparisons of the analytical and computational

profiles are presented. We also investigate the convergence of an arbitrary initial condition

to the limiting similarity solution. Computational experiments are conducted for an initial

condition generated from the 1D flow model, as well as an arbitrary mass conservative

rectangular initial condition representing a physical experiment. Results show excellent

agreement between the 1D flow model and the two-phase flow simulation. Differences in

the observed flow model can be attributed to the presence of vertical motions and surface

tension in the numerical simulations.
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I. INTRODUCTION

Gravity currents occur in a variety of natural and industrial settings123. Viscous immiscible

gravity currents are of particular interest, and can be studied in controlled lab experiments. Low

dimensional flow models with analytical solutions offer an important class of benchmarks, but rely

on a set of flow simplifications. Basic rheological studies are required to develop flow theory that

can be upscaled for applications such as flow through fractured media.

A number of models have been developed for viscous gravity spreading, with a common ap-

plication being flows through porous media. Potential flow models are one example with a rich

history in both subsurface and general fluid flows. Analytical solutions of potential flow problems

are often restricted to steady state processes on infinite domains. Polubarinova-Kochina 4 posed

and solved many subsurface potential flow problems with conformal mappings. For time dependent

applications, Longo et al. 5 took the approach of linearizing a potential flow system. An alternative

approach to 2D potential flow equations is a reduction to 1D using the Dupuit-Forcheimer (DF)

assumption6. This assumption restricts the velocity to the horizontal direction only, and velocity is

calculated from the slope of the free surface. Implicit in this approach is that the velocity is depth-

averaged and calculated using the gradient of the hydrostatic approximation of pressure. This

results in a non-divergence free velocity field for incompressible fluids, with continuity imposed on

the free surface7. For uniform permeability, these assumptions result in the Boussinesq equation

with constant coefficients. This equation is commonly used in problems involving the spreading of

unconfined groundwater, or flow between parallel plates8–10. Similarity solutions exist for a variety

of initial and boundary conditions. For the free spreading of a finite volume of fluid, Barenblatt 11

constructed a solution using a point mass at an initial time. Using a symmetry argument, this

solution can be applied to both boundary value and initial condition problems.

Domains with spatially variable permeability can be modeled using the generalized Boussinesq

equations12–15. Similarity solutions exist for cases where the permeability takes the form of a

power law in the horizontal or vertical directions. Hele-Shaw cells can be used to study these

flows experimentally, with viscous drag being used as a proxy for permeability16. Positioning

flat cell walls in a wedge configuration results in generalized Boussinesq equation that can be

solved with with such an approach. Ciriello et al. 15 constructed similarity solutions to injection

problems in horizonal and vertical wedge configurations. Zheng et al. 17 found solutions in a similar

configuration for drainage from an initially full aquifer. Curved plates resulting in power-law

permeability are difficult to manufacture, but have been used for horizontally oriented experiments
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by Zheng et al. 18 , as well as vertical experiments by Di Federico et al. 19 .

Multiphase numerical modeling of the aforementioned experiments with the 3D Navier-Stokes

equations is analogous to pore scale modeling, and to the authors knowledge have not yet been

performed. Though the geometry is relatively simple, the aspect ratio requires a very large compu-

tation mesh to resolve the front in the directions transverse to the primary flow direction. The issue

is further complicated by sharp mesh angles where wedge walls meet. Parabolic wedges provide an

interesting geometry that lends itself to both analytical and 3D numerical simulations. We derive

a flow model for viscous gravity spreading in a parabolic fissure using the DF assumption, resulting

in a generalized Boussinesq type equation. We then investigate properties of the flow using a 3D

two phase volume of fluid (VOF) Navier-Stokes equation (NSE) simulation. The availability of flow

pathlines in the numerical simulation gives insight into the experimentally observed phenomenon

of arbitrary initial conditions converging on the similarity solution. The inclusion of surface tension

in the numerical simulation allows us to assess the accuracy of experiments in Hele-Shaw cells as

compared to the 1D model.

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

A. 1D flow model

We derive a flow model for a viscous fluid in a parabolic fissure. Consider a fluid element formed

by vertically cutting through a parabolic prism, as seen in Figure 1. Conservation of mass dictates

that the rate of change of fluid in the elementary volume is equal to the difference in volumetric

fluxes through the faces at y and y + dy:

∂

∂t

(∫ hv(y,t)

0
b(z)dzdy

)
=

(∫ hv(y,t)

0
b(z)uv(y, z, t)dz

)

−
(∫ hv(y+dy,t)

0
b(z)uv(y + dy, z, t)dz

)
, (1)

where the width of the wedge for height z is given by b(z), uv is the fluid speed in the y direction,

and hv(y, t) is the height of the free surface. We consider only the flux of an incompressible high

viscosity fluid (e.g. glycerol), neglecting the gaseous atmosphere being displaced. Neglecting the

higher order terms of the Taylor expansion in the second term on the right hand side of (1), we
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uν

y

y + dy

b (z)

z y

FIG. 1: A fluid element within the wedged Hele-Shaw cell. The cross-sectional width is denoted

b(z), and the flux through the element is uν .

obtain,

∂

∂t

(∫ hv(y,t)

0
b(z)dzdy

)
= − ∂

∂y

∫ hv(y,t)

0
b(z)uv(y, z, t)dzdy. (2)

As seen in Figure 1, the parabolic cross section is oriented against gravity in the x − z plane.

The equation of the fissure walls in the x− z plane is

z = ωx2 (3)

for some constant ω > 0. Then the distance between the walls as a function of height is,

b(z) = 2

√
z

ω
. (4)

Under the assumption of Poiseuille flow between parallel plates for an arbitrary height given by

b(z), we obtain permeability as a power law function of height:

k(z) =
(b(z))2

12
=

z

3ω
. (5)

This permeability results in the Darcy velocity,

uv(y, z, t) = − z

3ω

ρg

µ

∂hv(y, t)

∂y
. (6)

Performing substitutions for width (4), Darcy velocity (6), and integrating (2) yields,

∂

∂t

(
4

3
√
ω
h

3
2
v

)
=

∂

∂y

(
4

15
√
ω3

ρg

µ
h

5
2
v
∂hv
∂y

)
, (7)

which further simplifies to,

∂

∂t

(
h

3
2
v

)
=

ρg

5ωµ

∂

∂y

(
h

5
2
v
∂hv
∂y

)
. (8)
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We perform the change of variables, Υ = h
3
2 , to obtain a special form of the porous medium

equation (PME)7:

∂

∂t
Υ =

2ρg

35ωµ

∂2

∂y2
Υ

7
3 . (9)

We are interested in case of free spreading under the force of gravity, which results in the boundary

condition11,

Υ(0, t) = σt
− 1

7/3+1 , (10)

where σ > 0 for an initially empty fissure.

The problem defined by (9) and (10) can be solved by introducing the dimensionless similarity

variables,

ξ =
x(1 + β(m− 1))

1
2

(aσ(m−1)t1+β(m−1))
1
2

, (11)

and

h = σtβH(ξ), (12)

where ξ(x, t) is the similarity variable, H(ξ) is a scaling function, m = 7/3 nonlinear diffusion

exponent in the PME, and a = 2ρg
35ωµ . The parameter β is the time exponent of the boundary

condition, in this case − 1
7/3+1 . Substitution of the similarity variables results in the ordinary

differential equation,

d2Hm(ξ)

dξ2
+
ξ

2

dH(ξ)

dξ
− λH(ξ) = 0, (13)

where λ = α
1+α(m−1) , and H(0) = 1, H(ξ0) = 0. The front position in terms of similarity variables

is ξ0, and is found in the process of solution. The “mathematician’s pressure” change of variables7

H = u
1

m−1 (14)

performed on (13) produces an ODE with integer powers:

m

m− 1
u
d2u

dξ2
+

m

m− 1

(
m

m− 1
− 1

)(
du

dξ

)2

+
ξ

2

1

m− 1

du

dξ
− λu = 0. (15)

Boundary conditions are given by,

u(0) = 1, (16)
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and

u(ξ0) = 0. (17)

The system (15)–(17) can be solved using a Runge-Kutta solver, or a power series of the form

(Furtak-Cole et al 2018, submitted),

u(ξ) =
∞∑

n=0

an

(
1− ξ

ξ0

)n
. (18)

B. 3D flow model

Flow through the parabolic fissure can be modeled with the incompressible 3D Navier-Stokes

equations,

ρ
Du

Dt
= −∇p+ ρg + µ∆u, (19)

and

∇ · u = 0, (20)

where ρ is density, u is velocity, p is pressure, µ viscosity, and g is the gravity vector. Phases are

tracked using a VOF method20. The indicator function α takes on values in the range of [0, 1] and

can be interpreted as the fraction of two phase types within a computation cell. For our purposes,

0 denotes air, and 1 denotes glycerol. For any computational cell in the domain, the average fluid

properties for density and viscosity are calculated by summing over the i phases,

ρ =
∑

i

ρiαi (21)

and

µ =
∑

i

µiαi (22)

respectively. The indicator function evolves under the equation,

∂αi
∂t

+∇ · uαi +∇ · ucαi (1− αi) = 0, (23)

where the counter gradient transport term ∇·ucαi (1− αi) acts as a limiter based on the maximum

velocity uc on interface. Surface tension effects are calculated by,

S = γK∇α, (24)
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where γ is the surface tension, and K is the curvature −∇ · n. The term for S is added to the

momentum equation (19) to obtain,

ρ
Du

Dt
= −∇p+ ρg + µ∆u + γK∇α. (25)

We use the finite volume method toolbox openFOAM2122 implementation interDyMFoam in

all 3D flow simulations. A hexahedral base mesh was constructed with a 2 − 1 − 1 aspect ratio.

This mesh was fitted to a 3D parabolic geometry using the snappyHexMesh utility. The parabolic

geometry was constructed to the specifications in section II C. Mesh adaptivity was set to refine

two levels, based on the interface values of the indicator function α.

We supply boundary conditions to mimic a lab experiment, with a top open to the atmosphere.

For velocity, a no-slip condition,

u = 0, (26)

is applied to all solid walls. To allow fluxes of air at the top of the experiment, a zero gradient,

∂u

∂n
= 0, (27)

condition is applied. A no-flow pressure condition is applied at the solid walls,

∂p

∂n
= 0. (28)

At the top of the experiment, total pressure Ptot is calculated as,

ptot = patm − .5ρ‖u‖2. (29)

C. Flow assumptions, initial conditions and parameter values

The 1D flow model uses the DF assumption, and does not include the effects of surface tension.

The 3D model include the full velocity field and includes surface tension effects, but requires large

amounts of computational power to solve. This is largely due to the aspect ratio of the domain,

which requires very small finite volumes between the parabola walls. The parabolic geometry is

defined by

z = 2000x2, (30)

extruded along the y axis for one meter. This corresponds to a gap of 2 cm at a maximum height

of 0.2 m.
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parameter value

σ 0.06 m

ρ 1261 kg m−3

µ 1.412 Pa s

g 9.8 m s−2

ω 2000

(a) 1D flow model.

parameter value

γ 0.0634 N m−1

ρair 1 kg m−3

µair 1.48× 10−5 Pa s

ρglycerol 1261 kg m−3

µglycerol 1.412 Pa s

g 9.8 m s−2

(b) 3D flow model.

TABLE I: Parameter values for the 1D and 3D flow models. Density and viscosity are the same

for the glycerol phase in both models.

An initial condition for the 3D simulation was chosen from the 1D analytical solution. The

parameter values in table Ia were inserted into the 1D flow model. The resulting curve at time

t =0.3 s was arbitrarily chosen as a suitable initial condition for a lab-scale experiment of the free

spreading of a finite volume of glycerol.

III. COMPUTATIONAL EXPERIMENTS

A. Profile comparison

A comparison between the 3D simulation and 1D analytical solution is shown in fig. 2. Excellent

agreement is observed between the two methods, both in propagation distance and shape. The

poorest fit is seen in fig. 2a. At that time, the simulated front lags behind the analytical solution,

and undercutting is observed at the bottom of the advancing front. At later times, the free surface

of the 1D analytical solution lags behind the NSE simulation. We note that the 1D model does

not include surface tension effects, while the 3D model does.

B. Transition to similarity

The transition from initial conditions to late time similarity solutions has been investigated

with physical experiments18,23, and analytical solutions24. In both cases, the reason for late time

convergence is difficult to understand mechanistically. To perform experiments, initial conditions

that do not coincide with the similarity solution are often used out of necessity. Numerical experi-

ments offer a previously unobtainable opportunity to compare the convergence of arbitrary initial
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(a) 1.3 s
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(b) 2.3 s
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FIG. 2: Comparison between the NSE simulation and 1D flow model for four times. Red

represents glycerol in the simulation results, the yellow dotted line is free surface from the 1D

model. The analytical free surface at time t = 0.3 s was used as an initial condition for the NSE

simulation. Horizontal and vertical lengths are in meters.
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conditions. In the results presented in section III A, we observe the greatest discrepancy between

the solutions at early times, though the simulation is started from the analytical curve. This is

due to the inclusion of vertical motions and surface tension in the simulation.

A hypothetical mass-conserving initial condition of rectangular cross section was produced by

solving,

∫ y1

0

∫ z=.18

0
2

√
z

2000
dzdy = 3.425 48× 10−4, (31)

where the upper limit z = .18 was chosen arbitrarily. The value for the right hand side was produced

by numerically computing the volume integral defined by the analytically-derived initial condition

from the 1D flow model in the parabolic geometry. For practical purposes, such an initial condition

could be used in an experiment by setting a lock gate to hold the volume of glycerol at the initial

time. Propagated distances versus time and residuals between the 3D simulation and 1D analytical

solution front propagation are shown in fig. 3. As seen in fig. 3a, the rectangular analytical

simulation rapidly converges to the simulation started with the analytical initial condition. Both

simulations run ahead of the 1D solution for later times. This is likely due to the overall slow-down

of the front, but continued surface tension action of the fluid at the base of the wedge.

Figure 3b shows that the differences produced by subtracting the analytical curves from the

simulations go to zero as the two curves converge. Why this happens can not be determined from

the analytical solution, as no known exact solution exists for the rectangular initial condition.

Pathlines of tracer particles placed on the free surface of the rectangular initial condition reveal

the rapid collapse of fluid furthest from the initial condition generated by the similarity solution.

Figure 4 shows these pathlines, produced over 1 s of simulation time. Pathlines are colored by

velocity, showing very high velocities are generated near the upper right corner of the initial

condition.

C. Surface tension and vertical velocity

The similarity solution to the 1D flow problem is a weak solution that is a continuous function.

By contrast, the interface resolved by the numerical simulations is double valued at the propagating

edge. We track this behavior by measuring the height at which the flow overrides itself at the tip

of the advancing front. The height of undercut is shown in fig. 5 as a function of time. The time

t = 2 s is marked with a vertical line as the approximate time that the two numerical simulations

reach the same propagation distance as the 1D solution (see fig. 3). This suggests that the slowing
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(a) Front propagation for the two simulations and 1D flow model.
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(b) Differences made by subtracting 1D flow model results from the simulations.

FIG. 3: Front propagation through time is shown for the two simulations and 1D flow model in

3a. Differencecs produced by subtracting the analytical solution from the simulations is shown in

3b. The three solutions align just before 2 s.

of front propagation is a mechanism for late time convergence. For early times, the fluid mass has

enough pressure gradient to over-run the base of the parabola, where flow permeability tends to

zero. At later times, the propagation speed of the front is slow enough that fluid can fill in the

bottom of the parabola vertically.
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FIG. 4: Pathlines placed on the rectangular initial condition, carried forward 1 second in time.

Pathlines are colored by velocity magnitude.
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FIG. 5: Height of undercutting in the capillary zone as a function of time. The removal of surface

tension results in a profile with less undercutting at early times. The time t = 2 s is marked by a

dotted line.

Undercutting for a surface tension free simulation is also given in fig. 5. Equilibrium is reached

significantly earlier, and at a greater height. Concavity patterns remain nearly the same, indicating

that this behavior is primarily driven by the vertical velocity that is not present in the 1D model.

In the undercut region, surface tension acts parallel to the direction of front propagation, which

could explain the height difference between the two simulations at late times.
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IV. CONCLUDING REMARKS

A 1D flow model was solved with similarity variables and compared to numerical solutions to the

NSE using the VOF method and mesh adaptivity in a 3D parabolic fissure. Excellent agreement

was observed between the two models. It was demonstrated that an arbitrary initial condition is

unstable, and attracts strongly to the late time solution for both models. Early time discrepancies

between the two models are shown to be primarily due to the treatment of velocity in the two

models. Surface tension plays a dominant role at later times, and shifts the time at which the flow

reaches an equilibrium of height undercutting.
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CONCLUSION

The importance of fluid dynamics in the natural environment can not be overstated. A

diverse approach is needed to develop numerically-tractable models of fluid flow, examine

flows around anthropogenic structures, and continue the development rheological theory.

A solution procedure was developed for potential flow in the subsurface, which can be

applied to landscape-scale problems in two or three spatial dimensions. We observed a

great computational savings by limiting the implicit part of the solver to the saturated

zone. Additionally, explicit front tracking, handling of merging interfaces, and a relaxation

of the CFL condition were achieved. Existing CFD techniques were used to study the

influence of wind direction on erosion control roughness arrays. Simulations agreed with

measured and qualitative flow characteristics. Shear reduction was quantified, and insight

was gained into the roughness array’s mechanism of action. Single element simulations

revealed strong effects of aerodynamics, and suggest that the current body of research on

roughness calculations requires further development. A 1D model was derived for viscous

flow in a parabolic fissure, and compared to two-phase flow simulations. Excellent agreement

was observed. The use of numerical simulations allow for the isolation of flow effects that

would not be achievable in a laboratory setting. Differences in the early and late time

results was mechanistically explained and will be useful in the future development of physical

experiments.
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