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  ABSTRACT 

 
Humans as Sensors: The Influence of Extreme Heat Vulnerability Factors  

on Risk Perceptions Across the Contiguous United States 

 
by 

 
Forrest Scott Schoessow, Master of Science 

Utah State University, 2017 

 
Major Professor: Dr. Peter D. Howe 
Department: Environment and Society 
 
 

Extreme heat events are the deadliest natural hazard in the United States and will 

continue to increase in both severity and frequency in the coming years due to the effects 

of climate change. As a result, the number of individuals residing in the United States 

exposed to deadly heat waves will continue to rise, underscoring the urgent need for 

decision-makers and risk managers to develop more comprehensive strategies to mitigate 

the negative impacts of extreme heat, as heat mortality is often preventable if appropriate 

actions are taken. The intensity and scope of extreme heat impacts hinges upon 

climatological, meteorological, and geographic exposure factors, as well as dynamic 

human factors, such as sensitivity and the efficacy of communities’ adaptive policies. 

Failure to consider the human dimensions of extreme heat risk can lead to inadequate 

hazard communication, misguided management priorities, vulnerable populations being 

“left behind,” and systemic underestimation of risk. Spatially-explicit risk perception data 

can aid the development of more sophisticated extreme heat risk assessments at the local 
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level by capturing changes in dynamic sensitivity factors over time and space. In this 

study, a series of mixed effect models were specified that included meteorological, 

climatological, geographic, sociodemographic, temporal, or land cover variables – each 

representing different sensitivity, exposure, or adaptive capacity factors – as predictors of 

extreme heat risk perception. Results summarize the effect these dynamic and varied risk 

factors have on heat wave risk perception, report patterns of geographic variation in the 

response, and highlight subpopulations that tend to perceive themselves to be at the 

highest risk of being negatively impacted by extreme heat. Incorporating risk perceptions 

into risk assessment presents a more democratic way of identifying vulnerable 

populations, a necessary step toward enhancing hazard preparedness frameworks and risk 

management plans. 

 (165 pages) 
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PUBLIC ABSTRACT 

 
Humans as Sensors: The Influence of Extreme Heat Vulnerability Factors  

on Risk Perceptions Across the Contiguous United States 

Forrest Scott Schoessow 
 
 

Extreme heat events are the deadliest natural hazard in the United States and will 

continue to get worse in the coming years due to the effects of climate change. As a 

result, more people will experience deadly heat conditions. This highlights the need for 

decision-makers to develop better strategies for preventing future losses. How badly 

individuals are affected by extreme heat depends on many circumstances, such as how 

high temperatures actually are, weather conditions, and location. For example, a dry 90 

°F day in Phoenix is probably more tolerable than a humid 90 °F day in New Orleans for 

most individuals. However, some groups of people are more likely to be harmed by 

extreme heat than others, such as the elderly and those who work outdoors. This may 

seem straightforward, but uncovering less obvious clues that help explain how and why 

some groups are affected differently by extreme heat can be difficult, since much of the 

impact of extreme heat depends on people’s judgements of the risk and their personal 

decisions. These human factors are typically not very easy to measure because different 

hazards affect different people in different ways at different times in different places. 

This study uses a large survey of the U.S. population and statistical methods to explore 

how weather, time, space, and personal experience with heat affect different people’s 

judgment of risk. Whether different groups understand their high or low risk status has 
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important implications for decision-makers responsible for crafting plans to reduce 

extreme heat risk in their local community. 
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CHAPTER 1 

 
INTRODUCTION 

 

Extreme heat events are the deadliest natural hazard in the United States (U.S.) 

(CDC, 2016; Jones et al., 2015; Smith, 2013, p. 271) and will continue to increase in both 

severity and frequency in the coming years due to the effects of climate change (EPA, 

2016; IPCC, 2014; Mora, et al., 2017; NWS, 2015; Vose et al., 2017). As a result, the 

number of individuals residing in the U.S. exposed to deadly heatwaves will continue to 

rise, underscoring the urgent need for decision-makers and risk managers to develop 

more comprehensive strategies to mitigate the negative impacts of extreme heat, as heat 

mortality is often preventable if appropriate actions are taken. Extreme heat risk levels 

are rising across the contiguous United States due to both natural and human factors. 

Rising physical exposure levels across the contiguous United States and their complex 

interaction with social sensitivity factors (such as age, race/ethnicity, and sex) create 

unique risk levels for different subpopulations distributed across the country. 

Furthermore, recent studies have demonstrated the influence of human activity on the 

development and severity of extreme heat events (Angelil et al., 2017; Dole et al., 2014; 

Hoerling et al., 2013; Jeon et al., 2016; Knutson et al., 2013; Rupp et al., 2012) and 

examined how individual behavior and risk judgements can lead to highly variable 

impacts across similarly placed and exposed populations.   

The definition of Risk has evolved significantly in hazards literature over the past 

few decades. Recently, hazards scholarship has reexamined the nature of Risk to 
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incorporate the influence of such human factors. Recent literature has defined natural 

hazard Risk as a function of Vulnerability (composed of Exposure and Sensitivity 

factors) minus Adaptive Capacity factors (IPCC, 2014; Jones et al., 2015; Melillo et al., 

2014; Tierney, 2014, p. 12). More generally, risk is described as, “A condition in which 

there is a possibility that persons or property could experience adverse consequences” 

(Lindell et al., 2006, p. 84). Extreme heat hazards have highly variable impacts 

determined by the dynamic space-time patterns of exposure, complex individual-level 

sensitivity factors, and the adaptive capacity of the exposed populations. Accurate, 

locally-relevant vulnerability data describing the distribution of both the physical and 

human determinants of vulnerability are required in order to minimize future losses. Yet, 

while we have improved our ability to predict climate changes and extreme heat events 

on a global scale by better understanding the dynamic properties and interactions of the 

earth’s natural systems, insufficient research has been conducted to integrate the equally 

dynamic properties of human systems into more comprehensive risk assessments. Failure 

to consider the human dimensions of extreme heat risk can lead to inadequate hazard 

communication, misguided management priorities, vulnerable populations being “left 

behind,” and systemic underestimation of risk.  

As a greater proportion of the population will be physically exposed to extreme 

heat events in the coming years, and despite growing evidence that the increase in 

frequency and intensity of extreme heat events can be at least partly attributed to human 

activity (Dole et al., 2014; Jeon et al., 2016; Knutson et al., 2013; Rupp et al., 2012; 

Vose et al., 2017), it is unlikely that sufficiently aggressive mitigation steps can 

immediately be taken to alter this reality and reverse the overall trend of rising extreme 
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heat events. Nevertheless, we cannot simply “fix” the weather or “repair” the climate. 

While it is technically possible to alter our physical environment and therefore our degree 

of exposure to a certain extent—reducing impervious surface coverage or augmenting 

evapotranspiration potential in urban areas, for example—we have little command over 

meteorological and climatological processes that are so highly variable across time and 

over space. Furthermore, the costs associated with actively modifying our physical 

environment (and subsequently urban climates) to reduce exposure to extreme air 

temperatures far outweigh those associated with targeted risk reduction programs aimed 

at identifying and confronting human sensitivity factors—particularly socioeconomic 

inequalities—that contribute to vulnerability and increase total risk. Vulnerability must 

be attenuated, and adaptive capacity must be built to reduce future losses and strengthen 

resilience across the contiguous United States.  

Minimizing the negative impact of extreme heat events on the most vulnerable 

subpopulations of any given geographic area is a complicated endeavor. To increase 

chances of success, the risk reduction process must seek to address the cumulative impact 

of both human and physical factors that contribute to vulnerability as well as to promote 

protective behaviors that mitigate unnecessary exposure. However, the strength and 

distribution of individual-level sensitivity factors is particularly difficult to measure due 

to the dynamic nature of human systems. Traditional vulnerability studies often lack the 

critical psychosocial data such as risk perceptions that are required to more completely 

account for the role human risk judgment plays in determining individual vulnerability 

(Howe et al., 2013; Mora et al., 2017). The information contributed by this research will 

help identify vulnerable subpopulations, target risk communication products and the 
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allocation of additional necessary resources to vulnerable populations (CDC, 2016; EPA, 

2016; Howe et al., 2015; Melillo et al., 2014). A more comprehensive understanding of 

extreme heat risk that includes these critical psychosocial data is vital to enhancing 

adaptive capacity and strengthening community resilience.  

Personal behavior and preparedness can either attenuate or exacerbate 

vulnerability. Ideally, risk perception mirrors reality because we only respond to the 

hazards we perceive. Risk perception is a determinant of individual risk decision-making 

and influences the likelihood of an individual engaging in personal protective behaviors. 

Consequently, it is important to understand what factors influence risk perception and 

their distribution. This knowledge gap presents a major challenge for decision-makers 

seeking to minimize negative impacts in their communities by using risk reduction 

strategies that target the most vulnerable subpopulations. As large population areas 

increasingly incorporate vulnerability considerations into a more impact-based 

assessment of heat risk (shifting away from more simple frequency and magnitude-based 

predictions of exposure), risk perceptions play an increasingly important role in 

understanding the drivers of vulnerability and these factors’ distribution throughout the 

populace. This is primarily for three reasons: (1) “We know people generally do not 

respond to hazards that they do not perceive” (FEMA, 2017, p. 4); (2) Differences in risk 

perception in different subpopulations “highlights the need for effective risk 

communication” (FEMA, 2017, p. 12); (3) Risk perceptions provide empirical data that 

helps researchers better understand the individual-level sensitivity factors that help 

determine personal vulnerability.  
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Addressing human sensitivity factors via targeted risk communication is a cost-

effective method of reducing hazard vulnerability, minimizing loss, and enhancing 

resiliency. In order to achieve this, decision makers need space-time-specific 

vulnerability information which can be used to identify at-risk subpopulations, describe 

their distribution, examine their context, and develop targeted risk communication 

strategies. Mitigation and risk reduction decisions occur at different spatial scales, so it is 

necessary to have reliable vulnerability information specific to the appropriate level of 

decision-making. For example, when an NWS local office issues an extreme heat 

advisory, this may automatically activate risk mitigation resources which often include 

communications aimed at increasing hazard awareness among specific populations 

(Hawkins et al., 2017). In these circumstances, maps and geographic information systems 

are vital tools which enable decision makers to situate contextual knowledge of the 

hazard in their districts and coordinate the appropriate degree of response alongside local 

agencies (Lindell et al., 2006, ch. 10). 

Support for natural hazards risk management policy, engagement with risk 

communication products like the NWS heat alert system, and the likelihood of an 

individual engaging in protective behavior are greatly influenced by public beliefs and 

attitudes that can be better understood by studying the distribution risk perception and its 

determinants (California Governor’s Office of Emergency Services, 2001, p. 10; FEMA, 

2017; Howe et al., 2015; Lindell et al., 2006, p. 86). It is important to understand the 

space-time distribution of vulnerability factors before the risk communication process 

begins, because the more vague the information presented, the more likely it is to 

reinforce existing beliefs (FEMA, 2017, p. 8; Slovic et al., 1979). The creation of 
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reliable, locally relevant data on public heat risk perception is necessary in order for 

decision makers and scientists to more comprehensively assess actual extreme heat risk 

for different subpopulations and evaluate which mitigation and adaptation strategies 

might be most effective in those communities. Federal guidelines describe risk 

communication as the most effective way to “correct” misperceptions of risk and note 

that, “With an understanding of the perceptions and misperceptions of risk made by their 

constituents, hazards risk managers can work to correct those misperceptions and address 

the public’s fears and concerns” (FEMA, 2017, p. 13). Effective risk communication 

strategies encourage individuals to adopt proactive, protective behaviors, such as limiting 

their exposure by staying indoors, staying hydrated, and checking in on loved ones. Local 

communication strategies that promote protective behavior at the individual and 

community-level and are key to reducing hazard risk. Examples might include 

campaigning to increase awareness of local cooling shelters or addressing individual 

decision-making and behaviors that can exacerbate sensitivity factors or lead to greater 

exposure.  

This study examines the first and second order effects of natural and human 

factors on extreme heat risk perception by using a suite of multilevel regression models to 

examine empirical and existing data collected across the contiguous United States for the 

heat season of 2015. This study uses time-stamped, georeferenced, U.S.-nationally-

representative survey data to examine the spatial and temporal variation of perceived risk 

at multiple scales and provides locally-relevant estimates of unique subpopulations’ risk 

perceptions for risk managers and scientists. This research contributes an evaluation of 

how human and natural factors shape risk perceptions and divides these drivers into three 
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classifications: Exposure, Sensitivity, and Adaptive Capacity. These variables are 

evaluated independently and alongside one another in different controlled sets, specific to 

their unique, local geographical context. Results summarize the effect these dynamic and 

varied risk factors have on heat wave risk perception and report patterns of geographic 

variation in the response. Additionally, this study provides extreme heat risk perception 

estimates for unique subpopulations at multiple sub-national scales across the contiguous 

United States—previously systematically constrained only at the national level. This 

generation of localized heat risk perception knowledge helps provide decision makers 

with context-rich information at scales appropriate for more targeted risk communication 

and hazard preparedness campaigns.  
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CHAPTER 2 

 
LITERATURE REVIEW 

 

2.1. EXTREME HEAT 

Extreme heat exposure is a serious problem that is getting worse. While there is 

no universal definition of what constitutes a heat wave; these events are commonly 

understood to be periods characterized by excessively high levels of temperature and/or 

humidity that jeopardize human health due to severity of exposure or duration (CDC, 

2016; Hawkins et al., 2017; Keller and DeVecchio, 2015; Liss et al., 2017; Robinson, 

2001; Smith et al., 2013; White-Newsome et al., 2014). Mora and colleagues (2017) 

found that about 30% of the global population is exposed to deadly heat conditions for at 

least 20 days each year, and this number is expected to increase to between 48–74% by 

2100 based upon climate projections under different greenhouse gas emission scenarios. 

Others have concluded that if temperatures continue to rise as expected, a greater 

proportion of U.S. citizens will be exposed to deadly heat conditions in the future (Lehner 

and Stocker, 2015; Rauber et al., 2008, p.544). The many health risks associated with 

extreme heat events—exacerbation of pre-existing health issues, depletion of food and 

water supplies, as well as the significant levels of stress placed upon local resources—

cannot be overstated (CDC, 2016; IPCC, 2014; NWS, 2015).  

Extreme heat is a commonly experienced hazard with both immediate and 

delayed negative health impacts that can result in many fatalities during pronounced heat 

waves. In July 1995, during a five-day extreme heat event in Chicago, Illinois, over 700 

deaths were recorded in excess of historical norms for the same time period, representing 
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an increase of 85% from the previous year (Klinenberg, 2003; Semenza et al., 1996). In 

May 2015, record temperatures throughout southern India led to at least 2,320 confirmed 

fatalities (Mazdiyasni et al., 2017; Ratnam et al., 2016). In 2010, a prolonged heat wave 

affected much of the Northern Hemisphere during the months of July and August. In 

Moscow, Russia city officials reported a total of 10,935 deaths attributed to the extreme 

temperatures, representing an increase of 60% from the previous year (Shaposhnikov et 

al., 2014). And in August 2003, a particularly severe heat wave affected much of western 

Europe claiming more than 70,000 lives (Robine et al., 2008). Despite these high 

numbers, heat deaths are likely underreported due to heat’s tendency to exacerbate 

preexisting medical conditions which often leads to misdiagnosis and improper data 

recording (Aström et al., 2011; Liss et al., 2017; Mora et al., 2017). The intensity and 

scope of these impacts hinges upon geographic factors, population dynamics, time, scale, 

and the efficacy of communities’ adaptive policies (EPA, 2016; IPCC, 2014; Klinenberg, 

2003; Reid et al., 2012; Semenza et al., 1996; Smith, 2013, p. 86-88; Tierney, 2014, p. 

5).  

 
2.2. HAZARD RISK 

Risk is a function of Vulnerability minus Adaptive Capacity; as stated above, 

vulnerability is comprised of two factors: Exposure and Sensitivity. Thus, Risk = 

Vulnerability {{ f (Exposure + Sensitivity }} – Adaptive Capacity (Åström et al., 2011; 

Basu and Ostro, 2008; IPCC, 2014; Jones et al., 2015; NWS, 2015; Tierney, 2014, p. 12). 

In the context of weather-related hazards such as extreme heat, these individual 

components of risk have been defined by various scholars as follows:  
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1. Exposure: the likelihood of being subjected to the hazardous event (Anderson 

and Bell, 2009, 2011; Harlan et al., 2014; IPCC, 2014; Jones et al., 2015; 

Medina-Ramon and Schwartz, 2007; Tierney, 2014, p. 12);  

2. Sensitivity: the likelihood of being negatively affected by exposure; or the 

factors which govern the severity of the impact (Grothmann and Reusswig, 

2006; IPCC, 2014; Johnson et al., 2012; Jones et al., 2015; Klinenberg, 2003; 

Reid et al., 2012; Tierney, 2014, p. 12); and  

3. Adaptive capacity: the ability of individuals or a group to take actions that 

mitigate hazard risks (Bobb et al., 2014; IPCC, 2014; Jones et al., 2015; 

Kalkstein and Sheridan, 2007; Tierney, 2014, p. 12).  

The risk of extreme heat is usually formally assessed through one of two 

approaches: through traditional physical risk assessments, which mainly seek to measure 

the likelihood, frequency and magnitude of exposure, or through impact-focused risk 

assessments, which seek to quantify the potential severity of negative impacts to the 

exposed population (Smith, 2013, p. 86-88). These approaches complement one another; 

the risks associated with climate change and natural disasters can be more 

comprehensively assessed by supplementing traditional physical examinations of hazard 

exposure (e.g., Gill and Malamud, 2014; Hawkins et al., 2017; Mora et al., 2017; Van 

Westen, 2000) with analyses that seek to incorporate dynamic human vulnerability 

factors (e.g., age, sex, race, economic status, geography, etc.) (e.g., Buscail et al., 2012; 

Cardona et al., 2012; Cutter et al., 2003, 2008; Howe et al., 2015; IPCC, 2014; Masato et 

al., 2015; Reid et al., 2009; Semenza et al., 1996; Tomlinson et al., 2011; Weber et al., 

2015; Wolf and McGregor, 2013). 
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2.3. RISK ASSESSMENT 

There are difficulties in balancing these two types of risk assessments (traditional 

and impact-focused). Because the factors are complex and systems are interdependent, 

discrepancies between traditional risk assessments and impact-focused assessments that 

often consider risk perceptions of the public can lead to problems in the evaluation, 

management, and mitigation of hazard impacts by decision-makers (Smith, 2013, p.81). 

This is because risk factors are dynamic: they change over time and across space, affect 

different populations in unique ways, and are tied to human decision-making processes. 

For example, there is evidence that heat-related hospitalization and mortality rates are 

highest during the first heat wave of the summer (Anderson and Bell, 2009; Hawkins et 

al., 2017; Liss et al., 2017; Rauber et al., 2008, p. 526; Smith, 2013, p. 271). 

Additionally, growing urban populations will likely be exposed to more intense and 

frequent extreme heat events due to heat island effects (CDC, 2016; IPCC, 2014; Li and 

Bou-Zeid, 2013; Tomlinson et al., 2011), and the aging of the U.S. population will 

increase the percentage of the population considered vulnerable to heat (Basu, 2009; 

Jones et al., 2015; Lehner and Stocker, 2015; Mora et al., 2017; Rauber et al., 2008, p. 

544). These impact factors are often not accounted for in traditional, physical risk 

assessments. Some authors have explicitly acknowledged their inadequate handling of 

dynamic human factors in their risk analyses, often citing difficulties in measurement or 

spatial-temporal data compatibility (Gill and Malamud, 2014; Hawkins et al., 2017; Jones 

et al., 2015; Liss et al., 2017; Mora et al., 2017). Adding further complexity to evaluating 

risk on a national scale, the U.S. is a large, geographically diverse country, and global 

environmental changes will impact different regions and their respective populations in 
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different ways (Melillo et al., 2014; Medina-Ramon and Schwartz, 2007; Reid et al., 

2009).  

Trying to strike the appropriate balance between localized approaches to extreme 

heat hazard management which recognize the concerns of the public about future impacts 

and top-down, statistical assessments of the hazard that favor quantitative probabilistic 

frequency estimates is a major task for hazard managers and decision-makers (Cardona et 

al., 2012; Hawkins et al., 2017; Smith, 2013, p. 86-88; Weber et al., 2015). While 

objective assessments can effectively detect spatial and temporal trends related to a 

hazard phenomenon and human exposure, risk perceptions are an important source of 

data at the extreme local level, where individuals best understand their unique contextual 

environments and hazard mitigation needs (Tierney, 2014, p. 46). Risk perception data 

provides an informative contextual element to the human dimensions of risk management 

(Smith, 2013, p.71), and are increasingly sought after by government officials and risk 

managers (Reid et al., 2012; White-Newsome et al., 2014; Wolf et al., 2010), many of 

whom are actively seeking to streamline and revise hazard loss reduction plans by 

placing greater emphasis on engaging with subpopulations most likely to be negatively 

impacted (CDC, 2016; EPA, 2016; Hawkins et al., 2017; IPCC; 2014; Liss et al., 2017; 

Masato et al., 2015; Smith, 2013, p. 86-88; Weber et al., 2015). A critical missing piece 

in risk assessment is individual perceptions and behavioral indicators. Incorporating 

individuals’ risk perceptions into hazard management strategies presents a more 

democratic approach toward lessening hazard impacts and emphasizes the need to 

address sensitivity factors, vital components of vulnerability. This necessitates a shift 
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away from probability–likelihood-based models toward a more impact-based assessment 

of risk.  

 
2.4. SENSITIVITY FACTORS 

The drivers of sensitivity are particularly challenging to factor into formal risk 

assessments. This knowledge gap presents a major challenge to decision-makers seeking 

to minimize negative impacts because sensitivity factors largely determine the degree to 

which extreme heat exposure will negatively impact subpopulations (Cardona et al., 

2012; IPCC, 2014; Jones et al., 2015; Klinenberg, 2003; Mora et al., 2017; Semenza et 

al., 1996; Tierney, 2014, ch. 1–4). For example, it is generally well understood that 

certain subpopulations characterized by different sensitivity factors—the elderly, infants, 

individuals with disabilities or preexisting medical conditions, the homeless and poor, 

and the socially isolated—are more vulnerable to periods of prolonged or excessive heat 

(CDC, 2016; EPA, 2016; Gronlund, 2014; Gronlund et al., 2014, 2016; IPCC, 2014). The 

best way to manage risk and assess vulnerability of these subpopulations involves 

combining an understanding of the physical properties governing heat (exposure) with 

sound judgment based upon knowledge of sensitivity factors (Cardona et al., 2012; CDC, 

2016; EPA, 2016; IPCC, 2014; Melillo et al., 2014). Many high population areas have 

already shifted towards developing assessments of heat risk that are more impact-based 

(rather than strictly frequency and magnitude-based predictions of exposure), but lack 

quantitative data characterizing the distribution of key sensitivity factors. Risk 

perceptions play an important role in understanding the drivers of extreme heat 

vulnerability (particularly sensitivity factors), identifying at-risk subpopulations, and 
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providing localized knowledge of how these factors are distributed throughout different 

communities.  

Many hazards and risk researchers have highlighted that disasters are the outcome 

of social, political, and economic conditions interacting with a natural hazard (Cardona et 

al., 2012; Tierney, 2014, p.39; White et al., 2001). This intersecting of dynamic human 

factors and exposure has been described as the “social production of risk” (Tierney, 2014, 

ch. 4). Cardona and colleagues have asserted that vulnerable populations are at risk not 

only from extreme heat exposure, but also, “as a result of marginality, of everyday 

patterns of social interaction and organization, and access to resources” (Cardona et al., 

2012, p. 71; IPCC, 2014). It is this unique combination of sociodemographic factors, their 

interactions, and personal circumstances that contributes to vulnerability and directly 

affects the impact of heat hazards.  

This study will analyze empirical heat risk perception data and evaluate the 

relationship between key factors often cited in the literature as major contributors to heat 

vulnerability (summarized in Table I) as well as their influence on individual risk 

perceptions. For example, age of respondent was included in the models as a sensitivity 

factor. Older individuals are statistically more likely to be negatively impacted by 

extreme heat exposure as they tend to be more physiologically susceptible to heat risk, 

more limited in their ability to access health services due to mobility constraints, and 

more prone to social isolation (Anderson and Bell, 2011 Gronlund, 2014; Gronlund et al.,  

2014, 2016; Harlan et al., 2006; Johnson et al., 2009; Kovats and Hajat, 2008; Liss et al.,  

2017; Reid et al., 2009; Semanza et al., 1996; Smith, 2013; Staffogia et al., 2006; Uejio 

et al., 2011; Weber et al., 2015; White-Newsome et al., 2014; Wolf and McGregor,  
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Table I. Summary of Sensitivity Factors Known to Influence Extreme Heat Risk 

and Their Directionality 

 

2013). Women face greater heat risk due to both physical and socioeconomic factors. 

Women tend to be more susceptible to periods of extreme or pronounced heat due to 

physiological differences in thermoregulation, namely transpiration capacity (Burse, 

1979; Staffogia et al., 2006). Women also face significant socioeconomic disadvantages 

that contribute slower recovery times when a hazard strikes due to greater pressure to 

address family care, mobility constraints, and unequal socioeconomic conditions 

(Canoui-Poitrine et al., 2006; Kovats and Hajat, 2008; Smith, 2013). Less educated 

subpopulations tend to face greater natural hazard risks in general due to difficulties they 

face in accessing health services and hazard information (Anderson and Bell, 2011; 

Cutter et al., 2003; Reid et al., 2009; Weber et al., 2015). Socioeconomically 
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disadvantaged persons, particularly disabled individuals, are significantly more likely to 

be negatively affected by natural hazards, including extreme heat, due to a lack of 

resources required to cope with the hazard (Anderson and Bell, 2009, 2011; Cutter et al., 

2003; Harlan et al., 2006; Kovats and Hajat, 2008; Johnson et al., 2009; Liss, 2017; Reid 

et al., 2009; Smith, 2013; Uejio et al., 2011; Weber et al., 2015; White-Newsome et al., 

2014). Conversely, several studies have suggested that individuals or families living in 

larger homes tend to have greater access to the resources required to cope with heat 

hazards (Cutter et al., 2003; Klinenberg, 2003, p. 80-81; Reid et al., 2009, 2012; 

Semenza et al., 1996; Weber et al., 2015). Due to social, political, and economic 

advantages minority populations (not identifying as White or Caucasian) typically are 

more sensitive to extreme heat risk (Anderson and Bell, 2012; Cutter et al., 2003; Reid et 

al., 2009; Weber et al., 2015). 

2.5. EXPOSURE FACTORS 

Exposure is “The presence of people, livelihoods, species or ecosystems, 

environmental functions, services, and resources, infrastructure, or economic, social, or 

cultural assets in places and settings that could be adversely affected” (IPCC, 2014, p. 5). 

While sensitivity factors affect the chances that different subpopulations are impacted in 

different ways when subjected to a natural hazard, the intensity and duration of extreme 

heat exposure significantly contributes to overall risk. Location is important to 

understanding extreme heat exposure levels, and it has been noted that, like many other 

weather-related hazards, a heat wave has a distinctive “geographic relativism to it” 

(Rauber et al., 2008, p. 525). This relates to what has been described as the first law of 
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geography: “Everything is related to everything else, but near things are more related 

than distant things” (Tobler, 1970). Individuals clustered together over space are more 

likely to experience similar heat conditions, as illustrated by the regional differences 

shown in Figure 1. 

 

Fig. 1.  Spatial distribution of greatest historical positive deviations in yearly average 
minimum temperature across the contiguous U.S. (NOAA, 2016).  

 

 Like sensitivity factors, exposure factors are dynamic and highly variable across 

time and space. However, these factors are generally better understood, thanks in part to 

modern technological advances that have enabled researchers to expand and enhance 
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their avenues of inquiry. Many factors contributing to exposure levels have natural 

properties that have been observed, measured, and constrained: temperature levels, air 

pressure, humidity, solar insolation, radiative surfaces, albedo effect, air speed, elevation, 

proximity to large water bodies, etc. (Rauber et al., 2008, ch. 27; Van Westen, 2000).  

Knowledge of these natural properties helps explain how the human body interacts with 

extreme heat conditions.  

The typical human body maintains a core temperature around 37 (± 0.5) °C at rest 

(Mackowiak et al., 1992; Sund-Levander et al., 2002). The body seeks to maintain this 

optimum core temperature via thermoregulation and has four ways to rid itself of 

excessive heat: evaporation, radiation, conduction, and convection (Hall, 2015, p. 914-

915). However, even at rest, the average human body is generating heat by producing 

roughly 80–100 Watts to maintain the metabolic rate required in order to support the 

functioning of vital organs (Harris and Benedict, 1918; Roza and Shizgal, 1984). 

Therefore, if the human body is exposed to temperatures above 37 (± 0.5) °C, the body’s 

ability to thermoregulate and cool via radiation and conduction is dramatically reduced. 

This is explained by the second law of thermodynamics which states that no object can 

transfer or dissipate heat into an environment of equal or greater temperature (Planck, 

1903, p. 77-85). A human body that is exposed to temperatures greater than 37 (± 0.5) °C 

will begin to absorb heat via radiation and conduction. Under extreme heat conditions 

above this temperature threshold, evaporative cooling via perspiration becomes the 

body’s primary defense against hyperthermia (Hall, 2015, p. 914-915).  However, when 

relative humidity approaches 100%, the air saturates with water vapor and perspiration 

becomes dangerously deficient in its ability to achieve adequate thermoregulation 
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(Rauber et al., 2008, p. 525). This creates particularly dangerous situations for people, 

such as outdoor workers and athletes, who are required to exert themselves outdoors 

during heat waves. In order to communicate the effects of combined heat and humidity 

on the human body when describing environmental conditions, the heat index was 

developed. The index combines measurements of both air temperature and relative 

humidity to produce an “apparent temperature” estimate which approximates how hot the 

human body perceives current conditions to be (Rauber et al., 2008, p. 524-526). For 

example, a 37 °C air temperature combined with 40% relative humidity becomes 38 °C 

on the heat index and a blistering 57 °C with 70% humidity (Fig. 2). When the heat index 

 

 

Fig. 2. Heat index chart (courtesy of National Weather Service and the National Oceanic 
and Atmospheric Administration [NWS, 2005]). 
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climbs to these hazardous levels, individuals who experience prolonged exposure and are 

unable to adequately thermoregulate are most likely to suffer the negative effects of 

hyperthermia (Mora et al., 2017). 

The spatial-temporal variation inherent to weather-related hazards greatly affects 

where and when different subsets of the population are exposed to prolonged or excessive 

periods of dangerous heat, as previously mentioned. Since heat conditions vary greatly 

across scales, time, and space it is often helpful to reference historical averages when 

describing the temperature trends that characterize different spatial-temporal units (e.g., 

the mean daily maximum temperature for a given month at the state level). This allows 

for place-based seasonal differences in extreme heat conditions to be characterized and 

examined in the context of their human impacts. More heat-related deaths and injuries are 

recorded during the first few heat waves of each year (Hawkins et al., 2017; Liss et al., 

2017; Rauber et al., 2008, p. 526; Smith, 2013, p. 271) before individuals can acclimate 

to elevated temperatures over the course of the warm season. Population spatial dynamics 

also play an important role in determining degree of exposure, as people are not static 

entities and often choose to migrate seasonally (Jones et al., 2015). The environment in 

which people are situated has a direct effect on the frequency and degree to which they 

are exposed to extreme heat.  

Urban environments with high population densities and other highly-developed 

areas with a higher proportion of impervious surfaces (pavement, concrete, etc.) are 

exposed to a higher degree of heat risk due to the urban heat island effect (UHI) (CDC, 

2016; EPA, 2016; IPCC, 2014; Melillo et al., 2014). The UHI, a consequence of human 

development, describes cities’ tendency to absorb and retain greater amounts of heat due 
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to impervious surface properties, lack of cooling vegetation, decreased airflow due to 

human-built obstructions, and elevated exhaust emission levels from highly concentrated 

human activity. These factors, known to amplify heat exposure, are predominantly 

responsible for the extreme difference in temperatures between rural and urban 

environments (Fig. 3), where daytime city temperatures can be up to 5.6 °C higher than 

those recorded in the surrounding rural areas (CDC, 2016; EPA, 2016; IPCC, 2014; 

Tomlinson et al., 2011; Weber et al., 2015). Vegetation and tree coverage provides shade 

and helps drive down temperatures at night via evaporative cooling which reduces the 

likelihood of a sustained urban heat island effect (CDC, 2016; EPA, 2016). These 

nocturnal cooling processes play an integral role in helping to naturally reset the high 

surface and air temperatures from the previous day and play an important role in 

preventing prolonged or intense heat waves. The urban heat island effect is most apparent 

at night when air temperature differences between cities and rural areas can be as high as 

12.2 °C (CDC, 2016; EPA, 2016). This illustrates the extreme importance of the 

aforementioned exposure factors that relate to human-built environments. When daily 

lows positively deviate from seasonal averages, daily highs are typically elevated, 

temperatures are less likely to “reset” via nightly cooling, and populations are more likely 

to be negatively impacted due to the unexpected nature of anomalous heat conditions 

(Rauber et al., 2008, p. 526; Smith, 2013, p. 271; Weber et al., 2015; White-Newsome et 

al., 2014).   
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Fig. 3. Urban heat island profile, courtesy of the Environmental Protection Agency 
(CDC, 2016; EPA, 2016). 

 

Table II summarizes the exposure factors evaluated in this study and the 

hypothesized directionality of their effect on extreme heat risk perceptions based upon 

how they augment heat risk individually. These factors include: Heat index 

measurements aimed at capturing the effect of humidity in the model (Anderson and Bell, 

2009, 2011; EPA, 2016; Hawkins et al., 2017; Keller and DeVecchio, 2015, p. 316; 

Rauber et al., 2008, p. 525-526). Population density (Anderson and Bell, 2009, 2011; 

Buscail et al., 2012; CDC, 2016; EPA, 2016; IPCC, 2014; Kilbourne et al., 1982; 

Klinenberg, 2003, p. 80-81; Melillo et al., 2014; Rauber et al., 2008, p. 526-530; Safi et 

al., 2012; Smith, 2013, p. 272; Tan et al., 2007; Tomlinson et al., 2011; Weber et al., 

2015) as well as impervious surface coverage and vegetation coverage (Bobb et al., 2014;  
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Table II. Summary of Exposure Factors Known to Influence Extreme Heat Risk            

and Their Directionality 

 

Buscail et al., 2012; CDC, 2016; EPA, 2016; IPCC, 2014; Keller and DeVecchio, 2015, p. 

317; Kilbourne et al., 1982; Klinenberg, 2003, p. 80-81; Melillo et al., 2014; Rauber et al., 

2008, p. 526-530; Reid et al., 2009, 2012; Safi et al., 2012; Smith, 2013, p. 272; Tan et al., 

2007; Tomlinson et al., 2011; Weber et al., 2015) are known to influence temperature 

levels. 

In addition to accounting for the heat index and anomalous temperature values, 

seasonal averages for each respondent’s unique location were incorporated into the 

model. This was done in order to account for any influence experience with extreme heat 

may have on judgements of risk. Previous studies have acknowledged that such personal 

experience with a hazard may increase the likelihood that this memory will influence 
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judgment of risk (Anderson and Bell, 2009, 2011; EPA, 2016; Hawkins et al., 2017; 

IPCC, 2014; Rauber et al., 2008, p. 524-527). Furthermore, Howe and Leiserowitz 

(2013) found that individuals are capable of detecting local changes in climate and 

weather patterns. Additionally, the average maximum temperature at each respondent’s 

unique location for the week before the survey was evaluated as a separate variable, in 

order to address theories that recent experience and thus a clearer memory of the 

exposure incident may introduce additional bias to risk evaluation and judgment (Smith, 

2013, p. 81; Tierney, 2014, p. 18; Tversky and Kahneman, 1973, 1974; Weinstein, 1989). 

 
2.6 ADAPTIVE CAPACITY FACTORS 

Adaptive capacity refers to the ability of an individual or a group to make “actual 

adjustments, or changes in decision environments, which might ultimately enhance 

resilience or reduce vulnerability to observed or expected [hazards]” (Adger et al., 2007, 

p. 720). Resilient communities with greater adaptive capacity are more likely to be 

capable of mitigating disaster by working to address vulnerability factors. As heat waves 

increase in frequency and severity, exposure levels will inevitably rise; this in turn will 

challenge the adaptive capacity and preparedness of communities with vulnerable 

subpopulations (IPCC, 2014; Melillo et al., 2014). Governmental disaster response 

preparedness does not necessarily translate into individual hazard exposure preparedness 

(Tierney, 2014, p. 7-10; Wolf et al., 2010); therefore, steps to increase resilience and 

enhance adaptive capacity must be proactively taken at multiple scales in order to ensure 

the meaningful reduction of future losses.  
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Because health impacts will differ greatly depending upon location, degree of 

exposure, and underlying sensitivity factors unique to each respective locale (or its 

denizens, as individuals or as a whole), building adaptive capacity is a challenging 

mission. It is by identifying, understanding, and addressing sensitivity factors that 

decision-makers are most likely to meaningfully reduce the vulnerable proportion of their 

respective populaces and reduce overall hazard risk for their communities. “Emphasizing 

that risk can be reduced through vulnerability is an acknowledgement of the power of 

social, political, environmental, and economic factors in driving risk” (Cardona et al., 

2012, p. 72; IPCC, 2014). This responsibility primarily falls upon government officials 

and decision-makers who are duty-bound to make every effort to lower the number of 

known threats to the populace (Smith, 2013, p. 71). However, steps can also be taken by 

individuals within their communities towards enhancing their individual adaptive 

capacity, thereby strengthening the resilience of the community as a whole and helping to 

minimize future loss (CDC, 2016; EPA, 2016; IPCC, 2014; Melillo et al., 2014). For 

example, individuals are advised to seek cool environments, minimize sun exposure, stay 

hydrated, check in on loved ones young and old, wear lightly-colored, loosely-fit 

clothing, and reschedule outdoor activities earlier or later in the day (CDC, 2016; EPA, 

2016).   

Other adaptive capacity factors relate to the strength of any given community’s 

“safety net,” or its ability to absorb and deal with unexpected loss. For example, 

wealthier, whiter neighborhoods are typically less likely to be negatively impacted by 

extreme heat conditions; whereas poorer neighborhoods with more elderly residents are 

less likely to be able to cope. While urban residents are exposed to higher degrees of heat 
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risk due to the UHI, they are also more likely to have more immediate access to health 

and human services than their rural counterparts (EPA, 2016; White-Newsome et al., 

2014).  

One of the most prominent and accessible government-sponsored initiatives 

aimed at strengthening adaptive capacity has been the development of a national extreme 

heat watch, warning, and advisory alert system by the National Weather Service (NWS). 

This public service is designed to provide the general populace with timely and reliable 

predictions of where and when heat waves will occur and communicate heat risk 

mitigation strategies that could be employed depending upon time and location (Hawkins 

et al., 2017; NWS, 2005. There are three levels of heat alert defined by the NWS: 

Warnings, Watches, and Advisories (WWAs). According to the NWS, each of their 

forecast offices across the U.S. (n = 122) issues some or all of these alerts depending 

upon their local area’s unique circumstances. While the criteria that determine whether an 

alert should be issued or not may vary significantly for different weather forecast areas, 

the National Weather Service has summarized the conditions which are generally 

required for each alert level:  

“Excessive Heat Warning — Take Action!  
An Excessive Heat Warning is issued within 12 hours of the onset of 
extremely dangerous heat conditions. The general rule of thumb for this 
Warning is when the maximum heat index temperature is expected to 
be 105 °F [40.6 °C] or higher for at least 2 days and night time air 
temperatures will not drop below 75 °F [23.9 °C]; however, these 
criteria vary across the country, especially for areas not used to extreme 
heat conditions. If you don't take precautions immediately when 
conditions are extreme, you may become seriously ill or even die.  
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Excessive Heat Watches — Be Prepared!  
Heat watches are issued when conditions are favorable for an excessive 
heat event in the next 24 to 72 hours. A Watch is used when the risk of 
a heat wave has increased but its occurrence and timing is still uncertain.  
 
Heat Advisory — Take Action!  
A Heat Advisory is issued within 12 hours of the onset of extremely 
dangerous heat conditions. The general rule of thumb for this Advisory 
is when the maximum heat index temperature is expected to be 100 °F 
[37.8 °C] or higher for at least 2 days, and night time air temperatures 
will not drop below 75 °F [23.9 °C]; however, these criteria vary across 
the country, especially for areas that are not used to dangerous heat 
conditions. Take precautions to avoid heat illness. If you don't take 
precautions, you may become seriously ill or even die” (NWS, 2005). 
 

This information is often used by community health service providers, social 

workers, and local media who may be more capable of effectively communicating heat-

related hazard information directly to the most vulnerable subpopulations (Klinenberg, 

2003; Semenza et al., 1996). Local NWS forecast offices frequently collaborate with 

community partners to determine when an extreme heat alert should be issued for a local 

area and how to best communicate the risks associated with the hazard. For example, the 

NWS acknowledges that “residents of Florida are much more prepared for 32 °C+ 

weather than residents in Alaska” (NWS, 2005) and is working towards incorporating 

vulnerability considerations such as these into more local forecast offices’ alert systems 

across the U.S. (Hawkins et al., 2017; Liss et al., 2017). 

WWAs are not consistently issued when extreme heat conditions are present. In 

some cases, weather forecast areas bordering one another will issue some or no alerts 

while the other makes different issuance choices. Whether or not an alert was issued for 

the area an individual resides will not affect their degree of exposure or geographic 

proximity to extreme heat conditions, but it can affect whether or not hazard-specific risk 
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information is communicated to said individual. This is both a strength and limitation of 

the national alert system for heat. One on hand, when weather forecast offices issue less 

alerts this helps to prevent “alert fatigue”—the point at which the populace ceases to pay 

attention to alerts that have been issued too liberally (Masato et al., 2015). However, this 

can also place vulnerable subpopulations at a disadvantage by depriving them of 

potentially valuable hazard mitigation information, particularly as the frequency and 

severity of heat waves rise.  

Table III summarizes the adaptive capacity factors that are included in this study’s 

model due to their effect on an individual’s ability to cope with extreme heat exposure. 

Income was included in the model as it is known that wealthier individuals are more 

likely to have or acquire sufficient means to cope with hazards (Anderson and Bell, 2009, 

2011; CDC, 2016; Cutter et al., 2003; EPA, 2016; Harlan et al., 2006; IPCC, 2014; 

Johnson et al., 2009; Klinenberg, 2003, p. 80-81; Kovats and Hajat, 2008; Melillo et al., 

2014; Reid et al., 2009, 2011; Safi et al., 2012; Smith, 2013, p. 272; Tierney, 2014, p. 

236; Uejio et al., 2011; Weber et al., 2015; White-Newsome et al., 2014). Non-English-

speaking households and immigrant communities tend to have less access to hazard 

information or emergency assistance, often reside in more hazard-sensitive areas, and 

tend to have less power to cope with negative impacts of hazards due to socioeconomic 

and inequalities (Anderson and Bell, 2009, 2011; CDC, 2016; Cutter et al., 2003; EPA, 

2016; IPCC, 2014; Klinenberg, 2003, p. 84; Melillo et al., 2014; Reid et al., 2009, 2011; 

Safi et al., 2012; Tierney, 2014, p. 236; Wolf and McGregor, 2013). The proportion of 

unemployed persons and of vacant homes in a particular areal unit are statistics that 

generally indicate its respective level of social cohesion, a major adaptive capacity factor  
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Table III. Summary of Adaptive Capacity Factors Known to Influence Extreme 

Heat Risk and Their Directionality 

 

(Tierney, 2014, p. 236). Individuals without a source of income are less likely to be able 

to cope with negative hazard impacts (Anderson and Bell, 2009, 2011; Cardona et al., 

2012; Cutter et al., 2003; EPA, 2016; IPCC, 2014; Klinenberg, 2003, p. 80-81; Melillo et 

al., 2014; Safi et al., 2012; Semenza et al., 1996). High vacancy rates indicate there is 

less likely to be a reliable support network at the local level and more cases of social 

isolation (EPA, 2016; Klinenberg, 2003, p. 80-81; Smith, 2013, p. 271; Tierney, 2014, p. 

236). Lastly, personal experience with extreme heat conditions which triggered an NWS 

alert is expected to influence risk perception values. Residing within an extreme heat alert 

area may increase the likelihood that a recent memory of personal experience with the 

hazard will influence judgment of risk either positively or negatively depending upon the 
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outcome of the experience (Howe, 2011; Smith, 2013, p. 84-86; Tierney, 2014, p. 18-20; 

Tversky and Kahneman, 1974; Weinstein, 1989). 

2.7. HUMANS AS SENSORS 

 Perception data aids understanding of changes in sensitivity factors over time and 

space. Humans are capable of detecting changes in local weather and climate patterns 

(Howe et al., 2013b) and are more familiar with their respective group’s unique situation. 

Moreover, “Risk perception is a precursor to the behavior change that constitutes 

adaptation,” so understanding these perceptions can help decision-makers evaluate which 

subpopulations are least prepared to adapt (Howe, 2011). Looking at human survey data 

in this way and considering human participants as sensors can aid in the development of 

more precise and localized human vulnerability indices. For example, a perception of low 

risk could be associated with increased risk, as the group may be unprepared to adapt; 

similarly, it could be associated with low risk, as the group has better information on their 

own situation. These are important considerations that may augment our traditional 

understanding of the spatial distribution of vulnerability. 

Previously, many scholars have stressed the importance of measuring risk 

perceptions as a way of adding the missing human data component to risk assessments, 

leading to a greater understanding of factors contributing to total vulnerability (Adger, 

2006; Bubeck et al., 2012; Chowdhury et al., 2011; Grothmann and Patt, 2005; Howe et 

al., 2013; Kates, 1971; Nitschke et al., 2013; Slovic et al., 2000; Wachinger et al., 2013). 

However, few studies have specifically assessed the factors contributing to extreme heat 

risk perceptions by using representative survey data. To date, previous literature 
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examining extreme heat risk perception data is largely limited to localized qualitative 

case studies or surveys confined to a handful of the U.S.’ metropolitan areas 

(Abrahamson et al., 2009; Nitschke et al., 2013; Sampson et al., 2013; Semenza et al., 

2008; Sheridan, 2007; Wolf et al., 2010). Despite contemporary access to an ever-

growing collection of biophysical exposure data, vulnerability studies typically lack the 

critical psychosocial data such as risk perceptions that are required to more completely 

account for the role human risk judgment plays in determining individual vulnerability 

(Hogarth and Einhorn, 1992; Howe et al., 2013, Mora et al., 2017).  

As mentioned in Section 2.3, many government officials and decision-makers 

want to identify vulnerable populations and address their unique needs, but find it 

challenging to balance between top-down risk management strategies and tailored, local 

approaches to risk reduction. As officials move towards embracing impact-based risk 

assessment methods, scholars have called for a more targeted approach to communicating 

heat hazards (Hawkins et al., 2017; Liss et al., 2017; Mora et al., 2017; White-Newsome 

et al., 2014; Wolf et al., 2010) and recommended the development of revised heat alert 

systems that are both person- and location-specific (Buscail et al., 2012; Liss et al., 2017; 

Masato et al., 2015; Reid et al., 2012; Tomlinson et al., 2011; White-Newsome et al., 

2014; Wolf et al., 2010). These proposed changes require a clearer understanding of how 

vulnerability and adaptive capacity factors vary across subpopulations. Wilhelmi and 

Hayden (2010, p. 4) have asserted that  

“improving health outcomes related to exposure to extreme heat requires 
moving beyond the spatial analysis of quantitative aggregate demographic 
data toward understanding knowledge, attitudes and practices regarding 
extreme heat. Because awareness of extreme heat does not necessarily 
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translate into action to reduce vulnerability, household-level perceptions 
of risk to extreme heat … need to be better understood.”  
 

This thesis seeks to address this gap in the heat risk literature by evaluating 

variations in risk perceptions for different groups across the U.S. Quantitative analysis of 

spatially-explicit risk perception data can aid the development of more sophisticated 

human vulnerability indices at the local level and can capture changes in dynamic 

sensitivity factors over time and space while also controlling for exposure and adaptive 

capacity factors. This thesis aims to provide a model for how future studies could proceed 

in incorporating risk perceptions into their analyses by using georeferenced and time-

stamped survey data collected by "human sensors." This research identifies and isolate 

the effects of specific vulnerability factors related to sociodemographic, meteorological, 

climatological, temporal and geographic factors in order to better assess adaptive 

capacity, enhance resilience, and reduce extreme heat risk at different scales. The results 

of this study will help decision-makers better understand which groups of people are 

most likely to be negatively impacted by extreme heat and to target their efforts at risk 

mitigation on behalf of these subpopulations. 
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CHAPTER 3 

 
METHODS AND ANALYSIS 

 

3.1. RESEARCH QUESTIONS AND  
HYPOTHESES 

 
Research Question I: How do key sensitivity factors known to be important 

contributors to overall heat vulnerability (summarized in Table I) contribute to extreme 

heat risk perceptions across the contiguous United States?   

Hypothesis I: Individual-level sensitivity factors that have been found to be 

associated with greater personal risk of heat-related impacts in previous studies will 

positively influence heat wave risk perceptions across the study area and be a source of 

statistically significant variation (from the national mean).  

Research Question II: How much variation in risk perception occurs at regional, 

state, and individual-levels? 

Hypothesis II: Risk perceptions will demonstrate statistically significant 

variation across geographic units in the contiguous United States, and states that have a 

higher degree of exposure to extreme heat events will have higher risk perceptions.  

Research Question III: How do key exposure factors known to be important 

contributors to overall heat vulnerability (summarized in Table II) influence extreme heat 

risk perceptions across the contiguous United States? 

Hypothesis III: Respondents located in areas more likely to experience a higher 

degree of exposure will report higher risk perceptions (for example, due to geographic 

location, higher average seasonal temperatures or the effects of the urban heat island).  
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Research Question IV: How do key adaptive capacity factors known to affect an 

individuals’ ability to cope with hazards (summarized in Table III) influence extreme 

heat risk perceptions across the contiguous United States? 

Hypothesis IV: Adaptive capacity factors measured at the individual-level, such 

as income, will negatively influence extreme heat risk perception (e.g., as income levels 

increase, risk perception score will decrease). Contextual-level factors (those measured at 

the census tract level, e.g., number of unemployed, number of vacant homes) which are 

known to negatively influence overall adaptive capacity (and positively influence total 

extreme heat risk) will negatively influence extreme heat risk perceptions.   

 
3.2. STUDY AREA AND DATA  
SOURCES 
 
3.2.1. Nationally-representative heat wave  
risk perception survey data 
 

This study examines heat wave risk perceptions across the contiguous U.S. during 

the warm months of 2015 and makes extensive use of empirical, nationally-representative 

survey data (Fig. 4) that was collected during the warm months of 2015. The survey was 

administered online over the course of 20 weeks, beginning in May, biweekly with 

unique panel respondents selected through probability-based sampling. The overall 

sample size was n = 10,532. However, due to the panel design of this survey, response 

data was collected more than once for some individuals. These response values were 

filtered from the dataset before analysis and the final sample size was n = 8,789. 

Individual identifiers were removed from the data and the precise geographic coordinates 

of respondents were "jittered" within a radius of 150m to ensure anonymity. 
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Fig. 4. Distribution of survey respondent locations. 
 
 
 This time-stamped, geo-referenced survey was composed of three questions 

measuring heat wave risk perceptions on three scales, measuring perceived risk to the 

individual respondent, their family, and their community and collected data on the 

demographic characteristics of each respondent. Seven of these demographic variables 

(Sex, Age, Race/Ethnicity, Income, Education, Work Status, Household Size) were used 

in this study’s models along with temporal and geographic data recorded for each 

response. The structure of these variables is detailed in Section 3.3. The risk perception 

values associated with each of the survey questions were combined for each unique 

respondent to create the overall risk perception index used as the dependent variable in 

this study (Cronbach’s alpha = 0.95). The quantitative outcome of the survey and index 

formulation is heat wave risk perception values on a scale of 0–1 with 1 representing the 
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highest degree of perceived risk to heat. Across the U.S., the mean risk perception score 

is 0.42 (Fig. 5). 

3.2.2. Contextual-level data sources 

The 2015 meteorological and 1985–2015 climatological estimates of daily and 

monthly temperatures, corrected for elevation using the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM), and gridded at 800 meter spatial 

resolution were utilized courtesy of the PRISM Climate Group at Oregon State 

University (PRISM Climate Group, 2015) to create three exposure variables: mean 

maximum daily temperature (avg. max. temp.) recorded during the week before the 

survey at each respondent’s unique location at 800m (weekmeanb4survey_PRISM), 

maximum temperature recorded on the day of the survey at each respondent’s unique 

 

Fig. 5. Distribution of risk perception response values. 
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location at 800 m (Syday_Tmax) and mean seasonal temperature at the tract-level 

(TR.prism.tmean). 

The National Weather Service (NWS) heat-related Watch-Warning-Advisory 

spatial polygon data for 2015 were utilized courtesy of the Iowa Environmental Mesonet 

at Iowa State University of Science and Technology (National Weather Service Hazards 

Alert Database, 2015) to create three adaptive capacity variables summarizing the 

presence of Watch, Warning, or Advisory heat alerts in the areas where survey responses 

were collected: Total percentage of days for which each respondent’s location was issued 

an extreme heat alert before the survey (pct_WWAdaysb4survey), True/False: Were any 

heat alerts issued during the week before the survey response for each respondent’s 

unique location? (weekb4survey_WWA), and True/False: Were any heat alerts issued on 

any day before the survey response for each respondent’s unique location? 

(WWAb4survey).  

Thirty meter vegetation and impervious surface estimates, calculated at the census 

travel level using gridded data from the 2011 National Land Cover Database were 

utilized courtesy of the Multi-Resolution Land Characteristics Consortium, U.S. 

Geological Survey (National Land Cover Database, 2011) to extract cell values to 

respondent location points, creating two exposure variables that indicate susceptibility to 

the urban heat island effect: Tract-level impervious surface coverage log-transformed 

(TR.impervious.mean.log) and Tract-level tree coverage square-root-transformed. 

Population density estimates (popden) dated 2000, gridded at 1000 kilometers 

spatial resolution, representing persons per square kilometer were used to create an 
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exposure variable courtesy of the Center for International Earth Science Information 

Network at Columbia University (CIESIN, 2005). 

Census tract-level statistics from across the contiguous U.S. were acquired from 

the 2015 American Community Survey, courtesy of the U.S. Census Bureau (American 

Community Survey, 2017), and were used to create three adaptive capacity variables: 

Total proportion of unemployed individuals (TR.Employment.unemployed), Total 

proportion of vacant homes (TR.Housing.vacant), and Total proportion of non-English-

speaking households (TR.Language.nonEnglish). 

Two exposure variables, Deviation of average minimum temperature recorded 

during the month of the survey from the seasonal average at the tract-level 

(TR.tmin.anom.mav7) and County-level average seasonal heat index estimates 

(CO.HI.daily.MaySep), were created for all respondent locations across the contiguous 

U.S. using data provided by the 2000–2010 North America Land Data Assimilation 

System (NLDAS); courtesy of the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Prediction (NCEP) Environmental 

Modeling Center (EMC), the National Aeronautics and Space Administration (NASA) 

Goddard Space Flight Center (GSFC), Princeton University, the National Weather 

Service (NWS) Office of Hydrological Development (OHD), the University of 

Washington, and the NCEP Climate Prediction Center (CPC); accessed via  the Wide-

ranging Online Data for Epidemiologic Research (WONDER) portal  developed by the 

Centers for Disease Control and Prevention (CDC) (NLDAS, 2012). 
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3.3. DATA CHARACTERISTICS 

3.3.1. Sensitivity Variables 

Table IV characterizes the structure of the seven individual-level sensitivity 

variables included in this study’s Sensitivity Model. Data for these variables were 

collected during the nationally-representative heat wave risk perception survey.  

 
Table IV. Descriptive Statistics for Predictors of Sensitivity Model 
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3.3.2. Exposure Variables 

Degree of exposure is highly variable over space and time and is subject to a 

dynamic set of natural factors. The variables considered in this study are presented in 

Table V. 2015 was the hottest year on record at its conclusion (CDC, 2016; EPA, 2016). 

However, it is unlikely that exposure to extreme heat conditions was uniform across the 

U.S. population. Looking at localized survey data alongside contextual-level weather data 

that captures the variability of meteorological conditions over time and space provides 

the most context for the data itself and for model interpretation. In order for 

meteorological, climatological, and land cover data to be incorporated into the study 

models as controls for exposure factors cell values for all gridded contextual exposure 

data were extracted to each survey respondent location point —by month, week, or day 

(depending upon the temporal resolution of the contextual data) (Fig. 6). 

 
Table V. Descriptive Statistics for Predictors of Exposure Model 
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Fig. 6. Distribution of all survey response locations and PRISM max. temperature data 
for 31 May 2015 at 800 m spatial resolution. Extreme heat conditions can be observed in 
the southwest along the California and Arizona border. 
 

It is important to note that variability exists on a wide range of scales and that 

survey respondents each likely experienced unique heat conditions despite their 

sometimes-close proximity to one another. Figures 7–9 demonstrate this extreme 

variability at three scales: region, state, and county. These figures, each, contain a 

different subset of survey respondents, each of whose locations fall within these 

respective scales (Midwest, Ohio, Franklin County). In each figure, the plots reflect the 

maximum daily temperatures recorded on May 27–31 at each respondent’s unique 

location. All axes contained in Figures 7–9 represent these localized daily temperatures in 

°C. A high degree of variability remains present for each these geographic subsets of the 

survey population regardless of scale.  
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Fig. 7. Variability of max. temperatures (°C) at the locations of each unique Midwest 
survey respondent over five consecutive days. 
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Fig. 8. Variability of max. temperatures (°C) at the locations of each unique Ohio survey 
respondent over five consecutive days. 
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Fig. 9. Variability of max. temperatures (°C) at the locations of each unique Franklin 
County, Ohio survey respondent over five consecutive days. 
 

Looking at the study area over the course of the study period (contiguous U.S., 

May–October, 2015) broad patterns emerge in heat conditions that are captured by the 

exposure variables included in this study: state-level average minimum temperatures were 

unusually high across the most of country, no estimates were below their average 

levels, but were the highest on record throughout the West (Fig. 9); whereas, state-level 

maximum temperatures were near average for much of the Mississippi and Ohio 

watershed areas and the highest on record in Washington and Oregon (Fig. 10). 
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Fig. 10. Ranking of statewide minimum temperatures recorded from May–October, 2015. 
Note that for nine states in the West, record highs were recorded. Ranking numbers 
identify the count of years for which the 2015 recorded average minimum temperature 
(May to October) was greater (1895–2015) (NOAA, 2016). 
 

Finally, on a still larger spatial and temporal scale, the exposure variable 

summarizing deviations of average minimum and maximum temperature recorded during 

the month of the survey from the 30-year seasonal average at the tract-level 

(TR.tmin.anom.mav7) are respectively depicted in Figures 11 and 12  by region. 
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Fig. 11. Ranking of statewide maximum temperatures recorded from May–October, 
2015. Note that record highs were recorded for this time period for two states (OR, WA). 
Ranking numbers identify the count of years for which the 2015 recorded average 
maximum temperature (May to October) was greater (1895-2015) (NOAA, 2016). 
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Fig. 12. Summary of deviations of 2015 monthly temperatures from 30-year averages 
across all unique response locations by region. 
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3.3.3. Adaptive Capacity 

Descriptive statistics for continuous and categorical adaptive capacity predictors 

are detailed in Tables VI–VII.  

 
Table VI. Descriptive Statistics for Continuous Adaptive Capacity Model Predictors 

 
 

Table VII. Descriptive Statistics for Categorical Adaptive Capacity Model Predictors 

 

 
Similar to Figure 5, Figure 13 shows max. temperature cell values at 800 m and 

the location of survey respondents. However, this graphic shows the average maximum 

temperature values recorded for Washington state from 27–28 June 2015 during an 

extreme heat event and the spatial distribution of NWS heat alerts issued for this two-day 

period. 
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Fig. 13. Spatial distribution of extreme heat conditions, heat warning areas, heat advisory 
areas, and survey respondents on 27–28 June 2015.  
 

Examining the NWS heat alert dataset as spatial polygons in this way allowed for 

the extraction of alert statistics for each survey respondent for each day of the study 

period. Figure 14 summarizes the regional distribution of NWS heat alert across the 

survey sample population.  

Considering georeferenced, time-stamped risk perception data alongside NWS 

alert system data and PRISM meteorological data may enhance understanding of how 

changes in the dynamic components of heat risk over time and space influence extreme 

heat risk perceptions.  
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Fig. 14. Total percentage of days when an extreme heat Watch, Warning, or Advisory 
(WWA) alert was issued by the National Weather Service at all respondents’ unique 
locations within Weather Forecast Areas (WFAs). 
 

3.3.4. Summary of Data Characteristics 

As stated in the Literature Review, past research has shown that experiential 

factors were strong predictors of individual risk estimates and that local seasonal weather 

patterns can be accurately detected by individuals (Howe et al., 2013; Howe and 

Leiserowitz, 2013; Leiserowitz, 2006; Smith and Leiserowitz, 2014). Figures 15–17 show 

whether a heat alert was issued during the week before survey response for each 

respondent’s unique time and location alongside the mean temperature for each 

respondent’s associated time and location. These graphics indicate that respondents in the 

West and South were subjected to higher temperatures and were alerted more frequently 

of extreme heat conditions. The random effects of the model results will allow for 

examination of whether the subpopulations of different regions tend to report risk 

perception values higher or lower than the national average due to the recent memory of  
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Fig. 15. Summary of average maximum temperature estimates for the week before 
response data was collected across all unique response locations by region.  
 

 

Fig. 16. Summary of average maximum temperature estimates for the week before 
response data was collected across all unique response locations, color coded by variable 
weekb4survey_WWA [YES or NO: Were any heat alerts issued during the week before 
the survey response for each respondent’s unique location?] 
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Fig. 17. weekb4survey_WWA [YES or NO: Were any heat alerts issued during the week 
before the survey response for each respondent’s unique location?] by region 
 
 
extreme heat conditions. This ability to distinguish multilevel variables containing a 

spatial component is one of the strengths of using mixed effect models for geographic 

analysis of survey data. 

 
3.4. METHOD OF ANALYSIS  
 
3.4.1. Overview of Analysis Techniques 
 

A series of multilevel linear regression models were specified to measure the 

relationship between sensitivity, exposure, adaptive capacity, geography, and time factors 

on individual-level risk perceptions. Table VIII details which factors were tested in each 

model. The first model, testing sensitivity factors, contains only random effects, while 

subsequent models include controls for exposure and adaptive capacity factors as 

additional random and fixed effects. The final, maximal model (testing sensitivity,  
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Table VIII. Overview of Predictors included in study models 

 

 
exposure, adaptive capacity, geography, and time factors) contains all previously tested 

random and fixed effects in accordance with the literature and parameterized according to 

statistical best practices for confirmatory hypothesis testing (Barr et al., 2013; Gelman 

and Hill, 2007, ch. 11-12; Hofman, 1997; Winter, 2013; Zurr et al., 2010). The same 

methods and statistical techniques described in detail below for the initial model build 

were consistently applied to each subsequent model build and during the interpretation of 

all results. All analyses were performed using the R programming language and 

environment using the lme4 statistics package (Bates et al., 2015). 
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In the initial sensitivity model, a random-intercept model was fitted comprised 

solely of categorical random effect predictors that are each assumed to follow a Gaussian 

distribution and are composed of different levels (Barr et al., 2013; Hofmann, 1997; 

Winter, 2013). The model’s coefficients (effects) associated with these predictors and 

their sublevels are random effects estimated with partial pooling—also known as linear 

unbiased prediction (Barr et al., 2013; Gelman and Hill, 2007, ch. 12; Goldberger, 1962; 

Hofmann, 1997; Jiang, 1997; Robinson, 1991; Winter, 2013). By using random effects, 

the structure of the data in each level is accounted for through partial pooling techniques 

so that group-level variations in the dataset can be examined. By treating the extreme 

heat risk factors addressed in the study hypotheses as random effects, the effect of data-

clustering in the subgroupings of each predictor can be assessed in relation to their 

deviance from the overall mean (average risk perception score across the U.S. sample 

population) (Barr et al., 2013; Goldberger, 1962; Jiang, 1996; Hofmann, 1997; Robinson, 

1991). This type of model is a natural fit for examining the multilevel structure of risk 

ecologies across the U.S. (Tierney, 2014, p. 45).  

 
3.4.2. Model Specification 
 

Analysis began by constructing a random intercept model which included all 

individual-level sensitivity factors measured in the representative survey as random 

effects (Fig. 18). 
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Fig. 18. Sensitivity Model formula. Colons denote specified interaction effects.  
 
 

Predictors were dropped from the model based on tests of model fit. Model fit 

was assessed using chi-square tests on the log-likelihood values through iterative 

ANOVA testing to compare models reduced by one variable (subject to the ANOVA 

testing) and determine that variable’s statistical significance via reduction in the residual 

sum of squares (Barr et al., 2013; Bates et al., 2015; Bliese and Ployhart, 2002 Winter, 

2013). Table IX shows the models specified in order to complete these tests. Variables 

were retained based upon iterative significance testing and their importance in the 

literature referenced when constructing these confirmatory hypothesis tests.  
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Table IX. Model Specifications for Log-Likelihood Significance Tests  

of Sensitivity Model Predictors 

 
 

The significance of between-group variance in risk perceptions was tested by 

comparing the null (full Sensitivity Model) to a series of models each missing one 

random effect term (n =10). For each successive comparison, a log-likelihood ratio was 
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calculated as 2[log-likelihood of the null model – log-likelihood of reduced model n 

(missing the random effect under scrutiny). The output log-likelihood test statistic 

distribution approximates a chi-squared distribution with k(null) – k(reduced) degrees of 

freedom, where k represents the number of random effects parameters to be estimated for 

each respective model (Barr et al., 2013; Bates et al., 2014; Bliese and Ployhart, 2002; 

Pinheiro and Bates, 2000; Winter, 2013). Table X summarizes the results of the predictor 

tests for the sensitivity model.  

 
Table X. Log-Likelihood Significance Tests Results for Sensitivity Model Predictors 

 
 

By using random effects associated with individual-level geographic and socio-

demographic factors, the model was able to account for some degree of spatial 

autocorrelation and overcome assumptions of independence that would normally be 

violated if geographically-nested data were to be analyzed using traditional linear 

regression modeling (Gelman and Hill, 2007, ch. 11; Hofmann, 1997). By specifying 
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geographic levels (Region, State) as random effects, all coefficients were allowed to vary 

from individual to individual around a group mean (geographic—e.g., state, county, etc.). 

Visual inspection of residual plots did not present indications of heteroscedasticity or 

obvious deviation from normality (Figures can be found in Appendix A).  

The random effects describe the grouping of sociodemographic factors and 

hierarchical nature of geographic terms incorporated in the model (respondents within 

state within region). As a result, this study can contribute a nationally-representative 

exploration of the inter-group variation of risk perception values across 

sociodemographic factors thought to influence heat vulnerability as well as geographic 

factors. The outcome variable is Risk Perception values on a scale of 0–1 with 1 

representing the highest degree of perceived risk to heat. Across the U.S., the mean risk 

perception score is 0.42. Random effects included in this model provide a direct measure 

of how much of the reported Risk Perception scores’ variance around this mean is 

explained by group-level differences.  

 
3.4.3. Maximal Model Specification and  
Model Comparison 
 

Table XI describes the models that were specified with different risk component 

controls while building towards the appropriate maximal model [preferred over more 

parsimonious but perhaps less explanatory alternative models (Barr et al., 2013)] which 

factors the influence of all previously evaluated predictors for sensitivity, exposure, and 

adaptive capacity. 
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Table XI. Overview of Model Builds Using Standard lme4 R Script 

 

 
Fixed effect parameters were specified which capture the effect of exposure and 

adaptive capacity treatments on mean risk perception response values of the 

representative sample population. The random effects parameters capture variance among 

sociodemographic, spatial, temporal, exposure and adaptive capacity groupings (among 

factors such as State, personal experience with a heat alert, or education level.) By 

parameterizing and incorporating both fixed and random effects in this multilevel model, 

the model takes on the necessary hierarchical structure for assessing individual-level 

effects on Risk Perception for each particular higher contextual-level unit/group (Barr et 

al., 2013; Bates et al., 2015; Gelman and Hill, 2007, ch. 11; Hofmann, 1997). 
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Following this final model build, the sequential model build will be evaluated by 

a model comparison ANOVA test. Residuals of the mixed effect models will also be 

evaluated for spatial autocorrelation in order to test for additional spatial variation in risk 

perceptions not explained by the selected predictors. Geographic patterns of spatial 

autocorrelation in the residuals (correlation between risk perceptions for individuals from 

the same locale), if present, may indicate unobserved contextual factors that affect 

individual’s risk perceptions (Bivand et al., 2008, ch. 9). 
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CHAPTER 4 

 
RESULTS 

 
4.1. SENSITIVITY MODEL 

Sex was a statistically significant predictor of risk perception (Variance 

(𝜎") = 0.0005, Std. Dev. (𝜎) = 0.021, 𝑋"(1) = 7.577, p < 0.006) and consequently 

its subgroups deviated from the mean (0.422 +/– 0.05) by 0.017 positively for 

Females (+3.9%) and negatively for Males (-3.9%) (Table XII).  

Age was also a statistically significant predictor of risk perception (𝜎"	 = 

0.0001, 𝜎 = 0.01, 𝑋"(1) = 5.937, p < 0.05) and random effects indicate that older 

individuals tend to have slightly higher risk perceptions in relation to the mean 

(Fig. 19). More specifically, risk perceptions for individuals older than 45 tended 

to be roughly 2% higher than the mean (0.422 +/– 0.05) (Fig. A.1). 

 
Table XII. Sensitivity Model Results Summary 
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Fig. 19. Random effects of sensitivity model predictors. 

 

While Race/Ethnicity was not a statistically significant predictor of 

overall risk perception in this model (𝜎"	= 0.0006, 𝜎 = 0.022, 𝑋"(1) = 2.067, p = 

0.151), random effect estimates indicated some degree of variation in response 

values for different race/ethnicity categories. White respondents tended to report 
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substantively lower risk perceptions than all other race/ethnicity categories (Fig. 

19) and the national average (-6.7%) (Fig. A.1).  

Income was included as a sensitivity factor in this model and was found to 

be a statistically significant predictor of individual heat wave risk perceptions 

(𝜎"	= 0.0013, 𝜎 = 0.036, 𝑋"(1) = 87.296, p < 0.001) and random effects indicate 

that wealthier individuals tend to have substantively lower risk perceptions in 

relation to less affluent individuals (Fig. 19) and to the national average (Fig. 

A.1). For example, respondents earning more than $150,000 each year tend to 

have risk perceptions 12.8% lower than the national average, while respondents 

earning less than $15,000 tend to have risk perceptions 9.3% higher than the 

national average (Fig. 20). 

 

 
Fig. 20. Random effect estimates across subpopulations for Sensitivity Model. 
 

While race, education (𝜎" = 0.0000, 𝑋"(1) = 0, p = 1), work status (𝜎"	= 

0.0001, 𝑋"(1) = 0.13, p = 0.719) and household size (𝜎"	= 0.0000, 𝑋"(1) = 0, p = 

1) were not found to be statistically significant predictors of risk perceptions at 

their respective individual-levels (Table X) in this model, their random effects 
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were retained for interpretation in relation to established vulnerability literature 

and following statistical best practices (Barr et al., 2013; Winter, 2013; Zuur et 

al., 2010) in order to be parameterized in the model as part of three random 

interaction terms: Work by Race [or (1|work:race) in lme4 script], Household Size 

by Work (1|hhsize:work), and Sex by Race by Education (1|sex:race:edu). 

Random effects for interactions among predictor variables such as these capture 

their own variance in the linear model (Fig. 20). The best linear unbiased 

prediction for each subpopulation is summarizing level-specific random effects 

for all variance components representing those predictor variables (e.g., Sex by 

Race by Education ~ female Whites with a bachelor’s degree). 

Work status by Race/Ethnicity was a statistically significant predictor of 

risk perception (𝜎" = 0.0006, 𝜎 = 0.025, 𝑋"(1) = 6.152, p = 0.011). For this 

factor, there are 25 subgroups that the sample population is distributed and fit 

within (5 work status categories by 5 race categories) which provides best linear 

unbiased predictor estimates for a wide range of generalized risk perception 

profiles (Fig. 21). For example, estimates for Work by Race/Ethnicity indicate 

that the disabled Hispanic subpopulation tends to have 9.9% higher heat risk 

perceptions than the national average; whereas working White respondents tend to 

report values 12.7% lower than the national average; and retired Black 

respondents tend to have 1.4% higher risk perceptions than the national average. 

As depicted in Figure 21, across the 25 subgroups, deviation from the mean was 

highest for Disabled, Hispanic subpopulation (+9.9%) and lowest for Not 

Working, White subpopulation (–21.8%). 
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Fig. 21. Random effects of Sensitivity Model interaction predictors. 
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Household size by Work status was also a statistically significant 

predictor of heat wave risk perception (𝜎" = 0.0003, 𝜎 = 0.017, 𝑋"(1) = 4.745, p 

= 0.029). There were 20 levels overall for this interaction predictor (4 levels for 

household size and 5 levels for work status). Again, generalizable profiles were 

obtained by calculating each respective subpopulation’s best linear unbiased 

predictor estimate (Figure 21). Since Household Size was not a statistically 

significant predictor and its random subgroup effect size was estimated to be 0, 

the best linear unbiased predictor estimate was adjusted solely by crossed effects 

within the Work Status predictor’s subgroups. Deviation from the national mean 

(0.422 +/– 0.05) across the 20 subpopulations ranged from a high of 6.4% 

(Disabled and living in a one-person household) to a low of -6.6% (Seeking a job 

and living in a three-person household). Risk perceptions for those who were 

retired and living in a one-person household were 3.6% lower than the national 

average, as compared to 3.3% higher for those were disabled and living in a one-

person household.  

Sex by Race/Ethnicity by Education was a statistically significant 

predictor of risk perception (𝜎" = 0.0003, 𝜎 = 0.016, 𝑋"(1) = 18.067, p < 0.001). 

This predictor has 40 subgroups and for each the best linear unbiased predictor 

estimate was adjusted by its respective crossed effects within the Sex, 

Race/Ethnicity, and Education predictors’ subgroups. Deviation from the national 

mean (0.422 +/– 0.05) across the 40 subgroups ranged from a high of +11.4% 

(Female by Other, Non-Hispanic by Bachelor’s degree or higher) to a low of         

-17.3% (Male by White, Non-Hispanic by Bachelor’s degree or higher). All 
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subgroups containing White males ranged from -7.1% to -17.3%. In addition to 

the examples shown in Figures 20-21, the risk perception estimates for every 

subpopulation, detailed in their entirety, can be found in Appendix A, Figures A1-

A2.  

 
4.2. Geographic Variation of Sensitivity  
Model Results 
 

Estimates of deviance from the mean in subpopulations can also be estimated 

across geographic units using the same techniques. By specifying geographic units as 

random effects, the structure and distribution of the individual-level data collected in 

each group level (state, region) is accounted for using partial pooling techniques to 

examine group level variations in the dataset. Thus, by treating geographic units as 

random effects, the natural degree of data clustering that can be expected within different 

states is assessed in relation to each state’s deviance from the overall mean perceived heat 

risk across the U.S. (0.422 +/– 0.05). Respondents’ state of residence was a statistically 

significant predictor of risk perception variation (𝜎" = 0.0005, 𝜎	= 0.023, 𝑋"(1) = 25.419, 

p < 0.001). Across states, risk perceptions tend to be highest in California (7.9% higher 

than the national average) and lowest in Massachusetts (-9.0%). The states which tended 

to be closest to the national average were Pennsylvania (+0.6%), Iowa (+0.4%), 

Connecticut and Georgia (-0.6%). Which region respondents resided in was also a 

statistically significant predictor of risk perception and explained variation beyond that at 

the state level (𝜎" = 0.0005,	𝜎 = 0.022, 𝑋"(1) = 10.488, p = 0.001). The Midwest tends to 

have lower risk perceptions than the national average (-6.0%) while the South has higher 

risk perceptions (+5.7%). Geographic estimates are summarized in Figure 22. 
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Fig. 22. State-level risk perception estimates while controlling for sensitivity. 
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A large Variance Partitioning Coefficient value (closer 1 than 0) indicates that 

much of the variance is due to unique individual-level circumstances not captured by the 

random effects specified. The Variance Partitioning Coefficient can be obtained by 

dividing the residual variance at the individual-level (0.0545) by the total variance across 

all levels (0.0591). The residual error term captured 92.16% of response variation (𝜎"  = 

0.0545, SD = 0.233) around the mean of (0.422 +/– 0.05) (Table XII). While unexplained 

individual-level circumstances drive most of the variation in risk perception (as is 

expected when examining any complex dependent variable using survey data) clustering 

of individual response values around group-level factors (age, sex, race) allows for the 

examination of the total influence of known vulnerability factors on risk perceptions. As 

expected, the variance of factor Income accounted for the greatest proportion of total 

variance among geographic and sociodemographic predictors at 2.2% of the total 

variance. However, contrary to expectations, the variance of factor Age (𝜎" = 0.0001,	𝜎 = 

0.01) was rather low, accounting for only 0.18% of total variance. 

 
4.3. ADDING CONTROLS FOR  
EXPOSURE AND ADAPTIVE  
CAPACITY 
 

Following this initial model build, additional controls representing Exposure and 

Adaptive Capacity factors were sequentially added into the modeling environment as 

fixed and random effects. Additionally, a revised sensitivity model was specified (Table 

XIII) in order to allow for optimal comparison with subsequent model builds. The revised 

model, Sensitivity Model 2.0, treats the factor Sex as a fixed effect, drops the predictor 

Income (which was then added to the Adaptive Capacity Model), and retains only one  
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Table XIII. Results of Log-Likelihood Testing of Sensitivity Model 2.0 Predictors 

 
 

 
interaction term (Sex by Race/Ethnicity by Education). Table XIII summarizes the 

strength of Sensitivity Model 2.0’s predictors and the models. 

While the results for Sensitivity Models 1.0 and 2.0 differed somewhat (Table 

XIV), the directionality of their respective random effects generally remained consistent.  

 
Table XIV. Sensitivity Model 2.0 Results Summary 

 

 
4.3. EXPOSURE MODEL  

The predictors included in the Exposure Model are shown in Table VIII. Table XI 

details how these predictors were specified in the R coding environment to analyze 
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influence of exposure variables on extreme heat risk perception, respectively. Again, 

predictors were individually evaluated using log-likelihood tests (as described in section 

3.4.2). The results of these tests are shown in Table XV.  

 
Table XV. Results of Log-Likelihood Testing of Exposure Model Predictors 

 
 

Table XVI details the results of the Exposure Model. Day of Year was a 

statistically significant predictor of risk perception (β = -0.0001, X2(1) = 4.05, p < 0.05). 

Population density (β = 00.0002, X2(1) = 3.93, p < .05) and impervious surfaces (β = 

0.0063, X2(1) = 7.22, p < 0.001) were statistically significant predictors of risk 

perception, which suggests that residing in an urban environment positively influences 

risk perception as hypothesized (Fig. 23). Average seasonal temperature (β = 0.0082,  
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Table XVI. Exposure Model Results Summary 

 
 

 

 
 

Fig. 23. Standardized fixed effects of Exposure Model. 
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X2(1) = 8.77, p = 0.003), max temperature on the day of the survey (β = 0.0007, X2(1) = 

0.37, p < 0.05), and the average max temperature during the week before the survey (β = 

0.002, X2(1) = 8.95, p < 0.003) were statistically significant predictors of extreme heat 

risk perception. 

Heat Index, Tree Coverage, Temperature Anomalies, and Temperatures on the 

day of the survey were not found to statistically significant predictors of risk perception 

and did improve model fit. Appendix B contains summary results (Table B.I, Fig. B.1) 

and diagnostics (Fig. B.2) for the Exposure Model. 

Predictors positively influencing heat wave risk perceptions in the Maximal 

Model include: Population density, Avg. max. temperature recorded during the week 

before the survey at each respondent’s unique location, Max. temperature recorded on the 

day of the survey at each respondent’s unique location, Tract-level mean impervious 

surface coverage, Tract-level average seasonal temperature, Deviation of minimum 

temperature recorded during the month of the survey from the seasonal average at the 

tract-level, and Tract-level mean tree coverage (Figs. 23-24). Predictors negatively 

influencing heat wave risk perceptions in the Maximal Model include: County-level 

average seasonal heat index and Day of year (Figs. 23-24).  
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Fig. 24. Marginal effects of Exposure Model predictors. 
 
 
4.4. VULNERABILITY MODEL  

Since vulnerability is a function of both exposure and sensitivity, a mixed effect 

Vulnerability Model was specified to include controls from both the Sensitivity and 

Exposure Model builds as random and fixed effects (Table XI). Once again, predictors 

were individually evaluated using log-likelihood tests, the results of which are detailed in 

Table XVII. 

Table XVIII details the results of the Vulnerability Model. The directionality of 

each fixed effect specified in the Vulnerability Model is summarized in Figure C.3 of 

Appendix C.  
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Table XVII. Results of Log-Likelihood Testing of Vulnerability Model Predictors 

 
 

 
The most statistically significant predictors of risk perception for the Exposure 

Model [Day of Year, Impervious surfaces, Seasonal average temperature, Population 

density, and Personal experience with heat (average max. temperature for the week 

before the survey at respondent’s location)] and the Sensitivity Model 2.0 [Sex, 

Race/Ethnicity, Work Status, Household Size, Sex by Race/Ethnicity by Education] 

largely remained powerful explanatory variables in the Vulnerability Model. Age is a 

notable exception. Additionally, the percentage of total variance from the mean captured 

by the residual term (59.9%) is markedly lower than the estimate for the initial Sensitivity 

Model (92.2%). Controlling for exposure factors when examining heat risk perceptions 

substantially improved the ability to predict individual risk perceptions. Figure 25 shows  
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Table XVIII. Vulnerability Model Results Summary 

 

 
the estimated standardized fixed effect of Sensitivity (Sex) and Exposure factors included 

in the Vulnerability Model. 
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Fig. 25. Standardized fixed effects of Vulnerability Model. 
 

4.5. ADAPTIVE CAPACITY MODEL  

In this model, known adaptive capacity factors were parameterized (Table VIII) 

and modeled independent of any sensitivity or exposure controls in order to examine their 

isolated effects on extreme heat risk perceptions. Predictors were once again individually 

evaluated using log-likelihood tests, the results of which are presented in Table XIX.  

Table XX summarizes the results of the Adaptive Capacity Model. Number of 

non-English-speaking households (β = 0.0015, X2(1) = 18.77, p < 0.0001) and number of 
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Table XIX. Results of Log-Likelihood Testing of Adaptive Capacity Model Predictors 

 
 

 
Table XX. Adaptive Capacity Model Results Summary 

 
 

unemployed individuals (β = 0.0024, X2(1) = 15.72, p < 0.0001) at the census tract level 

were statistically significant predictors of risk perception. Income, measured at the 

individual-level by the nationally-representative survey, was also a statistically 

significant predictor (𝜎"  = 0.0016,	𝜎" = 0.04, X2(1) = 138.96, p < 0.0001). 
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The statistically significant effect of two tract-level variables, Number of non-

English-speaking households and Number of unemployed individuals, is illustrated in 

Figure 26 which shows the standardized fixed effect estimates for the Adaptive Capacity 

model predictors. 

 

 
Fig. 26. Standardized fixed effects of Adaptive Capacity Model. 
 
 

Predictors positively influencing heat wave risk perceptions in the Adaptive 

Capacity Model include: Tract-level unemployment and Number of non-English-

speaking households at the tract-level (Fig. 27). Predictors negatively influencing heat 

wave risk perceptions in the Adaptive Capacity Model include: Total percentage of days 

for which each respondent’s location was issued an extreme heat alert before the survey 
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and Number of vacant homes at the tract-level (Fig. 27). Appendix D contains summary 

results (Table D.I, Fig. D.1) and diagnostics (Fig. D.2) for the Adaptive Capacity Model. 

 

 
Fig. 27. Marginal effects of Adaptive Capacity Model predictors. 
 

4.6. MAXIMAL MODEL  

The final, maximal model was specified to include all factors known to influence 

extreme heat risk from the sensitivity, exposure, and adaptive capacity models as random 

and fixed effects (Table VIII). Rather than seeking to achieve the most parsimonious 

model, all theoretically important factors were retained as controls in accordance with 

statistical best practices for fitting linear mixed effect models (Barr et al., 2013; Bates et 

al., 2014; Bliese and Ployhart, 2002; Winter, 2013; Zuur et al., 2010 to help reduce bias 

and error. Again, predictors were individually evaluated using log-likelihood tests and 

their results are detailed in Table XXI. 
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Table XXI. Results of Log-Likelihood Testing of Maximal Model Predictors 

 
 

The results of the maximal model are presented in Table XXII. Sensitivity factors 

specified as random effects—Age (𝜎" = 0.0001, 𝜎 = 0.01, X2(1) = 5.62, p = 0.018), 

Race/Ethnicity (𝜎" = 0.0008, 𝜎 = 0.028,  X2(1) = 12.87, p < 0.0004), Work Status (𝜎" = 

0.001, 𝜎 = 0.031, X2(1) = 34.35, p < 0.0001), and interaction Sex : Race/Ethnicity : 

Education (𝜎" = 0.0003, 𝜎 = 0.016, X2(1) = 17.06, p < 0.0001)—remained statistically 

significant predictors of extreme heat risk perception.  

When controlling for sensitivity and adaptive capacity, exposure factors specified 

as fixed effects—Day of Year (β = -0.0001, X2(1) = 4.05, p < 0.045), Mean Temperature 

(β = 0.008, X2(1) = 8.42, p < 0.004), and Average Maximum Temperature during the  
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Table XXII. Maximal Model Results Summary 

 
 

week before survey data were collected (β = 0.0021, X2(1) = 10.49, p = 0.001)—remained 

statistically significant predictors of extreme heat risk perception (Fig. 28). 

Among adaptive capacity factors, the random effect of Income was the only 

predictor to retain significance (𝜎" = 0.0012, 𝜎 = 0.035, X2(1) = 72.56, p < 0.0001) and 

captured the greatest proportion of total variance amongst all random explanatory 

variables at 2.07% (Fig. 29). 
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Fig. 28. Standardized fixed effects of Maximal Model predictors. 
 
 

Predictors positively influencing heat wave risk perceptions in the Maximal 

Model include: Population density, Avg. max. temperature recorded during the week 

before the survey at each respondent’s unique location, Max. temperature recorded on the 

day of the survey at each respondent’s unique location, Tract-level unemployment, Tract-

level mean impervious surface coverage, Number of non-English-speaking households at 

the tract-level, Tract-level average seasonal temperature, Deviation of minimum 

temperature recorded during the month of the survey from the seasonal average at the 

tract-level,  and Tract-level mean tree coverage (Fig. 30). Predictors negatively 

influencing heat wave risk perceptions in the Maximal Model include: County-level  
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Fig. 29. Random effects of Maximal Model predictors 
 
 

 
 
Fig. 30. Marginal effects of Maximal Model predictors. 
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average seasonal heat index, Total percentage of days for which each respondent’s 

location was issued an extreme heat alert before the survey, Number of vacant homes at 

the tract-level, and Day of year (Fig. 30). Appendix E contains summary results (Table 

E.I, Figs. E.1-6) and diagnostics (Figs. E.7-8) for the Adaptive Capacity Model. 

 
4.7. MODEL COMPARISON 

Using log-likelihood based tests, each successive model build was assessed to 

compare explanatory power and model fit. Table XXIII demonstrates that each 

successive model specification improved upon the initial sensitivity models (1.0 and 2.0) 

and resulted in a better fit of the data by controlling for exposure and adaptive capacity 

factors. Statistically, compared to Sensitivity Model 1.0, the Vulnerability Model 

provided a substantively better fit of the risk perception data (X2(6) = 417.26, p < 

0.00001) and explained 40.11% of total variance (Table XVIII) compared to 7.84% for 

Sensitivity Model 1.0 (Table XII).  

 
Table XXIII. Maximal Model Comparisons 

 
 
 

The Maximal Model also reflected a statistically significant (albeit minimal) 

improvement on the fit of the risk perception data when compared to the Vulnerability 

Model (X2(8) = 91.98, p < 0.00001) and explained 40.22% of total variance [32.13% at 

the census tract level, 1.79% at the county level, and 0.26% at the state level] (Table 
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XXII) compared to the Vulnerability Model’s 40.11% [with 32.90% at the census tract 

level, 2.00% at the county level, and 0.15% at the state level] for the Vulnerability Model 

(Table XVIII).   

The independent variable and explanatory predictors in this study revolve around 

a complex construct: risk. Because of this, in order to accurately and responsibly measure 

their effect and directionality, many predictors included in these mixed effect models 

required estimation of interactions between and across multiple dynamic variables that 

vary over space and time on different levels. Additionally, model misspecification and 

use of statistics aggregated to areal units can leave spatially patterned information in the 

model residuals. Therefore, it was prudent to test for spatial dependencies or data 

clustering in the modeled residuals. Moran I tests were conducted using the R 

programming language and environment using the spdep spatial statistics package 

(Bivand and Piras, 2015; Bivand et al., 2013). Results indicate negligible influence of 

spatial clustering in the modeled residuals, with Moran I statistics decreasing from a high 

of 0.075 (p < 0.00001) for the Sensitivity Model 1.0 to a low of -0.023 (p < 0.00001) for 

the Maximal Model. Plots for these tests for all models can be found in the Appendices.  
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CHAPTER 5 

 
DISCUSSION 

 
 

Previous research is missing contextualized, locally-relevant vulnerability data 

detailing the distribution of extreme heat risk perception across the contiguous United 

States. To address this gap, using national survey data a series of mixed effect models 

were specified that included meteorological, climatological, geographic, 

sociodemographic, temporal, or land cover variables—each representing different 

sensitivity, exposure, or adaptive capacity factors—as predictors of extreme heat risk 

perception. The primary goals of this study were to (1) evaluate the spatial and temporal 

distribution of extreme heat risk perception across the contiguous United States, (2) 

generate risk perception estimates for unique subpopulations, and (3) describe the 

influence of important risk components—natural exposure variables as well as human 

sensitivity and adaptive capacity factors—on extreme heat risk perception.  

The intensity and scope of extreme heat impacts hinges upon climatological, 

meteorological, and geographic exposure factors as well as dynamic human factors such 

as sensitivity and adaptive capacity. This thesis models the influence of these factors on 

risk perception using a suite of multilevel regression models. Four hypotheses were tested 

through the estimation of explicit directional relationships using mixed effect models. 

Each hypothesis looks at a different subset of variables thought to be determinants of heat 

risk perception, using the R = (E+S) – AC framework to classify important extreme heat 

risk factors and evaluate their influence on extreme heat risk perceptions. Generally 

speaking, a combination of human and physical factors tends to influence risk 
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perceptions at both individual and contextual-levels. However, individual-level factors 

(such as sex, income, or work status) tend to influence risk perception more than 

contextual-level factors (such as seasonal average temperature, day of year, NWS alerts, 

or location-specific weather patterns). In other words, human sensitivity factors tend to 

exert more influence upon risk perception than environmental exposure or adaptive 

capacity factors.   

 
5.1. RESEARCH QUESTION I 

One of the principal objectives of this study was to determine how key sensitivity 

factors known to be important contributors to overall heat vulnerability (summarized in 

Table I) influence extreme heat risk perceptions across the contiguous United States. A 

series of linear mixed effect models were constructed to evaluate Hypothesis I 

(Individual-level sensitivity factors that are important contributors to heightened personal 

risk of heat-related impacts will positively influence heat wave risk perceptions across the 

study area and be a source of statistically significant variation from the national mean). 

This study quantifies the degree of first-order variation present among sensitivity effects 

contributing to risk perception at the individual-level. The results estimate the influence 

of sensitivity factors on risk perceptions, with and without controls for exposure and 

adaptive capacity factors. Most of the hypothesized directionalities of effect in personal 

sensitivity factors were observed via measurement of mean risk perception variation at 

their respective subpopulation groupings, or their random levels (Fig. 31). 
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Fig. 31. Directionality of known risk factors based upon estimates generated by mixed 
effect models. Directionality symbols: (+) positive relationship observed, (–) negative 
relationship observed, (0) no relationship observed; P-value symbols: *** = < .001, ** = < 
.01, * = < .05. 

 

Most of the studied individual-level sensitivity factors influenced heat wave risk 

perceptions—either positively or negatively, as hypothesized—in a statistically 

significant manner across the study area (Fig. 31) and accounted for a statistically 

significant proportion of total variance around the national average. Risk perception 

response values for subpopulations known to be at increased risk tend to deviate from the 

national average in line with the directionality of effect suggested by previous scholars 

(Tables I-III). Sex, a factor which previous studies have identified as an important 
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determinant of extreme heat sensitivity (Burse, 1979; Canoui-Poitrine et al., 2006; 

Kovats and Hajat, 2008; Safi et al., 2012; Smith, 2013, p. 272; Staffogia et al., 2006) is 

an important determinant of risk perception; women perceive themselves to be at greater 

risk than men. Racial or ethnic minority groups are known to be at increased risk of being 

negatively impacted by extreme heat (Anderson and Bell, 2009, 2011; Cutter et al., 2003; 

IPCC, 2014; Klinenberg, 2003, p. 80–81; Melillo et al., 2014; Reid et al., 2009, 2012; 

Safi et al., 2012; Tierney, 2014, p. 21; Weber et al., 2015; Wolf and McGregor, 2013) 

and also tend to have significantly higher risk perceptions. Previous studies have found 

that individuals with a source of income are less sensitive to negative hazard impacts, 

while disabled persons are more susceptible to negative impacts (CDC, 2016; Cutter et 

al., 2003; EPA, 2016; IPCC, 2014; Keller and DeVecchio, 2015, p. 319; Klinenberg, 

2003, p. 80–81; Melillo et al., 2014; Safi et al., 2012; Semenza et al., 1996). As 

hypothesized, respondents with higher income tend to have lower heat risk perceptions 

than the national average, individuals with lower incomes tend to have higher risk 

perceptions, and persons with disabilities have substantively higher risk perceptions than 

any other work status-specific subpopulation. Specific risk perception estimates for all 

subpopulations (every random level) measured in the initial Sensitivity Model are 

provided in Tables A.I–II of Appendix A. 

The relatively low variance across subpopulations (e.g., age, education groups) is 

partially a consequence of the conservative nature of mixed effect models which rely 

upon partial pooling and combinations of individual-level and contextual-level 

characteristics that tend to pull subpopulation estimates toward their respective national 

averages. Despite this, a few at-risk subpopulations tended to have lower risk perceptions 
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than were expected (Fig. 32). Some factors known to increase vulnerability, such as age 

and education, did not tend to exert statistically significant influence over risk 

perceptions as expected. Age, a factor which previous studies have identified as an 

important determinant of extreme heat sensitivity (Anderson and Bell, 2009, 2011; 

Buscail et al., 2012; CDC, 2016; Cutter et al., 2003; EPA, 2016; Harlan et al., 2006; 

IPCC, 2014; Johnson et al., 2009; Keller and DeVecchio, 2015, p. 319; Klinenberg, 

2003; Kovats and Hajat, 2008; Medina-Ramon et al., 2006; Melillo et al., 2014; Reid et 

al., 2009, 2012; Safi et al., 2012; Semenza et al., 1996; Smith, 2013, p. 271; Staffogia et 

al., 2006; Tomlinson et al., 2011; Uejio et al., 2011; Weber et al., 2015; White-Newsome 

et al., 2014; Wolf and McGregor, 2013), was found to be a statistically significant 

predictor of heat risk perceptions. However, age did not exhibit a profound impact on 

extreme heat risk perception; the most senior subpopulation (≥ 65 years of age) did not 

report markedly higher risk perception than younger subpopulations. This apparent 

underestimation of extreme heat risk by vulnerable subpopulations presents barriers to 

bringing these subpopulations into the risk reduction process and could be indicative of 

these populations being less likely to proactively implement protective behaviors. Future 

extreme heat risk research would benefit from examining the relationship between risk 

perception and personal medical histories alongside space-time-explicit hospitalization 

data. 

Less-educated individuals often face greater difficulty in accessing health services 

and information regarding the nature of natural hazards (Anderson and Bell, 2009, 2011; 

CDC, 2016; Cutter et al., 2003; EPA, 2016; IPCC, 2014; Medina-Ramon et al., 2006; 

Melillo et al., 2014; Reid et al., 2009, 2012; Smith, 2013, p. 85–86; Weber et al., 2015), 
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Fig. 32. Risk perception estimates for subpopulations from the initial Sensitivity Model, 
with the most extreme subpopulations labeled. 
 

yet no relationship was observed between education level and heat risk perception. 

However, despite a statistically insignificant role in predicting heat risk perception as an 

independent factor, education was an important component of the statistically significant 

interaction predictor Sex by Race by Education. Additionally, previous research has 

identified home size as an important predictor of hazard risk; those with larger homes are 

more likely to have the resources required to cope with environmental hazards (Cutter et 

al., 2003; Klinenberg, 2003, p. 80–81; Reid et al., 2009, 2012; Semenza et al., 1996; 

Weber et al., 2015). Home size had a statistically significant negative effect on risk 

perception in two of four models but had no effect on risk perception when also 

controlling for income (and therefore will likely be considered an adaptive capacity factor 

in future tests).  

The United States population is aging and is predicted to have over 88 million 

individuals at 65 years of age or older by the year 2050 (Ortman et al., 2014). 

Additionally, the contiguous United States is predicted to experience more frequent and 

severe heat waves over the coming years (EPA, 2016; IPCC, 2014; NWS, 2015; Mora, et 



 95 
al., 2017; Vose et al., 2017). When vulnerable subpopulations underestimate risk, 

targeted risk communication campaigns become vitally necessary. In the context of 

extreme heat, they become even more urgent, given that the elderly do not recognize 

themselves to be at much higher risk. Data such as this underscores the value of 

systematically measuring risk perceptions at different levels and the importance of 

effective risk communication given that a hazard must first be perceived as a risk before 

any protective actions are likely to be taken (FEMA, 2017, p. 11).  

What should an emergency manager do if a hazard presents a high risk to a 

community but the population in that community believes the risk to be much lower than 

it actually is? Situations like this present difficult challenges for decision-makers. Risk 

perception data highlights misperceptions and identifies vulnerable subpopulations. 

FEMA describes risk communication as the best way to counteract misperceptions about 

risk and reports, “The presence of differing risk perceptions [between the public and 

decision-makers] highlights the need for effective risk communication as a component of 

mitigation and preparedness” (FEMA, 2017, p. 12). Ultimately, ignoring risk perception 

data stands in the way of successful risk communication (California Governor’s Office of 

Emergency Services, 2001, p. 10); and as Lindell et al. have noted, “Risk analysts and 

emergency managers must understand how different segments of the population at risk 

think about a hazard if they are to be effective in communicating with their audience” 

(Lindell et al., 2006, p. 86).  Failing to consider community participation or input in the 

risk management process can reduce the likelihood of achieving a risk reduction solution 

that both the decision-making agency and the community find equitable and effective 

(California Governor’s Office of Emergency Services, 2001, p. 29). 
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5.2. RESEARCH QUESTION II 

The second objective of this study was to evaluate how much variation in risk 

perception occurs across the contiguous United States at different scales. Risk 

perceptions were expected to demonstrate substantive variation across geographic units in 

the contiguous United States, and subpopulations living in states with histories of 

heightened exposure to extreme heat events were expected to have higher risk 

perceptions. The results of this study provide support for this hypothesis and indicate that 

extreme heat risk perceptions demonstrate statistically significant non-random spatial 

patterns. As expected, risk perceptions demonstrated statistically significant geographic 

variation across the U.S. at different scales. Geographic predictors significantly 

influenced risk perception and accounted for a statistically significant proportion of total 

variance across all models. Additionally, the directionality of sensitivity factor 

relationships with risk perception was maintained even after controlling for geography. 

Different people experience different environmental conditions in different places and 

subsequently tend to report different risk perception levels. 

On the whole, despite rising exposure levels, the national average (0.433) is 

below the median scale value (0.5) and lower than expected. Nevertheless, public risk 

perception trends across the U.S. generally reflected actual risk levels for many 

subpopulations. Random effect estimates for the subpopulations (including those specific 

to geographic units) were calculated in relation to the national average baseline (Fig. 32). 

For example, the risk perceptions of black men with college degrees, Iowans of 25–34 

years of age, and working individuals who live alone tend to be closest to the national 

average. Deviations from the national average among particular subpopulation profiles, 
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especially at the extremes, are of particular interest because what we perceive as real is 

real in its consequences (Thomas and Thomas, 1928). For example, risk perceptions 

among disabled Hispanic individuals, individuals earning less than $30,000 annually, and 

the populations of Louisiana and California tend to exhibit the greatest positive deviation 

from the national average. On the other hand, risk perceptions for white, working, men 

earning over $150,000 annually, and the populations of Colorado and Massachusetts 

exhibited the greatest negative deviation from the national average, which suggests they 

may be less likely to make preparations for extreme heat risk. Highlighting the 

distribution of misperceived risk can aid the development of subpopulation-specific risk 

communication products. 

 
5.3. RESEARCH QUESTION III 

The third objective was to evaluate how key exposure factors known to be 

statistically significant contributors to overall heat vulnerability influence extreme heat 

risk perceptions across the contiguous United States. It was hypothesized that 

respondents located in areas more likely to experience a higher degree of exposure would 

report higher risk perceptions (for example, due to geographic location, higher average 

seasonal temperatures or the effects of the urban heat island). The degree to which 

personal experience with exposure factors influences heat risk perceptions was quantified 

in an independent exposure model (Table XV) and while controlling for sensitivity and 

adaptive capacity factors (Table XVI). A statistically significant relationship was 

observed between individual risk perceptions and local, contextual-level predictors that 

vary over time and across space (e.g., maximum weekly temperature patterns). Many of 
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the complex human-environmental factors incorporated into the Exposure Model were 

found to be statistically significant predictors of risk. For example, subpopulations 

situated in more densely-populated areas with greater impervious surface coverage—who 

are more likely to experience a higher degree of heat exposure due to the urban heat 

island effect (CDC, 2016; Liss et al., 2017)—were found to have higher extreme heat risk 

perceptions. Additionally, results demonstrate that the geographic distribution of extreme 

heat risk perception tends to coincide with observed local temperatures, and spatial 

analysis of the responses indicates that the distribution of extreme heat risk perceptions 

was non-random. Contextual-level heat exposure factors tend to affect risk perception in 

a logical direction across the United States.  

In their 1979 publication Rating the Risks, Slovic and colleagues memorably 

began with, “People respond to the hazards they perceive” (Slovic et al., 1979). FEMA 

cites this line as critical for two reasons: “First, its converse is also true. People generally 

do not respond to the hazards that they do not perceive. Second, it has been found that 

these stated perceptions are based primarily upon inaccurate sources of information […] 

as opposed to personal experience and expert knowledge” (FEMA, 2017, p. 4). In 

training documents, FEMA advises that the general public typically does not consider 

contextual-level factors when evaluating risk. However, previous research has suggested 

that personal experience with extreme heat conditions may influence risk perception 

(Smith, 2013, p. 81; Tierney, 2014, p. 18; Tversky and Kahneman, 1973, 1974; 

Weinstein, 1989). Furthermore, studies have demonstrated the capacity of “human 

sensors” to detect changes in local environmental factors and found localized perceptions 

to be consistent with observations of local seasonal weather patterns and timing (Howe et 
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al., 2013; Howe and Leiserowitz, 2013; Leiserowitz, 2006; Smith and Leiserowitz, 

2014). The results of this study contribute additional evidence suggesting individuals’ 

capacity to assess localized environmental conditions and changes. Results support the 

hypothesis that risk perceptions exhibit non-random geographic patterns in part due to 

different individual experiences with highly-variable weather and climate components of 

exposure. Individuals living in warmer climates that typically experience higher degrees 

of exposure tend to have higher risk perceptions. Additionally, two variables capturing 

recent experience with heat (mean daily temperature experienced during week before 

response data was collected and on the day of the survey) were statistically significant 

and positive predictors of risk perception. These results indicate that recent experience 

with elevated temperatures may lead to increased risk perception, and they lend strength 

to previous research that has suggested that changes in temperature may have a causal 

influence on environmental perceptions (Howe et al., 2013). Indeed, while the findings of 

this study cannot conclusively demonstrate causal relationships between the exposure 

conditions experienced by respondents and their perceptions, a distinct and logical pattern 

of directionality in the effect of recently experienced temperature changes on risk 

perception was observed across the contiguous United States.  

FEMA’s training documents again refer to Slovic and colleagues (1979), when 

stating, “Disaster management experts’ risk perceptions correspond closely to statistical 

frequencies of death. Laypeople’s risk perceptions are based in part on frequencies of 

death, but there are many other qualitative aspects that affect their personal rating of 

risks” (FEMA, 2017, p. 5). This is worth mentioning because while it is true that many 
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factors affect risk perception, public risk perceptions generally did a better job of 

reflecting “experts’ risk perceptions” than was expected.  

Results of this study indicate that heat risk perception levels across many of the 

nation’s subpopulations tend to accurately reflect the directionality of risk factor 

relationships described in statistical risk assessments. Time of year is a good example. 

The earliest heatwaves of the warm season are typically responsible for greater negative 

impacts when compared to subsequent heatwaves. This is partly due to a greater 

proportion of the national population being underprepared for extreme heat exposure 

earlier in the year. People tend to acclimate to warmer temperatures over the course of the 

warm season (Anderson and Bell, 2011; Hawkins et al., 2017; Liss et al., 2017; Rauber et 

al., 2008, p. 256; Smith, 2013, p. 85–86, 271).  This is a complex contextual-level factor, 

yet results indicate that time of year negatively predicts risk perception—extreme heat 

risk perception decreases over the course of the warm months across the contiguous 

United States, reflecting observed mortality trends, despite temperature levels rising (and 

therefore presumably exposure levels). This finding may reflect previous observations 

that despite conditions worsening, individuals are less likely to be caught off guard after 

the beginning of the warm season (Liss et al., 2017). This has implications for risk 

communication campaigns in geographic areas which were previously unaccustomed to 

extreme heat events but are likely to face increased exposure in coming years. Negative 

heat impacts are not necessarily less severe in cooler regions of the contiguous United 

States than in hotter regions (Anderson and Bell, 2009; Anderson et al., 2013; White-

Newsome et al., 2014). Furthermore, all regions of the CONUS are predicted to 
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experience more frequent extreme heat events, particularly in southern latitudes (Vose et 

al., 2017).  

  There were several unexpected findings related to exposure factors. First, greater 

tree canopy coverage helps drive down temperatures when interacting with nightly lows, 

thereby reducing the threat of the UHI effect; yet, the positive relationship observed 

between risk perception and local proportions of tree coverage at the tract level was not 

statistically significant independent of the significant effect found with impervious 

surface coverage. Second, temperature deviations (between nightly low temperatures 

recorded at the tract-level during the 2015 study period and the 30-year seasonal average 

low temperature) were not found to have a statistically significant influence on risk 

perception. Third, the heat index—which remains the primary metric used by the NWS to 

express the human body's perception of relative humidity alongside air temperature—did 

not exert significant influence on risk perception. This may be partly due to the low 

spatial resolution of the data (aggregated at the county level) as well as its correlation to 

mean temperature, which did show a significant effect.  

This study is, to our knowledge, the first to investigate how localized personal 

experience with key meteorological and climatological factors known to be important 

contributors to overall heat risk (e.g., Heat Index, Daily Max. Temp., Seasonal Avg. Min. 

Temp) contribute to heat risk perceptions using time-stamped, georeferenced, CONUS 

nationally-representative, empirical survey data. Additionally, the methods detailed could 

be adapted to a wide range of human-natural systems evaluation applications by building 

space-time-explicit indices of environmental conditions unique to each respondent’s 

geographic position at multiple scales. Results provide further evidence of “human 
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sensors’” capacity to pick up on local environmental changes when making complex 

evaluations of risk. The findings of this study indicate that extreme heat risk perceptions 

demonstrate statistically significant non-random spatial patterns, which appear to reflect 

the substantive influence of personal experience with extreme heat exposure. The results 

of the Exposure Model indicate that states with a history of extreme heat exposure and 

experience tended to have higher heat risk perceptions. In contrast, states historically 

unaccustomed to extreme heat exposure did not necessarily tend to have higher risk 

perceptions (Fig. 22) despite evidence suggesting they will experience more frequent and 

longer-lasting extreme heat events in the future (Vose et al., 2017). Given these findings, 

future research should examine the effect of elevation on extreme heat risk perception as 

warming trends at higher elevations may be underestimated due to a lack of historical 

observational data as well as orographic factors not being considered in many regional 

climate forecast models (Pepin et al., 2015; Vose et al., 2017). On the whole, place-

dependent exposure factors rooted in their respective geographic contexts were strong 

predictors of extreme heat risk perception, suggesting that risk communication plans that 

incorporate localized risk perception data may help to break down barriers to bring a 

greater proportion of the populace in the risk reduction process. 

 
5.4. RESEARCH QUESTION IV 

How do key adaptive capacity factors known to affect an individuals’ ability to 

cope with hazards (summarized in Table III) influence extreme heat risk perceptions 

across the United States? I hypothesized that adaptive capacity factors measured at the 

individual-level, such as income, would negatively influence extreme heat risk perception 
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(e.g., as income levels increase, risk perception score will decrease). Additionally, 

contextual-level factors (those measured at the census tract level, e.g., proportion of 

unemployed individuals, proportion of vacant homes) which are known to positively 

influence total extreme heat risk (by negatively influencing overall adaptive capacity) 

were predicted to negatively influence risk perceptions. The influence of these factors 

was measured independently (Table XIV) and while controlling for sensitivity and 

exposure factors (Table XVI). At the individual-level, income maintained a statistically 

significant negative effect on extreme heat risk perceptions in both the independent 

adaptive capacity model (Table XIV) as well as in the Maximal Model (Fig. 25), where 

Income captured the highest proportion of total variance among non-geographic 

predictors. At the community-level, a higher unemployment rate maintained its positive 

fixed effect on risk perceptions (Figs. 27, 30).  

Wealthier individuals—who are more likely to have or acquire sufficient means to 

cope with hazards (Anderson and Bell, 2009, 2011; Cutter et al., 2003; Harlan et al., 

2006; Klinenberg, 2003, p. 80-1; Melillo et al., 2014; Reid et al., 2009, 2012; Safi et al., 

2012; Smith, 2013; Tierney, 2014, p. 4-9; Weber et al., 2015; Wolf and McGregor, 

2013)—tend to have lower risk perceptions in general than the average 

American. Individuals without a source of income—who are less likely to be able to cope 

with hazard impacts (Anderson and Bell, 2009, 2011; Klinenberg, 2003, p. 80-1; Safi et 

al., 2012; Semenza et al., 1996) —tend to have higher heat risk perceptions. Non-

English-speaking subpopulations—who tend to have less access to information and 

emergency help, often reside in more hazard-prone areas, and have less power to cope 

with negative impacts of hazards due to socioeconomic inequalities (Anderson and Bell, 
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2009, 2011; Curriero et al., 2002; Cutter et al., 2003; IPCC, 2014; Klinenberg, 2003, p. 

80-1; Melillo et al., 2014; Reid et al., 2009, 2012; Safi et al., 2012; Tierney, 2014, p. 4-9; 

Weber et al., 2015; Wolf and McGregor, 2013) —tend to have higher heat risk 

perceptions. Additionally, while a high vacancy rate at the tract-level can indicate that 

there is less likely to be a reliable support network and more cases of social isolation 

(EPA, 2016; Klinenberg, 2003, p. 80-82; Smith, 2013, p. 271; Tierney, 2014, p. 236), risk 

perceptions were not significantly higher among subpopulations with a higher proportion 

of vacant homes. This could partly be due to error within the American Community 

Survey dataset. While there may be significant uncertainties associated with an individual 

ACS tract-level estimate, on average, this uncertainty appears to be attenuated across the 

contiguous United States. However, this limitation may also indicate that this variable 

was misclassified when it should have been a community-level sensitivity factor. Further 

research examining the efficacy of community-level adaptive capacity measures and their 

effect on risk perception is necessary. Because this study was primarily concerned with 

investigating the influence of vulnerability factors on risk perception, many adaptive 

capacity factors at both the individual and community-levels were unavailable and should 

be examined in future studies. These include: access to affordable air conditioning, 

duration of outdoor activity, involuntary degrees of exposure, likelihood of engaging in 

protective behavior, awareness of risk communication programs.  

The Exposure Model results revealed that personal experience with heat 

conditions measured via climatological and meteorological variables at 800 m spatial 

resolution were found to have statistically significant positive influences on heat risk 

perception. However, in the Adaptive Capacity Model, no variables concerning personal 
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experience inside an active NWS heat alert area improved the fit of the model. Recent 

experience with heat was found to influence risk perceptions, but being geographically 

situated in an alert area was not. NWS risk communication products should be expected 

to increase risk perception. However, results indicate that the current hazard alert system 

does not tend to increase extreme heat risk perception across the contiguous United 

States. This finding may have serious implications for the design of the National Weather 

Service’s weather-related hazard risk communication product system—particularly as 

temperatures observed during extreme heat events are projected to increase at a greater 

rate than average temperatures over the coming years (Vose et al., 2017), making 

preventable loss mitigation a top priority for many weather forecast offices (WFOs). 

There may be a geographical explanation for the NWS risk communication 

products’ apparent lack of influence on public risk perception. Firstly, simple proximity 

to or presence within a Watch, Warning or Advisory alert area does not necessarily 

translate into awareness of the risk message. The apparent lack of effect of WWAs on 

risk perception could simply be due to lack of awareness of the alerts. This, in turn, could 

be related to the mode or media in which these communication products are disseminated 

by the NWS. Secondly, in most cases, NWS weather forecast offices issue WWAs to 

specific subpopulations within administrative area boundaries (such as counties) whereas 

the actual meteorological patterns provoking biophysical exposure are highly variable 

over space and time—even at the individual-level—and recorded as gridded data. 

Consequently, there are many difficulties in defining alert areas that are capable of 

appropriately aggregating and issuing warnings with consistent accuracy ahead of highly 

localized weather patterns—chiefly, the modifiable areal unit problem (Openshaw, 1984). 
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Arbitrary political boundaries used to define WWA alert areas and unstandardized 

issuance parameters methods unique to each WFO for declaring either a Watch, Warning 

or Advisory may help explain limited correlation between local extreme temperatures and 

issuance of WWA alert (Hawkins et al., 2017). This may, in turn, lead to “alert fatigue” 

(also known as “warning fatigue”), a condition in which members of the public become 

overwhelmed by the number of alerts or warnings and then become desensitized which 

can then lead to important hazard warnings being ignored or missed in the future or lead 

to delayed response times (Sendelbach and Funk, 2013). Warning fatigue can negatively 

impact the public’s trust in WFOs and decrease the perceived credibility of hazard alert 

products issued during future scenarios—especially when warnings are issued but 

individuals are not affected (Dillon et al., 2014; Mackie, 2013). Although the old adage, 

“better safe than sorry,” may be true in most environmental hazard scenarios, more 

research is required to find the balance between a sufficient number of extreme heat alerts 

and the point of saturation across county watch areas (CWAs).  

Public skepticism of WWAs may not help reduce extreme heat impacts going 

forward, especially if current WFO issuance thresholds remain the same despite rising  

temperatures and the frequency of extreme heat events. A recent NWS white paper 

(Hawkins et al., 2017) summarizes the results of an internal survey conducted across all 

122 WFOs inquiring about what is working and what is not with the current extreme heat 

event alert system. The results of this survey highlight system-wide issues that may affect 

WWA product impact on risk perception—chiefly, the inconsistent manner in which 

local NWS offices issue alerts across the CONUS. Sixty-four percent of WFOs reported 

confusion related to inconsistencies in their extreme heat warning system (Hawkins et al., 
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2017, p. 9-11). Additionally, Hawkins and colleagues acknowledge there are 

geographical limitations to the current system which likely contributing to inter-office 

and partner confusion: static issuance criteria for urban and rural populations situated 

within or across CWA borders despite substantively different microclimatic conditions, 

extreme population differences between CWAs sharing common borders, and WFO 

territories occasionally encompassing multiple CWAs are (Hawkins et al., 2017, p. 11).  

Hawkins and colleagues report some WFO decision-makers are considering 

revising their current extreme heat alert systems to address these issues. Specifically, the 

authors acknowledge a growing internal consensus around the need to address the 

inherently top-down, “one size fits all” nature of current government methods for 

warning of extreme heat events and discuss the need to examine potential locally-

developed approaches (Hawkins et al., 2017). Presently, 70% of WFOs have multiple 

classifications for heat alerts (e.g., Heat Watch, Heat Warning), while the remaining 

WFOs only issue one alert classification. Many offices report “confusion and frustration 

from inconsistency” related to the definition of these different classifications (Hawkins et 

al., 2017, p. 9). As previously mentioned, the NWS still primarily relies upon the Heat 

Index for issuing heat-related alerts (45% of WFOs), but many WFOs are experimenting 

with developing their own local issuance criteria to overcome the static limitations of the 

Heat Index (Hawkins et al., 2017). For example, novel measures of extreme heat event 

frequency, such as the Warm Spell Duration Index developed by Zhang and colleagues 

(2011), and severity, such as the Heat Wave Magnitude Index developed by Russo and 

colleagues (2014), may provide more reliable estimates of the potential impact of 

extreme heat events to local subpopulations (Vose et al., 2017). NWS risk 
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communication products’ lack of influence on risk perception may well be related to any 

number of issues Hawkins and colleagues report. 

The findings of this study have serious implications for NWS hazard risk 

communication product system design. 49% of WFOs surveyed have revised their 

issuance procedures and developed local, context-specific criteria for issuing EHE alerts 

(Hawkins et al., 2017). These revisions are aimed at increasing the relevance of heat-

related alerts to their respective WFA subpopulations, which would increase risk 

perception. Hawkins and colleagues acknowledge difficulties in defining target audiences 

as well as in examining the effectiveness of their risk communications (2017, p. 9-12). As 

WFOs contemplate revising their current warning systems to address these issues, risk 

perception data can help guide them. Additional research should be conducted to evaluate 

the effect of these WFO changes on their respective WFA subpopulation’s risk 

perception estimates. Future research should be conducted to investigate how the findings 

of this study can be explained and situated in the proper context.  

Careful work was conducted to create a rich multidimensional, space-time-

explicit dataset for the warm months of 2015 by compiling empirical response data 

alongside locally relevant NWS alert data, meteorological data and climatological data. 

The methods and procedures developed to generate this dataset are detailed in this study 

and could be adapted to serve future research objectives related to risk perception, 

exposure patterns, and government alert issuance parameters. More research should be 

conducted to examine the relationship between forecasted weather conditions, WWA 

alert issuance, actual observed weather conditions, and individual awareness of these 

factors. Evidence suggests that additional research could be conducted to examine if 
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WWA alerts tend not to alarm the populace or motivate it, and measure how engaged the 

population is with these early warning systems. Research opportunities exist here for 

communication scholars.  

Risk communication strategies are necessarily space-time–specific. The 

effectiveness of hazard alerts and their geographic boundaries have real impacts 

confronted by first responders—health and human service professionals, hospitals, city 

managers, and emergency response units—and institutions who have their own 

boundaries or jurisdictions, sometimes encompassing multiple CWA sections. Imminent 

threats result in warnings aimed at producing appropriate emergency responses, whereas 

long-term hazard threats lead to the development of hazard-awareness programs, aimed at 

producing long-term hazard adjustments, thereby increasing adaptive capacity (Lindell et 

al., 2006, p. 85). It is essential that NWS alerts are maximally effective in their ability to 

issue timely, reliable, and relevant hazard information to their local areas in a consistent 

and clear manner. Extreme heat risk perception data can be used to enhance adaptive 

capacity in many ways: to improve extreme heat vulnerability indices, map at-risk 

populations, complement traditional technical risk assessments, and help communicators 

like WFOs to better tailor their alert products to those who need them most. The results 

of this study indicate that while, statistically, many vulnerable subpopulations tend to 

understand themselves to be at greater risk, the risk perceptions of some subpopulations 

are lower than would be expected (or desired) given their observed history of 

susceptibility to extreme heat risk. This is important because “If the public does not 

perceive a hazard to affect them personally, they are unlikely to take any personal 

measures to prepare or mitigate for that hazard” (FEMA, 2017, p. 12). Only by 
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examining the components of risk and understanding how they collectively contribute to 

the negative impacts of extreme heat can holistic risk reduction plans be formed. Risk 

perception data can and should play an invaluable role in helping to inform this process. 
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CHAPTER 6 

 
CONCLUSION 

 

In 2001, Gilbert White and colleagues observed that humankind is reaching the 

point of “knowing better” while simultaneously “losing even more” in an assessment of 

the use, misuse, and disuse of knowledge in the hazards management arena, which cited 

increases in estimated losses and published knowledge. To address this issue and ensure a 

less hazardous future environment, he and his colleagues argued for a cultural and 

academic shift towards a greater appreciation of contextual risk factors (through both 

remote sensing data, historical observations, and human data); a greater effort to translate 

study results into real, measurable good on behalf of more peoples; and most importantly, 

shifting towards an understanding of “natural disasters” not as “natural” but dependent 

largely upon human exposure and sensitivity factors (White et al., 2001). Now, 15 years 

later, many exciting advances in remote sensing and geographic information science 

(GISc) have been achieved and implemented, allowing more researchers access to more 

data and to a more complete understanding of Earth’s myriad interconnected systems. We 

know that extreme heat events are becoming more frequent and severe (EPA, 2016; 

IPCC, 2014; NWS, 2015; Mora et al., 2017; Vose et al., 2017). We also know that 

human activity contributes to this reality (Angelil et al., 2017; Dole et al., 2014; Hoerling 

et al., 2013; Jeon et al., 2016; Knutson et al., 2013; Rupp et al., 2012). Human and 

physical systems cannot be unraveled when assessing hazards risk—their intertwined 

nature is at the core of hazards research. Examining this relationship in the context of 



 112 
extreme heat risk perception across the contiguous United States requires an 

interdisciplinary approach using mixed methods and multidisciplinary datasets.  

Natural hazards have highly variable impacts as a result of dynamic space-time 

patterns of exposure, their interaction with complex individual-level human sensitivity 

factors, and the adaptive capacity of the exposed populations. The magnitude and scope 

of extreme heat impacts largely depends upon the vulnerability of the population—

determined by physical exposure and human sensitivity factors. However, the risk 

associated with vulnerability to extreme heat can be reduced by adaptive capacity factors, 

particularly as heat mortality is often preventable if appropriate actions are taken. 

Negative impacts from many hazards can be mitigated through community resilience—

namely, effective hazard alert systems. By understanding the distribution of extreme heat 

vulnerability, risk can be attenuated during the process of building adaptive capacity—by 

enhancing risk communication methods, reducing socioeconomic inequality to strengthen 

community resilience, or by allocating emergency resources to the most vulnerable 

subpopulations. This approach to loss reduction is especially important for mitigating 

weather-related natural hazard risk because it is probably going to be easier for us to 

reduce the influence of sensitivity factors and augment adaptive capacity than it is for us 

to reduce exposure by “fixing” the weather, “fixing” urban sprawl, or “fixing” climate 

change. The risk associated with the rising frequency and magnitude of extreme heat 

exposure is unlikely to be completely mitigated, even under the most favorable emissions 

scenarios (Mora et al., 2017). 

Decision makers need locally-relevant information about the distribution of any 

potential negative impacts to inform mitigation and risk reduction strategies. Different 
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hazard exposure levels affect different individuals in different ways at different times in 

different places, depending upon the different decisions that they make. Seeking to meet 

this need, a variety of methods have been developed to downscale vulnerability estimates 

—for exposure factors (Hawkins et al., 2017; Mora et al., 2017; NLDAS, 2017; Russo et 

al., 2014; Vose et al., 2017; Weber et al., 2015; Zhang et al., 2011) and sensitivity factors 

(Anderson and Bell, 2009, 2011; Buscail et al., 2012; Cutter et al., 2003; Harlan et al., 

2006, 2013; Johnson et al., 2012; Medina-Ramon et al., 2006; Melillo et al., 2014; Reid 

et al., 2009, 2012; Semenza et al., 1996; Weber et al., 2015; Wolf and McGregor, 2013) 

alike—from national models to finer regional and local scales. However, mitigation and 

risk reduction strategies must also account for a host of complex individual-level social 

factors related to hazard awareness, risk judgement, and subsequent decision-making 

behaviors at sub-national levels (Howe et al., 2015). Traditional risk assessment typically 

lacks data on risk perception and human behavior—both of which are important 

determinants of disaster impact. This is important because the decision to take action and 

engage in mitigation or risk reduction activities at both the individual-level and 

community-level is greatly influenced by individual beliefs, attitudes and risk perceptions 

(California Governor’s Office of Emergency Services, 2001, p. 10; FEMA, 2017; Howe 

et al., 2015; Lindell et al., 2006, p. 86). These determinants of protective action are in 

turn influenced by factors such as personal circumstances, environmental context, and 

community resilience. Quantitative risk perception data detailing how different people 

perceive different levels of risk at different times in different places helps to fill this gap. 

This study delivers risk perception estimates across the contiguous United States 

and evaluates the influence of critical natural exposure variables and human sensitivity 
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and adaptive capacity factors at both individual and contextual levels. Additionally, this 

thesis details interdisciplinary research methods that could be adapted to examine the 

individual and contextual-level determinants of risk perception and hazards vulnerability 

at multiple geographic scales. Mitigation and risk reduction decisions are made by or on 

the behalf of different subpopulations that experience unique circumstances at different 

spatial scales (e.g., tract, county, or state-level) —so it is necessary to have reliable 

vulnerability information specific to the appropriate level of decision-making. The 

creation of reliable, locally relevant data on public heat risk perception is necessary in 

order for decision makers and scientists to more comprehensively assess actual extreme 

heat risk for different subpopulations and evaluate which mitigation and adaptation 

strategies might be most effective in those communities.  

Whereas national vulnerability statistics cannot reveal sizeable differences in risk 

perception estimates between states or demographic groups, this study utilizes empirical 

United States-nationally representative survey data and multilevel regression techniques 

to estimate extreme heat risk perception for at-risk subpopulations at scales more relevant 

to local decision makers. For example, Missourians and Indianans gauge heat risk to be 

far higher than Coloradans and West Virginians. Extreme heat risk perception exhibits 

substantive, non-random patterns of geographic variation across the contiguous United 

States that appear to be strongly influenced by a combination of both individual-level 

sensitivity factors, contextual-level exposure factors, and personal experience with 

extreme heat—many of which were previously-untested.  

Ideally, risk perception mirrors reality. However, this is often not the case 

(Kasperson et al., 1988). In these circumstances, “Failure to correct risk perception could 
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result in misguided or improper prioritization of risk, such that lower risks are given 

greater resources than more important risks where resources could have made a greater 

impact on risk reduction” (FEMA, 2017, p. 13). Low risk perception increases 

vulnerability because people do not respond to the hazards they do not perceive. In other 

words, what we believe to be real is real in its consequences and shapes our behavior—

reactively or proactively. Low risk perception among at-risk subpopulations is especially 

worrisome and must be addressed in order to reduce loss. When vulnerable 

subpopulations, such as the elderly, do not perceive themselves to be at greater risk from 

extreme heat, this presents barriers to bringing them into the risk reduction process and 

effectively communicating the hazard. Estimating risk perception variation across 

different subpopulations gives us clues as to how these groups might be expected to 

behave in response to a hazard. Spatially-explicit risk perception data helps map 

misperception among vulnerable subpopulations, evaluate their unique circumstances, 

and develop more effective risk communication products at multiple scales.  

Risk communication is key to reducing hazard risk. Effective risk communication 

strategies address irrational human behavior and decision-making that can exacerbate 

sensitivity factors or lead to greater exposure by promoting protective behavior at the 

individual and community-level. For example, the protective behaviors promoted by risk 

communication products might include acknowledging risk, avoiding unnecessary 

exposure, or developing personal heat-safety plans. The first steps in designing effective 

risk communication programs are identifying vulnerable subpopulations, studying their 

distribution, and evaluating their unique circumstances – risk perception data helps 

accomplish these goals (California Governor’s Office of Emergency Services, 2001, p. 
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14). The development of more effective hazard alert systems is essential. Generally, 

government officials and their media outlets are charged with providing the general 

public with timely and reliable predictions of where and when heat waves will occur as 

well as with information concerning heat risk mitigation strategies they might seek to 

employ (Keller and DeVecchio, 2015, p. 319; Smith, 2013, p. 86-88). However, in order 

to develop more effective risk communication products, risk perceptions need to be 

understood first.  

It is important to understand the space-time distribution of vulnerability factors 

and draw upon the contextual knowledge generated by risk perception studies before the 

risk communication process begins because the vaguer the information presented, the 

more likely it is to reinforce existing beliefs (FEMA, 2017, p. 8; Slovic et al., 1979). 

These risk communication strategies would be enhanced if locally-relevant, space-time-

specific vulnerability data were accessible. The spatial distribution of extreme heat risk in 

different local contexts is likely to change over time due to the dynamic nature of 

sensitivity and exposure factors; and therefore, vulnerability maps should be updated 

periodically (Reid et al., 2012). Quantitative knowledge of the directionality and effect of 

vulnerability factors on risk perception, such as those examined in this study, can better 

equip policymakers, government officials, and risk managers with the information they 

need to cater local emergency services to the most vulnerable populations, with the goal 

of minimizing future impacts on those most likely to be impacted negatively. This 

creation of contextualized vulnerability knowledge plays an essential role in empowering 

members of vulnerable communities to strengthen resilience and is a necessary first step 
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toward enabling policymakers to more effectively implement targeted strategies for risk 

reduction and communication.  

The results of this study demonstrate that the relationship between the most 

important determinants of extreme heat risk and public risk perception generally reflects 

the degree and directionality of effect documented in expert risk assessments. Risk 

perception data also highlights subpopulations that tend to misperceive risk. The 

contextualized vulnerability knowledge generated by representative risk perception data 

also reveals local-level metrics that decision-makers can use to better tailor their hazard 

impact mitigation strategies and improve local adaptive capacity—for example, to elderly 

and less educated individuals who tend to misperceive extreme heat risk. Studying the 

landscapes of beliefs and values as well as how past experiences and socio-environmental 

contexts might influence future action can and should inform policy as well as our 

understanding of dynamic vulnerability at a range of temporal and spatial scales. 

Extreme heat risk is rising across the contiguous United States, but total hazard 

risk can be reduced by targeted interventions aimed at strengthening adaptive capacity 

and addressing human vulnerability factors. In order to do this, researchers, risk 

managers, and community members will need to work together closely in order to 

enhance adaptive capacity and address vulnerability factors. Building networks, 

partnerships, and support systems will be required to achieve maximal risk reduction by 

exchanging and communicating information across group lines and reaching out to build 

adaptive capacity. This highlights the need for data compatibility—a strength of using 

quantitative risk perception data that is both space-time-explicit and representative of the 

national population. This study details an interdisciplinary approach for generating 
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unique subpopulations risk perception estimates that will be useful to decision-makers at 

multiple scales using novel mixed methods to integrate multidisciplinary datasets which 

reflect the inherent inseparability of human and physical systems in the risk production. 

Leveraging advances in both the natural and social sciences to develop a more holistic 

understanding of the drivers and distribution of extreme heat vulnerability across the 

contiguous United States is vital to minimizing future loss in the face of rising exposure 

levels. 
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APPENDIX A  

 
SENSITIVITY MODELS 

 

 
Fig. A.1. All BLUPs dotchart for Sensitivity Model, part 1. 
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Fig. A.2. All BLUPs dotchart for Sensitivity Model, part 2. 
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Fig. A.3. Random effect estimates for all subpopulations generated by the Sensitivity 
Model. 
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Fig. A.4. Diagnostic plots for Sensitivity Model. 
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APPENDIX B  

 
EXPOSURE MODEL 

 
Table B.I. Variance-Covariance Matrix for the Exposure Model 
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Fig. B.1. Fixed effects correlation matrix for Exposure Model. 
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Fig. B.2. Diagnostic plots (qqplot, residuals, etc) for Sensitivity Model. 
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APPENDIX C  

VULNERABILITY MODEL 

Table C.I. Variance-Covariance Matrix for the Vulnerability Model 
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Fig. C.1. Fixed effects correlation matrix for Vulnerability Model. 
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Fig. C.2. Random effects of Vulnerability Model predictors. 
 
 
 

 
Fig. C.3. Marginal effects of Vulnerability Model predictors. 
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Fig. C.4. Diagnostic plots (qqplot, residuals, etc) for Vulnerability Model. 
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APPENDIX D 

 
ADAPTIVE CAPACITY MODEL 

 
 Table D.I. Variance-Covariance Matrix for the Adaptive Capacity Model 
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Fig. D.1. Fixed effects corelation matrix for Adaptive Capacity Model. 
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Fig. D.2. Diagnostic plots (qqplot, residuals, etc) for Adaptive Capacity Model. 
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APPENDIX E  

 
MAXIMAL MODEL 

 
Table E.I. Variance-Covariance Matrix for the Maximal Model 
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Fig. E.1. Fixed effects correlation matrix for Maximal Model. 
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Fig. E.2. Random effect of age in Maximal Model. 
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Fig. E.3. Random effect of race/ethnicity in Maximal Model. 
 
 
 

 
Fig. E.4. Random effect of household size in Maximal Model. 
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Fig. E.5. Random effect of income in Maximal Model. 
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Fig. E.6. Random effects of interaction predictor in Maximal Model. 
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Fig. E.7. Diagnostic plots (qqplot, residuals, etc) for Maximal Model. 
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Fig. E.8. Moran’s plot of spatial autocorrelation for the Maximal Model. 
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