COMPARING NONLINEAR AND NONPARAMETRIC MODELING TECHNIQUES
FOR MAPPING AND STRATIFICATION IN FOREST INVENTORIES
OF THE INTERIOR WESTERN USA

by

Gretchen Gengenbach Moisen

A dissertation submitted in partial fulfillment
of the requirements for the degree
of
DOCTOR OF PHILOSOPHY
in
Mathematical Sciences

UTAH STATE UNIVERSITY
Logan, Utah

2000
ABSTRACT

Comparing Nonlinear and Nonparametric Modeling Techniques for Mapping and Stratification in Forest Inventories of the Interior Western USA

by

Gretchen Gengenbach Moisen, Doctor of Philosophy

Utah State University, 2000

Major Professor: Dr. D. Richard Cutler
Department: Mathematics and Statistics

Recent emphasis has been placed on merging regional forest inventory data with satellite-based information both to improve the efficiency of estimates of population totals, and to produce regional maps of forest variables. There are numerous ways in which forest class and structure variables may be modeled as functions of remotely sensed variables, yet surprisingly little work has been directed at surveying modern statistical techniques to determine which tools are best suited to the tasks given multiple objectives and logistical constraints. Here, a series of analyses to compare nonlinear and nonparametric modeling techniques for mapping a variety of forest variables, and for stratification of field plots, was conducted using data in the Interior Western United States. The analyses compared four statistical modeling techniques for predicting two discrete and four continuous forest inventory variables. The modeling techniques include generalized additive models (GAMs), classification and regression trees (CARTs),
multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs). Alternative stratification schemes were also compared for estimating population totals. The analyses were conducted within six ecologically different regions using a variety of satellite-based predictor variables. The work resulted in the development of an objective modeling box that automatically models spatial response variables as functions of any assortment of predictor variables through the four nonlinear or nonparametric modeling techniques. In comparing the different modeling techniques, all proved themselves workable in an automated environment, though ANNs were more problematic. When their potential mapping ability was explored through a simple simulation, tremendous advantages were seen in use of MARS and ANN for prediction over GAMs, CART, and a simple linear model. However, much smaller differences were seen when using real data. In some instances, a simple linear approach worked virtually as well as the more complex models, while small gains were seen using more complex models in other instances. In real data runs, MARS performed (marginally) best most often for binary variables, while GAMs performed (marginally) best most often for continuous variables. After considering a subjective “ease of use” measure, computing time and other predictive performance measures, it was determined that MARS had many advantages over other modeling techniques. In addition, stratification tests illustrated cost-effective means to improve precision of estimates of forest population totals. Finally, the general effect of map accuracy on the relative precision of estimates of population totals obtained under simple random sampling compared to that obtained under stratified random sampling was established and graphically illustrated as a tool for management decisions.
ACKNOWLEDGMENTS

I would like to thank my advisor, Richard Cutler, as well as the members of my committee, Adele Cutler, Dan Coster, Joe Koebbe, Dave Roberts, and Rob Lilieholm, for their help through the graduate process and input into the research. I am indebted to the Forest Inventory and Analysis Program of the US Forest Service for funding, data, and for providing wonderfully interesting problems. I thank the good folks at FIA including: Dwane Vanhooser for his bottom-line perspective and support, Renee Obrien for her flexibility and willingness to listen, Ron Tymcio for years of laughs, and Tracey Frescino, without whom I never would have finished. I am grateful for the help I received from many others including Shirley Waters, Sharon Woudenber, Dennis Collins, Keith Lannom, Bill Cooke, Ray Czaplewski, and Tamre Cardoso, to name a few. I am grateful to Dave Chojnacky for putting me on the research path, to Tom Edwards for many, many things (except for introducing me to T.B. Murphy), and to friends and colleagues all over the map for their relentless nagging to finish. Thank you too, to my extended family for their tireless support, to my friends and neighbors who kept my son safe and happy during crazy times, to my mom-in-law for her love of research and for really sharp pencils, to my sister who always let me whine, to my mom for grape jelly, and to my brother who was smarter than anybody. I especially thank my husband, Steve for his support and willingness to put up with life with a graduate student for over a decade, and my son, Ben, who always reminded me of what was important.

Gretchen Gengenbach Moisen
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>.ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>.iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>.vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>.viii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Problem Description</td>
<td>1</td>
</tr>
<tr>
<td>Preliminary Work</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Overview and Objectives</td>
<td>4</td>
</tr>
<tr>
<td>Road Map</td>
<td>7</td>
</tr>
<tr>
<td>2. DESCRIPTION AND LITERATURE REVIEW OF MODELING TECHNIQUES</td>
<td>8</td>
</tr>
<tr>
<td>Generalized Additive Models</td>
<td>8</td>
</tr>
<tr>
<td>Classification and Regression Trees</td>
<td>11</td>
</tr>
<tr>
<td>Multivariate Adaptive Regression Splines</td>
<td>14</td>
</tr>
<tr>
<td>Artificial Neural Networks</td>
<td>15</td>
</tr>
<tr>
<td>3. DATA DESCRIPTION</td>
<td>19</td>
</tr>
<tr>
<td>Study Regions and Sample Design</td>
<td>19</td>
</tr>
<tr>
<td>Response Variables</td>
<td>24</td>
</tr>
<tr>
<td>Predictor Variables</td>
<td>24</td>
</tr>
<tr>
<td>Data Processing</td>
<td>26</td>
</tr>
<tr>
<td>4. SYSTEM DEVELOPMENT</td>
<td>33</td>
</tr>
<tr>
<td>Data Input</td>
<td>35</td>
</tr>
<tr>
<td>Modeling Strategies</td>
<td>37</td>
</tr>
<tr>
<td>Evaluation Criteria</td>
<td>43</td>
</tr>
<tr>
<td>Mapping</td>
<td>44</td>
</tr>
<tr>
<td>Stratification and Variance Reduction</td>
<td>45</td>
</tr>
<tr>
<td>Results</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Overview of Candidate Modeling Techniques</td>
<td>9</td>
</tr>
<tr>
<td>3-1</td>
<td>Description of Six Study Ecoregions, Sampling Intensity, and Plot Layout</td>
<td>21</td>
</tr>
<tr>
<td>3-2</td>
<td>Response Variables</td>
<td>25</td>
</tr>
<tr>
<td>3-3</td>
<td>Variables Used for Population Estimate</td>
<td>25</td>
</tr>
<tr>
<td>3-4</td>
<td>Predictor Variables</td>
<td>27</td>
</tr>
<tr>
<td>5-1</td>
<td>Modeling Results for Continuous Test Data</td>
<td>50</td>
</tr>
<tr>
<td>5-2</td>
<td>Effect of Adding Normally Distributed Error with Increasing Standard Deviations</td>
<td>51</td>
</tr>
<tr>
<td>5-3</td>
<td>Modeling Results for Five Simulated Data Sets</td>
<td>53</td>
</tr>
<tr>
<td>5-4</td>
<td>Confusion Matrix Given 100 Accuracy Points Collected in Each Stratum</td>
<td>76</td>
</tr>
<tr>
<td>D-1</td>
<td>Results from Predictive Mapping of the Discrete Variables</td>
<td>166</td>
</tr>
<tr>
<td>D-2</td>
<td>Results from Predictive Mapping of the Continuous Variables</td>
<td>168</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Six Study Ecoregions Within the Intermountain West</td>
<td>20</td>
</tr>
<tr>
<td>3-2</td>
<td>Schematic of Different Sampling Grid Intensities</td>
<td>22</td>
</tr>
<tr>
<td>3-3</td>
<td>Four Different Plot Layouts</td>
<td>23</td>
</tr>
<tr>
<td>4-1</td>
<td>Schematic Overview of Modeling System</td>
<td>34</td>
</tr>
<tr>
<td>5-1</td>
<td>Residual Plots from Test Data</td>
<td>49</td>
</tr>
<tr>
<td>5-2</td>
<td>Effect of Adding Increasing Noise to System on Relative Model Performance</td>
<td>52</td>
</tr>
<tr>
<td>5-3</td>
<td>Illustration of Strengths and Weaknesses of Different Modeling Techniques</td>
<td>54</td>
</tr>
<tr>
<td>5-4</td>
<td>PCC for Models of Discrete Variables Using Test Data</td>
<td>56</td>
</tr>
<tr>
<td>5-5</td>
<td>Kappa Statistic for Models of Discrete Variables Using Test Data</td>
<td>57</td>
</tr>
<tr>
<td>5-6</td>
<td>Computational Run Time for Models of Discrete Variables Using Test Data</td>
<td>58</td>
</tr>
<tr>
<td>5-7</td>
<td>Ranking of Techniques for Discrete Variables</td>
<td>60</td>
</tr>
<tr>
<td>5-8</td>
<td>Map of Forested Areas Predicted from a MARS Model in UT2</td>
<td>61</td>
</tr>
<tr>
<td>5-9</td>
<td>RMSE Expressed as the Proportion of the Mean for Models of Continuous Variables Using Test Data</td>
<td>62</td>
</tr>
<tr>
<td>5-10</td>
<td>Proportion of Plots Within 25% of the Truth for Models of Continuous Variables Using Test Data</td>
<td>63</td>
</tr>
<tr>
<td>5-11</td>
<td>Correlation Between True and Predicted Values for Models of Continuous Variables Using Test Data</td>
<td>64</td>
</tr>
<tr>
<td>5-12</td>
<td>Computational Run Time for Models of Continuous Variables Using Test Data</td>
<td>65</td>
</tr>
<tr>
<td>5-13</td>
<td>Residual Plots from Models of BIOTOT in UT2</td>
<td>67</td>
</tr>
<tr>
<td>5-14</td>
<td>Ranking of Techniques for Continuous Variables</td>
<td>68</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5-15</td>
<td>Map of Total Biomass Predicted from a MARS Model in UT2</td>
<td></td>
</tr>
<tr>
<td>5-16</td>
<td>Percent Standard Error on Population Means</td>
<td></td>
</tr>
<tr>
<td>5-17</td>
<td>Ratio of Standard Errors on Estimates Using Simple Random Sampling to Standard Errors under Alternative Stratification Schemes</td>
<td></td>
</tr>
<tr>
<td>5-18</td>
<td>Results from Bootstrapping Variances of Estimates Using MARS-based Stratification</td>
<td></td>
</tr>
<tr>
<td>5-19</td>
<td>Ratio of Standard Errors Obtained under Simple Random Sampling to Those Obtained under Stratified Random Sampling for Estimating Population Proportions</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>Ratio of Standard Errors Obtained Under Simple Random Sampling to Those Obtained Under Stratified Random Sampling for Estimating Continuous Population Variables</td>
<td></td>
</tr>
<tr>
<td>5-21</td>
<td>Percent Reduction in Sample Size Through Stratification for Estimating Population Proportions</td>
<td></td>
</tr>
<tr>
<td>5-22</td>
<td>Percent Reduction in Sample Size Through Stratification for Estimating Continuous Population Variables</td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>Interdisciplinary System</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Problem Description

Forest inventory programs, like those conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program in the Rocky Mountain Research Station, are under increased pressure to produce more information, more often, at reduced costs. The traditional objective of FIA has been to estimate statewide forest population totals (e.g., forest area, volume, growth and mortality) approximately every 10 years. Historically, this has been accomplished through a two-phase sampling procedure with phase one consisting of aerial photo-based information collected on a 1-km sample grid, and phase two consisting of a subset of that grid (usually 5 km) visited in the field (Chojnacky 1998). Photo-interpreted cover-type and ownership are typically used for stratification of phase two field points, resulting in improved precision of estimates of forest population totals. This strategy of combining aerial photo and field data through double sampling for stratification has been used by FIA in the Rocky Mountain States for many years.

While the current two-phase sampling procedure used by FIA provides unbiased and precise estimates of forest resources at regional scales, some problems exist. For example, aerial photography available in any given state will vary in quality, scale, and date. Also, inconsistencies exist between photo-interpreters in terms of correct location of sample points on photos and correct vegetation classification. In addition, the process is extremely expensive and slow. Consequently, there is a need to develop methods that
use satellite data in lieu of photo-interpretation (PI) that maintain the required precision in FIA estimates of population totals.

In addition to this need to improve the two-phase estimation process, there is also a need to expand the forest inventory product line to include maps of forest resources. The most valuable management tool to many land managers is a map depicting the spatial arrangement of forest attributes at resolutions finer than those obtainable from current FIA sampling grids. These can be difficult to generate. While vegetation cover-type maps produced by programs like the USDI Gap Analysis program (see Homer, Ramsey, Edwards, and Falconer 1997; Scott et al. 1993) have been useful in meeting the need for fine-scaled information, these maps are extremely expensive to produce and lack any spatial depiction of structural attributes (e.g., basal area, canopy closure, stand density) for their forest types. This reduces their usefulness for identifying suitable wildlife habitat (Edwards, Deshler, Foster, and Moisen 1996), or for estimating forest characteristics necessary for sound forest management such as attributes of vegetation under the trees' canopies (Stenbeck and Congalton 1990), or stand density and volume (Franklin 1986).

Consequently, recent emphasis has been placed on merging forest inventory data with satellite information both to improve the efficiency of estimates of population totals through less expensive stratification, and produce regional maps of forest variables. There are numerous sources of ancillary data, and tremendous effort has been directed at acquiring finer resolution data from a wide variety of newly developed air- and spaceborne platforms. There are also numerous ways in which forest class and structure variables may be modeled as functions of remotely sensed and other ancillary variables,
yet surprisingly little work has been directed at surveying modern statistical techniques to
determine which tools are best suited to estimation and mapping tasks given multiple
objectives and logistical constraints.

Preliminary Work

Recent work by Moisen and Edwards (1999) explored ways to merge forest
inventory and satellite-based data in Northern Utah. In this study, generalized linear
models (GLMs) were used to construct approximately unbiased and efficient estimates of
population totals while providing a mechanism for prediction to map forest structure in
space. Forest type and timber volume of five tree species groups were modeled as
functions of a variety of satellite-based predictor variables. Predictor variables included
elevation, aspect, slope, geographic coordinates, and vegetation cover-types based on
satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and
Thematic Mapper (TM) platforms. The relative precision of estimates of area by forest
type and mean cubic-foot volumes under six different models, including the traditional
double sampling for stratification (DSS) strategy, was examined.

The study generated some interesting results. First, only very small gains in
precision were realized using expensive photo-interpreted or TM-based data for
stratification, while models based on topography and spatial coordinates alone were
competitive. This had substantial cost-savings implications for phase one in the two-
phase sampling process. Second, after comparing the predictive capability of the models
through cross-validated map accuracy measures, the models including the TM-based
vegetation were shown to perform best overall, while topography and spatial coordinates
alone provided substantial information at very low cost. In addition, the study illustrated that by using a fairly flexible model form, i.e., a GLM with higher order interactions and polynomial terms, more information could be squeezed out of inexpensive auxiliary digital data than previously thought possible in these inventories.

The study raised a number of questions. GLMs did well, but would more flexible models show appreciable improvements in the results? What kind of results would we see in other ecological regions? What kind of results would we see using data from different satellite platforms? Could the process be automated to be suitable for a production environment? (A production environment implies that someone without modeling experience can push the button that builds the models and produces desired output for any ecoregion, response variable, or predictor set.) These and other questions motivated the following dissertation.

Dissertation Overview and Objectives

In this dissertation, nonlinear and nonparametric models were compared for mapping and stratification in forest inventories of the interior western United States. The research involved five statistical modeling techniques for predicting two discrete and four continuous forest inventory variables. The modeling techniques included: generalized additive models (GAM), classification and regression trees (CART), multivariate adaptive regression splines (MARS), and artificial neural networks (ANN). In addition, a simple linear model (LM) was used as a benchmark against which to judge the other models. The two discrete inventory variables included a forest/non-forest classification, as well as a binary classification within forested areas. The four continuous
response variables were tree biomass per acre (BIOTOT), average tree age (STAGE), quadratic mean tree diameter (QMDALL), and percent crown cover (CRCOV). The analyses were conducted within six ecologically different regions (two each in Arizona, Montana, and Utah). Predictor variables included topography, spatial position, unclassified spectral data from the AVHRR sensor, and a national vegetation cover map derived from TM imagery. Models were first built, refined, and automated using data in one region. Automated modeling strategies were then applied to data in all regions to evaluate model performance. Predictive performance (map accuracy) of all discrete and continuous variables were compared across modeling techniques, ecoregions, and predictor variable sets using independent test data. In addition, the precision of estimates of area by forest type, total population tree volume, and total population tree growth were compared when predicted forest type maps were used as the basis for stratification (i.e., predicted vegetation types comprise the strata). All models were evaluated for suitability in a production environment.

Objectives of this research were:

Objective 1: To develop an automated mapping and stratification system for forest inventories in the interior west.

Objective 2: To determine which statistical modeling techniques are suitable for a forest inventory “production environment.”

Objective 3: To determine if introducing more flexible statistical models to forest inventory mapping and stratification procedures makes an appreciable difference in accuracy of forest maps and precision in estimates of population totals, respectively.
The phrase "production environment" above implies that model fitting must be completely automated requiring nothing more than the push of a button. The phrase "appreciable difference" is defined by usability standards set by forest managers and other users of forest inventory information.

Questions answered about modeling two discrete (binary) variables include:

Question 1: How accurately does each modeling technique predict the two responses by ecoregion?

Question 2: What is the precision of estimates of population totals by ecoregion when predicted maps are used as the basis for stratification?

Question 3: What is the relationship between classification accuracy of maps and efficiency of stratification (i.e., reduction in standard errors on population estimates when maps are used as the basis for stratification)?

Questions answered about modeling four continuous variables include:

Question 4: How accurately does each modeling technique predict the four responses by ecoregion?

Question 5: Is there a substantial improvement in map accuracy over simply assigning stratum means for each response?

The outcomes of this research include:

Outcome 1: Development of less costly strategies for stratifying forest inventory field data in the interior west.

Outcome 2: Development of a methodology for mapping diverse forest inventory variables that is suitable for the FIA production environment.
Road Map

A technical description and literature review of the modeling techniques and stratification procedures is provided next in Chapter 2. Chapter 3 contains a description of the study regions, field response variables, and digital satellite data used as predictor variables along with data extraction processes. Chapter 4 documents the development of the objective modeling environment, and describes the evaluation criteria used in subsequent analyses. Chapter 5 contains mapping and stratification results for discrete and continuous response variables in all ecoregions. These results and their implications are discussed in Chapter 6, along with conclusions and ideas for further research.
In the following chapter, a description of each of the nonparametric or nonlinear modeling techniques (GAMs, CARTs, MARS, and ANNs) is given, followed by a technique-specific literature review. To review all the applied literature employing each technique would fill many chapters. Consequently, the intent of the literature review following the description of each technique was to reference ecological and remote sensing applications that illustrated sound model fitting strategies, evaluated strengths and shortcomings of the techniques, or compared relative performance of one technique over another in a natural resource setting. DeVeaux, Psichogios, and Ungar (1993) and DeVeaux (1995) provide more general discussions comparing these modeling techniques, and Table 2-1 illustrates technique differences at-a-glance.

Generalized Additive Models

GAM Overview

Generalized additive models (Hastie and Tibshirani 1986) are an extension of generalized linear models (GLMs) (Nelder and Wedderburn 1972), which are, in turn, an extension of the classical linear model. We assume the response y has an exponential family density (e.g., gamma, chi-square, beta, binomial, Poisson, negative binomial, etc.) with mean linked to the predictors via

$$
\mu = f(x) = g^{-1}\left(a_0 + \sum_{i=1}^{g} f_i(x_i)\right),
$$
Table 2-1. Overview of Candidate Modeling Techniques.

<table>
<thead>
<tr>
<th></th>
<th>Formulation</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAM</td>
<td>(f(x) = g^{-1}\left(a_0 + \sum_{i=1}^{p} f_i(x_i) \right))</td>
<td>Interpretable if original predictors have intrinsic meaning to investigator</td>
<td>Limited to lower order interactions</td>
</tr>
<tr>
<td>CART</td>
<td>(f(x) = a_m, \text{ for } x \in R_m)</td>
<td>Exploits low local dimensionality of functions</td>
<td>Approximation function discontinuous at sub-region boundaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can handle interactions</td>
<td>Simple functions can be difficult to approximate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpretable if tree is simple</td>
<td>Interpretation is complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid to construct and make predictions from</td>
<td>with many inner branches representing higher-order interactions</td>
</tr>
<tr>
<td>MARS</td>
<td>(f(x) = a_0 + \sum_{K=1}^{K_m} f_i(x_i) + \sum_{K=2}^{K_m} f_{ij}(x_i, x_j)) (+ \sum_{K=3}^{K_m} f_{ijk}(x_i, x_j, x_k) + \ldots)</td>
<td>Final function is smooth</td>
<td>No predictions intervals given</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New splits aren’t dependent on previous splits</td>
<td>All uncertainty estimates must be done via cross-validation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphical displays of main effects and low order interactions</td>
<td>Highly collinear predictors lead to highly erratic behavior and loss of interpretability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects predictor variables, order of interaction, and amount of smoothing automatically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competitive with ANN when few active predictors and low interaction order</td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>(f_1(x) = \sigma \left(\sum_{k=1}^{K} w_{2k} \sigma \left(\sum_{j=1}^{L} w_{jk} x_j + \theta_k \right) + \theta_l \right))</td>
<td>Often outperforms all others for prediction</td>
<td>Un-interpretable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can be used directly to predict multiple responses</td>
<td>No prediction intervals given</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No implicit assumptions of linearity, normal or i.i.d. errors</td>
<td>All uncertainty estimates must be done via cross-validation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caution has to be exercised to avoid “over-fitting,” modeling noise as well as underlying phenomenon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other methods may be preferable for low dimensional or simple structure</td>
</tr>
</tbody>
</table>
where the link function may be any monotonic, differentiable function, and
\(f_1, f_2, ..., f_p \) are smooth functions estimated in a nonparametric fashion. A local scoring
algorithm is used to estimate the \(f_j \)'s. This algorithm uses scatterplot smoothers to
generalize the usual Fisher scoring procedure for computing maximum likelihood
estimates. Any scatterplot smoother can be used, such as a running mean, running
median, Loess, kernel estimate, or spline, (see Hastie and Tibshirani 1990, for a
discussion on smoothers). The resulting smooth functions can be used for data
description, prediction, or to suggest covariate transformations such as polynomial terms
resulting in simplified parametric, or semi-parametric models. GAMs have the advantage
over simple linear models of being able to model nonlinear relationships in the predictor
variables. For large data sets, this flexibility can yield better predictive capability and
provides greater opportunity for exploratory analyses. For those familiar with regression
methods, GAMs may be more easily interpreted than regression trees, and they provide a
continuous predicted response. An open question, however, is how to handle interactions
among the predictor variables. In a case where the number of predictor variables is few,
bivariate functions may be estimated using bivariate smoothers. When the number of
predictor variables is large, deciding which pairs of variables to model simultaneously in
a GAM can be difficult and time consuming (as it is with linear models). In addition,
GAMs require crossvalidation methods to determine appropriate levels of smoothness
(see Hastie and Tibshirani 1990). This, too, can be computationally intensive.
GAMs have caught the attention of ecologists for mapping applications, and some of the advantages of this class of models are expressed in Yee and Mitchell (1991). They have been used to model the presence of several tree species as functions of climatic variables in New Zealand (Yee and Mitchell 1991), to conduct wildlife viability analyses in Australia (Norton and Mitchell 1993), to model vegetation composition as functions of topography and disturbance variables in Glacier National Park (Brown 1994), and to predict the distribution of Eucalyptus species (Austin, Nicholls, Doherty, and Meyers 1994; Austin and Meyers 1996). In the forest inventory arena, Moisen, Edwards, and Cutler (1996) used GAMs to model species presence and tree volume as functions of topography and a TM-based cover type map. Most recently, Frescino, Edwards, and Moisen (in press) used GAMs to model forest type, basal area, shrub cover, and snag density as functions of TM- and AVHRR-derived products, temperature precipitation topography and geology in the Uinta Mountain Range in Utah.

Classification and Regression Trees

CART Overview

Classification and regression trees, also known as recursive partitioning regression, dates back to Morgan and Sonquist (1963) and has received more recent attention through Breiman, Friedman, Olshen, and Stone (1984). (My use of the acronym here is not to be confused with any proprietary software or trademarks.) CARTs subdivide the space spanned by the predictor variables into regions \(\{R_m\} \) for which the
values of the response variable are approximately equal, and then estimate the response variable by a constant, \(a_m \), in each of these regions. That is,

\[
f(x) = a_m, \text{ for } x \in R_m.
\]

The tree is called a *classification tree* if the response variable is qualitative, and a *regression tree* if the response variable is numeric. The initial node on a tree is called the root. From the root, the model is fit using binary recursive partitioning. This means the data are successively broken into left and right branches with the splitting rules defined by the predictor variable values. For example, a first split might occur where \(x_1 < c_1 \), where \(c_1 \) is a constant. Then, \(\hat{f}(x) = a_1 \), for \(x_1 < c_1 \), and \(\hat{f}(x) = a_2 \), for \(x_1 \geq c_1 \). A second split might occur where \(x_1 < c_1 \) and \(x_2 < c_2 \), and so on. Splits are chosen that maximize the "value" of a split. This value may be computed in many different ways. For classification problems, splits are chosen that most reduce the impurity of the distribution at the node, while in regression problems, the value of a split is measured as the reduction in the residual sum of squares. Splitting continues down to the "terminal" nodes where response values are all the same within a node or data are too sparse for additional splitting. At the terminal node, the predicted response is given that is the average or majority of the response values in that node for continuous or discrete variables, respectively. Pruning the tree to avoid overfitting the data can be accomplished a number of different ways, and is discussed further in Chapter 4.

Strengths of CARTs include the facts that interactions are accommodated through the splitting process and trees with low order interactions, in particular, are easy to interpret and explain to non-technical audiences. This can be important when
considering inclusion of auxiliary data from a variety of satellite platforms. However, disadvantages of CARTs include discontinuity at the nodes and the poor approximation of simple functions (like straight lines).

CART in Natural Resource Mapping Applications

Classification and regression trees have received a considerable amount of attention in the natural resource arena. They have been used in a wide variety of applications including studying the effect of a variety of factors on the establishment of oak seedlings (Michaelson, Davis, and Borchert 1987), predicting Christmas tree growth (Hockman, Burger, and Smith 1990), assessing the effect of human disturbance on breeding in bald eagles (Grubb and King 1991), extracting the relationship between plant disease and pine mortality (Baker, Verbyla, and Hodges 1993), and predicting soil drainage class using remotely sensed and digital elevation data (Cialella, Dubayah, Lawrence, and Levine 1997). Their specific use in land cover mapping applications has also grown rapidly. Friedl and Brodley (1997) compared decision trees to maximum likelihood and linear discriminant function classifiers in land cover mapping applications and found that the trees consistently outperformed the other methods in classification accuracy. Vogelmann, Sohl, and Howard (1998) developed decision making rules and models using several ancillary data layers to resolve confusion in spectral classes that represented two or more targeted land cover categories. The approach led to adoption of CART methodology in early national land cover mapping, and modification of CARTs in conjunction with other modeling techniques for current national vegetation mapping efforts directed by the US Geological Survey.
Multivariate Adaptive Regression Splines

MARS Overview

MARS, developed by Friedman (1991) is a flexible nonparametric regression method that generalizes the piecewise constant functions of CART to continuous functions by fitting (multivariate) splines in the regions R_m, and matching up the values at the boundaries of the R_m. An intuitive form for writing the MARS model is

$$\hat{f}(x) = a_0 + \sum_{K_m=1} f_i(x_i) + \sum_{K_m=2} f_{ij}(x_i, x_j) + \sum_{K_m=3} f_{ijk}(x_i, x_j, x_k) + \ldots,$$

but the notation requires further explanation. Here, the first sum is over all basis functions that involve only one variable. Each function in this first sum can be expressed as

$$f_i(x_i) = \sum_{K_m=1 \atop i \in V(m)} a_m B_m(x_i),$$

where $V(m)$ is the variable set associated with the m^{th} basis function, B_m, that survives backward selection strategies. The second sum is over all basis functions that involve two variables, where each bivariate function can be expressed as

$$f_{ij}(x_i, x_j) = \sum_{K_m=2 \atop i, j \in V(m)} a_m B_m(x_i, x_j).$$

The third sum is over all basis functions that involve three variables, and so on.

MARS is not subject to some of the limitations of GAMs because it automatically selects the amount of smoothing required for each predictor as well as the interaction order of the predictors. This makes it perhaps more suitable for a production environment where time consuming and subjective modeling decisions are undesirable.
In cases of moderate sample sizes, 50<N<1000, and moderate to high dimension,
3<n<20, MARS has proven effective for applications where both prediction and
understanding are the objective (DeVeaux 1995). It has the desirable properties of rapid
computability and, unlike CART, offers smoothness as a property as well. Unlike linear
models and GAMs, however, MARS does not provide prediction intervals and all
estimates of uncertainty must computed by crossvalidation.

MARS in Natural Resource Mapping

Applications

Use of MARS in the applied literature is sparse, and apparently nonexistent in
ecological or remote sensing applications. The reason may be in part because user-
friendly software is not readily available, nor has the modeling technique been
“marketed” in high-profile applications.

Artificial Neural Networks

ANN Overview

Neural networks have received considerable attention as a means to build accurate
models for prediction, control, and optimization when the functional form of the
underlying equations is unknown. This modeling technique has permeated literature in
many fields including statistics (e.g., Ripley 1994, 1996; Stern 1996; Cheng and
Titterington 1994), remote sensing (e.g., Atkinson and Tatnall 1997; Skidmore, Turner,
Brinkhof, and Knowls 1997; Wang and Dong 1997) and ecology and engineering
(Paruelo and Tomasel 1997; Wythoff 1993).
Although there are a variety of ways to construct these models, “backpropagation networks” appear to be the most frequently used in practice. A backpropagation network with one hidden layer is a nonlinear statistical model of the form

\[f_t(x) = \sigma \left(\sum_{k=1}^{K} w_{2k} \sigma \left(\sum_{j=1}^{J} w_{1jk} x_j + \theta_k \right) + \theta_t \right). \]

The response (output) is a transformation of a weighted combination of the predictor (input) variables. The \(\sigma \) in the above equation is a bounded, monotonic, and differentiable function, with a logistic function the most common choice. That is,

\[\sigma(x) = \frac{\exp(x)}{1 + \exp(x)}. \]

The numerous coefficients \(w \) (weights) and intercepts \(\theta \) (bias terms) are estimated (also known as training or learning in neural network jargon) through an optimization method similar to steepest descent (backpropagation). Because so many parameters can be estimated, there is danger in overfitting the model. By sacrificing an unlimited number of degrees of freedom, a modeler can eventually get a perfect fit. In that case one would be modeling noise as well as the underlying phenomenon, and prediction for unvisited sites could be severely compromised. The preferred method to avoid overfitting involves using a large enough network to avoid underfitting, then limiting the number of iterations of the fitting procedure through crossvalidation. Neural networks are frequently used for prediction in high dimensional problems like those permeating the engineering fields. As with MARS and CART, no prediction intervals are given and crossvalidation is necessary to construct measures of uncertainty. Neural networks are difficult, if not impossible, to interpret. They are hard to visualize, and two very different
functional forms can yield the same predicted values. In addition, local minima in the objective function present obstacles to finding a reasonable model.

ANN in Natural Resource Mapping Applications

A large body of remote sensing literature is dedicated to the use of neural networks in classification of digital satellite data. Atkinson and Tatnall (1997) described the use of neural networks in remote sensing literature over the past decade, and review common approaches. ANNs have received both positive and negative reviews, largely based on computational issues. Paruelo and Tomasel (1997) compared ANNs to regression models in their ability to predict functional characteristics of ecosystems, showing clear advantages to the ANNs. Skidmore et al. (1997) mapped eucalypt forests and concluded that ANNs do not offer significant advantages over conventional classification schemes while Zhang and Yuan (1997) preferred neural networks to traditional remote sensing approaches for modeling vegetation types using TM data in northern Arizona. Successes have also been documented by Bruzzone, Conese, Maselle, and Roll (1997) when using neural networks to identify complex rural areas. Gong, Pu, and Chen (1996) described the technical aspects of using multiple data inputs at a variety of scales in mapping ecological land systems through neural networks. Kanellopoulos and Wilkinson (1997) offered substantial advice on “best practice” techniques to optimize network training and overall classification performance. They described their experiences related to network architecture, optimization algorithms, and transformation of input data to name a few. Foody and Aurora (1997) evaluated some of the factors affecting the accuracy of classification using neural networks, illustrating how
dimensionality of a data set and characteristics of the training versus test set affect classification more than changes in network architecture. Paola and Schowengerdt (1997) also illustrated hidden layer size made little difference in final classification accuracies. Other examples include the use of neural networks in cloud classification (Lewis, Cote, and Tatnall 1997), sub-pixel analysis (Atkinson, Cutler, and Lewis 1997; Foody, Lucas, Curran, and Honzak 1997), and modeling stand size and density (Wang and Dong 1997). There is also an increased use in remotely sensed change detection projects. (Dai and Khorram 1999; Levien et al. 1999).

The use of ANNs in ecology has also grown rapidly over the last decade. Colasanti (1991) and Edwards and Morse (1995) saw the potential for ANNs in modeling complex ecological systems. Recent applications of neural networks in the ecological literature are quite diverse. They have been used in predicting the presence of a Himalayan river bird (Manel, Dias, and Omerod 1999), estimating the daily pH of a river as a function of river discharge and solar radiation (Moatar, Fessant, and Poirel 1999), studying the relationship between lead concentration in grass and urban descriptors (Dimopoulos, Chronopoulou, Chronopoulous-Sereli, and Lek 1999), selecting a minimal set of driving variables to model water vapor and carbon exchange of coniferous forest ecosystems (Van Wijk and Bouten 1999), estimating phytoplankton production (Scardi and Harding 1999), modeling ocean color (Brosse, Guegan, Toureng, and Lek 1999), modeling the abundance and diversity of arthropods (Lek-Ann, Deharveng, and Lek 1999), discriminating between natural and hatchery brown trout (Aurelle, Lek, Giraudel, and Berrebi 1999), predicting primary production in a coastal embayment (Barciela, Garcia, and Fernandez 1999), and the list goes on.
PORTIONS OF SIX ECOTHERMOCALLY DIFFERENT REGIONS DEFINED BY BAILEY, AVERS, KING, AND MCBNAB (1994) WERE SELECTED FOR ANALYSES AND ARE ILLUSTRATED IN FIGURE 3-1. ECOREGIONS RANGE FROM THE CONIFEROUS FORESTS OF NORTHWESTERN MONTANA, TO THE CHIHUAHUA DESERT OF SOUTHEASTERN ARIZONA. MT1 AND MT2 REFER TO TWO ECOREGIONS IN MONTANA, UT1 AND UT2 ARE TWO WITHIN UTAH, AND AZ1 AND AZ2 ARE IN ARIZONA. TABLE 3-1 SUMMARIZES CHARACTERISTICS OF EACH OF THE ECOREGIONS ALONG WITH AVAILABLE FIELD PLOT DATA FROM FIA DATABASES. DATES OF FOREST INVENTORY, SAMPLE GRID INTENSITY, AND FIELD PLOT LAYOUT DIFFER BY ECOREGION AS WELL AS BY LANDOWNER AND VEGETATION TYPE. FIGURES 3-2 AND 3-3 ILLUSTRATE THE DIFFERENT TYPES OF GRID PATTERNS AND PLOT LAYOUT, RESPECTIVELY. IN MT1 AND MT2, FIELD DATA WERE COLLECTED IN 1988-1989 ON A 5-KM GRID ACROSS ALL OWNERSHIPS EXCEPT NATIONAL FOREST. TIMBERLAND AREAS (CHARACTERIZED BY TREE SPECIES NORMALLY PREFERRED FOR COMMERCIAL HARVEST) WERE SAMPLED WITH 10-POINT VARIABLE RADIUS PLOTS, WHILE FORESTS NOT DOMINATED BY COMMERCIAL SPECIES WERE SAMPLED WITH FIXED RADIUS PLOT SHAPES. DATA ON NATIONAL FORESTS IN THESE TWO ECOREGIONS WERE COLLECTED 4 YEARS LATER, ALSO ON A 5-KM GRID, USING 5-POINT VARIABLE RADIUS PLOTS ON TIMBERLAND LOCATIONS. IN UT1 AND UT2, DATA WERE COLLECTED IN THE MID-1990'S ON A DOUBLE 5-KM GRID ON NATIONAL FOREST LANDES AND A 5-KM GRID ELSEWHERE. THE PHRASES "DOUBLE 5 KM" AND "DOUBLE 10 KM" IMPLY TWICE AS MANY PLOTS AS ON A 5- OR 10-KM GRID, RESPECTIVELY (SEE FIGURE 3-2). A NEW FIXED RADIUS PLOT WAS INTRODUCED IN ARIZONA, AND DATA WERE COLLECTED ON A 5-KM GRID ON NATIONAL FORESTS AND
Figure 3-1. Six Study Ecoregions Within the Intermountain West.
Table 3-1. Description of Six Study Ecoregions, Sampling Intensity, and Plot Layout.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Size (ha)</th>
<th>Inventory Dates</th>
<th>Grid Intensity</th>
<th>Plot Layout</th>
<th># Plots F</th>
<th># Plots (Tot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1</td>
<td>Northern Rocky Mountain Forest Steppe - Coniferous Forest - Alpine Meadow Province</td>
<td>4.43 M</td>
<td>NF: 1993-1996</td>
<td>All: 5 k</td>
<td>Other</td>
<td>1393</td>
<td>1677</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 1988-1989</td>
<td></td>
<td>NF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT2</td>
<td>Middle Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow Province</td>
<td>9.45 M</td>
<td>NF: 1996-1998</td>
<td>All: 5 k</td>
<td>nonNF</td>
<td>1634</td>
<td>3727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 1988-1989</td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT1</td>
<td>Southern Rocky Mountain Steppe - Open Woodland - Coniferous Forest - Alpine Meadow Province</td>
<td>3.18 M</td>
<td>All: 1992-1996</td>
<td>NF: double 5 k</td>
<td>Timber: 5 pt</td>
<td>531</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 5 k</td>
<td></td>
<td>Wldl: old fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT2</td>
<td>NV/UT Mountains Semi-Desert - Coniferous Forest - Alpine Meadow Province</td>
<td>3.16 M</td>
<td>All: 1993-1996</td>
<td>NF: double 5 k</td>
<td>Timber: 5 pt</td>
<td>829</td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 5 k</td>
<td></td>
<td>Wldl: old fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ1</td>
<td>AZ/NM Mountains Semi-Desert - Open Woodland - Coniferous Forest - Alpine Meadow Province</td>
<td>2.85 M</td>
<td>NF, res, Tmbr: 1996-1997</td>
<td>All: New fixed</td>
<td>664</td>
<td>1141</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 1983</td>
<td>NF, res, Some IR: 5 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ2</td>
<td>Chihuahuan Semi-Desert Province</td>
<td>2.85 M</td>
<td>NF, res, Tmbr: 1996-1997</td>
<td>All: New fixed</td>
<td>165</td>
<td>1129</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other: 1983</td>
<td>NF, res, Some IR: 5 k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 NF=National Forest; Other=lands outside NF; res=reserved lands; Tmbr=Timberland; IR=Indian reservations; Wldl=Woodland; F=Forested; Tot=Forested and Non-forested plots combined.
Figure 3-2. Schematic of Different Sampling Grid Intensities.
Figure 3-3. Four Different Plot Layouts.
within timberland strata, with a double 10 km grid visited elsewhere. Plot layout and sample design differences are more complicated than what Table 3-1 indicates, but standardized per-acre responses were retrieved under each layout.

Response Variables

At each FIA field location, extensive stand- and tree-level measurements were collected. Individual tree measurements were compiled and combined with stand-level variables to produce location-level summaries that comprise phase two of this two-phase design. Commonly used estimates of population totals include area by forest type, total tree volume, and total annual tree volume growth. Other variables of particular interest to forest planners and ecologists include forest type, biomass, crown cover, tree size, and stand age. Response variables and variables used to produce estimates of population means/totals are shown in Tables 3-2 and 3-3, respectively.

Predictor Variables

Predictor variables were extracted from four sources: (1) elevation, aspect, and slope from 1000-m digital elevation models produced by the Defense Mapping Agency (DMA); (2) spectral and positional data from a biweekly AVHRR composite; (3) vegetation cover type from the National Land Cover Data (NLCD) based on a 30-m resolution TM imagery; and (4) site-specific data including field-collected topographic information as well as UTM coordinates. Daily observations from the AVHRR platform are compiled biweekly to produce maximum normalized difference vegetation index
Table 3-2. Response Variables.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Discrete response on all plots | FORTYP.2 | 0 = Non-forest
 | | 1 = Forest |
| Discrete response on forested plots only | FORTYP.3 | 1 = Woodland (Other forest in MT)
 | | 2 = Timberland (Spruce-fir in MT) | |
| Continuous response on forested plots only | BIOTOT | Total tree biomass (lbs/acre) |
| Continuous response on forested plots only | CRCOV | Tree crown cover (%) |
| Continuous response on forested plots only | QMDALL | Quadratic mean tree diameter (in) |
| Continuous response on forested plots only | STAGE | Average age of dominant trees (yrs) |

Table 3-3. Variables Used for Population Estimates.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Discrete response on all plots | FORTYP.2 | 0 = Non-forest
 | | 1 = Forest |
| Discrete response on all plots | TWN | 0 = Non-forest
 | | 1 = Woodland (Other forest in MT)
 | | 2 = Timberland (Spruce-fir in MT) | |
| Continuous response on all plots | NVOLTOT | Live tree volume (cuft/ac) 0 on non-forest plots |
| Continuous response on all plots | NGRWCF | Net growth (cuft/yr) 0 on non-forest plots |
(NDVI) composites of the U.S. These composites result in a near cloud-free image depicting maximum vegetation greenness for the compositing period. One such composite dated (June 1986) was used in these analyses and contains six bands of “least cloud” information including five spectral channels [one visible, one near infrared (NIR), and 3 infrared (IR)] as well as a Normalized Difference Vegetation Index (NDVI) that is computed NDVI=(NIR-IR)/(NIR+IR). These composites are distributed by USGS EROS Data Center.

The NLCD (http://edcwww.cr.usgs.gov/programs/lccp) is a land cover data set produced through a cooperative effort involving the U.S. Environmental Protection Agency, U.S. Geological Survey, U.S. Forest Service, and National Oceanic and Atmospheric Administration. This Thematic Mapper (TM)-based national data set (released in 2000) provides 21 mapped cover-types at 30-m resolution. In this study, cover-types were collapsed to a simple forest, shrubland, and non-forest type. A list of predictor variables and their descriptions is provided in Table 3-4.

Data Processing

Acquiring and processing data for modeling and analysis involved a considerable amount of work. Acquiring imagery and other auxiliary data sets involved cooperation with numerous government and private entities. Retrieval of response variables from the large and complex FIA database and extracting predictor variables from images required programming in SAS, Oracle, ArcInfo, ArcGrid, ArcView, and Imagine. Nine steps are described below, but the processes are changing rapidly to make them more efficient and
Table 3-4. Predictor Variables.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete predictor</td>
<td>NLCD</td>
<td>0 = Non-forest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 = Forest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 = Shrubland with trees</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>EASTING</td>
<td>UTM Easting – Zone 12</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>NORTHING</td>
<td>UTM Northing – Zone 12</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>ELEV.1K</td>
<td>Elevation (m) from 1km DMA</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>TRASP.1K</td>
<td>Radiation index derived by transforming aspect from 1km DMA</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>SLOPE.1K</td>
<td>Slope (%) from 1km DMA</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>AVH.1</td>
<td>Visible spectral band 1 from AVHRR composites</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>AVH.2</td>
<td>Near-IR spectral band 2 from AVHRR composites</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>AVH.3</td>
<td>IR spectral band 3 from AVHRR composites</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>AVH.4</td>
<td>IR spectral band 4 from AVHRR composites</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>AVH.5</td>
<td>IR spectral band 5 from AVHRR composites</td>
</tr>
<tr>
<td>Continuous predictor</td>
<td>NDVI</td>
<td>NDVI from AVHRR composites</td>
</tr>
</tbody>
</table>
well suited to the FIA production environment. The point in describing them here is to
document the complexity in generating “simple” ASCII files of response and predictor
variables for modeling and analysis. Most data retrieval and pre-model processing were
performed on an IBM RS6000 F50 server with two processors and two gigabytes of
memory. Some functions were also performed on a Pentium II PC with 64 megabytes of
memory.

Choose Projection

A projection system is the mechanism for locating points, lines, or polygons on
the earth using x and y coordinates. There are many projections to choose from, but the
FIA sampling frame is based on the Universal Transverse Mercator, or UTM, grid. The
earth is divided into a set of grid zones, within which UTM coordinates are unique, but
between which they are not. As one moves away from the equator, the distance between
zones is squeezed down in the east-west direction. Points on an equidistant grid in UTM
units are actually much closer together when one gets closer to the poles of the earth. For
modeling on a regional scale, this projection works well, but is unworkable on a National
or global scale. Consequently, images or other geographic data sets come in a wide
variety of projections and must be standardized to one projection in order to merge the
spatial data together. Projection is a simple but sometimes computationally intensive
process in ArcInfo. Commands for doing this and many other procedures in ArcInfo are
given in Appendix A-1. Despite its discontinuity between zones and east-west “squeeze,”
the UTM projection results in “prettier” (less distorted) regional maps, and is the
these analyses. All the ecoregions fell within UTM zone 12 (UTM-12) except MT1 and MT2 that span 2 and 3 zones, respectively.

Locate Ecoregion and State Boundary Coverages

Ecoregion boundaries developed by Bailey, Avers, King, and McNab (1994) were available as vector coverages, and were modified in Utah to more closely follow ecological zones. State boundary coverages were readily available from the US Census Bureau, having been digitized from 1:100,000 scale maps. Both ecoregion and state boundaries were projected in UTM-12 and used throughout these data extraction processes.

Identify Sample Plots Within Ecoregions and Generate Point Coverages

UTM Easting and Northing coordinates on sample plots within an ecoregion were extracted from Oracle using an SQL query. A point coverage was then generated in ARC from these coordinates. Both the resulting ASCII files and point coverages were then used to extract response and predictor variables from these analyses.

Generate Intensive Grid for Mapping and Stratification

In addition to the ASCII file of UTM coordinates of field locations, an ASCII file of UTM coordinates on a 1-km grid was first generated from existing 1-km photo-interpretation data sets. Alternatively, these files can be generated through the ArcGrid sample command applied to any 1-km grid (like AVHRR data). In addition, finer resolution grids can be generated from existing 1-km grids through the ArcGrid resample
command. The UTM coordinates on this much more intensive grid (like 90 m) can be written to an ASCII file again through the ArcGrid command sample (Appendix A-1). These very intensive grids are useful for predicting a response over fine resolution predictor variables. The maps are not necessarily more accurate, but “prettier.”

Extract Response Variables from FIA Databases

Several different methods were used to get response variables for these analyses. In AZ1 and AZ2, the ASCII files containing UTM coordinates for sample plots within the ecoregion of interest were merged with SAS data tables of compiled Arizona data to extract select variables from the database. An example of this approach is given in Appendix A-2. In Utah and Montana, plot-level data were first extracted using an ArcInfo Arc Macro Language (AML) (Appendix A-3). The AML then generated a point coverage of these plots with selected location-level variables (like forest type) as attributes. The AML was not able to summarize tree-level information (like biomass and volume) and was replaced by a streamlined ArcView project with multiple Avenue scripts Appendix A-4). The project generates point coverages from spatial coordinates in Oracle and adds any selected variables to those points as attributes, simultaneously delivering an ASCII file (Appendix A-4).

Clip Statewide Grids from National AVHRR Images

Procedures for loading and viewing data from the 2-week composite AVHRR CDs in Imagine are given in Appendix A-5. Complications arose over incompatibility of Imagine and ArcInfo boundary coverages but following these instructions alleviated the
problem. Once these data were loaded, an “area of interest” (AOI) layer (like a state or ecoregion) was created and used to subset the multi-band AVHRR image. Because this nationwide image came in a Lambert Azimuthal equal area projection, the state boundaries had to be reprojected to Lambert Azimuthal before subsetting. (“Rebuilding” polygon coverages is also necessary following projection.) Subsetted images for each band and NDVI values were then converted to GRID format and reprojected to UTM-12 for further processing in ArcInfo. This process of subsetting an image is documented in Appendix A-6 and resulted in six grids representing the five AVHRR spectral bands and NDVI for each state.

Clip Statewide Grids from National 1000 m DMA Files

This nationwide elevation grid was also projected in Lambert Azimuthal, so state boundary coverages in that same projection were used. Arizona, Montana, and Utah were clipped from the nationwide grid using Arc latticeclip and reprojected into UTM-12. Slope and aspect grids were created for each state using the DEM (elevation) through ArcGrid’s slope and aspect commands. (Again, see Appendix A-1 for miscellaneous commands.)

Clip Statewide Grids from Regional NLCD Grids

The NLCD data was distributed as images in regional blocks. These images were converted to grids using imagegrid and came in an Albers NAD83 projection. Zero values in each regional grid had to be converted to NoData or Null values prior to merging regional grids using the command merge. After merging the grids to areas that
would encompass each state, state boundaries in Albers NAD83 clipped the state using ArcGrid \textit{gridclip}. The resulting grids were finally converted to UTM-12 projection.

\textbf{Extract Predictor Variables at FIA Plot Locations}

The ArcGrid \textit{sample} command was used to extract predictor variables from the assortment of grids at field and intensified grid locations, specified in ascii files of UTM coordinates. An example of commands used to extract predictor variables in Montana is given in Appendix A-7.
The following chapter describes the development of an objective mapping and stratification system (or “box”) within the S-Plus environment. An objective (or production) environment implies that someone without modeling experience can push the button that builds the models and produces desired output for any ecoregion, response variable, or predictor set. Prior to the construction of this box, input data had to be collected and prepared, and ancillary programs obtained and installed. A schematic overview of the system including data collection, ancillary code, and the S-Plus modeling box is shown in Figure 4-1. The initial data collection process (described in Chapter 3) was conducted in a variety of computing environments including ArcInfo, ArcView, Imagine, Oracle, and SAS. Data were extracted from original formats, filtered and put in a standard flat file format. Ancillary programs were imported from a variety of sources documented below, and installed in the S-Plus environment. The box itself was developed in S-Plus and was run on a SUNW Ultra-1 Sparc workstation with 128 megabytes of RAM and 602 megabytes of swap. The modeling system contains five key programs that are described in detail in this chapter. The first program, p1.data (Appendix C-1), prepares the input data. Objective model building and evaluation using the five different techniques takes place in p2.model (Appendix C-2) while p3.map (Appendix C-3) produces predictions for import into ArcView for mapping. Stratification based on select predicted maps is applied and population estimates and variances produced in p4.strat (Appendix C-4). Finally, p5.results (Appendix C-5) compiles
Figure 4-1. Schematic Overview of Modeling System.
performance measures and prepares graphical synopses of the results by ecoregion, response variable and predictor set. Program \texttt{p2x.model} supported the development of \texttt{p2.model} and \texttt{p4x.boot} (Appendix C-4x) provided additional information for variance calculations in \texttt{p4.strat}. In addition, \texttt{p0.functions} (Appendix C-0) is a file of customized functions, and the box itself runs from a program called \texttt{p.go} (Appendix C-00).

\begin{center}
\textbf{Data Input}
\end{center}

This first program, \texttt{p1.data}, prepares the data for input into subsequent programs. Response and predictor variables from the designated ecoregion are first read from ascii files and put in standard format. Predictor variables from imagery are checked for missing values and merged with the appropriate field file, or saved as separate mapping files on a more intensive grid.

Transformations on predictor variables are kept to a minimum. Only the NLCD and circular aspect variables are modified. The NLCD classes are collapsed to one forest, one shrubland, and one non-forest class to avoid having only a handful of observations in the rare classes. The circular aspect variable is transformed to a radiation index (TRASP) used by Roberts and Cooper (1989). This takes the form

\[
TRASP = \frac{1 - \cos((\pi/180)(\text{aspect} - 30))}{2}.
\]

This transformation assigns a value of zero to land oriented in a north-northeast direction, (typically the coolest and wettest orientation), and a value of one on the hotter, drier south-southwesterly slopes.
The two discrete response variables, FORTYP.2 and FORTYP.3, are created by collapsing forest type (FORTYP) into forest/non-forest (FORTYP.2) and timberland/woodland within forested areas (FORTYP.3), respectively. Data files for modeling the discrete FORTYP.2 include all data from forest and non-forest locations while data for modeling FORTYP.3 includes only data from forested field locations. This is analogous to applying a forested “mask” over the data set to focus modeling on within-forest conditions. One of the last tasks of \texttt{p1.data} is to split the total and masked data files into 70% of the data for modeling and 30% for testing. This 30% was chosen because this is the approximate proportion of plots collected on an intensified (not the standard 5 km) sampling grid and withholding this additional amount gives an indication of predictive abilities given “standard” sample sizes. Response and predictor variables used in \texttt{p2.model} were given in Tables 3-2 and 3-4, respectively. Files used in \texttt{p3.map} for predicting response variables over an intensified grid contain all the predictor variables listed in Table 3-4 as well. Variables used to construct estimates of population means/totals in \texttt{p4.strat} are listed in Table 3-3.

An early concern involved the potential effect of spatial autocorrelation on the deterministic functions chosen for these analyses. As part of the preliminary modeling described in Moisen and Edwards (1999), directional variograms were constructed on a set of variables revealing large-scale spatial patterns driven largely by elevation. By fitting GLMs that included elevation, aspect, slope, and general geographic position as predictor variables, the data were “detrended” and nothing but noise was left in directional variograms of the residuals. An important point here is that responses are collected on a 5-km grid. In the interior west, field plots collected at this distance are
likely to change drastically in elevation, slope, and aspect, and so the primary concern is modeling large-scale spatial variation through a deterministic model. The purpose in including UTM coordinates as predictor variables is to capture broad trend as opposed to trying to smooth the response in a small geographic area.

Modeling Strategies

Objective model building using the five different techniques takes place in `p2.model`. The following sections describe the development strategy for each of the five techniques. Models were first built, refined and automated using data in UT2 and `p2x.model`. These automated models were then applied to data from all ecoregions to test model performance, and results are reported in Chapter 5. Initial model fitting strategies were developed based on literature review, correspondence and discussions with a variety of experts, S-NEWS discussions, and trials in UT2.

NLCD Benchmark Models

By far, the simplest mapping and stratification strategy that could be adopted in these analyses is to simply "map" discrete variables by collapsing NLCD cover types, and "map" continuous variables by assigning the mean of the continuous variable within each NLCD class. This approach is implemented in `p2.model` though a function that collapses cover type classes, and through the use of the S-Plus function `lm()` for continuous variables. This is the simple benchmark against which other models are judged.
GAMs

The S-Plus functions `gam()`, `step.gam()`, and `plot.gam()` are used here. Both the binary forest/non-forest (FORTYP.2) and timberland/woodland (or spruce-fir/other) within forest (FORTYP.3) classifications are modeled using a binomial family.

Selection of an appropriate link function and variance-to-mean relationship for continuous variables, however, can be difficult. In Moisen and Edwards (1999), exploratory work revealed that the variances appeared proportional to the means (after adjustment for predictor variables), with proportionality constants substantially larger than one. The variance of volume by species (within bins defined by combinations of predictor variables) was plotted against mean volumes of those bins revealing linearly increasing patterns. Consequently, in earlier work, quasi-likelihood estimation was used in a “Poisson-like” model with a log link and variance proportional to the mean. Although this type of model is typically applied to count data, McCullagh and Nelder (1989, pp. 200-204) discuss an example application to continuous data.

This same approach was first adopted in `p2x.model`. However, one problem encountered in Moisen and Edwards (1999) was the large number of zeros (on non-forest lands) and this likely dominated the mean/variance relationship. In `p1.data`, a non-forest mask was applied as described above in the data input section, and only continuous variables on forested plots were modeled, assuming the mask could be reapplied at time of mapping to black out non-forest areas. The variance of continuous variables on forested plots (within bins defined by combinations of predictor variables) was plotted against mean values of those bins revealing no detectable patterns. Consequently, in `p2.model` a simple Gaussian family is specified for continuous responses, but an option
can be implemented within the program to run a regression of variances on means and make a choice of family automatically by determining if the variance is proportional to 1, μ, μ^2, or μ^3 and then assigning a Gaussian, Poisson, gamma, or inverse Gaussian family, respectively.

For both continuous and discrete responses, predictor variables enter the model individually using a smoothing spline with a relatively large smoothing parameter to avoid fitting noise. Final models were selected by stepwise procedure invoked by \textit{step.gam}. The function steps through various combinations of models along a path that is specified using an argument called \textit{scope} in the \textit{step.gam} function. This argument is a list whose elements correspond to terms in the original model. The \textit{step.gam} interprets candidate forms for each model term based on their order of appearance in the scope function. For example, suppose the initial gam object looks like

$$ Y \sim s(ELEV.1K) + s(TRASP.1K) + s(SLOPE.1K). $$

Then, a possible scope function is

\begin{align*}
\$ELEV.1K: \\
&\sim 1 + ELEV.1K + s(ELEV.1K) \\
\$TRASP.1K: \\
&\sim 1 + TRASP.1K + s(TRASP.1K) \\
\$SLOPE.1K: \\
&\sim 1 + SLOPE.1K + s(SLOPE.1K).
\end{align*}

Starting with the current model, a series of models is then constructed by moving each term up or down one step in the scope function. The first few candidate models would be
Start: $Y \sim s(ELEV.1K) + s(TRASP.1K) + s(SLOPE.1K); AIC= 1197.427$

Trial: $Y \sim ELEV.1K + s(TRASP.1K) + s(SLOPE.1K); AIC= 1197.444$

Trial: $Y \sim s(ELEV.1K) + TRASP.1K + s(SLOPE.1K); AIC= 1192.541$

Trial: $Y \sim s(ELEV.1K) + s(TRASP.1K) + SLOPE.1K; AIC= 1207.651$

Step: $Y \sim s(ELEV.1K) + TRASP.1K + s(SLOPE.1K); AIC= 1192.541$

The model that results in the biggest decrease in AIC, where

$$AIC = D + 2df\phi$$

is selected as the new current model and the updating continues. Here, D is the residual deviance, df the effective degrees of freedom, and ϕ the dispersion parameter.

CARTs

The S-PLUS functions tree(), cv.tree(), prune.tree(), and ps.tree() are used for both classification models (classification trees) and for modeling continuous variables (regression trees). An initial tree is fit using all the predictor variables. Tree pruning, analogous to variable selection in regression, is the methodology used to prevent overfitting the training data with too many splits. Although many methods of pruning are available, pruning through cross-validation is most popular. By using cv.tree(), the optimal size is identified via 10-fold cross-validation. While this process was repeatable for classification in UT2, the “optimal size” was very different under different cross-validation runs for continuous variables. Consequently in **p2.model**, 20 cross-validatory splits are run and “majority rule,” ie optimal size getting the most votes, used to determine pruning size for continuous variables.
MARS

Not part of the packaged S-Plus functions, Hastie and Tibshirani's mars() function is available through StatLib in the "mda" library. Because the library of functions was constructed for use in S-Plus-3 versions, getting the library up and running involved developing a new installation procedure to update old S-Plus version libraries and helpfiles, and replace S-Plus function calls to \texttt{dyn.load} within the scripts. Appendix B-1 gives the modified installation procedures.

As mentioned earlier, MARS automatically selects the amount of smoothing required for each predictor as well as the interaction order of the predictors. It is considered a projection method where variable selection is not a concern but the maximum level of interaction needs to be determined. Preliminary runs in UT2 for all response variables and levels of interaction ranging from 1 to 5 showed little improvement in fit and a tendency to produce unrealistic predictions for higher orders of interaction. Taking a conservative approach, only 2-level interactions are specified in \texttt{p2.model}. Because the MARS function as imported from StatLib did little more than fit the model and produce predictions, \texttt{p2.model} provides supplemental code that displays the contributing variables and identifies interactions so that the models are more interpretable.

ANNs

Nychka's FUNFITS S-PLUS function library was obtained by ftp for fitting ANN's from http://www.cgd.ucar.edu/stats/Funfits/index.shtml. As with the MARS
library, getting FUNFITS up and running posed some challenges and required modifications to the installation procedure (Appendix B-2).

The neural networks sum of squares surface is probably best described as "pathological," having a very large number of local minima that easily trap unsophisticated search procedures and result in poor, non-reproducible models. The developers of FUNFITs took care in developing their search procedure for realistic starting values. This procedure proceeds as follows. For each of M hidden units in a single layer neural network, a rectangular region of feasible (with respect to the logistic function) parameter values is divided into a set of 250 (ngrind) boxes about the origin. Within each of these boxes, 100 (ntry) parameter sets are randomly generated from a uniform distribution. These parameters define initial models from which RMSEs are computed. The parameter set with the lowest RMSE of the 100 sets in each of the 250 boxes is identified, and the 250 parameter sets are used as starting values in an initial 250 "grinds" attempting to minimize the RMSE. The convergence tolerance for this first pass is set fairly high. Next, the parameters resulting from the best 20 (npolish) grinds based on RMSE are used as starting values in a second more refined set of minimizations where the convergence tolerance is set much lower. The "final" model is defined by the parameters resulting from the best of these 20 "polished" parameter sets.

Although the computing time can be quite slow for full search options, the often subjective choices about starting values, convergence criteria, and number of hidden units are done automatically, and the results are reproducible. However, running nnreg at the default ngrind, ntry, and npolish of 250, 100, and 20, respectively, resulted in painfully slow computing time. FUNFITS provides a "fast" option where ngrind, ntry, and npolish
assume values of 100, 50, and 5. Initial runs in UT2 for all response variables for both the default and fast options revealed little if any gain in performance measures but tremendous differences in computing time. FUNFITS also selects the optimum number of hidden units based on cross-validation.

Evaluation Criteria

Several global measures were used to assess the predictive performance of the models. Let x be an $r \times r$ contingency table or error matrix set out in rows and columns that express the number of sample plots (of which there are n) predicted to belong to one of r classes relative to the true ground class (on the diagonal). The percent of correctly classified (PCC) plots is calculated

$$PCC = \left(\frac{1}{n} \sum_{i=1}^{r} x_{ii} \right) \times 100\%$$

The Kappa (KHAT) statistic (Cohen 1960) measures the proportion of correctly classified units after the probability of chance agreement has been removed, and has been used extensively in map accuracy work (Congalton 1991), and is calculated

$$KHAT = (\theta_1 - \theta_2) / (1 - \theta_2),$$

where

$$\theta_1 = \sum_{i=1}^{r} x_{ii} / n \text{ and}$$

$$\theta_2 = \sum_{i=1}^{r} x_{ii} / n^2 .$$

Predictive performance of models of the continuous variables were evaluated through independent estimates from test sets of global root mean squared error (RMSE),
and proportion of plots within some user-specified range (PWI),

$$\text{PWI} = \frac{1}{n} \sum_{i=1}^{n} I\left(\left|y_i - \hat{y}_i\right| < R\right),$$

(e.g., proportion of plots predicted to within 50 cubic feet of the true volume). In addition, the correlation coefficient (ρ) between observed and predicted values

$$\rho = \frac{\sum y_i \hat{y}_i - \sum y_i \sum \hat{y}_i / n}{\sqrt{\sum y_i^2 - (\sum y_i)^2 / n} \sqrt{\sum \hat{y}_i^2 - (\sum \hat{y}_i)^2 / n}}$$

was calculated for each model.

In addition to the evaluation criteria above, the amount of time it took to run each model was recorded and considered in discussions about suitability of each of the models for a production environment.

Mapping

This program produces predictions for each response variable within ecoregion over an intensified grid of predictor variables. Predictions are exported to ascii files in format suitable for input into ArcView for display and analysis. The scale of the resulting maps is a function of the intensity at which predictor variables (as ArcInfo grids) are resampled. Here, a coarse 1-km grid was used for mapping to keep size and prediction times in check. A more visually appealing 90-m grid will be resampled for production of "pretty" maps following completion of these analyses.
When mapping over large geographic areas, one is guaranteed to run into values of predictor variables outside the range seen in the modeling dataset and extrapolation is unavoidable. In addition, high dimensional models with interaction confound the extrapolation problem and it is likely that nonlinear and nonparametric models produce unrealistic estimates. To prevent these few extreme values from completely overpowering evaluation criteria and map color schemes, model predictions were restricted from going below zero or above the maximum value seen in the model data set.

Stratification and Variance Reduction

For reasons discussed in Chapter 6, predicted FORTYP.2 from the NLCD and MARS models in each ecoregion were used as the basis for stratification of field plots in that ecoregion. Population estimates and variances were obtained in two different ways. The first uses a stratified random sampling (STR) formula. This is appropriate for the NLCD-based stratification but is a leap of faith for the MARS-based stratification because strata come from models driven by the very field data to be stratified, and the problem has the flavor of poststratification. Consequently, bootstrap variance estimates were constructed and compared to those obtained under STR. Further discussion of the bootstrap variance estimates follows the “Stratified Random Sampling” section.

Stratified Random Sampling

Following the notation of Cochran (1977), let the subscript h denote the strata, suffix i the unit within the stratum, and L the total number of stratum. An unbiased estimate of a population mean (Cochran, Equation 5.1) is
\[y_{st} = \sum_{h=1}^{k} W_h y_h, \]

where

\[N_h \] is the total number of units in stratum \(h \),

\[n \] is the number of sample units,

\[n_h \] is the number of sample units in stratum \(h \),

\[y_{hi} \] is the value obtained for the \(i \)th secondary point in stratum \(h \),

\[W_h = \frac{N_h}{N} \] is the weight for stratum \(h \),

\[\bar{y}_h = \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} \] is the sample mean for stratum \(h \).

When the finite population correction factor is negligible, the estimated variance (Cochran, Equation 5.13) is

\[v(y_{st}) = \sum_{h=1}^{k} W_h^2 s_h^2 / n_h, \]

where

\[s_h^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \bar{y}_h)^2 \]

is the sample variance for stratum \(h \) for continuous \(y \), that reduces to

\[s_h^2 = \frac{n_h \bar{y}_h (1 - \bar{y}_h)}{(n_h - 1)} \]

when \(y_{hi} \)'s assume values of 0 and 1.
Bootstrap Estimates

In the second approach, bootstrap estimates of the variances on select population estimates were generated using the MARS models for FORTYP.2 and FORTYP.3 in each ecoregion. A sample of size n was selected with replacement from the original modeling data. The MARS models were fit, predictions made over a 1-km grid using FORTYP.2, and further classification done using FORTYP.3 for points predicted to be forested by FORTYP.2. These two-step MARS predictions over the 1000-m grid formed the population of strata for determining stratum weights. Then, estimates of mean population area, volume, and growth for this bootstrap sample were calculated using stratum weights from above. Another sample of size n was selected with replacement and the process repeated 100 times. The variances of these 100 population estimates were then compared to those obtained using the STR formulation.

Results

The program p5.results compiles mapping and stratification performance measures and prepares graphical synopses of the results by ecoregion, response variable, and predictor set using trellis graphics functions within S-Plus.
CHAPTER 5

RESULTS

System Tests

Before running data from all the ecoregions through the modeling system, a simple test was conducted to insure that the modeling techniques were operational. Following DeVeaux et al. (1993), 1000 each of ten uniformly distributed predictor variables X1-X10 were generated. Next, a response Y was specified as a function of only X1-X5,

\[Y = 2\sin(\pi X_1 X_2) + 0.4(X_3 - 0.5)^2 + 0.2X_4 + 0.1X_5, \]

with no error term. A simple linear model along with the GAM, CART, MARS and ANN from the modeling box were used to fit the relationship between Y and the X1-X10. Residual plots under each of the modeling techniques are shown in Figures 5-1 a-d. These plots, generated from test data, illustrate the effectiveness of MARS and ANNs in deciphering complex relationships. Table 5-1 also reveals some of the strengths and weaknesses of the different techniques. CART models identified the contributing predictor variable (X1-X5), but had an RMSE that was 10% higher than a linear model, and 10 times the RMSE of ANNs. LM too had a high RMSE because of its inability to detect the nonlinearity or interaction between terms. GAM residuals were considerably better, but the model’s stepwise procedures incorrectly identified X8 and X10 as contributing predictor variables in addition to the correct ones. Both MARS and ANN did exceptionally well, and MARS correctly identified the contributing variables and order of interaction. Recall the performance measures for continuous variables included root mean
Figure 5-1. Residual Plots from Test Data.
Table 5-1. Modeling Results for Continuous Test Data.

<table>
<thead>
<tr>
<th>Model</th>
<th>Contributing variables</th>
<th>PWI</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSE</td>
<td>(25%)</td>
</tr>
<tr>
<td>CART</td>
<td>X4, X1, X3, X5, X2</td>
<td>.030</td>
<td>76</td>
</tr>
<tr>
<td>LM</td>
<td>All</td>
<td>.027</td>
<td>83</td>
</tr>
<tr>
<td>GAM</td>
<td>s(X1), s(X2), s(X3), X4, X5, s(X9), s(X10)</td>
<td>.014</td>
<td>95</td>
</tr>
<tr>
<td>MARS</td>
<td>X1*X2, X3, X4, X5</td>
<td>.004</td>
<td>100</td>
</tr>
<tr>
<td>ANN</td>
<td>All with 7 hidden units selected</td>
<td>.001</td>
<td>100</td>
</tr>
</tbody>
</table>

squared error, correlation between truth and predicted, percent of predicted plots with 25% of the truth, and computational run time. Again, ANNs and MARS performed best overall but MARS had a much faster computing time.

Next, simulations were run to illustrate the effect of random noise on the performance of each modeling technique. Following from the example above, the response was generated as

\[Y = 0.4\sin(\pi X1 \times X2) + 0.8(X3 - 0.5)^2 + 0.2(X4) + 0.2(X5) -0.05 + \varepsilon, \]

with error terms generated from a normal distribution with mean equal to zero, and standard deviations of .05, .5, and 1. Table 5-2 and Figure 5-2 illustrate the diminishing differences between performance measures with increasing noise in the system.

Next, simulations were designed to illustrate strengths and weaknesses of the modeling techniques. One thousand sets of three uniformly distributed predictor variables X1-X3 were generated. Response variables Y1-Y5 were specified as functions of X1-X3 given in the first column of Table 5-2 with no error term. As before, 300 of the 1000 simulated response and predictor variable combinations were withheld as a test set. A simple linear model along with a GAM, CART, MARS and ANN were used to fit the
Table 5-2. Effect of Adding Normally Distributed Error with Increasing Standard Deviations (in parentheses).

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RMSE (.50)</th>
<th>RMSE (.50)</th>
<th>RMSE (1)</th>
<th>PWI (.50)</th>
<th>PWI (.50)</th>
<th>PWI (1)</th>
<th>RHO (.50)</th>
<th>RHO (.50)</th>
<th>RHO (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>0.199</td>
<td>0.358</td>
<td>0.579</td>
<td>0.183</td>
<td>0.103</td>
<td>0.087</td>
<td>0.836</td>
<td>0.650</td>
<td>0.421</td>
</tr>
<tr>
<td>GAM</td>
<td>0.148</td>
<td>0.328</td>
<td>0.577</td>
<td>0.240</td>
<td>0.130</td>
<td>0.077</td>
<td>0.913</td>
<td>0.717</td>
<td>0.439</td>
</tr>
<tr>
<td>CART</td>
<td>0.136</td>
<td>0.318</td>
<td>0.586</td>
<td>0.340</td>
<td>0.127</td>
<td>0.053</td>
<td>0.929</td>
<td>0.738</td>
<td>0.421</td>
</tr>
<tr>
<td>MARS</td>
<td>0.047</td>
<td>0.297</td>
<td>0.603</td>
<td>0.767</td>
<td>0.133</td>
<td>0.077</td>
<td>0.992</td>
<td>0.775</td>
<td>0.429</td>
</tr>
<tr>
<td>ANN</td>
<td>0.037</td>
<td>0.292</td>
<td>0.556</td>
<td>0.870</td>
<td>0.160</td>
<td>0.097</td>
<td>0.995</td>
<td>0.784</td>
<td>0.508</td>
</tr>
</tbody>
</table>

model along with a GAM, CART, MARS, and ANN were used to fit the relationship between Y_1-Y_5 and the X_1-X_3. Models were tested using independent test data and the resulting values for RHO, percent within .1, and RMSE are shown in Table 5-3. In addition, residual plots (again using test data) for all response variables and models are shown in Figure 5-3. Y_1 illustrates how each of the models performs when the response is a simple linear function of predictor variables. All models predict quite well over the test set with the exception of CART that is known to have trouble approximating linear functions. Next, Y_1 illustrates a response that assumes values of 0 or 1 based on a simple bivariate step function. Here, CART excels because of its ability to assign values above and below simple threshold values, while the other models did quite poorly. Y_3 is an illustration of data generated from a gamma distribution, with predictor variables affecting the mean in a nonlinear fashion. Here, the LM fails, CART perform on slightly better, GAMs with a log link performed much better (as it should), as did MARS and ANN. Y_4 allows for a 2-way interactions and both linear and nonlinear terms. The nonlinearity causes trouble with the LM, the linear term confuses CART, and the
Figure 5.2: Effect of Adding Increasing Noise to System on Relative Model Performance.
Table 5-3. Modeling Results for Five Simulated Data Sets.

<table>
<thead>
<tr>
<th>True Formula</th>
<th>Model</th>
<th>PWI</th>
<th>RHO</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technique</td>
<td>.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1=2X1 + 3X2</td>
<td>LM</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>GAM</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>CART</td>
<td>0.95</td>
<td>19</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>MARS</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>Y2=ceiling((X1-.5)(X2-.5))</td>
<td>LM</td>
<td>0.01</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>GAM</td>
<td>0.05</td>
<td>0</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>CART</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>MARS</td>
<td>0.84</td>
<td>33</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>0.89</td>
<td>48</td>
<td>0.12</td>
</tr>
<tr>
<td>Y3 ~ gamma(10 + sin(2πX1) + (20X2-10)^2)/100</td>
<td>LM</td>
<td>0.11</td>
<td>21</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>GAM</td>
<td>0.97</td>
<td>87</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>CART</td>
<td>0.97</td>
<td>81</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>MARS</td>
<td>0.97</td>
<td>84</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>0.98</td>
<td>86</td>
<td>0.04</td>
</tr>
<tr>
<td>Y3 ~ gamma(10 + sin(2πX1) + (20X2-10)^2)/100</td>
<td>LM</td>
<td>0.91</td>
<td>27</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>GAM</td>
<td>0.96</td>
<td>31</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>CART</td>
<td>0.94</td>
<td>29</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>MARS</td>
<td>1.00</td>
<td>97</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>1.00</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>Y5 = 50σ((X3-.5)σ(X1-.5X2-.13X3))</td>
<td>LM</td>
<td>1.00</td>
<td>37</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>GAM</td>
<td>0.99</td>
<td>36</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>CART</td>
<td>0.98</td>
<td>18</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>MARS</td>
<td>1.00</td>
<td>100</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Figure 5-3. Illustration of Strength and Weaknesses of Different Modeling Techniques.
and ANN clear leaders for this illustration. Finally, Y5 illustrates how well ANNs perform with nested logistic functions, with MARS trailing as a distant second.

Mapping Results

Discrete Variables

Results from predictive mapping of the discrete variables are displayed in Figures 5.4-5.6, and presented in Appendix D-1. Figures 5-4, 5-5, and 5-6 show results for the three performance measures PCC (percent correctly classified), Kappa, and total computing time, respectively. Each individual dotplot on a page illustrates results by modeling technique (y axis) by variable (columns) within ecoregion (rows). The trellis graphics allow for quick visualization of a very large number of total model fits. Modeling techniques were ordered from best to worst (descending down Y axes in each plot) according to the median value of each performance measure across all variables and ecoregions.

The PCC (percent correctly classified) and Kappa results (Figures 5-4 and 5-5) suggest little difference between modeling techniques for identification of forest/non-forest but illustrate substantial gains over the NLCD approach in finer separation into three classes (FORTYP.3). These gains are made regardless of the nonlinear or nonparametric model chosen. The top two techniques (based on median values for individual performance measures) are MARS and GAMs for PCC (by a very slim margin), and GAMs and MARS for Kappa. By looking at the run time plot (Figure 5-6), there is a clear computational advantage in the NLCD and MARS models.
Figure 5-4. PCC for Models of Discrete Variables Using Test Data.
Figure 5-5. Kappa Statistic for Models of Discrete Variables Using Test Data.
Figure 5-6. Computational Run Time for Models of Discrete Variables Using Test Data.
To further simplify the numerous graphs, a ranking scheme was devised whereby models were given a value from 1 (worst) to 5 (best) by variable and ecoregion for each of the performance measures. These values were then summed across performance measures and model ranks displayed in Figure 5-7. For discrete variables, the order using this strategy is MARS at the top, followed by GAM, CART, ANN, and NLCD. Of course, this gives equal weight to all performance measures and does not reflect the tiny differences that ultimately determine rank.

An example of a 1-km resolution map of predicted forest/non-forest in UT2 is given in Figure 5-8. An ascii file of UTM coordinates and predicted values were brought into a pre-made ArcView layout, easing the chore of generating map displays. “Prettier,” finer resolution maps are currently in production for all variables in all ecoregions.

Continuous Variables

Results from predictive mapping of the continuous variables are tabled in Appendix D-2 and displayed in Figures 5-9 through 5-12. The layout in these figures is the same as in results for discrete variables. Results for the four performance measures (RMSE, RHO, PWI-25%, and computational run time) appear on the four separate figures. Figures 5-9 and 5-10 suggest that all five models often perform competitively for RMSE and PWI, but occasional erratic behavior by ANN, MARS, and CART can be anticipated. AZ2 was a good example where the small number of forested plots (165) and tremendous variability in total biomass made for unrealistic model prediction by ANN and MARS. However, better predictions were obtained in other ecoregions. GAM, ANN, and MARS appeared to perform best based on median values of RMSE, PWI, and RHO.
Figure 5-7. Ranking of Techniques for Discrete Variables.
Figure 5-8. Map of Forested Areas Predicted from MARS Model in UT2.
Figure 5-9. RMSE Expressed as a Proportion of the Mean for Models of Continuous Variables Using Test Data.
Figure 5-10. Proportion of Plots Within 25% of the Truth for Models of Continuous Variables Using Test Data.
Figure 5-11. Correlation Between True and Predicted Values for Models of Continuous Variables Using Test Data.
Figure 5-12. Computational Run Time for Models of Continuous Variables Using Test Data.
Values for RHO reflect the ability of GAMs and MARS to produce much more reasonable residual plots. An example of these plots for each modeling technique and response variable within UT2 is shown in Figure 5.13. These residual plots are representative of patterns seen in other ecoregions and, like the simulation examples in the first section of this chapter, illustrate the magnitude of the noise in the data as well as the small gains realized through alternative modeling techniques. As with the discrete variables, run time plots shown in Figure 5-12 illustrate the speed with which the simple NLCD and MARS models run relative to the others. Using the same ranking scheme as for models of discrete variables, Figure 5-14 puts GAMs first, followed by MARS, ANN, NLCD, and CART. Finally, Figure 5-15 is another example of a 1-km resolution map displaying predicted values for BIOTOT in UT2.

Stratification Results

Precision on Population Estimates

Figure 5-16 illustrates percent standard error in estimates of the four different population totals by stratification scheme within ecoregion. Figure 5-17 presents the same information using a different measure. Here, results are expressed as a ratio of the standard error under simple random sampling to the standard error under the scheme of interest. Recall the four population means include percent forest area, percent forest type within forested area, tree volume, and net annual growth. The stratification schemes include simple random sampling, stratification based on forest/non-forest calls from the NLCD data, and stratification using FORTYP.2 non-forest mask along with the FORTYP.3 classification of forested areas from MARS models in each ecoregion.
Figure 5-13. Residual Plots from Models of BIOTOT in UT2.
Figure 5-14. Ranking of Techniques for Continuous Variables.
Figure 5-15. Map of Total Biomass Predicted from a MARS Model in UT2.
Figure 5-16. Percent Standard Error on Population Means.
Figure 5-17. Ratio of Standard Errors on Estimates Using Simple Random Sampling to Standard Errors under Alternative Stratification Schemes.
In UT1, UT2, AZ1 and AZ2, this is stratification based on modeled timberland/woodland/non-forest. In MT1 and MT2, stratification is based on modeled spruce-fir/other forest/non-forest. Variances for this MARS as well as the NLCD approaches were obtained using stratified random sampling (STR) formulae as described in Chapter 4. Bootstrap estimates for the MARS strategy are discussed in the next paragraph. In Figure 5-16, stratification schemes are listed along the y-axis of each graph in the panels in order (best to worst) of percent standard error for each of the population variables. The figure shows the large gains in precision through NLCD stratification over SRS, and illustrates further gains using a more complex MARS stratification over the simple NLCD approach. As an example, Figure 5-17 illustrates how variance under simple random sampling may be 1.5 times larger than that under a MARS stratification in MT1 for estimating proportion of forest. This may seem like a substantial gain until one looks at the miniscule reduction in standard error when expressed as a percent of the mean (i.e., sample sizes are very large and standard errors small to begin with, Figure 5-16).

Bootstrap estimates of the variances under the MARS-based stratification scheme were run to see if the STR formulation was appropriate. Figure 5-18 illustrates results for four population estimates in AZ1. One hundred bootstrap samples were generated as described in Chapter 4, and bootstrap standard errors plotted for increasing number of iterations. The circles on the plots are the variances obtained for MARS-based stratification using STR formulation. The triangles are variances under the NLCD approach, and plus indicated variance using simple random sampling. The circles, triangles, and pluses are not related to number of bootstrap iterations, and are placed on
Figure 5-18. Results from Bootstrapping Variances of Estimates Using MARS-Based Stratification.
the plots to simply indicate values obtained using stratification or simple random sampling formulation of variances directly. Certainly, more investigation is needed before one can use STR formulation without reservation, but these initial runs are compelling. The ability to use sample plots in modeling strata that are in turn used to produce estimates of population totals would greatly enhance the current estimation process in forest inventories.

Relationship Between Map Accuracy and Precision Gains Through Stratification

One would expect that stratification based on the more accurately classified maps would result in smaller variances for estimates of population totals, particularly in estimates of area by forest type. However, Moisen and Edwards (1999) demonstrated that surprisingly small gains in efficiency in population estimates might be realized using “better” maps for stratification. The point was driven home again in Figure 5-16. Here, the general effect of map accuracy on the relative precision of estimates of population totals obtained under simple random sampling (SRS) to those obtained under stratified random sampling (STR) is explored analytically.

Estimating Population Proportions

In order to begin exploring the general relationship between map accuracy and the relative precision of estimates of population proportions obtained under the two designs, we need to make some simplifying assumptions. First, assume one of the strata (say $h=1$) is defined to closely mimic the class whose proportion we are interested in estimating. For example, if we are interested in estimating the proportion of timberland in a
population, stratum 1 may be land *thought* to be timberland, stratum 2 may land *thought* to be woodland, and stratum 3 may land *thought* to be non-forest based on classified satellite imagery. Next, assume all the other strata are of approximately equal size, e.g., a 100,000 ha population may be divided into 50,000 ha of timberland, and 25,000 ha each of woodland and non-forest. Then for each of L strata we may write

$$0 < W_1 < 1, \text{ and } W_h = (1 - W_1)/(L-1), \text{ for } 2 \leq h \leq L. \quad (5.1)$$

Also assume classification accuracies are the same for all vegetation classes and that the misclassification is evenly distributed between classes. These accuracies will affect the proportion of the class of interest (P_h) within each of the strata as follows:

$$P_1 = PCC, \text{ and } P_h = (1 - PCC)/(L-1), \text{ for } 2 \leq h \leq L. \quad (5.2)$$

For example, if overall PCC for the map is 80%, then the PCC for timberland equals the PCC for woodland, which equals that for non-forest, namely 80%. If 80% of mapped timberland locations are indeed timberland, then 10% are misclassified as woodland and 10% as non-forest under the simplifying assumptions above. Table 5–4 illustrates what a confusion matrix might look like given 100 accuracy points collected in each stratum.

Recall that the true population proportion is the weighted sum of proportions across strata, so using Equation 5.1 we may write

$$P = \sum_{h=1}^{L} W_h P_h = W_1 P_1 + (L-1)W_h P_h = W_1 P_1 + (1 - W_1)P_h = W_1 P_1 + P_h - W_1 P_h, \quad (5.3)$$

where $2 \leq h \leq L$.

Now, the relative precision (RP) of SRS to STR is
Table 5-4. Confusion Matrix Given 100 Accuracy Points Collected in Each Stratum.

<table>
<thead>
<tr>
<th></th>
<th>True Timberland</th>
<th>True Woodland</th>
<th>True Non-Forest</th>
<th>User's Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped Timberland</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>80%</td>
</tr>
<tr>
<td>Mapped Woodland</td>
<td>10</td>
<td>80</td>
<td>10</td>
<td>80%</td>
</tr>
<tr>
<td>Mapped Non-forest</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>80%</td>
</tr>
<tr>
<td>Producer's Accuracy</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

\[
RP = \frac{V_{SRS}}{V_{str}} = \frac{P(1-P)/n}{\sum_{h=1}^{L} \frac{W_h^2}{n_h} P_h(1-P_h)}.
\]

Because \(\frac{W_h^2}{n_h} = \frac{W_h^2}{W_h n} = \frac{W_h}{n} \), under proportional allocation the expression for the relative precision simplifies to

\[
RP = \frac{P(1-P)}{\sum_{h=1}^{L} W_h P_h(1-P_h)}.
\]

Under the assumptions and relationships stated in equations 5.1 – 5.3, the RP can be expressed as a function of \(W_i \) and PCC alone by substituting for \(P, W_h, \) and \(P_h \). The final equation is complicated and uninformative, but graphing the relative precision between SRS and STR for given \(W_i \) and PCC values, as in Figure 5-19, sheds a considerable amount of light on the problem. From this graph we see relatively small gains in efficiency for PCC values below 70%. However, much more dramatic gains are realized for very high accuracy levels and mid-range primary stratum weights. The shape
Figure 5-19. Ratio of Standard Errors Obtained Under Simple Random Sampling to Those Obtained under Stratified Random Sampling for Estimating Population Proportions.
of this graph remains unchanged regardless of the number of strata. Increasing the number of strata improves relative precision only if it effectively increases the “accuracy” of mapped classes for the proportion of interest. As an example, changing from a simple forest/non-forest stratification to a timberland/woodland/non-forest stratification might help distinguish timberland from other forested areas, thus improving an estimate of total area of timberland.

Estimating Population Means for Continuous Variables

The relative precision of STR to SRS when we are interested in estimating population means or totals from continuous variables may also be expressed as a function of the PCC and the percent reduction in variance in “pure” (100% accurate classes). For example, suppose we are interested in the total volume of wood in a region. Assume stratification into perfectly classified hardwood forest and softwood forest results in within strata variances that are some proportion (call it R) of the overall population variance for volume. As strata become less perfect in terms of their classification accuracy, that (1-R) gain in precision is reduced further. The following analysis quantifies that reduction.

If within “pure strata” variance is a proportion R of the overall population variance in a SRS, and the same as the SRS variance elsewhere, then we can write

\[S_{n}^{2} = PCC(R)S^{2} + (1 - PCC)S^{2} \]

for equal strata sizes. Then, under proportional allocation, the RP can be written
Here, the number of strata itself does not affect the RP unless it results in higher PCC values for the class of interest, or greater homogenization of continuous variables.

This relationship is illustrated in Figure 5-20. Note the flatness of the graph until variance within pure classes is around 30% or less of the population variance, or the accuracy extremely high.

Potential Reduction in Sample Size

Through Stratification

For both estimation of population proportions and means of continuous variables, the percent reduction in sample size that would be possible under STR, if one only had to achieve the same precision as SRS, may be calculated as follows. Given

\[
RP = \frac{V_{str}}{V_{str}} = \sum W_h S_h^2 = \frac{S^2}{\frac{1}{L} (PCC(R)S^2 + (1 - PCC)S^2) L} = \frac{1}{PCC(R) + (1 - PCC)}.
\]

Setting this expression equal to 1 and solving for \(n_2\) in terms of the relative precision, \(RP\), and \(n_1\), one gets

\[
1 = \frac{\frac{1}{n_1} P(1 - P)}{\frac{1}{n_2} \sum W_h P_h (1 - P_h)} = \frac{n_2}{n_1} \cdot RP.
\]
Figure 5-20. Ratio of Standard Errors Obtained under Simple Random Sampling to Those Obtained under Stratified Random Sampling for Estimating Continuous Population Variables.
So, $n_2 = \frac{n_1}{RP}$. This relationship is illustrated in Figures 5-21 and 5-22 for proportions and continuous variables, respectively.
Figure 5-21. Percent Reduction in Sample Size Through Stratification for Estimating Population Proportions.
Figure 5-22. Percent Reduction in Sample Size Through Stratification for Estimating Continuous Population Variables.
CHAPTER 6
DISCUSSION AND CONCLUSIONS

Discussion

Objectives

Recall that the first objective of this research was to develop an automated mapping and stratification system for forest inventories in the Interior West. The objective was accomplished and the system developed in an S-Plus computing environment. This modeling “box” serves as a key component in an interdisciplinary system for integrating ancillary data with forest inventories for delivery of new products and more cost-effective information (Figure 6-1). Any predictor variables in grid or ASCII format can be merged with FIA data using any of the five modeling techniques within the box. The outputs include predictions and potential for analysis using five modeling techniques, a report of map accuracy for discrete and continuous variables, estimates under an assortment of stratification strategies, as well as flat files for building predictive maps. The box also provides the machinery for a tremendous amount of future research using real and simulated data.

In addition, development of this modeling box prompted rapid development of other boxes in the interdisciplinary system shown in Figure 6-1. Data extraction processes from both the “Field” and the “Digital” boxes have come a long way, as described in Chapter 3. In addition, the rapid output of predictive maps made possible through the modeling box, as well as interest from forest managers, has prompted further
Figure 6-1. Interdisciplinary System.
development of the "Delivery" box for hard and softcopy maps, analysis tools, and web-based production.

The second objective was to determine which of the modeling techniques were best suited for a forest inventory production environment. All techniques tried here proved themselves workable in an automated environment, although ANNs were a bit more problematic. Computation run time is one area the modeling techniques differed substantially. Naturally, the simple NLCD model was extremely fast with no computational "glitches." GAMs and CARTs are normally quite fast but were considerably slower here because of the stepwise procedures for GAM and iterative runs searching for best tree size for CART. ANNs were the slowest in these applications, and have the potential to becrippingly slow for "slow but safe" parameter optimization procedures in FUNFITS. Obviously, the simplest NLCD approach or another simple linear model is most readily incorporated into a production process. But of the more flexible techniques, MARS showed promise in a production environment because of its fast computing rate, little need for user "steering," and tendency to produce reasonable models when ANN failed. Certainly, any of the models could be made production suitable, and a sensible strategy may well be to keep all the tools in the toolkit, using several for each application.

The final objective was to determine if introducing more flexible statistical models into forest inventory mapping and stratification procedures makes an appreciable difference in accuracy of forest maps and precision in estimates of population totals, respectively. Many valuable lessons were learned through this work as discussed below.
Mapping

This simple simulation described in the beginning of Chapter 5 illustrated that use of a flexible and powerful modeling technique can make a huge difference in predictive performance when the signal-to-noise ratio is high. The test also shed some light on the character of each technique. It was surprising that CART performed worse than a simple linear model. It was also surprising that GAM's stepwise procedure was not able to exclude all the noncontributing variables. In addition, the ease with which both MARS and CART established the relationship of Y to the predictor variables was very informative.

The differences between modeling techniques using real data were far less impressive. In fact, for a number of variable/ecoregion combinations, only small differences were realized using any of the modeling techniques over a simple NLCD approach, particularly for distinguishing forest/nonforest, or in RMSE for continuous variables. Larger gains were realized, however, for further classification of forested areas (FORTYP.3) and in getting predictions that fell within a user-specified ballpark. In addition, slightly higher correlations were realized for MARS and GAMs. This was seen in residual plots where more realistic predictions were obtained for extreme lows (in both MARS and GAMs) and extreme highs (for MARS).

When starting this analysis with the real data, I had anticipated seeing marked differences between modeling techniques. The small gains seen with these data sets were at first disheartening, but understandable given the tremendous amount of noise in the data. Sources of noise are numerous and include: positional error in field plots, registration difficulties between plots and images, scale differences between data
collected in the field and the imagery, differences in date, definitional differences, and the list goes on. Based on the results one might be inclined to stick with a simple NLCD model from mapping. Yet, the data are in a constant state of change. GPS coordinates with national standards are now being collected on all field plots, better resolution imagery with standardized registration procedures are becoming available, softcopy low altitude photography is under development, and better resolution topographic information will be available shortly. Given all that, the true benefit of a new predictor variable might be overlooked if only linear models were in place. So, building MARS or ANN into a predictive mapping system up front is likely to have big payoffs down the road, even if differences between that and a much simpler approach are only marginal right now.

Stratification

Finding that use of the simple NLCD data alone for stratification results in estimates of population totals that substantially improved SRS estimates, and meet National standards for precision, is very useful. This results in substantial cost savings over the prior two-phase sampling procedures using expensive and labor-intensive photo interpretation for stratification. The analyses also illustrate the additional gains that can be realized when using ancillary data and a modeling technique like MARS. These gains might provide some cost savings in annual inventory systems in the future where as much information as possible needs to be squeezed out of ancillary data.

Another valuable result is that an increase in accuracy in a map used for stratification does not translate linearly into gains in precision in estimates of population totals. The last section of Chapter 5 provides graphical tools for managers trying to
decide how accurate a map is needed for stratification, and what the trade-off is between sampling size and precision in lieu of known accuracy for stratification maps. These are very helpful pieces of information for management decisions and tough choices on where sampling money should go.

Conclusions

Here, I developed an automated mapping and stratification system well suited for regional forest inventories in the interior west, but portable to other applications. Any predictor variables in grid or ASCII format can be merged with response variables using any of the five modeling techniques in the box. The outputs include predictions and potential for analysis using five modeling techniques, a report of map accuracy for discrete and continuous variables, estimates under an assortment of stratification strategies, as well as flat files for building predictive maps.

In comparing the different modeling techniques, all proved themselves workable in an automated environment, though the simple NLCD and MARS required the least amount of user input or "tinkering." When explored through a simple simulation, tremendous advantages were seen in use of MARS and ANN for prediction, but much smaller differences were seen when using real data because of noise or possible lack of nonlinear relationships between the response and predictor variables. The simple NLCD model had the computational advantage, but MARS performed (marginally) best most often for binary variables, while GAMs did (marginally) better most often for continuous variables. Ranking was based on measures of map accuracy, predictive performance, and computing run time. Although little appreciable difference was seen between the models,
as better predictor variables become available, tremendous advantages may be realized using more flexible statistical techniques.

For stratification, using the simple NLCD data alone for stratification resulted in estimates of population totals that improved SRS estimates, and met National standards for precision. This results in substantial cost savings over the prior two-phase sampling procedures using expensive and labor-intensive photo interpretation for stratification. The analyses also illustrate the additional gains that can be realized when using ancillary data and a modeling technique like MARS. In addition, the general effect of map accuracy on the relative precision of estimates of population totals obtained under simple random sampling (SRS) to those obtained under stratified random sampling (STR) was established for simple sampling scenarios.
REFERENCES

APPENDICES
Appendix A: Data Extraction Procedure
Appendix A-1. Frequently used commands in ArcInfo.

list grids
eg: lg

describe grid spec
eg: describe usa_grid_alb

list elements in a coverage
eg: list <coverage>.pat

delete a grid or coverage
eg: kill mt2_lz all

convert grid or coverage to a new projection
eg: project grid usa_grid_alb usa_grid_lamaz
gis/projections/utm122lamaz.prj
eg: project cover azl azl_lz autm122lamaz.prj

copy from one coverage to another
eg: copy st_boundary mtbnd

build polygon coverage after projection
eg: build spatial/data/coverages/bound/azbnd_lz poly

clip grid with boundary and make sep grid file
Usage: LATTICECLIP <in_lattice> <clip_cover> <out_lattice> {MINIMUM|EXTENT}{z_factor}
eg: latticeclip /fsfiles/unit/fia/spatial/data/factory/usa_grd_lz
/fsfiles/unit/fia/spatial/data/coverages/bound/azbnd_lz
azdem1000_lz

extract point values from grid and add to point cover
Usage: LATTICESPOT <in_lattice> <in_cover> {spot_item} {z_factor}
eg: latticespot ../dma/azdem1000_u12 az2_fctl dem1000

Arc: identity
Usage: IDENTITY <in_cover> <identity_cover> <out_cover>
{POLY | LINE | POINT}
[fuzzy_tolerance] {JOIN | NOJOIN}

display a grid
ap
Arcplot: display 9999
Arcplot: mape utdem1000_lz
Arcplot: image utdem1000_lz
q

generate slope and aspect from elevation grid
grid
Grid: ../dma/azslp1000_u12 = slope(../dma/azdem1000_u12,degree)
Grid: ../dma/azasp1000_u12 = aspect(../dma/azdem1000_u12)
q
make ascii file from a coverage w/ plotid,variables (comma delim)

```plaintext
tables
  tables: select <coverage>.pat
  UNLOAD <outfile> {${recno},item1,...,itemn..no bracks}
    {DELIMITed | columnar <format_file>}
q stop
```

join item

Usage: JOINITEM <in_info_file> <join_info_file> <out_info_file>
 <relate_item>
 {start_item} {LINEAR | ORDERED | LINK}

change name of attribute in coverage

```plaintext
tables
  tables: select <coverage>.pat
  tables:items or list
  tables: alter
    itemname: <newname>
    <return what left unchanged>
q stop
```

extract values from multiple grids at points using various interpolation options (or none for discrete grids)

Grid: sample

Usage: (T) SAMPLE (<mask>, { grid, ... , grid})
 (T) SAMPLE (<* | point_file>, {grid, ... , grid},
 {NEAREST | BILINEAR | CUBIC})

eg: Grid: ../.../ascii/ut2/map1000/ut2_gap1k.dat =
 sample(../.../ascii/ut2/map1000/ut2_1k.txt,
 ut2elv90_u12,ut2asp90_u12,ut2slp90_u12,
 ut2tm_b3_u12,ut2tm_b4_u12,
 ut2tm_b5_u12,utgap90_u12,nearest)

(from /spatial/data/ascii)

```plaintext
transfer/ut2 nlcd5k.dat =
  sample(ut2/responses/ut2_xy5_u12.dat,../factory/nlcd/ut_nlcd_d_u12,nearest)
transfer/mt2 nlcd5k.dat =
  sample(mt2/responses/mt2_xy5_u12.dat,../factory/nlcd/mt_nlcd_d_u12,nearest)
transfer/utl nlcd1k.dat =
  sample(utl/map1000/utl_1k.txt,../factory/nlcd/ut_nlcd_u12,nearest)
```

generate an intensive grid for mapping then sample

from other grids to create an ascii file

```plaintext
LATTICECLIP inlattice clipcover outlattice
outgrid=RESAMPLE(grid,cellsize)
outascii=SAMPLE(mask_grid,grid,grid,...,grid)
```
ex: latticeclip dma/utdem1000_u12 bound/ut2_u12 dma/ut2demlk_u12
娅
dma/ut2dem100_u12 = resample(dma/ut2demlk_u12,100,nearest)
dma/ut2dem500_u12 = resample(dma/ut2demlk_u12,500,nearest)
..ascii/map.pts/ut2samp500.txt =
sample(dma/ut2dem500_u12,dma/ut2demlk_u12)

project to new projection

project cover mtbnd_u12 mtbnd lam
/fssfiles/unit/fia/gis/projections/utm122lam.prj
build mtbnd_lam poly

extract data from usa 1000m dems

0. describe grid to get correct projection parameters
1. project spatial/data/factory/usa_grd_lz in lamaz
2. project state boundaries in lamaz
3. rebuild boundaries as polygon coverages
4. latticeclip AZ, MT, and UT from demgrid
 and project as u12
5. create slope and aspect grids for each of 3 states
6. latticespot ecoregion point coverages to extract elv1000, slp1000, and asp1000
Appendix A-2. SAS program to extract plot and tree level variables from SAS data sets from plots given file of UTM coordinates.

(Written by Shirley Waters.)

%Let STATE=arizona;
%Let SA=all;
Title1 Arizona;

*Filename gretchen_az.sas;
*SAS program to create a file of variables and merge with
*a file created by gretchen;
%Let CALPATH2 =%STR(/calcul);
%Let CALPATH1 =%STR(/fsfiles/unit/fia/data/prelimdat/);
%Let CALCDIR=&CALPATH1&STATE&CALPATH2;
%Let DIRSEP=/; * Directory separator;
Libname LIBRARY
"/fsfiles/unit/fia/data/prelimdat/&STATE/formats";
Libname TAB "'/fsfiles/unit/fia/data/prelimdat/&STATE/calcul";
Libname DAT "'/fsfiles/unit/fia/data/prelimdat/&STATE/field";

Options Linesize=200;
*OPTIONS OBS=20;

Data _NULL_; File '?Footnote';
Length RUNDATE $8;
RUNDATE = Put(DATE(),MMDDYYB.);
Put "Footnote H=.9 J=R
'/fsfiles/unit/fia/data/prelimdat/arizona/calcul/gretchen_az.sas--"RUNDATE"';;
Run;

%Include '?Footnote';
Footnote2 H=.1;

Data PLOTS(Drop=DIA TRHIS BA NGRWBA BAACC NVOLTOT NVOLMER NGRWCF BIOTOT TPALOC);
Set TAB.TOTAL&SA(Keep=SA PLOTID CO LOC GRDCOV LNDUSE OWNER FOREST DAY MONTH YEAR A_FORTYP A_STSZCL CRCOV ELEV PHYSCL QMD ASPECTAZ SLOPE CURVECL BAACC MAICF A_STAGE SAMPKND CNDPROP LNDUSE GRDCOV A_FORTYP
DIA TRHIS TPALOC BA BIOTOT NVOLTOT NVOLMER NGRWCF NGRWBA); Retain STPALOC SBA SBIO TOT SNVOLTOT SNVOLMER SNGRWCF SNGRWBA 0;
By PLOTID;
If CNDPROP Ge 1;
If FIRST.PLOTID Then Do;
STPALOC = 0;
SBA = 0;
SBIOTOT = 0;
SNVOLTOT = 0;
SNVOLMER = 0;
SNGRWCF = 0;
SNGRWBA = 0;
End;
If TRHIS Eq 1 And DIA Ge 1 Then Do;
 STPALOC = STPALOC + TPALOC;
 SBA = SBA + BA;
 SBIOTOT = SBIOTOT + BIOTOT;
 SNVOLTOT = SNVOLTOT + NVOLTOT;
End;
If TRHIS Eq 1 And DIA Ge 5 Then Do;
 SNVOLMER = SNVOLMER + NVOLMER;
 SNGRWCF = SNGRWCF + NGRWCF;
 SNGRWBA = SNGRWBA + NGRWBA;
End;
If LAST.PLOTID Then Output PLOTS;
Run;
Proc Sort Data=PLOTS;
 By CO LOC;
Run;
Data GRET1;
 Filename GRET1
 "/fsfiles/unit/fia/gis/factory/anal/azl_fldplts.txt";
 Infile GRET1 DLM=',';
 Input CO LOC UTME UTMN;
Run;
Data GRET2;
 Filename GRET2
 "/fsfiles/unit/fia/gis/factory/anal/az2_fldplts.txt";
 Infile GRET2 DLM=',';
 Input CO LOC UTME UTMN;
Run;
Proc Sort Data=GRET1;
 By CO LOC;
Run;
Proc Sort Data=GRET2;
 By CO LOC;
Run;
Data VARS;
 Merge DAT.CTRL(Keep=CO LOC GLU GRIDZONE LONGITUDE LATITUDE
 PLOTID GRIDZONE EASTING NORTHING)
 DAT.COND(Keep=PLOTID CNDPROP PCTBARE SZCND)
 DAT.LOC(Keep=PLOTID SZFOR RSCOV1);
 By PLOTID;
 If CNDPROP Ne 1 Then Delete;
 If GLU Ge 96 Then Delete;
Run;
Proc Sort Data=VARS;
 By CO LOC;
Run;

Data PLOTS1; Merge PLOTS GRET1(In=A) VARS(In=B);
 If A and B;
 By CO LOC;
 If GLU Ge 96 Then Delete;
Run;

Data PLOTS2; Merge PLOTS GRET2(In=A) VARS(In=B);
 If A and B;
 By CO LOC;
 If GLU Ge 96 Then Delete;
Run;

Data _NULL_; Set PLOTS1 END=LAST;
 File
 "/fsfiles/unit/fia/data/prelimdat/arizona/calcul/azl_fldplts_sum.txt";
 Put (ASPECTAZ A_FORTYP A_STAGE A_STSCL CNDPROP CO CRCOV CURVECL DAY)
 EASTING ELEV FOREST GLU GRDCOV GRIDZONE LATITUDE LNDUSE LOC LONGITUDE
 MAICF MONTH NORTHING OWNER PHYSCL PLOTID QMD SA SAMPKND SLOPE UTME UTMN YEAR)
 (:10. + (-1)'',' ')
 (SBA SBIOTOT SNGRWBA SNGRWCF SNVOLMER SNVOLTOT STPALOC)
 (:10.2 + (-1)'',' ');
 If LAST Then Put 'END';
Run;

Data _NULL_; Set PLOTS2 END=LAST;
 File
 "/fsfiles/unit/fia/data/prelimdat/arizona/calcul/az2_fldplts_sum.txt";
 Put (ASPECTAZ A_FORTYP A_STAGE A_STSCL CNDPROP CO CRCOV CURVECL DAY)
 EASTING ELEV FOREST GLU GRDCOV GRIDZONE LATITUDE LNDUSE LOC LONGITUDE
 MAICF MONTH NORTHING OWNER PHYSCL PLOTID QMD SA SAMPKND SLOPE UTME UTMN YEAR)
 (:10. + (-1)'',' ')
 (SBA SBIOTOT SNGRWBA SNGRWCF SNVOLMER SNVOLTOT STPALOC)
 (:10.2 + (-1)'',' ');
Run;

Proc Contents Data=PLOTS1;
Run;

Options Obs= 50;

Proc Print Data=PLOTS1;
title1 first 50 records of
/fsfiles/unit/fia/data/prelimdat/arizona/calcul/az2_fldplts_sum.txt;
title2 warning: Arizona has 2 gridzones;
run;

Proc print Data=PLOTS2;
title1 first 50 records of
 /fsfiles/unit/fia/data/prelimdat/arizona/calcul/az2_fldplts_sum.txt;
title2 warning: Arizona has 2 gridzones;
run;
Appendix A-3. AML to generate a point coverage with attributes from Oracle tables
(Written by Ron Tymcio and Tracey Frescino)

Title: ORACLE_LLGEN.AML
Description: To generate a point coverage using latitude/longitude
coordinates and plotid
data that resides in Oracle with user-specified
attributes.

Written by Ron Tymcio 10/3/95.
Seriously modified by Tracey Frescino 6/28/99
Then re-seriously modified by Ron Tymcio 2/26/00.
- Modified to use Geographic Coord.

Inputs:
.table Oracle user.table that has coordinate
info to build coverage
.cover Output coverage name
.where Oracle WHERE clause specifying boundary
criteria
.more Additional variables, if desired
.out Output filename for ASCII info, if
desired

Outputs:
A point coverage including additional variables
if specified
A comma delimited ASCII file if asked for.
The point coverage is projected to UTM zone 12

Set variables
$args .table .where .cover newsell newsel2 newsel3 .more atts atts2
.more2 outatts .out

Begin - prompt for Oracle user.tablename
&do &while [null %table%]
 &setvar .table [response 'Enter the Oracle user.table that has
cooridinate information - fia.rllocs']
&end
&do &while [null %where%]
&type Enter WHERE clause to delineate coverage boundary
&setvar .where [response '{Include WHERE in statement - ex. where forest = 3}']
/*&end
/* Prompt for point coverage name.
/* &do &while [null % .cover %]
 &setvar .cover [response 'Enter the name of output coverage']
&end

/**
*********************/
/* Erase any existing INFO tables or ASCII files
**
**
rm tempcoord.dat
rm newtemp1.dat
rm newtemp2.dat
rm newtemp3.dat
&data arc tables
kll tempcoord
kll tempatts
kll tempatts2
kll newtemp1
kll newtemp2
kll newtemp3
q stop;
&end

/**
*********************/
/* Set Oracle SELECT statement using inputted table and where clause info.
**
**
&if [NULL % .where %] &then
 &setvar .select := [quote SELECT plotid, longitude*-1 longitude, latitude FROM %.table%]
&if not [NULL % .where %] &then
 &setvar .select := [quote SELECT plotid, longitude*-1 longitude, latitude FROM %.table% [unquote % .where %]]

/**
*********************/
/* Connect to Oracle and define variables for INFO
**
&data arc
connect oracle fia/rre
dbmsinfo oracle %.select% tempcoord define
 plotid %.cover% id 8 8 I;
 longitude longitude 11 11 N 6;
 latitude latitude 10 10 N 6;
end;
tables
 sel tempcoord;
reselect longitude = 0;
purge;y;
set tempcoord;
unload tempcoord.dat %.cover%-id, longitude, latitude, delimited;
q stop;

/***
/* Kill old coverage if it exists and create new coverage
/***
&if [exists %.cover% -cover] &then kill %.cover% all

generate tempcover
input tempcoord.dat
point
q

build tempcover point
/*quit
/*&end

/***
/* Project cover to UTM 12
/***

project cover tempcover %.cover%
/fsfiles/unit/fia/gis/projections/dd2utm12.prj
build %.cover% point
kill tempcover all
quit
&end

/***
/* Add the plotid attribute to the point coverage by adding an
additional column
/* called plotid and copying the cover-id values to the plotid column.
/***

&data arc
tables
additem %.cover%.pat plotid 10 10 I
set %.cover%.pat
calc plotid = %.cover%-id
q stop;
&if [exists temp1 -cover] &then kill temp1 all
&if [exists temp2 -cover] &then kill temp2 all
&if [exists temp3 -cover] &then kill temp3 all
&if [exists temp1prj -cover] &then kill temp1prj all
&if [exists temp3prj -cover] &then kill temp3prj all
quit
&end

/***
/* To add additional attributes to point coverage
&do &while [null &atts%]
 &sv atts := [response 'Do you want to add additional attributes to
the point coverage (y/n)? ']
&end
&if &atts% EQ 'n' OR &atts% EQ 'N' &then
 &return &inform Bye
&if &atts% EQ 'y' OR &atts% EQ 'Y' &then
&do
 /*
 /* Prompt for added attribute variables
 /*
 &do &while [null &.more%]
 &setvar &.more := [response 'Enter variables (up to 12) separated
with commas (ex. forttyp,lba,...)']
&end

 /**
 /* To pull the data from Oracle
 ***/
&if [NULL &.where%] &then
 &setvar &select2 := [quote select plotid, [unquote &.more%] from
&.table%]
&if not [NULL &.where%] &then
 &setvar &select2 := [quote select plotid, [unquote &.more%] from
&.table% [quote &.where%]]
&data arc
 connect oracle
dbmsinfo oracle &.select2% tempatts define
 plotid &.cover% -id 10 10 I;
end;
quit
&end

/**
/* To extract variable names and change types from binary to
integer
***/
&data arc tables
&sv var := one
&sv left := two
&sv last := 0
/* sel tempatts */
/* alter &.cover% -id */
/* 15, , , ,
&do &until &last% = 99
 &sv var := [before &.more% ,]
&if &var% EQ &.more% &then
 &sv last = 99
&else
 &sv .more := [after &.more% ,]
 sel tempatts
 alter &var%
 &var% ;;
Join attributes to the point coverage attribute table

```
joinitem %.cover%.pat tempatts %.cover%.pat %.cover%-id plotid
```

```
&do &while [null %atts2%]
  &sv atts2 := [response 'Do you want to add any more attributes to
  the point coverage (y/n)? ']
&end
&if %atts2% EQ 'y' OR %atts2% EQ 'Y' &then
  &do
    &do &while [null %more2%]
      &setvar .more2 [response 'Enter variables (up to 12)
      separated with commas (ex. fortyp,lba,...)']
    &end
    &setvar .select3 := [quote select plotid, [unquote %more2%]
      from %.table% [unquote %where%]]
  &end
&data arc
  connect oracle
dbmsinfo oracle %select3% tempatts2 define
  plotid plotid 10 10 I;
  quit
&end
```

Extract variable names and change type from binary to integer

```
&data arc tables
&sv var := one
&sv left := two
&sv last := 0
&do &until %last% = 99
  &sv var := [before %more2% ,]
  &if %var% EQ %more2% &then
    &sv last = 99
  &else
    &sv .more2 := [after %more2% ,]
    sel tempatts2
    alter %var%
    %var%;
    B;0;;
&end
q stop
&end
```
joinitem %.cover%.pat tempatts2 %.cover%.pat plotid
quit
&end
&end

/***
/* Build the final coverage

build %.cover% point

/***
/* To unload the coverage attribute table to a comma delimited
ASCII file

&do &while [null %outatts%]
&sv outatts := [response 'Do you want an ASCII file of the
coverage attribute table (y/n)? ']
&end
&if %outatts% EQ 'n' OR %outatts% EQ 'N' &then
&return &inform Bye
&if %outatts% EQ 'y' OR %outatts% EQ 'Y' &then
&do

/***
/* Prompt for output filename
/***
&do &while [null %.out%]
&setvar .out [response 'Enter name for output ASCII file']
&end
&if [exists %.out%] &then
&do
&sv opt := [response 'The file exists. Do you want to
overwrite it (y/n)? ']
&if %opt% EQ 'n' OR %outatts% EQ 'N' &then
&setvar .out [response 'Enter name for output ASCII
file']
&else
&sys rm %.out%
&end
&data arc tables
sel %.cover%.pat
alter %.cover%-id
'15,,,,,
unload %.out%, delimited;
q stop;
quit
&end
&end
&else
&return &error Must enter y or n
Appendix A-4. ArcView project with multiple scripts for extracting information from Oracle
(Written by Tracey Frescino)

ARCVIEW PROJECT: ORA_EXPLORE.APR

What you can do:

- Generate a point shape file/theme from Oracle.
- Project a theme and add it to a projected view.
- Add attributes to an existing or generated point theme by exploring the Oracle database.
- Exports a theme's attribute table to an Arc shapefile, a comma-delimited ASCII file, or an INFO file.
- Generate an ASCII file from selected Oracle data.

To generate a point shape file/theme from Oracle referenced in decimal degrees (No projection).

1. **ORACLE TABLE**: Select table where coordinates are stored.
 - R1LOCS Region 1 NFS
 - UTLOCS Utah (all owners)
 - MTLOCS_ALL Montana (all owners)

2. **WHERE**: Do you want to subset the location data with a where clause?
 - If yes: Select criteria variable (ex.) glu
 - Select one or more value (ex.) 20

3. **Convert to shapefile**:
 - File Name: theme?.shp in /fsfiles/unit/fia/gis/av_proj/montana/anal/temp/

(DEFAULT)
To PROJECT theme and add it to a PROJECTED view.

Note: You must know projection of the view (or themes in view) (ex.) UTM - 1927; Zone 12

(1) Select theme to project (make active)
(2) Click on icon

(3) **Projector!** Pick output units (ex.) meters UTM, ALBERS
 feet STATE PLANE

(4) **Projection Properties:**
 Category: Projections of the World
 UTM - 1927) - Change to coordinate system (ex. check Zone if UTM)
 Recalculate area, perimeter, ... using meters? - YES
 Add projected shapefile(s) as theme(s) to a View? - YES

(5) **Projector! Add Theme to:** - Select View from list to add projected theme to

(6) **Project:**
 File Name: theme?.shp in /fsfiles/unit/fia/gis/av_proj/montana/anal/temp/
 (DEFAULT) (Change name keeping .shp extension. You can overwrite an existing shapefile
 by selecting it from the list or typing in the same name.)

The theme (shapefile) will appear in View. Click in box to display.

To add attributes to an existing or generated point theme.

(1) **LOCATION/TREE DATA:** Select type of data (location or tree).
 Location - plot level data
 Tree - summed tree level data

(2) **ORACLE TABLE:** Select table(s) where data are found

(3) **WHERE:** Do you want to subset location data with a where clause?
 If yes: Select table where criteria variable is found.
 Select criteria variable (ex. owner)
 Select one or more values. (ex. 11)
Do you want to add another where clause?

Note: Any plotid from the selected Oracle table that matches the theme plotid will be joined.

(4) **TABLE VARIABLES**: Do you want to select any variables from the selected table.
If yes: Select variables from list
Do you want to select any more variables from the selected table?

Note: If selecting tree data:
GROUP FUNCTION: Select a group function (SUM, AVG, MAX, MIN, COUNT)
Do you want to subset the tree data with a tree where clause?

(5) **SQL STATEMENT**: Yes/No

(6) **JOIN**: Do you want to join data to a theme?
If yes: Select theme from list

To export a theme attribute table to an Arc shapefile, a comma-delimited ASCII file, or an INFO file.

(1) **THEME ATTRIBUTE TABLE**: Select the theme attribute table you want to export.

(2) **EXPORT**: Export format: (SHAPE, INFO, Delimited Text)

(3) **EXPORT**:
File Name: theme?.ext in /fsfiles/unit/fia/gis/av_proj/montana/anal/temp/ (DEFAULT)
(Change name keeping the extension. You can overwrite an existing file by selecting it from the list or typing in the same name.)
The theme (shapefile) will appear in View. Click in box to display.

To generate a comma-delimited ASCII file (only) of selected Oracle data.

(1) **LOCATION/TREE DATA**: Select type of data (location or tree).
Location - plot level data
Tree - summed tree level data

(2) **ORACLE TABLE**: Select table(s) where data are found
WHERE: Do you want to subset location data with a where clause?
 If yes: Select table where criteria variable is found.
 Select criteria variable (ex.) owner
 Select one or more values. (ex.) 11

Do you want to add another where clause?

Note: Any plotid from the selected Oracle table that matches the theme plotid will be joined.

TABLE VARIABLES: Do you want to select any variables from selected table.
 If yes: Select variables from list
 Do you want to select any more variables from selected table?

Note: If selecting tree data:

GROUP FUNCTION: Select a group function for variable (SUM, AVG, MAX, MIN, COUNT)

Do you want to subset the tree data with a tree where clause?

SQL STATEMENT: Yes/No

ASCII FILE: Do you want an ASCII file of the attribute data?
 If yes: Select fields you want to export to ASCII.

EXPORT TO ASCII:
 File Name: theme?.txt in /fsfiles/unit/fia/gis/av_proj/montana/anal/temp/
 (DEFAULT)
 (Change name keeping .txt extension. You can overwrite an existing shapefile
by selecting it
 from the list or typing in the same name.)

The theme (shapefile) will appear in View. Click in box to display.

To remove any fields joined to the attribute table of selected theme(s).

UNJOIN: Select theme(s) to remove joined fields.

To delete tables from the Project.

DELETE: Are you sure you want to delete <table name>?
Appendix A-5. Instructions for loading and viewing national 2-week composite AVHRR data

Process:
1. Read the Readme.1st file on the CD to determine the location of the image data files on the CD and to get general information on the AVHRR data sets.
2. From Imagine toolbar, go to MAIN—IMPORT/EXPORT—
 - Type: Generic Binary
 - Media: cd-rom or file
 - Specify input and output files
 - Data format: bsq
 - Data type: unsigned 8-bit
 - Number of rows: 2889
 - Number of columns: 4587
 - Number of bands: 6
 - Select bands in multiple files option then select each image file you want and what band designation it will have
 All other prompts are left at their (0) default settings
3. From Viewer, go to FILE—OPEN—RASTER to view image
4. From Viewer, go to UTILITY—LAYER/INFO, then EDIT—Change map model
 - Upper left X: -2050000
 - Upper left Y: 752000
 - Pixel size X: 1000
 - Pixel size Y: 1000
 - Units: meters
 - Projection: Lambert-Azimuth—equal area
 - Indicate yes to change for all bands then EDIT—PROJECTOTION
 - Long of center: -100
 - Lat of center: 45
 - Apply to all layers

Next, to create statewide grids for each band, see:
“Using and Arc coverage to subset and image and generate grids”
Appendix A-6. Instructions for using an Arc coverage to subset an image in Imagine.
(Written by Tracey Frescino.)

######### USING AN ARC COVERAGE TO SUBSET AN IMAGE IN IMAGINE #########

Open the image to be subsetted:

(1) From Viewer, go to FILE--OPEN--RASTER LAYER...

(2) Enter image filename and click on RASTER OPTIONS to set view extent (Fit to Frame)

CREATE AN AREA OF INTEREST (AOI) LAYER

Open the AOI subset file:

(3) First, set up a new AOI layer: FILE--NEW--AOI LAYER...

(4) Then, open the subset coverage (vector layer): FILE--OPEN--VECTOR LAYER...

Note: the subset coverage must be an Arc coverage having polygon topology and having compatible projections (To check projections, See Page 2)

Change vector layer to polygon layer:

Note: As a default, Imagine loads an ARC coverage as a vector (line) layer and not as a polygon layer. This step turns on the polygon topology

(5) From Viewer, go to VECTOR--VIEWING PROPERTIES...

(6) Click on the POLYGON button and APPLY

(7) Close window (No need to save)

Select AOI polygon/polygons and add them to the AOI layer:

(8) Use the mouse to click inside the polygon and select it. If you want to select more than one polygon, hold the SHIFT key while clicking on each polygon.

(9) Then, go to AOI--COPY SELECTION TO AOI...

Note: If you have additional polygons you want to include, use the mouse button
again to select each AOI polygon (again, using the shift key on the keyboard for multiple polygons). Once they are all selected, they must be grouped together using AOI--GROUP

Save AOI to a file:

(10) From Viewer, go to FILE--SAVE--SAVE AOI AS...

Note: **DO NOT** click on Selected Only box

Subset image using AOI

Set subset boundary:

(11) Click on the AOI in the Viewer (This should draw a boundary box around the AOI)

(12) Click right mouse button and select INQUIRE BOX... from menu

(13) In window, click on FIT TO AOI and APPLY (This should adjust coordinates to AOI)

Note: Keep window open

Subset image:

(14) From the main menu, go to INTERPRETER--UTILITIES--SUBSET

(15) Specify your input (.img) and output (.img) files.

(16) Click on FROM INQUIRE BOX (Located right of Coordinate Type: Subset Definition)

(This should change the Map coordinates to match the coordinates from the INQUIRE BOX window above. If the coordinates do not match, either try to set boundary again or manually type in the correct coordinates from the INQUIRE BOX window.)

(17) Click on the AOI button at the bottom of the window. In the window that pops up, select FILE and specify the AOI file that you saved. Then click on OK.

(18) Click on: Ignore Zero Output Stats.

(19) Click on OK
CONVERT IMAGE TO GRID IN IMAGINE

(1) From main menu, go to IMPORT

(2) In window, click on Export

(3) Change Type: GRID
 Media: FILE

(4) Enter Input File and Output File names

 Note: When you enter an Input File name, the Output File name will
default to the
 same name having a .grid extension instead of a .img
 extension (and in the
 same directory. You can change the name and directory if
 desired.

(5) Click OK

 **Another window should appear titled: Export GRID Data containing
 info on
 the number of layers and rows and columns

 If you want to exclude certain layers, click on EXPORT OPTIONS...

(6) Click OK again

PROJECTIONS IN IMAGINE

Check arrangement of layers (The layer you want to check projections
must be on top)

(1) From Viewer, VIEW--ARRANGE LAYERS...

 If the layer you are interested in is not on top, click on the
 layer and click UP
 until it is on top. Then click APPLY. Take note of the
 arrangement because you
 may want to switch the layers back to the way they were.
Check projection info

(2) From Viewer, go to **UTILITY--LAYER INFO**...

Take note of:
- **Map Info**: the units
- **Projection Info**: everything

Note: If you are comparing projections to see if coverages are compatible, keep this window open and bring up the **Layer Info**... window from the other coverage using the same process.
Appendix A-7. Example of extracting predictor variables at 5km and 1km grid points in Montana

Start arc grid from ascii directory

```bash
cd /spatial/data/ascii
arc
grid
```

Sample 1 and 5k grids from nlcd coverage and put in file in transfer directory

```bash
transfer/mtl_nlcdlk.dat = sample(mtl/map1000/mtl_1k.txt,
    ../factory/nlcd/mt_nlcd_u12,nearest)
transfer/mtl_nlcd5k.dat = sample(mtl/responses/mtl_xy5_u12.dat,
    ../factory/nlcd/mt_nlcd_u12,nearest)
transfer/mt2_nlcdlk.dat = sample(mt2/map1000/mt2_1k.txt,
    ../factory/nlcd/mt_nlcd_u12,nearest)
transfer/mt2_nlcd5k.dat = sample(mt2/responses/mt2_xy5_u12.dat,
    ../factory/nlcd/mt_nlcd_u12,nearest)
```

Sample 1 and 5k grids from dma and avhrr coverages and put in file in transfer directory (I hope the long paths on the sample coverages don't screw it up... normally I run within the coverage directory itself.)

```bash
transfer/mt1_nlcdlk.dat = sample(mt1/map1000/mt1_1k.txt,
    ../factory2/predictors/montana/mtdem1000_u12,
    ../factory2/predictors/montana/mtaspl1000_u12,
    ../factory2/predictors/montana/mtslpl1000_u12,
    ../factory2/predictors/montana/mt_avh1_u12,
    ../factory2/predictors/montana/mt_avh2_u12,
    ../factory2/predictors/montana/mt_avh3_u12,
    ../factory2/predictors/montana/mt_avh4_u12,
    ../factory2/predictors/montana/mt_avh5_u12,
    ../factory2/predictors/montana/mt_andvi_u12,
    nearest)
transfer/mt1_avh5k.dat = sample(mt1/responses/mt1_xy5_u12.dat,
    ../factory2/predictors/montana/mtdem1000_u12,
    ../factory2/predictors/montana/mtaspl1000_u12,
    ../factory2/predictors/montana/mtslpl1000_u12,
    ../factory2/predictors/montana/avh1_u12,
    ../factory2/predictors/montana/avh2_u12,
    ../factory2/predictors/montana/avh3_u12,
    ../factory2/predictors/montana/avh4_u12,
    ../factory2/predictors/montana/avh5_u12,
    ../factory2/predictors/montana/mt_andvi_u12,
    nearest)
```

Divide 1k files for floppy transfer

```bash
## divide lk files for floppy transfer
```
transfer/mt2_avhlk.dat1 = sample(mt2/map1000/mt2_1k.txt,../factory2/predictors/montana/mtdem1000_u12, nearest)
transfer/mt2_avhlk.dat2 = sample(mt2/map1000/mt2_1k.txt,../factory2/predictors/montana/mtasp1000_u12,../factory2/predictors/montana/mtslp1000_u12, nearest)
transfer/mt2_avhlk.dat3 = sample(mt2/map1000/mt2_1k.txt,../factory2/predictors/montana/mt_andvi_u12,../factory2/predictors/montana/mtAvh1_u12,../factory2/predictors/montana/mtAvh2_u12, nearest)
transfer/mt2_avhlk.dat4 = sample(mt2/map1000/mt2_1k.txt,../factory2/predictors/montana/mtAvh3_u12,../factory2/predictors/montana/mtAvh4_u12,../factory2/predictors/montana/mtAvh5_u12, nearest)

transfer/mt2_avh5k.dat = sample(mt2/responses/mt2_xy5_u12.dat, ../factory2/predictors/montana/mtdem1000_u12, ../factory2/predictors/montana/mtasp1000_u12, ../factory2/predictors/montana/mtslp1000_u12, ../factory2/predictors/montana/avh1_u12, ../factory2/predictors/montana/avh2_u12, ../factory2/predictors/montana/avh3_u12, ../factory2/predictors/montana/avh4_u12, ../factory2/predictors/montana/avh5_u12, ../factory2/predictors/montana/mt_andvi_u12, nearest)

bye
bye

compress all files and check that each is <1.2M to fit on floppy

cd transfer
compress transfer/mt1_nlcd1k.dat
transfer/mt1_nlcd5k.dat
transfer/mt2_nlcd1k.dat
transfer/mt2_nlcd5k.dat
transfer/mt1_avhlk.dat
transfer/mt1_avh5k.dat
transfer/mt2_avhlk.dat1
transfer/mt2_avhlk.dat2
transfer/mt2_avhlk.dat3
transfer/mt2_avhlk.dat4
transfer/mt2_avh5k.dat
Appendix B: Installation Notes for S-Plus Libraries
Appendix B-1. Installation procedures for mda library of functions.

To install the mda software:
#----------------------------

in unix, copy share file here and unpack

 mkdir /export/jerry2/gretchen/diss/s/mda
 mkdir .Data
 mkdir .Data/.Help
 sh ratfor.shar

in unix, prepare directory as chapter for converted functions

 cd /export/jerry2/gretchen/diss/s/mda/.Data
 mkdir _Meta
 cd ..
 Splus5 CHAPTER
 Splus5 make

in Splus, convert the old library and help functions

 convertOldLibrary("/export/jerry2/gretchen/diss/s/mda")
 convertOldDoc("/export/jerry2/gretchen/diss/s/mda",
 "/export/jerry2/gretchen/diss/s/mda")

in unix, global change "dyn.load" to "dyn.open" in all s-functions
 (dumpdata.mda)
then source (does convertOldLibrary do this?)

 source("/export/jerry2/gretchen/diss/s/mda/dumpdat2.mda")

in Splus, create pointers to mars object and help files

 attach("/export/jerry2/gretchen/diss/s/mda")
library or CHAPTER might be better?
 .mars.object_"/export/jerry2/gretchen/diss/s/mda/MARS.o"
 .bruto.object_"/export/jerry2/gretchen/diss/s/mda/BRUTO.o"
Installation procedures for FUNFITS

In UNIX

```
mkdir Funfits
cd Funfits

# now move the tar file funfits51.tar.Z into this directory

uncompress funfits51.tar.Z
tar -xvf funfits51.tar

## run make file **line by line** and troubleshoot

### initialize directories

mkdir funs
mkdir data
mkdir bin
mkdir lib
mkdir lib/Gcvpack
mkdir lib/Nnreg

# set Splus5 work and set home directory for FUNFITS

setenv S_WORK /export/jerry2/gretchen/s5work
Splus5 < dump.header.q

# source functions and data

cat dfun?.q | Splus5
cat ddata?.q | Splus5
cat dextra.q | Splus5

# there are few functions that have S and Fortran versions
# use the S code ones as the default (but see fortran item below)

Splus5 < set.scode.S
chmod og+r .Data
chmod og+r .Data/.Help
chmod og+r .Data/.Help/*

# compile all FORTRAN that will be dynloaded into a shared library

cd src/dynload
Splus5 CHAPTER
```
S.so is the created shared library this should be moved into the
FUNFITS home directory

```
mv S.so ../..
```

rm the .o files and move back up to FUNFITS home directory
```
rm *.o
cd ../..
```

Splus5 < set.fort.S
chmod og+r bin

```
# These all deal with stand alone FORTRAN program that are executed in
# the shell with the unix command in Splus
# cover:
touch null.o
rm *.o
f77 -O src/Cover/cover.f -o bin/cover
chmod og+x bin
```

```
# nnreglib
touch null.o
rm *.o
f77 -O src/Nnreg/nnreg.f src/Nnreg/lib/*.f -o bin/nnreg
f77 -O src/Nnreg/nnregci.f src/Nnreg/lib/*.f -o bin/nnregci
chmod og+x bin/nnreg
chmod og+x bin/nnregci
```

```
# lle
touch null.o
rm *.o
f77 -O src/Lle/*.f -o bin/lle
touch null.o
rm *.o
chmod og+x bin/lle
```

```
## source S-code
## switch to S-functions
```
Appendix C: S-Plus Code for Modeling System
source("/export/jerry2/gretchen/diss/s/myfun/f0.functions")

input, filter, and restructure data

eco"ut2"
data.path"/export/jerry2/gretchen/diss/dat/"
results.path"/export/jerry2/gretchen/diss/output/
seed1 1
holdout .3
source("/export/jerry2/gretchen/diss/s/myfun/f1.data", immediate=T)
dat.map.ut2_dat.map
datd.all.ut2_datd.all
datd.mod.ut2_datd.mod
datd.tst.ut2_datd.tst
datc.all.ut2_datc.all
datc.mod.ut2_datc.mod
datc.tst.ut2_datc.tst

dat.map_dat.map.ut2
datd.all_datd.all.ut2
datd.mod_datd.mod.ut2
datd.tst_datd.tst.ut2
datc.all_datc.all.ut2
datc.mod_datc.mod.ut2
datc.tst_datc.tst.ut2

quick reset for reruns

dat.map_dat.map.ut2
datd.all_datd.all.ut2
datd.mod_datd.mod.ut2
datd.tst_datd.tst.ut2
datc.all_datc.all.ut2
datc.mod_datc.mod.ut2
datc.tst_datc.tst.ut2

model FORTYP.2
slow T
Xname "all"
Yname "FORTYP.2"
source("/export/jerry2/gretchen/diss/s/myfun/f2.model", immediate=T)
FORTYP2.mod.ut2_mars.mod
FORTYP2.mod_mars.mod

model FORTYP.3
Yname "FORTYP.3"
source("/export/jerry2/gretchen/diss/s/myfun/f3.model", immediate=T)
Yname "BIOTOT"
source("/export/jerry2/gretchen/diss/s/myfun/f2.model",immediate=T)
 BIOTOT.mod.ut2_mars.mod
 BIOTOT.mod_mars.mod

Yname "CRCOV"
source("/export/jerry2/gretchen/diss/s/myfun/f2.model",immediate=T)
 CRCOV.mod.ut2_mars.mod
 CRCOV.mod_mars.mod

Yname "STAGECL"
source("/export/jerry2/gretchen/diss/s/myfun/f2.model",immediate=T)
 STAGECL.mod.ut2_mars.mod
 STAGECL.mod_mars.mod

Yname "QMDALL"
source("/export/jerry2/gretchen/diss/s/myfun/f2.model",immediate=T)
 QMDALL.mod.ut2_mars.mod
 QMDALL.mod_mars.mod

map.path "/export/jerry2/gretchen/diss/maps/
source("/export/jerry2/gretchen/diss/s/myfun/f3.map",immediate=T)

source("/export/jerry2/gretchen/diss/s/myfun/f4.strat",immediate=T)
source("/export/jerry2/gretchen/diss/s/myfun/f5.results", immediate=T)
Appendix C-0. p0.functions

```
####
# p0.functions: supplemental function sourcefiles
####

####
# data functions
####

## class.ind: generates a class indicator function from a given factor
class.ind_function(cl) {
  n_length(cl)
  cl_as.factor(cl)
  x_matrix(0,n,length(levels(cl)))
  x[(1:n)+n*(codes(cl)-1)]_1
  dimnames(x)_list(row.names(cl),levels(cl))
  x
}

## nona.fun: eleiminates NA's from dataframe
nonal.fun_function(xl) {sum(match(is.na(xl),T,nomatch=0))}

##f.order: establish plotting order of variables in dataframe
f.order_function(fvar,cvar){
  f.medians_tapply(cvar,fvar,median)
  newvar_ordered(fvar,levels=names(sort(f.medians)))
  return(newvar)
}

## f.zerol: rescale values to 0-1
f.zerol_function(x){
  x0l_(x-min(x))/(max(x)-min(x))
  return(x0l)
}

## f.nlcdmod: collapse nlcd veg to 0, 40, 50
f.nlcdmod_function(y) {
  n_length(y)
  yhat_rep(0,n)
  yhat[yhat[match(y,c(40,41,42,43,91))!="NA"]_1
  return(yhat)
}

## trcos: transform aspect to wetness index
trcos_function(x,deg){
  trasp_(cos((x-deg)*pi/180)+1)/2
  return(trasp)
}

####
# map accuracy functions
####

## khat (written by T. Frescino)
```
f.khat_function(x) {
 N_sum(apply(x, 1, sum))
 total_0
 for(i in 1:(nrow(x))) {
 total_sum(x[i,])*sum(x[,i]) + total
 }
 (N*sum(diag(x))-total)/(N^2-total)
}

khat.var (written by T. Frescino)
f.khat.var_function(x) {
 N_sum(apply(x, 1, sum))
 thetal_sum(diag(x)/N)
 theta2_0
 for(i in 1:(nrow(x))){
 theta2_((sum(x[i,])*sum(x[,i]))/N^2) + theta2
 }
 theta3_0
 for(i in 1:(nrow(x))){
 theta3_((sum(x[i,]) + sum(x[,i])) * x[i,i])/N^2 + theta3
 }
 theta4_0
 for(i in 1:(nrow(x))){
 theta4j_0
 for(j in 1:(ncol(x))){
 theta4j_(((sum(x[i,]) + sum(x[,j])))^2 * x[i,j])/N^3 + theta4j
 }
 theta4_theta4j+theta4
 }
 (((thetal*(1-thetal))/(1-theta2)^2) +
 (2*(1-thetal) * (2*thetal*theta2 - theta3))/((1-theta2)^3) +
 (((1-thetal)^2) * (theta4-4*theta2^2))/(1-theta2)^4)*1/N
}

mykhat (written by T. Frescino)
f.mykhat_function(x) {
 N_sum(x)
 xiplus_apply(x,2,sum)
 xplusi_apply(x,1,sum)
 return((N*sum(diag(x))-sum(xiplus*xplusi)) / (N^2-
 sum(xiplus*xplusi)))
}

mapacc0
f.mapacc0_function(tru,pred) {
 nrl_length(tru)
 confus.mat_table(tru,pred)
 if(ncol(confus.mat)==1){confus.mat_cbind(confus.mat,c(0,0))}
 pcc_round(sum(diag(confus.mat))/nrl,3)
 pcc.se_round(sqrt(pcc*(1-pcc)/nrl),3)
 prod0_round(confus.mat[1,1]/sum(confus.mat[1,]),3)
prod1_round(confus.mat[2,2]/sum(confus.mat[2,]),3)
kappa_round(f.khat(t(confus.mat)),3)
kappa.se_round(sqrt(f.khat.var(confus.mat)),3)
return(pcc,pcc.se,prod0,prod1,kappa,kappa.se)}

mapaccl
f.mapaccl_function(tru,pred,span) {
 rho_round(cor(tru,pred),3)
 good_pred[abs(tru-pred) <= (span*pred)]
 pwi_round(length(good)/length(pred),3)
 rmse_round(sqrt(sum((pred-tru)**2)/n),3)
 return(rho,pwi,rmse)
}

#####
stratification functions
#####

dss
f.dss_function(y,strata,strcodes,nph,N,bin) {
 L_length(strcodes)
 np_sum(nph)
 wh_nph/np
 nh_rep(0,L)
 ybh_rep(0,L)
 s2h_rep(0,L)
 for (h in 1:L){
 crit_strata==strcodes[h]
 nh[h]_length(y[crit])
 ybh[h]_mean(y[crit])
 if (bin==1) {s2h[h]_nh[h]*ybh[h]*(1-ybh[h])/(nh[h]-1)}
 else {s2h[h]_var(y[crit])}
 }
 ybst_sum(wh*ybh)
 vybst_sum((wh^2)*s2h/nh)-sum(wh*s2h/N)+
 ((N-np)/(np*(N-1)))*sum(wh*(ybh-ybst)^2)
 yb_ybst
 seyb_sqrt(vybst)
 lyb_yb-1.96*seyb
 uyb_yb+1.96*seyb
 allo_round(nh/sum(nh),2)
 proallo_round(wh,2)
 optallo_round(nh*sqrt(s2h)/sum(nh*sqrt(s2h)),2)
 alldif_sum(abs(allo-optallo))
 return(N*yb,N*seyb,N*lyb,N*uyb,allo,proallo,optallo,alldif)
}

srs
f.srs_function(y,type) {
 yb_mean(y)
 n_length(y)
 if (type==0) {seyb_sqrt(yb*(1-yb)/n)}
 else {seyb_sqrt(var(y)/n)}
lyb_yb-1.96*seyb
uyb_yb+1.96*seyb
pcntse_seyb/yb
return(round(c(yb,seyb,lyb,uyb,pcntse),3))

str
f.str_function(y,strata,strcodes,Wh,type) {
 n_length(y)
 L_length(strcodes)
 nh_rep(0,L)
 ybh_rep(0,L)
 s2h_rep(0,L)
 for (h in 1:L) {
 crit_strata==strcodes[h]
 nh[h]_length(y[crit])
 ybh[h]_mean(y[crit])
 if (type==0) {s2h[h]_ybh[h]*(1-ybh[h])}
 else{s2h[h]_var(y[crit])}
 }
 ybst_sum(Wh*ybh)
 vybst_sum(Wh*s2h)/n
 yb_ybst
 seyb_sqrt(vybst)
 lyb_yb-1.96*seyb
 uyb_yb+1.96*seyb
 pcntse_seyb/yb
 return(round(c(yb,seyb,lyb,uyb,pcntse),3))
}
Appendix C-1. pl.data

specify inputs and outputs
in.fld paste(data.path,eco,"/",eco,"_fld.dat",sep="")
in.avh5k_paste(data.path,eco,"/",eco,"_avh5k.dat",sep="")
in.avhlk_paste(data.path,eco,"/",eco,"_avhlk.dat",sep="")
in.nlcdlk_paste(data.path,eco,"/",eco,"_nlcdlk.dat",sep="")
in.nlcdSk paste(data.path,eco,"/",eco,"_nlcdSk.dat",sep="")
in.lk paste(data.path,eco,"/",eco,"_lk.dat",sep="")
out.map_paste(data.path,eco,"/",eco,"_map.dat",sep="")

read data and handle missing values
dat.fld_read.table(in.fld,header=T,sep="",as.is=T)
if ((eco=="az1") | (eco=="az2")){
 dat.fld$EASTING_dat.fld$UTME
 dat.fld$NORTHING dat.fld$UTMN}
if (eco=="utl") {dat.fld$EASTING round(dat.fld$EASTING/1000)*1000}
for(i in 1:ncol(dat.fld)) {dat.fld[,i)_as.nurneric(dat.fld[,i])}
if((eco=="az2") I (eco=="azl")) {
 dat.nlcd5k dat.nlcd5k[
 (dat.nlcd5k$EASTING/1000==round(dat.nlcd5k$EASTING/1000)) &
 (dat.nlcd5k$EASTING/1000==round(dat.nlcd5k$EASTING/1000))],
 dat.avh5k dat.avh5k[...]
(dat.avh5k$EASTING/1000==round(dat.avh5k$EASTING/1000)) &
(dat.avh5k$EASTING/1000==round(dat.avh5k$EASTING/1000)),]
dat.tmp_merge(dat.fld,dat.nlcd5k,all=T)
dat.tmp[is.na(dat.tmp)]_0
dat.fld_dat.tmp[,-length(names(dat.tmp))]
}

print("# create mapping data frame")

print("# check proportion of non-Sk plots")

nrow(dat.fld[dat.fld$GRID==6,])/nrow(dat.fld)

print("# create forest type variables")

n_nrow(dat.fld)
dat.fld$FORTYP.2_rep(1,n)
dat.fld$FORTYP.2[dat.fld$FORTYP=="NA" | dat.fld$FORTYP==0]_0
dat.fld$FORTYP.3_rep(1,n)
dat.fld$FORTYP.3[dat.fld$FORTYP.2==0]_0
if ((eco!="mt1")&(eco!="mt2")){
 dat.fld$FORTYP.3[match(dat.fld$FORTYP,c(76:80,88,90,93,97))!="NA"]_0
if ((eco=="mt1")|(eco=="mt2")){
 dat.fld$FORTYP.3[match(dat.fld$FORTYP,c(1,31:39))!="NA"]_0

if ((eco!="mt1")&(eco!="mt2")){
 dat.fld$TWN_rep(2,n)
 dat.fld$TWN[dat.fld$FORTYP.2==0]_0
 dat.fld$TWN[match(dat.fld$FORTYP,c(76:80,88,90,93,97))!="NA"]_1
if ((eco=="mt1")|(eco=="mt2")){
 dat.fld$TWN_rep(1,n)
 dat.fld$TWN[dat.fld$FORTYP.2==0]_0
 dat.fld$TWN[match(dat.fld$FORTYP,c(1,31:39))!="NA"]_2

print("# transform aspect")
Source Code

```r
# Convert ASPECT 1K to numeric
dat.avh5k$ASPECT.1K <- as.numeric(dat.avh5k$ASPECT.1K)
dat.avh5k <- dat.avh5k[dat.avh5k$ASPECT.1K >= 0,]
# Convert ASPECT 1K to numeric
dat.avhlk$ASPECT.1K <- as.numeric(dat.avhlk$ASPECT.1K)
dat.avhlk <- dat.avhlk[dat.avhlk$ASPECT.1K >= 0,]
# Convert ASPECT 1K to numeric
dat.map$ASPECT.1K <- as.numeric(dat.map$ASPECT.1K)
dat.map <- dat.map[dat.avh5k$ASPECT.1K >= 0,]

# Convert TRASP 1K to cosine
dat.avh5k$TRASP.1K <- cos(dat.avh5k$ASPECT.1K, 30)
# Convert TRASP 1K to cosine
dat.avhlk$TRASP.1K <- cos(dat.avhlk$ASPECT.1K, 30)
# Convert TRASP 1K to cosine
dat.map$TRASP.1K <- cos(dat.map$ASPECT.1K, 30)

### Print:

"# collapse vegetation classes"

NLCD2 <- rep(0, nrow(dat.nlcd5k))
NLCD2[match(dat.nlcd5k$NLCD, c(41, 42, 43, 91)) != "NA"] <- 40
NLCD2[match(dat.nlcd5k$NLCD, c(51, 52, 53)) != "NA"] <- 50

dat.nlcd5k$NLCD <- NLCD2

NLCD2 <- rep(0, nrow(dat.map))
NLCD2[match(dat.map$NLCD, c(40, 41, 42, 43, 91)) != "NA"] <- 40
NLCD2[match(dat.map$NLCD, c(50, 51, 52, 53)) != "NA"] <- 50

dat.map$NLCD <- NLCD2

"# Create NDVI"

# dat.gap5k$NDVI <- (dat.gap5k$TM.4 - dat.gap5k$TM.3) / (dat.gap5k$TM.4 + dat.gap5k$TM.3)
# dat.gaplk$NDVI <- (dat.gaplk$TM.4 - dat.gaplk$TM.3) / (dat.gaplk$TM.4 + dat.gaplk$TM.3)

"# identify factors"

# dat.fld$FORTYP.2_factor(dat.fld$FORTYP.2)
# dat.fld$FORTYP.3_factor(dat.fld$FORTYP.3)
# dat.fld$PILU_factor(dat.fld$PILU)
# dat.fld$PITYP_factor(dat.fld$PITYP)
# dat.fld$PITYP_factor(dat.fld$PHYCL)
# dat.fld$PITYP_factor(dat.fld$CURVECL)

dat.nlcd5k$NLCD_factor <- factor(dat.nlcd5k$NLCD)
dat.map$NLCD_factor <- factor(dat.map$NLCD)
crit_apply(dat.map, i, nonal.fun)

dat.map$NLCD_factor[crit < 1]
```

Explanation

This code snippet is part of a script that performs various data manipulations and calculations on environmental datasets. It includes steps for converting aspect angles to numeric values, calculating NDVI (Normalized Difference Vegetation Index), and categorizing vegetation classes. The script also includes functions for factor analysis and conditional selection based on criteria.
print("# merge data frames")

dat.all_merge(dat.fld,dat.gap5k,by=c("LONGITUDE","LATITUDE"))
dat.all_merge(dat.fld,dat.avh5k,by=c("EASTING","NORTHTHING"),all=F)
datb.all_merge(dat.all,dat.nlcd5k,by=c("EASTING","NORTHTHING"),all=F)

if (eco!="mt2"){
 datb.all_datb.all[,c("FORTYP.2","TWN","NVOLTOT","NGRWCF",
 "EASTING","NORTHTHING","ELEV.1K","TRASP.1K",
 "SLOPE.1K","AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]
}

if (eco=="mt2"){
 datb.all_datb.all[,c("FORTYP.2","TWN","NVOLTOT","NGRWCF",
 "EASTING","NORTHTHING","ELEV.1K","TRASP.1K",
 "AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]

 set.seed(seed1)
 testset_sample(nrow(datb.all),round(holdout*nrow(datb.all)))
datb.mod_datb.all[-testset,]
datb.tst_datb.all[testset,]

if (eco!="mt2"){
 datb.all_datb.all[datb.all$FORTYP.2==1,]
}

if (eco=="mt2"){
 datc.all_datb.all[datb.all$FORTYP.2==1,]

 datc.all_datc.all[,c("FORTYP.3","BIOTOT","STAGECL","QMDALL","CRCOV",
 "EASTING","NORTHTHING","ELEV.1K","TRASP.1K","SLOPE.1K",
 "AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]
}

if (eco=="mt2"){
 datc.all_datc.all[datb.all$FORTYP.2==1,]

 datc.all_datc.all[,c("FORTYP.3","BIOTOT","STAGECL","QMDALL","CRCOV",
 "EASTING","NORTHTHING","ELEV.1K","TRASP.1K",
 "AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]

 set.seed(seed1)
 testset_sample(nrow(datc.all),round(holdout*nrow(datc.all)))
datc.mod_datc.all[-testset,]
datc.tst_datc.all[testset,]
Appendix C-2. p2.model

specify variable types

if (Yname == "FORTYP.2") {type_0
 ftyp_0
}
if (Yname == "FORTYP.3") {type_0
 ftyp_1
}

specify .ps, .txt and results files

eco "test"
Xname_paste("TEST", noise, sep="")
run.title_paste(eco, ":", Yname, "~", Xname)
run.label_paste(eco, " ", Yname, " ", Xname, sep="")
run.ps_paste(results.path, eco, "/", "ps/", run.label, ".ps", sep="")
run.txt_paste(results.path, eco, "/", "txt/", run.label, ".txt", sep="")
run.res0_paste(results.path, "results0.txt", sep="")
run.resl_paste(results.path, "results1.txt", sep="")
if (Yname == "TEST"){
 run.res0_paste(results.path, "test0.txt", sep="")
 run.resl_paste(results.path, "test1.txt", sep="")
}

define modelling variables

if (Xname == "all" & eco != "mt2")
 {Xlist_c("ELEV.1K", "TRASP.1K", "SLOPE.1K", "EASTING",
 "NORTHING", "AVH.1", "AVH.2", "AVH.3", "AVH.4", "AVH.5",
 "NDVI", "NLCD")
 gam.formula(Y ~ s(ELEV.1K)+s(TRASP.1K)+
 s(SLOPE.1K)+s(EASTING)+s(NORTHING)+s(AVH.1)+
 s(AVH.2)+s(AVH.3)+s(AVH.4)+s(AVH.5)+s(NDVI)+NLCD)
 }
if (Xname == "all" & eco == "mt2")
 {Xlist_c("ELEV.1K", "TRASP.1K", "EASTING",
 "NORTHING", "AVH.1", "AVH.2", "AVH.3", "AVH.4", "AVH.5",
 "NDVI", "NLCD")
 gam.formula(Y ~ s(ELEV.1K)+s(TRASP.1K)+
 s(EASTING)+s(NORTHING)+s(AVH.1)+
 s(AVH.2)+s(AVH.3)+s(AVH.4)+s(AVH.5)+s(NDVI)+NLCD)
\[s(AVH.2) + s(AVH.3) + s(AVH.4) + s(AVH.5) + s(NDVI) + NLCD \]

```r
if (type==0 & ftyp==0) {
  Y.mod_data.frame[, (match(names(datd.mod), Yname)) != "NA"]
  X.mod_data.frame[, (match(names(datd.mod), Xlist)) != "NA"]
  Y.tst_data.frame[, (match(names(datd.tst), Yname)) != "NA"]
  X.tst_data.frame[, (match(names(datd.tst), Xlist)) != "NA"]
}
if (((Yname != "TEST") & (type==1)) | (ftyp==1)) {
  Y.mod_data.frame[, (match(names(date.mod), Yname)) != "NA"]
  X.mod_data.frame[, (match(names(date.mod), Xlist)) != "NA"]
  Y.tst_data.frame[, (match(names(date.tst), Yname)) != "NA"]
  X.tst_data.frame[, (match(names(date.tst), Xlist)) != "NA"]
}
if (Yname == "TEST") {
  n = 1000
  xz_rep(0, n)
  x_matrix(runif(n*10), ncol=10)
  X.all_data.frame(x)
  X.mod X.all[1:700,]
  X.tst X.all[701:1000,]
  names(X.mat) _c ("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10"
  }
  if (noise!=0) {eps_rnorm(n, 0, sqrt(noise))}
  if(noise==0){eps_0}
  Y.all_.2*sin(pi*x[,l]*x[,2])+.4*(x[,3] .5)A2+.2*x[,4]+.l*x[,5]+eps
  Y.mod Y.all[1:700]
  Y.tst Y.all[701:1000]
  gam.formula(Y ~ s(x.1)+s(x.2)+
               s(x.3)+s(x.4)+s(x.5)+s(x.6)+
               s(x.7)+s(x.8)+s(x.9)+s(x.10))
}
if (type==0) {YX.mod_data.frame(as.factor(Y.mod), X.mod)}
if (type==1) {YX.mod_data.frame(Y.mod, X.mod)}

####
print("# activate ps file")
####
postscript(file=run.ps, horizontal=F, append=F, onefile=T)

####
print("# NLCD")
####
sink(file=run.txt, append=F)
if(type==0 & Xname=="all") (time0 <- proc.time()[3]
  Y.nlcd_f.nlcdmod(X.tst$NLCD)
  runtime_proc.time()[3]-time0
  res0_f.mapacc0(Y.tst, Y.nlcd)
res_data.frame(eco, Yname, Xname, "NLCD", runtime, data.frame(res0))
```
write.table(res, run.resO, append=T, dimnames.write=F, sep="\t")

if(type==1 & Yname="TEST" & Xname="all"){time0.proc.time()[3]
 nlcd.mod_lm(Y.mod~-1+NLCD, data=X.mod)
 Y.nlcd_predict(nlcd.mod, newdata=X.tst)
 runtime.proc.time()[3]-time0
 res0_f.mapacc1(Y.tst, Y.nlcd, .25)
}

res_data.frame(eco, Yname, Xname, "NLCD", runtime, data.frame(res0))
write.table(res, run.res1, append=T, dimnames.write=F, sep="\t")
par(mfrow=c(2,2), pty="s")
plot.gam(nlcd.mod, se=T, main=paste(run.title, NLCD))
plot(Y.tst, Y.nlcd, xlim=c(0, max(Y.tst)), ylim=c(0, max(Y.tst)))
lines(c(0, max(Y.nlcd)), c(0, max(Y.nlcd)))
yax_max(abs(Y.tst-Y.nlcd))*1.1
plot(Y.nlcd, (Y.tst-Y.nlcd), ylim=c((0-yax), yax))
lines(c(0, max(Y.nlcd)), c(0, 0))}

if(Yname="TEST"){time0.proc.time()[3]
lm.mod_lm(Y.mod~1+x.1+x.2+x.3+x.4+x.5+x.6+x.7+x.8+x.9+x.10,
 data=X.mod)
Y.lm_predict(lm.mod, X.tst)
Y.lm[Y.lm<0]_0
Y.lm[Y.lm>max(Y.tst)]_max(Y.tst)
runtime.proc.time()[3]-time0
res0_f.mapacc1(Y.tst, Y.lm, .25)
}

res_data.frame(eco, paste(Yname, noise, sep=""), Xname, "LM", runtime, data.frame(res0))
write.table(res, run.res1, append=T, dimnames.write=F, sep="\t")
par(mfrow=c(2,1), pty="s")
plot(Y.tst, Y.lm, xlim=c(0, max(Y.tst)), ylim=c(0, max(Y.tst)),
 main=paste(run.title, LM, noise="", noise))
lines(c(0, max(Y.lm)), c(0, max(Y.lm)))
yax_max(abs(Y.tst-Y.lm))
plot(Y.lm, (Y.tst-Y.lm), ylim=c((0-yax), yax))
lines(c(0, max(Y.lm)), c(0, 0))

sink()
res_f.mapacc0(Y.tst,Y.gam)

res_data.frame(eco,Yname,Xname,"GAM",runtime,data.frame(res0))
write.table(res,run.res0,append=T,dimnames.write=F,sep="\t")
par(mfrow=c(4,3))
plot.gam(gam.mod,se=T,main=paste(run.title,".....GAM"))
print("###")
print(paste(run.title,".....GAM"))
print(summary(gam.mod))
}

if (type==1){Y_Y.mod
time0_proc.time()[3]
gam.mod0_gam(gam.form,data=X.mod,family=gaussian,
control=gam.control(maxit=20,bf.maxit=20))
gam.mod_gam.mod0
if (slow==F){gam.mod_gam.mod0}
if (slow==T){
my.scope_gam.scope(data.frame(Y.mod,X.mod))
gam.mod_step(gam.mod0,my.scope,trace=F,
control=gam.control(maxit=20,bf.maxit=20))}
Y.gam_predict.gam(gam.mod,X.tst,type="response")
Y.gam[Y.gam<0]=0
Y.gam[Y.gam>max(Y.tst)]=max(Y.tst)
time0_proc.time()[3]-time0
res_f.mapaccl(Y.tst,Y.gam,.25)

res_data.frame(eco,Yname,Xname,"GAM",runtime,data.frame(res0))
if(Yname=="TEST"){
 res_data.frame(eco,paste(Yname,noise,sep=""),
 Xname,"GAM",runtime,data.frame(res0))}
write.table(res,run.res1,append=T,dimnames.write=F,sep="\t")
par(mfrow=c(4,3))
plot.gam(gam.mod,se=T)
par(mfrow=c(2,1),pty="s")
plot(Y.tst,Y.gam,main=paste(run.title,".....GAM"),
xlim=c(0,max(Y.tst)),ylim=c(0,max(Y.tst)),pty="s")
lines(c(0,max(Y.gam)),c(0,max(Y.gam)))
plot(Y.gam,Y.tst-Y.gam,ylim=c((0-yax),yax))
lines(c(0,max(Y.gam)),c(0,0))
print("###")
print(paste(run.title,".....GAM"))
print(summary(gam.mod))
}
sink()

######
print("# CART")
#######
sink(file=run.txt,append=T)
time0_proc.time()[3]
cart0.mod_tree(YX.mod)
if (slow==F){
 cv.res_cv.tree(cart0.mod)
\texttt{opsz_ceiling(cv.res$size[cv.res$dev==\text{min}(cv.res$dev)])}
\texttt{vote.opsz}_{\text{opr}}
\texttt{cart.mod_prune.tree(cart0.mod, best=vote.opsz)}
\text{if (slow==T)}{
\texttt{opsz_rep(0,20)}
\texttt{for (i in 1:20)}{
\texttt{cv.res_cv.tree(cart0.mod)}
\texttt{opsz[i] = ceiling(cv.res$size[cv.res$dev==\text{min}(cv.res$dev)])}}
\text{vote.opsz_as.numeric(names(table(opsz)[table(opsz)==\text{max}(table(opsz))])})
\texttt{cart.mod_prune.tree(cart0.mod, best=vote.opsz)}
\text{if (type==0)}{
\texttt{Y.cart_predict.tree(cart.mod, X.tst, type="class")}
\texttt{runtime_proc.time()[3]-time0}
\texttt{res0_f.mapacc0(Y.tst, Y.cart)}
\texttt{res_data_frame(eco, Yname, Xname, "CART", runtime, data_frame(res0))}
\text{write.table(res, run.res0, append=T, dimnames.write=F, sep="\t")}
\text{if (type==1)}{
\texttt{Y.cart_predict.tree(cart.mod, X.tst)}
\texttt{Y.cart[Y.cart<0] = 0}
\texttt{Y.cart[Y.cart>\text{max}(Y.tst)] = \text{max}(Y.tst)}
\texttt{runtime_proc.time()[3]-time0}
\texttt{res0_f.mapacc1(Y.tst, Y.cart, .25)}
\texttt{res_data_frame(eco, Yname, Xname, "CART", runtime, data_frame(res0))}
\text{if(Yname="TEST")}{
\texttt{res_data_frame(eco, paste(Yname, noise, sep=""), Xname, "CART", runtime, data_frame(res0))}
\texttt{write.table(res, run.res1, append=T, dimnames.write=F, sep="\t")}
\texttt{par(mfrow=c(2,1), pty="s")}
\texttt{plot(Y.tst, Y.cart, main=paste(run.title, ". . . . CART"),
xlim=c(0,\text{max}(Y.tst)), ylim=c(0,\text{max}(Y.tst)), pty="s")
lines(c(0,\text{max}(Y.cart)), c(0,\text{max}(Y.cart)))
plot(Y.cart, (Y.tst-Y.cart), ylim=c((0-yax), yax))
lines(c(0,\text{max}(Y.cart)), c(0,0))}
\text{if (vote.opsz>1)}{
\texttt{post.tree(cart.mod, title=run.title, file=paste(run.ps, "tree", sep=""))}}
\texttt{print("\\\
#---------------------------
print("# MARS")
#---------------------------

sink(file=run.txt, append=T)
#source("/export/jerry2/gretchen/diss/s/mda/dumpdat2.mda")
#attach("/export/jerry2/gretchen/diss/s/mda")
#.mars.object="/export/jerry2/gretchen/diss/s/mda/MARS.o"
#.bruto.object="/export/jerry2/gretchen/diss/s/mda/BRUTO.o"
if (Xname == "all") {
 indic_data.frame(class.ind(X.mod$NLCD))
 posit_row(as.matrix(names(X.mod)))[names(X.mod) == "NLCD"]
 X.moda_X.mod[-posit]
 X.moda_data.frame(X.moda, indic)
 indic_data.frame(class.ind(X.tsta$NLCD))
 X.tsta_X.tsta[-posit]
 X.tsta_data.frame(X.tsta, indic)
}
if (Xname != "all") {
 X.moda_X.mod
 #if (type == O)
 X.tsta_X.tsta
 {Y_as.numeric(Y.mod) - 1}
 {Y_Y.mod}
 #if (type == l)
 Y_Y.mod
 time0_proc.time()[3]
 mars.mod_mars(X.moda, Y.mod, degree = 2)
 if (type == 0) {Y.mars_round(predict.mars(mars.mod, X.tsta))
 Y.mars[Y.mars < 0]_0
 Y.mars[Y.mars > 1]_1
 runtime_proc.time()[3] - time0
 res0_f_mapacc0(Y.tsta, Y.mars)
 }
 res.data.frame(eco, Yname, Xname, "MARS", runtime, data.frame(res0))
 write.table(res_data.frame(res, run.res0, append = T, dimnames.write = F, sep = "\t")
 if (type == 1) {
 Y.mars_predict.mars(mars.mod, X.tsta)
 Y.mars[Y.mars > max(Y.tsta)]_max(Y.tsta)
 runtime_proc.time()[3] - time0
 res0_f_mapacc1(Y.tsta, Y.mars, .25)
 }
 res.data.frame(eco, Yname, Xname, "MARS", runtime, data.frame(res0))
 if (Yname == "TEST") {
 res.data.frame(eco, paste(Yname, noise, sep = ""),
 Xname, "MARS", runtime, data.frame(res0))
 }
 write.table(res_data.frame(res, run.res1, append = T, dimnames.write = F, sep = "\t")
 par(mfrow = c(2, 1), pty = "s")
 plot(Y.tsta, Y.mars, main = paste(run.title, ".....MARS"),
 xlab = c(0, max(Y.tsta)), ylab = c(0, max(Y.tsta)))
 lines(c(0, max(Y.mars)), c(0, max(Y.mars)))
 plot(Y.mars, (Y.tsta - Y.mars), ylim = c(0 - yax, yax))
 lines(c(0, max(Y.mars)), c(0, 0))
}
decipher, print, and plot resulting model
sel.fac_abs(mars.mod$factor[mars.mod$selected.terms,])
n.bs_nrow(sel.fac)
n.col_ncol(sel.fac)
fin.fac_t(matrix(sel.fac[1,]))
n.fin_1
for (i in 2:n.bs) {
 adit_T
 for (j in 1:n.fin) {
 if (sum(sel.fac[i,] == fin.fac[j,]) == n.col) {adit_F}
 }
if (adit==T){fin.fac_rbind(fin.fac,sel.fac[i,])
n.fin_nrow(fin.fac)}
fin.fac_data.frame(fin.fac)

print("#################")
print(paste(run.title,".....MARS"))
for(i in 1:n.fin){
 print(names(fin.fac)[fin.fac[i,]==1])}
sink()

#######
print("# ANN")
#######
sink(file=run.txt,append=T)
FUNFITS.BIN="/export/jerry2/gretchen/diss/s/Funfits/bin/"
attach("/export/jerry2/gretchen/diss/s/Funfits")
if (Xname!="all"){X.rnoda_X.rnod
 #if (type==O)
 #if (type==l)
X.tsta_X.tst}
Y Y.rnod
tirneO_proc.tirne() [3]
if (slow==F){ann.mod.nnreg(X.moda,Y,k1=1,k2=3,fast=T)}
if (slow==T){ann.mod.nnreg(X.moda,Y,k1=1,k2=5,fast=T)}
ann.res_summary(ann.mod)
#ann.mod$best.nnodel
row(as.matrix(ann.res[,5]))[ann.res[,5]==min(ann.res[,5])]
if (type==0){Y.ann_round(predict.nnreg(ann.mod,as.matrix(X.tsta)))
 Y.ann[Y.ann<O]_O
 Y.ann[Y.ann>rnax(Y.tst)]_rnax(Y.tst)
 runtime_proc.time()[3]-time0
 resO_f.mapaccO(Y.tst,Y.ann)
res_data.frame(eco,Yname,Xname,"ANN",runtime,data.frame(resO))
write.table(res,run.resO,append=T,dimnames.write=F,sep="\t")}
if (type==1){Y.ann_predict.nnreg(ann.mod,as.matrix(X.tsta))
 Y.ann[Y.ann<O]_O
 Y.ann[Y.ann>rnax(Y.tst)]_rnax(Y.tst)
 runtime_proc.time()[3]-time0
 resO_f.mapaccO(Y.tst,Y.ann,.25)
res_data.frame(eco,Yname,Xname,"ANN",runtime,data.frame(resO))
if(Yname=="TEST"){
 res_data.frame(eco,paste(Yname,noise,sep=""),
 Xname,"ANN",runtime,data.frame(resO))
write.table(res,run.resl,append=T,dimnames.write=F,sep="\t")
par(mfrow=c(2,1),pty="s")
plot(Y.tst,Y.ann,main=paste(run.title,".....ANN"),
xlim=c(0,max(Y.tst)),ylim=c(0,max(Y.tst)))
lines(c(0,max(Y.ann)),c(0,max(Y.ann)))
plot(Y.ann,(Y.tst-Y.ann),ylim=c((0-yax),yax))
lines(c(0,max(Y.ann)),c(0,0))
par(mfrow=c(1,1))

plot(ann.mod,main=paste(run.title,".....ANN"))
print("##")
print(paste(run.title,".....ANN"))
print(summary(ann.mod))
sink()

########
print("# close out")
########

dev.off()
Appendix C-3. p3.map

p3.map: generate maps

specify .ps and ascii files

run.title_paste(eco, "", Xname)
run.label_paste(eco, "", Xname, "_map", sep = "")
run.ps_paste(map.path, eco, "/", run.label, ".ps", sep = "")
run.ascii_paste(map.path, eco, "/", run.label, ".txt", sep = "")

predict

if (eco != "mt2") {
 dat.map_dat.map[, c("EASTING","NORTHING","ELEV.1K","TRASP.1K","SLOPE.1K" , "AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]
}
if (eco == "mt2") {
 dat.map_dat.map[, c("EASTING","NORTHING","ELEV.1K","TRASP.1K", "AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI","NLCD")]
}
indics_data.frame(class.ind(dat.map$NLCD))
dat.mapa_data.frame(dat.map, indic)
if (eco != "mt2") {dat.mapa_dat.mapa[, -12]}
if (eco == "mt2") {dat.mapa_dat.mapa[, -11]}

NLCD.map_f.nlcdmod(dat.map$NLCD)
FORTYP2.map_round(predict.mars(FORTYP2.mod, dat.mapa))
 FORTYP2.map[FORTYP2.map<0]_0
 FORTYP2.map[FORTYP2.map>1]_1
FORTYP3.map_round(predict.mars(FORTYP3.mod, dat.mapa))
 FORTYP3.map[FORTYP3.map<0]_0
 FORTYP3.map[FORTYP3.map>1]_1
 FORTYP3.map[FORTYP3.map==0]_0
BIOTOT.map_round(predict.mars(BIOTOT.mod, dat.mapa),2)
 BIOTOT.map[BIO_TOT.map<0]_0
 BIOTOT.map[BIO_TOT.map>max(datc.mod$BIOTOT)]_max(datc.mod$BIOTOT)
 BIOTOT.map[NLCD.map==0]_0
CRCOV.map_round(predict.mars(CRCOV.mod, dat.mapa),2)
 CRCOV.map[CRCOV.map<0]_0
 CRCOV.map[CRCOV.map>100]_100
 CRCOV.map[NLCD.map==0]_0
STAGECL.map_round(predict.mars(STAGECL.mod, dat.mapa),2)
 STAGECL.map[STAGECL.map<0]_0
STAGECL.map[STAGECL.map > max(datc.mod$STAGECL)]_max(datc.mod$STAGECL)
STAGECL.map[NLCD.map == 0]_0
QMDALL.map_round(predict.mars(QMDALL.mod, dat.mapa), 2)
QMDALL.map[QMDALL.map < 0]_0
QMDALL.map[QMDALL.map > max(datc.mod$QMDALL)]_max(datc.mod$QMDALL)
QMDALL.map[NLCD.map == 0]_0

print("# build levelplots")
#
postscript(file=run.ps, horizontal=F, append=F, onefile=T)
ps.options(height=8, width=8)
east_dat.map$EASTING/1000
north_dat.map$NORTHING/1000
levelplot(NLCD.map~east*north, main=paste(run.title,"NLCD"),
col.regions=c(0:1), colorkey=T, region=T)
levelplot(FORTYP2.map~east*north, main=paste(run.title,"FORTYP2"),
col.regions=c(0:1), colorkey=T, region=T)
levelplot(BIOTOT.map~east*north, main=paste(run.title,"BIOTOT"),
col.regions=c(0:15)/15, colorkey=T, region=T)
dev.off()
#
print("# write ascii")
attr.map_data.frame(dat.map$EASTING, dat.map$NORTHING, dat.map$ELEV.1K,
dat.map$NLCD, NLCD.map, FORTYP2.map, FORTYP3.map, BIOTOT.map,
CRCOV.map, STAGECL.map, QMDALL.map)
names(attr.map)_c("EASTING", "NORTHING", "ELEV.1K", "NLCD", "NLCD.map",
"FORTYP2.map", "FORTYP3.map", "BIOTOT.map",
"CRCOV.map", "STAGECL.map", "QMDALL.map")
write.table(attr.map, file=run.ascii)
Appendix C-4. p4.boot

################################
print("### p4.boot: program to produce bootstrap variance estimates
dif stratification schemes ###")
################################

#####
print("# initialize objects")
#####

eco "mtl"
dat.map dat.map.mtl
datd.all datd.all.mtl

#####
print("# specify inputs and outputs")
#####

boot.ps_paste(results.path,"f5/",eco,".boot.ps",sep="")
boot.out_paste(results.path,"resultsboot.txt",sep="")
boot2.out_paste(results.path,"resultsboot2.txt",sep="")
boottst.out_paste(results.path,"resultsboottst.txt",sep="")
boottst2.out_paste(results.path,"resultsboottst2.txt",sep="")

#####
print("# set up data")
#####

dat.toty datd.all[,c("FORTYP.2","NVOLTOT","NGRWCF","TWN")]
dat.toty$FOREST dat.toty$FORTYP.2
dat.toty$TIMBER dat.toty$TWN
dat.toty$TIMBER[dat.toty$TIMBER!=2]_0
dat.toty$TIMBER[dat.toty$TIMBER==2]_1
dat.totx datd.all[,c("EASTING","NORTHING","ELEV.1K","TRASP.1K",
 "SLOPE.1K","AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI",
 "NLCD")]

#####
print("# bootstrap variance estimates #")
#####

n_nrow(dat.toty)
bootmat_matrix(0,nrow=bootn,ncol=n)
for (i in 1:bootn){
 bootmat[i,]_sample(n,n,replace=T)
}

indices_data.frame(class.ind(dat.totx$NLCD))
posit_row(as.matrix(names(dat.totx)))[names(dat.totx)=="NLCD"]
dat.totxa dat.totx[-posit]
dat.totxa_data.frame(dat.totxa,indices)
dat.map0[,names(dat.totx)]
indics_data.frame(class.ind(dat.map0$NLCD))
posit_row(as.matrix(names(dat.map0)))[names(dat.map0)=="NLCD"]
dat.mapa_dat.map0[-posit]
dat.mapa_data.frame(dat.mapa,indics)

bootmars_function(bootset,dat.toty,dat.totx,dat.totxa,dat.map,dat.mapa)
{
 dat.booty_dat.toty[bootset,]
 dat.bootx_dat.totxa[bootset,]
 dat.bootnlcd_dat.totx$NLCD[bootset]
 yf_as.numeric(dat.booty$FOREST)
 xf dat.bootx
 marsf.boot_mars(xf,yf,degree=2)
 yf dat.booty$TWN[dat.booty$FORTYP.2>0)]-1
 x dat.bootx[dat.booty$FORTYP.2>0,]
 mars.boot_mars(x,y,degree=2)
 str2.mars_round(predict.mars(marsf.boot,dat.bootx))
 str2.mars[str2.mars<0] 0
 str2.mars[str2.mars>1] 1
 str.mars_round(predict.mars(mars.boot,dat.bootx))
 str.mars[str.mars<0] 0
 str.mars[str.mars>1] 1
 str.mars_str.mars+1
 str.mars[str2.mars==0] 0
 bootf.map_round(predict.mars(marsf.boot,dat.mapa))
 bootf.map[bootf.map<0] 0
 bootf.map[bootf.map>1] 1
 boot.map_round(predict.mars(mars.boot,dat.mapa))
 boot.map[boot.map<0] 0
 boot.map[boot.map>1] 1
 boot.map_boot.map+1
 boot.map[bootf.map==0] 0
 wts0 as.numeric(table(boot.map))
 wts_wts0/sum(wts0)
 res0_t(as.matrix(f.str(y=dat.booty$FOREST,strata=str.mars,
 strcodes=c(0,1,2),Wh=wts,type=0)))
 res_data.frame(eco,"MARS","FOREST",res0)
 write.table(res,boot.out,append=T,dimnames.write=F,sep="\t")
 for.mean_res[,4]
 for.var_res[,5]
 res0_t(as.matrix(f.str(y=dat.booty$TIMBER,strata=str.mars,
 strcodes=c(0,1,2),Wh=wts,type=0)))
 res_data.frame(eco,"MARS","TIMBER",res0)
 write.table(res,boot.out,append=T,dimnames.write=F,sep="\t")
 tim.mean_res[,4]
 tim.var_res[,5]
```r
res0_t(as.matrix(f.str(y=dat.booty$NVOLTOT,strata=str.mars,
strcodes=c(0,1,2),Wh=wts,type=1)))
res_data.frame(eco,"MARS","NVOLTOT",res0)
write.table(res,boot.out,append=T,dimnames.write=F,sep="\t")
vol.mean_res[,4]
vol.var_res[,5]

res0_t(as.matrix(f.str(y=dat.booty$NGRWCF,strata=str.mars,
strcodes=c(0,1,2),Wh=wts,type=1)))
res_data.frame(eco,"MARS","NGRWCF",res0)
write.table(res,boot.out,append=T,dimnames.write=F,sep="\t")
grw.mean_res[,4]
grw.var_res[,5]

return(c(for.mean,for.var,tim.mean,tim.var,
vol.mean,vol.var,grw.mean,grw.var))

boot.res_apply(bootmat,1,bootmars,dat.toty,dat.totx,dat.totxa,dat.map,dat.mapa)
boot.res_data.frame(t(boot.res))
write.table(boot.res,boot2.out,append=T,dimnames.write=F,sep="\t")
boot.res.mtl_boot.res

boot.eco_c(sqrt(var(boot.res[,1])),sqrt(var(boot.res[,3])),
sqrt(var(boot.res[,5])),sqrt(var(boot.res[,7])))
if (eco=="ut2"){
  MARS.var_c(.012,.01,31.929,.625)
  NLCD.var_c(.012,.012,36.34,.732)
  SRS.var_c(.013,.014,40.197,.809)
}
if (eco=="mtl"){
  MARS.var_c(.012,.011,5.197,.103)
  NLCD.var_c(.013,.013,5.505,.115)
  SRS.var_c(.015,.014,5.969,.124)
}
if (eco=="mtl"){
  MARS.var_c(.006,.011,41.85,1.194)
  NLCD.var_c(.008,.012,40.449,1.163)
  SRS.var_c(.009,.012,45.668,1.264)
}
postscript(boot.ps,append=F, width=8.5, height=11, horizontal=F)
par(mfrow=c(2,2))
bootplot_rep(0,95)
for(i in 5:100) {bootplot[i-4]_sqrt(var(boot.res[1:i,1]))}
plot(5:100,bootplot,
  xlab="Number of bootstrap samples",
  ylab="Bootstrap standard errors",)
```
main="FOREST IN MT1", type="l", ylim=c(0.005,.020))
points(100,MARS.var[1],pch=1)
points(100,NLCD.var[1],pch=2)
points(100,SRS.var[1],pch=3)

bootplot_rep(0,95)
for(i in 5:100) {bootplot[i-4]_sqrt(var(boot.res[1:i,3]))}
plot(5:100,bootplot,
xlab="Number of bootstrap samples",
ylab="Bootstrap standard errors",
main="TIMBERLAND IN MT1", type="l", ylim=c(0.005,.020))
points(100,MARS.var[2],pch=1)
points(100,NLCD.var[2],pch=2)
points(100,SRS.var[2],pch=3)

bootplot_rep(0,95)
for(i in 5:100) {bootplot[i-4]_sqrt(var(boot.res[1:i,5]))}
plot(5:100,bootplot,
xlab="Number of bootstrap samples",
ylab="Bootstrap standard errors",
main="NVOLTOT IN MT1", type="l", ylim=c(3,7))
points(100,MARS.var[3],pch=1)
points(100,NLCD.var[3],pch=2)
points(100,SRS.var[3],pch=3)

bootplot_rep(0,95)
for(i in 5:100) {bootplot[i-4]_sqrt(var(boot.res[1:i,7]))}
plot(5:100,bootplot,
xlab="Number of bootstrap samples",
ylab="Bootstrap standard errors",
main="NGRWCF IN MT1", type="l", ylim=c(0.05,.2))
points(100,MARS.var[4],pch=1)
points(100,NLCD.var[4],pch=2)
points(100,SRS.var[4],pch=3)

dev.off()
Appendix C-4. p4.strat

###
print("### p4.strat: program to produce population estimates under
diff stratification schemes ###")
###

########
print("# specify inputs and outputs")
########
out.res_paste(results.path,"resultstot.txt",sep="")
########
print("# set up data")
########

dat.toty_dat.d.all[,c("FORTYP.2","TWN","NVOLTOT","NGRWCF")]
dat.toty$FOREST_dat.toty$FORTYP.2
dat.toty$TIMBER_dat.toty$TWN
dat.toty$TIMBER[dat.toty$TIMBER!=2]_0
dat.toty$TIMBER[dat.toty$TIMBER==2]_1
if(eco !="mt2") {
dat.totx_dat.d.all[,c("EASTING","NORTHING","ELEV.1K","TRASP.1K",
"SLOPE.1K","AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI",
"NLCD")]
}
if (eco =="mt2") {
dat.totx_dat.d.all[,c("EASTING","NORTHING","ELEV.1K","TRASP.1K",
"AVH.1","AVH.2","AVH.3","AVH.4","AVH.5","NDVI",
"NLCD")]
}

########
print("# srs estimates")
########
res0_t(as.matrix(f.srs(dat.toty$FOREST,type=0)))
res.data.frame(eco,"SRS","FOREST",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")
res0_t(as.matrix(f.srs(dat.toty$TIMBER,type=0)))
res.data.frame(eco,"SRS","TIMBER",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")
res0_t(as.matrix(f.srs(dat.toty$NVOLTOT,type=1)))
res.data.frame(eco,"SRS","NVOLTOT",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")
res0_t(as.matrix(f.srs(dat.toty$NGRWCF,type=1)))
res.data.frame(eco,"SRS","NGRWCF",res0)
write.table(res, out.res, append=T, dimnames.write=F, sep="\t")

#######
print("# NLCD estimates")
#######

str.nlcd_f.nlcdmod(dat.totx$NLCD)
wts0 as.numeric(table(NLCD.map))
wts_wts0/sum(wts0)

res0_t(as.matrix(f.str(y=dat.toty$FOREST, strata=str.nlcd,
 strcodes=c(0,1), Wh=wts, type=0)))
res.data.frame(eco,"NLCD","FOREST", res0)
write.table(res, out.res, append=T, dimnames.write=F, sep="\t")

res0_t(as.matrix(f.str(y=dat.toty$TIMBER, strata=str.nlcd,
 strcodes=c(0,1), Wh=wts, type=0)))
res.data.frame(eco,"NLCD","TIMBER", res0)
write.table(res, out.res, append=T, dimnames.write=F, sep="\t")

res0_t(as.matrix(f.str(y=dat.toty$NVOLTOT, strata=str.nlcd,
 strcodes=c(0,1), Wh=wts, type=1)))
res.data.frame(eco,"NLCD","NVOLTOT", res0)
write.table(res, out.res, append=T, dimnames.write=F, sep="\t")

res0_t(as.matrix(f.str(y=dat.toty$NGRWCF, strata=str.nlcd,
 strcodes=c(0,1), Wh=wts, type=1)))
res.data.frame(eco,"NLCD", "NGRWCF", res0)
write.table(res, out.res, append=T, dimnames.write=F, sep="\t")

#######
print("# MARS estimates")
#######

indices.data.frame(class.ind(dat.totx$NLCD))
posit_row(as.matrix(names(dat.totx))[names(dat.totx) == "NLCD"]
data.totxa.data.frame(data.totxa, indices)

str2.mars_round(predict.mars(FORTYP2.mod, data.totxa))
str2.mars[str2.mars<0] 0
str2.mars[str2.mars>1] 1
str.mars_round(predict.mars(FORTYP3.mod, data.totxa))
str.mars[str.mars<0] 0
str.mars[str.mars>1] 1
str.mars[!str.mars==0] 0

wts0 as.numeric(table(FORTYP3.map))
#wts0 as.numeric(table(str.mars))
wts_wts0/sum(wts0)

res0_t(as.matrix(f.str(dat.toty$FOREST, strata=str.mars,
strcodes=c(0,1,2),Wh=wts,type=0)))
res_data.frame(eco,"MARS","FOREST",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")

res0_t(as.matrix(f.str(dat.toty$TIMBER,strata=str.mars,
 strcodes=c(0,1,2),Wh=wts,type=0)))
res_data.frame(eco,"MARS","TIMBER",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")

res0_t(as.matrix(f.str(y=dat.toty$NVOLTOT,strata=str.mars,
 strcodes=c(0,1,2),Wh=wts,type=1)))
res_data.frame(eco,"MARS","NVOLTOT",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")

res0_t(as.matrix(f.str(y=dat.toty$NGRWCF,strata=str.mars,
 strcodes=c(0,1,2),Wh=wts,type=1)))
res_data.frame(eco,"MARS","NGRWCF",res0)
write.table(res,out.res,append=T,dimnames.write=F,sep="\t")
Appendix C-5. pS.results

###
print("###### pS.results: generate graphical results######")
###

#######
print("# specify inputs and outputs")
#######
f5.path_"/export/jerry2/gretchen/diss/output/f5/"
inl.res_paste(results.path,"results1.txt",sep="")
in0.res_paste(results.path,"results0.txt",sep="")
intot.res_paste(results.path,"resultstot.txt",sep="")
intest.res_paste(results.path,"test.txt",sep="")
resl.ps_paste(f5.path,"fig8_11.ps",sep="")
res0.ps_paste(f5.path,"fig3_5.ps",sep="")
restot.ps_paste(f5.path,"fig15_16.ps",sep="")
test.ps_paste(f5.path,"fig2.ps",sep="")
rank0.ps_paste(f5.path,"fig6.ps",sep="")
rank1.ps_paste(f5.path,"fig13.ps",sep="")

#######
print("# read and reformat data")
#######
res1_read.table(inl.res,header=T,sep="t",as.is=T)
res0_read.table(in0.res,header=T,sep="t",as.is=T)
restot_read.table(intot.res,header=T,sep="t",as.is=T)
#restest_read.table(intest.res,header=T,sep="t",as.is=T)
restest$tech_c ("LM", "GAM", "CART", "MARS", "ANN")

###########
print("# standardize output")
###########

resall_res1

res1$rmse[res1$eco=="azl" & res1$Yname=="BIOTOT"]
res1$rmse[res1$eco=="azl" & res1$Yname=="BIOTOT"]/mean(datc.all.azl$BIOTOT)
res1$rmse[res1$eco=="azl" & res1$Yname=="CRCOV"]
res1$rmse[res1$eco=="azl" & res1$Yname=="CRCOV"]/mean(datc.all.az1$CRCOV)
res1$rmse[res1$eco=="azl" & res1$Yname=="STAGECL"]
res1$rmse[res1$eco=="azl" & res1$Yname=="STAGECL"]/mean(datc.all.azl$STAGECL)
res1$rmse[res1$eco=="azl" & res1$Yname=="QMDALL"]
res1$rmse[res1$eco=="azl" & res1$Yname=="QMDALL"]/mean(datc.all.az1$QMDALL)

res1$rmse[res1$eco=="az2" & res1$Yname=="BIOTOT"]
res1$rmse[res1$eco=="az2" & res1$Yname=="BIOTOT"]/mean(datc.all.az2$BIOTOT)
res1$rmse[res1$eco=="az2" & res1$Yname=="CRCOV"]
res1$rmse[res1$eco=="az2" & res1$Yname=="CRCOV"]/mean(datc.all.az2$CRCOV)
res1$rmse[res1$eco=="az2" & res1$Yname=="STAGECL"]/mean(datc.all.az2$STAGECL)
res1$rmse[res1$eco=="az2" & res1$Yname=="QMDALL"]/mean(datc.all.az2$QMDALL)
res1$rmse[res1$eco=="mt1" & res1$Yname=="BIOTOT"]/mean(datc.all.mt1$BIOTOT)
res1$rmse[res1$eco=="mt1" & res1$Yname=="CRCOV"]/mean(datc.all.mt1$CRCOV)
res1$rmse[res1$eco=="mt1" & res1$Yname=="STAGECL"]/mean(datc.all.mt1$STAGECL)
res1$rmse[res1$eco=="mt1" & res1$Yname=="QMDALL"]/mean(datc.all.mt1$QMDALL)
res1$rmse[res1$eco=="mt2" & res1$Yname=="BIOTOT"]/mean(datc.all.mt2$BIOTOT)
res1$rmse[res1$eco=="mt2" & res1$Yname=="CRCOV"]/mean(datc.all.mt2$CRCOV)
res1$rmse[res1$eco=="mt2" & res1$Yname=="STAGECL"]/mean(datc.all.mt2$STAGECL)
res1$rmse[res1$eco=="mt2" & res1$Yname=="QMDALL"]/mean(datc.all.mt2$QMDALL)
res1$rmse[res1$eco=="ut1" & res1$Yname=="BIOTOT"]/mean(datc.all.ut1$BIOTOT)
res1$rmse[res1$eco=="ut1" & res1$Yname=="CRCOV"]/mean(datc.all.ut1$CRCOV)
res1$rmse[res1$eco=="ut1" & res1$Yname=="STAGECL"]/mean(datc.all.ut1$STAGECL)
res1$rmse[res1$eco=="ut1" & res1$Yname=="QMDALL"]/mean(datc.all.ut1$QMDALL)
res1$rmse[res1$eco=="ut2" & res1$Yname=="BIOTOT"]/mean(datc.all.ut2$BIOTOT)
res1$rmse[res1$eco=="ut2" & res1$Yname=="CRCOV"]/mean(datc.all.ut2$CRCOV)
res1$rmse[res1$eco=="ut2" & res1$Yname=="STAGECL"]/mean(datc.all.ut2$STAGECL)
resl$rmse[resl$eco=="ut2" & resl$Yname=="QMDALL"]/
 resl$Yname=="QMDALL"]/mean(date.all.ut2$QMDALL)

#######
print("# resl...plot results")
#######
postscript(file=resl.ps,onefile=T,width=8.5,height=11,horizontal=F)
resall_resl
resl$eco_ordered(resl$eco,rev(c("mt1","mt2","ut1","ut2","azl","az2")))
resl$tech_ordered(resl$tech,rev(c("ANN","MARS","GAM","CART","NLCD")))

#rmse
resl$tech_f.order(resl$tech,-resl$rmse)
dotplot(tech~rmse!Yname*eco,data=resl,layout=c(4,6,1))

#pwi
resl$tech_f.order(resl$tech,resl$pwi)
dotplot(tech~pwi!Yname*eco,data=resl,layout=c(4,6,1))

#rho
resl$tech_f.order(resl$tech,resl$rho)
dotplot(tech~rho!Yname*eco,data=resl,layout=c(4,6,1))

#runtime
resl$tech_f.order(resl$tech,-resl$runtime)
dotplot(tech~runtime!Yname*eco,data=resl,layout=c(4,6,1))

dev.off()

#######
print("# res0...plot results")
#######
postscript(file=res0.ps,onefile=T,width=8.5,height=11,horizontal=F)
resall_res0
res0$eco_ordered(res0$eco,rev(c("mt1","mt2","ut1","ut2","azl","az2")))
#res0$tech_ordered(res0$tech,rev(c("ANN","MARS","GAM","CART","NLCD")))

#pcc
res0$tech_f.order(res0$tech,res0$pcc)
dotplot(tech~pcc!Yname*eco,data=res0,layout=c(2,6,1),aspect=.5)

#prod0
#res0$tech_f.order(res0$tech,res0$prod0)
dotplot(tech ~ prod0 | Yname * eco, data = res0, layout = c(2, 6, 1), aspect = .5)

prod1
res0$tech_f.order(res0$tech, res0$prod1)
dotplot(tech ~ prod1 | Yname * eco, data = res0, layout = c(2, 6, 1), aspect = .5)

kappa
res0$tech_f.order(res0$tech, res0$kappa)
dotplot(tech ~ kappa | Yname * eco, data = res0, layout = c(2, 6, 1), aspect = .5)

runtime
res0$tech_f.order(res0$tech, -res0$runtime)
dotplot(tech ~ runtime | Yname * eco, data = res0, layout = c(2, 6, 1), aspect = .5)

dev.off()

######
print("# create and plot rank files - 1")
######
postscript(file = rank1.ps, onefile = T, width = 8.5, height = 11, horizontal = F)

n_nrow(res1)
nrho_rep(0, n)
npwi_rep(0, n)
nrmse_rep(0, n)
nruntime_rep(0, n)
for (i in 1: (n/5)) {
 rrho[(i * 5 - 4): (i * 5)] = rank(res1$rho[(i * 5 - 4): (i * 5)]
 rpwi[(i * 5 - 4): (i * 5)] = rank(res1$pwi[(i * 5 - 4): (i * 5)]
 rrmse[(i * 5 - 4): (i * 5)] = rank(-(res1$rmse[(i * 5 - 4): (i * 5)]))
 rruntime[(i * 5 - 4): (i * 5)] = rank(-(res1$runtime[(i * 5 - 4): (i * 5)]))
}

rhomat_matrix(rrho, ncol = 5, byrow = T)
rankrho_apply(rhomat, 2, mean)
pwimmat_matrix(rpwi, ncol = 5, byrow = T)
rankpwi_apply(pwimmat, 2, mean)
rmseimat_matrix(rrmse, ncol = 5, byrow = T)
rankrmse_apply(rmseimat, 2, mean)
runmat_matrix(rrruntime, ncol = 5, byrow = T)
rankrun_apply(runmat, 2, mean)

tech_rep(c("NLCD", "GAM", "CART", "MARS", "ANN"), 4)
perfmc_(rep("RHO", 5), rep("PWI", 5), rep("RMSE", 5), rep("RUNTIME", 5))
rank1_data.frame(tech, perfmc, c(rankrho, rankpwi, rankrmse, rankrun))
names(rank1)[c("tech", "perfmc", "rank")]
rank1$tech_f.order(rank1$tech, rank1$rank)
```r
#rank1$tech_ordered(rank1$tech,rev(c("ANN","MARS","GAM","CART","NLCD")))

dotplot(tech~rank1$perfm,data=rank1,layout=c(4,1,1),aspect=.75)

dev.off()

#########
print("# create and plot rank files - 0")
#########

postscript(file=rank0.ps,onefile=T,width=8.5,height=11,vertical=F)

n_nrow(res0)
rpcc_rep(0,n)
rkappa_rep(0,n)
rprod0_rep(0,n)
rprod1_rep(0,n)
rruntime_rep(0,n)
for (i in 1:(n/5)){
  rpcc[(i*5-4):(i*5)]_rank(res0$pcc[(i*5-4):(i*5)])
rkappa[(i*5-4):(i*5)]_rank(res0$kappa[(i*5-4):(i*5)])
  # rprod0[(i*5-4):(i*5)]_rank(res0$prod0[(i*5-4):(i*5)])
  # rprod1[(i*5-4):(i*5)]_rank(res0$prod1[(i*5-4):(i*5)])
  rruntime[(i*5-4):(i*5)]_rank(-(res0$runtime[(i*5-4):(i*5)]))
}
pccmat_matrix(rpcc,ncol=5,byrow=T)
rankpcc_apply(pccmat,2,mean)
kappamat_matrix(rkappa,ncol=5,byrow=T)
rankkappa_apply(kappamat,2,mean)
#prod0mat_matrix(rprod0,ncol=5,byrow=T)
#rankprod0_apply(prod0mat,2,mean)
#prod1mat_matrix(rprod1,ncol=5,byrow=T)
#rankprod1_apply(prod1mat,2,mean)
runumat_matrix(runtime,ncol=5,byrow=T)
rankrun_apply(runumat,2,mean)

#tech_rep(c("NLCD","GAM","CART","MARS","ANN"),5)
techn0$c(rep("PCC",5),rep("KAPPA",5),rep("PROD0",5),rep("PROD1",5),
  # rep("RUNTIME",5))
perfmcapply(tech,perfmc,rep("RUNTIME",5))
rank0$tech_ordered(rank0$tech,rev(c("ANN","MARS","GAM","CART","NLCD")))

dotplot(tech~rank1$perfm,data=rank0,layout=c(5,1,1))

dev.off

#########
print("# restot...plot results")
#########```
restot$sesrs_rep(0,nrow(restot))
for (i in 1:6) {
    se_restot$se[((i*12)-11):((i*12)-8)]
    restot$sesrs[((i*12)-11):((i*12))] <- rep(se, 3)
    restot$ratio_restot$sesrs/restot$ses
    restot$eco_ordered(restot$eco, rev(c("mt1","mt2","ut1","ut2","az1","az2")))
    restot$popmean_ordered(restot$popmean, c("FOREST","TIMBER","NVOLTOT","NG RWCF"))
}
dotplot(strat~pcntse|popmean*eco, data=restot, layout=c(4,6,1))
dotplot(strat~ratio|popmean*eco, data=restot, layout=c(4,6,1))
dev.off()

print("# res0 . . . plot results")

postscript(test.ps, onefile=T, width=8.5, height=11, horizontal=F)
par(mfrow=c(2,2))
restest$tech_f.order(restest$tech, -restest$rmse)
dotplot(tech~rmse, data=restest, main="RMSE")
restest$tech_f.order(restest$tech, -restest$runtime)
dotplot(tech~runtime, data=restest, main="Run Time")
restest$tech_f.order(restest$tech, restest$pwi)
dotplot(tech~pwi, data=restest, main="PWI")
restest$tech_f.order(restest$tech, restest$rho)
dotplot(tech~rho, data=restest, main="RHO")
dev.off()
Appendix D: Results Tables
Table D-1. Results from Predictive Mapping of the Discrete Variables.

<table>
<thead>
<tr>
<th>Eco</th>
<th>Response</th>
<th>Technique</th>
<th>RunTime</th>
<th>PCC</th>
<th>(se)</th>
<th>Kappa</th>
<th>(se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>az1</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>1</td>
<td>0.711</td>
<td>0.025</td>
<td>0.412</td>
<td>0.05</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>723</td>
<td>0.719</td>
<td>0.024</td>
<td>0.426</td>
<td>0.05</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>260</td>
<td>0.658</td>
<td>0.026</td>
<td>0.302</td>
<td>0.053</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>76</td>
<td>0.716</td>
<td>0.024</td>
<td>0.42</td>
<td>0.051</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>194</td>
<td>0.696</td>
<td>0.025</td>
<td>0.374</td>
<td>0.053</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>0</td>
<td>0.603</td>
<td>0.035</td>
<td>0.167</td>
<td>0.09</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>579</td>
<td>0.854</td>
<td>0.025</td>
<td>0.706</td>
<td>0.05</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>233</td>
<td>0.824</td>
<td>0.027</td>
<td>0.644</td>
<td>0.055</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>56</td>
<td>0.864</td>
<td>0.024</td>
<td>0.726</td>
<td>0.049</td>
</tr>
<tr>
<td>az1</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>178</td>
<td>0.869</td>
<td>0.024</td>
<td>0.737</td>
<td>0.048</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>0</td>
<td>0.894</td>
<td>0.017</td>
<td>0.446</td>
<td>0.078</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>683</td>
<td>0.912</td>
<td>0.015</td>
<td>0.642</td>
<td>0.06</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>250</td>
<td>0.894</td>
<td>0.017</td>
<td>0.592</td>
<td>0.061</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>102</td>
<td>0.903</td>
<td>0.016</td>
<td>0.529</td>
<td>0.072</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>265</td>
<td>0.876</td>
<td>0.018</td>
<td>0.508</td>
<td>0.066</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>0</td>
<td>0.66</td>
<td>0.067</td>
<td>0.248</td>
<td>0.187</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>661</td>
<td>0.94</td>
<td>0.034</td>
<td>0.694</td>
<td>0.166</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>224</td>
<td>0.9</td>
<td>0.042</td>
<td>0</td>
<td>0.283</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>8</td>
<td>0.96</td>
<td>0.028</td>
<td>0.811</td>
<td>0.129</td>
</tr>
<tr>
<td>az2</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>17</td>
<td>0.92</td>
<td>0.038</td>
<td>0.31</td>
<td>0.275</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>0</td>
<td>0.879</td>
<td>0.015</td>
<td>0.643</td>
<td>0.042</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>829</td>
<td>0.913</td>
<td>0.013</td>
<td>0.673</td>
<td>0.046</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>272</td>
<td>0.924</td>
<td>0.012</td>
<td>0.712</td>
<td>0.044</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>119</td>
<td>0.913</td>
<td>0.013</td>
<td>0.663</td>
<td>0.047</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>324</td>
<td>0.901</td>
<td>0.013</td>
<td>0.646</td>
<td>0.046</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>0</td>
<td>0.421</td>
<td>0.024</td>
<td>0.025</td>
<td>0.085</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>573</td>
<td>0.615</td>
<td>0.024</td>
<td>-0.016</td>
<td>0.096</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>284</td>
<td>0.634</td>
<td>0.024</td>
<td>0.073</td>
<td>0.077</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>120</td>
<td>0.615</td>
<td>0.024</td>
<td>0.027</td>
<td>0.078</td>
</tr>
<tr>
<td>mt1</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>210</td>
<td>0.624</td>
<td>0.024</td>
<td>0</td>
<td>0.098</td>
</tr>
<tr>
<td>Model</td>
<td>Type</td>
<td>Feature</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>0</td>
<td>0.856</td>
<td>0.011</td>
<td>0.702</td>
<td>0.022</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>632</td>
<td>0.888</td>
<td>0.009</td>
<td>0.772</td>
<td>0.019</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>463</td>
<td>0.856</td>
<td>0.011</td>
<td>0.702</td>
<td>0.022</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>359</td>
<td>0.884</td>
<td>0.01</td>
<td>0.762</td>
<td>0.02</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>463</td>
<td>0.886</td>
<td>0.01</td>
<td>0.766</td>
<td>0.019</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>0</td>
<td>0.502</td>
<td>0.023</td>
<td>0.03</td>
<td>0.064</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>389</td>
<td>0.62</td>
<td>0.022</td>
<td>0.233</td>
<td>0.045</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>204</td>
<td>0.502</td>
<td>0.023</td>
<td>0.03</td>
<td>0.064</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>107</td>
<td>0.645</td>
<td>0.022</td>
<td>0.285</td>
<td>0.044</td>
</tr>
<tr>
<td>mt2</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>204</td>
<td>0.602</td>
<td>0.022</td>
<td>0.207</td>
<td>0.045</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>0</td>
<td>0.697</td>
<td>0.027</td>
<td>0.393</td>
<td>0.054</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>484</td>
<td>0.686</td>
<td>0.027</td>
<td>0.364</td>
<td>0.055</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>258</td>
<td>0.697</td>
<td>0.027</td>
<td>0.393</td>
<td>0.054</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>91</td>
<td>0.703</td>
<td>0.027</td>
<td>0.401</td>
<td>0.054</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>190</td>
<td>0.69</td>
<td>0.027</td>
<td>0.373</td>
<td>0.055</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>0</td>
<td>0.686</td>
<td>0.037</td>
<td>0.299</td>
<td>0.079</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>605</td>
<td>0.818</td>
<td>0.031</td>
<td>0.574</td>
<td>0.07</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>227</td>
<td>0.818</td>
<td>0.031</td>
<td>0.595</td>
<td>0.067</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>32</td>
<td>0.818</td>
<td>0.031</td>
<td>0.574</td>
<td>0.07</td>
</tr>
<tr>
<td>ut1</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>183</td>
<td>0.836</td>
<td>0.029</td>
<td>0.623</td>
<td>0.067</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.2</td>
<td>NLCD</td>
<td>1</td>
<td>0.72</td>
<td>0.023</td>
<td>0.416</td>
<td>0.047</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.2</td>
<td>GAM</td>
<td>421</td>
<td>0.71</td>
<td>0.023</td>
<td>0.347</td>
<td>0.05</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.2</td>
<td>CART</td>
<td>277</td>
<td>0.72</td>
<td>0.023</td>
<td>0.416</td>
<td>0.047</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.2</td>
<td>MARS</td>
<td>109</td>
<td>0.712</td>
<td>0.023</td>
<td>0.35</td>
<td>0.051</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.2</td>
<td>ANN</td>
<td>230</td>
<td>0.702</td>
<td>0.023</td>
<td>0.338</td>
<td>0.05</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.3</td>
<td>NLCD</td>
<td>1</td>
<td>0.627</td>
<td>0.031</td>
<td>0.152</td>
<td>0.075</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.3</td>
<td>GAM</td>
<td>666</td>
<td>0.876</td>
<td>0.021</td>
<td>0.737</td>
<td>0.044</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.3</td>
<td>CART</td>
<td>248</td>
<td>0.884</td>
<td>0.02</td>
<td>0.756</td>
<td>0.042</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.3</td>
<td>MARS</td>
<td>73</td>
<td>0.896</td>
<td>0.019</td>
<td>0.777</td>
<td>0.041</td>
</tr>
<tr>
<td>ut2</td>
<td>FORTYP.3</td>
<td>ANN</td>
<td>216</td>
<td>0.863</td>
<td>0.022</td>
<td>0.705</td>
<td>0.047</td>
</tr>
</tbody>
</table>
Table D-2. Results from Predictive Mapping of the Continuous Variables

<table>
<thead>
<tr>
<th>Eco</th>
<th>Response</th>
<th>Technique</th>
<th>Run Time</th>
<th>Rho</th>
<th>PWI 25%</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>az1</td>
<td>BIOTOT</td>
<td>NLCD</td>
<td>1</td>
<td>0.319</td>
<td>0.251</td>
<td>2583.157</td>
</tr>
<tr>
<td>az1</td>
<td>BIOTOT</td>
<td>GAM</td>
<td>284</td>
<td>0.592</td>
<td>0.307</td>
<td>2228.626</td>
</tr>
<tr>
<td>az1</td>
<td>BIOTOT</td>
<td>CART</td>
<td>235</td>
<td>0.459</td>
<td>0.276</td>
<td>2509.072</td>
</tr>
<tr>
<td>az1</td>
<td>BIOTOT</td>
<td>MARS</td>
<td>39</td>
<td>0.562</td>
<td>0.296</td>
<td>2278.476</td>
</tr>
<tr>
<td>az1</td>
<td>BIOTOT</td>
<td>ANN</td>
<td>130</td>
<td>0.631</td>
<td>0.276</td>
<td>2124.114</td>
</tr>
<tr>
<td>az1</td>
<td>CRCOV</td>
<td>NLCD</td>
<td>1</td>
<td>0.302</td>
<td>0.412</td>
<td>7.763</td>
</tr>
<tr>
<td>az1</td>
<td>CRCOV</td>
<td>GAM</td>
<td>375</td>
<td>0.568</td>
<td>0.467</td>
<td>6.679</td>
</tr>
<tr>
<td>az1</td>
<td>CRCOV</td>
<td>CART</td>
<td>235</td>
<td>0.516</td>
<td>0.442</td>
<td>6.977</td>
</tr>
<tr>
<td>az1</td>
<td>CRCOV</td>
<td>MARS</td>
<td>52</td>
<td>0.56</td>
<td>0.482</td>
<td>6.709</td>
</tr>
<tr>
<td>az1</td>
<td>CRCOV</td>
<td>ANN</td>
<td>140</td>
<td>0.549</td>
<td>0.442</td>
<td>6.788</td>
</tr>
<tr>
<td>az1</td>
<td>STAGECL</td>
<td>NLCD</td>
<td>1</td>
<td>0.058</td>
<td>0.482</td>
<td>17.77</td>
</tr>
<tr>
<td>az1</td>
<td>STAGECL</td>
<td>GAM</td>
<td>342</td>
<td>0.262</td>
<td>0.528</td>
<td>17.585</td>
</tr>
<tr>
<td>az1</td>
<td>STAGECL</td>
<td>CART</td>
<td>245</td>
<td>0.27</td>
<td>0.543</td>
<td>17.248</td>
</tr>
<tr>
<td>az1</td>
<td>STAGECL</td>
<td>MARS</td>
<td>47</td>
<td>0.259</td>
<td>0.538</td>
<td>17.882</td>
</tr>
<tr>
<td>az1</td>
<td>STAGECL</td>
<td>ANN</td>
<td>151</td>
<td>0.206</td>
<td>0.558</td>
<td>17.948</td>
</tr>
<tr>
<td>az1</td>
<td>QMDALL</td>
<td>NLCD</td>
<td>1</td>
<td>0.158</td>
<td>0.477</td>
<td>1.441</td>
</tr>
<tr>
<td>az1</td>
<td>QMDALL</td>
<td>GAM</td>
<td>512</td>
<td>0.249</td>
<td>0.477</td>
<td>1.408</td>
</tr>
<tr>
<td>az1</td>
<td>QMDALL</td>
<td>CART</td>
<td>263</td>
<td>0.162</td>
<td>0.497</td>
<td>1.448</td>
</tr>
<tr>
<td>az1</td>
<td>QMDALL</td>
<td>MARS</td>
<td>56</td>
<td>0.139</td>
<td>0.482</td>
<td>1.478</td>
</tr>
<tr>
<td>az1</td>
<td>QMDALL</td>
<td>ANN</td>
<td>135</td>
<td>0.265</td>
<td>0.482</td>
<td>1.401</td>
</tr>
<tr>
<td>az2</td>
<td>BIOTOT</td>
<td>NLCD</td>
<td>2</td>
<td>0.403</td>
<td>0.28</td>
<td>1887.105</td>
</tr>
<tr>
<td>az2</td>
<td>BIOTOT</td>
<td>GAM</td>
<td>388</td>
<td>0.777</td>
<td>0.2</td>
<td>1267.915</td>
</tr>
<tr>
<td>az2</td>
<td>BIOTOT</td>
<td>CART</td>
<td>210</td>
<td>0.605</td>
<td>0.26</td>
<td>1600.747</td>
</tr>
<tr>
<td>az2</td>
<td>BIOTOT</td>
<td>MARS</td>
<td>16</td>
<td>0.32</td>
<td>0.18</td>
<td>2662.053</td>
</tr>
<tr>
<td>az2</td>
<td>BIOTOT</td>
<td>ANN</td>
<td>20</td>
<td>0.611</td>
<td>0.36</td>
<td>2733.205</td>
</tr>
<tr>
<td>az2</td>
<td>CRCOV</td>
<td>NLCD</td>
<td>0</td>
<td>0.411</td>
<td>0.24</td>
<td>4.356</td>
</tr>
<tr>
<td>az2</td>
<td>CRCOV</td>
<td>GAM</td>
<td>396</td>
<td>0.483</td>
<td>0.28</td>
<td>4.18</td>
</tr>
<tr>
<td>az2</td>
<td>CRCOV</td>
<td>CART</td>
<td>214</td>
<td>0.296</td>
<td>0.18</td>
<td>4.591</td>
</tr>
<tr>
<td>az2</td>
<td>CRCOV</td>
<td>MARS</td>
<td>12</td>
<td>0.241</td>
<td>0.28</td>
<td>5.651</td>
</tr>
<tr>
<td>az2</td>
<td>CRCOV</td>
<td>ANN</td>
<td>20</td>
<td>0.561</td>
<td>0.24</td>
<td>3.978</td>
</tr>
<tr>
<td>az2</td>
<td>STAGECL</td>
<td>NLCD</td>
<td>0</td>
<td>-0.077</td>
<td>0.56</td>
<td>13.388</td>
</tr>
<tr>
<td>az2</td>
<td>STAGECL</td>
<td>GAM</td>
<td>419</td>
<td>0</td>
<td>0.36</td>
<td>14.627</td>
</tr>
<tr>
<td>az2</td>
<td>STAGECL</td>
<td>CART</td>
<td>223</td>
<td>0</td>
<td>0.54</td>
<td>13.241</td>
</tr>
<tr>
<td></td>
<td>Method 1</td>
<td>Method 2</td>
<td>Method 3</td>
<td>Method 4</td>
<td>Method 5</td>
<td>Method 6</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>az2</td>
<td>STAGECL</td>
<td>MARS</td>
<td>16</td>
<td>0.025</td>
<td>0.44</td>
<td>14.919</td>
</tr>
<tr>
<td>az2</td>
<td>STAGECL</td>
<td>ANN</td>
<td>24</td>
<td>0.021</td>
<td>0.5</td>
<td>16.008</td>
</tr>
<tr>
<td>az2</td>
<td>QMDALL</td>
<td>NLCD</td>
<td>1</td>
<td>0.278</td>
<td>0.52</td>
<td>0.634</td>
</tr>
<tr>
<td>az2</td>
<td>QMDALL</td>
<td>GAM</td>
<td>452</td>
<td>0.265</td>
<td>0.42</td>
<td>0.637</td>
</tr>
<tr>
<td>az2</td>
<td>QMDALL</td>
<td>CART</td>
<td>236</td>
<td>0.278</td>
<td>0.5</td>
<td>0.651</td>
</tr>
<tr>
<td>az2</td>
<td>QMDALL</td>
<td>MARS</td>
<td>12</td>
<td>0.201</td>
<td>0.54</td>
<td>0.682</td>
</tr>
</tbody>
</table>

| mt1    | BIOTOT   | NLCD     | 1        | 0.276    | 0.23     | 7.3415   |          |          |          |           |
| mt1    | BIOTOT   | GAM      | 358      | 0.335    | 0.251    | 7.1921   |          |          |          |           |
| mt1    | BIOTOT   | CART     | 262      | 0.242    | 0.215    | 7.4585   |          |          |          |           |
| mt1    | BIOTOT   | MARS     | 94       | 0.339    | 0.256    | 7.1934   |          |          |          |           |
| mt1    | BIOTOT   | ANN      | 215      | 0.291    | 0.239    | 7.3073   |          |          |          |           |
| mt1    | CRCOV    | NLCD     | 1        | 0.302    | 0.23     | 11.769   |          |          |          |           |
| mt1    | CRCOV    | GAM      | 450      | 0.386    | 0.268    | 11.377   |          |          |          |           |
| mt1    | CRCOV    | CART     | 272      | 0.382    | 0.256    | 11.402   |          |          |          |           |
| mt1    | CRCOV    | MARS     | 114      | 0.302    | 0.23     | 11.769   |          |          |          |           |
| mt1    | CRCOV    | ANN      | 213      | 0.404    | 0.249    | 11.305   |          |          |          |           |
| mt1    | STAGECL  | NLCD     | 1        | 0.175    | 0.179    | 27.465   |          |          |          |           |
| mt1    | STAGECL  | GAM      | 458      | 0.406    | 0.196    | 25.44    |          |          |          |           |
| mt1    | STAGECL  | CART     | 283      | 0.255    | 0.182    | 27.346   |          |          |          |           |
| mt1    | STAGECL  | MARS     | 97       | 0.391    | 0.194    | 25.835   |          |          |          |           |
| mt1    | STAGECL  | ANN      | 215      | 0.291    | 0.146    | 27.355   |          |          |          |           |
| mt1    | QMDALL   | NLCD     | 3        | 0.049    | 0.419    | 2.178    |          |          |          |           |
| mt1    | QMDALL   | GAM      | 729      | 0.248    | 0.431    | 2.117    |          |          |          |           |
| mt1    | QMDALL   | CART     | 323      | 0.049    | 0.419    | 2.179    |          |          |          |           |
| mt1    | QMDALL   | MARS     | 87       | 0.189    | 0.428    | 2.146    |          |          |          |           |
| mt1    | QMDALL   | ANN      | 300      | -0.014   | 0.39     | 2.971    |          |          |          |           |

<p>| mt2    | BIOTOT   | NLCD     | 1        | 0.392    | 0.28     | 8.903    |          |          |          |           |
| mt2    | BIOTOT   | GAM      | 282      | 0.433    | 0.29     | 8.709    |          |          |          |           |
| mt2    | BIOTOT   | CART     | 261      | 0.347    | 0.294    | 9.216    |          |          |          |           |
| mt2    | BIOTOT   | MARS     | 74       | 0.411    | 0.304    | 8.814    |          |          |          |           |
| mt2    | BIOTOT   | ANN      | 211      | 0.439    | 0.296    | 8.676    |          |          |          |           |
| mt2    | CRCOV    | NLCD     | 0        | 0.365    | 0.378    | 7.029    |          |          |          |           |
| mt2    | CRCOV    | GAM      | 204      | 0.416    | 0.369    | 6.861    |          |          |          |           |
| mt2    | CRCOV    | CART     | 269      | 0.375    | 0.363    | 7.009    |          |          |          |           |
| mt2    | CRCOV    | MARS     | 97       | 0.382    | 0.392    | 7.01     |          |          |          |           |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mt2</td>
<td>CRCOV</td>
<td>ANN</td>
<td>214</td>
<td>0.383</td>
<td>0.38</td>
</tr>
<tr>
<td>mt2</td>
<td>STAGECL</td>
<td>NLCD</td>
<td>1</td>
<td>0.218</td>
<td>0.224</td>
</tr>
<tr>
<td>mt2</td>
<td>STAGECL</td>
<td>GAM</td>
<td>319</td>
<td>0.527</td>
<td>0.22</td>
</tr>
<tr>
<td>mt2</td>
<td>STAGECL</td>
<td>CART</td>
<td>260</td>
<td>0.441</td>
<td>0.208</td>
</tr>
<tr>
<td>mt2</td>
<td>STAGECL</td>
<td>MARS</td>
<td>80</td>
<td>0.503</td>
<td>0.229</td>
</tr>
<tr>
<td>mt2</td>
<td>STAGECL</td>
<td>ANN</td>
<td>204</td>
<td>0.511</td>
<td>0.188</td>
</tr>
<tr>
<td>mt2</td>
<td>QMDALL</td>
<td>NLCD</td>
<td>1</td>
<td>0.046</td>
<td>0.457</td>
</tr>
<tr>
<td>mt2</td>
<td>QMDALL</td>
<td>GAM</td>
<td>309</td>
<td>0.261</td>
<td>0.478</td>
</tr>
<tr>
<td>mt2</td>
<td>QMDALL</td>
<td>CART</td>
<td>279</td>
<td>0.067</td>
<td>0.424</td>
</tr>
<tr>
<td>mt2</td>
<td>QMDALL</td>
<td>MARS</td>
<td>114</td>
<td>0.241</td>
<td>0.418</td>
</tr>
<tr>
<td>mt2</td>
<td>QMDALL</td>
<td>ANN</td>
<td>248</td>
<td>0.149</td>
<td>0.476</td>
</tr>
<tr>
<td>ut1</td>
<td>BIOTOT</td>
<td>NLCD</td>
<td>1</td>
<td>0.025</td>
<td>0.27</td>
</tr>
<tr>
<td>ut1</td>
<td>BIOTOT</td>
<td>GAM</td>
<td>329</td>
<td>0.059</td>
<td>0.22</td>
</tr>
<tr>
<td>ut1</td>
<td>BIOTOT</td>
<td>CART</td>
<td>230</td>
<td>0.029</td>
<td>0.296</td>
</tr>
<tr>
<td>ut1</td>
<td>BIOTOT</td>
<td>MARS</td>
<td>27</td>
<td>0.075</td>
<td>0.283</td>
</tr>
<tr>
<td>ut1</td>
<td>BIOTOT</td>
<td>ANN</td>
<td>121</td>
<td>0.081</td>
<td>0.264</td>
</tr>
<tr>
<td>ut1</td>
<td>CRCOV</td>
<td>NLCD</td>
<td>0</td>
<td>0.249</td>
<td>0.233</td>
</tr>
<tr>
<td>ut1</td>
<td>CRCOV</td>
<td>GAM</td>
<td>384</td>
<td>0.358</td>
<td>0.277</td>
</tr>
<tr>
<td>ut1</td>
<td>CRCOV</td>
<td>CART</td>
<td>235</td>
<td>0.216</td>
<td>0.283</td>
</tr>
<tr>
<td>ut1</td>
<td>CRCOV</td>
<td>MARS</td>
<td>32</td>
<td>0.298</td>
<td>0.258</td>
</tr>
<tr>
<td>ut1</td>
<td>CRCOV</td>
<td>ANN</td>
<td>131</td>
<td>0.272</td>
<td>0.22</td>
</tr>
<tr>
<td>ut1</td>
<td>STAGECL</td>
<td>NLCD</td>
<td>1</td>
<td>0.094</td>
<td>0.403</td>
</tr>
<tr>
<td>ut1</td>
<td>STAGECL</td>
<td>GAM</td>
<td>385</td>
<td>0.424</td>
<td>0.384</td>
</tr>
<tr>
<td>ut1</td>
<td>STAGECL</td>
<td>CART</td>
<td>254</td>
<td>0.267</td>
<td>0.34</td>
</tr>
<tr>
<td>ut1</td>
<td>STAGECL</td>
<td>MARS</td>
<td>36</td>
<td>0.381</td>
<td>0.384</td>
</tr>
<tr>
<td>ut1</td>
<td>STAGECL</td>
<td>ANN</td>
<td>132</td>
<td>0.385</td>
<td>0.377</td>
</tr>
<tr>
<td>ut1</td>
<td>QMDALL</td>
<td>NLCD</td>
<td>2</td>
<td>0.072</td>
<td>0.327</td>
</tr>
<tr>
<td>ut1</td>
<td>QMDALL</td>
<td>GAM</td>
<td>640</td>
<td>0.205</td>
<td>0.365</td>
</tr>
<tr>
<td>ut1</td>
<td>QMDALL</td>
<td>CART</td>
<td>299</td>
<td>0.168</td>
<td>0.327</td>
</tr>
<tr>
<td>ut1</td>
<td>QMDALL</td>
<td>MARS</td>
<td>32</td>
<td>0.131</td>
<td>0.321</td>
</tr>
<tr>
<td>ut1</td>
<td>QMDALL</td>
<td>ANN</td>
<td>142</td>
<td>0.252</td>
<td>0.421</td>
</tr>
<tr>
<td>ut2</td>
<td>BIOTOT</td>
<td>NLCD</td>
<td>1</td>
<td>0.201</td>
<td>0.225</td>
</tr>
<tr>
<td>ut2</td>
<td>BIOTOT</td>
<td>GAM</td>
<td>327</td>
<td>0.551</td>
<td>0.281</td>
</tr>
<tr>
<td>ut2</td>
<td>BIOTOT</td>
<td>CART</td>
<td>236</td>
<td>0.456</td>
<td>0.261</td>
</tr>
<tr>
<td>ut2</td>
<td>BIOTOT</td>
<td>MARS</td>
<td>77</td>
<td>0.556</td>
<td>0.221</td>
</tr>
<tr>
<td>ut2</td>
<td>BIOTOT</td>
<td>ANN</td>
<td>171</td>
<td>0.586</td>
<td>0.257</td>
</tr>
<tr>
<td>ut2</td>
<td>CRCOV</td>
<td>NLCD</td>
<td>1</td>
<td>0.294</td>
<td>0.329</td>
</tr>
<tr>
<td>ut2</td>
<td>CRCOV</td>
<td>GAM</td>
<td>374</td>
<td>0.482</td>
<td>0.361</td>
</tr>
<tr>
<td>ut2</td>
<td>CRCOV</td>
<td>CART</td>
<td>242</td>
<td>0.339</td>
<td>0.313</td>
</tr>
<tr>
<td>ut2</td>
<td>CRCOV</td>
<td>MARS</td>
<td>70</td>
<td>0.441</td>
<td>0.357</td>
</tr>
<tr>
<td>ut2</td>
<td>CRCOV</td>
<td>ANN</td>
<td>150</td>
<td>0.483</td>
<td>0.369</td>
</tr>
<tr>
<td>ut2</td>
<td>STAGECL</td>
<td>NLCD</td>
<td>1</td>
<td>0.038</td>
<td>0.47</td>
</tr>
<tr>
<td>ut2</td>
<td>STAGECL</td>
<td>GAM</td>
<td>363</td>
<td>0.106</td>
<td>0.458</td>
</tr>
<tr>
<td>ut2</td>
<td>STAGECL</td>
<td>CART</td>
<td>235</td>
<td>0.007</td>
<td>0.43</td>
</tr>
<tr>
<td>ut2</td>
<td>STAGECL</td>
<td>MARS</td>
<td>57</td>
<td>0.027</td>
<td>0.458</td>
</tr>
<tr>
<td>ut2</td>
<td>STAGECL</td>
<td>ANN</td>
<td>186</td>
<td>-0.047</td>
<td>0.45</td>
</tr>
<tr>
<td>ut2</td>
<td>QMDALL</td>
<td>NLCD</td>
<td>2</td>
<td>0.208</td>
<td>0.498</td>
</tr>
<tr>
<td>ut2</td>
<td>QMDALL</td>
<td>GAM</td>
<td>370</td>
<td>0.38</td>
<td>0.522</td>
</tr>
<tr>
<td>ut2</td>
<td>QMDALL</td>
<td>CART</td>
<td>237</td>
<td>0.294</td>
<td>0.546</td>
</tr>
<tr>
<td>ut2</td>
<td>QMDALL</td>
<td>MARS</td>
<td>71</td>
<td>0.373</td>
<td>0.502</td>
</tr>
<tr>
<td>ut2</td>
<td>QMDALL</td>
<td>ANN</td>
<td>161</td>
<td>0.274</td>
<td>0.474</td>
</tr>
</tbody>
</table>
CURRICULUM VITAE

GRETCHEN GENGEBACH MOISEN
80 North Wolcott Street, SLC, UT 84103
PH: 801/363-7288, EMAIL: gmoisen@fs.fed.us

EDUCATION
2000. Ph.D. (Mathematical Sciences), Utah State University, Logan, UT.
1990. M.S. (Statistics), Utah State University, Logan, UT.
1982. B.S. (Forestry), University of New Hampshire, Durham, N.H.

PROFESSIONAL EXPERIENCE
1989 - Present. Research Scientist, US Forest Service, Ogden, UT.

TEACHING EXPERIENCE
  Topics in Spatial Ecology Seminar
  Statistical Models in Ecology Seminar
  Seminar in Spatial Analysis of Ecological Data

AWARDS AND OTHER HONORS
2000. USDA National Director’s Award for excellence in FIA.
2000. USDA Merit Award for developing cost-effective estimation strategies for forest inventories of the Interior West, Ogden, UT.
1994. Graduate Student Researcher of the Year, College of Science, Utah State University, Logan, UT.
1994. Outstanding Student Award for Research, Department of Mathematics and Statistics, Utah State University, Logan, UT.
1991. Outstanding Student Award for Research, Department of Mathematics and Statistics, Utah State University, Logan, UT.
1990. Outstanding Student Award for Academics, Department of Mathematics and Statistics, Utah State University, Logan, UT.

1990. USDA Merit Award for contributions to the 1990 RPA assessment, Ogden, UT.

1985. USDA Merit Award for exceptional supervisory performance for the Arizona and New Mexico forest inventories, Ogden, UT.

1982. Graduated Magna Cum Laude, University of New Hampshire, Durham, N.H.

GRANTS

1999-2003 Spatial products from forest inventories: development of a modelling, display, and analysis environment (PI), US Forest Service, $225,000.


PROFESSIONAL SERVICE

1999 - Present Member of the US Forest Service National Statistical Estimation Band.

1999 - Present. Participant in development phase of US Forest Service Northern Region Ecological System Inventory, Analysis, and Monitoring effort, Missoula, MT.

1999. Participant in the North Central Remote Sensing Workshop designed to coordinate research efforts conducted under US Forest Service Remote Sensing grant funding, Minneapolis, MN.

1999. Participant in the Biometrician's Workshop to design estimation strategies to meet 1998 Farm Bill legislative requirements, New Orleans, LA.

1998. Participant in review of US Forest Service Northern Region Strategic Ecological System Inventory, Analysis, and Monitoring Charter, Missoula, MT.

1998. Panelist for the University Consortium on Geographic Information Science, Research Priority Panel on Uncertainty, Park City, UT.

1997 - Present. Member of the US Forest Service National Remote Sensing Band.
1996. Reviewer of statistical methods proposed for the Annual Forest Inventory System pilot study in Aspen-Birch Unit of Minnesota, Fort Collins, CO.


1994. Facilitator at National Analysts Conference, Forest Inventory and Analysis, Denver, CO.


1989 - Present. Reviewer of numerous US Forest Service Research committee recommendations and program charters.

PUBLICATIONS


INVITED PRESENTATIONS


1999. Moisen, G. G. Development of spatial products from forest inventory data in the Interior West. Presentation before the US Forest Service North Central Remote Sensing Workshop, Minneapolis, MN.


1998. Edwards, T. C., Jr., and G. G. Moisen. Linking remotely-sensed environmental information with regional forest inventories to model forest structure. Presentation before the Department of Geography, San Diego State University, San Diego California.


broad-scale prediction of forest structure. Seminar sponsored by Utah Chapter of the Society of American Foresters, Ogden, UT.

1997.


1997.

Edwards, T. C., Jr., G. G. Moisen, D. Van Hooser, and R. D. Cutler. Linking digital cover maps with regional forest inventory data: the broad-scale prediction of forest structure. Seminar presented before the USGS Biological Resources Division Staff, Reston, Virginia, 4/3/97.

1997.

Moisen, G. G., T. C. Edwards, Jr., and R. D. Cutler. Linking digital cover maps with regional forest inventory data: the broad-scale prediction of forest structure. Seminar sponsored by the Forest and Rangeland Ecosystem Science Center, Corvallis, OR.

1996.

Moisen, G. G. Improved statistical models for estimating, exploring and mapping forest attributes. Presentation at the Second Annual US Forest Service Timber Staff Officers Workshop, Ogden, UT.

1996.


1993.

Edwards, T. C., Jr., G. G. Moisen, and D. R. Cutler. Spatial sampling to assess classification accuracy of remotely sensed data. Paper presented at The First Environmental Information Management and Analysis Symposium, National Science Foundation, Albuquerque, N.M.


OFFERED PRESENTATIONS


mountains, Utah. Poster presented at the 83rd Annual Meeting of the Ecological Society of America, Providence, R.I.

1998. Moisen, G. G. and T. C. Edwards, Jr. Comparing modern regression techniques for broad-scale prediction of forest structure. Presentation at the Third International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Quebec City, Canada.


1998. Edwards, T. C., Jr. and G. G. Moisen. The seven faces of Dr. Accuracy (with apologies to Lao!) Presentation at the Third International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Quebec City, Canada.

1998. Moisen, G. G., T. C. Edwards, Jr., and T. S. Frescino. Merging forest inventory data with satellite-based information in Utah. Seminar sponsored by the Department of Fisheries and Wildlife, Utah State University, Logan, UT.


1995.

1994.

1994.