STUDIES IN PEPTIDE SYNTHESIS TOWARDS THE LANTHIONINE ANALOG OF DES-N-TETRAMETHYL TRIOSTIN A

by

Ganesh Devdas Kini

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

UTAH STATE UNIVERSITY
Logan, Utah
1983
DEDICATION

With reverence to my mother, Sushila Devdas Kini, and my father, Devdas Vasudev Kini, this thesis is dedicated. My first teachers, they provided the impetus and support for my entire education, without which this work would be impossible.
ACKNOWLEDGEMENTS

The author wishes to express his heartfelt gratitude and appreciation
- to Dr. Richard K. Olsen, the research director, for his advice, help and support
- to Drs. Michael P. Windham, Daniel L. Comins, William M. Moore and Thomas M. Farley, committee members
- to Dr. Krishna L. Bhat, for his fine "lab company," technical advice and discussions
- to Dr. William J. Hennen, for his valuable suggestions and help in "getting started"
- to Jeffrey L. Johnson, for his technical help
- to the National Institute of Health, for financial support of the project
- to Mr. Dayanand A. Prabhu and Mr. Manjunath S. Nayak, for their encouragement, help and moral support
- and last but not least, to Susan L. Herron for typing the dissertation competently at short notice.

Ganesh Devdas Kini
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>The structure and conformation of echinomycin and triostin A</td>
<td>8</td>
</tr>
<tr>
<td>Synthesis of triostin and echinomycin.</td>
<td>10</td>
</tr>
<tr>
<td>Synthesis of lanthionines.</td>
<td>17</td>
</tr>
<tr>
<td>Synthesis of unsymmetrical cystine containing peptides.</td>
<td>22</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION.</td>
<td>27</td>
</tr>
<tr>
<td>Preparation of lanthionine 27 from N,N’di-t-butyloxycarbonyl-L-cystine dimethyl ester</td>
<td>29</td>
</tr>
<tr>
<td>The mechanism of lanthionine contraction</td>
<td>31</td>
</tr>
<tr>
<td>Synthesis of and cyclization studies of linear octapeptides 29 and 30.</td>
<td>32</td>
</tr>
<tr>
<td>Studies on lanthionine contraction of tetrapeptide 34, hexapeptide 35, cyclic octapeptide 13 and TANDEM.</td>
<td>35</td>
</tr>
<tr>
<td>The unsymmetrical approach to the synthesis of 4</td>
<td>37</td>
</tr>
<tr>
<td>Contraction of unsymmetrical disulfides.</td>
<td>38</td>
</tr>
<tr>
<td>Synthesis of lanthionine by nucleophilic displacement of -chloro-L-alanine</td>
<td>41</td>
</tr>
<tr>
<td>Synthesis of lanthionine by displacement of 0-activated serine derivatives with cysteine</td>
<td>47</td>
</tr>
<tr>
<td>Synthesis of unsymmetrical lanthionines 76 and 80 using thiol sulfinates</td>
<td>54</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>68</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>70</td>
</tr>
</tbody>
</table>
Synthesis of N,N'-di-tert-butyloxy-carbonyl-L-cystine dimethyl ester (26) 71
Synthesis of N,N-di-tert-butyloxy-carbonyl-L-lanthionine dimethyl ester (27) 71
Synthesis of hexapeptide lanthionine 28 ... 72
Synthesis of octapeptide lanthionine 29 ... 74
Attempted synthesis of octadepsipeptide 31 from 29 .. 75
Synthesis of octapeptide 32 ... 76
Attempted synthesis of cyclic octapeptide 31 from 32 ... 77
Synthesis of tetrapeptide 34 ... 78
Lanthionine contraction of tetrapeptide 34 .. 79
Synthesis of hexapeptide 35 ... 79
Attempted lanthionine contraction of above hexapeptide 35 ... 80
Synthesis of N-benzyloxy carbonyl-L-seryl-L-valine methyl ester .. 81
Synthesis of N-benzyloxy carbonyl-0-(p-toluene sulfonyl)-L-seryl-L-valine methyl ester (61) 81
Attempted displacement of 61 with benzyl mercaptan .. 82
Displacement of N-benzyloxy carbonyl-0-(p-toluene sulfonyl)-L-seryl-L-glycine methyl ester with benzyl mercaptan ... 83
Synthesis of tripeptide 63 ... 83
Synthesis of tripeptide mesylate 65 ... 84
Attempted displacement of 65 with benzyl mercaptan .. 85
Synthesis of N-benzyloxy carbonyl-L-serine- (N-t-butyloxy carbonyl)-hydrazide (66) 85
Synthesis of N-Benzyloxy carbonyl-0-(p-toluene sulfonyl)-L-serine (N-t-butyloxy carbonyl) hydrazide (67) .. 86
Attempted displacement of 67 with benzyl mercaptan .. 87
Synthesis of N,N'-di-t-butyloxy-carbonyl-L-cystine di-t-butyl ester (72) 87
Synthesis of N-t-butyloxy carbonyl-L-cysteine t-butyl ester (70) .. 88
N,N'-Di-benzyloxy carbonyl-L-cystine diethyl ester ... 88
N,N'-Di-benzyloxy carbonyl-L-cystine diethyl, t-butyl diester (75) 89
Synthesis of thiol sulfinate 74 ... 89
Synthesis of N-benzyloxy carbonyl, N'-t-butyloxy carbonyl-L-cystine ethyl, t-butyl diester (75) ... 89
Synthesis of lanthionine 76 ... 90
N,N'-di-2,2,2-trichloroethoxy-carbonyl-L-cystine di-t-butyl ester (77) 91
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
ABSTRACT

Studies in Peptide Synthesis Towards the Lanthionine Analog of Des-N-Tetramethyl Triostin A

by

Ganesh Devdas Kini, Doctor of Philosophy
Utah State University, 1983

Major Professor: Richard K. Olsen
Department: Chemistry

Studies have been carried out towards the synthesis of bicyclic octadidepsipeptide lanthionine 4, an analog of des-N-tetramethyl triostin A. Starting with a symmetrical lanthionine unit 5 (R₁, R₃ = Me; R₂, R₄ = t-butyloxycarbonyl), synthesized from the corresponding cystine by contraction with hexaethylphosphorus triamide, linear octadidepsipeptides 29 and 32 were synthesized.

\[\text{Qxc-D-Ser-Ala-Ala-Val} \]

\[\text{Val+Ala+Ala+Val+Ser-D-Qxc} \]

5, 76, 80
Attempted cyclizations of 29 and 32 to the bicyclic octapeptide were unsuccessful.

The failure of the symmetrical approach to prompted the synthesis of an unsymmetrical lanthionine unit with appropriate compatible protecting groups. Attempts to synthesize unsymmetrical lanthionines by nucleophilic displacement on N-benzyloxycarbonyl-S-chloro-L-alanine and appropriate O-activated serine derivatives with the thiol function of L-cysteine were unsuccessful. L-valine as the C-terminal amino acid of the O-activated serine was found to sterically hinder the nucleophilic displacement with the thiol, since the displacement could be effected when glycine was present in lieu of valine.

The reaction of thiolsulfinate with cysteine led to an unsymmetrical cystine which was then contracted with hexaethylphosphorus triamide to yield the corresponding lanthionines. The synthesis of unsymmetrical lanthionines \(\text{76} \) (\(R_1 = \text{t-butyl}, R_2 = \text{t-butyloxycarbonyl}, R_3 = \text{ethyl}, R_4 = \text{benzyloxycarbonyl} \)) and \(\text{80} \) (\(R_1 = \text{t-butyl}, R_2 = 2,2,2\text{-trichloroethyloxycarbonyl}, R_3 = \text{ethyl}, R_4 = \text{benzyloxycarbonyl} \)) has been accomplished. Lanthionines \(\text{76} \) and \(\text{80} \) each have four different protecting on the amino and carboxyl functions. These can be selectively removed in the right sequence for a proposed
synthesis of 4. Further studies towards the synthesis of 4, as proposed, were not pursued.

(115 pages)
The quinoxaline antibiotics are a class of compounds, characteristic of which is the presence of one or more quinoxaline chromophores. They are produced by several species of streptomycetes. Isolated and reported independently by Carter et al.\(^1\) and Ueda et al.\(^2\) in 1954, these are a group of peptide antibiotics that possess unusual bicyclic structures. In 1961, the existence of two families of quinoxaline antibiotics, the quinomycins and the triostins, was reported.\(^3,4\)

The structures of triostin A (1) and echinomycin (2) are as shown. Both are octadepsipeptides, each composed of two D-serine, two L-alanine, two N-methyl-L-valine and two N-methyl-L-cysteine units. The carboxyls of the N-methyl-L-valine units form two ester bonds, called depsipeptide bonds in peptide terminology, with the respective hydroxyls of the D-serine units. To the amine nitrogen of each D-serine unit is attached a quinoxaline-2-carbonyl unit.

The two families of antibiotics differ, however, in the central bridging of the bicyclic structure. Triostin A has a disulfide linkage between the two N-methyl-L-cysteine units. Hence, it is a symmetrical molecule with a \(C_2\) axis of rotation passing through the disulfide bond. Echinomycin, on the other hand, has a unique and hitherto unknown dithioacetal linkage in lieu of the disulfide bridge in triostin A. Consequently, it lacks the element of symmetry present in the triostin A molecule.

Echinomycin, also known as quinomycin A, is produced by several species of streptomycetes, while triostin A is produced only by
Streptomyces aureus. The quinoxaline antibiotics are of considerable interest because of their potent biological activity, which has been reviewed by Katagiri et al. They are powerful antibiotics exhibiting antiviral, antimicrobial and cytotoxic activity. Their biological significance was noticed in 1955, when antitumor activity was first demonstrated. A mixture of triostin A and triostin C has been shown to be particularly effective against the mouse tumor strain, Mecca lymphoma. While the quinoxalines are known to show activity against a fairly broad spectrum of gram-positive, acid fast and anaerobic bacteria, their activity towards gram-negative bacteria and fungi is insignificant.

The antibiotics have also been found to be active towards mycoplasma, polio virus infection in mice, and protozoa. That they inhibit multiplication of bacteriophages has also been reported. Studies were carried out by Katagiri and Sugivra and Matsuura, to determine the antitumor activity exhibited by some of the quinoxalines against several tumor systems in mice, rats, hamsters and chickens. These studies indicated quinoxaline C to be the most therapeutically active. Another important aspect found from these studies was the fact that minor variations in structure within the quinoxalines resulted in significantly different antitumour activity.

Echinomycin is now in the first phase of preclinical evaluation by the National Cancer Institute. Olsen has recently compiled a review of the quinoxaline group of antibiotics.

The biological activity of the quinoxalines has aroused considerable interest in their possible clinical uses as also in their mode of biological action. First clues to their possible mode of
action were provided by their cytotoxic response. Poisoned cell strains, upon staining, showed the aggregation of chromatin and dispersion of the nuclei.15 This effect was common to all of the quinoxaline antibiotics. Waring et al.16,17,18,19 proposed the mechanism of activity to be direct interaction with DNA (deoxyribonucleic acid). The hypothesis was that the two quinoxaline-2-carbonyl units are positioned parallel to each other and in a plane perpendicular to the peptide backbone. When they point in the same direction, the molecule resembles a staple. The staple-shaped molecule binds by inserting both the quinoxaline residues between different sets of base pairs on the DNA molecule, thereby inhibiting RNA synthesis. This unusual form of binding, termed "bifunctional intercalation" has been thoroughly studied and supported by binding data,16,17 X-ray crystallographic data19 and solution conformation studies.20

The biological properties and the unusual mode of activity of the quinoxaline antibiotics together have generated considerable interest in the total chemical synthesis of these compounds as well as analogs. The first total synthesis of a quinoxaline antibiotic, triostin A was accomplished by Olsen and Chakravarty.15 Olsen and coworkers21 also synthesised the first biologically active analog, des-N-tetramethyltriostin A. This synthetic analog, with the acronym TANDEM, differs from the naturally occurring antibiotic triostin A by the absence of the four N-methyl groups on the two cysteine and two valine residues (structure 3).
The binding properties of TANDEM have turned out to be very unique. TANDEM exhibits a high degree of binding specificity for DNA with alternating sequences of adenine and thymine (poly dA-dT), as against the low specificity for poly (dG-dC).16,17 Interestingly, the other naturally occurring quinoxaline antibiotics show the opposite sequence specificity in their binding to DNA. Waring22 has recently reviewed the sequence selective binding to DNA of echinomycin, triostin A and related quinoxaline antibiotics in relation to their structure.

The research presented in this thesis deals with studies towards the synthesis of another analog of the quinoxaline antibiotics, the lanthionine analog of des-N-tetramethyl trisotin A (structure 4).
The interest in the synthesis of this molecule is two fold. One, the approach is to start with a lanthionine unit and develop a peptide synthesis, which could then be applied to a preformed β-methylthiolanthionine, structure 5. Compound 5 is the central bridging moiety of echinomycin 2. This mixed dithioacetal has, as yet, not been synthesised, and its chemical properties, like stability to reaction conditions, have not been documented. In the previously reported synthesis of TANDEM 21 the cyclic octapeptide is first synthesized with the formation of the disulfide bridge being the
penultimate step in the total synthesis. The approach here is exactly the opposite, to start with the central sulfur containing unit and develop a synthesis around it.

The second aspect of interest in this study is the possible manifestation of the binding properties of the lanthionine analog. TANDEM, which differs from naturally occurring triostin A by the absence of four N-methyl groups, shows opposite sequence specificity in binding to DNA as compared to triostin A. The lanthionine analog would have its central bridge shortened by one sulfur atom compared to triostin A, but would exist with the same number of atoms in the bridging group as in echinomycin. Hence, it would be of considerable interest to study the binding properties of the lanthionine analog in comparison with TANDEM itself, as also with triostin A and echinomycin.

Attempts to synthesize starting with a symmetrical lanthionine unit were unsuccessful. Hence, the logical alternative was to start with a suitably protected unsymmetrical lanthionine. The results of these studies will be presented herewith.
The structure and conformation of echinomycin and triostin A

Prelog and coworkers reported the first structure elucidation for a quinoxaline antibiotic. From the data available at that time, they proposed the following structure for echinomycin. The sulphur unit was proposed to exist as a 1,4-dithiane ring system.

In 1975, Williams and coworkers, and Martin and coworkers independently reported their spectroscopic studies on the structure of echinomycin. After consideration of their evidence based on 1H and 13C nuclear magnetic resonance data, the hitherto accepted 1,4-dithiane cross link was revised to a dithioacetal cross link. Structure is now the accepted structure for echinomycin. As seen in 2, there exists a chiral center within the cross link at the β-carbon of the lantionine unit. The configuration at the chiral carbon, however, has not yet
been established. The revision in the structure of echinomycin is schematically shown below, with the rest of the molecule remaining the same.

![Diagram of molecular structure]

Otsuka and Shoji26 carried out structural studies on the triostins and assigned structure to triostin C. Among the triostins produced by \textit{Steptomyces aureus}, triostin C happens to be the major isomer. After further studies on the minor components of the quinoxaline antibiotics, Otsuka et al.27 assigned structure to triostin A in 1967.

There are a number of recent reports on the conformations of triostin, echinomycin and the quinoxaline antibiotics in general.28,29,30,31 Ughetto and Waring,32 have reported theoretical studies carried out on the conformations of echinomycin. From these studies, it was concluded that conformational changes are restricted by the dithioacetal linkage, and that the two quinoxaline chromophores orient themselves on the same side of the peptide ring in the conformation that is most stable. Williamson and Williams31 have come to the same conclusion for the solution conformation of echinomycin, after analysis of nmr data using the nuclear Overhauser effect, Feeney and coworkers33 have published proton nmr data supporting Waring and Ughetto's conclusion.
Williams and coworkers,34 and Kawano and coworkers35 have reported studies on the solution conformation of triostin A. They found triostin A to exist in two symmetrical conformations in chloroform solution. From the analysis of their nmr data, Williams and coworkers20 concluded that the quinoxaline chromophores, like in echinomycin, were oriented on the same side of the peptide backbone. Olsen,14 in his review on the quinoxaline antibiotics, has discussed the conformational analysis for triostin and echinomycin in detail.

Synthesis of triostin and echinomycin

There have been relatively few reports on synthetic studies of the quinoxaline antibiotics. To date, the total synthesis of echinomycin has not been reported.

Olsen and coworkers36 were the first to synthesize a biologically active analog of a naturally occurring quinoxaline antibiotic. This analog of triostin A differed from the naturally occurring antibiotic by the absence of four N-methyl groups on the two valine and two cysteine residues. Hence, it was christened des-N-tetramethyltriostin A, with the acronym TANDEM (structure 3). The synthesis was carried out according to Scheme 1.

The linear tetrapeptide 8, which constitutes one half of the symmetrical molecule TANDEM 3, was a key intermediate. Tetrapeptides 9 and 10, both derived from 8, were then coupled to give the linear octapeptide 11. This is an example of how Olsen and coworkers took advantage of the symmetry in the molecule to facilitate its synthesis. Other salient features of this synthesis were the tactful use of protecting groups. The 2,2,2-trichloroethyl ester37 protecting group at the alanine residue in 11 can be selectively hydrolyzed under
(a) TFA; (b) NaHCO₃; (c) Boc-Cys(Acm)-OH, EDC, HOBT, THF; (d) Zn, aq'ACOH; (e) EDC, HOBT, THF; (f) DCC, N-methylmorpholine 1-hydroxy succimide, THF; (g) I₂, MeOH; (h) HBr, AcOH; (i) Et₃N, DMF, QxcCl, Abbreviations: Boc = tert-butyloxycarbonyl, Acm = acetamidomethyl, EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide·HCl, HOBT = N-hydroxybenzotrizote, THF = tetrahydrofuran, DMF = N,N-dimethylformamide, Qxc = quinoxaline-2-carbonyl, Z= benzyloxycarbonyl.

Scheme 1.
reductive conditions with zinc and acetic acid without affecting the depsipeptide ester bond. The acetamidomethyl group38,39 was used to protect the cysteine thiol functions. This group undergoes oxidative cleavage upon treatment with iodine in methanol with the simultaneous formation of the disulfide bond40 (12 to 13).

The amino groups of the two serines were protected with the benzyloxycarbonyl group (Z group), while the N-terminals of the cysteine residues were protected with the tert-butyloxycarbonyl (Boc) group.41 The latter can be selectively cleaved with trifluoroacetic acid42 without affecting the Z-groups and the depsipeptide ester bonds. The use of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in coupling reactions facilitates the workup, as compared to that with the use of N,N'-dicyclohexylcarbodiimide. In the latter case, one of the products of the reaction, N,N'-dicyclohexylurea, is insoluble and precipitates out of the solvents normally used in peptide couplings, like methylene chloride or pyridine. This product has to be removed by repeated filtration. When EDC is used, the urea formed is water soluble, and thus can be removed from the reaction mixture by washing the organic phase with water. The depsipeptide bond in 7 was formed by the use of N,N'-dicyclohexylcarbodiimide in anhyd pyridine.43 Compound 13 was converted to 3 by acidolysis of the benzyloxycarbonyl group using HBr in acetic acid followed by acylation44 with 2-quinoxaloyl chloride in dimethylformamide.

The synthesis of the des-N-tetramethyl analog was prompted by the fact that N-methylamino acids are generally not commercially available in protected form as are their naturally occurring counterparts.
Olsen and coworkers45 also reported another approach to the synthesis of des-\textit{N}-tetramethyltriostin A. Octapeptide 12 was synthesized, the cyclization being effected by the coupling of the C-terminal of serine with the N-terminal of alanine. The linear octapeptide synthesized had the following structure,

\[
\begin{align*}
\text{Boc-Ala-Cys-Val} & \quad \text{Z-D-Ser-OBpa} \\
\text{Acm} & \quad \text{Acm} \\
\text{Z-DSer-Ala-Cys-Val} & \\
\end{align*}
\]

Bpa: p-bromophenacyl

The p-bromophenacyl ester46 protecting group (Bpa) was used and found to be more suitable than the trichloroethyl ester group.

Chakravarty and Olsen15 accomplished the total synthesis of triostin A, using the strategy and methods developed for the synthesis of TANDEM, with a few, but significant, modifications. A new protecting group, the benzamidomethyl (Bam) group was developed47 for the protection of the thiol functions of the \textit{N}-methyl-\textit{L}-cysteine residues. This group was found to be much better than the acetamidomethyl used in the synthesis of TANDEM. Tetrapeptide 14, again the key intermediate, upon treatment with zinc and acetic acid to synthesize 15, did not undergo a clean transformation, and starting material 14 was left behind.

\[
\begin{align*}
\text{Z-D-Ser-Ala-OR} \\
\text{Boc-MeCys-MeVal} \\
\text{Bam} \\
\end{align*}
\]

14: \text{R = Tce} \\
15: \text{R = H}
The problem of incomplete removal of the trichloroethyl ester function was found to be more predominant in the synthesis of 19 from 18. Conditions more vigorous than normally used for the removal of the trichloroethyl ester function resulted in the destruction of 18 to form a complex mixture of products. Hence, this pathway to the cyclic octapeptide had to be modified.

Linear octadepsipeptide 19 was synthesized in good yield by coupling 17 with the mixed anhydride of 15.
Cyclic octapeptide 20 was synthesized from 19, after deblocking the amino group of the N-methylcysteine, followed by cyclization in THF solution with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccimide. During the course of this synthesis, Chakravarty and Olsen observed that, in general, N-methylamino acid peptides were oils as compared to their naturally occurring counterparts.

Shin and coworkers, as part of their studies towards the total synthesis of triostin A, synthesized the tetradepsipeptides 21, 22, 23, and 24.

\[
\begin{align*}
\text{Z-MeCys(Bzl)-MeVal} & \quad \text{Bpoc-MeCys(Bzl)-MeVal} \\
& \quad \text{Qxc-D-Ser-Ala-OH} \\
& \quad \text{Qxc-D-Ser-Ala-OtBu} \\
\end{align*}
\]

\[
\begin{align*}
\text{Z-MeVal} & \quad \text{Bpoc-MeVal} \\
& \quad \text{Qxc-D-Ser-Ala-MeCys(Bzl)-OH} \\
& \quad \text{Qxc-D-Ser-Ala-MeCys(Bzl)-OtBu} \\
\end{align*}
\]

\[
\begin{align*}
\text{Bpoc: } 2-(4\text{-biphenyl})-2\text{-propoxycarbonyl} \\
\text{Qxc: quinoxaline-2-carbonyl}
\end{align*}
\]

In the design of their synthesis, the symmetry of the triostin A molecule was considered. Cyclization by the formation of the depsipeptide ester bonds was not considered, since the low reactivity of the serine hydroxyxl would necessitate the activation of the appropriate carboxyl group to an extent that side reactions and racemization would be facilitated. Hence, the cyclization had to be effected by the formation of a peptide bond. Each of the peptides 21,
22, 23 and 24 represent one half of the triostin A molecule. The approach was to attempt synthesis of triostin A via 21 and 22 or 23 and 24 in two separate systems. Attempted deprotection of 22 to yield the free amine resulted in the formation of dipeptide 25, and a product identified as cyclo[-MeCys(Bzl)-MeVal-]. These were inferred to be products of intramolecular aminolysis. Since then, Shin and coworkers51 have reported the total synthesis of triostin A in 1980.

Qxc-D-Ser-Ala-\text{OtBu}

25

The above workers also developed a new method for the introduction of the quinoxaline-2-carbonyl group on the serine nitrogen by the use of the p-nitrophenyl ester of quinoxaline-2-carboxylic acid. An interesting observation was the formation of the depsipeptide bond in peptide 26 by the use of N,N'-carbonyldiimidazole52 or 2,2'-dimethyl-

Bpoc-MeVal \text{Qxc-D-Ser-Ala-\text{OtBu}}

26

1,1'-carbonyldiimidazole53 even though in relatively low yield. This is contrary to the findings of Olsen and coworkers43 who found these methods unsuccessful in the formation of depsipeptide bonds.

Olsen54 reported studies on the introduction of the quinoxaline-2-carbonyl moiety in amino acids, tripeptides and tetrapeptides. The Merrifield Solid Phase method55 was found to give satisfactory results as compared to standard methods of peptide coupling.
Cheng and coworkers44 investigated synthetic routes to bis-quinoxaloyl derivatives containing peptide linkages. Olsen and coworkers43 synthesized cyclic tetradepsipeptides as models for one portion of the bicyclic octadepsipeptide echinomycin.

\[
\begin{align*}
\text{R-Ser-Ala-NH} & \quad (R') \\
\text{Val+C} & \quad ||
\end{align*}
\]

\[R: \text{carbobenzoxy, quinoxaline-2-carbonyl} \]

\[R': -(CH_2)_4-\]

The depsipeptide bond formation was accomplished by the use of an excess of the carboxylic acid with N,N'-dicyclohexylcarbodiimide in pyridine solution. The mixed anhydride and carbonyldimidazole methods were found to be unsatisfactory.

Synthesis of lanthionines

The amino acid lanthionine has the following structure. This amino acid, β-amino-β-carboxyethyl sulfide, was first reported by Horn and coworkers56,57 to be formed by the action of sodium carbonate on wool and other proteins.

Lanthionine is a special case of a sulfide, hence an unsymmetrical lanthionine would be a special case of an unsymmetrical sulfide. There
have been several methods reported for the synthesis of unsymmetrical sulfides.58-62 However, these are not amenable to peptide synthesis and to the synthesis of lanthionines. The methods reported for the synthesis of symmetrical and unsymmetrical lanthionines and cysteiny1 peptides will be discussed.

Brown and du Vigneaud63 reported the first synthesis of lanthionine by the action of L-cysteine on dl-\(\alpha\)-amino-\(\beta\)-chloropropionic acid in strongly alkaline base.

\[
\begin{align*}
\text{NH}_2\text{-CH-CH}_2\text{-SH} & + \text{Cl-CH}_2\text{-CH-NH}_3\text{Cl}^- \\
\text{COOH} & \quad \text{COOH} \\
\text{Base} & \quad \text{(Aq KOH)}
\end{align*}
\]

\[
\begin{align*}
\text{NH}_2\text{-CH-CH}_2\text{-S-CH}_2\text{-CH-NH}_2 \\
\text{COOH} & \quad \text{COOH}
\end{align*}
\]

Jacobsen and coworkers64 reported, as early as in 1955, the use of phosphines to contract disulfides.

\[
P(\text{OEt})_3 + \text{EtSSEt} \rightarrow \left[\begin{array}{c}
\text{EtS}^- \\
\text{EtSP(OEt)_3}
\end{array} \right] \rightarrow \text{EtSPO(OEt)_2} + \text{EtSEt}
\]

In 1971, Harpp and Gleason65 utilized alkylamino phosphines to effect selective removal of a sulfur from appropriate cystine derivatives to yield symmetrical lanthionines.
The method of Harpp and Gleason, however, was reported not to be useful for the synthesis of unsymmetrical lanthionines. This reaction will be discussed in detail later.

Photaki and coworkers synthesized an unsymmetrical lanthionine by making use of the steric bulk of the triphenylmethyl group (trityl). A lanthionine diester, with a trityl group on one of the α-amino functions, upon hydrolysis, yields a mono-acid, the trityl group shielding the ester on the α-carboxyl from hydrolysis. Photaki's reaction sequence was as follows.

\[
\begin{align*}
&\text{CH}_2\text{SH} + \text{CH}_2\text{Cl} \\
&\text{ZNH-CH-COOH} + \text{H}_2\text{N-CH-COOH} \\
&\text{ZNH-CH-COOH} + \text{H}_2\text{N-CH-COOH} \\
&\text{HN-CH-COOH} + \text{HN-CH-COOH} \\
&\text{Ph}_3\text{CCl, Et}_3\text{N} \\
&\text{ZNH-CH}-\text{CH}_2\text{-S}-\text{CH}_2\text{-CH-NH}_3\text{Cl}^- \\
&\text{ZNH-CH}-\text{CH}_2\text{-S}-\text{CH}_2\text{-CH-NHCPh}_3 \\
&\text{HN-CH}-\text{CH}_2\text{-S}-\text{CH}_2\text{-CH-NHCPh}_3 \\
&\text{NaOH} \\
&\text{Acetone/H}_2\text{O} \\
&\text{ZNHCH-CH}_2\text{-S}-\text{CH}_2\text{-CH-NHCPh}_3
\end{align*}
\]
As will be discussed later, attempts to synthesize a lanthionine using this method were unsuccessful.

Wilchek and coworkers67 reported the synthesis of optically active L-cysteine peptides in high yields by the reaction of thio reagents with peptides containing a β-chloroalanine unit. The thio reagents used included thioacetate, thiobenzoate and benzyl mercaptide. N,N-dimethylformamide or ethyl acetate were used as solvents.

\[
\begin{align*}
\text{CH}_2\text{Cl} &\quad \text{RS}^- & \quad \text{CH}_2\text{SR} \\
\text{ZNH-CH-HCONHCH}_2\text{COOC}_2\text{H}_5 &\quad \rightarrow & \quad \text{ZNH-CH-HCONHCH}_2\text{COOC}_2\text{H}_5 \\
\text{Z: } &\quad \text{C}_6\text{H}_5\text{CH}_2\text{OOCC-} \\
\text{R: } &\quad \text{CH}_3\text{CO-}, \text{C}_6\text{H}_5\text{CO-}, \text{C}_6\text{H}_5\text{CH}_2^- \\
\end{align*}
\]

While this method worked well for the synthesis of some cysteinyl peptides, it could not be used on systems with an ester function on the carbon β- to the carbon with the chlorine.

In a strikingly similar manner, Wilchek and coworkers68 synthesized cysteinyl peptides from peptides with an L-serine residue. The thioacetate anion effected an SN_2 displacement on 0-p-toluene-sulfonyl-L-serine peptides in N,N-dimethylformamide or aqueous media to quantitatively yield optically active S-acetyl-L-cysteine peptides.

\[
\begin{align*}
\text{CH}_2\text{O}\text{Ts} &\quad \text{CH}_3\text{COSNa} & \quad \text{CH}_2\text{SCOCH}_3 \\
\text{ZNH-CH-HCONHCH}_2\text{COOC}_2\text{H}_5 &\quad \text{DMF} & \quad \text{ZNH-CH-HCONHCH}_2\text{COOC}_2\text{H}_5 + \text{TsONa} \\
\text{Z: } &\quad \text{C}_6\text{H}_5\text{CH}_2\text{OOCC-} \\
\text{Ts: } &\quad \text{p-CH}_3\text{C}_6\text{H}_4\text{SO}_2^- \\
\end{align*}
\]
However, an ester function to the carbon with the tosylate group led to racemic product.

\[
\begin{align*}
\text{OTs} & \quad \text{CH}_3\text{COSNa} & \quad \text{SCOCH}_3 \\
Z\text{-Ser-OCH}_3 & \quad \text{DMF} & \quad Z\text{-Cys-OCH}_3
\end{align*}
\]

Ser: serine
Cys: cysteine

The ester function promotes elimination to yield a dehydroalanine ester. The mercaptide anion then adds to the \(\alpha,\beta\)-unsaturated ester in Michael fashion to yield racemic product. This is one of the limitations of this method. Results on the attempted synthesis of some cysteiny1 peptides using this method will be presented and discussed later.

Nakajima and coworkers recently reported the first example of ring opening by thiols to yield lanthionine. The aziridine ring, upon reaction with thiols under Lewis acid catalyzed conditions, yielded the corresponding lanthionines.
Synthesis of unsymmetrical cystine containing peptides

As in the case of lanthionines, several methods have been reported for the synthesis of unsymmetrical disulfides, where as relatively few are available for the synthesis of cystine containing peptides.

In 1973, Kamber synthesized various fragments of insulin containing a disulfide bridge. The fragmentation of sulfenyl thio carbonate with a thiol unit can be applied to the synthesis of unsymmetrical cystine peptides.
Kamber also reported the synthesis of cystine peptides by the reaction of S-acetamidomethyl cysteine peptides with iodine. Using this method, Kamber was able to synthesize cyclo-L-cystine, which, at that time, was unknown.

\[
\begin{align*}
\text{CH}_3\text{CNHCH}_2 & \quad \text{CH}_2\text{NHCCH}_3 \\
\text{S} & \quad \text{S} \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{BocNHCHCOOH} & \quad \text{H}_2\text{N-CH-COOCH}_3 \\
\end{align*}
\]

DCC: N,N'-dicyclohexylcarbodiimide

The reaction of L-cysteine esters with S-carbomethoxy derivatives to yield L-cysteine containing disulfides has been studied by Kemp and coworkers.
Hiskey and Ward84 reported their studies on the synthesis of cystine peptides using sulfenyl thiocyanates. They applied this method to the synthesis of numerous cystine peptides with different amino acids, and observed no significant side reactions.

\[
\begin{align*}
R-S-X & \quad \text{(SCN)}_2 \quad [R-S-SCN] & \quad R'-S-X & \quad R-S-S-R' \\
\text{X}=H, C(C_6H_5)_3, \text{CH}(C_6H_5)_2, \text{CH}_2OCH_2CH(CH_3)_2
\end{align*}
\]

Hiskey and coworkers85 also reported the synthesis of unsymmetrical cystine peptides using the S-carbomethoxy sulfenyl group as a labile intermediate for the selective conversion of a cysteine residue to a cystine.
The reaction of thiolsulfinates with cysteine to yield unsymmetrical disulfides containing cysteine has been reported. The method used for the synthesis of unsymmetrical lanthionines in this thesis is an approach based upon mechanistic consideration of the disulfide contraction reported by Harpp and Gleason.

An extension of the method of Schoberl, involving the addition of a cysteine to a cystine sulfoxide, resulted in an unsymmetrical cystine.
This unsymmetrical cystine was then selectively desulfurized with hexaethyl phosphorus triamide, used either in stoichiometric amount or in excess. These details are discussed later.

\[
\begin{align*}
R-S-S-R' & \quad \xrightarrow{\text{Benzene}} \quad R-S'-R' + (\text{Et}_2\text{N})_3\text{P} = S \\
\end{align*}
\]
RESULTS AND DISCUSSION

The structure of the target molecule outlined for synthesis, the lanthionine analog of TANDEM, is as shown below, structure 4.

\[\text{Qxc-D-Ser-Ala-Ala-Val} \]
\[\text{Val-Ala-Ala-Ser-D Qxc} \]

4 is a symmetrical bicyclic octadepsipeptide, with a \(C_2 \) axis of symmetry through the sulphur atom. 4 differs from TANDEM in that the central bridging unit has one sulfur atom as compared to two in TANDEM, with the rest of the molecule being the same for both 4 and TANDEM. The central bridging unit of 4 is a lanthionine unit 5.

\[\text{R}_2\text{NH} \]
\[\text{C-OR}_1 \]
\[\text{R} \]
\[\text{S} \]
\[\text{R}_4\text{NH} \]
\[\text{C-OR}_3 \]

5: \(R = H \)
5a: \(R = \text{SCH}_3 \)

In the previously reported synthesis of triostin A and TANDEM, the cyclic octapeptide is synthesized first and the central bridging unit incorporated in the penultimate step of the total synthesis. The
approach presented in this thesis is to start with a suitably protected lanthionine unit \(5 \) and develop a peptide synthesis about the lanthionine unit. As part of a continuing program towards the total synthesis of echinomycin, the methods developed for \(5 \) could then be applied to a preformed \(\beta \)-methylthio lanthionine unit \(5a \), which is the central bridging unit in echinomycin, thus leading to echinomycin. Hence the studies towards the synthesis of \(4 \) would provide a model for the total synthesis of echinomycin.

The second aspect of interest in the synthesis of \(4 \) is the possible manifestation of the binding properties of \(4 \) to DNA. As mentioned before, TANDEM differs from the naturally occurring triostin A by the absence of four N-methyl groups on the cysteine and valine residues. TANDEM, however, exhibits opposite sequence specificity in its binding to DNA as compared to triostin A. It has been established that small changes in structure lead to significant difference in activity among the quinoxaline antibiotics. Hence, it would be interesting to compare the binding properties of \(4 \) with TANDEM and triostin A. The central bridging unit of \(4 \) has the same number of atoms as that in echinomycin. Thus, a comparison of the binding properties of \(4 \) to those of echinomycin would be of considerable interest and biological significance.

The symmetry of the target molecule \(4 \) prompted the design of the total synthesis of \(4 \) starting with a symmetrical lanthionine. Attempted cyclization of the octapeptide synthesized, however, was unsuccessful. This led to the logical alternative to start the synthesis with an unsymmetrical lanthionine with appropriate protecting groups that would permit the cyclization leading to the bicyclic
octapeptide \(\text{4} \) to be effected in two separate steps, the first one leading to one half of the bicyclic system, with the second leading to bicyclic octapeptide \(\text{4} \).

The synthesis of a suitable lanthionine unit with four different and compatible protecting groups was found to be a challenging one. Different approaches to the synthesis of lanthionines had to be pursued. Hence, while the synthesis of two suitably protected lanthionines was accomplished, the subsequent syntheses leading to octapeptide lanthionine \(\text{4} \) as proposed, were not carried out.

Thus, a synthesis starting with a symmetrical lanthionine unit was designed, and as shown in Scheme 2.

Preparation of lanthionine 27 from \(\text{N,N'-di-t-butyloxycarbonyl-L-cystine dimethyl ester} \)

\(\text{N,N'-Di-t-butyloxycarbonyl-L-cystine dimethyl ester} \) \(\text{26} \) was prepared by the reaction of di-t-butyl-dicarbonate\(^{87} \) with commercially available L-cystine dimethyl ester dihydrochloride, in \(\text{N,N-dimethylformamide solution in the presence of triethylamine. This method of introducing the Boc-protecting group is more convenient than the previously used method using t-butyloxycarbonyl azide, as the latter has explosive tendencies. This method is also known to give higher yields. Compound \(\text{2} \) \(^{28} \), upon treatment with hexaethylphosphorus triamide in benzene solution, underwent a clean disulfide contraction to yield lanthionine \(\text{27} \) in 80% yield after chromatographic purification using the mplc with 20% acetone in hexane as the eluting solvent.}
Scheme 2.

Boc-Ala-OMe

\[(i) \text{ hydrolysis } \]

\[(ii) \text{ coupling with Z-D-Ser-OBpa } \]

H-Val

\[26 \]

\[Z-D-Ser-OBpa \quad \text{Boc-Ala-Val} \]

\[\text{Val+Ala-Boc} \]

\[27 \]

\[\text{(i) TFA} \]

\[(ii) \text{ coupling with } \text{Boc-Ala-OH} \]

\[28 \]

\[Z-D-Ser-OBpa \quad \text{Boc-Ala-Ala-Val} \]

\[\text{Val+Ala-Ala-Boc} \quad Z-D-Ser-OBpa \]

\[29 \]

\[\text{deprotection} \]

\[Z-D-Ser-OH \quad H-Ala-Ala-Val \]

\[\text{Val+Ala+Ala-H} \quad \text{HO+Ser-D+Z} \]

\[30 \]

\[\text{cyclization} \]

\[Z-D-Ser-Ala-Ala-Val \]

\[\text{Val+Ala+Ala+Ser-D+Z} \]

\[31 \]
The 1H NMR of 27 was identical to that of 26 with one exception. The cystine methylenes in 26 appear as a doublet at δ 3.2, while those in 27 appear as a doublet at δ 3.0. This is in accordance with the higher deshielding of the methylenes by two sulfur atoms in 26 as against one in 27. In fact, this was the only way by which we differentiated 26 and 27, other than elemental analysis, since they both have identical Rf values on tlc. It was observed that the conversion of 26 to 27 was essentially complete. A mixture of 26 and 27 would not be separable by silica gel chromatography because of their identical Rf values. C, H, N and S analysis data for 27 were in satisfactory agreement with the calculated values, thus confirming the desulfurization.

The mechanism of lanthionine contraction

The mechanism of this reaction, reported by Harpp and Gleason, can be visualized as a two-step process. Step 1 is the nucleophilic attack of phosphorus on the sulfur, resulting in the formation of a positively charged phosphonium ion and a mercaptide anion. Step 2 is the attack of the mercaptide anion on the carbon α to the sulfur of the phosphonium ion, resulting in the formation of the lanthionine and phosphine sulphide.

Step 1

$$R-\text{CH}_2-\text{S}-\text{S}-\text{CH}_2 \text{R} + (\text{Et}_2\text{N})_3\text{P} \rightarrow R-\text{CH}_2-\text{S}^- + \text{P}^+ (\text{Et}_2\text{N})_3$$
Synthesis of and cyclization studies of linear octapeptides 29 and 32

Compound 27 was hydrolyzed with sodium hydroxide in dioxane-water to yield the diacid in 86% yield. This diacid was coupled with didepsipeptide N-benzyloxycarbonyl-0-(N-Boc-L-valyl)-D-serine p-bromophenacyl ester 5 to yield hexapeptide 28. 1H NMR spectrum of 28 showed the characteristic absorption doublet at δ 1.0 of the valine isopropyl methyls. An A_2B_2 quartet at δ 7.8 corresponding to the phenacyl aromatic was present. Elemental analysis data were in satisfactory agreement with the calculated values.

Treatment of 28 with trifluoroacetic acid, followed by coupling with N-t-butyloxycarbonyl-L-alanine led to 29. The structure of 29 was confirmed by the presence of the absorption peaks by the alanine methyls at δ 0.9 and satisfactory combustion analysis. The couplings to yield 28 and 29 were carried out in tetrahydrofuran using water soluble carbodiimide (EDC) and 1-hydroxybenzotriazole.

Deprotection of the amino groups with trifluoroacetic acid followed by reductive hydrolysis of the p-bromophenacyl ester groups with zinc and acetic acid led to octapeptide 30 with two free carboxyl and two free amino groups.

There were two potential problems in the cyclization of octapeptide 30 to yield 31. One was intermolecular coupling, where
instead of cyclization, the product would be a mixture of polypeptides. This was minimized by performing the reaction under high dilution, which would facilitate only intramolecular coupling. The second potential problem was intramolecular coupling in the undesired mode, as illustrated below.

![Desired mode of coupling diagram]

Desired mode of coupling

![Undesired mode of coupling diagram]

Undesired mode of coupling

The undesired mode of coupling involves the formation of a thirteen membered ring as against a seventeen membered ring to give the desired product. Since a 17-membered ring formation is favored over a 13-membered one,\(^8\) it was presumed that the formation of the bicyclic octapeptide \(31\) would be favored. The products of attempted coupling of \(30\) were compared to an authentic sample with a disulfide bridge instead of a monosulfide, as it was assumed that they would both have the same Rf values on tlc. Tlc analysis showed the product of reaction to be a complex mixture. Attempts to isolate \(31\) were unsuccessful.
Octapeptide 32 was synthesized by coupling of lanthionine 27, after hydrolysis, with a previously reported tridepsipeptide N-benzylloxycarbonyl-O-(L-valyl)-D-seryl-L-alanine 2,2,2-trichloroethyl ester. The coupling was carried out in THF with EDC and N-hydroxysuccinimide.

Removal of the Boc-groups upon treatment of 32 with trifluoroacetic acid, followed by reductive cleavage of the trichloroethyl ester functions with zinc in acetic acid, led to octapeptide 33. Attempted cyclization of 33 to 31 under conditions identical to those used in the cyclization of 30 to 31 resulted in a complex mixture of products and 31 could not be isolated. The cyclization of 30 to 31 involves amide bond formation between the C-terminal of the serine and the corresponding N-terminal of the alanine...
units. In the case of 33, however, the amide bond would be formed between the C-terminal of the alanine moiety with the N-terminal of the lanthionine unit. Both modes of cyclization have been reported in the synthesis of cyclic octadepsipeptides without the central sulfur unit.

Studies on lanthionine contraction of tetrapeptide 34, hexapeptide 35, cycloctapeptide 13 and TANDEM

In order to study the application of Harpp’s method of disulfide contraction to other systems, tetrapeptide 34 was synthesized. N,N-di-t-butyloxycarbonyl-L-cystine was coupled with the methyl ester of L-valine in pyridine using dicyclohexylcarbodiimide to yield 34.

\[
\begin{array}{c}
\text{Boc-Ala-OH} \\
| \\
S \\
| \\
S \\
| \\
\text{Boc-Ala-OH}
\end{array}
\quad \text{DCC} \quad
\begin{array}{c}
\text{Boc-Ala-Val-OMe} \\
| \\
S \\
| \\
S \\
| \\
\text{Boc-Ala-Val-OMe}
\end{array}
\]

DCC: dicyclohexylcarbodiimide

\(^1\)H NMR of 34 showed the characteristic absorption peak for the valine isopropyl methyls as a doublet at \(\delta\) 1.0.

Tetrapeptide 34 was treated with 1.2 eq of hexaethylphosphorus triamide in benzene solution. Upon purification of the reaction product on mplc, the corresponding lanthionine was obtained in 30% yield. The lanthionine showed the absorption peak of the cystine methylenes as a doublet at \(\delta\) 3.0. C, H and N analysis were in agreement with the calculated values.
Hexapeptide 35 was synthesized as shown below.

\[
\begin{array}{c}
\text{Boc-Ala-OH} \\
| \\
\text{S} \\
| \\
\text{S} \\
| \\
\text{Boc-Ala-OH}
\end{array}
\to
\begin{array}{c}
\begin{array}{c}
+ \\
\text{TFAH-Val}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{NMM} \\
\text{EDC, HOBT, THF}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Z-D-Ser-OBPA}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Boc-Ala-Val}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{S} \\
\text{Z-D-Ser-OBPA}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{S} \\
\text{Z-D-Ser-OBPA}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Boc-Ala-Val}
\end{array}
\end{array}
\end{array}
\]

NMM: N-methylmorpholine
EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-HCl
HOBT: 1-hydroxybenzotriazole

The structure of 35 was established by \(^1\text{H} \) NMR data, which showed the aromatic protons of the p-bromophenacyl group resonating as an \(A_2B_2 \) quartet at \(\delta \) 7.8. The absorption of the aromatics of the benzyloxy carbonyl groups appeared as a sharp singlet at \(\delta \) 7.2. The valine isopropyl methyls resonated a doublet at \(\delta \) 1.0. Elemental analysis for C, H, and N were in agreement with the calculated values.

Attempts to contract the hexapeptide 35 to the corresponding lanthionine were unsuccessful. Analysis of the products of reaction after treatment of 35 with hexethylphosphorus triamide indicated that the desired lanthionine was not obtained, and starting material was recovered.

A contraction of the cyclic octapeptide 13 shown below, which is a known intermediate prepared in the synthesis of TANDEM\(^{21} \), was attempted
using the above contraction procedure. The products of reaction were separated and isolated by preparative tlc. 360 MHz 1H NMR spectral data

\[
\text{Z-D-Ser-Ala-Ala-Val} \quad \left\{ \begin{array}{c}
| \\
S \\
| \\
S \\
| \\
\text{Val-Ala-Ala-Ser D-Z}
\end{array} \right. \\
\]

of the product showed no shift in the position in the cystine methylenes before and after the attempted contraction. This was further confirmed by the fact that the 1H NMR of a mixture of 13 and the isolated contraction product, a mixture which was homogeneous on tlc, was identical to the 1H NMR of 13. Hence, the contraction could not be effected. The reaction was carried out again, with a slight modification. Instead of stirring at room temperature for an hour, the reaction mixture was stirred at room temperature overnight. The results of this reaction were the same as before, the disulfide was unaffected. An attempt to contract TANDEM itself was also unsuccessful.

The unsymmetrical approach to the synthesis of 4 thus led to a logical alternative. An unsymmetrical lanthionine with four different protecting groups, as shown below, would, in principle, permit the cyclization of one half of the bicyclic octadepsipeptide followed by the other in two separate steps.
As mentioned before, there have been few methods reported for the synthesis of lanthionine. The synthesis of the above lanthionine posed an additional challenge in that the four protecting groups, \(R_1 \), \(R_2 \), \(R_3 \) and \(R_4 \), had to be compatible within themselves as well as with the two depsipeptide ester functions and other protecting groups present in subsequent peptide intermediates.

Contraction of unsymmetrical disulfides

In an attempt to synthesize an unsymmetrical lanthionine, Harpp and Gleason \(^65\) subjected peptide \(36 \) to treatment with hexaethylphosphorusr triamide. Contrary to the expected peptide \(41 \) (see p. 39), only peptide \(45 \) (see p. 40) was isolated. To explain these results, an equilibrium, with the intermediates as shown below, was proposed. (The notations used are incorrect in peptide terminology, but have been used for simplicity, as used by Harpp and Gleason.)
Treatment of 36 with hexaethylphosphorus triamide could result in the formation of two sets of charged intermediate 37 and 38, and 39 and 40. According to the accepted mechanism for the formation of lanthionine, reaction of either set should yield desired lanthionine 41.

\[
\begin{align*}
Z\text{-Cys-O\text{Me}} & \quad + \quad Z\text{-Cys-Gly-O\text{Me}} \\
\text{\text{s}^{-}} & \quad + \quad \text{S-\text{P(NE\text{t}_{2})}_{3}} \\
37 & \quad 38 \\
\end{align*}
\]

\[
\begin{align*}
Z\text{-Cys-O\text{Me}} & \quad + \quad Z\text{-Cys-Gly-O\text{Me}} \\
\text{\text{s}^{-}} & \quad + \quad \text{S-\text{P(NE\text{t}_{2})}_{3}} \\
39 & \quad 40 \\
\end{align*}
\]

However, reaction of 37 with 39 could lead to symmetrical lanthionine 42; analogously, reaction of 38 with 40 could lead to symmetrical lanthionine 43.

\[
\begin{align*}
Z\text{-Cys-O\text{Me}} & \quad + \quad Z\text{-Cys-O\text{Me}} \\
\text{\text{s}^{-}} & \quad + \quad \text{S-\text{P(NE\text{t}_{2})}_{3}} \\
37 & \quad 39 \\
\end{align*}
\]

\[
\begin{align*}
Z\text{-Cys-Gly-O\text{Me}} & \quad + \quad Z\text{-Cys-Gly-O\text{Me}} \\
\text{\text{s}^{-}} & \quad + \quad \text{S-\text{P(NE\text{t}_{2})}_{3}} \\
37 & \quad 38 \\
\end{align*}
\]

Intermediates 37 and 40 could also be involved in equilibria leading to the corresponding symmetrical disulfides 44 and 45.
The isolation of 45 was attributed to its extreme insolubility in the solvent system used. The major products of this reaction were 45 and 42.

The attempted contraction of another unsymmetrical disulfide 46 also resulted in the formation of symmetrical disulfide 47 as the major product of reaction.

Symmetrical disulfide 47 was obtained in 88% yield. In this case, the formation of tris(diethylamino)phosphine sulfide was not observed. This observation led to the conclusion that equilibration of disulfides occurs faster than desulfurization. The disproportionation of unsymmetrical disulfides into symmetrical disulfides is known to be a common side reaction in the synthesis of unsymmetrical disulfides.
Another limitation of the above disulfide contraction method was that the C-terminal of the cystine had to be protected, since phosphines are known to react with carboxylic acids.\(^7\)\(^5\)

Thus, while the formation of unsymmetrical lanthionines did not occur in yields of synthetic utility because of the possible equilibria already discussed, the contraction of symmetrical tetrapeptide \(^3\)\(^4\) in low yields as compared to that of \(^2\)\(^6\) and no contraction at all of hexapeptide \(^3\)\(^5\) was indicative of the fact that this reaction may be sensitive to steric effects. In comparison to \(^2\)\(^6\), the valine isopropyl group in tetrapeptide \(^3\)\(^4\) could sterically hinder the nucleophilic attack of the phosphine phosphorus on the sulfur, either because of its size or due to a conformational effect. The same could be true for hexapeptide \(^3\)\(^5\), but to a larger extent, thus resulting in no contraction at all to yield the corresponding lanthione. This could also be the possible reason for the lack of reactivity of TANDEM and the cyclic octapeptide intermediate, towards hexaethylphosphorus triamide. In the latter case, the ring conformation in the bicyclic structure could be such that the sulfur-sulfur bond is effectively shielded from nucleophilic attack by the phosphine phosphorus. Hence, it was necessary to look into other possible synthetic routes to the desired unsymmetrical lanthionine.

Synthesis of lanthionine by nucleophilic displacement of \(\beta\)-chloro-L-alanine

Photaki and coworkers\(^6\)\(^6\) reported the synthesis of unsymmetrical lanthionine \(^4\)\(^8\) by the displacement of a halide ion with a thio anion. The rationale for the synthesis of \(^4\)\(^8\) was two fold. One was to carry
out model studies on the cyclization leading to a cyclic pentapeptide equivalent to one half of the target bicyclic octapeptide 4. The cyclic pentapeptide 50 exists with the same number of carbon atoms in the ring system as in one half of the symmetrical bicyclic octapeptide 4. As already mentioned, the proposed synthesis of pentapeptide 50 is shown schematically below.

\[
\begin{align*}
&\text{ZNH} \quad \text{COOH} \\
&\text{S} \quad \text{MeOOC} \quad \text{NHCPh}_3 \\
&\text{ZNH} \quad \text{C-Val} \\
&\text{S} \quad \text{MeOOC} \quad \text{NHCPh}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{H-Val} & \quad \text{WSC} \\
\text{TceO-Ala+Ser-D+Z} & \quad \text{CH}_2\text{Cl}_2
\end{align*}
\]

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{S} & \quad \text{MeOOC} \quad \text{NHCPh}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{TceO-Ala+Ser-D+Z} & \quad \text{WSC} \\
\text{MeOOC} & \quad \text{NHCPh}_3
\end{align*}
\]

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{S} & \quad \text{MeOOC} \quad \text{NH}_2\text{TFA} \quad \text{HO-Ala+Ser-D+Z}
\end{align*}
\]

\[
\begin{align*}
\text{WSC} & \quad \text{ZNH} \quad \text{C-Val} \\
\text{S} & \quad \text{MeOOC} \quad \text{NH-Ala+Ser-D+Z}
\end{align*}
\]

\[
\begin{align*}
\text{(i) TFA} & \quad \text{(ii) Zn/CH}_3\text{COOH}
\end{align*}
\]

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{S} & \quad \text{MeOOC} \quad \text{NHCPh}_3
\end{align*}
\]

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{S} & \quad \text{MeOOC} \quad \text{NH-Ala+Ser-D+Z}
\end{align*}
\]
Coupling of lanthionine \(48\) with previously synthesized \(21\) tridepsipeptide using water soluble carbodiimide would yield pentapeptide \(49\). Deprotection of the lanthionine amine followed by reductive cleavage of the 2,2,2-trichloroethyl ester with zinc in acetic acid would set up \(49\) for a cyclization leading to cyclic pentapeptide \(50\).

The second aspect of interest in the synthesis of \(48\) and \(50\) was the potential application of this system, with appropriate modifications, to the proposed synthesis of cyclic pentapeptide \(54\), shown schematically below.

Lanthionine \(51\), synthesized along the same lines as lanthionine \(48\), upon coupling with tridepsipeptide \(52\) would lead to linear pentapeptide \(53\). The synthesis of \(52\) has been reported by Shin and
coworkers. Deprotection of 53, followed by cyclization, would then give cyclic pentapeptide 54.

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{TceOOC} & \quad \text{NHCPH}_3 \\
\text{tBuO-Ala} & \quad \text{Ser-D-+Qxc}
\end{align*}
\]

(i) deprotection
(ii) cyclization

53

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{TceOOC} & \quad \text{NH-Ala} & \quad \text{Ser-} & \quad \text{D-} & \quad \text{Qxc}
\end{align*}
\]

54

Treatment of 54 with zinc in acetic acid followed by coupling with tridepsipeptide 52 would lead to linear octapeptide 55.

\[
\begin{align*}
\text{ZNH} & \quad \text{C-Val} \\
\text{TceOOC} & \quad \text{NH-Ala+Ser-} & \quad \text{D+Qxc}
\end{align*}
\]

(i) Zn/CH\textsubscript{3}COOH
(ii) WSC, 52
Treatment of octapeptide 55 with HBr in acetic acid would deprotect the amine and the carboxyl functions. Cyclization would thus lead to bicyclic octadepsipeptide 4.

The syntheses towards lanthionine 48 were carried out by the procedure of Photaki and coworkers as per the sequence of reactions outlined below.

\[
\begin{align*}
\text{CH}_2\text{Cl} & \quad \text{HS-CH}_2 \\
\text{ZNHCHCOOH} + \text{H}_2\text{NCHCOOH} & \quad \text{THF/H}_2\text{O, KOH} \\
& \quad [\text{BzlNMe}_3]^{+} \text{OH}^{-} \\
\text{ZNH-CH} & \quad \text{CH-NH}_2 \\
\text{COOH} & \quad \text{COOH}
\end{align*}
\]

56 57 58

N-Benzylloxycarbonyl-ß-chloro-L-alanine 56, upon reaction with L-cysteine 57, in the presence of aqueous base under phase transfer conditions, gave lanthionine 58. The diacid 58 was esterified under standards conditions with thionyl chloride and methanol to yield dimethyl ester 59. Treatment of 59 with triphenylmethyl chloride and triethylamine led to the N-tritylated lanthionine 60.
1H NMR of 60 showed two peaks corresponding to the two methyl esters, at δ 3.2 and δ 3.7. It was inferred that the ester methyl on the carbon β to the tritylated amine group is oriented such that it lies in the shielding zone of phenyl rings of the trityl group, and hence resonates upfield. Hydrolysis of 60 under alkaline conditions should lead to mono acid 48, since the trityl group, by virtue of its size, sterically shields the ester of the neighboring carboxyl from hydrolysis. 90

Attempted hydrolysis of 60 with aqueous NaOH in acetone resulted in a complex mixture of products. The components of this mixture were separated by mplc. 1H NMR analysis indicated that the desired lanthionine mono acid 45 was not obtained. 1H NMR of one component was consistent for the mono acid with loss of the trityl group. The trityl group probably was lost upon chromatography. Thus, in our hands the method of Photaki and coworkers 66 was found not to be a viable route for the synthesis of 51, particularly in view of the fact that 51 would
be the starting compound in the total synthesis, involving several subsequent steps, of octapeptide lanthionine 4.

This method was also found to be tedious in the synthesis of N-benzyloxy carbonyl-\(\beta\)-chloro-L-alanine itself. An interesting observation was made during the synthesis of the protected amino acid. Commercially available \(\beta\)-chloro-L-alanine hydrochloride, upon treatment with benzyl chloroformate and NaHCO\(_3\) in aqueous solution, standard conditions for the introduction of the benzyloxy carbonyl group, led to the N-benzyloxy carbonyl-\(\beta\)-chloro-L-alanine in yields ranging from 20-40%. Upon increased dilution of the reaction mixture, by the addition of water, the N-protected amino acid was obtained in 80% yield. The reaction of N-benzyloxy carbonyl-\(\beta\)-chloro-L-alanine with L-cysteine to yield the first step in the reaction sequence leading to lanthionine 48, was found to be a highly sensitive one, with a strong dependence on the pH of the reaction mixture for the product to separate out of the aqueous solution as a white solid.

The use of cesium carbonate as base to generate a thiol anion under mild conditions, in the alkylation of halides with the thiol anion, has been reported.91 Attempts to alkylate N-benzyloxy carbonyl-\(\beta\)-chloro-L-alanine with N-t-butyloxycarbonyl-L-cysteine methyl ester and cesium carbonate, in dimethyl formamide solution, resulted in a complex mixture of products, with no desired lanthionine monoester obtained.

Synthesis of lanthionine by displacement of O-activated serine derivatives with cysteine

Wilchek and coworkers68 converted the L-serine residue in peptides to an L-cysteine residue by tosylation of the serine hydroxyl, followed by nucleophilic displacement with a thio anion.
This method was applied by the above workers to various L-serine containing peptides using several thio anions such as those of triphenylthiocarbinol, benzyl mercaptan, and 2-mercaptoacetic acid. It was observed that when the carboxy terminal of the tosylated serine existed as an amide function, the displacement of the tosylate with a thio anion led to an optically active cysteinyl peptide. However, when the same reaction was carried out on a serine peptide in which the carboxy terminal of the tosylated serine existed as an ester, the resulting cysteinyl peptide was optically inactive. As already mentioned, this observation was attributed to the fact that in the case of the ester, an elimination occurs to yield an α,β-unsaturated ester. The mercaptide anion then adds 1,4- to the α,β-unsaturated ester to yield racemic cysteinyl peptide.

Hence the adaptation of this method to the synthesis of a suitable optically active lanthionine or cysteinyl peptide necessitated the carboxy terminal of the tosylated serine to be incorporated as an amide function. In order to carry out studies on the synthesis of cysteinyl peptides by the displacement of activated serine hydroxyl with suitable
thio anions, the following compounds 61 to 65 were outlined for synthesis.

\[
\begin{align*}
\text{Z-L-Ser-L-Val-OMe} & \\
\text{OR} & \\
61: \quad R &= \text{p-toluenesulfonyl} \quad (-\text{SO}_2\text{-CH}_3) \\
62: \quad R &= \text{imidazolyl sulfonyl} \quad (-\text{SO}_2\text{-N\text{-}}\text{N})
\end{align*}
\]

\[
\begin{align*}
\text{Z-D-Ser-OBpa} & \\
\text{Val+Ser-L-Boc} & \\
\text{OR} & \\
63: \quad R &= \text{H} \\
64: \quad R &= \text{p-toluenesulfonyl} \\
65: \quad R &= \text{methanesulfonyl}
\end{align*}
\]

N-Benzylloxycarbonyl-L-serine was coupled with L-valine methyl ester using dicyclohexylcarbodiimide to yield dipeptide N-benzylloxycarbonyl-L-seryl-L-valine methyl ester in 71% yield. The dipeptide was a crystalline compound with the 60 MHz 1H NMR spectrum showing the absorption peaks of the valine isopropyl methyls as a doublet at δ 0.9. The benzylloxycarbonyl group protons resonated as singlets at δ 5.2 and δ 7.5 for the benzylic methylenes and the aromatics, respectively. Treatment of the dipeptide with p-toluene-sulfonyl chloride in pyridine led to the tosylated dipeptide 61 in 60% yield after purification by flash chromatography. 1H NMR of 61 showed a quartet at δ 7.8 characteristic of the aromatics of the p-toluenesulfonyl groups overlapping with a singlet at δ 7.5, the absorption of the benzylloxycarbonyl aromatic protons. Dipeptide tosylate 61 was then reacted with benzyl mercaptan and triethylamine.
The two products of reaction were the starting dipeptide tosylate 61 and another compound identified by 60 MHz 1H NMR spectral analysis to be dibenzyl disulfide.

Wilchek and coworkers68 reported the displacement of the tosylated hydroxyl group of serine in dipeptide N-benzyloxycarbonyl-L-seryl-glycine ethyl ester with benzyl mercaptide to yield the corresponding cysteinyl peptide. This dipeptide tosylate was synthesized by the same method used in the synthesis of 61. Reaction of the dipeptide tosylate with benzyl mercaptan and sodium methoxide in DMF solution did lead to the corresponding cysteine peptide.

$$\text{Z-L-Ser-Gly-OMe} \quad + \quad \text{\begin{tikzpicture} [baseline=-0.5ex, every node/.style={scale=0.8}] \node[anchor=base] {CH}_2\text{-SH}; \end{tikzpicture}} \quad \xrightarrow{\text{CH}_3\text{ONa}} \quad \text{Z-L-Ser-Gly-OMe} \quad \text{\begin{tikzpicture} [baseline=-0.5ex, every node/.style={scale=0.8}] \node[anchor=base] {S-CH}_2\text{-}; \end{tikzpicture}}$$

Reaction of 61 with benzyl mercaptan under the same conditions, however, resulted in recovery of starting material and no desired cysteinyl peptide was obtained.

Thus it was concluded that the valine isopropyl group sterically hinders the nucleophilic displacement by the mercaptide anion. This could also be a conformation effect, predominant when the amino acid forming the peptide bond at the C-terminal of the tosylated serine is valine.

Tripeptide 63 was synthesized by coupling of dipeptide N-benzyloxycarbonyl-O-(N-t-butyloxycarbonyl-L-valyl)-D-serine p-bromophenacyl ester,45 after deprotection of the valine amine terminal with trifluoroacetic acid, with N-t-butyloxycarbonyl-L-serine and l-ethyl-3-(3-dimethyaminopropyl)carbodiimide hydrochloride in 98% yield. 60 MHz 1H NMR of 63 showed the characteristic absorption signal for the
Boc-methyls at δ 1.5. Treatment of 60 with 1.1 equivalents of p-toluenesulfonyl chloride in pyridine led to a product mixture, which from tlc analysis indicated that mainly starting tripeptide 63 was present. Attempts to synthesize 64 with an excess of p-toluenesulfonyl chloride led to identical results.

These results prompted the synthesis of tripeptide mesylate 65, since the methanesulfonyl group is smaller in size as compared to the p-toluenesulfonyl group. Reaction of tripeptide 63 with methane sulfonyl chloride in pyridine led to 65 in 96% yield. The 60 MHz 1H NMR of 65 showed the absorption peak for the sulfonyl methyl as a sharp singlet at δ 3.0. Attempted displacement of the mesylate 65 with benzylmercaptan in the presence of sodium methoxide in dimethyl formamide solution resulted in recovery of starting materials as indicated by tlc analysis.

Hannessian and Vatele92 reported the imidazolyl sulfonate group to have some unique advantages over the tosylate and mesylate in their studies on nucleophilic displacement of the hydroxyl groups in carbohydrate systems. The imidazolyl sulfonate group was found to work better in the case of sterically hindered hydroxyls and also to minimize elimination reactions.

According to the method of Hannessian and Vatele,92 compound 62 was synthesized by reaction of dipeptide N-benzyloxycarbonyl-L-seryl-L-valine methyl ester with 1,1' -sulfuryl diimidazole93 and sodium hydride in dimethylformamide solution. 1H NMR of 62 showed the resonance of the imidazole protons at δ 7-8.2. Treatment of 62 with benzyl mercaptan and sodium methoxide in dimethylformamide resulted in
recovery of starting material with no desired cysteinyl peptide being formed, as indicated by TLC analysis.

Thus, the synthesis of a suitable lanthionine or a suitable cysteinyl peptide by nucleophilic displacement of a tosylated serine with a thiol had two constraints on the tosylated serine molecule. The C-terminus of the tosylated serine had to exist as an amide function. An L-valine residue at this terminus, which would be required for the synthesis of target molecule 4, was unsuitable because of its apparent steric hindrance to nucleophilic displacement of the tosylated serine. These two constraints together prompted the synthesis of the serine derivative 66, with a N-t-butyloxycarbonyl hydrazide function at the C-terminal. The Boc hydrazide function can be converted to an azide and directly used for further peptide coupling. The use of azides in couplings of penta- and octapeptides has been reported.

66 was synthesized in quantitative yield by treatment of N-benzyloxy carbonyl-L-serine with commercially available N-t-butyloxycarbonyl hydrazide and N,N'-dicyclohexylcarbodiimide. 1H NMR of 66 showed an absorption signal for the Boc-methyls as a sharp singlet at δ 1.5. Tosylation of 66 with p-toluenesulfonyl chloride in pyridine led to tosylate 67.
The absorption signals for the p-toluenesulfonyl aromatics in the 1H NMR spectrum of 67 appeared as a quartet at δ 7.8 overlapped by the absorption peak of the benzyloxycarbonyl aromatics at δ 7.4. The serine methylenes resonated as a multiplet at δ 4.4.

Attempted displacement of tosylate 67 with benzyl mercaptan and sodium methoxide in dimethyl formamide led to a product, the 1H NMR of which was consistent with a cyclic intramolecular displacement product.

The absorption signals for the p-toluenesulfonyl aromatics were missing in the 1H NMR spectrum of the product. The serine methylene absorption was shifted upfield from δ 4.4 in 67 to δ 3.8 in the 5-membered cyclic product.

The susceptibility of tosylate 67 to undergo intramolecular displacement of the tosyl group prompted the synthesis of imidazolyl sulfonate 68 under conditions which did not utilize the strong base sodium hydride. According to an alternate method reported by Hannessian and Vatele, 92 66 was treated with an excess of imidazole and
sulfuryl chloride. The product of this reaction was identical to that obtained in the attempted alkylation of 66. Apparently, the imidazolyl sulfonate first formed, undergoes a subsequent intramolecular displacement to yield the cyclic product.

Synthesis of unsymmetrical lanthionines 76 and 80 using thiolsulfimates

The synthesis of unsymmetrical disulfides containing a cysteine unit by the reaction of thiolsulfimates with cysteine has been reported. Field and Khim, and Block and O'Connor reported synthetic routes to thiolsulfimates from the corresponding disulfides.

\[
\begin{align*}
\text{R-S-S-R} + \text{HSCH}_2\text{CH-NHz} & \rightarrow \text{R-S-S-CH}_2\text{CH-NHz} + \text{RSOH} \\
\text{thiol sulfinate} & + \text{RSOH}
\end{align*}
\]

Boduszek and Kice reported the general reaction of a nucleophile with a thiolsulfinate to be as follows.

\[
\begin{align*}
\text{ArS(0)SAr} + \text{Nu}^- & \rightarrow \text{ArSO}^- + \text{ArSNu}
\end{align*}
\]

Thus, the two sulfur atoms in a disulfide or a cystine peptide could be distinguished towards nucleophilic attack by converting the disulfide to the corresponding thiol sulfinate. As already discussed, the first step in the method of Harpp and Gleason for the synthesis of symmetrical lanthionines is a nucleophilic attack of the phosphine phosphorus on the sulfur of the disulfide. Then, thiol sulfinate, upon
treatment with hexaethylphosphorus triamide should yield the charged intermediates schematically shown below.

\[
\begin{array}{c}
R-S-S-R \xrightarrow{[O]} R-S-S-R \xrightarrow{(Et_2N)_3P} R-S + S-R \\
\end{array}
\]

The sulfenic acid formed should not interfere with the reaction of a thiol anion with the positively charged phosphonium intermediate. The thiol anion and the phosphonium intermediate should react to yield a lanthionine, as discussed previously.

\[
R-S-P(Et_2N)_3 + R'-S^- \rightarrow R-S-R' + (Et_2N)_3P=S
\]

Thus a symmetrical and suitably protected cystine can, in principle, be converted to an unsymmetrical lanthionine according to the above scheme.

Preliminary studies towards synthesis of a suitably protected lanthionine via an appropriate thiosulfinate were carried out by the synthesis of thiosulfinate 69. N,N'-di-tert-butylxocarbonyl-L-cystine di-methyl ester 26 was converted to the corresponding thiol sulfinate 69, according to the method of Wolfe and coworkers, 99 by treatment with m-chloroperbenzoic acid in methylene chloride.
was reacted with one equivalent of hexaethylphosphorus triamide and N-t-butyloxycarbonyl-L-cysteine t-butyl ester (70) in benzene solution. The reaction mixture was chromatographed on the mplic and the fractions separated and analyzed by tlc and 60 MHz ¹H NMR. The major product of the reaction was disulfide 71 isolated in 50% yield. ¹H NMR of 71 showed the absorption peaks for the cystine methylenes as a doublet at δ 3.2, thus confirming the disulfide. Small amounts of symmetrical disulfides 26 and 72 were identified by tlc and ¹H NMR.
Cysteine 70 was synthesized by reductive cleavage of cystine 72 with zinc and 5% acetic acid in ether in near quantitative yields. 72 itself was synthesized by treatment of L-cystine di-t-butyl ester dihydrochloride100 with di-t-butyl dicarbonate and triethylamine in dimethylformamide solution.

The chemistry, reactions and synthetic applications of thiol-sulfinates have been well documented.101-103 To the best of our knowledge, this is the first example of the use of a thiolsulfinate in the synthesis of a cystine or cystine containing peptide.

The synthesis of unsymmetrical cystine 75 was carried out with the same sequence of reactions, starting with a different thiosulfinate 74.
N,N'-Di-benzyloxycarbonyl-L-cystine diethyl ester (73) was converted to the corresponding thiolsulfinate by treatment with m-chloroperbenzoic acid. This was then reacted with hexaethylphosphorus triamide and N-t-butyloxy carbonyl-L-cysteine t-butyl ester, to give unsymmetrical cystine 75 in 43% yield.

90 MHz 1H NMR of 75 showed the absorption peaks for the four cystine methylenes as a triplet at δ 3.2 ppm. Apparently, this triplet results from two overlapping doublets, the two pairs of cystine methylenes being nonequivalent in the unsymmetrical cystine. The same reaction, when carried out under N$_2$, resulted in the formation of 75 in 55% yield. The N$_2$ atmosphere would minimize formation of cystine 72 by the oxidation of cysteine 70.
Treatment of unsymmetrical cystine \(\text{75} \) with hexaethylphosphorus triamide resulted in the formation of lanthionine \(\text{76} \) as the major product, in 52% isolated yield, with small amounts of symmetrical disulfides \(\text{72} \) and \(\text{73} \) as identified by tlc analysis and by NMR analysis.

\[
\begin{align*}
\text{BocNH} & \quad \text{COOtBu} \\
\text{ZNH} & \quad \text{COOEt}
\end{align*}
\] \(\text{75} \)

\[
\begin{align*}
\text{BocNH} & \quad \text{COOtBu} \\
\text{ZNH} & \quad \text{COOEt}
\end{align*}
\] \(\text{76} \)

\[
\begin{align*}
\text{BocNH} & \quad \text{COOtBu} \\
\text{ZNH} & \quad \text{COOEt}
\end{align*}
\] \(\text{73} \)

\(\text{1H NMR of \text{76} showed the lanthionine methylenes resonating as a triplet centered at } \delta 3.0 \text{ ppm, as against } \delta 3.2 \text{ ppm in the case of cystine \text{75}. Combustion analysis data were in agreement with calculated values, thus confirming the disulfide contraction. Hence, it was established that the contraction can, indeed, be effected on an unsymmetrical cystine.} \)

Attempts to convert thiolesulfinates \(\text{74} \) directly to \(\text{76} \) by the use of an excess of hexaethylphosphorus triamide resulted in the formation of \(\text{75} \) in 15-22% yields. A possible explanation for these observations could be an equilibrium shown below.
Thus an excess of hexaethylphosphorus triamide would shift the equilibrium to the left, which could then lead to other side reaction products.

Lanthionine 76 is completely unsymmetrical with four different protecting groups on the two amino and two carboxy terminals. These groups are compatible with each other and can be selectively removed in the proper sequence necessary in the proposed synthesis of 4. The ethyl ester can be hydrolyzed with aqueous base without hydrolysis of the t-butyl ester. The Boc group and the t-butyl ester are both susceptible to acidolytic cleavage. However, conditions for the selective removal of the Boc group in the presence of t-butyl ester have been reported. The removal of both the Boc and t-butyl ester functions will not affect the depsipeptide ester bonds present, subsequently. The benzylxycarbonyl group can be removed in the last step of the reaction sequence, before cyclization. Thus, in 76, the synthesis of an unsymmetrical lanthionine suitable for our proposed synthesis of bicyclic octapeptide lanthionine 4 has been accomplished.

The method of synthesis of unsymmetrical lanthionine 76 via the corresponding thiolsulfinate was applied to the synthesis of another unsymmetrical lanthionine 80. Lanthionine 80 has the 2,2,2-trichloroethylxycarbonyl (Toc) group on the amine nitrogen in lieu
of the Boc group present in 76. The advantage of this protecting group is that it can be removed by reductive cleavage with zinc in acetic acid. This aspect of removal of the Toc group facilitates the synthesis of octapeptide lanthionine 4, in that the trichloroethyl ester function is also cleaved under the same conditions, and hence both the amine and carboxyl group can be deprotected in one step. A schematic route proposed for the synthesis of lanthionine 4 is shown below.

TocNH \[\text{COOtBu} \]
\[\text{ZNH} \]
\[\text{COOEt} \]

synthesis of octapeptide lanthionine 4, in that the trichloroethyl ester function is also cleaved under the same conditions, and hence both the amine and carboxyl group can be deprotected in one step. A schematic route proposed for the synthesis of lanthionine 4 is shown below.

\[\text{TocNH} \]
\[\text{COOtBu} \]
\[\text{ZNH} \]
\[\text{COOEt} \]

80

A schematic route proposed for the synthesis of lanthionine 4 is shown below.

Toc: 2,2,2-trichloroethyloxycarbonyl

\[\text{Qxc-D-Ser-Ala-OTce} \rightarrow \text{Val-H} \]

81
\[
\text{Zn/CH}_3\text{COOH} \rightarrow Qxc-D-Ser-Ala-OH \rightarrow \text{NH}_2 \rightarrow \text{COOH}_{\text{tBu}} \quad \text{WSC} \rightarrow \\
\text{Val-C} \quad \text{NHZ} \quad \rightarrow \\
Qxc-D-Ser-Ala-NH \rightarrow \text{COOH}_{\text{tBu}} \quad \text{deesterification} \rightarrow \\
\text{Val-C} \quad \text{NHZ} \quad \rightarrow \\
Qxc-D-Ser-Ala-NH \rightarrow \text{COOH} \quad \text{Val-C} \quad \text{NHZ} \quad \rightarrow \\
\text{COOH} \quad \text{Val-C} \quad \text{NHZ} \quad \rightarrow \\
\text{coupling with} \rightarrow \\
H-Val \rightarrow TceOAla-Ser-D-Qxc \rightarrow \\
\text{Val-C} \quad \text{NHZ} \quad \rightarrow \\
\text{TceO-Ala-Ser-D-Qxc} \rightarrow \\
\text{82} \rightarrow \\
\text{83} \rightarrow \\
\text{84} \rightarrow \\
\text{85} \rightarrow
N,N'-Di-2,2,2-trichloroethoxycarbonyl-L-cystine t-butyl ester 77 was synthesized by treatment of L-cystine di-t-butyl ester dihydrochloride with 2,2,2-trichloroethoxycarbonyl chloride and NaHCO₃ in aqueous solution in 84% yield after purification on the mplc. 90 MHz 1H NMR of 77 showed the absorption peak for the 2,2,2-trichloroethoxycarbonyl methylenes as a sharp singlet at δ 4.8 ppm. Elemental analysis data were in satisfactory agreement with the theoretical values. 77 was treated with m-chloroperbenzoic acid in CH₂Cl₂ resulting in the corresponding thiolsulfinate 78. The thiolsulfinate 78 was treated, without further purification, with one equivalent of hexaethylphosphorus triamide and N-benzyloxycarbonyl-L-cysteine ethyl ester in benzene solution under an atmosphere of nitrogen. The reaction mixture was purified on the mplc and unsymmetrical disulfide 79 was isolated in 55% yield. 1H NMR of 79 showed the absorption of the cystine methylenes as a doublet at δ 3.2 ppm. The 2,2,2-trichloroethoxycarbonyl methylenes resonated as a singlet at δ 4.8 ppm. Combustion analysis data were in satisfactory agreement with calculated values.
N-Benzyloxycarbonyl-L-cysteine ethyl ester was synthesized by reductive cleavage of the corresponding cystine with zinc in acetic acid.
79 was treated with 1.1 equivalents of hexaethylphosphorus triamide in benzene solution. The reaction product was purified on the mplc and the fraction having the same Rf value as for 79 was isolated. 90 MHz 1H NMR of this fraction indicated it to be a mixture of lanthionine 80 and cystine 79. The cystine methylenes of 79 resonated as a doublet at δ 3.2 ppm while the lanthionine methylenes in 80 appeared as a doublet at δ 3.0 ppm. From the intensities of the peaks, 80 was found to be the major product. Treatment of 79 with 2.5 equivalents of hexaethylphosphorus triamide resulted in the formation of lanthionine 80 in 58% yield. In comparison, the lanthionine contraction of cystine 75 to lanthionine 76 was effected by 1.1 equivalents of hexaethylphosphorus triamide. Lanthionine 76 has the t-butyloxy carbonyl group on one of the two amine nitrogens while 80 has the 2,2,2-trichloroethyloxy carbonyl group, with the rest of the protecting groups in 76 and 80 being identical. Thus, the 2,2,2-trichloroethyloxy carbonyl group influences the lanthionine contraction. The role of the protecting group in this reaction, however, is not understood.

The synthesis of lanthionine 80 was carried out with a different thiol sulfinate 74 using the same sequence of reactions as for the above synthesis of 80, as outlined below.
The synthesis of N-trichloroethyloxycarbonyl-L-cysteine t-butyl ester 86 by reductive cleavage with zinc and acetic acid had a potential problem in that the N-protecting group itself was susceptible to removal under these conditions. However, the reduction of the disulfide bond is effected under milder conditions using 5% acetic acid, whereas the removal of the protecting group needs 90% acetic acid. Attempts to synthesize 86 by the reductive cleavage of cystine 77 with zinc in 5% acetic acid were unsuccessful. The method of Erickson and Khan, 106 using tri-n-butylphosphine in aqueous methanol, resulted in the conversion of 77 to 86 in near quantitative yields. The product of this reaction could be used directly without further purification. This method of synthesis of 80 had two advantages over
the first one. Unsymmetrical cystine 79 was obtained in 65% yield as compared to 55% by the previous method. The synthesis of N,N'-di-2,2,2-trichloroethyloxycarbonyl-L-cystine di-t-butyl ester 77, which is the precursor of thiol sulfinate 78 and cysteine 86, is tedious as compared to that of N,N'-di-benzyloxy carbonyl-L-cystine diethyl ester, precursor to thiol sulfinate 74. In the reaction of thiol sulfinate with cysteine, only one half of the cystine molecule corresponding to the thiol sulfinate is incorporated into the unsymmetrical cystine. Thus, the use of the more easily obtained thiol sulfinate 74 was found to be facile in the synthesis of 80.
CONCLUSION

The attempted synthesis of bicyclic octadepsipeptide lanthionine 4 by the symmetrical approach was carried out. Symmetrical lanthionine N,N'-di-t-butyloxycarbonyl-L-lanthionine dimethyl ester (27) was prepared by a contraction of the corresponding cystine 26 using alkylaminophosphine, according to the method of Harpp and Gleason.65 This method could not be applied to the lanthionine contraction of hexapeptide 35, cyclic octapeptide 13 and TANDEM. Apparently the reaction is sensitive to steric and conformational effects. Starting with 27, linear octapeptides 29 and 32 were prepared. Attempts to cyclize 29 and 32 to the bicyclic octapeptide, however, were unsuccessful.

The failure of the cyclizations of 29 and 32 led to the logical alternative, a suitably protected unsymmetrical lanthionine with four different protecting groups. These protecting groups have to be compatible within themselves as well as with the depsipeptide ester bonds present subsequently in the peptide intermediates.

Attempts to synthesize an unsymmetrical lanthionine by the nucleophilic displacement of the chloride ion from N-benzyloxycarbonyl-\(\beta\)-chloro-L-alanine with the thiol function of cysteine under phase transfer conditions, were unsuccessful. The displacement of the sulfonate-activated serine hydroxyl in L-serine containing peptides with mercaptide anion was studied. The displacement could not be effected when the C-terminus of the tosylated serine was incorporated as an amide bond with valine, starting tosylate being recovered in the
reaction. Valine as the C-terminal amino acid of the tosylated serine, appears to sterically hinder the nucleophilic displacement by mercaptide anion.

Unsymmetrical cystines were synthesized by the reaction of thiosulfinate with cysteine. To the best of our knowledge, this is the first example of the use of thiol sulfimates for the synthesis of a cystine or cystine peptide.

$$\text{R-S-S-R} \xrightarrow{\text{O}} \text{R'-SH} \xrightarrow{\text{RSOH}} \text{R-S-S-R'} + \text{RSOH}$$

Suitably protected cystines were converted to the corresponding thiol sulfimates by peracid oxidation. Upon reaction with N- and C-protected cysteines, these led to the respective unsymmetrical cystines 75 and 76. Lanthionine contraction of these unsymmetrical cystines was effected with hexaethylphosphorus triamide in benzene solution. This is contrary to the observation of Harpp and Gleason, 65 who found this method unsuitable for the synthesis of unsymmetrical lanthionines.

The synthesis of two unsymmetrical lanthionines 76 and 80 with the appropriate protecting groups necessary for our proposed synthesis of octapeptide lanthionine 4 was accomplished. Further studies towards 4, however, were not pursued.
EXPERIMENTAL

Melting points were determined with a Thomas-Hoover melting point apparatus, and are uncorrected. 1H NMR spectra were recorded on a Varian EM-360, XL-100-12, JEOL FX-90 or a Nicolet NT-360 spectrometer; satisfactory NMR data were obtained for all compounds and data for selected intermediates are reported. The format of the data report is: chemical shift (in δ units), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integral intensity, and source. Solvents were removed in vacuo on a Buchler rotary evaporator. Thin layer chromatography was performed on commercially available silica-gel plates; [Whatman MK6F-1 x 3"], silica gel 40 Å, with florescent indicator; components were located under ultraviolet irradiation and with iodine vapors. The solvent systems used were: A) hexane-acetone, 8:2; B) hexane-acetone, 7:3; and C) hexane-acetone, 6:4. Medium pressure liquid chromatography (mplc) was performed on columns packed with silica gel 60 (0.040-0.064 mm).

The amino acids, their derivatives, coupling reagents and other chemicals used were obtained from commercial sources. The THF used was distilled from sodium benzophenone ketyl. DMF was distilled over CaH$_2$ and stored over appropriate molecular sieves. CH$_2$Cl$_2$ was distilled over P$_2$O$_5$. All other solvents used were distilled in glass prior to use.

Elemental analyses were performed by M-H-W Laboratories, Phoenix, Arizona.
Synthesis of N,N'-di-tert-butyloxy-carbonyl-L-cystine dimethyl ester (26)

To a stirred suspension of L-cystine dimethyl ester dihydrochloride (8.52 g, 25 mmol) in 125 ml of DMF, triethylamine (7.01 ml, 50 mmol) was added with stirring, followed by di-t-butyl dicarbonate (10.9 g, 50 mmol). After stirring at room temperature for 5 hr, the solvent was removed in vacuo and the residue was taken up in 10% citric acid. The aqueous phase was extracted four times with ethyl acetate; the combined organic phase was washed with sat NaHCO₃, brine and dried over Na₂SO₄. Upon removal of solvent in vacuo a white solid was obtained. This solid was crystallized from absolute ethanol-pet. ether to give 9.5 g (80%) of 26; m.p. 98-100°; reported m.p. 96-97°; tlc (solvent A) Rf (0.23); ¹H NMR (60 MHz, CDCl₃) δ 1.5 (s, 18 H, Boc Me's), 3.2 (d, 4 H, cystine methylenes), 3.9 (s, 6H, methyl ester) 4.6 (m, 2H, α-H's), 5.8 (d, 2H, NH).

Synthesis of N,N'-di-tert-butyloxy-carbonyl-L-lanthionine dimethyl ester (27)

To a solution of 5 (8.53 g, 25 mmol) in benzene (80 ml) was added hexaethylphosphorus triamide (6.18 g, 25 mmol) dropwise, with stirring. The reaction mixture was stirred at room temperature for 1 hr. The solvent was removed in vacuo and the resulting oil purified on the medium pressure liquid chromatograph using a 25 mm diameter column; with 20% acetone in hexane as the eluting solvent system. Pure lanthionine 27 6.32 g (81%) was obtained as an oil, which solidified upon standing for several days; m.p. 69-72°; tlc (solvent A) Rf (0.23); ¹H NMR (60 MHz, CDCl₃ δ 1.5 (s, 18 H, Boc Me's), 3.0 (d, 4 H, lanthionine methylenes), 3.9 (s, 6H, methyl ester), 4.6 (m, 2H, α-H's),
5.8 (d, 2 H, NH). (Found: C, 49.17; H, 7.54; S, 7.8. \(\text{C}_{18}\text{H}_{32}\text{N}_{2}\text{O}_{8}\) requires: C, 49.54; H, 7.34; S, 7.34 %).

Synthesis of hexapeptide lanthionine 28

A. Synthesis of N-benzyloxy carbonyl-0-(N-t-butyloxy carbonyl-L-valyl)-d-serine p-bromophen acyl ester. To N-benzyloxy carbonyl-D-serine p-bromophen acyl ester\(^{108}\) (4.36 g, 10 mmol) in 60 ml pyridine was added N-t-butyloxy carbonyl-L-valine (3.24 g, 15 mmol), and the solution was cooled to 0\(^\circ\) in an ice-salt bath. \(\text{N,N'}\)-dicyclohexylcarbodiimide (3.15 g, 15 mmol) was added, and the reaction mixture was stirred at 0\(^\circ\) for 3-4 hr followed by stirring at room temp. overnight. The mixture was filtered, and the filtrate was concentrated on the vacuum evaporator to yield an oil. This oil was dissolved in ethyl acetate and washed with \(\text{H}_2\text{O} \) (50 ml), sat \(\text{NaHCO}_3 \) aq (2 x 25 ml), 10% citric acid (2 x 25 ml), and \(\text{H}_2\text{O} \) (50 ml). The organic phase was dried over \(\text{Na}_2\text{SO}_4 \) and concentrated to yield an oil. The oil was purified on the mplc with 20% acetone in hexane as eluant, to yield 5.4 g (85%) of a white solid; m.p. 95-96\(^\circ\); reported m.p. 97-98\(^\circ\).\(^{45}\) This compound was identical to an authentic sample.

B. Synthesis of 28. To a stirred solution of 27 (1.5 g, 3.4 mmol) in 80% aqueous dioxane was added to 2N NaOH dropwise to pH 10. The solution was maintained at pH 10 by subsequent addition of 2 N NaOH with stirring at room temp for 1/2 hr. The reaction mixture was washed with \(\text{CH}_2\text{Cl}_2 \) (20 ml) to remove unreacted diester, acidified in cold to pH 2 with 1 N HCl, and extracted with ethyl acetate (3 x 25 ml). The combined organic phase was washed with water, brine and dried over \(\text{Na}_2\text{SO}_4 \). Removal of solvent in vacuo yielded 1.17 g (86%) of diacid.
To the dipeptide synthesized in Step A (2.0 g, 3.15 mmol), was added 10 ml anhyd trifluoroacetic acid and the reaction mixture was stirred at room temp. for 1 hr. The solvent was removed in vacuo and the residue partitioned between sat NaHCO₃ aq and ethyl acetate. After separation, the organic phase was washed with sat NaHCO₃ aq (2 x 25 ml), H₂O (2 x 25 ml), and brine (50 ml). The solvent was dried over Na₂SO₄ and evaporated to yield an oil. To this oil, dissolved in THF (10 ml), was added a solution of the above diacid (0.61 g, 1 mmol) in THF (10 ml), and the mixture was cooled to 0° in an ice-salt bath. After addition of 1-hydroxybenzotriazole hydrate (0.93 g, 6.85 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.61 g, 3.2 mmol), the mixture was stirred at 0° for 1.5 hr, followed by stirring at room temp. overnight.

The solvent was removed in vacuo, and the residual oil was dissolved in CHCl₃ (50 ml). The organic phase was washed with water (50 ml), 1 N HCl (2 x 50 ml), sat NaHCO₃ aq (75 ml), water (25 ml) and brine in succession and dried over Na₂SO₄. The solvent was removed in vacuo to yield a foam. Purification on the mplc with 30% acetone in hexane as eluting solvent led to 1.29 g (60%) of ~. tlc (solvent B) Rf: 0.2; ¹H NMR (360 MHz, CDC₃) δ 0.9 (d, 12 H, Val Me’s), 1.4 (s, 18 H, Boc Me’s), 2.2 (m, 2 H, Val α-H’s), 2.9 (d, 4 H, lanthionine methylenes), 4-6.5 (24 H, Ser methylenes, Ser and lanthionine α-H’s, benzyloxy carbonyl and phenacyl methylenes, NH’s), 7.4 (d, 10 H, benzyloxy carbonyl aromatic), 7.7 (A₂B₂ q, 8 H, phenacyl aromatic). (Found: C, 53.30; H, 5.58; N, 5.50; S, 2.31. C₆₄H₇₈O₂N₆Br₂ requires: C, 53.26; H, 5.41; N, 5.80; S, 2.20 %).
Synthesis of octapeptide lanthionine 29

To 28 (1.15 g, 0.8 mmol) was added trifluoroacetic acid (5 ml) and the mixture stirred at room temp. for 1 hr. After removal of solvent in vacuo, diethyl ether (5 ml) was added and the mixture concentrated to dryness, twice. To the residue, dissolved in 10 ml of THF, was added N-t-butyloxycarbonyl-L-alanine (0.32 g, 1.7 mmol), N-methylmorpholine (0.19 ml) and the reaction mixture cooled to 0°C in an ice-salt bath. 1-Hydroxybenzotriazole hydrate (0.22 g, 1.6 mmol) was added, followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and the reaction mixture stirred at 0°C for 3 hr followed by stirring overnight at room temperature.

The solvent was removed in vacuo and the residue dissolved in ethyl acetate (25 ml). The ethyl acetate extract was washed with water (25 ml), sat NaHCO₃ aq (15 ml), 1 N HCl (25 ml), sat NaHCO₃ (15 ml) and brine in succession. The ethyl acetate phase was dried over Na₂SO₄ and concentrated to an oil. The oil was purified on the mplc with 40% acetone in hexane as the eluant to yield 0.71 g (55%) of 29; tlc (solvent C) Rf 0.21; ¹H NMR (360 MHz, CDCl₃) δ 0.9 (d, 12 H, Val Me’s), 1.3 (bs, 6 H, Ala Me’s), 1.5 (s, 18 H, Boc Me’s), 2.2 (m, 2 H, Val α-H’s), 2.9 (bd, 4 H, lanthionine methylenes) 4-6.5 (24 H, Ser methylenes, Ser and Ala α-H’s, benzyloxycarbonyl and phenacyl methylenes, NH), 7.4 (s, 10 H, benzyloxycarbonyl aromatic), 7.7 (A₂B₂ q, 8H, phenacalaromatic). (Found: C, 52.72; H, 5.50; N, 7.03. C₇₀H₈₈N₈O₂₂Br₂S requires: C, 53.03; H, 5.55; N, 7.07 %).
Attempted synthesis of octadepsipeptide 31 from 29

A stirred solution of 29 (0.61 g, 0.4 mmol) in 90% aqueous acetic acid (10 ml) was cooled to 0° in an ice-salt bath. Zinc powder (1.25 g, 19.2 mmol) was added slowly, in portions, over a period of 15 min and the reaction mixture stirred at 0° for 1.5 hr. The reaction mixture was filtered and the ppt washed well with 90% acetic acid. The filtrate and washings were combined and concentrated to dryness. The residue was partitioned between 1 N HCl (50 ml) and ethyl acetate-methanol (4:1 v/v, 50 ml). The organic phase was separated and the aqueous phase saturated with NaCl. The saturated aqueous phase was extracted with ethyl acetate. The combined organic phase was washed with water twice, dried over Na₂SO₄, and concentrated to an oil.

To the above oil was added trifluoroacetic acid (5 ml) and the mixture was stirred at room temp for 1 hr. The mixture was evaporated to dryness in vacuo, diethyl ether (2 x 5 ml) was added and concentrated to dryness. The residue was dissolved in anhyd N,N-dimethylformamide (30 ml) and cooled to 0° in an ice-salt bath. N-Methylmorpholine (0.09 ml, 0.8 mmol) was added followed by N-hydroxysuccinimide (0.19 g), and the reaction mixture diluted with THF (500 ml). After cooling to 0°, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride was added and the mixture stirred at 0° for 3 hr and at room temp. for 5 days.

The reaction mixture was concentrated in vacuo and residue dissolved in ethyl acetate (75 ml). The ethyl acetate extract was then filtered to remove solid and washed ppt washed well with ethyl acetate. The combined organic phase was washed with 1 N HCl (25 ml), sat NaHCO₃
aq (25 ml) and water (50 ml) in succession, dried over Na₂SO₄ and concentrated to an oil.

Tlc analysis (solvents B and C) showed the product to be a complex mixture, with no trace of desired cyclic octapeptide 31. An authentic sample with a disulfide linkage, a known intermediate in the synthesis of TANDEM, was used for comparison.

Repeating the above procedure with CH₂Cl₂ in lieu of THF as solvent gave similar results.

Synthesis of octapeptide 32

To N-benzyloxycarbonyl-O-(t-butyloxycarbonyl-L-valyl)-D-seryl-L-alanine 2,2,2-trichloroethyl ester 21 (3.84 g, 6 mmol) was added trifluoroacetic acid (10 ml), CH₂Cl₂ (10 ml) and the mixture was stirred at room temp. for 1 hr. The solvent was removed in vacuo, anhyd ether (2 x 10 ml) added, and evaporated to dryness. To the residue was added anhyd ether again (50 ml) and the flask scratched with a spatula. Upon cooling in the refrigerator for 2 hours, a white crystalline ppt was obtained. The solid was separated by filtration, washed well with anhyd ether and dried in the dessicator overnight.

To the dried trifluoroacetate salt was added CH₂Cl₂ (10 ml) and N-methylmorpholine (1.2 ml), when the solution went clear. To this clear solution was added a solution of N,N'-di-tertbutyloxycarbonyl-L-lanthionine (diacid obtained upon hydrolysis of 27) (1.23 g, 3 mmol) in CH₂Cl₂ (65 ml). The mixture was cooled to 0° in an ice-salt bath. After addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.2 g, 6.3 mmol) and 1-hydroxybenzotriazole monohydrate (0.14 g, 0.9 mmol), the reaction mixture was stirred at 0° for 4 hr followed by stirring at room temp. overnight.
Solvent was removed in vacuo and the residue dissolved in ethyl acetate (75 ml). The organic phase was washed with H$_2$O (50 ml), sat NaHCO$_3$ aq (50 ml), 10% citric acid (50 ml), sat NaHCO$_3$ aq (50 ml) and H$_2$O (2 x 25 ml) in succession, and dried over Na$_2$SO$_4$. Upon evaporation of solvent, an oil was obtained. The oil was purified on the mplc with 30% acetone in hexane as the eluant, to yield 2.5 g (57.3%) of 32 as an oil; tlc (solvent B) Rf: 0.22; 1H NMR (360 MHz, CDCl$_3$) δ 0.9 (d, 12 H, Val Me's), 1.3-1.5 (overlapping s, 24 H, Boc, Ala Me's), 2.2 (m, 2 H, Val α-H's), 2.9 (bd, 4 H, lanthionine methylenes) 4-6.5 (24 H, Ser methylenes, Ser and Ala α-H's, benzylxycarbonyl and trichloroethyl methylenes, NH), 7.2 (s, 10 H, benzylxycarbonyl aromatics). (Found: C, 48.0; H, 5.69; N, 7.57. C$_{58}$H$_{80}$Cl$_6$N$_8$O$_{20}$S requires: C, 47.9; H, 5.51; N, 7.71 %).

Attempted synthesis of cyclic octapeptide 31 from 32

To a stirred cold solution of 32 (2.18 g, 1.5 mmol) in 90% aqueous acetic acid (35 ml), was added zinc powder (4.7 g, 72 mmol) slowly, in portions, over a period of 20 min with stirring. The mixture was subsequently stirred at 0° for 1.5 hr. The reaction mixture was filtered and the ppt washed well with 90% aqueous acetic acid. The filtrate and washings were combined and concentrated in vacuo to dryness. The residue was partitioned between 1 N HCl (75 ml) and ethyl acetate-methanol (4:1 v/v, 100 ml). The organic phase was separated and the aqueous phase saturated with NaCl. The saturated aqueous phase was extracted with ethyl acetate (2 x 50 ml). The combined ethyl acetate extract was washed several times with H$_2$O, and dried over Na$_2$SO$_4$. Evaporation of solvent gave 1.6 g of an oil.
To this oil was added trifluoroacetic acid (10 ml) and the solution stirred at room temp. for 1 hr, then concentrated to a sticky residue. To the residue was added ether (10 ml), triturated well and evaporated to complete dryness using a high vacuum rotavapor.

The residue was dissolved in 10 ml anhyd dimethylformamide and cooled to 0° in an ice-salt bath. N-Hydroxysuccinimide and N-methylmorpholine were added, and the reaction mixture diluted with 500 ml THF. After cooling to 0°, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride was added and the mixture stirred at 0° for 3 hr and at room temp. for 5 days.

The reaction mixture was concentrated in vacuo and the residue dissolved in ethyl acetate (100 ml). Insoluble material was removed by filtration and the ppt washed well with ethyl acetate. The combined washings and filtrate were washed with 1 N HCl (2 x 50 ml), sat NaHCO₃ aq (50 ml) and H₂O (50 ml).

TLC analysis of product (solvents B and C) showed the product to be a complex mixture, with no desired octapeptide 31.

Synthesis of tetrapeptide 34

N,N'-Di-t-butyloxycarbonyl-L-cystine (0.88 g, 2 mmol) and L-valine methyl ester (0.52 g, 4 mmol) were dissolved in pyridine (10 ml) and the solution cooled to 0° in ice-salt bath. N,N'-dicyclohexylcarbodiimide (0.88 g, 4.2 mmol) was added and the reaction mixture stirred at 0° for 3 hr and room temperature overnight.

The reaction mixture was filtered and ppt washed with pyridine. The combined filtrate and washings were evaporated in vacuo and the residue dissolved in ethyl acetate (25 ml). The organic phase was washed with sat NaHCO₃ aq (2 x 25 ml) and dried over MgSO₄. Solvent
was removed in vacuo to yield a white solid which crystallized from hexane-acetone to give 1g (75%) of \(\text{ll} \); m.p. 81–82\(^{\circ}\); tlc (solvent-C) Rf 0.42; \(^{1}\)H NMR (60 MHz, CDCl\(_3\)) \(\delta \) 1.0 (d, 12 H, Val Me's), 1.5 (s, 18 H, Boc Me's), 3.2 (d, 4 H, cystine methylenes), 3.8 (s, 6 H, methyl ester), 4.7 (m, 2 H, \(\alpha \)-H's).

Lanthionine contraction of tetrapeptide \(\text{ll} \)

To tetrapeptide \(\text{ll} \) (1.33g, 2 mmol) in benzene (10 ml) was added hexaethylphosphorus triamide (0.6 g, 2.4 mmol) dropwise, with stirring, and the mixture was stirred at room temp. for 2 hr. Solvent was removed in vacuo to yield an oil. The oil was purified on the mplc with 20% acetone in hexane as the eluting solvent to give 0.4 g (31%) of lanthionine as an amorphous solid; tlc (solvent C) Rf 0.42; \(^{1}\)H NMR (60 MHz, CDCl\(_3\)) \(\delta \) 1.0 (d, 12 H, Val Me’s), 1.5 (s, 18 H, Boc Me’s), 3.0 (d, 4 H, lanthionine methylenes), 3.8 (s, 6H, methyl ester), 4.7 (m, 2 H, \(\alpha \)-H’s). (Found: C, 53.18; H, 8.02; N, 9.28. \(\text{C}_{28}\text{H}_{50}\text{N}_{4}\text{O}_{10}\) requires: C, 52.99; H, 7.89; N, 8.83%).

Synthesis of hexapeptide \(\text{lll} \)

To \(\text{N-benzyloxycarbonyl-O-(N-t-butyloxycarbonyl-L-valyl)-D-serine p-bromophenacryl ester}^{45} \) (2.0 g, 3.2 mmol) was added trifluoroacetic acid (10 ml) and the mixture was stirred at room temp. for 1 hr. The mixture was concentrated on the rotavapor, and the residue dissolved in diethyl ether (100 ml). The organic phase was washed with sat NaHCO\(_3\) aq (2 x 50 ml) and H\(_2\)O (50 ml), and dried over MgSO\(_4\). Removal of the solvent led to an oil. To a stirred solution of this oil in THF (20 ml) was added \(\text{N,N'-di-t-butyloxycarbonyl-L-cystine} \) (0.66 g, 1.5 mmol)
and 1-hydroxybenzotriazole monohydrate (0.93 g, 6.9 mmol). The mixture cooled to 0° in ice-salt bath. To the chilled solution, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride was added, and the reaction mixture stirred at 0° for 2 hr, followed by stirring at room temp. overnight.

Solvent was removed in vacuo and the resulting oil dissolved in CHCl₃ (100 ml). The organic phase was washed with H₂O (50 ml), 2 N HCl (2 x 50 ml), sat NaHCO₃ aq (2 x 50 ml), H₂O (50 ml) and brine (25 ml) in succession and dried over MgSO₄. Removal of the solvent led to a foam which was purified on mplc with 30% acetone in hexane as the eluting solvent system, to yield 1.1 g (50%) of ~; tlc (solvent B) Rf: 0.2; ¹H NMR (60 MHz, CDCl₃) δ 0.9 (d, 12 H, Val Me’s), 1.4 (s, 18 H, Boc Me’s), 2.2 (m, 2 H, Val α-H’s), 3.2 (d, 4 H, cystine methylenes), 4–6.5 (22 H, Ser methylenes, Ser and cystine α-H’s, benzyloxycarbonyl and phenacyl methylenes, NH), 7.4 (s, 10 H, benzyloxycarbonyl aromatic), 7.7 (A₂B₂q, 8 H, phenacyl aromatics). (Found: C, 52.31; H, 5.26; N, 5.83. C₆₄H₇₈O₂₀N₆Br₂S₂ requires: C, 52.10; H, 5.29, N, 5.7%).

Attempted lanthionine contraction of above hexapeptide 35

To hexapeptide 35 (1.1 g, 0.75 mmol) in benzene (10 ml) was added hexaethylphosphorus triamide (0.21 g, 0.83 mmol) and the mixture stirred at room temp. for 2.5 hr. The reaction mixture was concentrated in vacuo and the resulting oil purified on the mplc using 30% acetone in hexane as elutant. ¹H NMR spectrum of isolated product was identical to that of hexapeptide 35. Hence contraction had not occurred.
Synthesis of N-benzyloxycarbonyl-L-seryl-L-valine methyl ester

To L-valine methyl ester hydrochloride (0.84 g, 5.0 mmol) in CH₂Cl₂ (40 ml) was added triethylamine (0.7 ml, 5.0 mmol) and the mixture cooled to 0° in ice-salt bath. N-Benzzyloxycarbonyl-L-serine (1.2 g, 5.0 mmol) was added followed by N,N'-dicyclohexylcarbodiimide (1.13 g, 5.0 mmol) and the reaction mixture was stirred at 0° C for 3 hr and at room temp. overnight.

The mixture was filtered and the ppt washed well with CH₂Cl₂. Removal of solvent in vacuo led to a white solid, which was dissolved in ethyl acetate (50 ml), and the resulting solution filtered to remove solid that separated out. The filtrate was washed with sat NaHCO₃ aq (25 ml), 10% citric acid aq (25 ml), sat NaHCO₃ aq (25 ml), H₂O (25 ml) and brine in succession. The organic phase was dried over Na₂SO₄ and solvent removed in vacuo to yield a white solid which crystallized from ethyl acetate:ether to yield 1.25 g (71%) of dipeptide; m.p. 140-142°; tlc (solvent B) Rf: 0.2; ¹H NMR (60 MHz, CDCl₃) δ 0.9 (dd, Val Me's), 3.8 (s, 3 H, Me ester), 4.4 (m, 2 H, serine methylenes), 5.2 (s, 2 H, benzyloxycarbonyl methylenes), 6.1 (bd, 2 H, NH's), 7.5 (s, 5 H, benzyloxycarbonyl aromatics).

Synthesis of N-benzyloxycarbonyl-O-(p-toluenesulfonyl)-L-seryl-L-valine methyl ester (61)

To the above dipeptide, N-benzyloxycarbonyl-L-seryl-L-valine methyl ester (1.06 g, 3 mmol), dissolved in pyridine (10 ml) and cooled to 0° in ice-salt bath, was added p-toluenesulfonyl chloride (0.63 g, 3.3 mmol), followed by 4-dimethylamino pyridine (0.04 g, 0.3 mmol). The
mixture was kept at -10° for 1.5 hr in CC1₄-dry ice bath and at room temp. for an additional hour.

The solvent was removed in vacuo and ice-water added to the residue. The aqueous mixture was extracted with ethyl acetate (50 ml), and the organic extract washed quickly with 5% HCl (25 ml) and brine in succession. Removal of solvent led to an oil which was purified by flash chromatography with 30% acetone in hexane as the eluting solvent system to yield 0.9 g (60%) of 61 as an oil; tlc (solvent B) Rf: 0.35;

1H NMR (60 MHz, CDC1₃) δ 0.9 (dd, Val Me's), 2.0 (m, 1H, Val α-H), 2.5 (s, 3 H, p-toluenesulfonfyl methyl), 3.8 (s, 3 H, Me ester) 4.4 (m, 4 H, serine methylenes, α-H's), 5.2 (s, 2 H, benzyloxy carbonyl methylenes), 7.2-8.0 (9 H, benzyloxy carbonyl, p-toluenesulfonfyl aromatics).

Attempted displacement of 61 with benzyl mercaptan

To benzyl mercaptan (0.08 ml, 0.65 mmol) in dimethylformamide (5 ml) was added triethylamine (0.09 ml, 0.65 mmol) and the mixture stirred for 5 min. Tosylate 61 (0.33 g, 0.65 mmol) was added, and the mixture stirred at 50° for 3 hr and allowed to stand overnight at room temp.

Solvent was removed in vacuo and ice water (5 ml) was added to the residue. The aqueous mixture was extracted with ethyl acetate and the organic phase washed with 1 N HCl (5 ml), H₂O (5 ml) and brine in succession. The organic phase was dried over Na₂SO₄ and solvent removed in vacuo to yield an oil. The two major spots on tlc were separated by flash chromatography. One corresponded to starting tosylate 61. The NMR of the other product was consistent for dibenzyl disulfide. No displacement product was isolated.
Use of sodium methoxide in lieu of triethylamine as base gave identical results.

Displacement of N-benzyloxycarbonyl-0-(p-toluenesulfonyl)-L-seryl-glycine methyl ester with benzyl mercaptan

To benzyl mercaptan (0.14 ml, 1.22 mmol) in methanol (2.5 ml) was added sodium methoxide (0.07 g, 1.22 mmol) and the mixture was stirred for 5 min. Solvent was removed in vacuo and the residue was dissolved in dimethylformamide (5 ml). N-benzyloxycarbonyl-0-(p-toluenesulfonyl)-L-seryl-glycine methyl ester (0.15 g, 0.32 mmol) was added and the mixture stirred at room temp. for 1 hr.

Solvent was removed in vacuo, and to the residue was added ice-water (5 ml) and 0.1 N HCl (5 ml). The aqueous mixture was extracted with ethyl acetate (15 ml) and the organic phase washed with 0.1 N HCl (5 ml), H2O (5 ml) and brine in succession, and dried over Na2SO4. Removal of solvent resulted in an oil which was purified on a gravity column with 20% acetone in hexane as the eluting solvent system to yield 0.08 g (60%) of N-benzyloxycarbonyl-S-benzyl-L-cysteinyl glycine methyl ester; tlc (solvent B) Rf 0.41; 1H NMR (60 MHz, CDCl3) δ 2.9 (d, 2 H, cysteine methylenes), 3.8 (s, 3 H, methyl ester), 4.1 (d, 2 H, Gly methylenes), 4.5 (m, 2 H, Ser methylenes), 5.2 (s, 2 H, benzyloxy-carbonyl methylenes), 5.8 (d, 1 H, NH), 7.0 (bs, 1 H, NH), 7.4 (d, 10 H, benzyloxy carbonyl, s-benzyl aromatic).

Synthesis of tripeptide

To dipeptide N-benzyloxycarbonyl-0-(N-t-butyloxycarbonyl-L-valyl)-D-serine p-bromophenacyl ester 45 (0.95 g, 1.5 mmol) was added trifluoroacetic acid (5 ml) and the mixture stirred at room temp. for 1
hr. The reaction mixture was concentrated on the rotavapor and to the residue was added anhyd ether (5 ml). After trituration with ether, the solvent was removed in vacuo; this treatment with ether was carried out twice, and solvent removed in vacuo to yield a white solid.

To the white solid in CH$_2$Cl$_2$ (15 ml) was added triethylamine (0.21 ml, 1.65 mmol) followed by N-t-butyloxy carbonyl-L-serine (0.30 g, 1.5 mmol). The mixture was cooled to 0° in an ice-salt bath and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.29 g, 1.52 mmol) was added, followed by 1-hydroxybenzotriazole monohydrate (0.20 g, 1.5 mmol). The mixture was stirred at 0° for 4 hrs and at room temp. overnight.

The solvent was removed in vacuo and the residue dissolved in ethyl acetate (50 ml). The organic phase was washed with H$_2$O (25 ml), sat NaHCO$_3$ aq (25 ml), 1 N HCl (25 ml), sat NaHCO$_3$ aq (25 ml) and sat NaCl aq (15 ml) in succession. Drying the organic phase over Na$_2$SO$_4$ and evaporation of solvent led to 1.06 g (98%) of 63 as a foam; tlc (solvent B) Rf 0.2, 1H NMR (60 MHz, CDCl$_3$) δ 1.0 (dd, 6 H, Val Me's), 1.5 (s, 9 H, Boc Me's), 2.2 (m, 1 H, Valα-H), 4-5 (6 H, Ser methylenes, α-H's), 5.2 (s, benzoxycarbonyl methylenes), 5.4 (s, 2 H, p-bromophenacyl methylenes) 7.5 (s, 5 H, benzoxycarbonyl aromatics), 7.8 (q, 4 H, p-bromophenacyl aromatics).

Synthesis of tripeptide mesylate 65

To the tripeptide 63 (0.2 g, 0.28 mmol) in pyridine (2 ml), cooled to 0° in ice-salt bath, was added methanesulfonyl chloride (0.024 ml, 0.31 mmol). The mixture was stirred at 0° for 1 hr and cooled in the refrigerator overnight.
Solvent was removed in vacuo, and the residue dissolved in ethyl acetate (10 ml). The organic phase was washed with cold 1 N HCl (5 ml), H_2O (5 ml) and dried over Na_2SO_4. Removal of solvent led to 0.22 g of 65 (96%) as an oil; tlc (solvent B) Rf 0.23, ¹H NMR (60 MHz, CDCl₃) δ 0.9 (dd, 6 H, Val Me's), 1.5 (s, 9 H, Boc Me's), 3.0 (s, 3 H, methyl), 4-5 (6 H, Ser methylenes α-H's), 5.2 (s, 2 H, benzyloxy carbonyl aromatics), 7.8 (A₂B₂ q, 4 H, p-bromophenacyl aromatics).

Attempted displacement of 65 with benzyl mercaptan

To benzyl mercaptan (0.06 ml, 0.6 mmol) in methanol (2 ml) was added sodium methoxide (0.03 g, 0.55 mmol) and the mixture stirred for 5 min. To this mixture was added 65 (0.4 g, 0.5 mmol) in dimethylformamide (5 ml) and the mixture stirred at room temp. for 1.5 hr.

Solvent was removed in vacuo and ice water (10 ml) added to the residue. The aqueous phase was extracted with ethyl acetate (10 ml), and the organic phase washed with 1 N HCl (5 ml), H_2O and brine in succession. The organic phase was dried over Na_2SO_4 and solvent removed in vacuo to yield an oil. The NMR spectrum of the oil indicated a mixture of 65 and benzyl mercaptan. Tlc showed the major spots corresponding to 65 and benzyl mercaptan.

Synthesis of N-benzyloxy carbonyl-L-serine-(N-t-butyloxy carbonyl)-hydrazide (66)

To N-benzyloxy carbonyl-L-serine (1.2 g, 5 mmol) in CH₂Cl₂ (40 ml) was added N-t-butyloxy carbonyl hydrazine (0.73 g, 5.5 mmol) and the mixture cooled to 0° in ice-salt bath. N,N'-Dicyclohexycarbodiimide
was added, and the mixture stirred at 0° for 3 hr followed by stirring at room temp. overnight.

The reaction mixture was filtered and the ppt washed with CH₂Cl₂. The combined filtrate and washings were concentrated in vacuo and the residue dissolved in ethyl acetate (50 ml), when small amounts of solid separated. The ethyl acetate extract was filtered, and the filtrate washed with sat NaHCO₃ aq (25 ml), 1 N HCl (25 ml), sat NaHCO₃ aq (25 ml) and sat NaCl aq (15 ml) in succession. Drying of the organic phase over Na₂SO₄ followed by evaporation of solvent in vacuo resulted in an oil. The oil was purified on a silica gel gravity column, to yield 1.68 g (100%) of (66); tlc (solvent B) Rf 0.34, ¹H NMR (60 MHz, CDCl₃) δ 1.5 (s, 9 H, Boc Me’s), 3.7-4.6 (3 H, Ser methylene, α-H), 5.2 (s, 2 H, benzyloxycarbonyl methylenes), 6.2 (d, 1 H, NH), 7.1 (s, 1 H, NH), 7.4 (s, 5 H, benzyloxycarbonyl aromatics), 8.8 (s, 1 H, NH).

Synthesis of N-Benzylxycarbonyl-0-(p-toluenesulfonyl)-L-serine (N-t-butyloxycarbonyl) hydrazide (67)

To 66 (0.54 g, 1.6 mmol) in pyridine (10 ml), cooled to 0° in ice-salt bath was added p-toluenesulfonyl chloride (0.32 g, 1.68 mmol) and the mixture stirred at 0° for 1 hr, followed by standing overnight in the refrigerator.

The reaction mixture was concentrated in vacuo and ice-water (10 ml) added to the residue. The aqueous residue was extracted with ethyl acetate (25 ml) and the ethyl acetate extract washed quickly with cold 1 N HCl (15 ml). The organic phase was subsequently washed with H₂O (10 ml) and brine in succession. After drying the organic phase over Na₂SO₄, solvent was removed in vacuo to yield 0.77 g (97.5 %) of pure 67 as an oil; tlc (solvent B) Rf 0.51, ¹H NMR (60 MHz, CDCl₃) δ 1.5
(s, 9 H, Boc Me's), 2.5 (s, 3 H, p-toluenesulfonyl methyl), 4.0-4.9 (3 H, Ser methylenes, α-H), 5.2 (s, 2 H, benzyloxy carbonyl methylenes), 6.2 (d, 1 H, NH), 6.9 (s, 1 H, NH), 7-8 (q overlapping s, 9 H, benzyloxy carbonyl and p-toluenesulfonyl aromatics), 8.8 (s, 1 H, NH).

Attempted displacement of 67 with benzyl mercaptan

To benzyl mercaptan (1.04 ml, 1 mmol) in methanol (2 ml) was added a solution of sodium methoxide (0.06 g, 1.1 mmol) in methanol (2 ml) and the mixture stirred for 5 min. 0.51 g (1 mmol) of 67 in dimethylformamide (5 ml) was added and the mixture stirred at room temp. for 2 hr.

Solvent was removed in vacuo and ice water (5 ml) was added to the residue. The aqueous mixture was extracted with ethyl acetate (10 ml). The ethyl acetate phase was washed with 1 N HCl (5 ml), H₂O and brine in succession. Upon drying over Na₂SO₄ and removal of solvent, an oil was obtained. The NMR of this oil was consistent for the product, a cyclic intramolecular displacement of the tosylate (see discussion).

Synthesis of N,N'-di-t-butyloxy carbonyl-L-cystine di-t-butyl ester (72)

To a suspension of L-cystine di-t-butyl ester dihydrochloride (1.28 g, 3 mmol) in dimethylformamide (30 ml) was added triethylamine (0.84 ml, 6 mmol) and the mixture stirred for 5 min. Di-t-butyl
dicarbonate (1.46 g, 6.6 mmol) was added and the reaction mixture stirred at room temp. for 5 hr.

Solvent was removed in vacuo and the residue partitioned between 1 N HCl (50 ml) and ethyl acetate (75 ml). The organic phase was washed with 1 N HCl (2 x 25 ml), H₂O (25 ml) and brine in succession, and dried over Na₂SO₄. Removal of solvent led to an oil which was purified on mplc with 10% acetone in hexane as the eluting solvent to yield 1.52 g (91%) of 72 as a white solid; m.p. 97-99⁰; tlc (solvent B) Rf 0.69; ¹H NMR (60 MHz, CDCl₃) δ 1.5 (s, 36 H, Boc and t-butyl Me's), 3.2 (d, 4 H, cystine methylenes), 4.5 (m, 2 H, α-H's), 5.5 (bd, 2 H, NH).

Synthesis of N-t-butyloxycarbonyl-L-cysteine t-butyl ester (70)

To 72 (2.5 g, 4.65 mmol) in 5% acetic acid in ether (65 ml) cooled to 0⁰ in ice-salt bath was added zinc dust (18.34 g, 282 mmol) slowly in portions over a period of 20 min. The mixture was stirred at 0⁰ for 2 hr.

The mixture was filtered and the ppt washed well with acetic acid. The combined filtrate and washing was concentrated in vacuo and the residue taken up in 1 N HCl (75 ml). The aqueous phase was extracted with ethyl acetate (75 ml) and the organic phase washed with sat NaCl aq (50 ml). Upon drying over Na₂SO₄ and removal of solvent, 2.51 g (100%) of 70 was obtained as an oil; tlc (solvent CHCl₃) Rf 0.7; ¹H NMR (60 MHz, CDCl₃) δ 1.5 (s, 18 H, Boc and t-butyl Me's), 1.9 (d, 1 H, SH), 3.0 (dd, 2 H, cysteine methylenes), 4.5 (m, 1 H, α-H), 5.5 (bd, 1 H, NH). The oil was used in subsequent reactions without further purification.
N,N'-Di-benzyloxy carbonyl-L-cystine diethyl ester (73)

To L-cystine diethyl ester dihydrochloride (7.38 g, 20 mmol) dissolved in H₂O (400 ml) and cooled to 0° in ice-salt bath, was added NaHCO₃ (6.72 g, 80 mmol) slowly, with stirring. To the cold solution was added benzyl chloroformate (8.6 ml, 60 mmol) dropwise and the reaction mixture stirred at 0° for 1 hr followed by stirring at room temp. for 5 hr.

The reaction mixture was saturated with NaCl and extracted with ethyl acetate (4 x 100 ml). The combined organic phase was washed with H₂O (100 ml) and dried over Na₂SO₄. Removal of solvent in vacuo resulted in a white solid which was crystallized from ethyl acetate-pet. ether to yield 9.8 g (88%) of 73; m.p. 81-83°; reported m.p. 86°; ¹⁰⁹ tlc (solvent CHCl₃) Rf 0.21; ¹H NMR (60 MHz, CDC₁₃) δ 1.3 (t, 6 H, Me's of ethyl ester), 3.2 (d, 4 H, cystine methylenes), 4.3 (q, 4H, methylenes of ethyl ester), 4.8 (m, 2H, α-H's), 5.2 (s, 4 H, benzyloxy carbonyl methylenes), 5.8 (d, 2 H, NH), 7.5 (s, 10 H, benzyloxy carbonyl aromatics).

Synthesis of thiol sulfinate 74

To N,N'-di-benzyloxy carbonyl-L-cystine diethyl ester (5.07 g, 9 mmol) in CH₂Cl₂ (150 ml) cooled to 0° in ice-salt bath, was added m-chloroperbenzoic acid slowly with stirring, when the solution turned turbid. The reaction mixture was allowed to warm up to room temp. upon which a clear solution resulted. The clear solution was allowed to stand overnight at room temp.

The mixture was washed well with sat NaHCO₃ aq (3 x 50 ml), sat NaCl aq (50 ml) and dried over anhyd Na₂SO₄. Removal of solvent
resulted in 5.2 g (100%) of 74 as an oil, which was used for subsequent reaction without purification; tlc (solvent B) Rf 0.15.

Synthesis of N-benzyloxycarbonyl, N'-t-butyloxycarbonyl-L-cystine ethyl, t-butyl diester (75)

To the thiolsulfinate 74 (2.31 g, 4 mmol) in benzene (40 ml) was added hexaethylphosphorus triamide (0.99 g, 4 mmol) under an atmosphere of nitrogen. N-t-Butyloxycarbonyl-L-cysteine t-butyl ester (1.11 g, 4 mmol) was added, and the mixture stirred under an atmosphere of nitrogen for 5 hr.

Solvent was removed in vacuo and the resulting oil purified on the mplc with 10% acetone in hexane as the eluting solvent system to give 1.23 g (55%) of 75 as an oil; tlc (solvent B) Rf 0.31; 1H NMR (90 MHz, CDCl$_3$) δ 1.3 (t, 3 H, ethyl ester methyl), 1.5 (s, 18 H, Boc and t-butyl Me's), 3.2 (t, 4 H, cystine methylenes), 4.3 (q, 2 H, ester methylenes), 5.1 (s, 2 H, benzyloxycarbonyl methylenes), 5.4-5.8 (d, 2 H, NH), 7.4 (s, 5 H, benzyloxycarbonyl aromatics). (Found: C, 54.00; H, 7.00; N, 5.05; S, 11.57. C$_{25}$H$_{38}$O$_8$N$_2$S$_2$ requires: C, 53.76; H, 6.81; N, 5.02; S, 11.47 %).

Synthesis of lanthionine 76

To cystine 75 (0.96 g, 1.74 mmol) in benzene (25 ml) was added hexaethylphosphorus triamide (0.47 g, 1.91 mmol), at room temp. under an atmosphere of nitrogen, and the reaction mixture stirred for 5 hr.

Removal of solvent resulted in an oil which was chromatographed on the mplc with 10% acetone in hexane as the eluting solvent system to yield 0.47 g (52%) of lanthionine 76 as an oil; tlc (solvent B) Rf 0.31; 1H NMR (60 MHz, CDCl$_3$) δ 1.3 (t, 3 H, ethyl ester methyl), 1.5
(s, 18 H, Boc and t-butyl Me's), 3.0 (t, 4 H, lanthionine methylenes),
4.3 (q, 2 H, ethyl ester methylenes), 5.2 (s, 2 H, benzyloxycarbonyl
methylenes), 5.4-5.8 (d, 2 H, NH), 7.4 (s, 5 H, benzyloxycarbonyl
aromatics). (Found: C, 56.90; H, 7.31; N, 5.30; S, 6.09. C_{25}H_{38}O_8N_2S
requires: C, 57.03; H, 7.22; N, 5.32; S, 6.08 %).

N,N'-Di-2,2,2-trichloroethoxy-
carbonyl-L-cystine di-t-butyl
ester 77

To 1-cystine di-t-butyl ester dihydrochloride (1.28 g, 3 mmol) in
H_2O (100 ml), cooled to 0° in ice-salt bath, was added NaHC0_3 (1.01 g,
12 mmol) and the mixture stirred for 5 min. 2,2,2-Trichloroethyl
chloroformate (1.91 g, 9 mmol) was added to the cold mixture dropwise,
with stirring. The reaction mixture was stirred at 0° for 2 hr
followed by stirring at room temp. for 5 hr.

The reaction mixture was acidified in cold with 6 N HCl,
saturated with NaCl and extracted with ethyl acetate (4 x 25 ml). The
combined organic phase was washed with H_2O, sat NaCl aq and dried over
Na_2SO_4. Removal of solvent led to an oil, which was purified on mplc
to yield 1.76 g (84%) of 77; tlc (solvent B) Rf 0.56, ^1H NMR (90 MHz,
CDCl_3) δ 1.5 (s, 18 H, t-butyl ester Me's), 3.2 (d, 4 H, cystine
methylenes), 4.6 (m, 2H, α-H's), 4.8 (s, 4 H, trichloroethoxy carbonyl
methylenes), 6.0 (d, 2 H, NH's). (Found: C, 34.27; H, 4.38; N, 3.85;
S, 9.03. C_{20}H_{30}N_2S_2Cl_6O_8 requires: C, 34.14; H, 4.27; N, 3.98; S,
9.10%).

Synthesis of thiol sulfinate 78

To 1.27 g (1.8 mmol) of 77 dissolved in CH_2Cl_2 (40 ml) and cooled
to 0° in ice-salt bath was added m-chloroperbenzoic acid (0.44 g, 2.16
mmol) slowly in portions. The clear solution was turbid after addition of the acid. The reaction mixture was allowed to warm up to room temp. with stirring, upon which a clear solution resulted. The mixture was allowed to stand at room temp. overnight.

The reaction mixture was washed with sat NaHCO₃ aq (3 x 25 ml). The combined organic phase was washed with brine, dried over Na₂SO₄ and solvent removed in vacuo to yield 1.12 g (85%) of \textit{as} an oil. This oil was used without further purification for subsequent reactions; tlc (solvent B) Rf: 0.24.

Synthesis of N-benzyloxy carbonyl-L-cysteine ethyl ester

To N,N'-di-benzyloxy carbonyl-L-cystine diethyl ester (1.69 g, 3 mmol) dissolved in a 5% solution of acetic acid in diethyl ether (100 ml), and cooled to 0° in ice-salt bath, was added zinc dust (5.81 g, 180 mmol) slowly, in portions, over a period of 15 min. The mixture was stirred at 0° for 2 hr and at room temp. for one hr.

The reaction mixture was filtered and the ppt washed well with acetic acid:ether. The combined filtrate and washings were concentrated in vacuo, and the residue dissolved in 1 N HCl (50 ml). The aqueous solution was saturated with NaCl and extracted with ethyl acetate (3 x 25 ml). The organic phase was dried over Na₂SO₄ to yield 1.69 g (100%) of title compound as an oil. This oil was used without further purification for subsequent reactions; tlc (solvent A) Rf: 0.3; \textit{¹H NMR} (60 MHz, CDCl₃) δ 1.3 (t, 3 H, ethyl ester Me), 1.9 (d, 1 H, SH), 3.1 (dd, 2 H, cysteine methylenes), 4.3 (q, 2 H, ester methylenes, 4.8 (m, 1 H, a-H), 5.2 (s, 2 H, benzoyloxycarbonyl methylenes), 5.9 (bd, 1 H, NH), 7.4 (s, 5 H, benzoyloxycarbonyl aromatic).
Synthesis of N-benzyloxy carbonyl, N’-2,2,2-trichloroethoxy carbonyl-L-cystine ethyl, t-butyl diester (79)

To a solution of thiol sulfinate (2.01 g, 2.8 mmol) in benzene (40 ml), through which nitrogen gas had been bubbled through for 5 min, was added hexaethylphosphorus triamide (0.72 g, 3.0 mmol) at room temp. under nitrogen, followed by N-benzyloxy carbonyl-L-cysteine ethyl ester (0.84 g, 4 mmol), and the mixture stirred at room temperature for 8 hr. The solvent was removed in vacuo and the resulting oil purified on the mpc with 10% acetone in hexane as eluant to yield 0.90 g (54%) of 79 as an oil; tlc (solvent hexane-acetone, 9:1) Rf 0.2; \(^1H\) NMR (60 MHz, CDCl\(_3\)) \(\delta\) 1.3 (t, 3 H, ethyl ester Me), 1.5 (s, 9 H, t-butylester Me), 3.2 (d, 2 H, cystine methylenes), 4.3 (q, 2 H, ethyl ester methylenes), 4.6 (m, 2 H, \(\alpha\)-H’s), 4.8 (s, 2 H, trichloroethyl oxy carbonyl methylenes), 5.2 (s, 2 H, benzyloxy carbonyl methylenes), 5.9 (dd, 2 H, NH’s), 7.4 (s, 5 H, benzyloxy carbonyl aromatics). (Found: C, 43.25; H, 4.96; N, 4.54; S, 9.63. \(C_{23}H_{31}N_2O_8Cl_3S_2\) requires: C, 43.57; H, 4.89; N, 4.42; S, 10.10%)

Synthesis of lanthionine 80

To a solution of 79 (0.33 g, 0.54 mmol) in benzene (15 ml) was added hexaethylphosphorus triamide (0.34 g, 1.36 mmol) dropwise, with stirring, under nitrogen. The reaction mixture was stirred at room temp. overnight, and evaporated in vacuo to an oil. The oil was purified on the mpc with 10% acetone in hexane as the eluting solvent, to yield 0.18 g (58%) of 80 as an oil; tlc (solvent hexane-acetone, 9:1) Rf: 0.22; \(^1H\) NMR (90 MHz, CDCl\(_3\)) \(\delta\) 1.3 (t, 3 H, ethyl ester Me), 1.5 (s, 9 H, t-butyl ester Me), 3.0 (d, 2 H, lanthionine methylenes), 4.2 (q, 2 H, ethyl ester methylenes), 4.6 (m, 2 H, \(\alpha\)-H’s), 4.8 (s, 2 H,
trichloroethoxyloxycarbonyl methylenes), 5.2 (s, 2 H, benzyloxycarbonyl methylenes), 5.9 (dd, 2 H, NH's), 7.4 (s, 5 H, benzyloxycarbonyl aromatics). (Found: C, 47.16; H, 5.27; N, 4.75; S, 5.59. C_{23}H_{31}N_{2}O_{8}Cl_{3} requires: C, 45.88; H, 5.15; N, 4.66; S, 5.32%). Two attempts to obtain satisfactory analysis for 80 resulted in % C found to be higher than the calculated value.

Synthesis of N-2,2,2-trichloroethoxyloxycarbonyl-L-cysteine t-butyl ester (86)

To 77 (0.37 g, 0.53 mmol) in 90% methanol aq (5 ml) was added tri-n-butyl phosphine (0.312 g, 1.05 mmol) and the reaction mixture was stirred at room temp. for 5 hr. The solvent was removed in vacuo and the residue triturated with ether (10 ml). Removal of ether led to an oil which was purified on a silica gel gravity column with 5% acetone in hexane as the elutant. Compound 86 was obtained, 0.33 g (89%), as an oil; tlc (solvent hexane-acetone, 9:1), Rf 0.3, 1H NMR (60 MHz, CDCl$_3$) δ 1.5 (s, 9 H, t-butyl ester Me's), 1.9 (d, 1 H, SH), 3.2 (dd, 2 H, cysteine methylenes), 4.8 (s, 2 H, trichloroethoxyloxycarbonyl methylenes).

Alternate method of synthesis of 79

To thioisulfinate 74 (1.03 g, 1.78 mmol) in benzene (20 ml) was added hexaethylphosphorus triamide (0.44 g, 1.78 mmol) under nitrogen. N-2,2,2-trichloroethoxyloxycarbonyl-L-cysteine t-butyl ester was added, and the mixture stirred under N$_2$ for 6 hr.

Solvent was removed in vacuo and the resulting oil purified on the mpc with 10% acetone in hexane to yield 0.70 g (65%) of 79 as an oil. This oil was identical to the one prepared by the previous method.
BIBLIOGRAPHY

13. Reported by the National Cancer Institute in DCT Newsletter, Number 5, June 15, 1978, p. 4.

 c. L. A. Carpino, Ibid. 82, 2725 (1960).
 (1941).
58. Y. Tanigawa, H. Kanamaru and S. Murahashi, Tetrahedron Letters 52,
 4655 (1975).
 (1979).
 (1966).
68. C. Zioudrou, M. Wilchek and A. Patchornik, Biochemistry 4, 1811
 (1965).
 (1983).
74 L. Field, Synthesis 107 (1970), and references cited therein.

Abbreviations

The abbreviations used in this dissertation are as follow:

Acm: Acetamidomethyl
Bam: Benzamidomethyl
Boc: t-Butyloxy carbonyl
Bpa: p-Bromophenacyl
DCC: N,N'-dicyclohexylcarbodiimide
EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
HOBT: 1-Hydroxybenzotriazole
Tce: 2,2,2-Trichloroethyl
Toc: 2,2,2-Trichloroethoxy carbonyl
Qxc: Quinoxaline-2-carbonyl
Z: Benzyloxy carbonyl
VITA

Ganesh Devdas Kini

Dissertation: Studies in Peptide Synthesis towards the Lanthionine Analog of Des-N-Tetramethyl Triostin A

Major Field: Organic Chemistry

Biographical Information:

Date of Birth: January 25, 1955

Place of Birth: Bombay, India

Academic Record:

High School: Graduated from Little Angels High School, Bombay, India (1971).

Bachelor of Science (Hons.): S.I.E.S. College of Arts and Science, affiliated to the University of Bombay, India (1975). Major: Chemistry; Minor: Physics

Master of Science: University Department of Chemistry, University of Bombay, India (1977). Analytical Chemistry

Doctor of Philosophy: Completed requirements for Doctor of Philosophy degree at Utah State University, 1983.