
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2018

Tackling Choke Point Induced Performance Bottlenecks in a Near-Tackling Choke Point Induced Performance Bottlenecks in a Near-

Threshold GPGPU Threshold GPGPU

Tahmoures Shabanian
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Shabanian, Tahmoures, "Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold
GPGPU" (2018). All Graduate Theses and Dissertations. 7234.
https://digitalcommons.usu.edu/etd/7234

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F7234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7234?utm_source=digitalcommons.usu.edu%2Fetd%2F7234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

TACKLING CHOKE POINT INDUCED PERFORMANCE BOTTLENECKS IN A

NEAR-THRESHOLD GPGPU

by

Tahmoures Shabanian

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Koushik Chakraborty, Ph.D. Sanghamitra Roy, Ph.D.
Major Professor Committee Member

Jacob Gunther, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018

ii

Copyright c© Tahmoures Shabanian 2018

All Rights Reserved

iii

ABSTRACT

Tackling choke point induced performance bottlenecks in a near-threshold GPGPU

by

Tahmoures Shabanian, Master of Science

Utah State University, 2018

Major Professor: Koushik Chakraborty, Ph.D.
Department: Electrical and Computer Engineering

The proliferation of multicore devices with a stipulated thermal envelope has aided to the

research in Near-Threshold Computing (NTC). Despite several reliability and vulnerability

concerns, NTC operation of VLSI circuits are gaining tractions among researchers due to

its inherent energy efficiency. However, operating a Graphics Processing Unit (GPU) at

the NTC region has still remained recondite. In this work, an important reliability predica-

ment of NTC is explored, called choke points, that severely throttles the performance of

GPUs. Choke points are manifestations of process variation, altering the delays of sensitized

logic gates in a fabricated chip. As a result, they can potentially create new critical paths

that are virtually impossible to predict during the design of a chip. Upon uncovering the

shortcomings of existing timing error mitigation techniques, a holistic circuit-architectural

solution is propose, that promotes an energy-efficient NTC-GPU design by gracefully tack-

ling the choke point induced timing errors. The proposed scheme offers 3.18× and 88.5%

improvements in NTC-GPU performance and energy delay product, respectively, over a

state-of-the-art timing error mitigation technique, with minimal area and power overheads.

(40 pages)

iv

PUBLIC ABSTRACT

Tackling choke point induced performance bottlenecks in a near-threshold GPGPU

Tahmoures Shabanian

Over the last decade, General Purpose Graphics Processing Units (GPGPUs) have gar-

nered a substantial attention in the research community due to their extensive thread-level

parallelism. GPGPUs provide a remarkable performance improvement over Central Pro-

cessing Units (CPUs), for highly parallel applications. However, GPGPUs typically achieve

this extensive thread-level parallelism at the cost of a large power consumption. Conse-

quently, Near-Threshold Computing (NTC) provides a promising opportunity for designing

energy-efficient GPGPUs (NTC-GPUs). However, NTC-GPUs suffer from a crucial Process

Variation (PV)-inflicted performance bottleneck, which is called Choke Point. Choke Point

is defined as one or small group of gates which is affected by PV. Choke Point is capable of

varying the path-delay of circuit and causing different forms of timing violation.

In this work, a cross-layer design technique is proposed to tackle the performance

impediments caused by choke points in NTC-GPUs.

v

This thesis is dedicated to the most awesome people in my life. To my parents for all their
love and support in every single stage of my life. To my brother Touraj Shabanian and my

sister Tahmineh Shabanian, for their endless support and inspirations. I wouldn’t have
been able to get to this stage without them.

vi

ACKNOWLEDGMENTS

I am glad to express my gratitude to all the people who have walked alongside me during

the last three years, and helped me thorough this journey as a master student. I owe many

thanks to my advisor Dr. Koushik Chakraborty and my co-advisor Dr. Sanghamitra Roy

for their insightful guidance and financial support. They gave me the fantastic opportunity

to join the BRIDGE lab, and to become familiar with different research areas. I would also

like to thank Dr. Jacob Gunther for his valuable comments on my research as my committee

member and for all his kind support and as the head of the ECE department at USU.

I extend my gratitude to the all the members of the BRIDGE lab, for their guidance,

friendship and the stimulating discussions. They have all made me feel at home.I would

specially like to thank Prabal Basu and Aatreyi Bal for their amazing help and support. It

was a wonderful experience to have them both as co-authors in my paper. I thank all of

my other friends and professors at USU, who have influenced my life and my thinking in

remarkable ways. I am grateful to the ECE department and to all the staff members for

making these years very enjoyable. I am thankful to Tricia Brandenburg for helping out

through all of the administrative processes.

I thank my best friend Reza Tavakoli for his support in all the hard times that I have

had. Without him, I would not be able to complete this journey. Thank you for being my

rock.

Last, but not the least, I thank my wonderful, supportive parents and the best brother

and sister in the world. Their endless love and support have sustained me throughout my

life. I am forever indebted to them.

Tahmoures Shabanian

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

ACRONYMS . xi

1 INTRODUCTION . 1

2 RELATED WORK . 3

3 MOTIVATION . 5
3.1 Background . 5
3.2 Can Existing Timing Error Mitigation Techniques Tackle Choke Points in

GPUs? . 6
3.3 Methodology . 7
3.4 Results . 8
3.5 Significance . 9

4 DESIGN PARADIGM . 11
4.1 Adaptive Choke Error-resilient GPU (ACE-GPU) 11
4.2 Design Overview . 11

4.2.1 ACE-GPU Components . 11

5 METHODOLOGY . 17
5.1 Device Layer . 17
5.2 Circuit Layer . 18
5.3 Architecture Layer . 19

6 EXPERIMENTAL RESULTS . 20
6.1 Comparative Schemes . 20
6.2 Error Comparison . 21
6.3 Performance Comparison . 22
6.4 Energy-Efficiency Comparison . 23
6.5 Hardware Overheads . 24

7 CONCLUSION . 25

REFERENCES . 26

viii

CURRICULUM VITAE . 29

ix

LIST OF TABLES

Table Page

5.1 GPU configurations. 18

x

LIST OF FIGURES

Figure Page

3.1 Choke point induced additional delays. 6

3.2 Figure 3.2(a) and 3.2(b) . 8

4.1 The CMU and BLU form the backbone of the ACE-GPU architecture. . . 12

5.1 Cross-layer methodology for ACE-GPU. 17

6.1 Error comparison (lower is better). 21

6.2 Performance comparison (higher is better). 22

6.3 EDP comparison (lower is better). 23

xi

ACRONYMS

CPU Central Processing Unit

GPU Graphic Processing Unit

GPGPU General Purpose Graphic Processing Unit

VLSI Very-Large-Scale Integration

VF Voltage Frequency

RTL Register-Transfer Level

NTC Near Threshold Computing

STC Super Threshold Computing

SIMD Single Instruction Multiple Data

CU Compute Unit

PV Process Variation

CAM Content Addressable Memory

UTD Ultra Threaded Dispatcher

PTM Predictive Technology Model

ChEST Choke Error Sensing Table

CMU Choke-error Monitor Unit

DUI Decision Unit Interface

BLU Black List Unit

EDP Energy Delay Product

1

CHAPTER 1

INTRODUCTION

Evolution of Graphics Processing Units (GPUs) from specialized graphics chips to

more generalized computing devices has ushered a new era in parallel computing. Over the

past decade, researchers have made a significant progress in enhancing the computational

power and memory bandwidth of General Purpose GPUs (GPGPUs) [1–4]. GPUs1 offer

a substantial performance improvement, over Central Processing Units (CPUs), for highly

parallel applications. However, the extensive thread-level parallelism in GPUs are usually

accompanied with a large power consumption [5]. To avoid hitting the power wall, while

still maintaining the benefits of parallel computing, low-power GPUs are the need of the

hour. Consequently, Near Threshold Computing (NTC) has emerged as a promising design

paradigm for energy-efficient GPUs [6, 7]. In this paper, a significant reliability concern of

the GPUs, operating at the NTC region (NTC-GPUs) is explored.

NTC-GPUs, besides offering a high energy-efficiency, suffer from a substantial process

variation (PV) induced delay variation [8, 9]. Moreover, the vast spatial expanse of the

GPUs, compared to CPUs, make them more susceptible to PV [3]. The problem is further

complicated at NTC due to a manifold increase in the number of cores, compared to tradi-

tional GPUs, operating at super-threshold (STC) voltages [6]. This paper focuses on Choke

Points—a crucial PV-inflicted performance bottleneck in NTC-GPUs.

A choke point is a small group of PV-affected logic gates in a circuit path, that domi-

nates the path delay, so as to transform a short delay path into a critical path [10]. Choke

points are created due to a drastic gate delay variation at NTC. Being an artifact of the

fabrication process, the formation of choke points cannot be precisely anticipated or tackled

at the design time [11]. As a result, a dynamic adaptive technique is required to tackle choke

points in fabricated chips. Recently, Bal et al. have proposed an in-situ timing speculation

1In this paper, the terms GPU and GPGPU are used interchangeably.

2

technique to predict and recover from choke point induced timing errors in a simple out-of-

order CPU pipeline at NTC [11]. This work shows, naively applying such an error recovery

mechanism to a SIMD2 pipeline does not boost the NTC performance to a similar extent

as [11] (Section 6). Hence, employing a cross-layer methodology, this research proposes a

choke point resilient NTC-GPU architecture, referred to as Adaptive Choke Error-resilient

GPU (ACE-GPU). Exploiting the recent history of timing errors in the GPU compute units

(CUs), ACE-GPU employs a novel thread mapping strategy to minimize the occurrences of

future timing errors, while incurring minimal overheads.

To the best of my knowledge, this is the first work that investigates the impacts of choke

points in NTC-GPUs, as well as, proposes a timing error mitigation technique to improve

the GPU power-performance.

The following are the key contributions of this work:

• This research elaborates why existing timing errors mitigation techniques are grossly inef-

fective in alleviating the choke point induced performance loss in an NTC-GPU (Section

3.2).

• This research explores the impacts of choke points in GPU pipelines, operating at STC

and NTC regions (Section 3.4).

• This paper investigates the choke point induced performance penalties and energy cost,

when a GPU operates with different number of CUs, at different operating conditions,

with an existing error correction scheme (Section 3.4).

• The proposed NTC-GPU architecture—Adaptive Choke Error-resilient GPU (ACE-GPU)—

efficiently tackles choke point induced timing errors in GPUs (Section 4.1).

• Using a range of GPGPU benchmarks, the performance benefit, energy efficiency and

overheads of ACE-GPU are evaluated, with respect to traditional timing error mitigation

techniques. (Section 6).

2GPUs are comprised of many single instruction multiple data (SIMD) units, executing several parallel
threads simultaneously.

3

CHAPTER 2

RELATED WORK

Recent studies, related to this work can be broadly classified into three categories:

(a) performance and reliability concerns at NTC, (b) tackling timing violations in modern

microprocessors, and (c) performance and energy-efficiency of GPUs, operating at NTC.

In the first category, Pinckney et al. have evaluated the limitations of NTC in paral-

lelized systems [12]. Dreslinski et al. have explored the bottlenecks, as well as opportunities,

of the NTC operation [13]. Zhang et al. have characterized voltage noise in multicore NTC

processors [14]. Gemmeke et al. have investigated the memory bottlenecks in NTC sys-

tems [15]. Karpuzcu et al. have explored the impacts of PV on NTC systems [16]. One

of the remarkable reliability challenges, posed by PV, at NTC is choke points [10]. Bal

et al. have explored this problem and proposed an adaptive technique, to mitigate the

performance loss, arising from choke points, in unicore CPUs, operating at NTC [11]. Seo

et al. have analyzed the impact of PV on near-threshold SIMD architectures [8]. Aguilera

et al. have proposed workload partitioning, to alleviate the impact of PV in GPUs [3].

Miller et al. have analyzed the performance of low-voltage chips under the effect of PV.

They have proposed two power supply rails to mitigate the effects of process variatoin on

the performance of low-voltage chips [17]. Karpuzcu et al. have proposed a method with

single supply voltage which relies on multiple frequency domains to increase the degree of

freedom in tackling variations in NTC [18]. Maiti et al. have studied impacts of PV in

NTC and have proposed PV aware power management method to mitigate the impacts of

PV in NTC multicore systems [19].

In probing timing violations in microprocessors, Roy et al. have proposed a timing error

prediction method, using the program counter values [20]. Rahimi et al. have proposed a

hierarchically focused guardbanding technique to mitigate the impact of the process and

environmental variations [21]. Ernst et al. have presented a dynamic timing error detection

4

and mitigation technique, using double sampling latches [22]. Ye et al. adopted an online

clock skew tuning approach to speculate imminent timing errors [23].

Compared to the previous two categories, very little research has been invested into the

third category, NTC-GPUs. Basu et al. have introduced a self-adaptive sprint technique,

to mitigate PV induced performance variations in NTC-GPUs [6]. Pal et al. have recom-

mended a dynamic allocation of thread blocks to mitigate the effects of PV on register access

latency [7]. However, to the best of my knowledge, this work is the first work that explore

the impacts of choke points on the performance and energy-efficiency of NTC-GPUs.

5

CHAPTER 3

MOTIVATION

In this chapter, choke point is illustrated as an important reliability problem in NTC-

GPUs. First, the greater vulnerability of GPUs to choke point induced performance im-

pediments, compared to traditional CPU cores, are discussed (Section 3.1). Second, the in-

efficacy of existing timing error mitigation techniques in alleviating the harmful impacts of

choke points in GPUs are explained (Section 3.2). Third, the proposed cross-layer method-

ology is briefly described (Section 3.3). Finally, the delay variabilities in GPU pipelines

is demonstrated, which is caused by choke points (Section 3.4), to motivate the design of

ACE-GPU (Section 3.5).

3.1 Background

A choke point is defined as a single logic gate (or a group of logic gates) in a circuit that

is affected by PV, and dominates the delay of the path in which it occurs. The presence

of choke points can create new critical paths by increasing the delays of short delay paths,

calculated at the design time. Consequently, choke points can give rise to unanticipated

timing violations in the fabricated chips of a design [10].

The impact of PV is exacerbated in NTC circuits with respect to the STC ones [24]. As

a result, NTC chips are significantly more susceptible to choke point induced variabilities.

Furthermore, Aguilera et al. have demonstrated that GPUs are more impacted by within-

die PV, compared to traditional multicore CPUs, due to a large number of cores in the

former [3]. To exploit the large thread-level parallelism of the GPGPU applications, an

NTC-GPU employs more cores than their STC counterparts [6]. Therefore, the probability

of timing violations due to the formation of choke points notably increases in an NTC-GPU,

thwarting the energy benefits of NTC operation.

6

 0

 5

 10

 15

 20

 25

0.45
0.55

0.65
0.85C

h
o

k
e

P
o

in
t

In
d

u
ce

d

A
d

d
it

io
n
al

 D
el

ay
 (

%
)

Supply Voltage (V)

Decode Execute

Fig. 3.1: Choke point induced additional delays. Shows that the presence of choke points
increases the delays of the decode and execute stages, compared to the respective nominal
delays of those stages.

3.2 Can Existing Timing Error Mitigation Techniques Tackle Choke Points in

GPUs?

Researchers have proposed several circuit-architectural techniques to tackle timing er-

rors in CPUs and GPUs. This section briefly discusses why such techniques are ineffective

in combating choke points induced timing errors in an NTC-GPU.

• Timing Guardbands: To ensure a reliable operation, a chip can be conservatively run

at a supply voltage, higher than the minimum required voltage, determined by static tim-

ing analysis. As a result, the system has enough timing slack to tolerate the worst-case

process and environmental variations. However, the worst-case delay being a rare event, a

conservative timing guardband drastically increases the power consumption of a system.

Rahimi et al. have proposed hierarchically focused guardbanding that speculates the fu-

ture timing behaviors of the circuit and adaptively adjusts the guardbands to guarantee

timing requirements [21]. Despite being more effective than a conservative approach, [21]

is extremely energy inefficient in tackling choke point induced timing errors in a unicore

processor, operating at NTC [11]. Hence, employing an adaptive timing guardband strat-

7

egy is also futile in sustaining a reliable and efficient operation in multicore systems, like

NTC-GPUs.

• Dynamic Error Detection and Correction: Deploying shadow latches to dynami-

cally detect timing errors, and replaying the errant instructions, is one of the most popular

and effective techniques to improve the timing resiliency of a system [22]. However, [22]

cannot account for the PV-signature of a circuit which is crucial to effectively predict

the recurring timing errors engendered by choke points [11]. Moreover, the large volume

of the parallel threads and the prodigious spatial expanse of a GPU, further obscure the

nuances of the PV-signatures. Hence, existing adaptive error detection and correction

techniques are unlikely to efficiently deal with timing errors in an NTC-GPU.

• Dynamic Choke Sensing: Bal et al. have recently explored the effect of choke points

in a simple out-of-order unicore system [11]. By uncovering a unique relation between the

instruction metadata and the corresponding sensitized choke points, authors of [11] have

proposed an adaptive timing error speculation and recovery scheme for scalar processors.

However, a naive adoption of Bal’s technique in vector processors like a GPU, leads to a

significant performance loss (Section 6). This is due to the fact that a timing error in a

single execution unit of a GPU, stalls all the SIMD lanes of a pipeline, thus effectively

multiplying the error rate by the degree of parallelization [25]. As an NTC-GPU offers a

significantly more parallelization (due to an increased number of CUs) than a traditional

GPU, operating at STC conditions, deploying [11] in an NTC-GPU is a poor design

choice.

Next, the proposed methodology is briefly discussed to demonstrate the choke points

induced delay variabilities in an NTC-GPU.

3.3 Methodology

The MIAOW GPU RTL [26], which is modeled on the AMD’s Southern Island GPU

architecture, is used as the experimental platform. To synthesize the decode and execution

units of a CU, the 15-nm FinFET library from NanGate is used [27]. In order to model PV

8

 0

 2

 4

 6

 8

 10

 12

16 32 64 128

N
o

rm
al

iz
ed

 P
en

al
ty

Number of CUs(STC) (NTC)

(a) Variation in performance penalty.

 0

 1

 2

 3

 4

 5

 6

16 32 64 128

N
o

rm
al

iz
ed

 E
n

er
g

y

Number of CUs(STC) (NTC)

(b) Variation in energy consumption.

Fig. 3.2: Figure 3.2(a) and 3.2(b) exhibit the drastic increase in the performance penalties
and energy consumptions respectively, for RecursiveGaussian, as more CUs are employed
to cope with the decreasing VF levels towards NTC. For figure 3.2(a) and 3.2(b), the results
are normalized to the corresponding STC values.

at STC and NTC, the VARIUS [28] and VARIUS-NTV [9], are used respectively. A home-

brewed Statistical Timing Analysis tool is employed to study the delay of the sensitized

paths of the decode and the execution unit. For a conservative estimate, PV-induced delays

are considered in randomly chosen 1% of the gates of a circuit. A detailed methodology is

discussed in Section 5.

3.4 Results

Figure 3.1 shows the percentage increase in the delays due to choke points, for decode

and execution stages of a CU. The values are calculated with respect to the corresponding

delays of an ideal case of no PV. Following are the three crucial observations from Figure

3.1.

1. The impact of choke points varies across different pipe stages. For example, at 0.45V,

the decode stage exhibits an additional delay of ∼2.8%, while the execute stage has

an additional delay of ∼18%. This variation is observed at other operating voltages

too.

2. The choke point induced delays monotonically increase as the operating voltage ap-

proaches NTC values. For example, the additional delay of the execute stage at 0.45V

9

is ∼4.7× compared to that at 0.85V. This result confirms that the choke point induced

delay variations are more aggressive at NTC, than at STC.

3. There is no choke point induced additional delay for the decode stage at 0.85V. This

is because, choke points may not always give rise to new critical paths in a fabricated

circuit.

An increase in the number of CUs can improve the NTC performance by effectively ex-

ploiting the thread-level parallelism of the GPGPU benchmarks [6]. However, timing errors

due to choke points can introduce a staggering performance penalty in an error correction

scheme, severely throttling the performance of NTC. Figure 3.2(a) shows the variation in

the performance penalties, as RecursiveGaussian, a GPGPU benchmark, executes with dif-

ferent number of CUs (with 100% utilization), endowed with Razor as the timing error

mitigation scheme. The leftmost and the rightmost bars in Figure 3.2(a) represent STC

and NTC operating conditions, respectively. The results are normalized to the penalty for

16 CUs. It is noticed that an 8× increase in the number of CUs, increases the performance

penalty by ∼8×. This result reveals the inefficacy of Razor [22] in tackling aggravated choke

point induced timing errors at NTC.

For the same experiment, Figure 3.2(b) demonstrates a ∼5.5× increase in the energy

consumption at NTC (128 CUs), with respect to STC (16 CUs). A large fraction of this high

energy consumption at NTC comes from leakage energy. As leakage energy is proportional

to the application execution time, the high performance penalties at NTC (Figure 3.2(a))

diminishes the energy-efficiency benefit of an NTC-GPU.

3.5 Significance

The motivational results demonstrate a tremendous impact of choke points on the

performance as well as energy consumption of the NTC-GPUs. Hence, in order to efficiently

exploit the vast SIMD resources of an NTC-GPU, it is needed to explore a design paradigm

that can dynamically predict and avoid imminent timing errors in the CUs, while incurring

10

minimal performance and power overheads. Next, such a novel GPU design paradigm is

explored, that reclaims the energy-efficiency advantage of NTC.

11

CHAPTER 4

DESIGN PARADIGM

4.1 Adaptive Choke Error-resilient GPU (ACE-GPU)

In this chapter, ACE-GPU a novel design paradigm to tackle choke point induced

timing errors in NTC-GPUs is discussed. The design overview is presented in Section 4.2,

and the design components are elaborated in Section 4.2.1.

4.2 Design Overview

Figure 4.1 portrays the conceptual overview of ACE-GPU. The Ultra-Threaded Dis-

patcher (UTD), an integral component of a GPU, is responsible for assigning the thread

blocks to the CUs [29]. In ACE-GPU, the baseline thread block assignment policy of the

UTD is altered, to a choke point aware assignment strategy. This approach is fundamen-

tally different than stalling the thread block execution to avoid imminent timing errors [11].

The baseline GPU architecture is augmented with a Choke-error Monitor Unit (CMU) and

a Black List Unit (BLU). CMU is responsible for the identification, correction and predic-

tion of choke point induced timing errors. The primary components of CMU are Choke

Error Sensing Table (ChEST), Decision Unit Interface (DUI) and Threshold Comparator.

On the other hand, BLU works in tandem with CMU and the Ultra-Threaded Dispatcher

(UTD), to detect and avoid the CUs that are severely impaired by choke point induced

timing errors. Different components of CMU and BLU, along with their respective working

principles are described next.

4.2.1 ACE-GPU Components

CMU and BLU dynamically monitor the timing errors occurring in different CUs, and

communicate with the UTD to make an efficient thread block assignment in order to improve

the NTC-GPU performance.

12

Fig. 4.1: The CMU and BLU form the backbone of the ACE-GPU architecture. The CMU
performs the error management, including error logging and avoidance. The magnified
version of the CMU shows its components. The Choke Error Sensing Table (ChEST)
contains the error logs for the previously encountered error instances, and facilitates error
avoidance. The Decision User Interface (DUI) is the brain of the CMU making all the
error management decisions. The Threshold Comparator marks the CUs that are severely
affected by choke points and logs them in the Black List Unit (BLU). The CUs listed in
the BLU are not considered for imminent thread block assignment by the Ultra-Threaded
Dispatcher (UTD).

Choke-error Monitor Unit (CMU)

The CMU is the central component of the ACE-GPU architecture. It spearheads two

main tasks of error management. First, it receives timing error details from each of the

CUs, and records them for future references. Second, it populates the BLU with the IDs of

the CUs that are rendered unreliable due to the severe impact of choke points. The role of

each of the constituent components in the entire design flow is explained next.

• Choke Error Sensing Table (ChEST): The ChEST records the errors occurring

in each CU, in terms of tuples of errant opcodes. In the implementation, each tuple

corresponds to a CU ID, three errant opcodes encountered by that CU, and their number

of occurrences (i.e., the number of times that opcode is executed on the CU, not the

number of timing errors it caused). Additionally, each tuple has the total error count,

which records the number of the timing errors detected in that CU.

The ChEST is implemented as a Content Addressable Memory (CAM), to facilitate the

table lookup. The number of entries in the ChEST is a trade-off between the associated

13

Algorithm 1 Working Principle of DUI

1: procedure DUI(timing info[IDs][opcodes])

2: for all IDs ∈ timing info do

3: if (ID ∈ ChEST) then

4: if (timing info[ID][opcode] ∈ ChEST[ID]) then

5: ChEST[ID][opcode].count++

6: else

7: if (opcode field.full()) then

8: opcode field.evict(least occurring opcode)

9: end if

10: opcode field.insert(opcode)

11: end if

12: else

13: ChEST.evictPseudoLRU(ID)

14: ChEST[ID][opcode].count = 1

15: ChEST[ID].error count++

16: end if

17: PDCP(ID)

18: end for

19: end procedure

overhead and the accuracy of sensing recurrent timing errors. A large entry size ensures a

relatively high sensing accuracy, at the cost of relatively high area and power overheads.

On the other hand, a smaller ChEST reduces the sensing accuracy thereby increasing the

incurred penalty cycles. In the evaluations, the entry size for ChEST is considered to be

10 (for 128 CUs). The UTD looks up the ChEST before assigning thread blocks to CUs,

in order to avoid imminent recurrent timing errors.

• Decision Unit Interface (DUI): The DUI manages the error sensing, as well as, error

correction inside the CMU. Algorithm 1 shows the working principle of the DUI. Upon

receiving timing error information from the CUs, it updates the record of the encountered

errors in the ChEST. The errors are detected with the help of double-sampling latches [22].

14

The DUI logs the errant opcodes, along with the corresponding CU ID, in the ChEST.

If the ID is already listed in the ChEST, the DUI logs the opcode in the corresponding

tuple of the ChEST. In case the tuple is already full, a new errant opcode replaces an

existing opcode with least number of occurrences. Simultaneously, the DUI updates the

total error count of the corresponding CU. If the ChEST becomes full, a new CU ID

can replace an existing CU in the ChEST using a pseudo-LRU policy. Once an error is

detected at the CU, the DUI stalls the current execution of the CU, and re-assigns the

thread block to ensure an error-free execution (Section 4.2.1).

To adapt to high-error situations, the DUI employs a Performance Degradation Control

Procedure (PDCP), described in Algorithm 2. If the number of CUs in the BLU exceeds

10% of total CUs, the DUI increases the threshold value, considered by the Threshold

Comparator. After that, it flushes the existing entries of the BLU, and stores the current

threshold for which, the BLU is flushed. This stored threshold value is required to

calculate the total number of timing errors, lest the flushed CUs once again appear

in the ChEST. If the current threshold is beyond a preset maximum, it is no longer

incremented. In that case, a CU in the ChEST, with the total error being more than

the current threshold, can replace one of the existing CUs in the BLU, chosen randomly.

However, this situation in the simulations have not been encountered.

• Threshold Comparator: The Threshold Comparator continuously monitors the total

error counts of all the CUs in the ChEST. As soon as the total error count of a CU exceeds

the threshold pre-defined in the comparator, the CU ID is removed from the ChEST, and

added to the BLU. In the implementation the threshold is updated dynamically, if a

certain percentage of the total CUs are blacklisted. However, the threshold value cannot

be increased beyond a preset upper limit.

Black List Unit (BLU)

The BLU records the CU IDs whose total error count exceeds a given threshold of

errors. Any CU ID listed in the BLU is not considered for thread block assignment. The

15

Algorithm 2 Performance Degradation Control Procedure

1: procedure PDCP(ID)

2: error count = ChEST[ID].error count + 1

3: if (BLU[ID].tag == 0) then

4: error count += BLU[ID].old error threshold

5: end if

6: if (error count > error threshold) then

7: if (BLU.size() == 0.1 * total num CU) then

8: if (error threshold < max error threshold) then

9: for IDs ∈ BLU do

10: if (BLU[ID].tag == 1) then

11: BLU[ID].tag = 0

12: BLU[ID].old error threshold =

error threshold

13: end if

14: end for

15: error threshold += delta threshold

16: else

17: BLU.randomReplaceCU(ID)

18: end if

19: end if

20: BLU[ID].tag = 1

21: ChEST.evict(ID)

22: end if

23: end procedure

UTD looks up the BLU, before assigning a thread block to a CU. The size of the BLU is

fixed at 10% (empirically determined) of the total CU count. If the number of blacklisted

CUs exceeds the BLU size, the BLU is flushed by setting the valid tags of all of the CU

IDs to zero, and the threshold is increased in the comparator. Like the ChEST, the BLU

is also implemented as a CAM.

16

Ultra-Threaded Dispatcher (UTD)

The baseline UTD is modified to work harmoniously with the CMU and the BLU. Al-

gorithm 3 displays the remodeled UTD assignment. First, each thread block is considered

to be composed of SIMD threads of only one type of opcode [30]. Second, before assigning

a thread block to a CU, the UTD looks up the BLU. A CU, listed in the BLU, is discarded

by the UTD. Next, it searches for the CU in the ChEST entries. Upon getting a match,

the CU is considered for the thread block assignment, only if the opcode, corresponding to

the thread block under consideration, is not present in that CU’s tuple in the ChEST. If

this condition is not met, the UTD then randomly chooses one of the remaining CUs in the

pool. When a thread block encounters a timing error in a CU, the UTD reschedules the er-

rant thread block based on Algorithm 3. Rescheduling a thread block, although infrequent,

incurs a performance penalty that is dictated by the number of pipeline stages in the GPU.

The performance and hardware overheads are considered from the components of ACE-

GPU in the evaluations (Section 6).

Algorithm 3 UTD Assignment

1: procedure UTD(BLU, ChEST)

2: ID list = [1,...,128]

3: for ID ∈ ID list do

4: opcode = opcode to be assigned

5: if ID ∈ BLU then

6: next

7: end if

8: if ID ∈ ChEST && opcode ∈ ChEST[ID] then

9: next

10: end if

11: ID.assign(opcode)

12: break

13: end for

14: end procedure

17

CHAPTER 5

METHODOLOGY

In this section, the comprehensive cross-layer methodology used to implement as well as

evaluate the potency of the proposed design, is discussed. Figure 5.1 portrays the proposed

methodology. The details of each layer are elaborated next.

Fig. 5.1: Cross-layer methodology for ACE-GPU.

5.1 Device Layer

The HSPICE models of the basic logic gates (NAND, NOR, Inverter) are simulated

to estimate their delay distributions, in the presence of PV, at different supply voltages.

For these simulations the 16-nm Predictive Technology Models (PTM) is used. To estimate

within-die PV, the VARIUS [28] and VARIUS-NTV [9] models for STC and NTC, respec-

18

tively are considered. Further, the VARIUS-TC model is utilized to incorporate the FinFET

characteristics [?]. Monte Carlo simulations are performed to gauge the propagation delay

variations for 10,000 instances of each logic gate. The delay values are used in the circuit

layer (Section 5.2) to realize choke points in the circuit.

5.2 Circuit Layer

In this layer, two principle tasks are considered. First, an open-source reference GPU

RTL [26] is augmented to implement the components of the proposed ACE-GPU architec-

ture. The reference and augmented GPU RTLs are synthesized by using Synopsys Design

compiler (SDC) [31], to estimate the area and power overheads associated with the proposed

scheme. The VF values considered for synthesis at STC and NTC are (0.85V, 900MHz)

and (0.45V, 400MHz), respectively. Second, the synthesized netlists and the input vectors

(Section 5.3), are fed into an in-house Statistical Timing Analysis (STA) tool. The STA

tool contains a library of the delay distributions for the basic logic gates at different operat-

ing voltages, obtained from HSPICE simulations (described in Section 5.1). The STA tool

performs a timing analysis of the sensitized paths in the circuit netlist, for the given input

vectors. Consequently, a clear idea of the impact of choke points on the path delays of a

fabricated chip at the runtime is obtained. The resultant delay reports are used to evaluate

the efficacy of the comparative schemes. (Section 6.1).

Parameters Configurations

No. of CUs 128

Supply Voltage 0.35 V

CU Frequency 400 MHz

L2 Cache 8×768 KB, latency: 20 ns

Global Memory B/W: 264 GB/s, latency: ∼300 ns

Table 5.1: GPU configurations.

19

5.3 Architecture Layer

An AMD Southern Island GPU is modeled on Multi2Sim architectural simulator [29].

The GPU architectural parameters considered in this work are listed in Table 5.1. The

Multi2Sim codebase are instrumented to automatically extract the cycle-wise instruction

metadata (viz., opcodes and operands) from an execution unit, while running the GPGPU

benchmarks from AMD’s APP SDK suite [32]. These metadata serves as the input vectors

to the STA tool for performing a dynamic path sensitization analysis and evaluating the

impacts of choke points (Section 5.2).

20

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the performance and energy-efficiency benefits of ACE-GPU are com-

pared, with respect to other timing error recovery schemes in GPU. Section 6.1 discusses

the considered comparative schemes, while Section 6.3 and 6.4 present the relative perfor-

mances and energy efficiencies of the schemes, respectively, across 8 GPGPU benchmarks.

Section 6.5 presents the hardware overheads of ACE-GPU.

6.1 Comparative Schemes

• Razor: This is a popular timing speculation technique that sporadically trims the timing

guardband to allow intermittent timing errors in the pipelines [22]. The errors are de-

tected by employing double-sampling latches at the pipeline boundaries. A thread-block

reassignment is triggered to correct the timing errors.

• Dynamic Choke Sensing (DCS): This scheme offers detection, correction, as well as

prediction of choke point induced timing errors [11]. Originally proposed for a scalar

CPU pipeline, DCS is implemented for vector processors like GPUs. DCS employs a

lookup table, in the form of a RAM, to store and lookup recurrent timing errors. A

choke controller is used to manage the error detection, correction and prediction. For

the error avoidance, the choke controller inserts a single stall cycle in the pipeline to

allow the errant opcode to finish its execution without any error. The proposed scheme

(ACE-GPU) is fundamentally different than DCS, because, instead of stalling the CUs

for one complete cycle, ACE-GPU employs an efficient thread block mapping strategy

for an error-free execution.

• Adaptive Choke Error-resilient GPU (ACE): This is the proposed scheme that also

employs double-sampling latches to detect timing errors. ACE is designed to mitigate

21

 0

 0.2

 0.4

 0.6

 0.8

 1

D
w

tH
aa

r1
D

M
at

rix
M

ul
tip

lic
at

io
n

Pre
fix

Sum
R
ad

ix
Sor

t

R
ec

ur
si
ve

G
au

ss
ia

n
R
ed

uc
tio

n

Sca
nL

ar
ge

A
rr
ay

s

Sim
pl

eC
on

vo
lu

tio
n

N
o

rm
al

iz
ed

 E
rr

o
r

C
o

u
n

t

Razor DCS ACE

Fig. 6.1: Error comparison (lower is better).

choke point induced timing errors in NTC-GPUs. The design of ACE is described in

Section 4.1.

6.2 Error Comparison

Figure 6.1 demonstrates the relative number of timing errors that each benchmark

encounters under different comparative schemes. The Y-axis values are normalized with

respect to the number of timing errors with Razor [22]. The efficient error prediction and

thread block assignment policy in ACE, lead to significantly lower number of timing error

events, compared to Razor and DCS, across all the benchmarks. The large difference in

the number of timing errors between DCS and ACE for some benchmarks (e.g., ∼12.6× in

ScanLargeArrays), is due to the more efficient topology of ChEST in ACE, compared to

the LUT in DCS.

22

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

D
w

tH
aa

r1
D

M
at

rix
M

ul
tip

lic
at

io
n

Pre
fix

Sum
R
ad

ix
Sor

t

R
ec

ur
si
ve

G
au

ss
ia

n
R
ed

uc
tio

n

Sca
nL

ar
ge

A
rr
ay

s

Sim
pl

eC
on

vo
lu

tio
n

A
ve

ra
ge

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Razor DCS ACE

Fig. 6.2: Performance comparison (higher is better).

6.3 Performance Comparison

Figure 6.2 illustrates the relative performances of the comparative schemes (Section

6.1). The results are normalized to the performance of Razor [22]. It is noticed that, on an

average, ACE performs 3.18× better than Razor, across all the GPGPU benchmarks. DCS

has a better performance than Razor, as the latter encounters significantly more timing

errors due to a lack of error prediction mechanism, incurring severe penalties. On the

other hand, ACE performs remarkably better (1.81×, on an average) than DCS. This is

because: (a) ACE employs an efficient thread block to CU mapping strategy, obviating

the need for a single stall cycle to avoid timing errors. (b) The BLU in ACE prevents

assigning thread blocks to CUs that are severely impaired by choke points. For example,

in MatrixMultiplication, many CUs are highly affected by choke points and hence, get

listed in the BLU. As UTD avoids those CUs, listed in the BLU, for immediate thread

block assignments, ACE saves an appreciable performance loss. However, DCS, lacking a

23

 0

 0.2

 0.4

 0.6

 0.8

 1

D
w

tH
aa

r1
D

M
at

rix
M

ul
tip

lic
at

io
n

Pre
fix

Sum
R
ad

ix
Sor

t

R
ec

ur
si
ve

G
au

ss
ia

n
R
ed

uc
tio

n

Sca
nL

ar
ge

A
rr
ay

s

Sim
pl

eC
on

vo
lu

tio
n

G
eo

m
ea

n

N
o

rm
al

iz
ed

 E
D

P

Razor DCS ACE

Fig. 6.3: EDP comparison (lower is better).

tailored hardware unit like the BLU, is more susceptible to choke point induced performance

penalties. (c) Unlike a RAM-based lookup table in DCS, ACE uses a CAM-based one

(ChEST) to record the history of recent timing errors, thus resulting in a much faster

lookup.

6.4 Energy-Efficiency Comparison

The energy-efficiencies of the schemes are measured by using the energy delay product

(EDP) metric. Figure 6.3 shows the EDPs of the schemes are normalized to the EDP of

the Razor. The proposed scheme ACE is the most energy-efficient, offering an average of

∼88.5% improvement in EDP over Razor. It is imperative to note that the relative power

footprint of the hardware for ACE, is one order of magnitude more than those of the DCS

and Razor. However, this high power footprint is amortized by an appreciable performance

gain in ACE. Moreover, at NTC, a significant fraction of the total energy is contributed by

24

the leakage energy, which is proportional to the application execution time. As the choke

point induced timing penalties is the least in ACE (Section 6.3), it dramatically improves the

leakage energy consumption of the NTC-GPU, for all the benchmarks. These performance

and energy benefits aid the improvement in EDP, making ACE a very energy-efficient GPU

design paradigm at NTC.

6.5 Hardware Overheads

The area and power overheads of ACE-GPU, obtained from synthesis at the NTC

operating conditions (Table 5.1), are 1.42% and 6.17%, respectively. The overheads are cal-

culated compared to the respective values of a baseline CU, with no timing error mitigation

scheme. The power overheads are considered in the evaluation of EDP.

25

CHAPTER 7

CONCLUSION

Choke points pose a tremendous threat to meeting timing constraints in NTC circuits.

Hence, tackling choke point induced timing errors in an NTC-GPU is crucial in order

to sustain a reliable and energy-efficient operation. In this work, the significant delay

variabilities of different pipelines of an NTC-GPU have been demonstrated, as well as,

severe performance loss, engendered by the formation of choke points. By uncovering the

limitations of existing timing speculation and error recovery techniques, ACE-GPU—a novel

NTC-GPU design paradigm is proposed which combats choke point induced performance

bottlenecks. Using a cross-layer methodology, it is shows that ACE-GPU offers 3.18× and

88.5% improvements in performance and EDP respectively, over a Razor-based timing error

detection and correction scheme, across 8 GPGPU benchmarks, while incurring minimal

hardware overheads.

26

REFERENCES

[1] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter, “Exploring hybrid
memory for gpu energy efficiency through software-hardware co-design,” 2013, pp. 93–
102.

[2] P. Aguilera, K. Morrow, and N. S. Kim, “Qos-aware dynamic resource allocation for
spatial-multitasking gpus,” 2014, pp. 726–731.

[3] P. Aguilera, J. Lee, A. F. Farahani, K. Morrow, M. J. Schulte, and N. S. Kim,
“Process variation-aware workload partitioning algorithms for gpus supporting spatial-
multitasking,” 2014, pp. 1–6.

[4] S. Saha, P. Basu, C. Rajamanikkam, A. Bal, K. Chakraborty, and S. Roy, “SSAGA:
sms synthesized for asymmetric GPGPU applications,” ACM Trans. Design Autom.
Electr. Syst., vol. 22, no. 3, pp. 49:1–49:20, 2017.

[5] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a single chip
causes massive power bills gpusimpow: A gpgpu power simulator,” April 2013.

[6] P. Basu, H. Chen, S. Saha, K. Chakraborty, and S. Roy, “Swiftgpu: Fostering energy
efficiency in a near-threshold gpu through tactical performance boost,” 2016.

[7] A. Pal, A. Bal, K. Chakraborty, and S. Roy, “Split latency allocator: Process variation-
aware register access latency boost in a near-threshold graphics processing unit,” J.
Low Power Electronics, vol. 13, no. 3, pp. 419–427, 2017.

[8] S. Seo, R. G. Dreslinski, M. Woh, Y. Park, C. Chakrabarti, S. A. Mahlke, D. Blaauw,
and T. N. Mudge, “Process variation in near-threshold wide simd architectures,” 2012,
pp. 980–987.

[9] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “Varius-ntv: A microarchi-
tectural model to capture the increased sensitivity of manycores to process variations
at near-threshold voltages,” 2012, pp. 1–11.

[10] V. De, “Fine-grain power management in manycore processor and system-on-chip (soc)
designs,” 2015, pp. 159–164.

[11] A. Bal, S. Saha, S. Roy, and K. Chakraborty, “Revamping timing error resilience to
tackle choke points at ntc systems,” 2017, pp. 1020–1025.

[12] N. R. Pinckney, K. Sewell, R. G. Dreslinski, D. Fick, T. N. Mudge, D. Sylvester, and
D. Blaauw, “Assessing the performance limits of parallelized near-threshold comput-
ing,” in DAC, 2012, pp. 1147–1152.

[13] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. N. Mudge, “Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated cir-
cuits,” Proc. of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.

27

[14] X. Zhang, T. Tong, S. Kanev, S. K. Lee, G. Wei, and D. M. Brooks, “Characterizing
and evaluating voltage noise in multi-core near-threshold processors,” 2013, pp. 82–87.

[15] T. Gemmeke, M. M. Sabry, J. Stuijt, P. Raghavan, F. Catthoor, and D. Atienza,
“Resolving the memory bottleneck for single supply near-threshold computing,” 2014,
pp. 1–6.

[16] U. R. Karpuzcu, N. S. Kim, and J. Torrellas, “Coping with parametric variation at
near-threshold voltages,” vol. 33, no. 4, pp. 6–14, 2013.

[17] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu, “Booster: Re-
active core acceleration for mitigating the effects of process variation and application
imbalance in low-voltage chips,” in HPCA, 2012, pp. 1–12.

[18] U. R. Karpuzcu, A. A. Sinkar, N. S. Kim, and J. Torrellas, “Energysmart: Toward
energy-efficient manycores for near-threshold computing,” 2013, pp. 542–553.

[19] S. Maiti, N. Kapadia, and S. Pasricha, “Process variation aware dynamic power man-
agement in multicore systems with extended range voltage/frequency scaling,” in 2015
IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS),
2015, pp. 1–4.

[20] S. Roy and K. Chakraborty, “Predicting timing violations through instruction level
path sensitization analysis,” 2012, pp. 1074–1081.

[21] A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically focused guardbanding: an
adaptive approach to mitigate PVT variations and aging,” 2013, pp. 1695–1700.

[22] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler, D. Blaauw,
T. M. Austin, K. Flautner, and T. N. Mudge, “Razor: A low-power pipeline based on
circuit-level timing speculation,” 2003, pp. 7–18.

[23] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing speculation,” 2011,
pp. 442–447.

[24] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H.
Dennard, and W. Haensch, “Practical strategies for power-efficient computing tech-
nologies,” vol. 98, no. 2, pp. 215–236, 2010.

[25] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improving the timing-error
resiliency of wide-simd architectures,” 2012, pp. 237–248.

[26] MIAOW GPU - An open source RTL implementation of a GPGPU, 2015. [Online].
Available: http://miaowgpu.org.

[27] NanGate, http://www.nangate.com/?page id=2328.

[28] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Var-
ius:a model of process variation and resulting timing errors for microarchitects,” vol. 21,
pp. 3 –13, 2008.

http://miaowgpu.org
http://www.nangate.com/?page_id=2328

28

[29] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A Simulation
Framework for CPU-GPU Computing ,” Sep. 2012.

[30] S. Lee and C. Wu, “Caws: criticality-aware warp scheduling for gpgpu workloads,”
2014, pp. 175–186.

[31] D. Compiler, R. User, and M. Guide, “Synopsys,” Inc., see http://www. synopsys. com,
2001.

[32] “ AMD Accelerated Parallel Processing (APP) Software Development Kit ,” 2016.
[Online]. Available: http://developer.amd.com/sdks/amdappsdk/

http://developer.amd.com/sdks/amdappsdk/

29

CURRICULUM VITAE

Tahmoures Shabanian

Published Conference Papers

• ACE-GPU: Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold

Computing GPU, Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty,

Sanghamitra Roy, in ACM/IEEE International Symposium on Low Power Electronics

and Design (ISLPED), 2018.

	Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold GPGPU
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	RELATED WORK
	MOTIVATION
	Background
	Can Existing Timing Error Mitigation Techniques Tackle Choke Points in GPUs?
	Methodology
	Results
	Significance

	DESIGN PARADIGM
	Adaptive Choke Error-resilient GPU (ACE-GPU)
	Design Overview
	ACE-GPU Components

	METHODOLOGY
	Device Layer
	Circuit Layer
	Architecture Layer

	EXPERIMENTAL RESULTS
	Comparative Schemes
	Error Comparison
	Performance Comparison
	Energy-Efficiency Comparison
	Hardware Overheads

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

