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ABSTRACT 

Advancing methods to quantify actual evapotranspiration in  

stony soil ecosystems  

by 

Kshitij Parajuli, Doctor of Philosophy 

Utah State University, 2018 

 

Major Professors: David G. Tarboton, Scott B. Jones 
Department: Civil and Environmental Engineering  
 
 

Quantification of evapotranspiration (ET) is crucial for understanding water 

balance and efficient water resource planning. However, there is limited understanding and 

scarce quantification of actual ET (ETA) in natural ecosystems as compared to agricultural 

settings. The major focus of this study was to improve ETA estimation in montane (e.g., 

stony soil) ecosystems, where heterogeneity can be substantial due to diverse vegetation 

and non-uniform, often stony soils. Three major research objectives were addressed in 

Chapters 2 through 4 with each objective presented in a separate paper format. Chapter 1 

provides an introduction to the topics with Chapter 5 providing a summary, conclusions 

and recommendations. The influence of stone content on bulk soil hydraulic properties was 

examined in chapter 2 by determining the water retention curve (WRC) of soil, stone and 

stone-soil mixtures with varied volumetric stone content. An averaging scheme to describe 

the WRC of stony soil was proposed based on the individual WRC of the background soil 

and stone inclusions, showing good agreement with experimental data.  
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Chapter 3 evaluates ETA estimation from stony soils in montane ecosystems by 

accounting for the water retention properties of stones in the soil using our algorithm 

developed in chapter 2 within a numerical model (HYDRUS-1D). Model results suggested 

significant overestimation of simulated ETA when effects of stone content were neglected 

in comparison to ETA measured by eddy covariance. The ETA was simulated for stony soils 

assuming highly and negligibly porous stones which lead to reductions in simulated ETA 

of up to 10% and 30%, respectively, when compared with the ‘no stones’ condition. These 

results revealed the important role played by soil stones in modulating the water balance 

by affecting ETA in montane ecosystems. 

In chapter 4, performance of the Noah-Multiphysics (Noah-MP) land surface model 

in simulating soil moisture and evapotranspiration under various soil parameterizations 

was investigated. Noah-MP results were compared with simulations from the HYDRUS-

1D numerical model, which provides more detailed representation of soil hydraulics. The 

Noah-MP model with parameterization including stone content and detailed soil properties 

was able to provide the best Noah-MP prediction of evapotranspiration. We conclude that 

improvement in representation of soil properties including stone content information, can 

substantially advance the ability of numerical and land surface models to more accurately 

simulate soil water flow and boundary fluxes.  

(154 pages)
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PUBLIC ABSTRACT 

 

Advancing methods to quantify actual evapotranspiration in  

stony soil ecosystems 

Kshitij Parajuli 

 

Water is undeniably among the most important natural resources and the most 

critical in semi-arid regions like the Intermountain West of the United States. Such regions 

are characterized by low precipitation, the majority of which is transferred to the 

atmosphere from the soil and vegetation as evapotranspiration (ET). Quantification of ET 

is thus crucial for understanding the balance of water within the region, which is important 

for efficiently planning the available water resources. This study was motivated towards 

advancing the estimation of actual ET (ETA) in mountain ecosystems, where the variation 

in different types of vegetation and non-uniformity of soil including considerable stone 

content creates challenges for estimating water use as ET. With the aim of addressing the 

effect of stone content in controlling soil moisture and ET, this study examined the 

influence of stone content on bulk soil hydraulic properties. An averaging model referred 

to as a binary mixing model was used to describe the way in which water is held and 

released in stony soil. This approach was based on the individual hydraulic behavior of the 

background soil and of the stones within the soil. The effect of soil stone content on ETA 

was evaluated by accounting for the water retention properties of stones in the soil using a 

numerical simulation model (HYDRUS-1D). The results revealed overestimation of 

simulated ETA when effects of stone content were not accounted for in comparison to ETA 
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measured by the state-of-the-art “eddy covariance” measurement method for ETA. An even 

larger-scale model was evaluated, named the Noah-Multiphysics (Noah-MP) land surface 

model. The land surface model was run using different arrangements of complexity to 

determine the importance of stone content information on simulation results. The version 

of the model with information about stone content along with detailed soil properties was 

able to provide the best Noah-MP prediction of ET. The study suggests that improvement 

in representation of soil properties including stone content information, can substantially 

advance the ability of numerical and land surface models to more accurately simulate soil 

water flow and ETA.  
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CHAPTER 1 

INTRODUCTION 

Water is undeniably among the most important natural resources and the most 

critical in semi-arid regions like the Intermountain West of the United States. Rapid 

population growth and urbanization has increased water demands leading to water 

shortages and drought conditions are on the rise. Moreover, effects of land use and climate 

change are expected to aggravate the situation by direct impact on water balance 

components leading to spatiotemporal variations in water availability (Bernstein et al., 

2007; Parajuli et al., 2014; Shrestha et al., 2014; Wang and Gillies, 2012). Predicting the 

effects of land use and climate change on water resources necessitates a detailed 

understanding of the interactions between soil, vegetation, and the atmosphere (Gayler et 

al., 2014; Mu et al., 2007). Large volumes of water are transferred to the atmosphere from 

the soil and vegetation as evapotranspiration (ET). A major unknown variable associated 

with eco-hydrological systems, ET may constitute up to 95% of the water balance in arid 

regions, thus accurate quantification of ET is critical to land surface modelling, ecosystem 

and environmental assessment and water resources management (Kool et al., 2014; Wilcox 

et al., 2003; Wang et al., 2015). Broad application of eddy covariance method as a standard 

technique for measuring actual ET (ETA) has been tested in various spatial scales at 

different land surface conditions (Liu et al., 2013; Nagler et al., 2005; Williams et al., 2004; 

Wilson et al., 2001). In order to measure the exchanges of carbon dioxide, water vapor, 

and energy between the land surface and the atmosphere, a number of eddy covariance 

towers are installed around the world in efforts such as FLUXNET (a global network of 
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micrometeorological towers). However, several complications exist with application of 

eddy covariance associated with its expensive installation, computationally challenging 

high frequency data and requirement of sophisticated micrometeorology expertise. Very 

few of those eddy covariance towers are installed in high elevation montane ecosystems, 

limiting the understanding of ETA in these settings.  

Efforts to monitor ET in natural settings are associated with challenges of spatial 

heterogeneity in soil, and variably distributed vegetation in addition to several other 

biophysical processes. Various hydrological and land surface models are routinely applied 

to estimate ET in natural landscapes, however the capability of those models in simulating 

the spatial soil moisture dynamics which is a governing factor for ETA is limited due to 

inadequate soil information and lack of robust methods to account for complicating factors 

such as stone content in stone-dominant soils. This study focuses on application of 

numerical models and land surface models to quantify ETA with potential improvements 

by accounting for heterogeneity in soil due to stone content in montane ecosystems. 

1.1. Research objectives 

The goal of this research was to quantify and account for the effect of stone content 

in montane soil ecosystems and evaluate its influence in estimation of ETA using one-

dimensional numerical- and land surface-models. 

The specific objectives were to:    

i. Examine the impact of stone content on soil hydraulic properties and explore ways 

to incorporate stone content into the soil water retention curve and applied models.  
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ii. Evaluate the influence of stone content on soil water properties and actual 

evapotranspiration using numerical model HYDRUS-1D 

iii. Assess potential improvements in actual evapotranspiration simulated by a land 

surface model (i.e., Noah-MP) when incorporating detailed subsurface properties 

including the influence of soil-stone content. 

1.2. Background 

1.2.1. Effects of stone content on soil water retention 

Soil evaporation is driven by the atmospheric demand during initial stages of 

drying, but as drying continues, ETA becomes more restricted by available soil moisture. 

Soil moisture dynamics are a function of the soil hydraulic properties, which are governed 

by the soil particle size distribution and constituent composition (Jones and Or, 1998; 

Sakaki and Smits, 2015). Stone fragments embedded in soil alter the bulk hydraulic 

properties as a result of their particle-size and distribution. Non-arable soils in natural 

settings commonly have significant stone content as a result of their formation process and 

shallow depth to bedrock (Novak and Surda, 2010; Poesen and Lavee, 1994). Soils 

containing over 35% stone fragments (i.e., particles larger than 2 mm) by volume are 

referred to as stony-soils (Jahn et al., 2006; Tetegan et al., 2011; Hlavacikova et al., 2016).  

The porosity and the density of different rock/stone types vary widely and typically 

have lower water retention capacity and hydraulic conductivity, depending on their parent 

rock properties (Flint and Childs, 1984; Ma and Shao, 2008; Ma et al., 2010). Rocks such 

as, fine sandstone, dolomite and granite may exhibit porosities as low as 3%, which can 

significantly decrease the stony-soil water storage (Manger, 1963; Parajuli et al., 2017). In 
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this situation, the soil water reservoir is altered reducing the water available for plant root 

extraction and thus diminishing the rate of ETA (Cousin et al., 2003; Tetegan et al. 2011). 

On the other hand, some stones are capable of holding substantial amount of water and 

contributing to root water uptake depending upon their water retention function (Coile, 

1953; Flint and Childs, 1984; Ugolini et al., 1998). For example, there are rocks such as 

pumice and coarse sandstones which exhibit porosities nearly 80% and 35% respectively, 

that may considerably increase the water holding capacity of the soil (Blonquist et al., 

2006) and may augment the water flow through the soil (Coile, 1953; Cousin et al., 2003; 

Ma et al., 2010).  Such stones were shown to contribute an average of 15% to the total 

available water for plants over the range of 1.6% to 52.1% as presented in Flint and Childs 

(1984).  

Two different approaches are common while dealing with stony soils. One 

approach assumes the stones as non-porous system, in which, stones were assumed to be 

non-porous inclusions hence any amount of water held by the stones were not accounted 

for, leading to reduced water estimation per unit volume as pointed out by Cousin et al. 

(2003) and Ugolini et al. (1998). Plant available water in the soil in such case may be 

underestimated by up to 34% as presented in Cousin et al. (2003). By contrast, when the 

stones were neglected and essentially considered similar to the fine soil matrix that has a 

higher water holding capacity than stones, plant available water was overestimated by 39%.  

1.2.2. Estimating evapotranspiration from stony soil 

Several analytical models have been developed to estimate ET where there are no 

direct measurements. The most widely used model is a modification of the Penman-
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Monteith (PM) equation to estimate a reference ET (ETo), value based on observed 

meteorological parameters such as net radiation, wind speed, humidity as well as 

temperature. This ETo value represents the rate of ET of a mythical short green crop (grass) 

of uniform height with unlimited water availability that fully covers the ground and has 

very low and uniform stomatal resistance (Allen et al., 1998). The ETo is therefore 

governed by meteorological parameters, and does not depend on soil water availability and 

vegetation characteristics, the actual ET (ETA) is different from ETo and is usually less, 

due to limited soil moisture and actual foliage conditions. Reference ET is often used along 

with empirical crop coefficients to approximate actual ET from irrigated crops. However, 

it is difficult to apply such coefficients in natural settings with wide assortment of 

vegetation where the ET demand is restricted by soil moisture availability (Spano et al., 

2009). 

Soil moisture dynamics play a role in many ecological and environmental processes 

including ET (Koster et al., 2004; Miyazawa et al., 2013; Wilson et al., 2001). Numerical 

models, often referred as Soil-Plant-Atmosphere Continuum (SPAC) models, are able to 

simulate plant root water uptake and surface evaporation precisely estimating ETa based 

on soil moisture dynamics. The HYDRUS-1D numerical model has been widely used for 

simulating ETA (Hilten et al., 2008; Hlaváčiková and Novák 2013; Ries et al 2015; Solyu 

et al., 2011; Sutanto et al., 2012). The HYDRUS-1D software couples a root water uptake 

model with reference ET equations such as FAO Penman-Monteith and Hargreaves to 

provide a sink term and soil surface boundary conditions for inversely solving the Richards 

equation (Feddes et al., 2001; Simunek et al., 2008). The model is able to simulate water 

flow in and out of the soil when sufficient soil and vegetation parameters are provided. 
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Moreover, the model can inversely fit the soil hydraulic parameters when temporally-

measured soil properties such as water content or matric potential are input (Simunek et 

al., 2013).  

However, obtaining detailed information on soil and vegetation, including stone 

content, root growth and distribution requires time- and labor-intensive sampling and 

analysis. Soil stone content distribution is often heterogeneous and affects hydraulic 

properties, requiring consideration for accurate simulation of root water uptake. Higher 

stone content is expected to lower the hydraulic conductivity as well as the soil water 

content of stony soil in comparison to the soil matrix (i.e., composed of particles below 2 

mm in diameter; Novak and Knava, 2011; Hlaváčiková et al. 2016). Generally, stone 

content reduces water available for root uptake and hence may limit the rate and duration 

of ETA (Novak and Knava, 2012; Parajuli et al., 2017; Tetegan et al. 2011). This research 

is aimed at better understanding the impact of stone fragments on estimation of ETA in 

montane ecosystems using numerical modeling tools. This method also provides an 

opening to have improved ETA information at regional scales using numerical modeling 

based on meteorological and soil moisture data available from hundreds of Soil Climate 

Analysis Network (SCAN) and SNOwpack TELemetry (SNOTEL) sites. The SCAN and 

SNOTEL sites in the state of Utah are shown in Fig. 1.1.  

1.2.3. Soil parameterization of land surface models 

Land surface models (LSMs) have gradually evolved since the early eighties. They 

have improved significantly over the past few decades with development in high-

performance computing capabilities and taking advantage of increasingly finer temporal 
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and spatial resolution supported by ground-based measurements and remote sensing (Chen 

and Dudhia, 2001; Ek et al., 2003; Kumar et al., 2006; Mahrt and Ek 1984; Mahrt and Pan 

1984; Niu et al., 2011; Yang et al., 2011). A number of studies have applied LSMs to 

simulate surface energy and water fluxes using near-surface atmospheric boundary forcing 

(Ek et al., 2003; Cai et al., 2014a; 2014b; Chen et al., 1996; Long et al., 2014; Gayler et 

al., 2013,2014). Several studies have applied LSMs to characterize ET, which simulates 

soil moisture impact on surface evaporation and plant uptake within the soil profile as 

transpiration (Cai et al., 2014; 2014a; Chen et al., 1996; Long et al., 2014). With the 

advancement of knowledge in the fields of hydrology, meteorology, bio- and soil-physics, 

LSMs have become more physically-based (Ek et al., 2003; Mahrt and Ek, 1984; Niu et 

al., 2011; Yang et al., 2011). Soil hydrology is still poorly represented in LSMs because 

soil property spatial variability is poorly represented using simplified concepts. The 

complexities of soil moisture and water flux exchange processes between the land surface 

and atmosphere are in need of improved representation in LSMs (Koster and Suarez, 1992; 

Li et al., 2013; Ke et al., 2013).   

Noah-Multiparameterization (Noah-MP) LSM is one of the most commonly used 

LSMs and has incorporated schemes for runoff, leaf dynamics, stomatal resistance, and a 

soil moisture factor (Niu et al., 2011; Yang et al., 2011; Gayler et al., 2014). Noah-MP is 

available with multiple options for major land-atmosphere interaction processes, however 

the model assumes a vertically homogenous soil within its default setting (Cai et al 2014a; 

Niu et al., 2011; Yang et al., 2011; Barlage et al., 2015). The hydraulic properties are poorly 

characterized by the soil parameter values which are limited to a number of soil types based 

on textural class in a soil parameter table. The poorly defined soil texture creates further 
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limitations for LSMs to accurately simulate soil moisture and water fluxes, as identified in 

previous studies (Gayler et al., 2013; 2014; Koster et al., 2006; Niu et al., 2011). It is 

essential for LSMs to account for detailed sub-surface properties in order to advance their 

capability in simulating fluxes.  

1.3. Outline  

This dissertation uses a multiple-paper format. Chapters 2-4 are each written as 

independent paper. Chapter 2 presents a binary mixing model for stony-soil that accounts 

for the stone water retention. It introduces an averaging scheme based on individual water 

retention properties of stone and soil, which was tested with laboratory measurements using 

three distinct stone types embedded in soil at various volumetric stone contents.  Chapter 

3 presents the numerical simulation of the ET using soil moisture dynamics from various 

climate stations in northern Utah and southern Idaho characterized by stony soils. The stone 

fragments were found to be vital in modulating the actual ET in stony soil ecosystems, thus 

chapter 3 highlights the importance of incorporating information regarding hydraulic 

properties of stones to estimate the ET using soil moisture dynamics in stony soil.  Chapter 

4 evaluates the potential for improvement in land surface models towards better estimate 

of evapotranspiration by refining the soil parameterization. Inserting more detailed soil 

information into the land surface model resulted to a better simulation of soil moisture as 

well as evapotranspiration. Adding verification to the results in chapter 3, the Noah-MP 

land surface model with information on stone content resulted in best estimation of ET. 

Finally, chapter 5 provides overall conclusion for the studies presented in three substantive 
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chapters. It also reveals the connection between three chapters and their contribution 

towards advancing ET estimates in montane ecosystems.  
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24. Parajuli. K., Jones S. B. (2015). Spatial Analysis of Actual Evapotranspiration 

Estimates from the iUTAH Climate Station Network, Student Research Symposium, 

Research Week 2015, Utah State University, Logan, Utah, USA, 6 – 10 April 2015. 

25. Khatiwada M., Shrestha S., Babel M. S., Parajuli K. (2014). Impact of climate change 

on hydropower production potential in Kulekhani Hydropower, Nepal. Expert 
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workshop on Managing Water Resources under Climate Uncertainty: Opportunities 

and Challenges, Bangkok, Thailand, 17-18 October 2013. 

26. Parajuli. K. (2013). Water Issues in Megacities: Challenges and Solutions, “EXCEED, 

Expert Seminar on Water Issues in Megacities” Ho Chi Minh City, Vietnam, 3-10 

March 2013.  

27. Parajuli. K. (2013). Water Supply and sanitation issues in Nepal, Knowledge sharing 

workshop on Integrated River Basin Management at Asian Monsoon Region, Asian 

Institute of Technology, Thailand, 5-6 January 2013.  

28. Parajuli. K., Kang. K., Shrestha. S. (2012). Downscaling of GCM and Development 

of Climate Map for Future Prediction of Climatic variables in Mekong Region, Young 

Scientist Support program, APEC Climate Center, Busan, S. Korea; 26 December 

2012. 

29. Parajuli. K. (2012). Statistical downscaling of GCMs using SDSM, Guest lecture 

presented to APCC researchers, APEC Climate Center, Busan, S. Korea; November, 

2012.  

PROFESSIONAL TRAININGS  

1. Short Course on Thermo-TDR Sensors, North Carolina State University, Raleigh, 

NC, 7-8 June 2018.  

2. Graduate Student Leadership Conference, Soil Science Society of America, Phoenix, 

AZ, 5-6 November, 2016. 

3. Science communications workshop, Alan Alda Center, Logan, UT. 3 - 4 October, 

2016. 

4. Radiation Safety Training, Utah State University, Logan, UT. 25 May – 1 June, 2016. 

5. NCL workshop, National Center for Atmospheric Research (NCAR), Boulder, CO, 9-

12 June, 2015. 

6. Proposal Writing Training, Utah State University, Logan, UT. 3 February, 2015. 

7. ASEAN-EU Science, Technology and Innovation Days, SEA-EU-NET II, Thailand, 

21 – 23 January, 2014. 

8. CLIM-RUN School, Building two-way communication: A week of Climate Services, 

International Centre for Theoretical Physics, Trieste, Italy, 2-6 December, 2013. 
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9. Summer School on Coastal Hazards, “The Future Ocean”, University of Kiel, 

Germany 16-20 September, 2013. 

10. Induction Training for newly recruited Permanent Engineers, Nepal Electricity 

Authority, Kharipati, Bhaktapur, 17-18 July, 2011. 

11. A Training on Roadside Bio Engineering for Engineers and Environmentalists, Geo-

environment and Social Unit (GESU) and Department of Road, Kathmandu, Nepal, 

20 - 26 May, 2011. 

12. AutoCAD training, ARENA Multimedia, Nepal, 1-31 January, 2009. 

SKILLS 

Modeling tools  Hydrus-1D/2D/3D, HEC-HMS, HEC-RESSIM, SDSM, CROPWAT, 

Qual2K, MODFLOW, Noah-MP 

Software  AutoCAD, ArcGIS, ERDAS 

Programming MATLAB, Python, GrADS, NCL, R 

Field and Lab Experienced in working in laboratory and remote field locations, 

conducting instrumentation and measurement.  

PROFESSIONAL AFFILIATION & MEMBERSHIP 

1. Nepal Engineering Council, Class A., Civil Engineer (2009)  

2. Soil Science Society of America (SSSA), Member since 2015 

3. American Society of Civil Engineers (ASCE), Member since 2015 

4. American Geophysical Union (AGU), Member since 2015 

PROFESSIONAL ACTIVITIES 

Manuscript Review 

i. Journal of Cleaner Production 

Session Chair 

i. Water Resources Planning and Management, iUTAH all hands meeting, Utah State 

University, Logan, UT. 14 July 2017. 
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Poster Review Panel 

ii. iUTAH all hands meeting, Utah State University, Logan UT, 14 July 2017 

iii. iFellow Symposium, University of Utah, Salt Lake City, UT, 15 July 2016. 

iv. iUTAH Summer Symposium and All-Hands Meeting. Midway, UT, 17 July 2015. 

 

SOCIAL ACTIVITY AND PART TIME INVOLVEMENT 

1. Treasurer: Executive committee of Utah State University – Nepali Student 

Association (USUNSA), (March 2015 – August 2016) 

2. Webmaster : USUNSA Website (www.usunsa.org), (March 2015 – August 2016) 

3. President: Asian Institute of Technology- Nepalese Society (AIT-NS), (April – 

September 2012) 

4. Member of Executive Committee: Nepal Engineers Association- Bangkok Centre 

(NEA-BC), (March 2012 – February 2013) 

5. Volunteer: CWIN- Nepal, a leading child right organization. Involved in creating the 

case studies of risk background children and teaching (April- June 2002)   
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