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ABSTRACT 

Advancing Streamflow Forecasts through the Application of a  

Physically based Energy Balance Snowmelt Model with Data  

Assimilation and Cyberinfrastructure Resources 

by 

Tseganeh Z Gichamo, Doctor of Philosophy  

Utah State University, 2019 

 

Major Professor: Dr. David G. Tarboton  

Department: Civil and Environmental Engineering 

 

In many parts of the world, snow is a significant component of water resources. 

Currently many operational streamflow forecasting systems use temperature index 

snowmelt models that may have limited predictive capability for weather and land cover 

conditions different from the ones for which the models were calibrated. This study 

advances streamflow forecasting through the use of physically based models, assimilation 

of observed data, data services Cyberinfrastructure, and High Performance Computing 

(HPC). First, the Utah Energy Balance (UEB) snowmelt model was integrated into the 

Research Distributed Hydrologic Model (RDHM) framework. In this framework, 

approaches for assimilation of observed snow water equivalent (SWE) data into the UEB 

model and streamflow observations to update the soil moisture and stream channel states 

in RDHM were developed. The integrated UEB+RDHM models with the data 

assimilation were then evaluated for ensemble streamflow forecasting. In addition, a set 
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of web-based, hydrological data services called HydroDS was developed that provides 

access to hydrologic data and server side data processing tools. Finally, to enhance the 

ability of the models to be executed in HPC systems, two parallel versions of the UEB 

model were implemented using the Message Passing Interface (MPI) and the Compute 

Unified Device Architecture (CUDA) code on Graphics Processing Units (GPUs). 

Results showed that the spatially distributed snow data assimilation approach 

improves the modeled SWE over the watershed grids, especially during snow 

accumulation period. The ensemble streamflow forecasts were also improved through the 

snow data assimilation, while the assimilation of streamflow observations did not add any 

improvement over that achieved by the SWE assimilation. Evaluation of HydroDS 

demonstrated the ability of the data services to reduce the time and effort spent by 

hydrologic modelers accessing and processing model inputs. Data processing workflows 

using HydroDS also enhance reproducibility and preserve provenance.  Evaluation of the 

parallel UEB model with MPI implementation showed that although the computation 

kernel scales well with increased parallelization, the efficiency of the parallel code as a 

whole degrades due to poor scalability of input/output operations. Results from the 

CUDA GPU implementation demonstrated that obtaining performance comparable to 

that of other parallel processing methods with CUDA GPUs does not necessarily require 

major re-work of the existing UEB MPI code.   

(169 pages) 
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PUBLIC ABSTRACT 

Advancing Streamflow Forecasts through the Application of a  

Physically based Energy Balance Snowmelt Model with Data  

Assimilation and Cyberinfrastructure Resources  

Tseganeh Z Gichamo 

The Colorado Basin River Forecast Center (CBRFC) provides forecasts of 

streamflow for purposes such as flood warning and water supply. Much of the water in 

these basins comes from spring snowmelt, and the forecasters at CBRFC currently 

employ a suite of models that include a temperature-index snowmelt model. While the 

temperature-index snowmelt model works well for weather and land cover conditions 

that do not deviate from those historically observed, the changing climate and alterations 

in land use necessitate the use of models that do not depend on calibrations based on past 

data. This dissertation reports work done to overcome these limitations through using a 

snowmelt model based on physically invariant principles that depends less on calibration 

and can directly accommodate weather and land use changes. The first part of the work 

developed an ability to update the conditions represented in the model based on 

observations, a process referred to as data assimilation, and evaluated resulting 

improvements to the snowmelt driven streamflow forecasts. The second part of the 

research was the development of web services that enable automated and efficient access 

to and processing of input data to the hydrological models as well as parallel processing 

methods that speed up model executions. These tasks enable the more detailed models 

and data assimilation methods to be more efficiently used for streamflow forecasts.   
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INTRODUCTION 

1.1 Background  

Accumulated snow and glaciers form about 69% of the global fresh water storage 

(USGS, 2015). Hence, for many river systems, it is important to adequately model snow 

accumulation and melt in order to be able to forecast river flow quantity and timing for 

purposes of water supply, irrigation, energy production, flood control, maintenance of 

ecosystems, etc. The complexity of snow models, at least in a research context, vary from 

temperature index models to physically based, multi-dimensional models solving the 

energy and mass balance equations of the snowpack as well as simulating snow transport 

mechanisms causing spatial distribution of snow. Examples include wind driven drift and 

blowing of snow (Déry and Yau, 2002; Pomeroy and Essery, 1999) and effect of forest 

canopy on spatial pattern of snow accumulation and ablation (Mahat and Tarboton, 2014; 

Mahat et al., 2013). The effect of topography on wind and temperature results in 

heterogeneous snow distribution (Geddes et al., 2005; Mott et al., 2010). Other processes 

include rain and melt infiltration into the snowpack and refreezing as it advances into the 

snowpack (You et al., 2014); drainage of excess water through snowpack layer (Wever et 

al., 2014); and snow metamorphism that involves grain size change and accompanied 

changes in density, heat conductivity, and hydraulic conductivity (Lehning et al., 2002). 

Currently, the National Weather Service (NWS) in the U.S. uses the SNOW-17 

model (Anderson, 2006) as part of its hydrologic modeling suite for issuing operational 

streamflow forecasts such as river flood warnings or seasonal forecasts of inflow to 
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reservoirs from spring and summer snowmelt. SNOW-17 uses air temperature as an 

index for energy exchanges at the snow surface. It only requires two inputs: precipitation 

and temperature. The application of SNOW-17 to streamflow forecasting depends on the 

assumption that the calibrated relationship between temperature and snowmelt or freezing 

holds over the domain for which the model was calibrated. In addition, it relies on the 

fact that temperature is easy to measure and reliably forecast into a few days in the future 

in operational settings.  

While temperature-index snowmelt models work quite well if they are adequately 

calibrated, they prove insufficient when the weather conditions significantly deviate from 

those for which the models were calibrated (Anderson, 2006). In addition, climate change 

is threatening to alter the hydrological dynamics in snow-dominated watersheds, as the 

proportion of precipitation falling as snow is expected to decrease and warming are 

temperatures cause early onset of spring snowmelt, resulting in reduced natural storage of 

water in the form of snow. These, in combination with other factors such as altered 

evapotranspiration and dry soil moisture conditions, will affect the availability and 

quantity of summer and fall streamflow (Barnett et al., 2005; Barnett et al., 2008; Dozier, 

2011). Early melt combined with rain-on-snow events can also exacerbate the risk of 

flooding. In addition, these changes may be spatially variable, e.g., a decrease in 

accumulated snow depth in one part of the basin may be accompanied by an increase in 

snow depth in another (Miller et al., 2011). Such changes in the hydrological dynamics of 

a watershed necessitate re-calibration of conceptual models, while weakening the 

statistical basis for using historical data for model calibration, and accentuate the need for 

using distributed models instead of lumped ones.  
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One of the prime motivators of current hydrological research is the need to 

understand and quantify the possible impacts on water resources of changes in climate, 

land cover, land use, population and urbanization (Biederman et al., 2015; Broxton et al., 

2015; Fowler et al., 2007). An equally motivating factor is the desire to predict events 

such as floods or droughts anywhere globally and to develop mitigation strategies 

(Winsemius et al., 2013). In these situations, hydrologic models are required to represent 

multiple processes of the hydrologic cycle (Levine and Salvucci, 1999; Maxwell et al., 

2014; Paniconi and Putti, 2015), and have sufficiently high resolution to represent the 

local process variability that affects aggregate basin scale (Kollet et al., 2010; Ogden et 

al., 2015; Qu and Duffy, 2007; Shi et al., 2013; Vivoni et al., 2011; Wood et al., 2011). 

Therefore, both in operational streamflow forecast settings and for the study of impact of 

changes in hydrologic dynamics, there is a need to use distributed, physically based 

hydrologic models. Using physically based energy balance snow models for operational 

streamflow forecasting has been a long-term goal of the NWS (Franz et al., 2008).  

The rationale for distributed, physically based models is that they have state 

variables that represent the actual-physical processes present, and that these state 

variables are in principle measurable and comparable to observations from multiple 

sources.  The models are thus amenable to improvement, either through use of these 

observations in calibration, or through updating the states based on observations, a 

method referred to as data assimilation.  On the other hand, conceptual model state 

variables are not physically measurable and thus cannot benefit from more detailed direct 

observations.  However, physically based models are more data demanding, and 

obtaining the extensive set of input data they require is a critical challenge.  Leonard and 
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Duffy (2013) refer to the set of inputs needed to drive physically based distributed 

hydrologic models as “Essential Terrestrial Variables (ETV).” Obtaining ETV’s in a 

format organized for use in distributed models is a significant bottleneck in distributed 

hydrologic modelling. The ability (or lack thereof) to configure and populate the data 

structures of distributed models with data could enhance or hinder their use. Therefore, to 

realize the promise of distributed modeling through better representation of the physical 

environment, models need to be configured to automatically ingest the environmental 

information that is available (Lahoz and De Lannoy, 2013; Leonard and Duffy, 2013; 

Wood et al., 2011; Yu et al., 2013). Another challenge associated with the use of 

distributed, physically based models is that their computational burden is high. Therefore, 

models have to be designed to utilize high performance computation (HPC) technologies 

that are becoming increasingly available (Kollet et al., 2010; Wilkins-Diehr et al., 2008; 

Wood et al., 2011) but can still be challenging to use. 

The use of physically based models entails added uncertainty arising from the 

additional input data required by the models and from model parametrizations of the 

various processes (Beven et al., 2015; Semenova and Beven, 2015). Increased model 

complexity introduces model structure and parameterization uncertainty in that some 

processes may not be sufficiently understood to be modelled in detail. There might also 

be sub-grid processes that are not properly accounted for. In addition to model structure 

and parametrization, two important sources of uncertainty in streamflow forecast are 

uncertainty in model states such as snow storage and soil moisture and uncertainty in the 

weather forcing data.  

In operational streamflow forecasts, assimilation of data is an important factor 
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that can help reduce some of the uncertainty in model states and improve model 

predictions in real time (Clark et al., 2008; Pathiraja et al., 2016). Data assimilation is a 

procedure whereby observations are used to adjust and update model states so that 

forecasts based on the updated model states are improved. The model and observed 

values are combined based on the relative magnitudes of their uncertainties (Lahoz et al., 

2010), represented by statistical measures such as their variances. The model state after 

data assimilation is expected to have reduced uncertainty. This way, process model and 

observations complement each other.   

1.2 Research Questions  

Given the challenges listed above the goal of this research was to investigate ways 

to enhance the application of a physically based, distributed, energy balance snowmelt 

model for streamflow forecasts.  The following questions were addressed: 

• Given the hydro-meteorological data currently available in operational 

settings, and given that there are only few SNOTEL stations in a forecast watershed, how 

much does the data from one station improve the simulated SWE at a remote location in a 

watershed?  

• Can SWE data from the sparse SNOTEL stations in a watershed be used 

to update SWE for the whole watershed in a distributed model to arrive at better basin 

states in a way that improves streamflow forecast?  

• Can assimilation of streamflow measured at the basin outlet into the 

integrated UEB+RDHM model result in an improved streamflow forecast beyond that 

which is achieved by assimilation of only snow observations?  
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• Do web-based hydrological data services facilitate the preparation of 

inputs to distributed hydrologic models compared to similar desktop-based tools, with 

respect to metrics such as data storage, processing speed, reproducibility and reliability? 

If they do help facilitate such data preparation, what are the factors that contribute to such 

improvements? What can be learned from the experience of designing and implementing 

such data services? 

• How much do the implementations of parallel programming with the 

Message Passing Interface (MPI) and Graphics Processing Units (GPU) improve the 

computational performance of UEB, quantified in terms of the metrics speed-up and 

efficiency? What are the factors that affect these performance metrics? 

1.3 Objectives  

To address these questions the objectives of this dissertation were:  

1. Developing a procedure to use observations of snow water equivalent to 

update model states and reduce streamflow forecast uncertainty. 

2. Integration of the energy balance snowmelt model UEB in a distributed 

hydrologic model RDHM and evaluation of the integrated hydrologic model for 

streamflow forecasting, by accounting for the effect on the forecast streamflow of 

assimilated SNOTEL SWE and USGS gage discharge at basin outlet. 

3. Design, implementation, and evaluation of web-based data services that 

enhance access to hydrologic data and geospatial data processing tools that enable 

preparation of model inputs in the format required by distributed hydrologic models.  

4. Implementation and evaluation of parallel processing methods that take 
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advantage of high performance computation (HPC) resources in UEB, and consequently 

facilitate the evaluation and adoption of the physically based UEB model in operational 

settings such as streamflow forecast where computational time can be critical.  

1.4 Context 

This research was part of the CI-WATER and NASA-ROSES projects.  One of 

the objectives of the CI-WATER project was enhancing data- and compute- intensive 

water resource modeling by developing a set of tools for input pre-processing, web 

services for data access, and gateway functionality to HPC centers. The tools are required 

to automatically generate modeling scenarios for a user-selected domain, thereby 

reducing the time and effort spent setting up and running simulation models. The 

objective of the NASA-ROSES project was to advance streamflow forecasts in the snow-

dominated Colorado River basin. This included integration of a distributed, physically 

based, energy balance snowmelt model into a prototype of the National Weather Service 

(NWS) operational hydrologic modeling system and evaluating whether these 

enhancements result in improvements in the model.  It also included development of the 

capability to assimilate observations into the model, by updating model state variables 

with these observations, and evaluating whether this data assimilation produces 

improvements in water supply forecasts. 

I used the Utah Energy Balance snowmelt model (UEB) (Tarboton et al., 1995) to 

carry out these studies. The UEB model is a parsimonious, physically based, point energy 

and mass balance model with a single ground snowpack layer and a vegetation 

component that accounts for major snow processes in forested watersheds without undue 



8 
 
burden of over-parameterization of multi-layer models (Luce and Tarboton, 2010; Mahat 

and Tarboton, 2012, 2014; Mahat et al., 2013). It is driven by temperature, precipitation, 

radiation, humidity, and wind speed. Spatial variability of snow is accounted for either by 

using depletion curves (Luce and Tarboton, 2004) or by using a gridded approach (Sen 

Gupta et al., 2015). Its gridded configuration also promises to be amenable to parallel 

processing as model computations in each grid cell are independent, with interactions 

only required for aggregation of watershed or sub-watershed outputs.  

I integrated the UEB model into the NWS’s Research Distributed Hydrologic 

Model (RDHM) (Koren et al., 2004; NOAA's National Weather Service, 2008). RDHM 

is a modeling framework for gridded hydrologic simulation of watershed processes that 

provides a platform for coupling different components such as snowmelt, surface and 

subsurface runoff, stream routing. The UEB integrated RDHM model was run in 

‘reforecast mode,’ i.e., run a historical simulation as if a forecast is being generated. The 

forecast output, ensemble streamflow at the basin outlet, was then be evaluated for cases 

with and without data assimilation.  

1.5 Summary and Organization  

The work described in this dissertation was organized into three research tasks, 

and the outcomes of each are presented in chapter formatted for publication as a separate 

paper.  

Chapter 2 presents evaluation of the potential improvement to simulated snow 

water equivalent from assimilation of observed data. The Ensemble Kalman Filter 

(EnKF) was used to assimilate SNOTEL SWE data in UEB and model outputs were 
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compared to simulations without data assimilation. It was shown that due to the 

covariance between two points in a watershed at different modeling grid cells, data from 

sparse SNOTEL sites in a watershed can be used to update the SWE in the whole 

watershed. Further, ensemble streamflow forecast by a hydrologic model employing the 

UEB model was evaluated. For this, the UEB snowmelt model was coupled to a 

distributed hydrologic modeling framework RDHM with soil moisture accounting (SAC-

SMA) and river routing (rutpix7) capabilities. In addition to SWE, observations of 

streamflow at a watershed outlet were assimilated using the Particle Filter (PF) method to 

update the SAC-SMA and rutpix7 states. Results showed that improved streamflow 

forecasts were obtained with assimilation of snow data, as compared to that with no data 

assimilation. On the other hand, there was little or no additional forecast improvement 

provided by the streamflow assimilation with PF beyond that achieved through snow data 

assimilation 

The next two chapters, 3 and 4, involve the development and evaluation of 

Cyberinfrastructure resources to address issues that often present an impediment to the 

application of more detailed physically based models in a hydrologic modeling and 

forecasting environment. Chapter 3 discusses the design, implementation, and evaluation 

of a set of web-based, hydrological data processing services called HydroDS. HydroDS 

provides a number of data processing functionalities and ability to handle geospatial data 

in three widely used data formats: GeoTiff raster, shapefile, and multi-dimensional 

NetCDF. The data services are comprised of functions that can be used independently for 

a specific task or can be chained together in a workflow that integrates a number of 

related tasks involving geospatial data analyses and web-based data access. A Python 
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client library facilitates the scripting and execution of these workflows from a desktop 

computer, providing access to data processing tools from an accessible and relatively 

easy to use programming environment that is platform independent. HydroDS helps 

enhance reproducibility in hydrologic modeling, helps preserve the provenance of the 

hydrologic data processing steps, reduces time and effort by researchers accessing, 

organizing, and processing model input data, and contributes towards the goal of 

providing hydrologic ‘software as a service.’ 

Chapter 4 introduces parallel versions of the UEB snowmelt model where two 

parallel processing approaches were implemented and evaluated.  The first approach was 

based on the Message Passing Interface (MPI) while the second one uses Graphics 

Processing Units (GPU). Evaluations showed that parallelizing the Input and Output (IO) 

operations in the model, in addition to computational operations, was a critical factor that 

affected the efficiency of the parallel code. In addition, the CUDA GPU implementation 

on one GPU node achieved slightly better performance compared to 64 processors with 

the MPI implementation without requiring major re-working of the existing UEB code. 
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ENSEMBLE STREAMFLOW FORECASTING USING AN ENERGY BALANCE 

SNOWMELT MODEL COUPLED TO A DISTRIBUTED HYDROLOGIC MODEL 

WITH ASSIMILATION OF SNOW AND STREAMFLOW OBSERVATIONS1 

Abstract 

In many parts of the world, the quantity and timing of streamflow depend on 

processes of snow accumulation and melt. However, detailed snowmelt modeling is often 

hampered by limited input data availability and uncertainty arising from inadequate 

model structure and parametrization. This is particularly true in operational streamflow 

forecasting where modelers do not have the benefit of post-processed data. Data 

assimilation that updates model states based on observations provides a way to reduce 

uncertainty and improve model forecasts of streamflow. In this study, we evaluated 

coupled snowmelt, soil moisture accounting, and river routing models for streamflow 

forecasting in a snow dominated headwater watershed. We integrated the Utah Energy 

Balance (UEB) snowmelt model into the Research Distributed Hydrologic Model 

(RDHM), which has implementations for the Sacramento Soil Moisture Accounting 

(SAC-SMA) and rutpix7 river routing models. We implemented two different data 

assimilation methods for different parts of the model: the Ensemble Kalman Filter 

(EnKF) for assimilation of snow water equivalent (SWE) observations from Snow 

Telemetry (SNOTEL) stations in UEB and the Particle Filter (PF) for assimilation of 

streamflow to update the SAC-SMA and rutpix7 states. Using leave one out validation, it 

                                                             
1 Authors:  Tseganeh Z Gichamo, David G. Tarboton. 
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was shown that the modeled SWE at an observation location whose observations were 

excluded from the data assimilation was improved through assimilation of data from 

other stations, especially during the snow accumulation period.  This suggests that 

assimilation of sparse observations of SWE has the potential to improve the distributed 

modeling of SWE over watershed grid cells where SWE is not observed. In addition, the 

distributed snow data assimilation resulted in improved ensemble streamflow forecasts. 

For example, the Nash-Sutcliffe Efficiency (NSE) for the ensemble mean of forecasted 

streamflow improved from 0.52 with no data assimilation to 0.83 with snow data 

assimilation, and the April – July volume error was reduced by 94 %. On the other hand, 

the assimilation of streamflow observations using the Particle Filter (PF) method did not 

provide additional forecast improvement over that achieved by the SWE assimilation.  

Keywords—Ensemble streamflow forecast; Utah Energy Balance (UEB) 

snowmelt model; Research Distributed Hydrologic Model (RDHM); data assimilation; 

Ensemble Kalman Filter (EnKF); Particle Filter (PF);  

2.1 Introduction  

In many parts of the world, as it is in the intermountain US, snow is a significant 

component of water resources. Hence, it is important to adequately model snow 

accumulation and melt in order to be able to forecast the quantity and timing of 

streamflow for purposes of water supply, energy production, flood control, maintaining 

the ecosystem, etc. In terms of complexity, snow models vary from lumped conceptual 

models to physically based, multi-dimensional models solving the energy and mass 

balance of the snowpack and spatial redistribution of snow such as due to wind 
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(Anderson, 1976; Bartelt and Lehning, 2002; Déry and Yau, 2002; Geddes et al., 2005; 

Jin et al., 1999; Jordan, 1991; Liston and Sturm, 1998; Mahat and Tarboton, 2014; Mahat 

et al., 2013; Mott et al., 2010; Pomeroy and Essery, 1999; Tarboton et al., 1995; You et 

al., 2014; Lehning et al., 2002; Wever et al., 2014).  

Currently, the U.S. National Weather Service (NWS) uses the SNOW-17 model 

(Anderson, 2006) for streamflow forecasts. SNOW-17 uses temperature as an index for 

energy exchanges at the snow surface, and it only requires two inputs: precipitation and 

temperature. The application of SNOW-17 to streamflow forecasting depends on the 

assumption that the calibrated relationship between temperature and snowmelt holds over 

the domain for which the model was calibrated. In addition, it relies on the fact that 

temperature is easy to measure and accurately forecast for a few days into the future in 

operational settings. While temperature-index snowmelt models work quite well if they 

are adequately calibrated, they prove insufficient when the weather conditions 

significantly deviate from those for which the models were calibrated (Anderson, 2006). 

In addition, conceptual models that rely on calibration of parameters based on historical 

data may be limited when there is a shift in hydrologic regime due to changes in climate, 

land cover, land use, urbanization etc. (Biederman et al., 2015; Broxton et al., 2015; 

Fowler et al., 2007).  

Using physically based, energy balance snow models for operational streamflow 

forecasting offers the opportunity to overcome some of these shortcomings and has been 

a goal of the U.S. NWS (Franz et al., 2008). While physically based models reduce the 

uncertainty due to limited process representations and the overdependence on calibration 

in conceptual models, their application on the other hand entails added uncertainty arising 
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from the additional input data requirements and parameterization uncertainty introduced 

by increased model complexity (Beven et al., 2015; Semenova and Beven, 2015).  

In operational streamflow forecasts, assimilation of observed data is used to 

reduce forecast uncertainty by conditioning the forecasts on best possible model states at 

the time of the forecast (Clark et al., 2008; Franz et al., 2003; Pathiraja et al., 2016). In 

data assimilation, observations are used to adjust and update model states balancing 

observation and model uncertainty represented by a statistical measure such as error 

variance. In snowmelt driven streamflow forecasts, the updated model states that the 

forecasts are conditioned on include snowpack, soil moisture, and stream channel states.  

Prior studies with respect to assimilation of observations in hydrologic models 

have focused on a specific process and data related to it. Examples of these include 

assimilation of soil moisture related data (Reichle et al., 2002), assimilation of data 

related to snow (Clark et al., 2006; Slater and Clark, 2006; Su et al., 2008), assimilation 

of streamflow observations (Abaza et al., 2014; Clark et al., 2008). However, in a model 

that integrates multiple processes, there is an opportunity to assimilate multiple data types 

into the different model components with the potential to obtain improved outputs such 

as streamflow at basin outlet. The different observation types used in such multi-data 

assimilation complement each other where the limitation of one observation may be 

compensated by another observation type (Franz et al., 2014). It is also possible to apply 

different assimilation methods customized to different components of the integrated 

modeling system. For example, assimilation of streamflow using the Ensemble Kalman 

Filter (EnKF) or its variants may not be very efficient to update storage states such as 

snow water equivalent (SWE) or soil moisture. This is likely due to the non-linearity of 



18 
 
the relationship between the internal (watershed) model states and the streamflow at the 

outlet (Clark et al., 2008) that makes it difficult to compute the cross-covariances 

between states and outputs on which the EnKF relies (Rakovec et al., 2012).  

Point observations such as those from Snow Telemetery (SNOTEL) 

(https://www.wcc.nrcs.usda.gov/snow/) stations provide an opportunity to, through 

assimilation, update model SWE states to improve forecast initial conditions.  However 

SNOTEL observations are sparse, and an approach is needed to propagate information 

from these sparse sites to each model grid cell. Slater and Clark (2006) interpolated 

normalized standard deviates of SWE to each grid cell, and then inferred grid cell SWE 

from an ensemble of historic model simulations at that grid cell.  This interpolated SWE 

was treated as an observation and used in an EnKF to separately assimilate SWE at each 

grid cell (Slater and Clark, 2006). As an alternative to this treatment of an interpolation as 

an observation there is the potential to use the EnKF to directly propagate information 

from observation sites to unobserved model grid cells through the spatial correlation of 

SWE.  This can be done, for example, by augmenting the model grid SWE state vector 

with SWE states at observation locations and then having the EnKF observation function 

act on observation location elements of the augmented state vector.   

In order to contribute towards the goal of adopting more physically based models 

in operational streamflow forecasting, and to evaluate the use of an energy balance 

snowmelt model as part of the modeling suite used in the NWS forecasting system we 

integrated the Utah Energy Balance (UEB) snowmelt model into the Research 

Distributed Hydrologic Model (RDHM), which has implementations for the Sacramento 

Soil Moisture Accounting (SAC-SMA) and rutpix7 river routing models. In addition, to 

https://www.wcc.nrcs.usda.gov/snow/
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improve the ability to assimilate snow and streamflow observations to their respective 

model components and evaluate the potential improvement to forecast streamflow, we 

implemented two different data assimilation methods. The EnKF was used to assimilate 

point SWE from SNOTEL in UEB and streamflow data were assimilated using the 

Particle Filter (PF) method to update SAC-SMA and rutpix7 model states. The PF was 

selected for streamflow assimilation because, as stated earlier, the EnKF may struggle to 

accurately represent the cross-covariances between soil moisture and streamflow at the 

outlet.  

This paper is organized as follows.  In Section 2.2, descriptions of the streamflow 

forecast scheme, the data assimilation methods, the study watersheds and model data, and 

the performance metrics are provided. Results and discussion are given in Section 2.3, 

followed by summary and conclusions in Section 2.4. 

2.2 Data and Methods 

 Streamflow Forecast Scheme: Integrated UEB+RDHM Models 

Figure 2.1 shows the ensemble streamflow forecasting scheme.  Its major 

components are the Utah Energy Balance (UEB) snowmelt model and its integration into 

the Research Distributed Hydrologic Model (RDHM), the generation of ensemble forcing 

inputs, the snow and streamflow data assimilation, and ensemble streamflow forecasting. 

The UEB model represents the major physical processes critical for snow accumulation 

and ablation (Luce and Tarboton, 2010; Mahat and Tarboton, 2012, 2014; Mahat et al., 

2013; Tarboton et al., 1995; You et al., 2014).  As a single layer model, UEB is 

parsimonious, avoiding some of the complexity and input needed for more detailed multi-
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layered snowmelt models.  This makes it a promising candidate for operational 

streamflow forecasting where computational time can be critical, and where there is 

interest in incrementally evaluating the improvements possible through adding better 

physical process representations.  

RDHM is a modeling framework for gridded hydrologic simulation of watershed 

processes that comprises a platform for coupling different components and facilitating the 

transfer of data among different modeling components during run-time (Koren et al., 

2004; NOAA's National Weather Service, 2008). Inside the integrated UEB+RDHM 

framework, the UEB model was run first. The rain + melt (Rmelt) output from UEB 

provides input to the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash 

and Singh, 1995; Burnash et al., 1973), which simulates runoff that is subsequently 

routed to the basin outlet with the kinematic wave routing model rutpix7 (NOAA's 

National Weather Service, 2008) to generate streamflow.  

The ensemble streamflow forecasting procedure is illustrated in Figure 2.2. A 

model run starts at the beginning of the water year, October 1, and proceeds up to the 

‘forecast time’ using observed data for that year as input.  The forecast time is the point 

when the streamflow forecasts are issued. The streamflow forecast is then run for a 

duration labeled ‘forecast period’, using input forcing data from all available historic 

years.  This results in the ensemble of possible future traces depicted in Figure 2.2.  In 

this study, the forecast period was from April 1 to September 30. The forecast period is 

comprised of ‘lead time’ and a ‘forecast window’. The forecast window is the time span 

for which the forecast is sought after, while lead time is a period between the issuing of 

forecast and the start of the forecast window. Lead time provides water managers time to 
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prepare to deal with the forecasted event. The forecast time for this study was chosen to 

be April 1, and the forecast period and forecast window in this study were the same, 

between April 1 and September 30 (thus the lead time was 0). The choice of April 1 for 

forecast time was based on the fact that for most watersheds in the western U.S., the 

snowmelt season starts around this date. In addition, for the purposes of reservoir 

operations and other water allocation and management practices, the April – July 

streamflow volume is one of the primary variables of interest at the Colorado Basin River 

Forecast Center (CBRFC). 

Figure 2.2 depicts a single simulation trace based on observed forcing data up to 

the forecast time as an illustration of the general idea.  However in this study we ran the 

model simulation between the start of simulation (October 1) and forecast time (April 1) 

using multiple traces that account for input uncertainty with assimilation of snow water 

equivalent and streamflow used to update model states, balancing and trading off 

uncertainty due to the inputs and observations.  The objective of this was to arrive at a set 

of states that represent the best possible estimate of initial state, and its uncertainty, and 

to use this to initialize the forecast. The Ensemble Kalman Filter (EnKF) was used for 

assimilation of snow data, while the Particle Filter was used to assimilate streamflow 

observations at the watershed outlet. Perturbed observations for the forecast year were 

used to represent input forcing uncertainty and input to the EnKF. The implementations 

of the data assimilation methods are described in Section 2.2.3 below. The ensemble 

simulation for the forecast period uses multiple realizations of future weather conditions 

from numerical weather prediction (NWP) models to account for uncertainties in forecast 

weather forcing (Cloke and Pappenberger, 2009). Alternatively, long-term observations 
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or re-analysis of historical weather forcing are taken to represent samples of the likely 

distribution of the future weather conditions (Day, 1985; Franz et al., 2003; Wood and 

Lettenmaier, 2008). The latter approach was used in this study. 

 Study Watershed and Data 

The study watershed used to evaluate the work in this chapter is the Green River 

watershed above Warren Bridge (Figure 2.3). Observed snow water equivalent (SWE) 

data from four SNOTEL stations shown in Figure 2.3 and summarized in Table 2.1 were 

assimilated in UEB. We evaluated the SWE assimilation at the observation points for the 

water year 2009 (October 1, 2008 – September 30, 2009). The water year 2009 was 

selected because of the availability of gridded weather forcing data from the Colorado 

Basin River Forecast Center (CBRFC) for that year, at the start of this study. For 

streamflow forecast evaluation, we used water years 2005 to 2009. 

We used a 30 m Digital Elevation Model (DEM) from the USGS to extract terrain 

variables slope and aspect. Canopy variables were generated based on the 2011 National 

Land Cover Database (NLCD) (Homer et al., 2015). We used precipitation and air 

temperature data from CBRFC. These are gridded datasets with a resolution of 800 m 

produced using interpolation based on the PRISM (Parameter-elevation Relationships on 

Independent Slopes Model) dataset (Daly et al., 2008; Daly et al., 1994). Humidity and 

wind speed data were obtained from the North American Land Data Assimilation System 

(NLDAS) forcing datasets (Mitchell et al., 2004). Solar and longwave radiation were 

parameterized based on air temperature and humidity in UEB  (Tarboton et al., 1995; 

You et al., 2014). The NLDAS datasets were downscaled, with elevation adjustment, 

following a downscaling methodology described by Sen Gupta and Tarboton (2016). For 
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downscaling, the DEM from NLDAS represents the elevation of the NLDAS datasets 

while the elevation from the USGS DEM at the center of the grid cell was the target 

elevation to which the forcing data were downscaled.  

The simulations were carried out on a grid with cells of size 0.25 Hydrologic 

Rainfall Analysis Project (HRAP) units (Reed and Maidment, 1999). HRAP is a 

coordinate system used by the NWS for gridded modeling, and 0.25 HRAP units 

corresponds to about 1190 m.  RDHM takes as an input a connectivity file that defines 

the model domain(s), resolution, and outlet location(s) for a given watershed (or multiple 

watersheds). It is generated from digital elevation model (DEM) data and specifies grid 

cell connectivity. During runtime, RDHM resamples the forcing, terrain, and land cover 

data inputs at the centers of the grid cells in the connectivity file. Given this configuration 

and given that the terrain and land cover data were sampled from the 30 m resolution 

DEM, the UEB model at each 0.25 HRAP (~1190 m) grid cell represents a point with 30 

m support scale (or footprint) with 1190 m spacing. This scheme is premised on the 

assumption that these points at 1190 m spacing aggregated over the watershed represent 

the distribution of snow and snowmelt input over the watershed.  

 The Data Assimilation Methods: EnKF and PF 

In data assimilation, a model is run forward in time, up to a point when 

observations are available.  Then the observations are used to adjust and update model 

states to reduce their uncertainty.  These improved model states are then used to further 

propagate the model forward in time, to the point of another observation update, or for a 

forecast. During the assimilation, modeled and observed information is combined based 

on the relative magnitudes of their uncertainties (Lahoz et al., 2010). The resulting 
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combined information from model and observation is expected to reduce the uncertainty 

of the predicted variable, e.g., by reducing the variance, compared to that of either the 

model or the observations by themselves. In addition, simulation model and state 

observations complement each other in that the observations often present a more 

accurate value of the state but at sparse temporal and spatial sampling intervals, while the 

simulation model represents spatially and temporally continuous system dynamics.  

One of the most popular data assimilation methods is the Kalman Filter, in which 

model predicted and observed state values are linearly combined.  The difference 

between observed and model predicted values, referred to as the residual, is multiplied by 

a weighting factor and is added to the model predicted value to obtain the updated or 

assimilated value (Reichle, 2008). In the Kalman Filter, the weighting factor, called the 

Kalman Gain, is computed as the ratio of the variance of the model prediction error to the 

sum of variances of the observation and model prediction errors (Brown and Hwang, 

2012).   

The Kalman filter provides the optimal estimate in the least mean squared error 

sense, dependent on the assumption that the underlying distributions of both model 

prediction and observations are Gaussian and the system being modeled is linear 

(Drécourt, 2003). Methods that rely on linearization of process model equations such as 

the Extended Kalman Filter (EKF) and the variance methods such as the 4D VAR have 

been applied extensively over the years (Nichols, 2010). The requirement for 

linearization is a big challenge in terms of computational burden and the strong 

nonlinearities some environmental models exhibit. Alternative methods that do not 

require linearization of the model equations include those that derive from Monte Carlo 
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sampling methods, such as the Particle Filter, and variants of the KF that also employ 

sampling methods such as the Unscented Kalman Filter and the Ensemble Kalman Filter 

(Liu et al., 2012). 

The Ensemble Kalman Filter (EnKF) is a form of Kalman Filter that has been 

widely used in earth sciences and hydrology (Clark et al., 2008; Drécourt, 2003; Kumar 

et al., 2008; Liu et al., 2012).  The EnKF relies on execution of Monte Carlo simulations 

to generate multiple realizations of model sates that are assumed to be equally likely. The 

covariance computed based on the ensemble members represents the model error 

covariance from which the Kalman Gain is computed (Evensen, 2003). The filter can be 

used for non-linear processes and, while optimal filtering requires the distribution 

underlying the ensembles to be Gaussian, it has been shown that the EnKF provides 

sufficiently satisfactory, although sub-optimal, performance for systems that deviate from 

Gaussian distribution or in systems where the underlying distribution is unknown 

(Reichle et al., 2002; Zhou et al., 2006).  

The Particle Filter (PF) is a data assimilation method that is similar to the EnKF 

in that it also relies on Monte Carlo simulation and generation of multiple realization of 

possible model states. However, in PF the particles (each particle representing a vector of 

state variables in state space) are not necessarily assumed to be equally likely. Rather, the 

probability distribution of the model states are represented by a set of particles (similar to 

ensemble members in EnKF) and associated weights (Brown and Hwang, 2012; Grewal 

and Andrews, 2015; Labbe, 2015). In addition, in PF the update step does not involve 

computation of Kalman Gain and adjustment of ensemble members. Instead, the 

particles’ weights are updated based on their (particles’) distance from the observations. 
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Particles closer to the observations are given higher weighs and vice-versa. Then the 

particle weights are used to select those that are close to the observations and generate 

more particles with similar characteristics while discarding particles that are too far away 

from observations. 

 Implementation of the Ensemble Kalman Filter (EnKF) in UEB 

Hydrological and land surface processes are said to be “damped” (Reichle, 2008). 

This is to say that, unlike atmospheric models, which represent chaotic processes in 

which small errors in the initial conditions of states may be amplified as the process 

evolves forward, the primary sources of uncertainty in hydrological models are 

atmospheric forcing inputs, model dynamics, and parameters (Reichle et al., 2002). The 

effect of errors in initial conditions diminishes over time. Hence, in this study, the 

ensemble realizations were generated by driving the model with ensemble forcing data 

obtained from perturbation of input forcing by adding randomly sampled small errors. 

This approach is similar to that taken by other snow data assimilation studies (e.g., Slater 

and Clark, 2006). The errors for the forcing perturbation were sampled from a 

multivariate normal distribution generated across the grid cells in a watershed.  

The UEB model state considered for assimilation is the snow water equivalent 

(SWE) at each grid cell. The data used for assimilation in this study consisted of observed  

SWE at SNOTEL stations. Other UEB model states include the snowpack energy content 

and dimensionless age of snow surface (also known as snow surface condition). We 

considered only SWE for assimimilation because updating the other state variables would 

require covariance/correlation between the observed SWE and the other states. For 

example, updating bulk snowpack energy based on observed SWE is only possible if the 
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covariance between these two variables can be obtained. However, there is no clear 

covariance/correlation between the two, e.g., depending on net energy inputs, snowpack 

energy content may increase or decrease while the snowpack water equivalent (SWE) 

remains the same.  Therefore, the state variables other than SWE were allowed to evolve 

in the ensembles but were not updated.    

Four SNOTEL stations in the study watershed and in the area surrounding it were 

used in this study. This sparsity is typical for watersheds such as this. One approach used 

to update the SWE over the whole watershed based on the few observation points is 

interpolation of SWE from the sparse SNOTEL stations across the model domain before 

assimilating it with the model simulated SWE at each grid cell. Instead of the direct 

interpolation of SWE,  Slater and Clark (2006) interpolated the normalized standard 

deviates of SWE (also known as z scores) before back-computing the assimilated SWE.  

In this study, we used an approach that depends on the assumption that the SWE 

between two grid cells in the study watersheds are correlated, and their covariance can be 

captured from the ensemble of simulated SWE by the energy balance snow model. This 

assumption arises from the following consideration: Spatial distribution of watershed 

snowpack depends on spatial variability of factors that include watershed topography, 

land cover, and weather forcing such as precipitation, temperature, humidity, wind, and 

radiation (Clark et al., 2011; Luce, 2000). If a distributed, energy balance snow model 

accounts for these variabilities, then one can expect the spatial variability of the 

snowpack states to be captured by such a model. It follows, then, that the ensemble of 

model simulations at a grid cell, if adequately sampled, represents the distribution of the 

model states in that grid cell. And, statistical measures such as the mean and standard 
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deviation can be computed from such a distribution. Moreover, the distributions of any 

two grid cells can be used to compute the covariance between the states at the two grid 

cells. If one of the grid cells happens to have observations, the covariance so computed 

can be used together with the variance of the observation to apply the adjustment/update 

to the grid cell that does not have observed data because in Kalman Filter the Gain is 

proportional to the covariance of simulated distributions and the variance of observation.  

The steps that were followed for implementation of the EnKF in UEB are 

presented below. In the equations that follow, all the variables with upper case, e.g., X, 

Y…are matrices, and those with lower case, such as 𝑢, represent vectors. The subscripts 

refer to the time step while the superscripts differentiate between the prediction, also 

known as the background state, e.g.,  𝑥𝑘
𝑏, prior to update, and state after update, also 

called analysis, e.g., 𝑥𝑘
𝑎 (Lahoz et al., 2010). Thus, given a model domain of N locations 

comprising Ng centers of model grid cells and m measurement sites (N=Ng+m), the state 

vector at time step k, 𝑥𝑘
𝑎 is represented as,   

𝑥𝑘
𝑎  =  (

𝑊1
𝑊2
…
𝑊𝑁

)  (1) 

where W is the UEB model snow water equivalent, and Wi refers to snow water 

equivalent at location i.  The m measurement sites do not necessarily coincide with grid 

cell centers and have their own parameters determined from the DEM, land cover, and 

their own downscaled inputs and are thus separate grid cells where the model is run. 

Following standard data assimilation literature notation, observations of W at the m 

measurement grid cells are represented by the vector 𝑧𝑜. 
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𝑧𝑜  =  (

𝑧1
𝑧2
…
𝑧𝑚

)  (2) 

The general procedure followed at a given time step involves running the UEB 

model at all N grid cells in the watershed in ensemble mode and computing the model 

error covariances from the ensemble of states at each grid cell. This is followed by 

computing the Kalman gain from the covariances and the variances of the states. The 

Kalman gain is then used with observations to adjust/update the simulated SWE. Steps 1, 

2, and 3 below represent generation of ensemble UEB states and are applicable at all 

model times. Thus, the model evolves the ensemble of UEB states through time, 

regardless of whether there are observed data for assimilation or not. Steps 4 through 11 

however are executed only at model steps with observed data.  Note also that the 

procedure below is applicable for the time period before the forecast time as there is no 

data assimilation during the forecast. Beyond the forecast time, each year of historical 

weather forcing data is used to generate model states for a forecast ensemble member. 

1. Perturb meteorological forcing such as precipitation and temperature. 

𝑈𝑘 = 𝑢𝑘 ∗  𝜃𝑢, 𝜃𝑢  = 𝑁(1, 𝑆𝑢)  for all forcings except temperature  (3) 

𝑈𝑘 = 𝑢𝑘 + 𝜃𝑢, 𝜃𝑢  = 𝑁(0, 𝑆𝑢) for temperature   (4) 

Where 𝑢𝑘 is an input vector of forcing at all grid cells (size N).  𝑈𝑘 (N x E) is the 

generated ensemble forcing. E is the ensemble size, and therefore, E forcing inputs were 

generated at each grid cell by perturbing the input forcing according to the covariance 

structure between grid cells represented by 𝑆𝑢. There are six UEB input forcing variables: 

precipitation (P), air temperature (Ta), wind speed (V), relative humidity (RH), solar 
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radiation (Qsi), and atmospheric/longwave radiation (Qli).  The multiplier factors (or 

additive factor for temperature) 𝜃𝑢 were sampled from a multivariate Gaussian 

distribution with mean 1 (0 for temperature) and covariance 𝑆𝑢. For all the forcing 

variables except temperature, if this simulation results in a multiplier less than 0 (which 

happens with very small probability) the multiplier is set to 0 to preclude negative values 

that are possible with a Gaussian distribution.  The covariance matrix 𝑆𝑢, is computed 

based on the spatial correlation between the forcing variables in different grid cells and 

the standard deviation of each forcing. We assumed correlation between grid cells that is 

exponentially decaying with distance.  

In addition to the spatial correlation that is an exponential function of distance 

between model grids, the correlations among the errors in precipitation, solar radiation, 

and longwave radiation were accounted for based on values from previous studies 

(Kumar et al., 2014; Kumar et al., 2009; Xue et al., 2018). For temperature, wind speed, 

and relative humidity, the forcing errors were assumed to be uncorrelated, because we 

have no information on their relationships with the other variables.  

Following Clark et al. (2008) and Evensen (2003), the temporal correlation in 

forcing errors was modeled as: 

𝑆𝑡+1 =  𝜌𝑆𝑡 + √1 − 𝜌2 𝑤𝑡  (5) 

where w is a spatially correlated random variable sampled from a standard normal 

distribution (zero mean and variance 1) and 𝜌 is the temporal persistence parameter 

quantified as: 

𝜌 = 1 −
𝛥𝑡

𝜏
    (6) 
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where 𝛥t is the model time step and the decorrelation time parameter 𝜏 quantifies the rate 

at which forcing error correlation decays with time.  

Parameters determining these correlations and perturbations are the standard 

deviation for the forcing variables, the spatial correlation length, and decorrelation time. 

These parameters were selected similar to values from the literature and with some trial 

and error adjustments so that the ensemble mean of model simulations with perturbed 

forcing and without data assimilation is unbiased. The parameters used in this study for 

the generation of ensemble forcing are shown in Table 2.2.  

Often, when running the Ensemble Kalman Filter, the initial states are also 

perturbed to get a distribution of initial states. In this study, all the simulations start at the 

beginning of the water year when there is no snow on the ground. Therefore, all ensemble 

members have the same initial state values of zero SWE.  

2. Run ensemble of simulations using the perturbed forcing. 

𝑋𝑘+1
𝑏  =  𝑀𝑘,𝑘+1( 𝑋𝑘

𝑎, 𝑈𝑘)  (7) 

where  𝑋𝑘+1
𝑏   (N x E) is a matrix of UEB predicted/background states.  Mk,k+1 represents 

the model run evolving the states from time step k to time step k+1. In other words, at 

each grid cell the model is run E times (with perturbed forcing) for time step k and 

produces an ensemble of state vectors of size E at the next time step k+1. All the 

remaining steps hereafter refer to the time step k+1; hence, the time subscript is dropped, 

and hereafter the matrix subscripts refer to matrix elements. The matrix for the ensemble 

of background states is thus 

𝑋𝑏  = (𝑥1
𝑏, 𝑥2

𝑏, … 𝑥𝐸
𝑏)   (8a) 
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where E = ensemble size and the ensemble matrix is comprised of state vectors 𝑥𝑖
𝑏 giving 

snow water equivalent at each grid cell for each ensemble member:  

𝑥𝑖
𝑏  =

(

 
 
𝑊1𝑖
𝑏

𝑊2𝑖
𝑏

⋮
𝑊𝑁𝑖
𝑏

)

 
 

  (8b) 

3. Compute ensemble mean 𝑥̅𝑏  

𝑥̅𝑏 =
1

𝐸
∑ 𝑥𝑖

𝑏𝐸
𝑖=1   (9) 

4. Compute ensemble anomaly 𝑋′: subtract the ensemble mean vector from each 

column in the ensemble states matrix. 

𝑥𝑖
′ = 𝑥𝑖

𝑏 − 𝑥̅𝑏  (10) 

and form the anomalies matrix, 𝑋′, comprised of anomaly column vectors 

𝑋′  = (𝑥1
′ , 𝑥2

′ , … 𝑥𝐸
′ ) (11) 

5. Compute model error covariance 𝑃𝑥𝑥 using the ensemble anomaly. 

𝑃𝑥𝑥 ≈ 
1

𝐸−1
𝑋′ (𝑋′)𝑇 (12) 

The model error covariance is a function of individual variances and covariances. 

For N grid cells, the matrix is symmetric and takes the following form: 

𝑃𝑥𝑥  =  (

𝑣𝑎𝑟(𝑊1) 𝑐𝑜𝑣𝑎𝑟(𝑊1,𝑊2) … 𝑐𝑜𝑣𝑎𝑟(𝑊1,𝑊𝑁)
𝑐𝑜𝑣𝑎𝑟(𝑊2,𝑊1) 𝑣𝑎𝑟( 𝑊2) … 𝑐𝑜𝑣𝑎𝑟( 𝑊2,𝑊𝑁)

… … … …
𝑐𝑜𝑣𝑎𝑟(𝑊𝑁,𝑊1) 𝑐𝑜𝑣𝑎𝑟(𝑊𝑁,𝑊2) … 𝑣𝑎𝑟( 𝑊𝑁)

) (13) 

6. Map states into observation space. 

𝑋ℎ
𝑏 = 𝑓ℎ( 𝑋

𝑏)  (14) 

where 𝑋ℎ
𝑏 is the vector of observations that would be produced if the model state was 𝑋𝑏 

and 𝑓ℎ is the “observation function” that describes how the quantity being measured 
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relates to model state variables. The observation function is required because often the 

measured variable is not the same as a model state. For example, a model may have soil 

moisture or snow water equivalent as state variables and predict streamflow at a point in 

time as a function of these, without streamflow being a state variable. The observation 

function links the model predicted state to the observed variable; the model state is said 

to be projected onto the observation space (Labbe, 2015). For nonlinear observation 

functions, a “forward model” that computes the observed quantities from model predicted 

states is required (Clark et al., 2008). For linear observation functions, a matrix called an 

observation operator H (of dimension m x N) would be used to project model states to 

observation space.  

𝑋ℎ
𝑏 =  𝐻𝑋𝑏  (15) 

When the quantity observed is the same as a model state variable, then the matrix 

H will have 1s for grid cells that have corresponding observations and 0s for those that do 

not have an observation. This is the case for example when SNOTEL snow water 

equivalent observations are assimilated into a model that has snow water equivalent as a 

state variable.  This is illustrated in Figure 2.4 for a hypothetical watershed where there 

are two SNOTEL stations with observations, resulting in an observation operator H as a 

matrix with zeros everywhere except for the elements corresponding to the two grid cells 

containing the SNOTEL stations.  

In this study, we separately simulated the observation points with high-resolution 

input data. This was in part because the terrain variables used for the UEB simulation at 

the 1190 m grid cell (obtained by sampling) may be different from those for the exact 
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location of the SNOTEL station even if the station is within the grid cell. In addition, 

simulating observation points separately allows incorporation of observation points that 

fall outside the watershed boundary but are close enough to the watershed to provide data 

for assimilation (Figure 2.5). The observation operator thus selects from the matrix 𝑋𝑏 

the subset of locations that are observation points. The resulting matrix 𝑋ℎ
b consists of the 

ensemble of model states for all m observation points.  

𝑋ℎ
𝑏 =

(

 

𝑊11
𝑏 𝑊12

𝑏 … 𝑊1𝐸
𝑏

𝑊21
𝑏 𝑊22

𝑏 … 𝑊2𝐸
𝑏

… … … …
𝑊𝑚1
𝑏 𝑊𝑚2

𝑏 … 𝑊𝑚𝐸
𝑏 )

     (16) 

7. Compute the cross covariance between model states and states in observation 

space, from their associated ensemble anomalies. 

𝑃𝑥𝑧 =  
1

𝐸−1
𝑋′(𝑋ℎ

′ )𝑇  (17) 

The ensemble anomaly in observation space 𝑋ℎ
′  is computed in a similar manner 

as 𝑋′ (ensemble anomaly of model states). When the matrix H is used this reduces to: 

𝑃𝑥𝑧 =  
1

𝐸−1
𝑋′(𝑋ℎ

′ )𝑇 =  𝑃𝑥𝑥𝐻
𝑇   (18) 

8. Compute the innovation: the difference between observation and model state in 

observation space. 

𝑑 =  𝑍𝑜 − 𝑋ℎ
𝑏  (19) 

The matrix 𝑍𝑜 of dimensions (m x E) is obtained from the observation vector 𝑧𝑜 

by perturbing the observations with random errors sampled from a normal distribution 

with zero mean and observation error covariance R. The observation error covariance 

matrix R (m x m) provides an estimate of uncertainty in measurements. Such perturbation 
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of observations arises from the need to treat the observations as random variables and 

ensures that the update ensembles have sufficient variance (Burgers et al., 1998). 

𝑍𝑜 = 𝑧𝑜 +  𝜀𝑅 , 𝜀𝑅 ~ 𝑁(0, 𝑅)   (20) 

The R matrix is comprised of individual observation error variances. In this study, 

we assumed that there is no correlation between errors at the measurement locations, i.e., 

the random error in measurement in one SNOTEL station is independent of the random 

errors at other stations. Hence, the off-diagonal elements of the matrix R are zero.  

9. Compute the innovation covariance 𝑃𝑧𝑧, which is the sum of observation error 

covariance R and error covariance of model states in observation space 𝑋ℎ
𝑏. The 

innovation covariance accounts for uncertainty in observation and uncertainty in process 

model—projected onto the observation space. 

𝑃𝑧𝑧 =  
1

𝐸−1
𝑋ℎ
′ (𝑋ℎ

′ )𝑇 + 𝑅    (21) 

When the matrix H is used 

𝑃𝑧𝑧 =  
1

𝐸−1
𝑋ℎ
′ (𝑋ℎ

′ )𝑇 + 𝑅 = 𝐻 𝑃𝑥𝑥𝐻
𝑇 + 𝑅  (22) 

10. Compute the Kalman Gain K from covariance matrices 𝑃𝑥𝑧 and 𝑃𝑧𝑧.  

𝐾 =  𝑃𝑥𝑧𝑃𝑧𝑧
−1   (23) 

The Kalman Gain assigns proportional weights to the model predictions and 

observations based on their respective uncertainties (represented in terms of their 

error covariances).  A simple way to think about this is if the state and observation 

vectors were one dimensional, the covariance matrices would represent covariance 

and variance and the gain would be the ratio of these. 

11. Update the states.   
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𝑋𝑎 =  𝑋𝑏 +  𝐾 𝑑   (24) 

Except for step 1, generation of the spatially and temporally correlated forcing 

perturbations, each model grid cell executes all the steps independently of other grid 

cells. Effectively each model grid cell and the vector of observations become a “model” 

to which the EnKF approach is applied.  Therefore, the dimension of the EnKF model at 

each grid cell is one plus the number of observation points.   

Steps 10 and 11 demonstrate that the Kalman Gain and the resulting updates 

depend on the relative magnitude of the error covariances of the model and observations. 

It follows from this that a successful assimilation is only possible when there is a 

correlation between the model and observed variables. This is why we are not updating 

the state variables other than snow water equivalent (W) during assimilation, as we do 

not know if there is clear covariance/correlation between the observations of W and the 

other states. On the other hand, the same reasoning was used to justify assimilation of W 

measurements at an observation grid cell to simulated W at a different grid cell if there is 

a covariance/correlation between the simulated water equivalents at the two grid cells. 

Figure 2.6 shows a scatter plot of the UEB simulated SWE at two SNOTEL stations 

about 15 km apart demonstrating the strong correlation between the SWE at the two 

points during the snow accumulation season and motivating this assimilation approach to 

obtain the spatially distributed SWE. 

The EnKF implementation for the assimilation of point SWE observations in 

UEB is summarized in Figure 2.7.  

 Implementation of the Particle Filter (PF) in RDHM (SAC-SMA + rutpix7)  

The Particle Filter (PF) was implemented in RDHM to extend the data 
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assimilation beyond just snow (UEB) by using observed streamflow to adjust SAC-SMA 

and rutpix7 states. In PF, the vector of state variables representing a point in state space is 

referred to as a particle.  Then as the model evolves and state variables change, the 

particles move. As stated earlier, the PF represents the probability distribution of the 

model states by a set of particles and associated weights. In this study, multiple 

realization of the SAC-SMA + rutpix7 models (X) and their associated weights (w) 

constitute the particles. 

𝑋 =  {𝑥𝑖}
𝑁
1
 ;  𝑤 = {𝑤𝑖}

𝑁
1
 (25) 

The steps for the implementation of the PF are summarized in Table 2.3. At the 

start of the simulation, the initial particles are generated by perturbing the initial SAC-

SMA states with small errors sampled from normal distribution with zero mean. These 

initial particles are assumed to have uniform weights.  

{𝑤𝑖}
𝑁
1
=

1

𝑁
at time step t𝑘 =  0  (26) 

After the SAC-SMA and rutpix7 models are run for all the particles with inputs of 

rain plus melt (Rmelt) output from UEB producing streamflow outputs, the weight of 

each particle is updated based on the likelihood function: 

𝑤𝑖 𝑤𝑖 ∗ 𝑒𝑥𝑝(
−1

2
(𝑧 − ℎ(𝑥𝑖))𝑅

−1(𝑧 − ℎ(𝑥𝑖))
𝑇
)  (27) 

Where z is observation, in this case discharge at the watershed outlet, with error 

covariance R. h is the observation function, in this case the RDHM model, projecting the 

model states onto observation space. 

The weights are normalized so they sum to one. 
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𝑤𝑖 
 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

⁄  (28) 

The weight update assigns higher weights to those particles closer to the 

observation and vice versa. One consequence of this is that some particles may end up 

getting extremely small weights leading to a condition called “Particle degeneracy.” To 

mitigate this, particle resampling is employed to discard particles with negligible weights 

and multiply those with higher weights. The particle resampling uses the cumulative 

distribution of the particles, where the normalized particle weights represent the 

probability density (Arulampalam et al., 2002; Brown and Hwang, 2012). Resampling 

introduces another problem called “Particle impoverishment” where the diversity of 

particles is lost in that the resampled particles’ set may consist of one or very few model 

realizations (Liu and Gupta, 2007). Perturbation of samples or ‘sample roughening’ is 

introduced to generate particles that increase sample diversity (Crassidis and Junkins, 

2011). In this study, sample roughening was performed with randomly generated small 

errors added to the SAC-SMA states.  

To summarize, the Particle Filter proceeds by evolving the model states in time 

and updating the associated weights based on observations followed by resampling and 

(optional) perturbation of the particles.  

The purpose of the data assimilation prior to streamflow forecasting is to arrive at 

the best possible set of model states at forecast time (April 1) so that the uncertainty in 

the forecast streamflow is reduced. The EnKF SWE assimilation attempts to get the best 

snow state, while the purpose of the streamflow assimilation was to select the best 

possible SAC-SMA and rutipix7 states. One challenge in assimilation of streamflow to 
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adjust soil moisture is that the observed discharge at a given time step is the result of 

integrated effect of the watershed processes at longer time span. Hence, it is often 

difficult to merely assimilate outlet discharge at a time step and expect ‘best’ trajectories 

of states. To deal with this, the streamflow assimilation needs to account for possible lag 

between soil moisture state and discharge at outlet (Noh et al., 2011). In this study, 

streamflow observations were available at daily frequency, and hence we computed the 

weights (Equation 27) at daily steps. On the other hand, we tested different frequencies 

(daily, every 4 days, every 10 days, weekly, bi-weekly, monthly) for the particle 

resampling and found that the bi-weekly resampling resulted in the best outputs and thus 

we used bi-weekly resampling.  The challenge with this delayed resampling (not 

resampling at every assimilation step) is that the degeneracy mentioned earlier may get 

worse. The magnitude of the effect of degeneracy is measured by the ‘Effective sample 

size’ (Neff) (Arulampalam et al., 2002) computed as:    

𝑁𝑒𝑓𝑓 =  1
∑ (𝑤𝑖)

2𝑁
𝑖=1

⁄   (29) 

Small Neff signifies severe degeneracy (Arulampalam et al., 2002). In practice, 

resampling is carried out when Neff falls below a threshold value (Moradkhani et al., 

2005).  In this study, the Neff was computed at each step and written out for inspection, 

but the resampling frequency was fixed to two weeks mentioned above as it resulted in 

the best outputs. Note after resampling and perturbation, the particle weights are 

reinitialized to uniform values, 1/N for N particles. 

 Evaluation and Performance Metrics 

The SWE data assimilation was run in the Green River Watershed above Warren 
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Bridge for the whole 2009 water year with assimilation of observed SWE every 14 days. 

This includes assimilation in the accumulation period prior to April 1 and the ablation 

and melt period after April 1.  To evaluate the performance of the snow data assimilation 

we used “leave one out” validation. We excluded one of the SNOTEL stations from 

assimilation and examined how much the updated SWE at that station is improved by 

assimilation of observations from the other stations.  This provided a way to quantify the 

likely improvement in estimation of SWE at unmeasured grid cells where the data 

assimilation is being used to quantify snow distributed across the watershed.  For the 

Green River watershed, we carried out the assimilation using data from three stations and 

evaluated the outputs from the grid cell corresponding to the fourth SNOTEL station by 

comparing with observations at that fourth station.  

The model simulated snow water equivalent at each observation location for cases 

with and without data assimilation, and when the observation at that station is excluded 

were evaluated using the following performance metrics:  

1. Root Mean Square Error (RMSE) between observed and UEB SWE at 

SNOTEL stations. 

2. Nash-Sutcliffe Efficiency (NSE) coefficient of UEB SWE as compared to 

observed SWE. 

3. Normalized Information Contribution (NIC) from data assimilation (DA), 

in terms of RMSE and NSE. 

The Normalized Information Contribution (NIC) from DA quantifies the extent to 

which the data assimilation improves (or degrades) the model simulation. It is defined as 

the ratio of the improvement due to data assimilation (over the simulation without data 
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assimilation) to the maximum possible improvement (Kumar et al., 2014; Kumar et al., 

2009). NIC is defined in terms of error stats such as RMSE. We computed two values of 

NIC in terms of the RMSE and NSE as follows. 

NICRMSE = (RMSENoDA − RMSEDA )  / RMSENoDA  (30) 

NICNSE = (NSEDA − NSENoDA )  / (1 −  NSENoDA ) (31) 

The subscripts “DA” and “NoDA” in equations 30 and 31 refer to model with and 

without data assimilation respectively. In short, NICRMSE represents the reduction in 

RMSE divided by the maximum possible reduction, whereas NICNSE is the increase in 

NSE divided by the maximum possible increase. NIC > 0 implies improvement over no 

data assimilation (Kumar et al., 2014). 

The above evaluation deals with the SWE assimilation and its validation at 

observation points, which was limited by the few observation sites available. Next, we 

evaluated the effect of the data assimilation on the integrated watershed response using 

the streamflow at the watershed outlet. In this case, the snow and streamflow data 

assimilation was applied from October 1 to April 1. Beyond April 1, the UEB+RDHM 

model was run in forecast mode and there was no data assimilation. The focus of this 

evaluation was on the streamflow forecast. Here the SWE assimilation frequency was 

also 14 days using the EnKF with all SNOTEL sites (no leave one out). Daily 

observations of streamflow were used to compute the Particle Filter (PF) sample weights 

(so the PF was run daily) with particle resampling and sample roughening done every 14 

days. We evaluated ensemble streamflow forecasts for three simulation / reforecast 

scenarios:  
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1. No data assimilation 

2. Assimilation of SWE in UEB using EnKF  

3. Assimilation of SWE in UEB using EnKF and assimilation of streamflow 

with PF to update SAC-SMA and rutpix7 states. 

For each scenario, the following evaluation metrics were calculated. 

1. Daily streamflow error statistics for the whole water year: Root mean 

square error (RMSE), Nash-Sutcliffe Efficiency (NSE), Mean absolute 

Error (MAE), and Correlation coefficient between simulation and 

observation (R).  

2. Daily streamflow error statistics for the forecast period (April – 

September): RMSE, NSE, MAE, R. 

3. April – July volume error.   

2.3 Results and Discussion 

 Assimilation of SWE in UEB  

Figure 2.8 shows plots of the ensemble SWE at the Loomis Park SNOTEL station 

for the 2009 water year, with assimilation every 14 days continuing for the full year, i.e. 

both accumulation and melt periods. Plots are also shown for simulated SWE with no 

data assimilation and the observed SWE at this SNOTEL station. This figure is a sample 

output at a UEB grid cell and demonstrates the behavior of the ensemble members before 

and after data is assimilated. Specifically, at the date of data assimilation, the spread of 

ensemble members contracts towards the observations. Figures 2.9 to 2.12 show the point 

SWE at each SNOTEL station used in this study. The plots include model outputs with 
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and without data assimilation, the SNOTEL observed SWE, and simulated SWE when 

observations at the SNOTEL station are excluded. In all four cases, the simulation 

without data assimilation underestimates the snow water equivalent, when compared to 

observations. The simulation without data assimilation also has a temporal shift from 

observations in some cases. After assimilation, the modeled SWE better tracks the 

observed SWE as demonstrated by the improved RMSE and NSE values. All NIC values, 

labeled “NIC_RMSE_DAall” and “NIC_NSE_DAall” in the figures, are greater than 

zero indicating the data assimilation improves estimation of the model SWE. For the case 

where data from all stations were assimilated, the NIC in RMSE value, averaged over the 

four stations, was 0.41 indicating there is about 41% decrease in RMSE due to data 

assimilation. For the NSE criteria, the average NIC was 0.63; hence, about 63% of the 

possible maximum improvement in terms of NSE has been achieved through the SWE 

assimilation. A larger contribution in this value (improved NSE criteria) is coming from 

the Gunsight Pass and New Fork Lake SNOTEL stations, but the improvement in the 

other two stations is also significant. Overall, the data assimilation has brought the 

simulated peak SWE (around April 1) closer to the observed values, and this has a 

positive effect on melt period streamflow simulations / forecasts. 

In the case of the “leave one out” validation where the data assimilation excludes 

observation at the particular station being evaluated, all locations except Kendall RS 

SNOTEL station showed improvement over no data assimilation in terms of the RMSE 

and NSE, “NIC_RMSE_DAExclStn” and “NIC_NSE_DAExclStn”. As can be seen from 

Figures 2.9 to 2.111, there is appreciable improvement in the modelled SWE from 

assimilation of data from the other stations, particularly during the accumulation period.  
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While there is a degradation in performance at all stations during the snow ablation 

period, Figure 2.12 shows large degradation at the Kendall RS SNOTEL station. The 

average NIC values for the whole water year at the Kendall RS SNOTEL are negative 

indicating that when looking at the year as a whole the NIC statistic does not indicate 

improvement.  The poor performance during the melt period has overwhelmed any 

improvement during the accumulation period.  In this ‘leave one out’ scenario, the update 

depends on the correlation of simulated SWE between the grid cell in question and the 

points where there are observations. This correlation breaks down during the melt season 

and is responsible for this melt season degradation in performance. This can be seen in 

Fig 2.12 where there is a big bump around May 1 in the Kendall RS SWE for the ‘leave 

one out’ scenario, when the observed snow at this station has significantly declined in 

Figure 2.12, but the nearby stations being used to update SWE have not declined as 

much. This indicates a weakness of assimilation during the ablation period.  

Figure 2.13 shows the same plots as in Figure 2.12 except that for this plot the 

SWE assimilation was stopped on April 1. In this case, the simulated SWE traces beyond 

April 1 are closer to the observations for both assimilation cases (i.e., all stations included 

and leave-one-out).  While the NIC values are still negative for the leave-one-out, their 

magnitude is much better than those in Figure 2.12. It is important to note here that the 

breakdown of correlations during the ablation period is likely to apply to the early season 

shallow snow conditions where intermittent accumulation and melt occurs at some 

locations. These early season errors possibly affect the performance of the assimilated 

SWE at some locations.  

One of the strengths of the SNOTEL data is its high quality—compared to other 
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operationally available data; however, the stations are sparsely distributed. The results 

shown here indicate that the model SWE at a given point is improved through 

assimilation of SWE at SNOTEL stations away from the grid point, due to the spatial 

correlation of snow, at least for the accumulation period. This serves as a measure of how 

estimates of SWE at grid cells across the watershed where there are no observations 

should also be improved, and this has a positive effect on watershed scale streamflow 

response at the outlet, evaluated in the next section.  

 Streamflow forecast with assimilation of SWE and Q in RDHM 

Figures 2.14 - 2.16 show the 2009 water year outputs of daily streamflow forecast 

for the three modeling scenarios: 1) no data assimilation (No DA); 2) assimilation of 

snow water equivalent using the EnKF method (EnKF SWE); 3)  assimilation of both 

SWE and streamflow observation using the PF method (EnKF SWE & PF Q). Note that 

in these results, ensembles were generated using perturbed observed forcing from Oct 1 

to April 1, which is the forecast time.  Beyond the April 1 forecast time, the ensembles 

were generated using historical forcing. The data assimilations, when applicable, were 

run up to April 1. The figures show individual ensemble traces of streamflow and their 

mean (ensemble mean).  Plots also include the observed streamflow hydrograph at the 

USGS gage at the watershed outlet. The daily streamflow error statistics for the ensemble 

mean are also included in the figures. In addition, to focus on the forecast period (April – 

September), scatter plots of forecast versus observed discharge and the corresponding 

error statistics are shown in Figure 2.17 for all the three scenarios. The April – July 

volume errors and their (ensemble) distribution are shown in Figure 2.18.  

The key observations from these results are:  
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 The EnKF snow data assimilation results in better model states at the start 

of the forecast period, which is manifested in a better streamflow forecast 

(when compared to the forecast with no data assimilation). 

 The assimilation of streamflow with PF does not add noticeable 

improvement to the streamflow forecast beyond that achieved by the SWE 

assimilation. 

 There was about 94 % reduction in April – July volume error when SWE 

was assimilated before forecast, while incorporating the streamflow 

assimilation in addition to SWE assimilation resulted in April – July 

volume error reduction of about 85%. 

The possible reasons for why the EnKF SWE & PF Q did not add any more value 

beyond that of the EnKF SWE may be insufficient particle size, inadequate 

representation of the impact of lag between soil moisture and streamflow or other 

undetected errors. It may also simply be that prior to April 1 there has been little 

snowmelt and hence little streamflow response to serve as information to update model 

state and inform a forecast.  It is also possible, though unlikely, that the range of 

uncertainty due to soil moisture is narrower than that of the error distribution of the SWE 

ensemble and therefore the SWE assimilation compensates for the soil moisture error as 

well. Pinpointing the exact reason requires further investigation. 

The streamflow ensemble mean for all the three cases does not replicate the shape 

of the hydrograph at the peaks. While the observations show two peaks during the 

forecast period, the ensemble mean has a single smooth peak. This is to be expected due 
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to the averaging of multiple ensemble members that were produced using historical 

weather inputs from all years with data available. Some of the individual ensemble 

members appear to have multiple peaks.  This is due to the different weather patterns in 

different years. This indicates that, while the average total volume of discharge at the 

gage is more accurately captured, as shown in the April - July volume error in Figure 

2.18, the ensemble streamflow generated from the historical forcing (assumed as 

representative of the possible distribution of future weather conditions) does not capture 

the actual shape of the hydrograph. To forecast the actual shape of the hydrograph in any 

one year requires a forecast of the specific weather pattern for that year. One implication 

of this result is that this data assimilation is useful for water supply forecasting, but less 

useful for flood forecasting unless other factors such as input energy are also well 

quantified.   

Finally, to see if the results hold for years other than the 2009 water year, the 

April to July volume errors were also examined for four additional years 2005 - 2008 

(Figure 2.19).  Results comparable to 2009 were obtained for 2005, 2006, and 2008.  In 

these years, the assimilation of SWE generally improves the forecasted water volume 

while it misses the shape of the hydrographs at the peaks (not shown), similar to results 

for the 2009 water year. And, the PF assimilation of discharge does not add value beyond 

that achieved through SWE assimilation.  In general, the simulation with no data 

assimilation has negative volume error, suggesting that without data assimilation, forecast 

streamflow volumes are likely to be underestimated. The SWE assimilation reduces the 

volume error while the discharge assimilation slightly increases the volume error. For the 

year 2007, however, the volume error is smallest for the case with no data assimilation. In 
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this case, the discharge assimilation performs better than the forecast with only SWE 

assimilation. By looking into the observed streamflow for all the 22 historical years (1989 

– 2010), the streamflow for 2007 has the second lowest peak value, next to water year 

1992, making it a dry year outlier. This points to the need for further investigation with 

specific focus on low flow years.  

2.4 Summary and Conclusions 

In this study, we evaluated assimilation of snow water equivalent (SWE) data 

from SNOTEL sensors into the Utah Energy Balance (UEB) snowmelt model using the 

Ensemble Kalman Filter (EnKF). The energy balance snowmelt model was then coupled 

to a distributed hydrologic model, RDHM, for streamflow forecasting.  The streamflow 

forecasts were conditioned on updated snow and soil moisture states from assimilation of 

snow and streamflow data in RDHM. We used the Particle Filter (PF) with observed 

streamflow to update SAC-SMA and rutpix7 states in RDHM. For the snow data 

assimilation, the model ensemble states were generated using forcing perturbations that 

account for spatial correlation through an exponential function decreasing with distance. 

In the PF implementation, a set of SAC-SMA and rutpix7 states and their associated 

weights constitute the particles that evolved through time. 

Results from the SWE assimilation showed that taking advantage of the 

covariance between SWE at different grid cells, an observation at one point can be used 

to update SWE at a grid cell away from the observation site without needing interpolation 

of observations. This suggested the potential for assimilation of SWE data from sparse 

SNOTEL stations to update SWE over the whole watershed, which we later evaluated 
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through streamflow forecasts. The improvement in model SWE from assimilation was 

demonstrated through the reduced RMSE and increased NSE values for three of the four 

SNOTEL stations, expressed in NIC (Normalized Information Contribution from data 

assimilation). 

The snow assimilation performance was much better during accumulation than 

ablation. This may be due to the spatial correlations that resulted in data at one point 

having predictive capability at another point during accumulation diminishing during the 

energy driven melt process where melt timing is not synchronous. The spatial variability 

of snowmelt due to elevation and the effect of slope and aspect on radiation is not 

spatially correlated in the same way as snow accumulation, and hence not readily 

captured by the data assimilation method.  

The ensemble model setup in this study was premised on the assumption that the 

major source of uncertainty in the model comes from the weather forcing. The ensemble 

forcing perturbation accounts for the spatial and temporal as well as inter-variable 

correlations of errors in forcing such as precipitation. The parameters for generating 

ensemble forcing, such as the variance in precipitation and the spatial and temporal 

correlation lengths, were input to the model. Further study on the uncertainty in each 

weather forcing variable and its statistical characteristics such as the error standard 

deviation, for example by analyzing forcing data from multiple sources, could be 

beneficial. Future study for accurate estimation of the spatial correlation length should 

look into its relation to the distance between the SNOTEL stations in a given watershed 

and other factors such as the effects of topography on precipitation shadows, ridges, and 

wind shadows that in turn affect the spatial correlation of snow. 
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Another outcome of this study was that the ensemble streamflow forecasts with 

assimilation of SWE provided marked improvement over forecasts with no data 

assimilation. On the other hand, the assimilation of streamflow using the Particle Filter to 

update the SAC-SMA and rutpix7 states did not provide improvement beyond that 

achieved through the snow data assimilation. The possible reasons for the failure of the 

streamflow assimilation to add value may be insufficient particle numbers, inadequate 

representation of the impact of lag between soil moisture and streamflow or due to 

narrow soil moisture error range that the snow ensemble distribution covers. It may also 

be due to the dominant predictor for streamflow being the amount of snow, and prior to 

the forecast date (April 1) there is generally limited snowmelt with the result that 

streamflow has not yet responded to the amount of snow present and thus observations do 

not incorporate any information on the amount of snow present.  

Results also show the ensemble forecast mean provides a good estimate of the 

mean volume of water for water supply forecast, but its smooth shape misses the peaks of 

the hydrographs, implying that the forecasts may not be capable of capturing the timing 

and magnitude of flood hydrograph.  

Given the high computational demand by the large number of model realizations 

required for the Particle Filter, and given that it did not result in an improvement in the 

forecasted streamflow, it is not suggested for operational forecasts at this stage, without 

further investigation. However, the coupled UEB+RDHM model introduced in this work 

did result in improvements to forecast streamflow volumes and we suggest does merit 

consideration for operational use.  
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Table 2.1 SNOTEL stations with SWE data used in the study 

Watershed SNOTEL Station Elevation (m) Latitude  Longitude 

Green River above 

Warren Bridge 

 

Kendall RS 2359 43.25 -110.02 

Gunsight Pass 2993 43.38 -109.88 

Loomis Park 2512 43.17 -110.13 

New Fork Lake 2542 43.12 -109.95 

 

Table 2.2 Parameters of forcing perturbations for UEB ensemble generation  

Forcing variable Forcing 

perturbation 

error type 

Error 

standard 

deviation  

Correlation between variables 

Ta P Qsi Qli V RH 

Temperature (Ta) Additive 1.2 oC 1      

Precipitation (P) Multiplicative* 0.05*  1 -0.8 0.5   

Short-wave 

radiation (Qsi) 

 -0.8 1 -0.5   

Long-wave 

radiation (Qli) 

 0.5 -0.5 1   

Wind speed (V)     1  

Relative humidity 

(RH) 

     1 

Spatial correlation length = 16 HRAP ~ 76 Km 

Temporal decorrelation length = 6 hrs. 

* Note: for all forcing except temperature the perturbation type is “Multiplicative” with 

error standard deviation of 0.05. 

 

 

 

 

 

 



57 
 
 

Table 2.3 Steps for Particle Filter in SAC-SMA + rutpix7 

 
* Sizes of the circles in the third column illustrate relative weights of particles—not to scale 
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Figure 2.1 Ensemble Streamflow Forecasting Scheme with UEB as RDHM component. 

 

 

Figure 2.2 Temporal organization of Ensemble Streamflow Forecast Procedure. Adapted from 

(Franz et al., 2003). 
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Figure 2.3 Study watershed: Green River above Warren Bridge. 
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Figure 2.4 Illustration of the observation operator H for a hypothetical watershed with 59 

grid cells (filled grid cells with different colors representing sub-watersheds) and 2 grids 

with observations. The observation operator is a 2 by 59 matrix where all but the two 

elements corresponding to the grid cells with observations have zero value.  
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Figure 2.5 Illustration of a hypothetical watershed with three observation stations handled 

separately from the 59 model grid cells (filled grid cells with different colors represent 

sub-watersheds). In this case, there is no need for special observation operator; the state 

matrix in observation space consists of the ensemble of model states for the three 

observation points. 
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Figure 2.6 Correlation between UEB simulated SWE at two SNOTEL sites.  

 

 
Figure 2.7 Summary of Ensemble Kalman Filter steps in UEB.  
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Figure 2.8 Snow water equivalent (SWE) at Loomis Park SNOTEL Station in Green 

River Watershed. UEB simulated SWE without data assimilation, ensembles with the 

EnKF assimilation of SWE and their mean, and observed SWE at this SNOTEL station 

are shown. At the dates of each data assimilation the spread of ensemble members 

contract towards the observations. 
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Figure 2.9 Snow water equivalent (SWE) at Loomis Park SNOTEL Station in Green 

River Watershed. The labels for the error statistics, at the top-right, refer to RMSE with 

no data assimilation (RMSE_NODA), assimilation of observations from all four stations 

(RMSE_DAall), and assimilation excluding data at this site (RMSE_DAExclStn). Similar 

terminology applies to NSE and NIC. The data assimilation outputs are from the EnKF 

assimilation of SWE and the plots shown are the ensemble mean for each case. 
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Figure 2.10 Same as Figure 2.9 but for the Gunsight Pass SNOTEL station. 

 

 
 

Figure 2.11 Same as Figure 2.9 but for the New Fork Lake SNOTEL station. 
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Figure 2.12 Same as Figure 2.9 but for the Kendall RS SNOTEL station.  
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Figure 2.13 Same as Figure 2.12 but the data assimilation extends only up to April 1, 

2009.   
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Figure 2.14 Ensemble streamflow forecast at Warren Bridge near Daniel with no data 

assimilation (NO-DA) for the water year 2009. 
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Figure 2.15 Ensemble streamflow forecast at Warren Bridge near Daniel with SNOTEL 

SWE data assimilated every two weeks using EnKF (EnKF-SWE) for the water year 

2009. 
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Figure 2.16 Ensemble streamflow forecast at Warren Bridge near Daniel with SNOTEL 

SWE data assimilated every two weeks using EnKF and assimilation of daily streamflow 

using PF with biweekly resampling (EnKF-SWE_PF-Q) for the water year 2009. 
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Figure 2.17 Scatter plots and error statistics of daily streamflow for the ensemble mean of 

April - September 2009 forecast discharge versus observed discharge at Warren Bridge 

near Daniel for the three scenarios No-DA, EnKF-SWE, and EnKF-SWE_PF-Q. The 

green line is the 1:1 line. 

 

 

 
 



72 
 

 
Figure 2.18 April – July volume error of ensemble streamflow forecast at Warren Bridge 

near Daniel for the three scenarios No-DA, EnKF-SWE, and EnKF-SWE_PF-Q for the 

water year 2009. 
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Figure 2.19 April – July volume error of ensemble streamflow forecast at Warren Bridge 

near Daniel for the three scenarios No-DA, EnKF-SWE, and EnKF-SWE_PF-Q for the 

water years 2005 - 2009.  
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DATA SERVICES IN SUPPORT OF PHYSICALLY BASED, DISTRIBUTED 

HYDROLOGICAL MODELS2 

Abstract  

Hydrology researchers and modelers spend considerable time searching for, 

accessing, organizing, and pre-processing model input data. The task becomes daunting 

when applying physically based, distributed models in operational contexts such as 

streamflow forecasting. As the ability to configure and populate models with data could 

enhance or hinder their use, tools that automate and speed up the pre-processing of input 

data are required to facilitate the application of physically based hydrologic models.  In 

this paper, we introduce and evaluate a set of web-based, hydrological data services we 

call HydroDS that are based on the philosophy of providing ‘software as a service.’ 

HydroDS enables the generation of distributed (gridded) data for variables commonly 

used in hydrologic models in three widely used file formats: GeoTiff raster, Shapefile, 

and multi-dimensional NetCDF. HydroDS provides functions for watershed delineation, 

terrain processing, estimation of canopy variables, and retrieval of climate data. The 

functions can be used independently or chained together to form a workflow that 

performs a set of related tasks. A Python client library facilitates the scripting and 

execution of these workflows from a desktop computer, providing access to data 

processing tools from this programming environment that is platform independent and 

accessible to researchers with basic Python programming skills. We evaluated the data 

                                                             
2 Authors:  Tseganeh Z Gichamo, David G. Tarboton, Pabitra Dash. 
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services by setting up instances of the Utah Energy Balance (UEB) snowmelt model for 

multiple watersheds. The evaluations show that HydroDS reduces the time required to 

setup the model for multiple watersheds and helps avoid error prone manual data 

processing, thereby enhancing the application of UEB in streamflow forecasts. It also 

removes the requirements for installation, maintenance, and updating of often platform 

dependent software, and enhances reproducibility and repeatability and provides the 

ability to track data processing provenance with workflow scripts.  

Keywords—HydroDS, data services, distributed hydrologic modeling, 

Geographic Information Systems, web services, Cyberinfrastructure, Utah Energy 

Balance snowmelt model (UEB). 

Software Availability 

Program name: HydroDS  

Description: A set of web-based, hydrologic data services for automated generation of 

input data for physically based, distributed (gridded) hydrologic models. 

HydroDS comprises Python modules for watershed analysis, terrain and land 

cover data processing, and climate data access and processing. Individual service 

functions are chained together to form a workflow to perform a set of related 

tasks.  

Platform: CentOS Linux. 

Cost: Free (Open source) 

Access: https://github.com/CI-WATER/Hydro-DS/ 

Documentation:  

https://github.com/CI-WATER/Hydro-DS/wiki/HydroDS-Web-API-Description  

https://www.hydroshare.org/resource/130373d3ebde4df489a4781e62211574/  

Developers: Tseganeh Z. Gichamo, David G. Tarboton, Pabitra Dash. 

https://github.com/CI-WATER/Hydro-DS/
https://github.com/CI-WATER/Hydro-DS/wiki/HydroDS-Web-API-Description
https://www.hydroshare.org/resource/130373d3ebde4df489a4781e62211574/
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3.1 Introduction 

Computer models are used for simulation of the hydrologic cycle to help answer 

questions related to water resource availability and quality, to assess the effect of change 

in climate or land cover, and support water resources management, along with many 

other applications. One of the prime motivators of current hydrological research is the 

need to understand and quantify the possible impacts on water resources of changes in 

climate, land cover, land use, population, and urbanization (Fowler et al., 2007). Such 

studies require modeling of hydrologic processes across a range of spatial scales. This is 

to say that the extent of the model domain, spacing, and support of the model elements 

are problem specific. In addition, given that water resource management decisions are 

made at scales that range from headwater watershed scale to river basins or even 

continental scales (Kauffeldt et al., 2014), there is a motivation for large scale modeling, 

which is further enhanced by national or international governing bodies’ desire to predict 

large scale flood disaster or drought events and to develop mitigation strategies 

(Winsemius et al., 2013). Developers of physically-based, distributed hydrological 

models in recent years have been working to address the issue of sufficiently resolving 

local (sub-grid scale) processes in a model of river basin or continental scale (Kollet et 

al., 2010; Qu and Duffy, 2007; Shi et al., 2013; Wood et al., 2011). 

An important challenge associated with the application of physically based, 

distributed hydrological models is that they require more input data than their conceptual, 

often lumped, counterparts. While the rationale for high resolution, physically based 

models is that better results can be achieved through detailed process representation, 

obtaining the extensive set of input data required by these models is a critical challenge.  
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Leonard and Duffy (2013) call this set of input data “Essential Terrestrial Variables” 

(ETV). Obtaining ETV’s in a format organized for use in distributed models is a 

significant bottleneck in distributed hydrologic modelling. The ability to configure and 

populate distributed models with data could enhance or hinder their use.   

Prior work with regard to hydrologic data availability has focused on the task of 

enhancing access to data from different providers through web services (Ames et al., 

2012; Horsburgh et al., 2009; Tarboton et al., 2009b) using standardized data formats 

(Almoradie et al., 2013b; Taylor, 2012). However, the data obtained remain the raw data 

provided by the sources and generally require further processing to generate suitable 

inputs to hydrological models.  

The data pre-processing tools currently available are generally desktop based and 

often limited by their customization to specific hydrologic models (e.g., Kumar et al., 

2009a). The increasing availability of Cyberinfrastructure resources provides an 

opportunity to extend such data pre-processing ability beyond the desktop environment 

(Wang et al., 2013) and adopt the paradigm of ‘software as a service.’ Developing data 

processing tools as web-based services will help to enhance access to these tools for users 

without necessarily requiring them to be a Cyber expert (Wright et al., 2013). Web 

services that can be accessed by multiple users not necessarily located at the same 

geographic location facilitate better collaborative problem solving (Nyerges et al., 2013; 

Wang, 2010). In addition, they encourage the use of standardized data formats (e.g., 

WaterML and NetCDF) by multiple models.  

In this paper, we introduce a set of web-based, hydrological data processing 

services we call HydroDS. HydroDS provides a number of data processing functionalities 
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including watershed delineation, terrain processing, estimation of canopy variables based 

on the National Land Cover Database (Homer et al., 2015), and retrieval of weather 

forcing data. Data are stored and shared in three widely used data formats: GeoTiff raster, 

shapefile, and multi-dimensional NetCDF. The data services are comprised of functions 

that can be used independently or form workflows that integrate a number of related 

tasks. We also developed a Python client library that facilitates the scripting and 

execution of these workflows from a desktop computer, providing access to data 

processing tools from an accessible and relatively easy to use programming environment 

that is platform independent. Data processed by HydroDS can be automatically 

transferred to HydroShare, a platform for sharing of hydrologic data and models 

(Tarboton et al., 2014a).  

In the next section, we provide background information on prior work dealing 

with data access and processing for hydrologic modeling and the need for web-based data 

services that motivates this work. In Section 3.3, we report the functional requirements, 

design, and implementation of HydroDS. In Section 3.4, we evaluate the data services 

using a case study of setting up instances of the Utah Energy Balance snowmelt model 

(UEB) for multiple watersheds. Summary and conclusions are given in Section 3.5. 

3.2 Background 

 Geospatial Data Analyses for Hydrologic Models  

Providing access to hydrological data from different repositories through web 

services has been the focus of the Consortium of Universities for the Advancement of 

Hydrologic Science, Inc. - Hydrologic Information System (CUAHSI-HIS) (Horsburgh et 
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al., 2009; Tarboton et al., 2009b). CUAHSI-HIS provides software tools for publishing 

and retrieving time series data through standardized web services in an XML format 

called WaterML (Beran et al., 2009; Tarboton et al., 2011; Valentine et al., 2012; 

Valentine et al., 2007).  WaterML2 was later developed as an Open Geospatial 

Consortium (OGC) standard for hydrologic time series data representation and exchange 

across multiple information systems (Taylor, 2012). Standardized web services and 

protocols facilitate interoperability between different data service providers and 

consumers (clients) for easy access and retrieval of data.  

Client applications can search for and download data made available through the 

CUAHSI-HIS data services. HydroDesktop, the CUAHSI-HIS data access client (Ames 

et al., 2012), provided an early ‘one-stop shopping’ platform to hydrologists by enabling 

map based selection of a watershed (or an extent of the domain of interest) and data 

download, extraction, and analysis. This desktop functionality has now been replaced by 

the CUAHSI data client (http://data.cuahsi.org/) web tool for CUAHSI HIS data selection 

and extraction. Agencies such the U.S. Geological Survey (USGS: 

http://waterservices.usgs.gov/) and National Oceanic and Atmospheric Administration - 

National Centers for Environmental Information (NOAA- NCEI: 

http://www.ncdc.noaa.gov/cdo-web/webservices), and other data and model service 

providers have also made data from their repositories accessible using web services and 

data standards such as WaterML and other OGC web service standards (Almoradie et al., 

2013a).  These systems help reduce the time spent by researchers searching for and 

downloading data.  

Despite their growing availability, hydrological data obtained through web 

http://data.cuahsi.org/
http://waterservices.usgs.gov/
http://www.ncdc.noaa.gov/cdo-web/webservices
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services from sources such as CUAHSI-HIS, USGS, NOAA, or other organizations often 

need pre-processing to generate suitable inputs to hydrological models. In addition, 

CUAHSI-HIS compliant data services are currently limited to time series data at fixed 

geographic locations (e.g., points) using the Observation Data Model (ODM) (Horsburgh 

et al., 2008); no support is provided in CUAHSI services for multi-dimensional space-

time data such as those stored in Network Common Data Form (NetCDF) data format 

(Rew et al., 2014). Hence, part of the data pre-processing tasks for distributed 

hydrological models involves organizing data in the input format suitable for the specific 

model (often arrays of space-time data). Input data pre-processing often starts with 

geospatial analyses, including watershed delineation, stream network generation, and 

specification of modeling units such as Hydrologic Response Units (HRU) or structured 

or unstructured grids of required spatial resolution. Then, input variables based on the 

watershed terrain, land cover characteristics, and climate forcing are mapped to the 

modeling units (Carlson et al., 2014). This mapping of continuous or discrete values to 

model units may require aggregation or interpolation in both space and time.  

Extraction of hydrological variables from digital elevation models (e.g., terrain 

slope, aspect, topographic wetness index) also forms part of the pre-processing. In 

addition, some model parameters need to be generated (or estimated) from observations. 

For example, land cover variables such as canopy indices have to be derived based on 

land cover type maps or from remote sensing images, and friction coefficients have to be 

estimated from the vegetation and geomorphological information of river reaches. These 

data pre-processing tasks can take a significant portion of the hydrological modeler’s 

time and effort, and automated data pre-processor tools have been shown to considerably 
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reduce the time required for model scenario setup and execution (Berry et al., 2014). An 

additional benefit is reproducibility, and the opportunity to support best of practice pre-

processing methods, rather than expedient methods that may be selected by a user 

essentially preparing model inputs manually using general purpose tools available to 

them.   

 Web based Data and Modelling Services  

At present, most geospatial analyses are carried out using desktop-based GIS 

tools. Some of these GIS tools are stand-alone software products such as the ArcGIS 

software suite from ESRI (http://www.esri.com/) or the open source software QGIS 

(http://www.qgis.org/en/site/) and GRASS (http://grass.osgeo.org/). Others are integrated 

with the hydrologic models they prepare inputs for. There are commercial and open 

source modeling software that support input data pre-processing as an integral part of 

hydrologic modeling. One example of commercial software is the MIKE SHE model’s 

GIS-based graphical user interface and GIS database from DHI 

(http://www.dhigroup.com/). An example of open source model data processing tools is 

PIHM-GIS (Bhatt et al., 2008; Bhatt et al., 2014; Kumar et al., 2009a), in which a GIS 

framework where model input pre-processing and input and output visualization are 

carried out is tightly coupled to the Penn State Integrated Hydrologic Model (PIHM - 

http://www.pihm.psu.edu/).  

With the increasing availability of Cyberinfrastructure, there is an opportunity to 

extend model input data pre-processing tools to web-based services. Such web-based 

services could build on similar works for general-purpose geospatial and hydrologic data 

analysis such as CyberGIS and HydroTerre. CyberGIS is a web-based approach to the 

http://www.esri.com/
http://www.qgis.org/en/site/
http://grass.osgeo.org/
http://www.dhigroup.com/
http://www.pihm.psu.edu/
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delivery of GIS functionality as data and software services (Wang, 2010; Wang et al., 

2013; Wright et al., 2013). CyberGIS supports large scale, data intensive modelling 

problems with spatial analysis tools that require more than just a few processing cores. 

HydroTerre is a web-based hydrologic model data service 

(http://www.hydroterre.psu.edu/HydroTerre/Help/Ethos.aspx) that has made available 

about 200 TB of “Essential Terrestrial Variables,” including elevation, soils, geology, 

land cover, precipitation and atmospheric conditions, sub-watersheds and National 

Hydrography Dataset (NHD) stream reaches. Data are indexed by USGS NHD 

Hydrological Unit Code level-12 (HUC-12) sub-watersheds and can be downloaded to 

support detailed hydrologic modelling using PIHM or other models (Leonard and Duffy, 

2013). There are also recent developments such as EcoHydrolib and WaterHUB that deal 

with specific models. EcoHydrolib provides workflows to set up instances for the 

RHESSys model and preserve metadata that enable reproducibility of the model instances 

(Miles, 2014). A web based modeling service is provided by WaterHUB (http://water-

hub.org/), which allows parameterized SWAT (Soil Water Assessment Tool) models and 

their input data to be uploaded, run on HPC resources and shared among users (Merwade 

et al., 2012).  

The web-based technologies underlying these services enable taking advantage of 

an extensive pool of high performance computation resources, distributed data storage 

facilities, analysis tools from multiple service/tool providers to deal with ‘spatial big 

data’ (Evans et al., 2013), and collaboration between researchers (possibly) remotely 

located from each other. From a user/client point of view, spatial analysis capabilities are 

readily accessible through the web without requiring any local software installation.  This 

http://www.hydroterre.psu.edu/HydroTerre/Help/Ethos.aspx
http://water-hub.org/
http://water-hub.org/
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eliminates data size limitation of PCs, the need to install software, and operating system 

(platform) dependence. A web-based development environment facilitates better 

collaborative problem solving (Nyerges et al., 2013; Wang, 2010), eases access to 

analytic tools (e.g., geospatial analyses) for non-experts (Wright et al., 2013), and enables 

implementation of ‘science gateway’ functionalities that provide access to HPC centers 

(Wilkins-Diehr et al., 2008). An example web-based development environment, 

integrating multiple of the above functionalities is HydroShare 

(http://www.hydroshare.org/).  

HydroShare is a collaborative environment for sharing hydrologic data and 

models taking advantage of modern information communication technology and 

Cyberinfrastructure.  HydroShare supports the capability for users to store their work in 

the hydrologically oriented resource formats including time series, geographic features 

and rasters, and model programs and instances. HydroShare resources created by one user 

may be shared with others, and HydroShare’s web service application programming 

interface (API) enables programmatic access to create and/or work directly with 

resources stored in the system (Horsburgh et al., 2015; Tarboton et al., 2014a; Tarboton 

et al., 2014b).  

3.3 HydroDS: A set of Web-based Hydrologic Data Processing Services  

 Required Functionality 

The following data services were identified as required to support the input pre-

processing for physically based gridded models commonly used in surface water 

hydrology (i.e., ETVs). They are heavily influenced by the UEB model data pre-

http://www.hydroshare.org/
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processing tasks shown in Figure 3.1, a workflow of tasks that are required to be 

executed to get the inputs for the UEB model for a given watershed and specific 

modeling period. The data services are needed to support generation of such a workflow 

automatically and as web services so that a user does not need to undertake these tasks 

manually on a desktop PC. The UEB model was selected as a first test case model 

because of the need to be able to efficiently set up multiple UEB models for use in water 

supply forecasting research, and a desire to use this as impetus for developing general 

purpose model setup capability.   As, the UEB model requires data that are commonly 

used in distributed hydrologic models (precipitation, temperature, relative humidity, wind 

speed, radiation), the services developed here have potential to be applicable to other 

gridded models. In addition, the three data formats used by HydroDS (shapefile, GeoTiff, 

and NetCDF) are among the most widely used formats for representing these classes of 

data.   

 Select a model domain (geographic location of watershed of interest) and, 

if necessary, delineate the watershed draining to an outlet point.  

 Compute hydrological variables from a digital elevation model (DEM), 

including slope, aspect, topographic wetness index, etc.  

 Estimate canopy variables and vegetation indices such as the leaf area 

index based on the National Land Cover Database (NLCD). 

 Perform coordinate system conversions, resampling, and sub-setting to the 

desired model scale including grid spacing, support, and extent. 

 Retrieve weather data from national data sources (e.g., Daymet, NASA 
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NLDAS, etc.) and process and map to model elements.  

 Convert between data formats (e.g., GeoTiff raster to NetCDF and vice 

versa). 

 Carry out arithmetic operations on array data stored in NetCDF or GeoTiff 

formats. 

 Create HydroShare resources from data generated by HydroDS. The data 

may be individual files such as a watershed delineated from a DEM or a 

set of model inputs and/or outputs. Also, support moving existing 

resources in HydroShare to HydroDS for processing. 

 Create a model instance input package (e.g., all of the required input files 

to execute a model for a selected geospatial domain). 

 Miscellaneous file manipulation services such as upload, download, 

delete, zip, show metadata of a resource, etc. 

 Authentication and user access control for security and for providing user 

customized services.  

 Saving work within a storage space allocated for a user and manage the 

contents of this storage.  

 Design and Architecture  

Figure 3.2 shows the high-level organization of HydroDS, comprising HydroDS Services 

and the HydroDS Client Library. The HydroDS Services consists of data processing and 

user space and account management tools that were designed to meet the requirements 

listed above. In addition, we added functions for common hydrological data processing 
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tasks such as interpolation, resampling and projection of geospatial data.  Some of the 

data accessible through HydroDS are staged on the HydroDS servers for fast access.  

However, temporally variable data such as meteorological forcing needs to be 

periodically updated by harvesting the data for recent years after it has become available.   

The HydroDS tools are a set of Python functions for accessing and processing of 

data in raster (GeoTiff), vector (shapefile), and multi-dimensional space-time (NetCDF) 

formats.  Each tool contains one or more atomic data processing functions, each function 

with a single task. Thus, for the tools that comprise HydroDS, the design and 

implementation approach we followed was that each function is a stand-alone service that 

gets executed separately. A user may input either a vector (shapefile) or raster (mask) of 

the domain to be modeled and for which data are to be retrieved. Users may also specify 

that the model domain be derived as the watershed draining to a user selected outlet 

location.  

The watershed and terrain services are based on functions from the TauDEM 

(Tarboton et al., 2009a; Tarboton, 2015; Tesfa et al., 2011) and GDAL geospatial 

libraries (GDAL Development Team, 2014). The watershed tools delineate the watershed 

upstream of the outlet location after extracting a subset of the DEM and resampling it to 

the required grid cell size.  The terrain functions involve processing of a raw DEM and 

extraction of hydrological variables such as slope, aspect, etc. The watershed and terrain 

functions deal with rasters and shapefiles, and, hence, functions for creating and editing 

these file formats also make up part of the services. Currently, a DEM data file 

containing the one arc-second (about 30 m) spatial resolution National Elevation Dataset 

covering the western U.S. (which was the focus of the research project supporting this 
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work) is available on the HydroDS server as the starting point for the watershed and 

terrain functions. For areas in the Contiguous U.S. (CONUS) but outside of the western 

U.S., there is a function to download, at run time, the one arc-second DEM from USGS 

web services (ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG/) based 

on user-passed boundary information in geographic coordinates.  If a user wants to use 

different DEM data than those currently served by HydroDS, they can upload their own 

DEM, or move a raster resource from HydroShare to their user space in HydroDS. 

The land cover services use the 2011 National Land Cover Database (Homer et 

al., 2015) together with a look-up table of canopy variables for each land cover category 

(Appendix A) to map the land cover variables into the watershed grid. The variable 

values are limited by the land cover classes identified and the empirical canopy variable 

values available. These can be updated when more and/or better information become 

available. For example, vegetation variables from remotely sensed Moderate Resolution 

Imaging Spectroradiometer (MODIS: https://modis.gsfc.nasa.gov/) products can be 

uploaded and used by the modeler.   

The climate services provide access to and processing capabilities for data in 

NetCDF format. Daily data for precipitation, maximum and minimum temperature, vapor 

pressure, shortwave radiation, snow water equivalent, and day length from Daymet 

(Thornton et al., 2014) with 1 km spatial resolution covering the CONUS for the period 

2005 - 2015 are currently available in the HydroDS server to facilitate efficient access. 

Hourly data of precipitation, temperature, surface pressure, shortwave and longwave 

radiation, zonal and meridional wind speed, and specific humidity from the National 

Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) with horizontal 

ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG/
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resolution of 0.125-degree latitude/ longitude covering the CONUS are available for the 

period 2005 – 2015. The NLDAS data are organized in yearly NetCDF files for 

efficiency.  

The Account Management functions provide user authentication services as well 

as ability for the users to control the files in their user space, with functionality to upload 

or download data to or from their user space in HydroDS. With the linkage between 

HydroDS and HydroShare, a user is able to transfer data processed in HydroDS to 

HydroShare. This provides a mechanism by which data and model packages created by 

one user may be shared with others (Tarboton et al., 2014a; Tarboton et al., 2014b).   

The HydroDS Client Library is a set of Python functions that can be invoked from 

the user’s computer to make calls to HydroDS. For each data service function on the 

server side, a corresponding interface is implemented in the HydroDS Client Library. The 

HydroDS Client Library makes it easier to access these data services and thus facilitates 

scripting and execution of workflows that use the services from a programming 

environment on a desktop computer. The HydroDS Client Library can also be used by 

desktop applications to access the data services. An example client software that interacts 

with HydroDS through the Client Library is shown in Figure 3.3. This Google Map-based 

graphical user interface (GUI) program was developed using Python to enable calling 

HydroDS’ watershed delineation function by graphically specifying the area of interest. 

When using the Python client, the only software required by a user is a Python 

interpreting environment with the Python ‘requests’ module (http://docs.python-

requests.org/en/latest/) installed. The data services are executed on the server side where 

needed service libraries and dependencies have been installed and configured, freeing the 
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user from these dependency configuration challenges. Transmission of function calls and 

data transfer between client and server uses REST HTTP protocols over the web. 

3.4 Case Study: Evaluation of HydroDS with Input Data Preparation for the Utah 

Energy Balance Snowmelt Model  

 Motivation  

The Colorado Basin River Forecast Center (CBRFC) provides streamflow 

forecasts for watersheds in the Colorado River and Great Salt Lake basins where a 

significant portion of the annual surface water input comes from snowmelt that primarily 

falls in the mountainous headwater watersheds. Currently, the CBRFC uses the NWS 

River Forecasting System (NWSRFS) that consists of the SNOW-17 snowmelt model, 

the Sacramento Soil Moisture Accounting (SAC-SMA) model, and a channel routing 

model based on the kinematic wave equations (Anderson, 2006; Anderson, 1973; 

Burnash and Singh, 1995; Peck, 1976).  

The motivation for this case study arose from the desire to evaluate the UEB 

snowmelt model (Tarboton and Luce, 1996) as a potential replacement for the SNOW-17 

model in the NWSRFS. One of the issues that needed to be addressed in order to be able 

to use UEB in the streamflow forecast system was whether the input data available for 

the energy balance model were of sufficient quality and could be efficiently prepared for 

forecast watersheds. In this study, we evaluated how much improvement is achieved 

through the use of HydroDS to acquire and pre-process the UEB input data when 

compared to desktop-based GIS tools.  We quantified the improvement in terms of the 

time it takes to prepare input data using each approach, as well as demonstrate the value 
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of the data services to facilitate repeatability and reproducibility and tracking the 

provenance through an automated workflow script. In addition, the use of web services 

helped avoid the need for individual users to have a local data copy and data organizing 

software.  

The UEB model is a parsimonious, physically based, point energy and mass 

balance model with a single ground snow layer and a vegetation component that accounts 

for major snow processes in forested watersheds without undue complexity involved in 

parameterization of multiple snow layers (Luce and Tarboton, 2010; Mahat and 

Tarboton, 2012, 2013, 2014; Mahat et al., 2013). It uses a modified force-restore 

approach to balance above surface energy exchanges with conduction into the snow and 

model surface temperature distinct from the single layer average snowpack temperature. 

It is driven by temperature, precipitation, radiation, humidity, and wind speed. Spatial 

variability of snow is accounted for either by using snow areal depletion curves (Luce 

and Tarboton, 2004) or by using a gridded approach (Sen Gupta et al., 2015).  

 Study Watersheds and Input Data Pre-processing 

Currently, the CBRFC models are structured into watersheds that flow to NWS 

streamflow forecast points. As such, the modeling units are forecast watersheds, for 

which input data are structured independently. This makes the procedure manageable. To 

apply the UEB model for streamflow forecasting in the Colorado River Basin, we needed 

to set up a model instance for each forecast watershed. Making a model setup for each 

watershed using desktop tools currently in use can be time-consuming, error prone, and 

hard to reproduce. Recognizing that the same set of data set-up operations need to be 

carried out for each watershed, it is feasible to assume that a workflow script to pre-
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process input data for one watershed can be reused for multiple watersheds with only 

slight modifications to the script. The modification only involves specifying the 

watershed’s boundary and outlet coordinates. 

A number of headwater watersheds in the Colorado River basin and the Great Salt 

Lake basin were selected to set up UEB inputs (Figure 3.4). These watersheds were 

selected as typical streamflow forecast entities in the CBRFC. The HydroDS tasks 

required to be executed to get complete UEB model inputs for a given watershed are 

shown in the flow chart in Figure 3.5. These steps are encapsulated in the workflow 

script, which reduces the task of a modeler to execution of a single script file. The 

workflow script is provided as a HydroShare resource at (Gichamo, 2019). The major 

inputs to this workflow script for a given watershed are the coordinates of the watershed 

boundary, outlet location, the start and end time of model period, and the spatial 

reference (projection) information in the form of EPSG Code 

(http://spatialreference.org/ref/epsg/). The commands in the workflow script can also be 

called interactively from any Python command line, or, as mentioned earlier the service 

function can be called from a user application such as shown in Figure 3.3. 

3.5 Results and Discussion 

Table 3.1 shows the time it takes for preparation of UEB input data for the Logan 

River watershed for the water year 2009 for three methods: manually on desktop PC; 

using automating scripts on desktop PC; and using HydroDS through a workflow script.  

Running the HydroDS script for a different watershed only requires modification of the 

watershed boundary, location of the outlet, and projection information, as mentioned 
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earlier, and it takes 10 minutes to run the pre-processing and package it and put it into 

HydroShare. It takes comparable total time (between 9 and 15 minutes) to prepare inputs 

for the other study watersheds using HydroDS as shown in Table 3.2 

Preparing the inputs manually by a graduate student (the first author) with 

multiple years of experience using desktop-based GIS software takes more than 5 hours, 

which is cut to 2 hours and 45 minutes by simply automating the desktop tasks using 

scripts and that is further reduced to only 10 minutes when using HydroDS. The scripts 

that were used in the desktop environment are similar to those implemented in HydroDS. 

Thus, the difference between the time it takes HydroDS to prepare the inputs versus the 

time taken by scripts on a desktop PC can partly be attributed to the efficient organization 

of the data in HydroDS. On a desktop PC, even when using scripts that automate the 

processes, user intervention is necessary, for instance to locate the delineated watershed 

and point it to the scripts that run weather forcing pre-processing, because all the other 

inputs (terrain, canopy, weather forcing) have to be mapped onto the watershed grid file 

that defines the modeling domain.   

Preparing the script to run the HydroDS took about 30 minutes (for someone who 

is already well familiar with the system), which is a one-time task, after which the same 

script can be re-used for different watersheds by only changing the watershed boundary 

and outlet coordinates. We also report in Table 1 the time it took to download data to a 

desktop PC separately, because, theoretically at least, this is a one-time operation—note 

most of the time here is taken by NLDAS weather data. We did not account for the time 

required to harvest the Daymet, NLDAS, NED DEM, and NLCD land cover data into 

HydroDS data servers. However, we note here that, while the HydroDS data disks, at the 
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time of this writing, can store up to 10 TB of data, the desktop PC on which the test was 

carried out has a hard disk with a capacity of 500 GB. Thus, once the pre-processing of 

the inputs was finished, the intermediate files had to be deleted to free up storage space. 

Therefore, if we need to carry out similar operations, say in few months, downloading the 

data again might be necessary. 

Another observation in Tables 3.1 and 3.2 is that the time for weather forcing data 

processing is dominated by the wind data from NLDAS. This is because the NLDAS data 

has hourly temporal resolution for the entire CONUS compared to the daily temporal 

resolution of the Daymet data. In addition, the hourly data for each NLDAS weather 

forcing variable comes in an individual NetCDF file. To increase efficiency of HydroDS, 

the NLDAS data in HydroDS were pre-organized so that one NetCDF file contains data 

for a year for each variable, which considerably reduces the amount of processing effort. 

Therefore, ignoring the time for downloading data into the desktop PC, much of the 

difference in the NLDAS data processing time between HydroDS and the desktop PC 

arises from the prior organization of NLDAS data in HydroDS. This is an optimal option 

because the NLDAS data, after harvesting from NASA servers, were processed and 

organized only once before being stored on the HydroDS server. Then multiple users can 

benefit from this organization, thus avoiding redundant and potentially error-prone data 

processing by different users or by the same user multiple times.  

While the services demonstrably reduced the time and effort required to prepare 

UEB inputs, in the long run, a more useful benefit arises from the fact that the workflow 

script maintains the provenance of the data processing. For instance, few months after 

first using the script to prepare the Logan River watershed, we came back and used the 
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script again with no additional work required and retrieved the exact same result. In 

addition, by changing the watershed boundary and outlet coordinates and the model 

period, the same script can be used for a different watershed. This way, HydroDS 

facilitates reproducibility. In addition, it provides the and ability to take advantage of a 

pre-configured system where the user need not be concerned about the organization of 

the server side functions, data, software, and hardware where the dependencies are 

already sorted out. By providing the capability to automate the data processing steps, 

preserving provenance, and enhancing the reproducibility and repeatability of the 

hydrologic data processing, HydroDS thus provides a number of benefits of standard 

workflow systems (Goble and De Roure, 2009), while simplifying the responsibility of 

the user to handling a single Python workflow script.  

On the other hand, based on our observations using the services, the provision of 

individual access to all atomic functions in the Python HydroDS Client Library to call 

individual tasks appears to be not that useful, as the workflow scripts combining multiple 

related tasks are often the ones that are applied. Therefore, provision of coarser grained 

convenience functions, e.g., watershed delineation, and hiding the component functions, 

e.g., subset DEM, may be more productive. 

The biggest limitation of HydroDS, as it stands currently, is the fact that the 

services are limited to gridded data such as those used in the UEB model. A number of 

hydrologic models use unstructured grids or other modeling units such as Hydrologic 

Response Unit (HRU). The data processing services need to accommodate for such 

modeling configurations if they are to be used by the wide range of models currently used 

by hydrologic community. A related, but less critical, limitation of HydroDS is that it 
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only supports GeoTiff, Shapefile and NetCDF file formats.  The Hierarchical Data 

Format (HDF - https://www.hdfgroup.org/) is as widely used as NetCDF and would add 

additional flexibility to HydroDS if it were supported. An alternative is to add HydroDS 

functions for conversion of data from NetCDF to other standardized data formats such as 

HDF and vice versa.   

Another limitation of this study is that all the watersheds evaluated were 

headwater watersheds whose final (pre-processed and ready to be used in the model) 

input data have relatively small file sizes (less than 2 GB). The work in this paper deals 

with large basins such as the Colorado River basin by breaking them down into CBRFC 

forecast watersheds and handling data processing for smaller, individual watersheds. 

Dealing with individual forecast watersheds with relatively small sizes was a design 

choice that keeps the size of the data and the computational resources for pre-processing 

of a single watershed easily manageable, while taking advantage of automation to address 

multiple watersheds. Characterizing how the services perform when increasing the sizes 

of the watersheds, for example by integrating multiple adjacent watersheds, may be an 

important next step. In such a scenario, the size of the weather forcing data increases 

more rapidly than the other data types, and weather data processing services, which 

currently use serial codes, may have to deal with large datasets in NetCDF format, which 

could necessitate implementation of parallel processing. Additional work is also required 

to deal with the potential increase in processing time due to increase in size of processed 

data. For example, a mechanism for queuing and batch processing of large operations 

with asynchronous notifications to a user that the batch of tasks from a workflow script is 

completed would be useful, as it would not be feasible for the user to wait for the web 

https://www.hdfgroup.org/
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services to return when the execution time extends beyond the ~10 minutes reported in 

this paper.  

Currently, extending the available service functionalities requires obtaining 

appropriate credentials and familiarity with the development environment and the 

underlying technologies including Django, GDAL, TauDEM, NetCDF library, and 

NetCDF operators (NCO) in addition to Python programming skills. Future 

developments should consider a simplified way to extend the services to cover more 

geospatial processing tools and data. One way to enable a relatively easy extension of the 

services by addition of new functionalities is adding a Software Development Kit (SDK) 

as a component of the HydroDS services. The SDK could be as simple as providing 

sample source codes to modify for new functions or support more advanced features such 

as tools and libraries to serve as building blocks for new tools/functions. 

Finally, while these results demonstrate that HydroDS helps reduce the time and 

effort required for accessing and pre-processing model input data, the task of deciding on 

what hydrological questions to ask depends on the researcher’s prior experience. In this 

study, deciding the case study involved a number of iterations. 

3.6 Summary and Conclusions  

HydroDS, a set of web-based data services providing access to hydrologic data 

and geospatial analysis capabilities for distributed hydrological models requiring gridded 

inputs was introduced in this paper. The services comprise functions for important 

hydrologic data processing tasks such as watershed delineation, terrain processing, 

estimation of canopy variables based on the NLCD, and accessing and processing of 
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climate data from Daymet and NLDAS. The services are composed of single task 

functions that can be used independently or can be chained together to form a workflow 

for complete generation of model inputs. A platform independent and easy to use Python 

library, the HydroDS Client Library, provides access to the web services. Through the 

HydroDS Client Library, the services can be used in a Python script or desktop 

application that obtains processed data from HydroDS and performs further analysis. 

Accessing the services requires only Python, which means that users can access them 

from any computing platform with Python support.  

HydroDS was demonstrated by setting up Utah Energy Balance snowmelt model 

(UEB) instances for watersheds in the Colorado River and Great Salt Lake basins. The 

cases demonstrate how HydroDS helps reduce the time and effort spent by researchers 

for discovering, accessing, and pre-processing hydrologic model input data. A 

considerable part of the time saved by using HydroDS instead of desktop-based data 

processing comes from better organization of data in HydroDS. The Python scripting-

based data processing workflows also enhance repeatability and reproducibility because 

the same script can be re-used. The script needs to be modified only to specify the 

watershed boundaries and outlet location when used for a different watershed. As the 

workflow script also captures all the steps towards the final model input, its provenance 

is preserved in the script. The ‘software as a service’ paradigm of the web services allows 

multiple users not to bother about the storage and organization of data, which is done in 

the server, and software and hardware dependencies are already sorted out. 

Based on our observations using the services, the provision of access, through the 

HydroDS Client Library, to the atomic functions to do individual tasks appears to be not 
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that useful; rather the workflow scripts combining multiple coarser granular functions 

were more productive. The work in this paper deals with large basins such as the 

Colorado River Basin by breaking them down into CBRFC forecast watersheds and 

handling data processing for smaller, individual watersheds. This was a design choice 

that worked well for this study. Future studies should address the alternative approach of 

processing river basins such as the Colorado Basin as a whole. Future work should also 

extend the services to provide inputs for unstructured grid models and models using 

HRUs (or other equivalent tessellations of the landscape) for HydroDS to support a wider 

range of hydrologic models. Future development should consider provision of Software 

Development Kit (SDK) in HydroDS to enable (a relatively) easy extension of the 

services with new functionalities. 
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Table 3.1 UEB input processing time for the Logan River Watershed for the WY 2009 

Data 

preparation 

method 

Time (min) 

Watershed 

Delineation 

Preparing 

Terrain 

Variables 

Preparing 

Canopy 

Variables 

Preparing Weather 

Forcing Data  

 

Total Copying 

Data  

Daymet NLDAS 

(wind) 

Manual on 

desktop PC 

60 15 40 125* 75**  315 

(5.25 hrs) 

120 min 

 

all of it 

NLDAS 

data copy 

Using scripts 

on desktop 

PC 

25 7 18 40 75  165 

(2.75 hrs) 

Using 

HydroDS***  

1 0.5 0.5 2 6  

 

10  

(0.17 hrs) 

NA 

* Not including time for data download and time spent troubleshooting the errors that 

occurred during the data processing. The whole processes, including error 

troubleshooting, took about 6 hours. 

** Using scripts. It proved to be too laborious to process this manually—after about an 

hour of trying, decided to write the script, which took about two hours, then finish the 

work from the script. 

*** Preparing HydroDS Script takes about 30 minutes. 
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Table 3.2 UEB input data pre-processing time using HydroDS for the WY 2009 

Study 

Watershed 

Time (min) 

Watershed 

Delineation 

Preparing 

Terrain 

Variables 

Preparing 

Canopy 

Variables 

Preparing Weather 

Forcing Data  

 

Total 

Daymet NLDAS 

(wind) 

Animas above 

Durango 

1 0.5 0.5 2 9 13 

Blue above 

Dillon 

0.5 0.5 0.5 1.0 9 11.5 

Dolores above 

Mcphee 

1 0.5 0.5 1.5 11 14.5 

Frazer at Winter 

Park 

0.25 0.25 0.25 1.0 9 10.75 

Green above 

Warren Bridge 

0.5 0.5 0.5 1.5 6 9 

Logan above 

First Dam 

1 0.5 0.5 2 6 10 

Uncompahgre 

above Ridgeway 

0.5 0.25 0.25 1.0 12 14 

Williams Fork 

above Williams 

Fork 

0.25 0.25 0.25 1.0 13 14.75 
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Figure 3.1 Workflow for the Utah Energy Balance snowmelt model (UEB) input 

preparation. 
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Figure 3.2 High-level architecture of HydroDS. HydroDS comprises HydroDS Services 

and HydroDS Python Client Library. 
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Figure 3.3 A desktop, Google Map-based GUI program for accessing USGS DEM and 

watershed delineation through HydroDS. Google Map drawing tools are used to specify 

the bounding box around the watershed of interest and Google Map marker is used to 

select an approximate watershed outlet location. 
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Figure 3.4 Map showing study watersheds. These watersheds were selected as typical 

streamflow forecast entities in the CBRFC. 
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Figure 3.5 Flow chart of the Utah Energy Balance snowmelt model (UEB) input data 

preparation steps. 
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UEB PARALLEL: DISTRIBUTED SNOW ACCUMULATION AND MELT 

MODELING USING PARALLEL COMPUTING3 

Abstract 

The Utah Energy Balance (UEB) model is a distributed snow accumulation and 

melt model that supports the detailed simulation of snow processes on a fine grid over a 

watershed.  To enhance the computational efficiency of this model, we developed and 

compared two parallel versions of the model, one using the Message Passing Interface 

(MPI) and the other using NVIDIA’s Compute Unified Device Architecture (CUDA) 

code on Graphics Processing Unit (GPU). For the implementation with MPI, we tested 

the performance of the model with an increase in the number of processing cores by 

calculating speed-up and efficiency and comparing to the ideal speed-up from Amdahl’s 

law. Model simulation timing tests show that when running as a serial code (using a 

single process), about 1.7% of the total simulation time was spent on input/output (IO) 

read/write operations. The effect of these IO operations becomes more pronounced with 

increased number of processes. As a result, although the computation kernel scales well 

as the number of processors increases, the efficiency of the parallel code as a whole 

degrades. Using IO operations that carry out reading and writing of multiple arrays at 

once, instead of making multiple reading/writing of single arrays, improved the 

performance to some degree. The CUDA GPU implementation demonstrated that 

satisfactory performance with CUDA GPU can be obtained without necessarily requiring 

                                                             
3 Authors:  Tseganeh Z Gichamo, David G. Tarboton. 
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a major re-work of the existing UEB MPI code.   

Keywords—Utah Energy Balance snowmelt model (UEB); Message Passing 

Interface (MPI); Compute Unified Device Architecture (CUDA); Graphics Processing 

Unit (GPU); Parallel IO. 

Software Availability 

Program name: UEB Parallel. 

Description: Parallel version of the Utah Energy Balance snowmelt model (UEB). 

Platform: Platform independent. Tested on Microsoft Windows & Linux (CentOS 6.x). 

Source language: C++ / CUDA. 

Cost/License: Free / Open source, GNU General Public License. 

Developers: Tarboton research group, Utah State University. 

Availability: http://github.com/dtarb/ueb   

4.1 Introduction  

Hydrological models are used to predict environmental flow of water under 

diverse drivers of change that are complex and heterogeneous. One of the prime 

motivators of current hydrological research is the need to understand and quantify the 

possible impacts on water resources of changes in climate, land cover, land use, 

population and urbanization (Fowler et al., 2007). Such studies may require modeling of 

the hydrologic processes at various scales, ranging from headwater watersheds to river 

basins scales. As the terrestrial water cycle is affected by its interactions with the 

atmospheric and oceanic processes, hydrological models at river basin or global scale 

may also need to consider the various pathways of water in the global cycle and 

magnitudes of feed-backs between different layers/components of the cycle (Levine and 

Salvucci, 1999; Maxwell et al., 2014; Paniconi and Putti, 2015). A few years ago, Wood 

http://github.com/dtarb/ueb
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et al. (2011) made a call for "Hyperresolution global land surface modeling” to 

sufficiently resolve local processes in a model of global or continental scale.  

This task of modeling the hydrologic cycle at large scale with sufficient resolution 

processes poses multiple challenges. One of these challenges is the desire to use high-

performance computing (HPC) resources to reduce computational time or increase the 

level of detail (and hence complexity) at which these problems are investigated. On the 

other hand, the availability of HPC resources is increasing. This, coupled with the 

recognition of the scientific needs for undertaking large scale hydrologic simulation, has 

led to development of simulation models that implement parallel processing technologies. 

For example (Kollet et al., 2010) present results of a study where an integrated multi-

dimensional modeling problem with a number of unknowns in the order of 109 was 

solved within a feasible simulation time. The challenge for hydrological modelers is thus 

shifting from the lack of computing resources to reconfiguring their modeling software to 

be able to take advantage of these new resources.  

It should be noted here that parallel programming in hydrologic and 

environmental modeling is not a new opportunity or issue (e.g., Paglieri et al., 1997; Rao, 

2004).  However, in the past decade a strong argument has been made that the basic 

approach to software development should incorporate concurrency (multi-processes) 

programming because of the “power wall,” the upper limit imposed on the clock speed of 

single core due to overheating of high-frequency cores and other efficiency/optimization 

considerations (Brodtkorb et al., 2013; Sutter, 2005; Sutter and Larus, 2005). 

Concurrency programing has also been spurred by programing interfaces, i.e., standard 

definitions that abstract away most of the low level operations and a number of library 
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implementations of these interfaces, thereby freeing a research programmer to focus on 

domain-specific modeling issues (e.g., MPI http://www.mpi-forum.org/, OpenMP 

http://openmp.org/wp/).  

Given the desire to apply more physically based, distributed, high-resolution 

hydrologic models, and given the opportunities offered by the parallel programing 

standards and libraries, the question then becomes what method to choose for a given 

model and what factors affect efficient scaling of the modeling code. In this study, we 

evaluated parallel processing implementations of the Utah Energy Balance (UEB) snow 

accumulation and melt model. Implementation of parallel programming methods in UEB 

is expected to facilitate its application in areas such as streamflow forecast where there is 

an increased interest to incrementally evaluate and adopt energy balance snowmelt 

models (Franz et al., 2008).  

We evaluated two implementations: one using the MPICH2 library of the 

Message Passing Interface (MPI) specification (Gropp et al., 2005), and the other using 

NVIDIA’s Compute Unified Device Architecture (CUDA) code on Graphics Processing 

Units (GPUs) (Nickolls et al., 2008). The MPI is a distributed memory programming 

approach that promises good efficiency for the distributed UEB model that requires 

independent data for different model grid cells. On the other hand, the CUDA code, with 

its compatibility to C++, enhances the accessibility of general-purpose GPUs that have 

ability to handle compute-intensive tasks. The computational performances of the parallel 

codes were compared using simulations of the Logan River Watershed, Utah, for a period 

of five years. For the implementation with MPI, we evaluated the speed-up and efficiency 

of the code with increasing number of processors and compared the speed-up trend with 

http://www.mpi-forum.org/
http://openmp.org/wp/
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the ideal speed-up from Amdahl’s law (Amdahl, 1967, 2007; Gustafson, 1988). With 

regard to the application of GPUs, Neal et al. (2010) had found earlier that, even though 

their GPU code was faster and more efficient than their MPI implementation, the 

development time it required was prohibitive. In contrast, Tristram et al. (2014) report 

that not only GPUs were more cost efficient for their application, but also achieving 

satisfactory speed-up with GPUs did not require major refactoring of their existing code. 

For the CUDA implementation of the UEB code in this study, we also evaluated if 

satisfactory performance could be achieved by the GPU code without major refactoring 

of the code. 

This paper is organized as follows. In the next section, brief discussion of factors 

to consider in parallel programing based on review of recent literature is given (focusing 

on hydrologic models). In Section 4.3, Methods, we describe the UEB model, the 

algorithms for the parallel implementations, the modeling case study to test the 

performance of the parallel codes, and the performance metrics. Results of the tests and 

discussion are given in Section 4.4 followed by conclusions in Section 4.5.  

4.2 Factors to Consider in Parallel Programing  

The choice of a particular parallel programing approach may depend on a number 

of factors including familiarity with the programing interface, ease of adaptation of 

existing serial code to a parallel version and the data/memory configuration of the 

modeling problem to solve. Neal et al. (2010) investigated the application for 2D flood 

inundation modeling of three of the commonly used programming methods: shared 

memory Open Multi-Processing (OpenMP), distributed memory Message Passing 
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Interface (MPI) and Graphics Processing Unit (GPU). They tested the three approaches 

with respect to applicability to a given problem code, parallel code efficiency achieved, 

and required implementation effort (development time). They concluded that the MPI 

approach was the most suitable compromise between efficiency achieved and 

programming complexity involved. They found that even though the GPU code was the 

fastest and most efficient, the development time it required was prohibitive.  

Another important factor in parallel programming of simulation models is 

domain/data decomposition among processes. Data partitioning schemes often try to 

address the issue of load balancing between multiple processors. A good example is a 2D 

flood inundation model where some of the grid cells in the flood plain remain dry for part 

of the model time, resulting in some idle process time. Data partitioning schemes should 

strive to minimize such idle times (Brodtkorb et al., 2012; Sanders et al., 2010). With 

respect to hydrological models, domain decomposition is related to the flow 

dependencies (upstream-to-downstream) between computational sub-domains, where the 

computational sub-domain can be a Representative Elementary Watershed (REW), 

Hydrologic Response Unit (HRU), a structured/ unstructured grid cell, or a river reach. In 

addition, load imbalance may arise from the spatial variability of processes considered 

such as areas covered with snow versus those with no snow, upstream hill slope versus 

riparian area or river channel, presence and type of vegetation, etc. Some of the 

approaches used in recent research are described below.  

The first one is the use of multiple layers in which simulation units (grids) are 

divided based on their degree of dependency on upstream units. Accordingly, units that 

do not depend on other units are placed at highest priority layer, and units that depend 
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only on a single unit are placed in the second highest priority layer, and so on (Liu et al., 

2014). Another approach involves dynamic (run-time) allocation of a data partition to an 

available idle processor once the partition no longer depends on upstream processes (Li et 

al., 2011). Dividing a 2D model domain into strips where the only inter-process 

communications are at the boundaries between two adjacent sub-domains is another 

approach (Tarboton et al., 2009c; Tesfa et al., 2011). A different approach, particularly 

useful for a model with a tightly coupled set of processes, is collecting all the governing 

equations into a global system of equations which are solved by a matrix solver (Qu and 

Duffy, 2007). Such a matrix solver may divide the global matrix into sub-matrices that 

are mapped to multiple processes. The examples above do not form an exhaustive list; 

however, they indicate that, generally, the choice of a given domain decomposition 

would be dictated by the specific modeling problem (Small et al., 2013). Presently, a 

researcher or a modeler has to consider their own problem domain and decide whether to 

use a method similar to those listed above or develop their own. The ability to 

automatically choose certain domain decomposition method given a problem domain 

type is a potential area of future study 

The extent to which a parallel program’s performance increases with the increase 

of computing resources (e.g., number of processes) depends primarily on the fraction of 

code that has to be executed in serial. This is the essence of Amdahl’s law (Amdahl, 

1967, 2007; Gustafson, 1988) based on which the maximum possible speed-up for a 

given problem is computed as a function of the number of processes and the serial 

fraction of the code. The effect of the serial fraction of the code becomes more important 

with increasing parallelization. Yavits et al. (2014) review a number of research works 
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that deal with the effect of data transfer between the serial and parallel portions of the 

code and the inter-process communications on the maximum speed-up determined from 

Amdahl’s law. They provide models that revise Amdahl’s law incorporating terms that 

represent arithmetic intensity—the ratio of total compute operations to data transfer 

computations, data transfer synchronization between the serial and parallel portions of the 

program, and inter-process communication and synchronization. Accordingly, even if a 

program has a parallelizable fraction close to 1, high inter-process communication and/or 

high serial to parallel data synchronization might render it unsuitable for extensive 

parallelization. For such problems, they suggest using fewer large cores rather than a 

large number of small cores.   

Finally, the cost efficiency of the parallel method will have to be considered.  As 

indicated earlier, Neal et al. (2010) concluded the developer time for programming using 

graphics cards to be prohibitive in their modeling case. However, total cost should also 

include the price of the computing hardware units and operating costs. Tristram et al. 

(2014) report results from a parallel hydrologic uncertainty model with multiple 

ensembles using GPUs. They compared the CPU and GPU performances with respect to 

speed-up, the cost of processors and the cost of power usage, and found GPUs to be more 

cost efficient for their application. Regarding programmer’s time, they showed that to 

achieve satisfactory speed-up with GPUs, major refactoring of their existing code was not 

necessary. In addition, the performance was further enhanced with an optimization 

involving memory access configuration. The general purpose programming toolkits such 

as CUDA (https://developer.nvidia.com/cuda-toolkit) and OpenCL 

(https://www.khronos.org/opencl/) coupled with the cheap graphics cards on commodity 
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computers make GPU programming more accessible to scientific research programmers 

(Garland et al., 2008). However, realizing the full benefits still requires learning efficient 

program organization and optimizations such as latency hiding by overlapping 

computation with Input Output (IO) operations, wise management of register and caches, 

memory layout configuration (De La Asunción et al., 2012; Tristram et al., 2014) which 

requires more effort and time (Brodtkorb et al., 2013).   

4.3 Methods 

 Utah Energy Balance (UEB) Model 

The Utah Energy Balance (UEB) model tracks the accumulation and ablation of a 

single snow layer at the ground surface by energy and mass balance computations 

(Tarboton and Luce, 1996). The model accounts for canopy snow interception, 

partitioning of incoming solar and atmospheric radiation through canopy layer, and 

turbulent fluxes of latent and sensible heat within and below canopy layer (Mahat and 

Tarboton, 2012, 2013; Mahat et al., 2013). The snow surface temperature is computed 

using the modified Force-Restore method that characterizes the conduction of heat into 

the snowpack as a function of the temperature gradient between the snow surface and the 

average temperature of the snowpack, and by taking into account the temperature profile 

of the snowpack in the past 24 hours (Luce and Tarboton, 2010; You et al., 2014). 

Recently, glacier melt processes were modeled with UEB (Sen Gupta and Tarboton, 

2013). The model equations and further descriptions can be found in previous 

publications (Mahat and Tarboton, 2012; Mahat et al., 2013; Tarboton and Luce, 1996). 

In UEB, the equations describing the state-flux relationships are applicable for a 
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model element with uniform (or representative) values of terrain characteristics (slope, 

aspect, etc.), canopy variables, and meteorological forcing. For spatially distributed 

modeling, earlier research explored the use of depletion curves to deal with sub-

watershed variability (Luce et al., 1999). The recent work by Sen Gupta and Tarboton 

(2013) configured the model to be run as fully distributed using Cartesian grids. In the 

gridded model, the model computations are carried out separately on individual grid cells 

with the only interaction between grid cells occurring when aggregating outputs from 

watersheds (or sub-watersheds). This configuration makes UEB amenable to parallel 

computation with domain decomposition that is to be constrained only by the aggregation 

operations.  

The UEB model is driven by temperature, precipitation, radiation, humidity, and 

wind speed. The Network Common Data Form (NetCDF), a data format that enables 

storage and manipulation of multi-dimensional arrays (http://www.unidata.ucar.edu/) is 

used as input/output format for UEB. NetCDF includes a set of libraries and tools that 

enable array-oriented data access with advantages that include concurrent access 

(multiple readers), platform independence, efficient sub-setting, and data appending (i.e., 

additional data are added to a file without redefining it or copying the whole content).  A 

NetCDF file is self-contained in that the metadata to describe the contents of the data and 

other ancillary information are stored within the file (Rew et al., 2014). A benefit of using 

NetCDF is that many array-oriented data sets come in some form of gridded binary 

format compatible with NetCDF. The choice to use NetCDF as input/output format for 

UEB was driven by the vision to couple the model with data sources and other models 

that follow the same standard. 
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 UEB Parallel   

The flow chart for the parallel version of the UEB model developed by this work 

with MPI implementation is shown in Figure 4.1. Many of the tasks, including the 

weather forcing IO operations, are contained in a code block named “Run UEB in the 

grid cell for all time steps.” This step loops through all grid cells, runs the model for all 

time steps of the simulation period for a given grid cell, proceeds to the next grid cell and 

runs the model for the whole simulation period, and so on. The operations at each grid 

cell are carried out independently from the other grid cells. This block of code takes more 

than 99% the total simulation time. This code block was, therefore, parallelized with MPI 

in which the active grid cells, excluding the no-compute cells, were divided into the total 

number of processes. When the total number of grid cells is not evenly divisible by the 

number of available processes, some processes may be allocated an extra grid, leaving 

the others with an idle time of one grid cell computation. For large sized problems, this 

idle time is expected to be small.  

At the end of the simulation, the processes collectively write model outputs to a 

NetCDF file, one output file for each output variable. This NetCDF write requires 

synchronization among the processes as they access the NetCDF file simultaneously. One 

factor we evaluated in this study was the extent to which the IO operations can be 

parallelized, and the degree to which the synchronized access to data in NetCDF files by 

multiple processes can affect the overall performance of the parallel codes. For this 

implementation of the UEB model with MPI, we compared an IO reading/writing in 

which multiple arrays of data are handled at once to the ‘looping through the grids’ 

approach mentioned above that accesses a single array at a time (multiple arrays versus 
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one-array-at-a-time).  

The flow chart for the model implementation with GPU is shown in Figure 4.2. In 

this case, a UEB class was defined first as a class that encapsulates watershed, terrain, 

and canopy variables as data members and the UEB simulation functions as methods 

(member functions). As the result, the array of active grid cells consists of an array of 

UEB class instances. This configuration was chosen because it was easier to copy arrays 

of objects/structures between the host/CPU and device/GPU nodes than copying 

individual variable arrays. The CPU (host) allocates GPU (device) memory and copies 

the data to the device. All the snow process computations are carried out by the GPU 

functions, i.e., kernels, and outputs are copied back to the CPU node that writes them into 

NetCDF files. In this case, in contrast to the MPI implementation, few CPU nodes carry 

out the IO operations. We implemented the CUDA code in such a way that the changes to 

the UEB MPI code were kept minimal, as can be seen from comparison of Figures 4.1 

and 4.2. The objective here was to evaluate if the observation by Tristram et al. (2014) 

that implementing GPU code with satisfactory performance may not necessarily require 

major re-work on an existing programming code also applies to UEB. 

An important difference between the GPU implementation and the one with MPI 

is that in the GPU case the time loop is outside of the grid cell loop, i.e., simulations at all 

grid cells are carried out for a few time steps (typically a few days) before advancing to 

the next step. This way, the highly parallel nature of individual grid cell computations is 

taken advantage of without having to copy all the weather forcing data to the device at 

once. Copying weather forcing data for all time steps at once would require large 

memory at the device that could be difficult to allocate.  
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In both implementations, the active grid cells were evenly distributed among MPI 

processes or GPU threads, when that was possible. In the UEB model, there is spatial 

variability in grid cell properties, such as vegetation covered versus no vegetation, snow 

covered versus no snow that affects the number of iterations to converge to a particular 

solution in a given cell, and that introduces some variability in the total compute time 

among processes/threads. This is considered to be part of simulation overhead and will 

diminish the efficiency, compared to the ideal case of both parallel implementations. Two 

other sources of overhead are reading configuration files at the beginning of the program 

and an outputs aggregation step where watershed average/total quantities are computed. 

The aggregation operations involve inter-process communication. 

 Test Case Study: The Logan River Watershed  

We used simulations of snow accumulation and melt for five years—October 1, 

2007- September 30, 2012—in the Logan River watershed, Utah, to evaluate the 

performance of the parallel codes. The Logan River watershed is a 554 km2 watershed 

located in the Bear River Range of Utah in the western U.S. The watershed elevation 

ranges from 1497 to 3025 m with mean elevation of 2271 m. Most of the upland 

watershed is covered by shrubs, grass, and forest and is primarily used for grazing while 

the lower reaches of the river support irrigation. The average precipitation varies between 

450 – 1500 mm per year with most of it in the form of snow. The river peaks late in the 

spring from snowmelt. Figure 4.3 shows the location map of the Logan River watershed 

and its digital elevation map.   

The input data were setup as follows. The watershed domain was delineated from 

the 30 m USGS National Elevation Dataset Digital Elevation Model (NED DEM) using 



124 
 
the terrain analysis software TauDEM (Tarboton et al., 2009a; Tarboton, 2015; Tesfa et 

al., 2011). Terrain variables slope and aspect were calculated from the DEM in ESRI’s 

ArcGIS software (www.esri.com). The canopy leaf area index (LAI) values were 

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) product 

MOD15A2. The other vegetation variables including canopy height and fraction of land 

covered with vegetation were determined using the National Land Cover Database 2011 

(NLCD 2011) (Homer et al., 2015). Weather forcing data were obtained from SNOTEL 

stations in and nearby the watershed. These data were gridded with the bilinear 

interpolation method to grid size of 120 m, the model resolution, and downscaled 

(adjusted for elevation) using a methodology descripted by Sen Gupta and Tarboton 

(2016). The focus of this study was evaluation of the performance of the parallel codes; 

thus, no calibration or validation of model parameters was performed apart from 

verification to make sure the parallel models’ outputs are consistent with those of the 

original serial version. 

 Description of Computing Resources  

Both versions of the UEB Parallel model were written as a platform independent 

code with the C++ programming language. The GPU version uses CUDA for the device 

codes. Performance tests were made in Linux clusters with up to 128 processes for the 

MPI version, while the GPU code was tested on a Linux machine with a CPU node 

linked to one GPU node. The specifications of the computing resources are as follows: 

 Linux cluster for MPI: Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz with a total of 

32 cores/node (64 cores/node with hyper-threading enabled).   

 Linux nodes with GPU: Intel E5-2670 (Sandy Bridge) CPU + NVIDIA K20x GPU. 

http://www.esri.com/


125 
 

 Performance Metrics  

Total simulation time, speed-up, and efficiency were used to test the performance 

of the parallel models.  Speed-up is computed as the ratio of the total simulation time by a 

single processor to that by multiple processors (P number of processors). Speed-up varies 

with the total of number of processors. Efficiency is the speed-up divided by the number 

of processors (Eager et al., 1989). For a given unit of work, the efficiency may change 

with the number of processors due to an increased overhead and/or inter-process 

communication. According to Amdahl’s law (Amdahl, 1967, 2007; Gustafson, 1988) the 

maximum possible speed-up (ideal speed-up)  is constrained by the fraction of the code 

that has to be executed serially, and hence is executed by all processors. For the UEB 

model, this was assumed to be the code outside of the “Loop through active grid cells” 

portion of the code described above. In reality, however, some of the codes inside the 

loop could also contribute to it. These are generally considered ‘overhead,’ and this is 

partly why the “ideal speed-up” is called “ideal”—because, in practice, the overheads 

further reduce the speed-up. 

Equations 1 - 3 below give Speed-up, Efficiency, and representation of Amdahl’s 

law, given a number of processors P. Equations 1 and 3 represent the ratio of two similar 

units, often computed as the simulation time per one processor divided by simulation 

time per multiple processors. Both equations (1 & 3) apply to processors that are of 

uniform type, of similar core size and speed. The units of the numerator and the 

denominator in equation 3 can thus be considered as that of time per unit computation 

core. 
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     𝑆𝑝 = 
𝑇1
𝑇𝑝
                          (1) 

     𝐸𝑝 = 
𝑆𝑝
𝑃
                          (2) 

𝑆𝑝𝑚𝑎𝑥 = 
1

𝑓𝑠 + 
1 − 𝑓𝑠
𝑃

         (3) 

Where: Sp = Speed-up by P number of processors 

T1 = Execution time for a single processor 

Tp = Execution time for P number of processors 

Ep = Efficiency for P number of processors 

P = number of processors 

Spmax = maximum speed-up based on Amdahl’s law 

fs = Fraction of code that can only be executed serially.  

In the case of UEB with MPI, with much of the code in the parallelizable “Loop 

through active grid cells” block as described earlier, speed-up approaching the number of 

processors (P) is to be expected given little input overhead and blocking communications 

(i.e., inter-process communications that force processes to wait for each other). Some 

degradation from maximum efficiency is expected due to variability in the processing 

time for each cell. An increase in the workload by increasing the size of the watershed 

and/or the duration of simulation would primarily increase the tasks inside the loop and is 

expected to increase the speed-up per total number of processes (i.e., efficiency). 

When computing the ideal speed-up and efficiency using Amdahl’s law above, we 

considered the time for the inter-process communications to be part of the fraction of the 
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code executed in serial, but we assumed IO operations were parallelizable. An alternative 

analysis is to consider the inter-process communications and IO operations separately. To 

demonstrate the effect of IO operations on the parallel performance of UEB, we use a 

slightly modified equation from (Yavits et al., 2014 p. 7 Eqn 13) for symmetric compute 

cores of uniform compute ability. The modification here is that we assume the inter-

process communication to be negligible in UEB, hence the term for inter-process 

communication is dropped.  

𝑆𝑝𝑚𝑎𝑥𝑟 = 
1

(1 − 𝑓𝑝) + 
𝑓𝑝
𝑃
+ 
𝑇𝑠
𝑇1

              (4) 

Where: fp = Fraction of code that can be executed in parallel 

P = number of processors   

T1 = Execution time for a single processor  

Ts = IO synchronization time (Sequential-to-parallel data synchronization time in 

(Yavits et al., 2014)) 

Spmaxr = maximum speed-up based on Amdahl’s law, revised to account for IO  

The term  
𝑇𝑠

𝑇1
  in equation (4)  is referred to as “Synchronization Intensity” in 

(Yavits et al., 2014)—it accounts for the time spent by reading/writing and sharing 

(synchronizing) data among processors. The effect of Synchronization Intensity is to 

decrease the ideal speed-up, and its importance increases for larger number of parallel 

cores.  

4.4 Results and Discussion  

Figure 4.4 shows plots of the total simulation time, speed-up, efficiency, and ratio 
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of IO time to total simulation time as a function of the number of processes for the 

simulation using MPI. It can be seen that the slope of the speed-up curve decreases with 

increase in number of processes. Figure 4.4b also compares the speed-up against the 

maximum speed-up based on Amdahl’s law. Excluding the code inside the “loop through 

the grids” which also includes IO, the remaining part of the code takes less than 0.01% of 

the total simulation time. This initially suggested a highly parallelizable code, which led 

to expectation of speed-up close to the ideal speed-up. The actual speed-up curve, 

however, is much lower than the ideal speed-up curve, and its slope decreases with 

increasing number of processes.  

Figures 4.4b and 4.4c also include speed-up and efficiency plots for the model 

computation core, i.e., excluding IO operations. As can be seen from the figures, the 

speed-up of the computational core is closer to the ideal speed-up.  The reason for the 

poor performance of the total code compared to the computation core is that the IO is not 

as readily parallelizable as the rest of the code. For the serial version of the program, the 

IO takes about 1.7 % of the total execution time of the code. Because this fraction of code 

is not being parallelized, it affects the performance of the whole model with increasing 

importance as the number of processes is increased, as shown in Figure 4.4d.  

The deviation of the computational core speed-up from the ideal line can be 

caused by any of, or a combination of, the factors that were considered “overhead” during 

the design in Section 4.3.2. In addition, after the total active grid cells were evenly 

divided between the processes, a few processes would be allocated one additional grid 

cell to simulate. This means some processes may have to stay idle for a duration of one 

grid cell computation. The time it takes for a full computation of one grid cell, on 
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average, is about 2.5 seconds. 

Bridging the gap between the good scaling of the computational core and the poor 

scaling for the total model run caused by poor IO scaling is important as the IO starts to 

dominate with increasing processes so much so that beyond 64 processes, increasing the 

number of processes may not be justifiably useful. While the parallel NetCDF4, which is 

based on HDF5’s MPI IO feature, would enable synchronized file access by multiple 

processes, efficient IO scaling requires coupling it with some file read strategies that take 

advantage of the synchronization (Chilan et al., 2006). Figure 4.5 shows the results for a 

modified UEB IO reading/writing in which multiple arrays of data were handled at once 

instead of the ‘looping through the grids’ approach used in Figure 4.4. As can be seen in 

Figure 4.5, the performance improves appreciably, particularly for the higher number of 

processes. For 64 processes, the speed-up increases from 24 to 42 while the efficiency 

increases from about 0.38 to 0.67. Similarly, for 128 processes, the speed-up and 

efficiency increase from 31 to 63 and 0.25 to 0.49 respectively. This approach would 

reduce the total file access operations; however, it may require larger memory per core to 

be effective. 

Figure 4.6 is a re-plot of Figure 4.5a with the ideal speed-up revised according to 

equation (4) to account for the effect of IO operations. This figure indicates that any 

further performance improvement would only come from better IO parallelization.  

The model run times for the GPU version with CUDA code are shown in Table 

4.1. We do not have multiple simulations in GPU, so there are no comparable plots for 

GPU to those for MPI. In this case, the IO operations were carried out by the CPU (host) 

while the numerical simulations were performed by the GPU (device). In addition to IO 
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operations, data synchronization between the host and device is required. Inputs are read 

by the host, copied from the host to the device, and simulated outputs are copied back to 

the host, which writes out to NetCDF output files. Table 4.1 also includes run times from 

the MPI implementations in Linux cluster with one and 64 processes, as well as run times 

on desktop PC with a single processor. The run time on desktop PC with a single 

processor is equivalent to that of a serial code on desktop PC.  

The GPU implementation presents a comparable (slightly better) speed-up when 

compared to the MPI code executed on the CPU cluster of 64 processes (Table 4.1). Our 

result leads us to a similar observation by Tristram et al. (2014) that implementing GPU 

code with a performance comparable to other parallel methods may not necessarily 

require a major re-work of an existing programming code. In our case, the compute core 

and much of the data partitioning code remained the same, as it was written in C++, 

which is compatible to CUDA specification (NVIDIA, 2015). Given the fact that GPUs 

provide superior performance per total resource cost (price of hardware + power usage, 

see e.g., http://www.fmslib.com/mkt/gpus.html), and considering the comparatively short 

developer time for some existing codes like UEB, it appears to be a worthwhile 

alternative to the MPI implementation. 

The last column of Table 4.1 shows the speed-up of each implementation with 

respect to the run time on desktop PC with a single processor (the equivalent serial 

version). This is different from the speed-ups and efficiencies reported in Figures 4.4 to 

4.6. While the numbers in Figures 4.4 – 4.6 help evaluate the performance of the parallel 

code with increasing processes, the speed-up values in Table 4.1 represent measures of 

the actual performance enhancement achieved by implementing concurrency 
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programming for utilizing clusters of CPU and/or GPU resources, compared to a serial 

code on a desktop PC (Brodtkorb et al., 2013). Thus, Table 4.1 shows that our parallel 

implementations help achieve speed-ups of 8 – 10 times over a serial code on a desktop 

PC. This represents the actual enhancement of hydrologic research due to improved 

access to high performance computation resources—they point to the actual reduction in 

time spent simulating a UEB model instance from using the Linux cluster or the GPU 

resources rather than the desktop PC. And, such reduction in modeling time facilitates the 

evaluation and adoption of physically based models like UEB in operational settings such 

as streamflow forecast where computational time can be critical. It is interesting to note 

from the first column of Table 1 that the “model setting” which involves reading model 

domain, terrain, and parameter files by all processes, serially, has a very large value for 

MPI with 64 processes. This large overhead is quite unexpected and contradicts our 

assumption earlier that the overhead gets negligible with increasing number of processes. 

Still, it does not change the conclusion about the overall speed-up. 

4.5 Summary and Conclusions 

The implementation and evaluation of parallel computation in a distributed snow 

accumulation and melt model UEB was presented in this paper. Two parallel 

implementations of UEB were evaluated: one using the Message Passing Interface (MPI) 

and the other using CUDA GPU. Continuous simulation of the Logan River watershed 

for five years was used to test the performance of the parallel codes, and the speed-up and 

efficiency as function of number of processes and plots of speed-up compared to the ideal 

speed-up based on Amdahl’s law were used as performance metrics of the parallel codes.  
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For the MPI implementation, results show the importance of input/output (IO) 

operations in the degradation of efficiency with increase in the number of processes. In 

the serial code, the IO accounts for about 1.7% of the code, the impact of which becomes 

more pronounced with increased number of processes. This was verified using the 

revised form of Amdahl’s law (Yavits et al., 2014) that separately accounts for IO 

operations and inter-process communications. The plot of this revised form of Amdahl’s 

law indicates further performance increase of the parallel code could only be possible 

with improving the performance of the IO operations. The performance of the MPI 

implementation improves when utilizing an IO strategy that reduces the number of file 

accesses by reading and writing multiple arrays of data in one go.  

The CUDA GPU implementation achieves slightly better speed-up with one GPU 

node when compared with the MPI implementation executed using 64 processes. The 

GPU implementation was done without major refactoring of the original code as the 

simulation core and much of the data partitioning code remain the same. This shows that, 

for some models such as UEB, obtaining a CUDA GPU performance comparable to other 

parallel methods does not necessarily require a major re-work of an existing 

programming code. Given the fact that GPUs provide superior performance per total 

resource cost (price of hardware + power usage), this makes it a worthwhile alternative to 

the MPI implementation.  

Overall our parallel implementations help achieve speed-ups of 8 – 10 times over 

a serial code on a desktop PC. This represents the actual enhancement to our hydrologic 

research due to improved access to high performance computation resources—they point 

to the reduction in time spent simulating a UEB model instance by using the Linux 
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cluster or the GPU resources instead of the desktop PC. 

Most distributed physically based hydrological models are data intensive. This 

work demonstrates the importance of including IO operations within the parallelizable 

code section and using efficient IO handling together with distributed computing 

resources to do large-scale hydrological modeling. Efficient IO scaling requires adopting 

file read/write strategies that take advantage of parallel file access or separate files for 

different processes. The approach we used in this paper is a simple one, which involves 

reading and writing multiple arrays of data in one-step, and it could be limited by the 

availability of memory per a core. There is a need for more advanced IO strategy that 

also accounts for the available memory.   

Finally, the modeling work presented here is only for the case of snow 

accumulation and melt. Outputs from this model are used as input to runoff and river 

routing models. We can qualitatively predict that coupling UEB to a runoff model would 

increase the arithmetic intensity because more computations would be done without 

significantly increasing the IO volume. Additional inter-process communications would 

be introduced, but would likely be smaller than the added arithmetic operations. 

Therefore, it would be interesting to extend this study to examine if a better efficiency 

may be achieved with the coupled model.  

References  

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale 

computing capabilities, Proceedings of the April 18-20, 1967, spring joint 

computer conference. ACM, pp. 483-485. 

 

 

 



134 
 
Amdahl, G.M., 2007. Validity of the Single Processor Approach to Achieving Large 

Scale Computing Capabilities, Reprinted from the AFIPS Conference 

Proceedings, Vol. 30 (Atlantic City, NJ, Apr. 18–20), AFIPS Press, Reston, Va., 

1967, pp. 483–485, when Dr. Amdahl was at International Business Machines 

Corporation, Sunnyvale, California. Solid-State Circuits Society Newsletter, IEEE 

12(3) 19-20. 

Brodtkorb, A.R., Hagen, T.R., Sætra, M.L., 2013. Graphics processing unit (GPU) 

programming strategies and trends in GPU computing. Journal of Parallel and 

Distributed Computing 73(1) 4-13. 

Brodtkorb, A.R., Sætra, M.L., Altinakar, M., 2012. Efficient shallow water simulations 

on GPUs: Implementation, visualization, verification, and validation. Computers 

& Fluids 55 1-12. 

Burnash, R., Singh, V., 1995. The NWS river forecast system-Catchment modeling. 

Computer models of watershed hydrology. 311-366. 

Chilan, C.M., Yang, M., Cheng, A., Arber, L., 2006. Parallel I/O performance study with 

HDF5, a scientific data package. TeraGrid 2006: Advancing Scientific Discovery. 

De La Asunción, M., Mantas, J.M., Castro, M.J., Fernández-Nieto, E.D., 2012. An MPI-

CUDA implementation of an improved Roe method for two-layer shallow water 

systems. Journal of Parallel and Distributed Computing 72(9) 1065-1072. 

Eager, D.L., Zahorjan, J., Lazowska, E.D., 1989. Speedup versus efficiency in parallel 

systems. Computers, IEEE Transactions on 38(3) 408-423. 

Fowler, H., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to 

impacts studies: recent advances in downscaling techniques for hydrological 

modelling. International Journal of Climatology 27(12) 1547-1578. 

Franz, K.J., Hogue, T.S., Sorooshian, S., 2008. Operational snow modeling: Addressing 

the challenges of an energy balance model for National Weather Service 

forecasts. Journal of Hydrology 360(1) 48-66. 

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, 

E., Zhang, Y., Volkov, V., 2008. Parallel computing experiences with CUDA. 

IEEE micro(4) 13-27. 

Gropp, W., Lusk, E., Ashton, D., Balaji, P., Buntinas, D., Butler, R., Chan, A., Goodell, 

D., Krishna, J., Mercier, G., 2005. MPICH2 user’s guide. Mathematics and 

Computer Science Division-Argonne National Laboratory, Version 0.4. 

Gustafson, J.L., 1988. Reevaluating Amdahl's law. Communications of the ACM 31(5) 

532-533. 

Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., 

Herold, N.D., Wickham, J., Megown, K., 2015. Completion of the 2011 National 

Land Cover Database for the conterminous United States-Representing a decade 

of land cover change information. Photogrammetric Engineering and Remote 

Sensing 81(5) 345-354. 

Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., Thielen, J., 2014. Technical 

review of large-scale hydrological models for implementation in operational flood 

forecasting schemes on continental level. 

 

 



135 
 
Kollet, S.J., Maxwell, R.M., Woodward, C.S., Smith, S., Vanderborght, J., Vereecken, 

H., Simmer, C., 2010. Proof of concept of regional scale hydrologic simulations at 

hydrologic resolution utilizing massively parallel computer resources. Water 

Resources Research 46(4). 

Levine, J.B., Salvucci, G.D., 1999. Equilibrium analysis of groundwater–vadose zone 

interactions and the resulting spatial distribution of hydrologic fluxes across a 

Canadian Prairie. Water Resources Research 35(5) 1369-1383. 

Li, T., Wang, G., Chen, J., Wang, H., 2011. Dynamic parallelization of hydrological 

model simulations. Environmental Modelling & Software 26(12) 1736-1746. 

Liu, J., Zhu, A., Liu, Y., Zhu, T., Qin, C.-Z., 2014. A layered approach to parallel 

computing for spatially distributed hydrological modeling. Environmental 

Modelling & Software 51 221-227. 

Luce, C.H., Tarboton, D.G., 2010. Evaluation of alternative formulae for calculation of 

surface temperature in snowmelt models using frequency analysis of temperature 

observations. Hydrology and Earth System Sciences 14(3) 535-543. 

Luce, C.H., Tarboton, D.G., Cooley, K.R., 1999. Sub-grid parameterization of snow 

distribution for an energy and mass balance snow cover model. Hydrological 

Processes 13(12) 1921-1933. 

Mahat, V., Tarboton, D.G., 2012. Canopy radiation transmission for an energy balance 

snowmelt model. Water Resources Research 48(1) W01534. 

Mahat, V., Tarboton, D.G., 2013. Representation of canopy snow interception, unloading 

and melt in a parsimonious snowmelt model. Hydrological Processes n/a-n/a. 

Mahat, V., Tarboton, D.G., Molotch, N.P., 2013. Testing above- and below-canopy 

representations of turbulent fluxes in an energy balance snowmelt model. Water 

Resources Research 49(2) 1107-1122. 

Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M., Ivanov, V., Kim, J., 

Kolditz, O., Kollet, S.J., Kumar, M., 2014. Surface‐subsurface model 

intercomparison: A first set of benchmark results to diagnose integrated 

hydrology and feedbacks. Water Resources Research 50(2) 1531-1549. 

Neal, J.C., Fewtrell, T.J., Bates, P.D., Wright, N.G., 2010. A comparison of three 

parallelisation methods for 2D flood inundation models. Environmental 

Modelling & Software 25(4) 398-411. 

Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable Parallel Programming 

with CUDA. Queue 6(2) 40-53. 

NVIDIA, 2015. Cuda C Programming Guide. 

Paglieri, L., Ambrosi, D., Formaggia, L., Quarteroni, A., Scheinine, A.L., 1997. Parallel 

computation for shallow water flow: A domain decomposition approach. Parallel 

computing 23(9) 1261-1277. 

Paniconi, C., Putti, M., 2015. Physically based modeling in catchment hydrology at 50: 

Survey and outlook. Water Resources Research 51(9) 7090-7129. 

Qu, Y., Duffy, C.J., 2007. A semidiscrete finite volume formulation for multiprocess 

watershed simulation. Water Resources Research 43(8). 

Rao, P., 2004. A parallel hydrodynamic model for shallow water equations. Applied 

mathematics and computation 150(1) 291-302. 



136 
 
Rew, R., Davis, G., Emmerson, S., Davies, H., Hartnett, E., Heimbigner, D., Fisher, W., 

2014. NetCDF Documentation 

(http://www.unidata.ucar.edu/software/netcdf/docs/). Unidata, University 

Corporation for Atmospheric Research (UCAR) Community Programs (UCP).  

Sanders, B.F., Schubert, J.E., Detwiler, R.L., 2010. ParBreZo: A parallel, unstructured 

grid, Godunov-type, shallow-water code for high-resolution flood inundation 

modeling at the regional scale. Advances in Water Resources 33(12) 1456-1467. 

Sen Gupta, A., Tarboton, D.G., 2013. Using the Utah Energy Balance Snowmelt model 

to quantify snow and glacier melt in the Himalayan region. 

Small, S.J., Jay, L.O., Mantilla, R., Curtu, R., Cunha, L.K., Fonley, M., Krajewski, W.F., 

2013. An asynchronous solver for systems of ODEs linked by a directed tree 

structure. Advances in Water Resources 53 23-32. 

Sutter, H., 2005. The free lunch is over: A fundamental turn toward concurrency in 

software. Dr. Dobb’s journal 30(3) 202-210. 

Sutter, H., Larus, J., 2005. Software and the concurrency revolution. Queue 3(7) 54-62. 

Tarboton, D.G., Luce, C.H., 1996. Utah energy balance snow accumulation and melt 

model (UEB). Citeseer. 

Tarboton, D.G., Schreuders, K., Watson, D., Baker, M., 2009. Generalized terrain-based 

flow analysis of digital elevation models, Proceedings of the 18th World IMACS 

Congress and MODSIM09 International Congress on Modelling and Simulation, 

Cairns, Australia, pp. 2000-2006. 

Tarboton, D.G., 2015. Terrain Analysis Using Digital Elevation Models (TauDEM). Utah 

Water Research Laboratory, Utah State University, Logan, Utah. 

Tesfa, T.K., Tarboton, D.G., Watson, D.W., Schreuders, K.A., Baker, M.E., Wallace, 

R.M., 2011. Extraction of hydrological proximity measures from DEMs using 

parallel processing. Environmental Modelling & Software 26(12) 1696-1709. 

Tristram, D., Hughes, D., Bradshaw, K., 2014. Accelerating a hydrological uncertainty 

ensemble model using graphics processing units (GPUs). Computers & 

Geosciences 62 178-186. 

Winsemius, H., Van Beek, L., Jongman, B., Ward, P., Bouwman, A., 2013. A framework 

for global river flood risk assessments. Hydrology and Earth System Sciences 

17(5) 1871-1892. 

Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L.P.H., Bierkens, M.F.P., Blyth, E., de 

Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, 

P., Jaffé, P.R., Kollet, S., Lehner, B., Lettenmaier, D.P., Peters-Lidard, C., 

Sivapalan, M., Sheffield, J., Wade, A., Whitehead, P., 2011. Hyperresolution 

global land surface modeling: Meeting a grand challenge for monitoring Earth's 

terrestrial water. Water Resources Research 47(5) W05301. 

Yavits, L., Morad, A., Ginosar, R., 2014. The effect of communication and 

synchronization on Amdahl’s law in multicore systems. Parallel computing 40(1) 

1-16. 

You, J., Tarboton, D., Luce, C., 2014. Modeling the snow surface temperature with a 

one-layer energy balance snowmelt model. Hydrology and Earth System Sciences 

18(12) 5061-5076. 
 

http://www.unidata.ucar.edu/software/netcdf/docs/)


137 
 
Table 4.1 Run times (seconds) and speed-up for different computing resources 

Computing 

Resource  

Model 

setting 

Input 

reading 

Output 

Writing 

Computation 

 

Host-Device 

data copy 

Total 

* 

Speed-up 

** 

1CPU + 1GPU on 

Linux cluster 
1.2 168.6 43.3 2321.5 109.6 2644.2 10.1 

64 MPI processes 

on CPU Linux 

cluster 

210.2 157.8 595.7 2354.9 NA 3318.7 8.0 

1 MPI process on 

CPU Linux cluster  
1.0 21.1 134.4 141730.0 NA 141886 0.2 

1 process on 

desktop PC (CPU) 
0.1 321.4 451.7 25812.3 NA 26586 1.0 

* Including overhead 

**Compared to a single desktop PC CPU 

 

 

 

 
Figure 4.1 Flow chart for the parallel version of the UEB model (UEB Parallel) with 

MPI. 
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Figure 4.2 Flow chart for the parallel version of UEB model (UEB Parallel) with GPU. 

 
 

   
Figure 4.3 Study area: Location map of the Logan River watershed and its elevation 

(DEM). 
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Figure 4.4 Total simulation time (a), speed-up (b), efficiency (c), and ratio of IO time to 

total time (d) vs the number of processes for the test in Linux Cluster with MPI. 

 

 

 
Figure 4.5 Speed-up (a) and efficiency (b) vs the number of processes for the test in 

Linux Cluster with MPI and reading multiple arrays at a time. 
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Figure 4.6 Speed-up and ideal speed-up from Amdahl’s law revised to account for IO 

operation. 
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SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

5.1 Summary and Conclusions 

 This dissertation evaluated opportunities to enhance the application of an energy 

balance snowmelt model for streamflow forecasting. Chapters 2 presented work to 

assimilate snow and streamflow observations into the model to arrive at better snow and 

soil moisture states at forecast date to get an improved streamflow forecasts. Chapters 3 

and 4 involved the development and evaluation of Cyberinfrastructure resources to 

address issues that often present an impediment to the application of detailed, physically 

based models in hydrologic modeling environment. The Cyberinfrastructure study 

focused on the design, implementation, and evaluation of a set of web-based, 

hydrological data processing services on one hand, and implementation and evaluation of 

parallel versions of the Utah Energy Balance snowmelt model (UEB) on the other.  

The work in Chapter 2 introduces an integrated modeling framework that coupled 

the UEB model to the Research Distributed Hydrologic Model (RDHM) incorporating 

data assimilation and ensemble streamflow forecasting. This was to evaluate an energy 

balance snowmelt model in a framework similar to the National Weather Service (NWS) 

streamflow forecasting system. This integrated framework with an energy balance 

snowmelt model and data assimilation contributes towards the examination of more 

physically based models for prediction of watershed snowpack states and streamflow 

outputs. Such evaluations enhance the incremental adoption of physically based models 

in streamflow forecast operationally.  
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First, I evaluated assimilation of snow water equivalent (SWE) data from 

SNOTEL sensor networks into the UEB model using the Ensemble Kalman Filter 

(EnKF) to get improved snowpack states in the distributed model. The ensemble runs 

were carried out using forcing perturbations that account for spatial correlation through 

an exponential function decreasing with distance. By using a ‘leave-one-out’ approach, I 

evaluated the extent to which the simulated SWE at a given point is improved through 

assimilation of SWE at a SNOTEL station away from the grid point. Results showed that 

due to the covariance between the SWE at different grid cells, observations at one point 

can be used to update SWE at a different grid cell. This enabled assimilation of SWE data 

from sparse SNOTEL stations to be used to update the distributed SWE over the whole 

watershed. The improved snowpack states were then expected to result in improved 

snowmelt driven streamflow at the watershed outlet. The assimilation performance better 

during accumulation than ablation. This was likely due to the spatial correlations that 

resulted in data at one point having predictive capability at another point during 

accumulation diminishing during the energy driven melt process caused by the spatial 

variability in elevation.  

In addition, I evaluated ensemble streamflow forecasting using the coupled 

UEB+RDHM models with assimilation of snow and streamflow data prior to the forecast 

date April 1 of the water year. The goal of the data assimilation prior to streamflow 

forecast was to arrive at the best possible model states on forecast time (April 1) so that 

the uncertainty in the forecast streamflow were reduced. Results showed that the 

ensemble streamflow forecast with assimilation of SWE provides marked improvement 

over the same forecast with no data assimilation. On the other hand, the assimilation of 
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streamflow using the Particle Filter to update the SAC-SMA and rutpix7 states did not 

provide any improvement beyond that achieved through the snow data assimilation. 

Results also showed that the ensemble forecast mean provides a good estimate of the 

mean volume of water for water supply forecast, but its smooth shape misses the peaks of 

the hydrographs, implying that the forecasts were not able to capture timing and 

magnitude of the flood hydrograph. While the ensemble of historical forcing may capture 

the likely range of forecast weather conditions, forecasting a flood hydrograph requires a 

forecast of the specific weather for that year. 

In Chapter 3, HydroDS, a set of web-based data services providing access to 

hydrologic data and geospatial analysis capabilities for distributed hydrological models 

was introduced. The services comprise functions for important hydrologic data 

processing tasks such as watershed delineation, terrain processing, estimation of canopy 

variables based on the NLCD, and accessing and processing of climate data from Daymet 

and NLDAS. The services are composed of single task functions that can be used 

independently, or can be chained together to form a workflow for complete generation of 

model inputs. A platform independent Python client library provides an interface to the 

web services. Through the Python client library, the services can be used in a Python 

script or desktop application that obtains processed data from HydroDS and performs 

further analysis.  

HydroDS was demonstrated by setting up UEB model instances for watersheds in 

the Colorado River and Great Salt Lake basins. The cases demonstrate how HydroDS 

helps reduce the time and effort spent by researchers for discovering, accessing, and pre-

processing hydrologic model input data. A considerable part of the time saved by using 
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HydroDS instead of desktop-based data processing comes from better organization of 

data in HydroDS. These results are significant because the ability to access and configure 

input data could enhance or hinder the application of distributed, physically based 

hydrologic models, particularly in operational contexts where input preprocessing time 

could be critical, i.e., there is no the luxury of getting reanalysis data. And, the efforts to 

evaluate and incorporate energy balance snowmelt model in streamflow forecasts, 

presented in Chapter 2, need to be coupled with enhancing the capability to efficiently 

handle the data required for forecast watersheds, by taking advantage of 

Cyberinfrastructure resources that are being increasingly available to everyday modelers. 

In addition to reducing the time and effort required to prepare model inputs, it was shown 

that the Python workflow script maintains the provenance of the data processing and 

enhance repeatability and reproducibility. The script needs to be modified only to specify 

the watershed boundaries and outlet location when used for a different watershed. The 

‘software as a service’ paradigm of the web services allows multiple users not to bother 

about the storage and organization of data, which is done in the server, and software and 

hardware dependencies are already sorted out.  

The implementation and evaluation of two parallel computation methods in a 

distributed snowmelt model UEB was presented Chapter 4. The first implementation used 

the Message Passing Interface (MPI) and the other uses CUDA GPU. For the MPI 

implementation, results showed the importance of input/output (IO) operations in the 

degradation of efficiency with increasing the number of processes. In the serial code, the 

IO accounted for about 1.7% of the code, the impact of which becomes more pronounced 

with increased number of processes. This was verified using the revised form of 
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Amdahl’s law that separately accounts for IO operations and inter-process 

communications. The plot of this revised form of Amdahl’s law indicates further 

performance increase of the parallel code could only be possible with improving the 

performance of the IO operations. The performance of the MPI implementation improved 

when utilizing an IO strategy that reduced the number of file accesses by reading and 

writing multiple arrays of data in one go.  

The CUDA GPU implementation achieved comparable speed-up using one GPU 

node when compared to that of the MPI implementation with 64 processes. The GPU 

implementation was done without major refactoring of the original code as the compute 

core and much of the data partitioning code remained the same as the MPI 

implementation. This shows that, for some models such as UEB using CUDA GPU, 

obtaining performance comparable to other parallel processing methods does not 

necessarily require major re-work on an existing programming code. Given the fact that 

GPUs provide superior performance per total resource cost (price of hardware + power 

usage), this makes it a worthwhile alternative to the MPI implementation.  

Overall, the parallel implementations helped achieve speed-ups of 8 – 10 times 

over a serial code on a desktop PC. This represents the actual enhancement to our 

hydrologic research due to improved access to high performance computation resources, 

i.e., they point to the reduction in time spent running a UEB model instance by using the 

Linux cluster or the GPU resources instead of the desktop PC. Such reductions in 

simulation time facilitate not only the application of energy balance models that require 

more computational resources than the temperature index snowmelt models currently in 

use in NWS forecast centers, but also enable adoption of the computationally intensive 



146 
 
ensemble/particle methods that are the basis of the data assimilation approaches 

presented in Chapter 2. 

5.2 Recommendations 

The approach used for snow data assimilation in Chapter 2, i.e., sparse SNOTEL 

data assimilated over the whole watershed, depends on the existence of correlation 

between the ensemble SWE at a point with observations and those at grid cells without 

observations. The model ensembles were generated in this study from perturbation of 

weather forcing. The perturbed forcing errors were assumed to have a spatial correlation 

that was represented by an exponential decay function of the distance between grid cells. 

The correlation length on which this function depends was model input and was specified 

through trial and error. Further study is required for accurate estimation of the correlation 

length and its relation to the distance between the SNOTEL stations in a given watershed 

and other factors such as the effects of topography on precipitation shadows, ridges, and 

wind shadows that in turn affect the spatial correlation of snow. The variance in 

precipitation and other forcing errors was also input to the model. Examination of the 

uncertainty in precipitation and its statistical characteristics such as the error standard 

deviation may be an important further study to tune the results. Moreover, in addition to 

snow mass, data related to snow energy need to be assimilated to improve the melting 

season outputs.  Remote sensing data are available for variables such as snow surface 

temperature, but the assimilation of such data may require a model reformulation that 

takes into account the effect of such factors as strong non-linearity and threshold 

behavior of snowmelt processes.  
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The parameters used for the generation of ensembles from forcing were arrived 

through trial and error, and they indicate that the forcing errors have weak temporal 

correlations, and the correlations among the errors in different forcing variables do not 

appear to be significant. However, a more systematic study to establish the importance or 

non-importance of temporal correlation and correlations among errors in forcing in the 

generation of the ensembles is required. There are multiple possible reasons for why the 

PF Q did not add value beyond that of the EnKF SWE, including insufficient particle 

size, inadequate representation of the impact of lag between soil moisture and 

streamflow, and the narrow range of uncertainty in soil moisture compared to the 

distribution of SWE ensemble. It may also be due to the dominant predictor for 

streamflow being the amount of snow, and prior to the forecast date (April 1) there has 

been limited snowmelt. Pinpointing the exact reason requires further investigation.  

Given the high computational demand by the large number of model realizations 

required for the Particle Filter, and given that it did not result in appreciable improvement 

in the forecasted streamflow, it would not be feasible to apply in operational forecasting. 

However, the coupled UEB+RDHM model introduced in this work is expected to serve 

as a first step for further investigation. 

The Python Client Library used to access individual functions of HydroDS, 

introduced in Chapter 3, has interface definitions to each atomic HydroDS function. In 

using these, however, it was common to sequence these as components of a workflow.  It 

may improve efficiency to have this sequencing implemented on the server.  The work in 

Chapter 3 dealt with large basins such as the Colorado River Basin by breaking them 

down into CBRFC forecast watersheds and handling data processing for smaller, 
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individual watersheds. This was a design choice that worked well for this study. Future 

studies should address the alternative approach of processing river basins such as the 

Colorado Basin as a whole. Future work should also extend the services to provide inputs 

for unstructured grid models and models using HRUs or other equivalent tessellations of 

the landscape for HydroDS to support a wider range of hydrologic models. Developments 

should also consider a simplified way to extend the services through provision of a 

Software Development Kit (SDK). 

The work in Chapter 4 demonstrates the importance of including IO operations 

within the parallelizable code section and using efficient IO handling methods together 

with distributed computing resources. Efficient IO scaling requires adopting file 

read/write strategies that take advantage of parallel file access or separate files for 

different processes. The approach used in the paper is a simple one, which involves 

reading and writing multiple arrays of data in one-step, and it could be limited by the 

availability of memory per core. There is a need for a more advanced IO strategy that 

also accounts for the available memory.  Coupling the UEB snowmelt model to a runoff 

model would increase the arithmetic intensity because more computations would be done 

in a grid cell without significantly increasing the IO volume. Additional inter-process 

communication would be introduced but would likely be smaller than the added 

arithmetic operations. Therefore, it would be interesting to extend this study to examine if 

a better scalability may be achieved with the coupled model.  
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 Appendix: UEB Land Cover Variables Lookup Table based on NLCD 
 

Description NLCD Class cc* hcan* LAI* ycage* 

Open Water 11 0 0 0 2 

Perennial Ice/Snow 12 0 0 0 2 

Developed, Open Space 21 0 0 0 2 

Developed, Low 22 0 0 0 2 

Developed, Medium Intensity 23 0 0 0 2 

Developed High Intensity 24 0 0 0 2 

Barren Land (Rock/Sand/Clay)  31 0 0 0 2 

Deciduous Forest  41 0.5 8 1 2 

Evergreen Forest  42 0.7 15 4.5 3 

Mixed Forest  43 0.8 10 4 2 

Dwarf Scrub  51 0 0 0 2 

Shrub/Scrub  52 0.5 3 1 2 

Grassland/Herbaceous  71 0 0 0 2 

Sedge/Herbaceous  72 0 0 0 2 

Lichens  73 0 0 0 2 

Moss  74 0 0 0 2 

Pasture/Hay 81 0 0 0 2 

Cultivated Crops  82 0 0 0 2 

Woody Wetlands  90 0.5 8 1 2 

Emergent Herbaceous Wetlands  95 0 0 0 2 

 

* cc = Fraction of canopy cover 

   hcan = Canopy height 

   LAI= Leaf area index 

   ycage = Forest canopy structure flag    
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