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ABSTRACT

Numerical Analysis and Spanwise Shape Optimization

for Finite Wings of Arbitrary Aspect Ratio

by

Joshua D. Hodson, Doctor of Philosophy

Utah State University, 2019

Major Professors: Dr. Douglas Hunsaker and Dr. Robert Spall

Department: Mechanical and Aerospace Engineering

Improvements to the current state of the art in wing shape optimization for morphing wing applications
are presented, with a focus on low-fidelity analysis methods for preliminary design. An existing aerodynamic
analysis tool based on lifting line theory is the foundation upon which this work builds, and several software
development efforts are presented that enhance the capabilities of this tool relative to wing shape
optimization. An automatic differentiation tool is integrated with the aerodynamic analysis tool to facilitate
accurate and efficient derivative calculations for gradient-based optimization. A light-weight optimization
framework written in Python is presented that is capable of efficiently searching the design space using
popular gradient-based optimization techniques and parallelization of independent objective function
evaluations. Several example optimization problems are presented using this toolset, and a method for
visualizing the design space of morphing wings using this toolset is also presented and discussed.

The morphing wing application of primary interest to the current work, the Variable Camber Compliant
Wing developed at the United States Air Force Research Laboratory, has an aspect ratio that falls below the
acceptable range of aspect ratios for lifting line theory analysis. This has led to the development of a new
method for applying lifting line theory to low-aspect-ratio lifting surfaces. A thorough review of Prandtl’s
classical lifting line theory is first presented, followed by several low-aspect-ratio proposals from the slender
wing theory of Jones to the lifting surface theories of Birnbaum, Blenk, and others. A new formulation for
slender wing theory is presented that provides new insights into the appropriate limits for a formulation

capable of spanning the entire range of aspect ratios from slender to infinite. A new empirical relation is



proposed that satisfies the limits at both extremes and agrees well with high-order inviscid panel code results.
A method is then presented for implementing this empirical relation in both analytical and numerical lifting
line algorithms. A comparison of results computed using this method to experimental results for the Variable
Camber Compliant Wing is also given.

(327 pages)



Vi

PUBLIC ABSTRACT

Numerical Analysis and Spanwise Shape Optimization

for Finite Wings of Arbitrary Aspect Ratio

by

Joshua D. Hodson, Doctor of Philosophy

Utah State University, 2019

Major Professors: Dr. Douglas Hunsaker and Dr. Robert Spall

Department: Mechanical and Aerospace Engineering

This work focuses on the development of efficient methods for wing shape optimization for morphing
wing technologies. Existing wing shape optimization processes typically rely on computational fluid
dynamics tools for aerodynamic analysis, but the computational cost of these tools makes optimization of all
but the most basic problems intractable. In this work, we present a set of tools that can be used to efficiently
explore the design spaces of morphing wings without reducing the fidelity of the results significantly.
Specifically, this work discusses automatic differentiation of an aerodynamic analysis tool based on lifting
line theory, a light-weight gradient-based optimization framework that provides a parallel function evaluation
capability not found in similar frameworks, and a modification to the lifting line equations that makes the
analysis method and optimization process suitable to wings of arbitrary aspect ratio. The toolset discussed is
applied to several wing shape optimization problems. Additionally, a method for visualizing the design space
of a morphing wing using this toolset is presented. As a result of this work, a light-weight wing shape
optimization method is available for analysis of morphing wing designs that reduces the computational cost
by several orders of magnitude over traditional methods without significantly reducing the accuracy of the

results.
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1 INTRODUCTION

Aerodynamic shape optimization is an important step in the design process of modern aircraft. This step
allows designers to tailor the aerodynamic features of an aircraft to meet a specific set of mission
requirements in the most effective way possible. Optimization can be performed early in the design process
to identify what features of a design are most important and toward the end of the design process to refine
certain aspects of the design based on mission requirements. In many cases, high-fidelity Computational
Fluid Dynamics (CFD) analyses are used as the objective functions in these optimization analyses (for
example, see Refs. [1-4]). While CFD analyses provide significant insight into the specific flow
characteristics of a design, they come at a relatively high cost due to the complex computational meshes and
substantial computing resources required. This is especially true for optimization studies in which many cases
must be run to evaluate performance changes with respect to design variables. As a result, CFD is not always
the best solution for early-stage optimization when insights into trends and interactions between design
parameters are more important than highly-accurate performance characteristics.

The computational challenge of using full CFD simulations for aerodynamic optimization are
compounded when the application is a morphing wing. In an effort to improve aircraft efficiency through all
phases of flight, several morphing-wing technologies are currently in development (for example, see Refs.
[5-8]). In order to take full advantage of the benefits provided by morphing-wing technologies, performance
characteristics and control derivatives for the wing in multiple morphed configurations must be readily
available. Due to the large number of possible configurations for a morphing wing with even just a few
degrees of freedom, the efficiency of aerodynamic and structural computations is a prodigious concern.

Several alternatives to full CFD simulations are available for wing optimization. The first practical
method dates back to the early 20th century when Lanchester [9] and Prandtl [10,11] developed what is
known today as classical lifting line theory. While this was the first mathematical model able to predict lift
distributions over a 3D wing with reasonable accuracy, the original formulation is restricted to analyses of a
single finite wing with a straight quarter-chord and moderate-to-high aspect ratio in an incompressible,
inviscid flow. This method has been used to minimize induced drag [12,13] and maximize lift [14] of various

wing planforms.



Low-fidelity methods such as the vortex lattice method and vortex panel method represent another
alternative. These potential flow methods are widely used in industry and academia, and their development
can be found in common aerodynamic textbooks. For a well-cited overview of these methods, see Katz and
Plotkin [15]. These methods can be used to predict lift, induced drag, and pressure distributions over complex
geometries but are generally unable to account for viscous effects and airfoil thickness.

A more recent development in aerodynamic analysis is a modern numerical lifting line method presented
by Phillips and Snyder [16]. This method is similar to classical lifting line theory but uses the more general
3D vortex lifting law. The numerical formulation allows for the analysis of a system of interacting lifting
surfaces with arbitrary camber, twist, sweep, and dihedral. It can also account for viscous effects through the
use of 2D airfoil section coefficients. This model should not be confused with the vortex lattice method when
a single element is used in the chordwise direction. Although the placement of the horseshoe vortices is
similar in both methods, the fundamental equations are significantly different. For example, the vortex lattice
method with a single chordwise element places a control point at the three-quarter-chord position and closes
the formulation by requiring the normal velocity relative to the local camber line at the control point to be
zero. On the other hand, the numerical lifting line method of Phillips and Snyder [16] uses the 2D section lift
produced by the local airfoil section to calculate the 3D vortex lift of the finite wing. The latter approach is
the numerical equivalent to the analytical approach taken by Prandtl [10,11].

It is worth noting that numerical methods for solving the lifting line equation from classical lifting line
theory have been presented by McCormick [17] and Anderson et al. [18]. These methods show accurate
results for wings below stall, but they neglect the downwash produced by the bound vorticity and are
therefore limited in application to isolated straight wings without sweep or dihedral.

In this work, the numerical lifting line method of Phillips and Snyder [16] has been used as a foundation
upon which a system is built for analyzing and optimizing morphing wings. We begin in Chapter 2 with a
presentation of methods for computing derivatives and a demonstration of the process of automatic
differentiation (AD) in a numerical lifting line algorithm. In Chapter 3 we discuss the development of an
optimization framework for aerodynamic analysis and apply the derivative calculations from Chapter 2 to
several wing shape optimization problems. We also demonstrate a method for using lifting line calculations

to visualize the design space of morphing wings, which can assist in understanding and improving the wing



shape optimization process and results. Chapter 4 presents a detailed overview of classical lifting line theory
along with a discussion of its limitations relative to aspect ratio. We discuss the works of several researchers
directed at improving predictions for low-aspect-ratio wings and present several new analytical developments
that extend the validity of classical lifting line theory to wings of arbitrary aspect ratio. Chapter 5 presents a
method for implementing the results of Chapter 4 in the numerical lifting line method of Phillips and Snyder
[16], and concludes with a comparison of numerical results to experimental data for a low-aspect-ratio

morphing wing.



2 DUAL NUMBER AUTOMATIC DIFFERENTIATION FOR WING SHAPE OPTIMIZATION

2.1  Introduction

The focus of this chapter is to present an implementation for accurately and efficiently computing
derivatives within an aerodynamic analysis tool for the purpose of facilitating gradient-based wing shape
optimization. Derivative calculations are an important consideration in any gradient-based optimization
study. The gradient of the objective — a vector of partial derivatives of the objective with respect to the design
variables — is used to determine the appropriate direction and magnitude for changes in the design variables
in order to find a minimum (or maximum) in the objective. Constrained optimization algorithms usually
require the calculation of the gradient for each constrained variable as well. The ability of gradient-based
optimization algorithms to accurately and efficiently converge upon a local extremum is strongly influenced
by the accuracy and efficiency of the derivative calculations upon which they rely. For many gradient-based
optimization problems, the calculation of derivatives is often the costliest step in the optimization cycle (see
Martins [19]), thus special care must be taken in obtaining these derivatives.

Fortunately, derivatives are important to many fields of application beyond optimization and therefore
have a long history of research which can be drawn upon. The first formal presentations of derivatives are
traditionally credited to Isaac Newton and Gottfried Leibniz in the late 17" century, though the fundamental
concept of a derivative appeared much earlier (see Simmons [20]). Numerical analysis methods such as the
finite difference (see Courant et al. [21]) and finite element (see Hrennikoff [22] and Courant [23]) methods
arose from the need to solve sophisticated problems for which solutions could not be obtained through the
methods of analytical calculus. The elliptic and hyperbolic partial differential equations used to describe
boundary value and initial value problems are examples of these. For an examination of the history of the
finite difference and finite element methods, see Thomée [24].

With the advent of modern computers came a new method for computing derivatives. Wengert [25]
presented a technique for the “computation of numerical values of derivatives without developing analytical
expressions for the derivatives.” Wengert’s method formed the foundation for what is now known as
automatic (or algorithmic) differentiation (AD). Numerous publications exist on the subject, covering topics
that range from theoretical research to software development to implementation in practical analysis

applications. See, for example, Griewank and Walthers [26], Rall [27], and Corliss et al. [28]. A wide variety



of open-source software tools for implementing AD methods in analysis software have been published, and
numerous engineering software packages include AD capabilities. For a recent review of theoretical AD
methods, see Martins and Hwang [29]. For a recent comparison of AD software tools for various languages,
see Srajer et al. [30].

In this chapter we apply a specific implementation of AD to MachUp, an open-source aerodynamics
analysis tool based on the numerical lifting line method of Phillips and Snyder [16]. We do this to better
facilitate accurate and efficient gradient calculations for wing shape optimization and other gradient-based
optimization problems in which MachUp is used as the objective function. We begin with a general overview
of the gradient calculation methods described above — namely, symbolic differentiation, finite differencing,
and AD. We then proceed with a description of Dual Number Automatic Differentiation (DNAD), an open-
source implementation of forward-mode AD in Fortran (see Yu and Blair [31] and Spall and Yu [32]). We
discuss modifications to DNAD that were made to improve the flexibility and ease of integrating the tool
with Fortran codes. A simple example is given illustrating the implementation process, and important
considerations when implementing DNAD in existing Fortran codes are discussed. Finally, we present the

process used to implement DNAD in MachUp.

2.2  Derivative Calculation Methods
Methods used for computing derivatives can be divided into three general categories as discussed in Sec.
2.1 — namely, symbolic differentiation, finite differencing, and AD. The three categories are presented here,

and considerations for their use are discussed.

2.2.1  Symbolic Differentiation

Given our understanding of differential calculus, the most obvious method for computing derivatives is
direct symbolic differentiation of the objective function. This involves application of the definition of the
derivative as given in any elementary calculus textbook, namely

ﬂ:nmw (2.2.1)
OX h—0 h

where f is the objective function, x is the independent variable, and h is a perturbation parameter. Through

symbolic differentiation, we obtain an explicit analytical equation for the derivative of a function which can

be evaluated independent of the original function and is accurate to infinite precision. Algebraic manipulation



of the derivative formula can be performed to express the formula in its simplest form. From a computational
perspective, the “simplest form” is that which requires the fewest mathematical operations to evaluate. Thus,
symbolic differentiation represents the most accurate and the most efficient method available for derivative
computations.

For simple functions such as those found in elementary calculus textbooks, there are no disadvantages to
using symbolic differentiation for derivative computations. On the other extreme, direct symbolic
differentiation of practical engineering problems is rarely feasible. For example, consider a coupled
multiphysics model in which fluid and structural analyses are performed iteratively to determine the response
of a system. Results from one analysis are used to update the boundary conditions of the other analysis
between iterations, and the number of iterations performed is controlled through the evaluation of residuals
in the fluid and structural responses of the system. Expressing this function as a single formula that can be
differentiated symbolically would require accumulating each mathematical operation in the process into a
single expression. Since the number of iterations — and therefore the number of mathematical operations to
be evaluated — is variable, the exact expression cannot be known a priori.

Even in the situation described above, it may still be possible to obtain symbolic derivatives of the
objective function if the problem can be broken into smaller sub-functions for which symbolic derivatives
are available. This approach uses the chain rule of differentiation to propagate derivative information through
each sub-function evaluation. For each sub-function evaluation, the Jacobian matrix — which contains the
partial derivatives of all function outputs with respect to each variable input — must be evaluated and stored.
These Jacobian matrices can then be chained together to compute the gradient of the final objective function
with respect to each original input.

To continue the coupled multiphysics example described above, let p be a single-value function that

represents the performance of the coupled multiphysics system. Also, let x = (xf ,xs) be the complete set of
inputs required for the coupled multiphysics model, where x; = (xf1 X,y X, ) is the set of | inputs required
for the fluid analysis and x, = (x X WX ) is the set of m 