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ABSTRACT 

Numerical Analysis and Spanwise Shape Optimization 

for Finite Wings of Arbitrary Aspect Ratio 

by 

Joshua D. Hodson, Doctor of Philosophy 

Utah State University, 2019 

Major Professors: Dr. Douglas Hunsaker and Dr. Robert Spall 

Department: Mechanical and Aerospace Engineering 

 Improvements to the current state of the art in wing shape optimization for morphing wing applications 

are presented, with a focus on low-fidelity analysis methods for preliminary design. An existing aerodynamic 

analysis tool based on lifting line theory is the foundation upon which this work builds, and several software 

development efforts are presented that enhance the capabilities of this tool relative to wing shape 

optimization. An automatic differentiation tool is integrated with the aerodynamic analysis tool to facilitate 

accurate and efficient derivative calculations for gradient-based optimization. A light-weight optimization 

framework written in Python is presented that is capable of efficiently searching the design space using 

popular gradient-based optimization techniques and parallelization of independent objective function 

evaluations. Several example optimization problems are presented using this toolset, and a method for 

visualizing the design space of morphing wings using this toolset is also presented and discussed. 

 The morphing wing application of primary interest to the current work, the Variable Camber Compliant 

Wing developed at the United States Air Force Research Laboratory, has an aspect ratio that falls below the 

acceptable range of aspect ratios for lifting line theory analysis. This has led to the development of a new 

method for applying lifting line theory to low-aspect-ratio lifting surfaces. A thorough review of Prandtl’s 

classical lifting line theory is first presented, followed by several low-aspect-ratio proposals from the slender 

wing theory of Jones to the lifting surface theories of Birnbaum, Blenk, and others. A new formulation for 

slender wing theory is presented that provides new insights into the appropriate limits for a formulation 

capable of spanning the entire range of aspect ratios from slender to infinite. A new empirical relation is 



v 

proposed that satisfies the limits at both extremes and agrees well with high-order inviscid panel code results. 

A method is then presented for implementing this empirical relation in both analytical and numerical lifting 

line algorithms. A comparison of results computed using this method to experimental results for the Variable 

Camber Compliant Wing is also given. 

(327 pages) 
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PUBLIC ABSTRACT 

Numerical Analysis and Spanwise Shape Optimization 

for Finite Wings of Arbitrary Aspect Ratio 

by 

Joshua D. Hodson, Doctor of Philosophy 

Utah State University, 2019 

Major Professors: Dr. Douglas Hunsaker and Dr. Robert Spall 

Department: Mechanical and Aerospace Engineering 

 This work focuses on the development of efficient methods for wing shape optimization for morphing 

wing technologies. Existing wing shape optimization processes typically rely on computational fluid 

dynamics tools for aerodynamic analysis, but the computational cost of these tools makes optimization of all 

but the most basic problems intractable. In this work, we present a set of tools that can be used to efficiently 

explore the design spaces of morphing wings without reducing the fidelity of the results significantly. 

Specifically, this work discusses automatic differentiation of an aerodynamic analysis tool based on lifting 

line theory, a light-weight gradient-based optimization framework that provides a parallel function evaluation 

capability not found in similar frameworks, and a modification to the lifting line equations that makes the 

analysis method and optimization process suitable to wings of arbitrary aspect ratio. The toolset discussed is 

applied to several wing shape optimization problems. Additionally, a method for visualizing the design space 

of a morphing wing using this toolset is presented. As a result of this work, a light-weight wing shape 

optimization method is available for analysis of morphing wing designs that reduces the computational cost 

by several orders of magnitude over traditional methods without significantly reducing the accuracy of the 

results. 
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x  Arbitrary independent variable 

maxcz    Percent maximum camber 

   Section angle of attack 

e   Effective angle of attack 



xx 

i   Induced angle of attack 

0L   Zero-lift angle of attack 

wing   Wing geometric angle of attack 

   Diffusivity; also vortex strength 

    Finite perturbation of an arbitrary parameter (e.g. x ) 

geometric  Change in local angle of attack due to geometric twist 

aerodynamic  Change in local angle of attack due to aerodynamic twist 

 ,  ,  Change of variables  


  Freestream density 

    Scalar field quantity 

max   Maximum twist value of a finite wing 

    Gradient operator 

 

 

 



1 INTRODUCTION 

 Aerodynamic shape optimization is an important step in the design process of modern aircraft. This step 

allows designers to tailor the aerodynamic features of an aircraft to meet a specific set of mission 

requirements in the most effective way possible. Optimization can be performed early in the design process 

to identify what features of a design are most important and toward the end of the design process to refine 

certain aspects of the design based on mission requirements. In many cases, high-fidelity Computational 

Fluid Dynamics (CFD) analyses are used as the objective functions in these optimization analyses (for 

example, see Refs. [1–4]). While CFD analyses provide significant insight into the specific flow 

characteristics of a design, they come at a relatively high cost due to the complex computational meshes and 

substantial computing resources required. This is especially true for optimization studies in which many cases 

must be run to evaluate performance changes with respect to design variables. As a result, CFD is not always 

the best solution for early-stage optimization when insights into trends and interactions between design 

parameters are more important than highly-accurate performance characteristics. 

 The computational challenge of using full CFD simulations for aerodynamic optimization are 

compounded when the application is a morphing wing. In an effort to improve aircraft efficiency through all 

phases of flight, several morphing-wing technologies are currently in development (for example, see Refs. 

[5–8]). In order to take full advantage of the benefits provided by morphing-wing technologies, performance 

characteristics and control derivatives for the wing in multiple morphed configurations must be readily 

available. Due to the large number of possible configurations for a morphing wing with even just a few 

degrees of freedom, the efficiency of aerodynamic and structural computations is a prodigious concern. 

 Several alternatives to full CFD simulations are available for wing optimization. The first practical 

method dates back to the early 20th century when Lanchester [9] and Prandtl [10,11] developed what is 

known today as classical lifting line theory. While this was the first mathematical model able to predict lift 

distributions over a 3D wing with reasonable accuracy, the original formulation is restricted to analyses of a 

single finite wing with a straight quarter-chord and moderate-to-high aspect ratio in an incompressible, 

inviscid flow. This method has been used to minimize induced drag [12,13] and maximize lift [14] of various 

wing planforms. 
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 Low-fidelity methods such as the vortex lattice method and vortex panel method represent another 

alternative. These potential flow methods are widely used in industry and academia, and their development 

can be found in common aerodynamic textbooks. For a well-cited overview of these methods, see Katz and 

Plotkin [15]. These methods can be used to predict lift, induced drag, and pressure distributions over complex 

geometries but are generally unable to account for viscous effects and airfoil thickness. 

 A more recent development in aerodynamic analysis is a modern numerical lifting line method presented 

by Phillips and Snyder [16]. This method is similar to classical lifting line theory but uses the more general 

3D vortex lifting law. The numerical formulation allows for the analysis of a system of interacting lifting 

surfaces with arbitrary camber, twist, sweep, and dihedral. It can also account for viscous effects through the 

use of 2D airfoil section coefficients. This model should not be confused with the vortex lattice method when 

a single element is used in the chordwise direction. Although the placement of the horseshoe vortices is 

similar in both methods, the fundamental equations are significantly different. For example, the vortex lattice 

method with a single chordwise element places a control point at the three-quarter-chord position and closes 

the formulation by requiring the normal velocity relative to the local camber line at the control point to be 

zero. On the other hand, the numerical lifting line method of Phillips and Snyder [16] uses the 2D section lift 

produced by the local airfoil section to calculate the 3D vortex lift of the finite wing. The latter approach is 

the numerical equivalent to the analytical approach taken by Prandtl [10,11]. 

 It is worth noting that numerical methods for solving the lifting line equation from classical lifting line 

theory have been presented by McCormick [17] and Anderson et al. [18]. These methods show accurate 

results for wings below stall, but they neglect the downwash produced by the bound vorticity and are 

therefore limited in application to isolated straight wings without sweep or dihedral. 

 In this work, the numerical lifting line method of Phillips and Snyder [16] has been used as a foundation 

upon which a system is built for analyzing and optimizing morphing wings. We begin in Chapter 2 with a 

presentation of methods for computing derivatives and a demonstration of the process of automatic 

differentiation (AD) in a numerical lifting line algorithm. In Chapter 3 we discuss the development of an 

optimization framework for aerodynamic analysis and apply the derivative calculations from Chapter 2 to 

several wing shape optimization problems. We also demonstrate a method for using lifting line calculations 

to visualize the design space of morphing wings, which can assist in understanding and improving the wing 
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shape optimization process and results. Chapter 4 presents a detailed overview of classical lifting line theory 

along with a discussion of its limitations relative to aspect ratio. We discuss the works of several researchers 

directed at improving predictions for low-aspect-ratio wings and present several new analytical developments 

that extend the validity of classical lifting line theory to wings of arbitrary aspect ratio. Chapter 5 presents a 

method for implementing the results of Chapter 4 in the numerical lifting line method of Phillips and Snyder 

[16], and concludes with a comparison of numerical results to experimental data for a low-aspect-ratio 

morphing wing. 
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2 DUAL NUMBER AUTOMATIC DIFFERENTIATION FOR WING SHAPE OPTIMIZATION 

2.1 Introduction 

 The focus of this chapter is to present an implementation for accurately and efficiently computing 

derivatives within an aerodynamic analysis tool for the purpose of facilitating gradient-based wing shape 

optimization. Derivative calculations are an important consideration in any gradient-based optimization 

study. The gradient of the objective – a vector of partial derivatives of the objective with respect to the design 

variables – is used to determine the appropriate direction and magnitude for changes in the design variables 

in order to find a minimum (or maximum) in the objective. Constrained optimization algorithms usually 

require the calculation of the gradient for each constrained variable as well. The ability of gradient-based 

optimization algorithms to accurately and efficiently converge upon a local extremum is strongly influenced 

by the accuracy and efficiency of the derivative calculations upon which they rely. For many gradient-based 

optimization problems, the calculation of derivatives is often the costliest step in the optimization cycle (see 

Martins [19]), thus special care must be taken in obtaining these derivatives. 

 Fortunately, derivatives are important to many fields of application beyond optimization and therefore 

have a long history of research which can be drawn upon. The first formal presentations of derivatives are 

traditionally credited to Isaac Newton and Gottfried Leibniz in the late 17th century, though the fundamental 

concept of a derivative appeared much earlier (see Simmons [20]). Numerical analysis methods such as the 

finite difference (see Courant et al. [21]) and finite element (see Hrennikoff [22] and Courant [23]) methods 

arose from the need to solve sophisticated problems for which solutions could not be obtained through the 

methods of analytical calculus. The elliptic and hyperbolic partial differential equations used to describe 

boundary value and initial value problems are examples of these. For an examination of the history of the 

finite difference and finite element methods, see Thomée [24].  

 With the advent of modern computers came a new method for computing derivatives. Wengert [25] 

presented a technique for the “computation of numerical values of derivatives without developing analytical 

expressions for the derivatives.” Wengert’s method formed the foundation for what is now known as 

automatic (or algorithmic) differentiation (AD). Numerous publications exist on the subject, covering topics 

that range from theoretical research to software development to implementation in practical analysis 

applications. See, for example, Griewank and Walthers [26], Rall [27], and Corliss et al. [28]. A wide variety 
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of open-source software tools for implementing AD methods in analysis software have been published, and 

numerous engineering software packages include AD capabilities. For a recent review of theoretical AD 

methods, see Martins and Hwang [29]. For a recent comparison of AD software tools for various languages, 

see Šrajer et al. [30]. 

 In this chapter we apply a specific implementation of AD to MachUp, an open-source aerodynamics 

analysis tool based on the numerical lifting line method of Phillips and Snyder [16]. We do this to better 

facilitate accurate and efficient gradient calculations for wing shape optimization and other gradient-based 

optimization problems in which MachUp is used as the objective function. We begin with a general overview 

of the gradient calculation methods described above – namely, symbolic differentiation, finite differencing, 

and AD. We then proceed with a description of Dual Number Automatic Differentiation (DNAD), an open-

source implementation of forward-mode AD in Fortran (see Yu and Blair [31] and Spall and Yu [32]). We 

discuss modifications to DNAD that were made to improve the flexibility and ease of integrating the tool 

with Fortran codes. A simple example is given illustrating the implementation process, and important 

considerations when implementing DNAD in existing Fortran codes are discussed. Finally, we present the 

process used to implement DNAD in MachUp.  

2.2 Derivative Calculation Methods 

 Methods used for computing derivatives can be divided into three general categories as discussed in Sec. 

2.1 – namely, symbolic differentiation, finite differencing, and AD. The three categories are presented here, 

and considerations for their use are discussed. 

2.2.1 Symbolic Differentiation 

Given our understanding of differential calculus, the most obvious method for computing derivatives is 

direct symbolic differentiation of the objective function. This involves application of the definition of the 

derivative as given in any elementary calculus textbook, namely 

 
0

( ) ( )
lim
h

f f x h f x

x h→

 + −
=


  (2.2.1) 

where f is the objective function, x is the independent variable, and h is a perturbation parameter. Through 

symbolic differentiation, we obtain an explicit analytical equation for the derivative of a function which can 

be evaluated independent of the original function and is accurate to infinite precision. Algebraic manipulation 



6 

of the derivative formula can be performed to express the formula in its simplest form. From a computational 

perspective, the “simplest form” is that which requires the fewest mathematical operations to evaluate. Thus, 

symbolic differentiation represents the most accurate and the most efficient method available for derivative 

computations. 

 For simple functions such as those found in elementary calculus textbooks, there are no disadvantages to 

using symbolic differentiation for derivative computations. On the other extreme, direct symbolic 

differentiation of practical engineering problems is rarely feasible. For example, consider a coupled 

multiphysics model in which fluid and structural analyses are performed iteratively to determine the response 

of a system. Results from one analysis are used to update the boundary conditions of the other analysis 

between iterations, and the number of iterations performed is controlled through the evaluation of residuals 

in the fluid and structural responses of the system. Expressing this function as a single formula that can be 

differentiated symbolically would require accumulating each mathematical operation in the process into a 

single expression. Since the number of iterations – and therefore the number of mathematical operations to 

be evaluated – is variable, the exact expression cannot be known a priori. 

 Even in the situation described above, it may still be possible to obtain symbolic derivatives of the 

objective function if the problem can be broken into smaller sub-functions for which symbolic derivatives 

are available. This approach uses the chain rule of differentiation to propagate derivative information through 

each sub-function evaluation. For each sub-function evaluation, the Jacobian matrix – which contains the 

partial derivatives of all function outputs with respect to each variable input – must be evaluated and stored. 

These Jacobian matrices can then be chained together to compute the gradient of the final objective function 

with respect to each original input. 

 To continue the coupled multiphysics example described above, let p be a single-value function that 

represents the performance of the coupled multiphysics system. Also, let ( ),f s=x x x  be the complete set of 

inputs required for the coupled multiphysics model, where ( )
1 2
, , ,

lf f f fx x x=x  is the set of l inputs required 

for the fluid analysis and ( )
1 2
, , ,

ms s s sx x x=x  is the set of m inputs required for the structural analysis. Then 

( ) ( ),f sp p p= =x x x . The problem at hand is then to determine p , where 
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1 2 1 2

, , , , , , , ,

l mf f f s s s

p p p p p p p p p
p

x x x x x x

          
 = = =                f s

x x x
  (2.2.2) 

 Now, let f and s be vector functions that represent the responses of the fluid and structural models, 

respectively. Then ( ),f=f f x s  and ( ),s=s s x f . If f is symbolically differentiable with respect to the input 

vectors fx  and s, then the Jacobian of f 

 
f 

 

 

 
=  
 

f
J

f f

x s
  (2.2.3) 

can be determined analytically. Likewise, if s is symbolically differentiable with respect to the input vectors 

sx  and f, then the Jacobian of s 

 
s

 
=  

 

  
s

s s

x f
J   (2.2.4) 

can also be determined analytically. Equations (2.2.3) and (2.2.4) can be used to assemble a global Jacobian 

J , which contains a row and column for each element in the fx , 
sx , f , and s  vectors. In general, this 

global Jacobian has the form 

 

f f f f

s

f s

s

f

s

f

s

s

s

f s 

 
 
   

   

   

   

 





 

 
 
 

 
 





 
 
 



  

  

   

x x s

x x

x x

x x x x

f

x x x x

f s

f f f f

f

s s s s

f s

s

x x

J =   (2.2.5) 

where each term in Eq. (2.2.5) is a submatrix itself. 

 If we evaluate the fluid model first, we must provide an initial guess for the structural response, namely 

0s . Then 1 0( , )f=f f x s  and the global Jacobian for this step is 

 
1 1 1

0f

 

 



 
 
 
 
 
 

 

f

I 0 0 0

0 I 0

0

0

0 0

0 I

f f

x s

0

J =   (2.2.6) 
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More generally, the global Jacobian for the ith evaluation of the fluid model can be written as 

 
1

1

i

f

i

i−

 
 
 
 
 
 
 



 







f
f f

x s

I 0 0 0

0 I 0 0

0 0

0 I0 0

J =   (2.2.7) 

Note that the third diagonal entry in Eqs. (2.2.6) and (2.2.7) is 0 as opposed to the identity matrix. This is 

because f is the dependent variable in the fluid model, so that the f in the numerators is one iteration ahead 

of the f in the denominators and we have 
1/i i−  = 0f f  for the third diagonal entry. 

 The structural model is evaluated using results from the fluid model as input, so that the global Jacobian 

for the structural evaluation is 

 
1

s

i

i

i



 

 

 
 
 
 
 


 
 

s

f

I 0 0 0

0 I 0 0

0 0 I 0

0 0
s s

x

J =   (2.2.8) 

Similar to the global Jacobian for the fluid model, the fourth diagonal entry in Eq. (2.2.8) is 0 because s is 

the dependent variable here. Then the s in the numerator is one iteration ahead of the s in the denominator 

and we have 
1/i i−  = 0s s  for the fourth diagonal entry. 

 The global Jacobian for the entire coupled solution is found by chaining the global Jacobians, Eqs. (2.2.7) 

and (2.2.8), over each iteration. A coupled solution evaluated for n iterations will have a global Jacobian 

given by 

 
1

i in

n

i=

= s f
J J J  (2.2.9) 

Equation (2.2.2) can now be written as 

 
n

n

f s n

p p p p
p

    
 =  

     x x f s
J   (2.2.10) 

While it would be tedious to symbolically evaluate Eq. (2.2.9) by hand, computer algebra systems can readily 

perform the evaluations and produce a symbolic formula for the evaluation of p  over n iterations. However, 

this symbolic formula may be of little use in practice as it is dependent on the number of iterations performed. 
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A more practical use of the methodology presented here is to evaluate the global Jacobians numerically 

during each step in the solution process and propagate a single aggregate Jacobian through each iteration. 

This approach results in numerical derivatives as opposed to symbolic expressions for the derivatives, but no 

additional assumptions or approximations are made in their evaluation. 

 An important distinction must here be made regarding the symbolic derivatives produced using this 

method compared to the derivatives that would be obtained from symbolically differentiating the governing 

mathematical model. While the derivatives discussed here are computed using symbolic derivatives of the 

individual analysis components, they are exact in terms of the numerical model and not the underlying 

mathematical model upon which the numerical algorithm is based. For further discussion on the implications 

of numerical modeling error in regard to derivative calculations, see Pakalapati et al. [33] and Sec. 2.4.4. 

 One potential benefit of using this method is that it can provide a measurement for the level of 

convergence in an iterative process such as the one described above. In our example, the last column of 

submatrices in the ith global Jacobian contains the derivatives of fluid and structural responses 
if  and 

is  

with respect to the initial guess 
0s . As the solution approaches convergence, the responses should become 

independent of the initial guess, so that these derivatives should tend toward zero. Examining the magnitudes 

of these derivatives may offer insight into the level of convergence achieved at each iteration. 

 In summary, symbolic differentiation provides the most accurate and computationally efficient method 

of calculating derivatives. Unfortunately, symbolic derivatives are not readily available for most practical 

engineering problems. In some cases, the problem can be broken into smaller, symbolically differentiable 

components and the partial derivatives of the complete problem can be found through application of the chain 

rule of differentiation, either numerically or symbolically, without any loss in accuracy. 

2.2.2 Finite Differencing 

In 1928, Courant et al. [21] proposed a method for converting partial differential equations into simple 

algebraic functions by replacing the partial differentials with quotient approximations. Of particular interest 

to the authors were the boundary value and eigenvalue problems for elliptic differential equations and the 

initial value problem for hyperbolic and parabolic differential equations, for which there are few known 

analytical solutions and none of practical interest. Their development is general enough that it can readily be 
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applied to other problems requiring the calculation of derivatives, and different formulations for the quotient 

approximations allow for variable levels of accuracy and complexity. 

The simplest example of a finite difference approximation can be taken directly from the definition of the 

derivative given in Eq. (2.2.1). Removing the limit and replacing the infinitesimal perturbation parameter h 

with a finite step size x  gives 

 ( )
( ) ( )f f x x f x

x
x x

 +  −
= + 

 
O   (2.2.11) 

which is the first-order-accurate forward difference formula. The first-order-accurate backward difference 

formula is similar but perturbed by x− , specifically 

 ( )
( ) ( )f f x f x x

x
x x

 − − 
= + 

 
O   (2.2.12) 

The second-order-accurate central difference formula is found by perturbing the functions in both positive 

and negative directions, which gives 

 ( )2( ) ( )

2

f f x x f x x
x

x x

 +  − − 
= + 

 
O   (2.2.13) 

 This approach can be applied iteratively to obtain derivatives of higher order as well. For example, an 

approximation to the second derivative of f can be found by first finding approximations for / xf   from 

Eq. (2.2.13) centered at / 2x x+   and / 2x x−  using a perturbation of / 2x , and then using these 

derivative approximations as the perturbed function values in Eq. (2.2.13). This gives 

 
2

2 2

2 2

(
) )

2) ( ) ( )2 2
( ) ( (

f x f x
x x

x f x f x xx x
x x x

xx x

f f x

      
+ − −   

  − + −     
= +  +=

 

+



O O   (2.2.14) 

 Many other finite difference approximations are available. Other methods for deriving these formulas 

also exist. For example, Taylor series expansions of the function f can be used to obtain Eqs. (2.2.11)-(2.2.14) 

and many other finite difference formulas. In fact, the orders of accuracy listed in these equations were 

determined using Taylor series expansion. For more finite difference formulas and the methods used to derive 

them, see LeVeque [34]. 

 While the finite difference method was originally developed specifically as a tool for solving partial 

differential equations, it can be used anytime the derivative of a function is needed and an approximation is 
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acceptable. In general, the finite difference method can readily be applied to any numerical algorithm without 

the need to make internal modifications to the algorithm. This is done simply by running the algorithm 

multiple times at perturbed states and then applying the appropriate finite difference equation to the results. 

Because of this, the finite difference method is the most versatile derivative-approximation method available. 

 It is also the least accurate and least efficient method, however. All of the methods discussed here are 

limited in accuracy by machine precision and numerical modeling error; but the finite difference method is 

subject to truncation error as well. The finite difference method is also less efficient than other methods 

because full evaluations of the objective function are required for each perturbed function value in the finite 

difference formula. A function with N input variables would need to be evaluated 1N +  times to obtain a 

first-order-accurate approximation of its gradient vector using Eqs. (2.2.11) or (2.2.12), or 2N times for a 

second-order-accurate approximation using Eq. (2.2.13). 

2.2.3 Automatic Differentiation 

As mentioned previously, AD is a method of numerically computing partial derivatives of an algorithm, 

accurate to machine precision, without the need to express the partial derivative symbolically. There are 

several different approaches to AD, but all stem from the same basic idea that every numerical algorithm can 

be broken down into a series of fundamental mathematical operations. If each mathematical operation in an 

algorithm is differentiable, then the entire algorithm can be differentiated through sequential applications of 

the chain rule of differentiation. This concept is quite similar to the example discussed in Sec. 2.2.1, but 

applied at a much finer level. 

The different approaches to AD can be classified into two main groups. The first group, called forward-

mode AD, performs derivative calculations in concert with the primary function evaluation. The chain rule 

of differentiation is used to propagate derivative calculations from one mathematical operation to the next, 

so that the derivatives of intermediate variables with respect to the independent variables are computed 

alongside the calculation of the intermediate variables themselves. This is the form of AD that was first 

developed by Wengert [25]. 

An example of forward-mode AD is given in Figure 2.1. The primary function 
1 2 1 2( , ) sin( )f x x x x=  is 

evaluated as shown, moving from top to bottom. An intermediate variable 
iw  is produced by each 

mathematical operation, and the derivatives of each intermediate variable with respect to the two independent 
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variables are computed alongside the function values. Substitution using the definitions given, shown at the 

bottom of Figure 2.1, confirms that numerical results calculated using this process are consistent with the 

exact symbolic partial derivatives of the function. 

 

 

 
Figure 2.1  An example of forward-mode AD using the function 

1 2 1 2
( , ) sin( )f x x x x= . 
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 An example of reverse-mode AD is given in Figure 2.2, again using the function 
1 2 1 2( , ) sin( )f x x x x= . 

The function evaluation proceeds as normal, but each partial derivative evaluation listed represents an 

addition to the computational graph. Once the function evaluation has been completed, the computational 

graph is traversed in reverse-order to produce the partial derivatives given in the right-hand box of Figure 

2.2. 

 

 

 
Figure 2.2  An example of reverse-mode AD using the function 

1 2 1 2
( , ) sin( )f x x x x= . 
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Figures 2.1 and 2.2 were given to illustrate the overall processes of the respective methods, but many 

details are hidden so that a comprehensive comparison of the two methods cannot be made based on these 

examples alone. Fewer computations are required to arrive at the partial derivative solutions given in Figure 

2.2 than were required to arrive at the same solution in Figure 2.1. This is only true, however, because the 

number of design variables (2) is larger than the number of output variables (1). In general, the complexity 

of the derivative calculations using forward-mode AD scales according to the number of design variables in 

the problem, while the complexity of the derivative calculations using reverse-mode AD scales according to 

the number of output variables for which gradients are needed. 

Also not apparent from the examples illustrated in Figures 2.1 and 2.2 are the memory requirements for 

each method. Forward-mode AD algorithms must store the intermediate partial derivatives at each step in the 

solution process, so they require more memory than either symbolic differentiation or the finite difference 

method. Reverse-mode AD algorithms must store the entire computational graph, however, so that their 

memory requirements are considerably larger. 

The effort required to implement the different modes in code is also not illustrated. In general, forward-

mode AD is considered easier to implement and less intrusive to the original source code than reverse-mode 

AD. This is because, in reverse-mode AD, additional coding is required to build, manage, and traverse the 

computational graph. Additionally, each output variable for which derivatives are needed must be handled 

individually with existing reverse-mode AD methods, while forward-mode AD methods can be applied in 

such a way that a single version of the source code can compute derivatives of any output variable with 

respect to any input variable. This will be demonstrated later in this chapter. The reader is referred to the 

literature (see, for example, Refs. [26–28]) for more detailed discussions on the two AD methods. 

2.2.4 Discussion 

The purpose of the present chapter is to facilitate accurate and efficient derivative calculations within 

MachUp, as discussed in the introduction. Symbolic differentiation of the algorithm is infeasible due to the 

complexity of the nonlinear system of equations which form the basis of the numerical lifting line algorithm 

implemented by MachUp. Finite differencing introduces truncation error into the derivative calculations and 

is less efficient than AD methods. For these reasons, the author has selected AD for implementation in 

MachUp. 
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Of the available AD methods, reverse-mode AD is considered more efficient than forward-mode AD 

when the number of design variables is larger than the number of dependent variables. This is likely to be 

the case for any wing shape optimization problem in which MachUp is used to evaluate the objective 

function, but this advantage is expected to be small because of the limited number of inputs required to define 

even complex wing geometries in MachUp. The memory advantages of forward-mode AD are also not 

important to this effort because the memory requirements for most typical MachUp simulations are several 

orders of magnitude less than the available memory on most modern machines. The primary concerns in 

deciding between forward-mode and reverse-mode AD for the current work, then, are the amount of effort 

required for implementation in the existing source code and the flexibility of the resulting code in computing 

derivatives of various output variables with respect to various input variables. As discussed in Sec. 2.2.3, 

forward-mode AD holds advantages over reverse-mode AD in both respects.  

2.3 Methods and Tools for Forward-Mode Automatic Differentiation 

Two methods exist for implementing forward-mode AD in source code, namely source code 

transformation (SCT) and operator-overloading (OO). SCT is done by scanning the existing source code, 

identifying all floating-point variables and mathematical operations, adding additional variable declarations 

for the storage of partial derivative values, and adding additional lines of code for the computation of partial 

derivative values anytime a mathematical operation is performed. While to perform this process manually 

would be tedious at best, several algorithms have been developed to perform SCT automatically for a variety 

of programming languages. See, for example, Refs. [35–39]. SCT is possible in all programming languages, 

but tools for performing SCT are quite complex. Because the derivative computations appear explicitly in 

the differentiated source code, the resulting source code can be quite large when compared to the original 

undifferentiated code, and different source code is obtained depending on which input variables are made 

available for differentiation. As a result, several versions of the source code must be maintained in order to 

allow for any flexibility in the derivative calculations, which has negative implications regarding version 

control. 

OO methods rely on the use of a custom data type with specifically-defined behavior for mathematical 

operations. The custom data type contains storage for a single floating-point variable and its derivative with 

respect to one or more independent variables. Any time a mathematical operator is applied to an instance of 
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this custom data type, code is executed to evaluate both the mathematical operation and its analytical partial 

derivative(s) automatically. Not all programming languages support the polymorphic features required for 

implementing AD through OO, but most common languages used for scientific and engineering applications 

do (e.g. Fortran, Matlab, C++, Python, R, and Java). 

As with SCT, several tools are available for implementing OO in existing source code, but 

implementations are quite varied in both functionality and ease-of-use. One common method for 

implementing OO, because of its overall simplicity, is the complex step method proposed by Lyness [40]. 

This method replaces all floating-point variables in an algorithm with the built-in complex data type that is 

standard in most modern programming languages. The independent variable with respect to which derivatives 

are desired is given an initial assignment that includes a small imaginary perturbation. Calculations for the 

algorithm then proceed under the normal rules of complex mathematics, assuming all operators in the 

algorithm are defined for complex numbers. Outputs of the algorithm will then contain the normal function 

value in the real part of the complex number and the first derivative of the function, multiplied by the small 

perturbation used, in the imaginary part of the complex number. To illustrate this method, consider a Taylor 

series expansion of the arbitrary function ( )f x  using the perturbation ih, 

 
3 32

2 3

2

( ) ( ) ( ) ( ) ( )
2! 3!

f h f ih f
f x ih f x ih x x x

x x x

  
+ = + − − +

  
  (2.3.1) 

Isolating the real part of Eq. (2.3.1) and solving for ( )f x  gives 
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so that Re[ ( )]f x ih+  gives an approximation to the function ( )f x  that is second-order accurate in h. 

Isolating the imaginary part of Eq. (2.3.1) and solving for the first derivative gives 
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so that Im[ ( )] /f x ih h+  gives an approximation to the first derivative of f with respect to x that is also 

second-order accurate in h. On finite-precision machines, careful selection of the size of the perturbation 

parameter h can potentially eliminate the truncation errors in both Eqs. (2.3.2) and (2.3.3). See Martins et al. 
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[41] for a more detailed discussion on the complex step method and considerations for eliminating the 

truncation errors when using this method. 

While the complex step method is relatively simple to implement and does not require the construction 

of a custom data type, it has several drawbacks that discourage its use over other OO methods. Martins et al. 

[41] showed a Fortran implementation of the complex step method to be significantly less efficient than even 

finite difference methods with only marginal improvement in accuracy. Also, the requirement for a 

perturbation step size introduces the potential for additional truncation error in the results that would not be 

incurred with a full OO implementation. Finally, the restriction to a complex number data type limits the 

number of independent variables with respect to which partial derivatives can be obtained to one per 

simulation. 

Several full OO implementations of forward-mode AD have been developed for a variety of programming 

languages. Fortran implementations include ADF95 (see Straka [42]), AUTO_DERIV (see Stamatiadis et al. 

[43]), COSY INFINITY (see Berz et al. [44]), AD01 (see Pryce and Reid [45]), and DNAD (see Yu and Blair 

[31]). Of these, DNAD has been selected for use in this work. Several considerations were weighed in 

comparing these tools, including licensing, extensibility, level of complexity in the interface, and runtime 

performance. A thorough discussion of DNAD is given in the remainder of this chapter, including a 

presentation of dual number theory upon which DNAD is based, an examination of the algorithm, and the 

process of integrating DNAD with MachUp. For details on the other software packages listed, the reader is 

referred to Refs. [42–45].  

2.4 Dual Number Automatic Differentiation 

DNAD is essentially a derived data type that implements the rules of dual number theory 

programmatically, which can then be used in computational software to perform dual number calculations. 

In this section, we shall first present an overview of what dual number theory is. We shall then describe how 

this theory is implemented as a data type in DNAD. Finally, we shall discuss the process of integrating this 

derived data type into Fortran source code for automatic differentiation of an algorithm. 
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2.4.1 Dual Number Theory 

The theory of dual numbers was first introduced by Clifford [46] for the purpose of describing 

biquaternions. It has since found application in several areas including the calculation of derivatives. Dual 

numbers extend the real number space by adjoining a nilpotent unit  , which has the property 
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  (2.4.1) 

This is similar to how complex numbers extend the real number space using the imaginary unit i, but the 

differences in properties between the nilpotent unit and the imaginary unit result in distinct behavior between 

the two number sets. A dual number d can be written as 

 d a b= +   (2.4.2) 

where a is the real component and b is the dual component of the dual number. A Taylor series expansion of 

the dual number perturbed about the real component by the dual unit   gives 
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or, applying the definition of the nilpotent unit given in Eq. (2.4.1), 

 ( ) ( ) ( )f a f a f a + = +   (2.4.4) 

From Eq. (2.4.4) we see that the real component of ( )f a +  gives the function value ( )f a  and the dual 

component gives the first derivative of the function, ( )f a . Note that Eq. (2.4.4) is not a truncation of Eq. 

(2.4.3), so that the function value and its derivative obtained in this manner are exact. 

Now consider two functions f and g represented as dual numbers 
1d f f = +  and 

2d g g = + . The 

product of these two dual numbers is 
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which gives the correct values for the function and its derivative as the real and dual components, 

respectively. Similarly, the quotient of these two dual numbers is 
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Multiplying top and bottom by the dual conjugate of the denominator, g g −  , gives 
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which again gives the correct values for the function and its derivative as the real and dual components, 

respectively. 

The dual number of a trigonometric function can be determined using another Taylor series expansion. 

For example, the function sin( )f x=  can be expressed as a dual number as 

 2

3 ) sin( ) cos( ) sin( )
2

(
!

d x
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so that the real part – sin( )x  – gives the original function and the dual part – cos( )x x  – gives the correct 

derivative. All other terms are zero by definition of the nilpotent unit. 

This exercise can be repeated for all other continuously differentiable mathematical operations with 

consistent results. Additionally, the chain rule of differentiation allows multiple operations to be chained 

together to produce accurate expressions for the function and its derivative for functions of arbitrary 

complexity. 

Retention of higher-order terms in   allows for higher-order derivatives to be calculated in like manner 

to the first-order derivatives illustrated above. For an example of how dual numbers can be applied to 

compute second-order derivatives, see Fike and Alonso [47]. Only first-order derivatives will be treated in 

this work. However, future effort may extend DNAD to facilitate higher-order derivatives. This would 

facilitate accurate and efficient calculations of Hessian matrices, which can then be used to improve the 

performance of some gradient-based optimization algorithms. 

2.4.2 The Dual Number Data Type 

The dual number theory described in Sec. 2.4.1 has been implemented in Fortran by Yu and Blair [31] 

using a derived data type with operator overloading. The derived data type consists of a single floating-point 

variable that stores the primary function value, an array of floating-point values of arbitrary length containing 

any number of partial derivative values, and a series of overloaded operator functions defining the mechanics 

of dual number algebra. The DNAD source code is provided in Appendix A. 

The source code given in Appendix A contains several modifications from the original version published 

by Yu and Blair. These modifications have been made in an effort to make the software more flexible and 
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easier to use. In the original version, variables for precision and the length of the derivative vectors were 

defined explicitly in the source code. These definitions have been removed. Floating-point precision is now 

controlled through options specified at compile-time. For example, the DNAD module can be compiled for 

double-precision floating-point algebra using the –fdefault-real-8 flag in the gfortran compiler or the –

r8 flag in the Intel Fortran compiler. Similarly, the length of the derivative vector can be specified using 

preprocessor directives. For example, a derivative vector length of 3 is defined by specifying –Dndv=3 when 

invoking the preprocessor. By making these modifications, the floating-point precision and derivative vector 

length are now contained in the DNAD programming interface as opposed to being explicitly contained in 

the DNAD source code. Additionally, the source code has been reorganized and is now contained within a 

single source file. This is simply for convenience when compiling the module and linking it with Fortran 

algorithms. Note that the use of preprocessor directives requires that the preprocessor be invoked before the 

source code can be compiled. This is usually done when invoking the compiler by specifying a preprocessor 

flag (e.g. –cpp when using gfortran or –fpp when using the Intel Fortran compiler) or by capitalizing the file 

extension (e.g. *.F or *.F90 as opposed to *.f or *.f90). 

Several additional operators have been added to the programming interface, including the intrinsic Fortran 

tan, dtan, atan, atan2, and maxloc functions. The abs operator overload has been modified to prevent 

excessive not-a-number (NaN) occurrences in the derivative values when the primary value is constant with 

respect to any of the independent variables. These changes make the DNAD module more versatile in its 

application to existing Fortran algorithms. 

2.4.3 Integration with Fortran Algorithms 

A streamlined process for integrating DNAD with Fortran algorithms has been developed. Most source 

files can be modified simply by adding the lines of code shown in Figure 2.3 to the beginning of the file. 

When other modifications to the source file are necessary, e.g. when logic must be added to handle input 

and/or output of the additional data contained in the dual number type, these modifications can also be 

contained inside compiler directives so that the normal behavior of the code can be retained when the DNAD 

module is not included in the compiling process. 
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Figure 2.3  Header lines added to a Fortran module to include DNAD capabilities. 

 

 In some situations, the programmer may need to exclude specific floating-point variables from conversion 

to dual numbers. For example, a named constant (usually defined with the parameter keyword) cannot be 

converted directly to a dual number because Fortran does not allow for implicit type conversion to derived 

data types. A simple trick has been successfully applied in these cases which takes advantage of the fact that 

the algorithms used to parse the preprocessor directives are case-sensitive, while the Fortran compiler itself 

is case-insensitive. Therefore, the commands shown in Figure 2.3 will only convert variables declared as 

real to type(dual). Variables declared as uppercase REAL will remain unchanged. 

 As a simple example, consider the Fortran source code contained in the top box of Figure 2.4(a). This 

code prompts the user for a value for the radius (r) of a circle, which it then uses to compute the area of the 

circle. The compiler command used to generate an executable from this source code, using the open-source 

gfortran compiler, is given in the middle box of Figure 2.4(a). A single execution of the resulting executable 

is illustrated in the bottom box, where the user has specified a radius of 5. 

 In comparison, the modified source code to generate an executable capable of automatic differentiation 

using DNAD is shown in the top box of Figure 2.4(b). Only two changes have been made to the original 

code: the addition of four header lines from Figure 2.3 to include the DNAD module in the executable, and 

the change to uppercase REAL for the declaration of the parameter pi. The command needed to compile this 

code, given in the middle box of Figure 2.4(b), now specifies the DNAD source code file and defines the 

length of the derivative vectors. The –Ddnad option tells the preprocessor to execute the commands contained 

inside the #ifdef preprocessor directive at the top of the Circle program. Also note that the name of the 

source code file has been changed to use a capital “F” in the extension so that the preprocessor is 

automatically invoked. Execution of the resulting executable, shown in the bottom box of Figure 2.4(b), is 

again slightly different from that shown in the bottom box of Figure 2.4(a). In addition to specifying the 

radius of the circle, the user must also specify the partial derivative of the radius with respect to the  

  

#ifdef dnad 
    use dnadmod 
#define real type(dual) 
#endif 
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Figure 2.4  Example source code, compiler commands, and code execution (a) before and (b) after 

DNAD integration. Differences are highlighted in bold. 

 

independent variable of interest. In this case, the independent variable of interest is the radius, so that 

/ 1r r  = . In addition to outputting the area, the code has automatically output the derivative vector because 

a free-formatted output command was used. If different formatting is desired for the output, preprocessor 

directives can be used to customize the output. An example of this based on the CircleArea program is given 

in Figure 2.5. 

 Using the source code given in Figure 2.4(b) with the compiler command given in Figure 2.4(a) will 

produce an executable identical to the executable produced from the unmodified code. Thus, for this simple 

program, the same source code can now be used to generate both normal and differentiated versions of the 

software. It shall be shown later that this same result can be achieved for even complex algorithms. The 

simplification to a single source code for both normal and differentiated versions of the software is a 

significant advantage over other AD tools where separate source code repositories must be maintained. 

 

program Circle

implicit none

real, parameter :: pi=3.1416

real :: r, a

write(*,*) "Enter a radius: "

read(*,*) r

a = pi * r**2

write(*,*) "Area = ", a

end program Circle

program Circle

#ifdef dnad

use dnadmod

#define real type(dual)

#endif

implicit none

REAL, parameter :: pi=3.1416

real :: r, a

write(*,*) "Enter a radius: "

read(*,*) r

a = pi * r**2

write(*,*) "Area = ", a

end program Circle

gfortran Circle.f90 gfortran –Ddnad –Dndv=1 dnad.F90 Circle.F90

./a.out
Enter a radius
5
Area =   78.5400009

./a.out
Enter a radius
5 1
Area =   78.5400009   31.4159985

a) b)
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Figure 2.5  Example source code for customizing output of dual number objects. 

 

2.4.4 Special Considerations when Integrating DNAD with Existing Fortran Algorithms 

Throughout the course of this work, several items have been identified that require special care in order 

to correctly implement DNAD with an existing Fortran code. Most of these items, with the exception of the 

first, relate to specific components of the Fortran programming language. Most of these components have 

been deprecated since the release of the Fortran 90 language standard and are generally discouraged from 

use in new source code. The abundance of legacy Fortran analysis codes that were written to language 

standards prior to Fortran 90, however, motivates the enumeration of these items. 

The first item of note is the definition of “exact” when used to describe derivatives computed using AD. 

Most numerical algorithms use approximate methods – for example, interpolation methods, iterative root-

finding methods, and finite volume and finite differencing approximations – to implement a mathematical 

model in code. Pakalapati et al. [33] noted that the derivatives computed using AD are derived directly from 

the numerical algorithm and have no knowledge of the underlying mathematical model from which the 

numerical algorithm was derived. As such, the derivatives are only exact in relation to the numerical model, 

and even then only to the limit of machine precision. The practice of referring to derivatives computed using 

AD as “exact” stems from the absence of truncation error in their calculations. However, it is important to 

keep in mind that derivative calculations computed using AD are still susceptible to mathematical modeling 

error, numerical modeling error, and round-off error. 

The next item of concern for DNAD integration is the use of fixed-form source code. Prior to the Fortran 

90 standard, all lines of Fortran code were required to conform to a set of fixed form rules. Fixed form source 

code is restricted to 72 characters per line of code, and the first six characters of each line are reserved. 

Continuation lines can be used to divide longer statements across multiple lines, but individual lines 

program Circle 
... 
#ifndef dnad 
    write(*,*) "Area = ", a 
#else 
    write(*, '(A, F12.7)') "Area = ", a%x 
    write(*, '(A, F12.7)') "dA/dr = ", a%dx 
#endif 
end program Circle 
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exceeding 72 characters in length are automatically truncated by the compiler. When preprocessor directives 

are used to modify fixed form source code (such as when real variable declarations are replaced with 

type(dual) – an increase of six characters – using the preprocessor directives listed in Figure 2.3), the 

resulting lines of code must conform to this same limit or be truncated. 

With the publication of the Fortran 90 language standard, free form source code formatting was 

introduced which allows for up to 132 characters per line of code and removes the special reservation of the 

first six characters on each line. This added flexibility reduces the likelihood that modifying the source code 

through the preprocessor directives given in Figure 2.3 will cause inadvertent truncation of the source code. 

However, the possibility still exists. For fixed form source code, the code must be checked for any lines 

containing floating-point variable declarations that exceed 65 characters in width. For free form source code, 

these declaration lines cannot exceed 125 characters in width. Any lines exceeding these limits must be 

shortened or divided into multiple lines. 

Another hurdle to the implementation of DNAD in Fortran codes is the use of the common statement to 

share information between program units. When data types of variables in a common statement are consistent 

between program units, the conversion of floating-point variables from real to type(dual) should work 

seamlessly. However, it is possible for the memory space assigned to a common statement to be declared as 

one data type in one program unit and a different data type in another program unit. This can lead to data 

misalignment when the data types of variables in the common block are changed. The code given in Figure 

2.6 illustrates this problem. The same common block is declared in two separate subroutines but with 

inconsistent data types. The common block cb, when the two subroutines are compiled using a double-

precision compiler flag (e.g. -fdefault-real-8 for the gfortran compiler or -r8 for the Intel Fortran compiler), 

will have a size of 8 bytes. However, if the DNAD header from Figure 2.3 is included and the subroutines 

are recompiled, the size of the common block cb in subroutine sub1 will be 8( 1)N + , where N is the length 

of the derivative vector. This is incompatible with the size of the common block in subroutine sub2 and will 

generate a compiler error. Even worse, if the name is omitted from the common block declarations so that 

the blank common block is used, the code will compile successfully but the character string c in subroutine 

sub2 will only align with the first eight bytes of the dual number x in subroutine sub1. Any additional 

variables included in the common block will then be misaligned in the executable. 



25 

 
Figure 2.6  Example of inconsistent data types used in a common block in different program units. 

 

A similar problem is encountered when codes use the equivalence statement to associate two variables 

within a program unit to the same memory location. Again, if a floating-point variable is associated with a 

non-floating-point variable in this manner, conversion to dual numbers will result in data misalignment and 

a potential bug in the resulting executable. 

Both the common and equivalence statements have been deprecated in favor of modern replacements 

that, when used properly, ensure correct alignment of the underlying bit data and enforce consistency between 

program units automatically. New code development should use modules in place of common blocks and 

transfer statements in place of equivalence statements. When common and equivalence statements are 

encountered in legacy codes, the statements may need to be updated to their modern counterparts before 

successful differentiation of the codes can be achieved with the DNAD module. 

Next we discuss concerns with using the Fortran data statement. The data statement is used to initialize 

variables to specific values at the beginning of a program unit. It is the recommended way for initializing 

large arrays of floating-point values prior to calculations and is therefore quite common in scientific and 

engineering applications. Unfortunately, custom constructors cannot be invoked implicitly within the Fortran 

programming language, so conversion of variables from real to type(dual) will also require a change to 

any data statements involving those variables. These changes can be wrapped inside preprocessor directives, 

but care must be taken to ensure consistency between initial values in both branches of the control. 

The last concern to be discussed in this section is the multitude of ways in which floating-point variables 

can be declared in Fortran programs. Table 2.1 provides a summary of the different statements that can be 

used to declare floating-point variables. In this work the author has recommended using lowercase real for 

subroutine sub1 
    implicit none 
    real :: x 
    common /cb/ x ... 
end subroutine sub1 

 
subroutine sub2 
    implicit none 
    character(len=8) :: c 
    common /cb/ c ... 
end subroutine sub2 
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variables, uppercase REAL for constant parameters, and controlling precision through compiler options. 

However, all the options listed in Table 2.1 are valid statements and may be encountered in codes developed 

without DNAD in mind. Some codes may include several of the forms listed in Table 2.1. In order to correctly 

differentiate an algorithm via DNAD, all forms used in the code need to be accounted for in the conversion. 

This can be done by adding additional #define directives to the header lines given in Figure 2.3 or by 

modifying all floating-point variable declarations in the source code to use a single, consistent format. 

 

Table 2.1  Methods for Declaring Floating-Point Variables in Fortran 

Declaration Description 

real Single-precision 

double precision Double-precision 

real*N N-byte floating-point value, where N is an integer 

real(kind=p) 
Floating-point value of kind p, where p is a kind value 

returned from the selected_real_kind function 

 

2.5 Automatic Differentiation of a 1D Scalar Transport Equation Solver 

In this section DNAD is applied to a 1D scalar transport equation solver implemented in Fortran. We 

begin with a description of the mathematical model for 1D transport of a scalar quantity which includes 

advection, diffusion, and production terms. We then describe the method used to implement this model 

numerically. Next, we discuss changes needed to obtain partial derivatives via the DNAD module. Finally, 

we present results computed using this model and comparisons with alternative methods for derivative 

calculations. 

2.5.1 Mathematical Model 

The Fortran algorithm is based on the mathematical model presented by Pakalapati et al. [33] and was 

written specifically for the purpose of demonstrating differentiation of a fluid dynamics algorithm using 

DNAD. The governing equation, 
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describes the 1D transport of a scalar field quantity   due to advection, diffusion, and production, where x 

is the spatial coordinate, u is the velocity,   is the diffusivity, and C is a proportionality constant such that 

the source term is directly proportional to the local concentration  . 

 Two boundary conditions are required to close Eq. (2.5.1). For certain boundary conditions, a closed-

form solution can be obtained which will aid in evaluating the accuracy of derivatives computed using 

DNAD. A closed-form solution to Eq. (2.5.1) with boundary conditions (0) 1 =  and (1) 0 =  is given by 

Pakalapati et al. [33] as 
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when 
2 4 0u C−   . 

 We desire the derivatives of the scalar field function   with respect to the x coordinates and the three 

proportionality constants u,  , and C. Symbolic differentiation of Eq. (2.5.2) with respect to  
 gives 
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Differentiation of  
 with respect to the three proportionality constants gives 
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From the chain rule of differentiation, the partial derivatives of   with respect to the three proportionality 

constants are 
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2.5.2 Numerical Model 

 The 1D transport problem can be solved numerically by discretizing the domain and applying finite 

difference approximations such as those discussed in Sec. 2.2.2 to the derivative terms in Eq. (2.5.1). For 

example, we can use the first-order-accurate backward difference formula given by Eq. (2.2.12) to 

approximate x   in the advection term and the second-order-accurate central difference formula given by 

Eq. (2.2.14) to approximate 
2 2x   in the diffusion term. This gives 
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Equation (2.5.11) is a tridiagonal system of linear equations that can be solved implicitly using, for example, 

the Thomas Algorithm (see Thomas [48]). 

 A basic Fortran implementation of the solution procedure described above is given in Appendix B. This 

implementation uses a card-style input format for specifying the boundary conditions and proportionality 

constants, as well as the number of grid points to use in the domain discretization. An example input file is 

given in Figure 2.7. Upon completion, the program generates a comma-delimited ASCII text file containing 

the solution of   at each discretized x-coordinate. For comparison, the closed-form solution given by Eq. 

(2.5.2) has also been included in the Fortran code and can be solved by changing the solver method to  
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Figure 2.7  Example input file for the Fortran program given in Appendix B. 

 

analytical. Closed-form partial derivatives based on Eqs. (2.5.8)-(2.5.10) can then be calculated by adding 

a derivatives parameter to the solver card and setting its value to yes. Note that the closed-form solution 

is only valid when the boundary conditions are (0) 1 =  and (1) 0 = , and the derivatives parameter is 

only used when the solver method is set to analytical. 

2.5.3 Automatic Differentiation of the 1D Scalar Transport Problem using DNAD 

The process outlined in Sec. 2.4.3 was used to differentiate the 1D scalar transport problem via the DNAD 

module. Code modifications are summarized in Appendix C. No modifications to the main program unit were 

required because no floating-point variables are declared in this unit. Conversion of floating-point variables 

from real to type(dual) in the adpsolver and adpio modules was facilitated using the preprocessor 

directives given in Figure 2.3. No other modifications to the adpsolver module were needed. Several 

additional modifications were needed in the adpio module, however, in order to properly handle options for 

requesting derivatives in the input file and to include the derivative calculations in the output file. 

First, three new static variables were declared in the adpio module to store information relative to the 

partial derivatives requested by the user. This is necessary in order to ensure that the derivative vectors are 

not overrun by too many partial derivative requests and to ensure that the derivative information is properly 

written to the output file. 

Next, an additional case was added to the parseCard function so that a *dnad card can be processed, and 

an additional function (setDNADField) was added to process this card. The *dnad card is used to enumerate 

specific inputs with respect to which partial derivatives are to be computed. Available options supported by 

the setDNADField function include derivatives with respect to u ,  , and C . An example card requesting 

derivatives with respect to all three of these variables is 

*dnad, dv=u, dv=gamma, dv=c 

*job, name=adpsolver_example 
*bcs, phi0=1.0, phi1=0.0 
*props, u=1.0, gamma=0.1, c=-1.0 
*grid, npts=41 
*solver, method=implicit 



30 

 The boundary conditions (0)  and (1)  are the only other floating-point inputs to this code. Support for 

derivatives with respect to these variables could easily be added with just a few more lines of code to the 

setDNADField function. 

 A minor change was made to the type declaration of the stringToReal function (line 342 in the original 

code). The real keyword was changed to all-caps (REAL) so that the return type of this function would not 

be converted to type(dual) by the preprocessor. This ensures that only a single floating-point value is parsed 

when processing the text for a parameter value, and only the primary variable value (not the partial derivative 

values) is modified by the function assignment. 

The last set of changes made to the adpio module was to add an alternative version of the writeData 

function that includes statements for writing out the results with automatic derivatives. The writeData 

function that is included when the code is compiled is controlled by placing the two functions inside an 

#ifndef dnad preprocessor directive. This complete separation of code for the undifferentiated and 

differentiated versions of the algorithm allows for flexibility in how the derivative information is output to 

the results file without affecting the original format. 

Preprocessor directives were used around each of the modifications described above, so that inclusion of 

the DNAD module in the compiled executable can be controlled entirely through preprocessor options 

specified at compile-time. Adding the –Ddnad and –Dndv=<#> options to the compiler command will activate 

the DNAD module and enable automatic differentiation within the resulting executable, while omitting these 

options from the compiler command will produce the same executable as would be generated by the original 

code contained in Appendix B. 

2.5.4 Results and Discussion 

 Figure 2.8 compares numerical results of the 1D scalar transport problem described above using three 

different grid resolutions to the closed-form solution given by Eq. (2.5.2). For 0.5x   the closed-form curve 

is relatively linear and the numerical results are in good agreement. For larger x values, the curve becomes 

more nonlinear and the accuracy of the numerical results is reduced. However, refinement of the grid 

demonstrates convergence of the numerical results toward the closed-form solution. Figure 2.9 shows the 
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Figure 2.8  Closed-form and numerical solutions to the 1D transport equation. 

 

 
Figure 2.9  Percent error in numerical solution at x = 0.75 for various grid resolutions. 

 

percent error of the solution at 0.75x =  for several grid sizes on a log-log plot. The slope of the data indicates 

the algorithm has a first-order convergence rate. This convergence rate corresponds with the order of the 

backward difference formula – see Eq. (2.2.12) – that was used in developing the numerical model. 

Figures 2.10-2.12 provide a comparison of partial derivative results computed using both the DNAD 

module and the closed-form solutions given by Eqs. (2.5.8)-(2.5.10). Also included are DNAD-computed 
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derivatives of Eq. (2.5.2). The DNAD-computed derivatives of Eq. (2.5.2) match Eqs. (2.5.8)-(2.5.10) to 

machine precision, confirming that these results are the numerical equivalent of symbolic differentiation of 

the governing equation. The DNAD-computed derivatives of the numerical model are not as accurate, and 

the error is shown to be inversely proportional to the step size x  used in the analysis. 

 

 
Figure 2.10  Comparison of / u   computed using DNAD and Eq. (2.5.8). 

 

 
Figure 2.11  Comparison of /   computed using DNAD and Eq. (2.5.9). 
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Figure 2.12  Comparison of C/   computed using DNAD and Eq. (2.5.10). 

 

Figures 2.13-2.15 compare the root-mean-square (RMS) errors of the DNAD calculations with RMS 

errors in corresponding solutions computed using finite difference methods. In general, all of the methods 

exhibit a first-order convergence rate, and for coarse grids (
210x −  ) there is little difference in the RMS 

error values between the different methods. There are lower limits in x x  , however, below which the finite 

difference methods no longer converge or even begin to diverge. These limits depend on the finite 

differencing method used and the finite differencing step size (e.g. u ,  , or C ) used. DNAD derivatives 

do not have this limit and will continue toward the exact solution with decreasing x  at the same approximate 

convergence rate as   until reaching the accuracy of machine precision. 

Some of the finite difference solutions shown in Figures 2.14 and 2.15 have smaller RMS errors than the 

corresponding DNAD solutions for a given x . In each of these cases, the truncation error due to 

discretization of the governing equation is in the opposite direction as the truncation error due to 

discretization of the partial derivative, so that the two error sources partially cancel, lowering the overall 

RMS error. The reductions in error are small and only occur at particular combinations of  and the finite 

differencing step size (   or C ), so that taking advantage of this situation during a typical analysis would 

be impractical. 
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Figure 2.13  Comparison of errors in / u   computed using DNAD and finite differencing. 

 

 
Figure 2.14  Comparison of errors in /   computed using DNAD and finite differencing. 
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Figure 2.15  Comparison of errors in / C   computed using DNAD and finite differencing. 

 

 Time benchmarks for the adpsolver code were collected using a standard desktop computer running 

Windows 10 Enterprise 64-bit with a third-generation Intel Core i7-3770 3.4 GHz processor, 16 GB of 1600 

MHz DDR3 RAM, and a 1 TB 7200 RPM Serial ATA internal hard drive. The adpsolver code was compiled 

using version 6.3.0 of the GNU Fortran compiler. 

 The example input file given in Figure 2.7 was used as a baseline input file for all of the timed analyses, 

except that the number of grid points was changed and a *dnad card was added for the benchmarking analyses 

of the differentiated code. Figure 2.16 shows timing results for the differentiated code normalized by the time 

required to execute the undifferentiated code. Also included for comparison are the normalized times that 

would be required to compute the same derivatives using first-order forward differencing (Eq. (2.2.11)) and 

second-order central differencing (Eq. (2.2.13)). 

 The results presented here demonstrate that using DNAD can improve the accuracy and run-time 

efficiency of derivative calculations over finite differencing methods. The run-time cost using the DNAD  
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Figure 2.16  Run-time benchmarks for the adpsolver code using DNAD and finite differencing. 

 

module is dependent on mesh size, though this dependency is small. For each of the data sets shown in Figure 

2.16, the run-time cost increases almost linearly with the number of derivatives computed. The additional 

cost of each derivative computed using DNAD is less than half the cost of the primary function if a mesh size 

of 
510N =  is used and less than one-fourth the cost of the primary function if a mesh size of 

310N =  is used. 

Source code changes required to differentiate the adpsolver code using DNAD were minimal and mostly 

confined to I/O operations. The effort required to implement these changes was comparable to the effort 

required to find the appropriate perturbation step sizes for computing the derivatives using finite differencing. 

This is a relatively simple code with fewer than one thousand lines of code, however, so these same 

conclusions may not apply to more complicated software with larger code bases.  

2.6 Automatic Differentiation of MachUp 

 In this section we discuss automatic differentiation of the numerical lifting line code MachUp using 

DNAD. This code was written without DNAD in mind, but it presents an ideal application for DNAD since 

relatively few inputs are required for an analysis and the results generated by MachUp are of value to wing 

design problems. The MachUp source code is developed and maintained by the USU Aero Lab* and is 

                                                           

* http://aero.go.usu.edu 
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available for download from github*. The entire source code is not included in this work, but Appendix D 

contains the modifications that were made for this effort. We begin this section with a discussion of the 

MachUp software. Next we discuss in detail the modifications that were made to the MachUp source code in 

order to enable automatic differentiation via DNAD. Finally, we demonstrate the accuracy and efficiency of 

the resulting derivative calculations through a limited set of results and performance measurements. 

2.6.1 The MachUp Numerical Lifting Line Solver 

MachUp is an open-source aerodynamics analysis tool for evaluating the performance characteristics of 

systems of finite wings. It is written in modern, object-oriented Fortran and interfaces with web applications 

and other software packages through human-readable input and output files. The core algorithm in MachUp 

is based on the numerical lifting line method of Phillips and Snyder [16]. Although rooted in potential flow 

theory, this method has the ability to include viscous effects in the analysis. It can be used to model multi-

wing systems and wings with sweep and dihedral. The algorithm equates the 3D vortex theory of lift to the 

2D section lift at discrete control points located along the quarter-chord of a wing to solve for the bound 

vorticity strength at these locations. This development produces a nonlinear system of equations that must be 

solved iteratively. A linear approximation is used as an initial guess, and Newton’s method is applied to 

update the solution until changes in the calculated vortex strengths between iterations fall below a user-

specified threshold. The algorithm has been used for a number of wing design studies, including studies of 

propeller-wing interactions [49] and ground effect [50]. 

The MachUp source code is organized into several modules which contain the data structures for different 

components of the analysis. For example, a plane_t object stores all of the data and methods needed to 

define and solve the system of horseshoe vortices for the complete model, including an array of  wing_t 

objects that define the geometry for each individual lifting surface. Further, each wing_t object contains an 

array of section_t objects that each define the 2D airfoil section properties at one control point on the wing. 

Input to MachUp is handled through ASCII text files that use the JavaScript Object Notation (JSON) 

format for data structures. This data-interchange format is often used in web applications and can easily 

                                                           

* https://github.com/usuaero/machup 
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interface with other common engineering tools such as Matlab and Python. In addition, these input files are 

human-readable and can be created and edited in any standard text editor. The JSON data structures are 

handled within MachUp through an open-source JSON parsing tool available on Github* and also included 

within the MachUp source code. A sample MachUp input file is shown in Appendix E. The input file defines 

a single wing with an aspect ratio of 8; an elliptic chord distribution; no sweep, dihedral, or geometric twist; 

and a uniform cross-section with properties corresponding approximately to those of a NACA 2412 airfoil 

in inviscid, incompressible flow. The airfoil properties and profile are defined in separate files that reside 

within the specified airfoil database folder. An example of these property and profile files for the NACA 

2412 airfoil is given in Appendix E. 

Commands to be executed are specified under the “run” record in the JSON input file. The example file 

in Appendix E lists multiple commands, all of which can be performed with a single execution of the 

software. The first command, “targetcl”, solves the complete lifting line algorithm multiple times using 

Newton’s method to adjust the angle of attack until the specified lift coefficient is achieved. The “forces” 

command generates a JSON output file that contains the aerodynamic performance coefficients calculated 

by the lifting line algorithm. The “distributions” command generates a comma-separated values (CSV) 

file that contains aerodynamic results for each wing section in the model. Finally, the “stl” command 

generates a stereolithography (STL) file that contains a geometric representation of the model for 

visualization. Note that any of the “run” commands listed can be temporarily disabled by setting the “run” 

parameter for that command to 0. 

Viscous effects can be included in a MachUp analysis by specifying viscous properties for the 2D airfoils 

used in the analysis. For example, a 2D potential flow solution for flow around a NACA 2412 airfoil gives a 

zero-lift angle of attack of approximately 
0 0.0380 radL = −  and a section lift slope of approximately 

0 6.86 / rada = , but 2D viscous flow solutions give somewhat different values. XFOIL (see Refs. [51,52]) 

predicts a zero-lift angle of attack of approximately 
0 0.0372 radL = −  and a section lift slope of 

approximately 
0 6.26 / rada =  for a NACA 2412 airfoil in viscous flow at a Reynolds number of Re 1E6= . 

                                                           

* https://github.com/jacobwilliams/json-fortran 
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Similarly, the zero-lift moment coefficient and moment slope of an airfoil will also be different between 

inviscid and viscous flows and, for viscous flows, will depend on Reynolds number. Section parasitic drag 

is estimated in MachUp using the relation 

 
0 1 2

2

pd d d l d lc c c c c c= + +    (2.6.1) 

where the coefficients 
0dc , 

1dc , and 
2dc must be determined using a viscous analysis tool such as XFOIL or 

from experimental data. These coefficients are identically zero by definition for inviscid flows. MachUp 

sums the individual section parasitic drag components computed from Eq. (2.6.1) about the aircraft center of 

gravity to evaluate global viscous forces and moments as described by Phillips [53]. 

 The example input file in Appendix E contains other parameters not discussed here, and still other 

parameters are supported by MachUp that have not been included in the example. A comprehensive 

description of each available parameter is beyond the scope of this work. The reader is instead referred to the 

MachUp documentation and source code available on Github. 

2.6.2 Modifications to the MachUp Source Code 

 The original and modified lines of code required for DNAD integration in MachUp have been listed in 

Appendix D. Two of the MachUp source files – main.f90 and json.f90 – were left unmodified. A few other 

files – airfoil.f90, dataset.f90, and section.f90 – required only the addition of the preprocessor 

directives from Figure 2.3. 

 After adding the preprocessor directives from Figure 2.3, several compiler errors were encountered due 

to improper handling of data type conversions between real and type(dual). These compiler errors were 

resolved by manually inspecting the source code and ensuring that floating point variables were properly 

declared as either real or REAL as discussed in Sec. 2.4.3. 

 All of the remaining code changes dealt directly with I/O functions of the program. An intermediate layer 

between the third-party JSON interface and the computational portion of the MachUp source code already 

existed prior to DNAD integration (see myjson.f90), but was not fully implemented. Several lines of code 

still called directly into the json_m module, so that variables declared as type(dual) were not properly 

processed. These errors were resolved by completing the implementation of the myjson_m module and adding 

some additional functions specifically for handling variables of type(dual). The preprocessor directive for 
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converting all real variable declarations to type(dual) was not added to the myjson_m module (as was done 

with the other modules) so that functions for handling input and output of both data types are included in the 

compiled executable. Fortran interfaces were defined at the beginning of the myjson_m module so that the 

appropriate I/O function is called based on the type declarations of the arguments passed to the function. As 

with other DNAD-specific changes, the functions and interfaces for handling variables of type(dual) were 

enclosed in preprocessor directives so that they are only included in the compiled executable when the DNAD 

module is activated. 

 DNAD implementation in the manner described here affords some very significant advantages over other 

automatic differentiation methods. Because all JSON-specific I/O operations are processed through the 

myjson_m module, no variable-specific code is needed to make a floating-point variable available for 

derivative calculations. Instead, derivatives with respect to any floating-point variable contained in the JSON 

input file can be computed simply by converting the single value in the JSON input file to a two-value array. 

For example, consider again the example JSON input file given in Appendix E. The angle of attack and 

sideslip angle are specified under the “condition” keyword: 

"condition": { "alpha": 0, "beta": 0 } 

Derivatives with respect to angle of attack can be computed simply by replacing the above line with the 

following: 

"condition": { "alpha": [0, 1], "beta": 0 } 

Note, however, that angle of attack is specified in the input file in units of degrees, so that partial derivatives 

of output quantities will have units of deg-1. Partial derivatives of lift coefficient, pitching moment coefficient, 

and other aerodynamic performance coefficients with respect to angle of attack are typically reported in units 

of rad-1. This conversion can be performed after the analysis, but it can be handled more conveniently by 

specifying the operating conditions as: 

"condition": { "alpha": [0, 57.2957795131], "beta": 0 } 

so that, by nature of the chain rule of differentiation, all partial derivatives output by the code will have units 

of rad-1. 

 The JSON output file, written upon successful execution of the MachUp “forces” command, also takes 

advantage of the myjson_m module so that partial derivative information is automatically written for all 
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variables of type(dual). As with the input file, no variable-specific code modifications were needed to 

enable output of partial derivative information, so that the partial derivative information is available for all 

variables written to a JSON output file automatically. 

2.6.3 Results and Discussion 

 The order of convergence of MachUp can be estimated by considering how the solution changes as 

the number of nodes is increased. For this analysis, we use an elliptic wing with a straight quarter-chord, an 

average chord of 1, an aspect ratio of 8, a uniform cross-section with a section lift slope of 2 , and no 

geometric or aerodynamic twist. The wing is operating at an angle of attack of 1deg = . Figure 2.17 shows 

the magnitude of the percent difference between the lift and drag computed for several grid densities relative 

to that computed using 1280n = , where n is the mesh size (i.e. number of nodes per semispan). The plot 

reveals an approximately second-order convergence rate for both lift and induced drag. 

 An elliptic wing with the same parameters described above was also used to evaluate the accuracy of 

derivative calculations. Derivatives of lift and drag with respect to angle of attack were evaluated using the 

DNAD module, forward differencing (Eq. (2.2.11)), and central differencing (Eq. (2.2.13)). Percent errors 

were computed relative to the DNAD solution using a grid size of 1280 nodes per semispan. Results are 

plotted in Figures 2.18 and 2.19. 

 

 
Figure 2.17  Percent error in lift and drag coefficients for various grid densities relative to the solution 

computed using 1280n =  nodes per semispan. 
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Figure 2.18  Comparison of errors in /

L
C   using DNAD and finite differencing relative to the 

DNAD solution computed using 1280 nodes per semispan. 

 

 
Figure 2.19  Comparison of errors in 

iD /C   using DNAD and finite differencing relative to the 

DNAD solution computed using 1280 nodes per semispan. 
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 Derivatives of lift with respect to angle of attack computed using DNAD and the two finite difference 

formulas are nearly indistinguishable for grid sizes below 100 nodes per semispan or when a perturbation 

step size of 0.01 =  is used. This is because the lift is nearly linear in angle of attack so that the finite 

difference approximations are able to closely represent the function. On the other hand, the behavior of 

induced drag is approximately quadratic in angle of attack. The forward difference method (Eq. (2.2.11)) 

does a relatively poor job of predicting /
iDC   , while the central difference method (Eq. (2.2.13)) is still 

nearly as accurate as the DNAD calculations, especially for small  . There seems to be little advantage in 

terms of accuracy to using DNAD over the second-order central difference method in these calculations when 

an appropriate step size is used. However, determination of an appropriate step size is still an added 

requirement to the finite difference method, and other derivative calculations whose primary functions are 

neither linear nor quadratic may not be satisfactorily represented by either finite difference method. DNAD 

calculations are not limited by either of these issues. 

 Classical lifting line theory [10,11] provides closed-form solutions to the partial derivatives of lift and 

induced drag with respect to angle of attack, namely 
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While the numerical lifting line algorithm implemented in MachUp is closely related to this theory, results 

for /LC    and /
iDC    computed with MachUp do not converge exactly to the solutions given by Eqs. 

(2.6.2) and (2.6.3). This is because Prandtl [10,11] aligned the trailing wake with the chord line of the wing 

in his derivation, while Phillips and Snyder [16] aligned the trailing wake with the freestream. This change 

in formulation results in a difference of less than 0.002% in both /LC    and /
iDC    between the results 

of Eqs. (2.6.2) and (2.6.3) and those of MachUp with a grid size of 1280 nodes per semispan. This difference 

is why the percent errors plotted in Figures 2.18 and 2.19 must be computed relative to the fine-grid MachUp 

results and not the closed-form solutions. 

 As with the adpsolver code, time benchmarks for MachUp were collected using a standard desktop 

computer running Windows 10 Enterprise 64-bit with a third-generation Intel Core i7-3770 3.4 GHz 
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processor, 16 GB of 1600 MHz DDR3 RAM, and a 1 TB 7200 RPM Serial ATA internal hard drive. The 

MachUp code was compiled using version 6.3.0 of the GNU Fortran compiler. 

 The example input file given in Appendix E was used as a baseline input file for all of the benchmarking 

analyses, except that the “targetcl” and “stl” commands were disabled and DNAD calculations were 

requested by changing selected floating point inputs to 2-value lists and compiling the code using the 

appropriate DNAD preprocessor commands. Also, two different grid sizes were used: 40 and 80 nodes per 

semispan. Figure 2.20 shows timing results for the differentiated code normalized by the time required to 

execute the undifferentiated code. Also included for comparison are the normalized times that would be 

required to compute the same derivatives using first-order forward differencing (Eq. (2.2.11)) and second-

order central differencing (Eq. (2.2.13)). 

 The performance of MachUp with DNAD integration is shown to be highly dependent on the number of 

nodes per semispan (n) used in the simulation. This is because, for small n, the majority of execution time is 

spent on problem setup and I/O operations which are not heavily influenced by the DNAD module. As grid 

size increases, the percentage of execution time spent on computations such as LU decomposition and 

forward and backward substitution also increases, so that the performance impact of the DNAD module is 

more heavily felt. 

 

 
Figure 2.20    Run-time benchmarks for MachUp using DNAD and finite differencing. 
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 We note disproportionately large increases in the DNAD execution times shown in Figure 2.20 when 

going from 2 derivatives to 3 and from 7 to 8. This has been attributed to single instruction, multiple data 

(SIMD) vectorization capabilities of the hardware. Vectorization extensions such as Streaming SIMD 

Extensions (SSE) and Advanced Vector Extensions (AVX) use SIMD registers to process a single instruction 

on multiple data more efficiently than if the instruction was processed on each piece of data individually. The 

size of the SIMD registers sets limitations on how many pieces of data can be processed with a single 

vectorized instruction, so that behavior such as that seen in Figure 2.20 when going from 2 derivatives to 3 

and from 7 to 8 is expected. 

 As a result of the above observations, the answer to whether DNAD calculations are more advantageous 

than finite difference methods depends on the size of the model and the purpose of the analysis. If the entire 

model has fewer than 400 nodes and fewer than 8 design variables for which derivatives are required, DNAD 

presents an appealing solution in terms of both runtime efficiency and accuracy. For larger models and 

problem setups with 8 or more design variables, the finite differencing approach may be satisfactory. For 

problems with less than 400 nodes and 8 or more design variables, a reverse-mode AD method may be the 

most efficient option, but integration of a reverse-mode AD tool and verification of this is beyond the scope 

of the current work. 
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3 WING SHAPE OPTIMIZATION USING A NUMERICAL LIFTING LINE ALGORITHM AND 

DUAL NUMBER AUTOMATIC DIFFERENTIATION 

3.1 Introduction 

Aerodynamic shape optimization is the process of designing the outer mold line (OML) of an 

aerodynamic structure such that specific aerodynamic performance requirements are met in the most efficient 

manner possible. As mentioned in Chapter 1, CFD analyses can be used to generate high-fidelity aerodynamic 

performance predictions, but the computational cost of CFD makes it ill-suited for use as the objective 

function in aerodynamic shape optimization problems. Lyu et al. [4] states that visualization of design spaces 

for these types of problems is not possible with current CFD capabilities and hardware limitations. This leads 

aerodynamicists to consider lower-fidelity aerodynamic tools that trade accuracy for runtime efficiency. This 

approach can be especially useful early in the design process when insights into trends and interactions 

between design parameters are more important than highly-accurate performance characteristics. 

One such tool is MachUp, an implementation of the numerical lifting line method of Phillips and Snyder 

[16]. This tool was discussed in Sec. 2.6, where a method for automatic differentiation of the software was 

presented. In this chapter, we discuss the use of MachUp as the objective function in an aerodynamic shape 

optimization problem. Note that the modified version of MachUp discussed in Sec. 2.6, which uses DNAD 

for derivative calculations, is used here. We first present Optix, an open-source optimization framework 

being developed in the Utah State University AeroLab and available through the groups Github page*. The 

version of the code considered in this work is included in Appendix F. We then present solutions to several 

inviscid wing shape optimization problems that were computed using MachUp and Optix, and compare the 

results to known analytical solutions developed using classical lifting line theory [10,11]. Similar wing shape 

optimization problems using viscous airfoil properties are then presented. Finally, we present and discuss a 

wing design contour plot that was generated using MachUp and serves to visualize the complete design space 

for the viscous wing shape optimization problems discussed previously. 

  

                                                           

* https://github.com/usuaero/optix 

https://github.com/usuaero/optix


47 

3.2 Optix 

Optix is an open-source, gradient-based optimization framework written in Python. It has the capability 

of solving a wide range of nonlinear optimization problems and offers some unique features that set it apart 

from similar optimization frameworks. Because Optix is written entirely in Python, it is easy to interface with 

and can readily be extended and customized to fit a particular problem. Optix is also cross-platform and 

highly portable. It can be run on any machine where Python is available, and NumPy (see Oliphant [54]) is 

the only package dependency outside of the Python Standard Library. Any combination of software available 

on the host machine can be executed within the objective function, so that the objective function – typically 

the most computationally expensive part of an optimization analysis – can be written in a high-performance 

computing language such as Fortran or C++. The following subsections highlight the key features of Optix. 

3.2.1 Optimization Method 

Optix implements the BFGS method of Broyden [55], Fletcher [56], Goldfarb [57], and Shanno [58]. This 

is a quasi-Newton method that uses historical calculations of the objective function and its gradient to 

approximate a Hessian matrix, which in turn is used to estimate a search direction. According to Nocedal and 

Wright [59] the BFGS method is among the most popular quasi-Newton methods. It has been implemented 

in several scientific computing packages that offer gradient-based optimization utilities, including the GNU 

Scientific Library, MATLAB, R, and SciPy. 

At the beginning of the BFGS algorithm, the objective function and its gradient at the initial design point 

are calculated and the Hessian matrix is initialized to the identity matrix (i.e. 
0[ ] [ ]=H I ) so that the first 

search direction corresponds to the direction of steepest descent. A line search is then performed to find the 

local minimum in the search direction. The design point is then updated to this location, and a new gradient 

vector is calculated. The BFGS algorithm then determines an updated Hessian matrix 
1[ ]k+H  from the 

previous Hessian matrix [ ]kH  according to 
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where 

 
1{ { }} { }k k+= −x x xδ   (3.2.2) 
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1{ } }{{ }k k+= −γ f f    (3.2.3) 

are the changes in the design point and gradient vector, respectively, between the current and previous 

iterations. The direction of the next line search is then given by 

 
1 1 }{ } [ ] {k k+ += −s H f   (3.2.4) 

This algorithm is repeated until either of two exit criteria are met: 1) the curvature condition proposed by 

Wolfe [60,61] is no longer satisfied, or 2) the change in the objective function between iterations falls below 

a user-specified threshold. Once one of these conditions is satisfied, the Hessian matrix is reset to the identity 

matrix, and the entire process begins again using the last minimum as the initial design point. The 

optimization process is complete when one of the two exit criteria are met on an iteration where the Hessian 

matrix is equal to the identity matrix. The current value of the objective function and the corresponding 

design point are then returned to the calling function as the final results of the optimization process. 

3.2.2 Code Structure 

Optix is composed of two object classes and several utility functions. The source code for these classes 

and functions are listed in Appendix F. The first object class handles execution of the user-specified objective 

function. The objective function is a Python function provided by the user that must accept as arguments the 

current design point and a case identifier, and it must return the value of the objective function evaluated at 

the current design point. A second function can be provided to evaluate gradients of the objective function, 

but this is not required. If specified, the gradient function must accept the same arguments as the objective 

function. It must return both the value of the objective function and the gradient vector at the specified design 

point. If this function is not specified, Optix evaluates the primary objective function multiple times with 

perturbed design points and uses a second-order central differencing algorithm – see Eq. (2.2.13) – to 

approximate the gradient of the objective function. 

The second object class contained in the Optix source code is used for controlling the optimization 

algorithm. The number of design variables, their names, and their initial values are specified through an 

instance of this class. In addition, line search settings, parameters for the exit criteria, and whether to use the 

linear or quadratic line search algorithms (explained later in Sec. 3.2.4) are set here. A helper function is also 

provided through which the user can specify a JSON file from which to load these optimizer settings. 
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The optimize function orchestrates the entire optimization process. It accepts one instance each of the 

two object classes described above and returns the optimized objective function value and corresponding 

design point upon completion. The optimize function relies on the Python NumPy package for efficient 

matrix computations. 

3.2.3 Parallel Execution of Independent Function Evaluations 

Optix uses the multiprocessing module (part of the Standard Python Library) to execute independent 

evaluations of the objective function simultaneously. For example, each function evaluation within the line 

search is independent of all other line search evaluations, so the separate function evaluations can be divided 

among available processors and run simultaneously. In addition, if finite differencing is used to approximate 

the gradient vector, these function evaluations can also be executed in parallel. One gradient evaluation using 

the second-order central differencing formula given in Eq. (2.2.13) requires 2 1N +  function evaluations, 

where N is the number of active design variables in the optimization analysis. Running these evaluations in 

parallel can significantly reduce the total optimization time when even just a few design variables are active. 

3.2.4 Linear and Quadratic Line Searching 

As mentioned previously, Optix relies on line searching methods to locate the local minimum in a given 

search direction. Two types of line searching algorithms exist in the literature, namely exact and inexact 

methods. Exact methods typically require some a priori knowledge of the design space to be searched and 

are restricted in application to only specific problem types. For example, the conjugate gradient method of 

Hestenes and Stiefel [62] requires the design space to be composed of a system of linear equations whose 

matrix is symmetric and positive-definite. While exact line searching algorithms are typically quite efficient 

when applied to the correct types of problems, restrictions to specific problem types make them ill-suited for 

a general optimization framework such as Optix. 

Inexact line searching algorithms use approximation methods to estimate the minimum in a given search 

direction, and then rely on the optimization algorithm to narrow in on the design space minimum through 

successive updates to the gradient vector and Hessian matrix. Two popular inexact algorithms are the 

backtracking algorithms of Goldstein [63] and Armijo [64], which attempt to overshoot the minimum of the 

objective function and then successively reduce the step size until the minimum is sufficiently bounded.  
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Optix provides two backtracking algorithms of relative simplicity: a linear and a quadratic algorithm. The 

linear algorithm evaluates the objective function at multiple design points in the search direction. Evaluations 

continue at increasingly larger distances from the initial design point until an increase in the objective 

function is obtained, at which point the algorithm fits a parabola through the last three design points 

evaluated. The next design point is placed at the parabola’s vertex. 

The quadratic algorithm evaluates the objective function at a user-specified number of equally-spaced 

design points along the search direction and fits a parabola to the results. If the minimum of the parabola is 

within a user-specified threshold of any one of the design points evaluated, or if a minimum does not exist 

(i.e. the parabola reduces to a straight line or is concave), the design point corresponding to the minimum 

objective function value is returned to the BFGS algorithm. If neither of these conditions are met, a new set 

of design points is selected with one of them located at the parabola’s vertex, and the objective function is 

reevaluated at these new locations. For convex problems, the quadratic line searching algorithm can 

significantly reduce the total optimization time from that required for the linear algorithm. 

3.2.5 Limitations 

One limitation of Optix over other similar optimization frameworks is the lack of built-in methods for 

applying bounds and constraints. Constraints can still be enforced using penalty function methods (for 

example, see Smith and Coit [65]), but more efficient and robust methods exist. Some example methods 

include the method of Lagrange multipliers for problems having only equality constraints, the simplex 

method for linear programming problems, and the ellipsoid method for quadratic programming problems. 

Explanations of these methods can be found in any introductory textbook on gradient-based optimization (for 

example, see Griva et al. [66]). However, it should be noted that each method is only suited to a specific 

subset of constrained optimization problems, whereas the penalty function method can be applied universally 

to all constrained optimization problems. 

Another limitation of Optix is its inability to distinguish between local minima and the global minimum 

of a design space. For optimization problems that involve complex design spaces with multiple local minima, 

results returned by Optix may depend on the initial design point provided to the optimizer. This is a common 

shortfall of gradient-based optimization methods, but there are some algorithms – e.g. the conservative 

convex separable approximation (CCSA) methods presented by Svanberg [67] – that have overcome this 
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limitation. Locatelli and Schoen [68] present a thorough overview of globally-convergent optimization 

methods. The BFGS method implemented in Optix is not globally convergent. However, a simple design of 

experiments (DOE) approach can be used to improve the likelihood of finding the global minimum of a 

design space. The DOE approach systematically selects multiple design points distributed throughout the 

design space and uses each point to initiate a complete gradient-based optimization analysis. The collective 

results from this set of analyses does not guarantee discovery of the global minimum within the design space 

but simply improves the likelihood of finding it. The level of complexity of the design space will determine 

the number of simulations needed to provide adequate coverage of the design space. The computational cost 

of this approach can be significant since each analysis is a full optimization analysis, but the separate analyses 

are completely independent and can be run simultaneously given adequate computational resources. In the 

sample analyses that follow, the objective functions are convex so the locally-convergent BFGS method is 

satisfactory for this work.  

3.3 Wing Shape Optimization in Inviscid Flow 

Optix and MachUp have been used to solve several wing shape optimization problems for which closed-

form solutions are available. Results from these simulations are presented and discussed here. Each 

simulation began with the same initial wing model – namely a spanwise-symmetric, untwisted, rectangular 

wing with an aspect ratio of 8A =  and a section lift slope of 
1

0 6.8806rada −= – operating at a wing lift 

coefficient of 0.5LC = . Control points (locations where the optimizer is allowed to vary geometric and 

aerodynamic properties of the wing) were spaced uniformly along one semispan of the wing. The other 

semispan was automatically updated so that the wing remained symmetric. All simulations used a grid density 

of 100 nodes per semispan. The main MachUp input file and Python code used for these simulations are 

given in Appendix G. 

The aerodynamic properties of the airfoils used in these analyses are shown in Table 3.1 and correspond 

to the NACA 4-digit X412 family of airfoils with percent maximum cambers, 
maxcz , ranging from 0% to 8%. 

The data were generated using an inviscid panel code. The induced drag for the initial rectangular model at 

a lift coefficient of 0.5LC =  was calculated to be 
21.05 4 105

iDC −= . 
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Table 3.1  Aerodynamic coefficients for the NACA X412 family of airfoils in inviscid flow 

Airfoil 0L
  (rad) 

0
a  (rad-1) 

NACA 0012 0.0000 6.8806 

NACA 2412 -0.0380 6.8583 

NACA 4412 -0.0761 6.8369 

NACA 6412 -0.1141 6.8165 

NACA 8412 -0.1519 6.7973 

 

Prandtl [10,11] showed analytically that, for a finite wing of given aspect ratio, the induced drag is 

minimized by an elliptic lift distribution according to the relation 

 24
1 (2 / )l

L
y b

b
= −   (3.3.1) 

where L is the total lift generated by the wing, y is the spanwise coordinate measured from the root of the 

wing, and b is the wingspan. In nondimensional form, Eq. (3.3.1) becomes 

 24
1 (2 / )L

l

Cb
y b

A c
c


−=   (3.3.2) 

where c is the local chord and A is the aspect ratio determined by the wingspan b and the planform area 
wS  

according to the relationship 

 
2

w

A
b

S
   (3.3.3) 

The induced drag generated by a wing having this lift distribution is given by 
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i
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C


=   (3.3.4) 

For example, a wing having an elliptic lift distribution, an aspect ratio of 8A = , and a wing lift coefficient 

of 0.5LC =  will have an induced drag coefficient of 
39.9472 10

iDC −=  , which is about 6% less than the 

rectangular planform mentioned above. This result is used for comparison in the following inviscid 

optimization analyses. 

3.3.1 Optimized Planform Shapes for Minimum Induced Drag 

Prandtl [10,11] proposed achieving the elliptic lift distribution by using an elliptic planform, i.e. a chord 

distribution prescribed by 
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 24
1 (2 / )c

b
y b

A
= −   (3.3.5) 

and no geometric or aerodynamic twist. For this planform, the section lift coefficient specified by Eq. (3.3.2) 

reduces to a constant value equal to the wing lift coefficient. Here we present a numerical optimization 

solution to this problem. To solve for the optimized planform shape numerically, control points were spaced 

uniformly along one semispan of the wing and the optimizer was configured to adjust the local chord length 

at each control point except the wing tip. The chord length at the wing tip was constrained such that an aspect 

ratio of 8A =  was maintained, thus making the degrees of freedom for this problem one less than the number 

of control points N. A linear interpolation scheme was used to define the section chord at spanwise locations 

between control points. The gradient of the induced drag coefficient was calculated internally with MachUp 

using the DNAD module discussed in Chapter 2. 

 The planform shape was optimized using 2, 3, 6, and 11 control points. Results are summarized in Table 

3.2. When 2N = , the planform corresponds to a tapered wing with a taper ratio of approximately 0.366TR =  

and produces 1.121% more induced drag than the elliptic planform. Adding a third control point reduces this 

percentage by almost a fourth. As the number of control points is increased, the induced drag for the 

optimized solution converges toward that of an elliptic planform at the expense of increasing planform 

complexity and computational cost. 

 Figure 3.1 compares the final planform design of each optimization simulation to the initial rectangular 

planform and an elliptic planform of the same aspect ratio. The optimized solutions appear to converge 

toward the elliptic planform as the number of degrees of freedom increases. In each case, the maximum 

deviation from the elliptic planform occurs at the wing tip where the curvature is highest and the section lift 

coefficient and contribution to induced drag are smallest. 

 

Table 3.2  Minimum induced drag results for untwisted wings with optimized planforms 

Case 
BFGS 

Iterations iD
C  Difference 

from Eq. (3.3.4) 

Rectangular – 0.010554 6.099% 

N = 2 5 0.010059 1.121% 

N = 3 9 0.009977 0.297% 

N = 6 18 0.009952 0.051% 

N = 11 38 0.009949 0.014% 

Elliptic – 0.009947 – 
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Figure 3.1  Optimized planforms for minimum induced drag. 

 

3.3.2 Optimized Geometric Twist Distributions for Minimum Induced Drag 

In 2004, Phillips [69] extended the analytical solutions of Prandtl [10,11] and showed that the minimum 

induced drag produced by a finite wing with an elliptic planform and no twist can also be achieved by a finite 

wing of arbitrary planform by prescribing the total twist as a function of spanwise location. For a generic 

wing with no sweep and no dihedral, Phillips [69] showed that the optimum twist distribution as a function 

of spanwise location is given by 

 ( ) ( ) ( )2

0 0 maxroot
1 1 (2 / )L L y b   − =− −  −−   (3.3.6) 

where the angles   and 
0L  represent local section values. The maximum twist 

max  is related to the lift 

coefficient according to 

 max

0 root

4 LbC

Aa c
=   (3.3.7) 

and occurs at the wing tips ( / 2y b=  ). For a rectangular wing with uniform camber (i.e. no aerodynamic 

twist), 
0 0 root( )L L =  so that Eq. (3.3.6) reduces to 

 ( )2

geometric max (1 1 2 / )y b  −= −   (3.3.8) 

where 
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 geometric root   −   (3.3.9) 

 Equation (3.3.8) describes an elliptic geometric twist distribution analogous to the elliptic chord 

distribution given by Eq. (3.3.5). Note that, by definition, the geometric twist at the root is zero. For the 

present optimization analyses, the root angle of attack 
root  was determined such that a lift coefficient of 

0.5LC =  was maintained. The amount of twist at each control point other than the wing root was controlled 

by the optimizer, so that the degrees of freedom were again one less than the number of control points N. 

 The optimization problem was again solved numerically with 2, 3, 6, and 11 control points. The wing 

design was constrained to a rectangular planform with a uniform NACA 0012 cross section. Results are 

summarized in Table 3.3. We again see that the induced drag converged toward that of an elliptic lift 

distribution as the number of control points was increased. Comparing the results in Table 3.3 to those in 

Table 3.2 for equal N, optimizing the geometric twist distribution is slightly more efficient than optimizing 

the chord distribution in terms of both the number of BFGS iterations required and the aerodynamic 

performance of the optimized wings. 

 Figure 3.2 compares the geometric twist distribution determined by each optimization analysis to that 

prescribed by Eq. (3.3.8). We again see that the optimization solutions converge toward the expected solution 

as the number of control points increases, and the largest deviation from the geometric twist distribution 

prescribed by Eq. (3.3.8) occurs at the wing tip in each case. 

 

Table 3.3  Minimum induced drag results for geometric-twist-optimized rectangular wings 

Case 
BFGS 

Iterations iD
C  Difference 

from Eq. (3.3.4) 

Rectangular – 0.010554 6.099% 

N = 2 4 0.010026 0.793% 

N = 3 7 0.009960 0.124% 

N = 6 13 0.009948 0.009% 

N = 11 24 0.009947 0.001% 

Elliptic – 0.009947 – 
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Figure 3.2  Optimized geometric twist distributions for minimum induced drag. 

 

3.3.3 Optimized Aerodynamic Twist Distributions for Minimum Induced Drag 

In the previous section, the geometric twist distribution of a finite rectangular wing with no aerodynamic 

twist was optimized for minimum induced drag. Similar results can be obtained by setting the geometric twist 

to zero and instead optimizing the spanwise aerodynamic twist of the wing. In this section, we present a 

method for optimizing the spanwise aerodynamic twist of a wing by allowing the optimizer to select from a 

family of airfoils of varying amounts of camber. For the analyses presented here, airfoil selection was 

restricted to the NACA X412 airfoils with maximum camber values ranging from 0% to 8% of the chord. 

Airfoil properties from Table 3.1 were used, and properties for airfoils in the specified camber range but not 

explicitly listed in Table 3.1 were determined by linear interpolation. 

The section lift slopes of the NACA X412 airfoils listed in Table 3.1 vary slightly. Because of this 

variation, Eq. (3.3.7) cannot be applied directly without introducing some error into the analytical solution. 

Since the standard deviation of the section lift slopes listed in Table 3.1 is less than half a percent, the average 
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section lift slope from this family of airfoils can be used in Eq. (3.3.7) with negligible effect on the results, 

and we can use the approximation 
root   in Eq. (3.3.6) such that 

 ( )' 2

aerodynamic max 1 1 (2 / )y b  − −   (3.3.10) 

where 

 aerodynamic 0 0 root( )L L   −   (3.3.11) 

 
'

max

0 avg root

4

( )

LbC

A a c
 =   (3.3.12) 

and the prime indicates an approximation due to the use of the average section lift slope. Optimization 

analyses with families of airfoils having a large standard deviation in section lift slope will not produce an 

aerodynamic twist distribution consistent with Eq. (3.3.10). However, the section lift distribution of the final 

optimized solution should still be consistent with Eqs. (3.3.1) and (3.3.2). 

 Because Eq. (3.3.10) specifies only a difference between the section zero-lift angles of attack and does 

not specify their absolute magnitude, an additional constraint is needed to isolate a single optimal solution. 

In the results that follow, the airfoil section at the wing tip was set to a NACA 2412 airfoil. The optimizer 

was configured to control the airfoil definition at all other control points by specifying the percent maximum 

camber 
maxcz , which MachUp then used to determine the airfoil properties at each control point via linear 

interpolation of the data in Table 3.1. 

 The resulting optimal designs for 2, 3, 6, and 11 control points are summarized in Table 3.4. The 

corresponding aerodynamic twist distributions are shown in Figure 3.3. Induced drag results are almost 

identical to those obtained for optimized geometric twist. The number of BFGS iterations required to obtain 

the optimized solutions were also comparable between the two sets of analyses in all cases except N = 11. 

For N = 11, about 2.5 times fewer iterations were required to find the optimal geometric twist distribution as 

were required to find the optimal aerodynamic twist distribution. This is because the percent maximum 

camber value of the third control point from the root was almost exactly 4% in the latter case. Since linear 

interpolation is used to determine the airfoil properties, derivatives are discontinuous at the interpolation 

nodes. This led to some confusion in the optimization algorithm regarding the appropriate search direction. 
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Table 3.4  Minimum induced drag results for aerodynamic-twist-optimized rectangular wings 

Case 
BFGS 

Iterations iD
C  

Difference 

from Eq. 

(3.3.4) 

Rectangular – 0.010554 6.099% 

N = 2 5 0.010026 0.792% 

N = 3 7 0.009960 0.124% 

N = 6 15 0.009948 0.009% 

N = 11 61 0.009947 0.001% 

Elliptic – 0.009947 – 

 

 
Figure 3.3  Optimized aerodynamic twist distributions for minimum induced drag.  

 

3.4 Wing Shape Optimization for Viscous Flow 

While the optimization analyses presented in Sec. 3.3 are beneficial from an academic perspective due to 

the existence of known closed-form solutions, they have limited practical application due to their neglect of 

viscous effects. As described in Sec. 2.6.1, viscous effects can be included within a MachUp analysis by 

using viscous airfoil data that includes estimates of the section parasitic drag coefficients 
0dc , 

1dc , and 
2dc  

from Eq. (2.6.1). Estimates of these parasitic drag coefficients, the zero-lift angle of attack, and the section 
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lift slope are listed in Table 3.5 for the NACA X412 family of airfoils in viscous, incompressible flow at a 

Reynolds number of 
610Re = . These coefficients were determined using XFOIL (see Refs. [51,52]). 

For the inviscid optimization problems presented in Sec. 3.3, closed-form solutions were available for 

comparison with the optimized results produced by Optix. For the viscous optimization problems of this 

section, no closed-form solutions exist. An untwisted elliptic wing with an aspect ratio of 8A = , uniform 

camber, and no sweep or dihedral will be used as a baseline model for comparisons. An optimization analysis 

was performed to determine the optimum airfoil section (selected from the NACA X412 family of airfoils) 

to achieve minimum total drag for this baseline elliptic wing operating at a lift coefficient of 0.5LC = . The 

optimum airfoil section selected by the optimizer has a maximum camber of 
max

3.59%cz = . 

The setup for the optimization cases presented in this section was similar to that of the inviscid cases of 

Sec. 3.3 with one important difference. The airfoil specified at the tip section had negligible effect on the 

induced drag results of the foregoing analyses, and therefore was selected arbitrarily in each analysis. 

However, this is not the case for the viscous analyses presented in this section. In each case here, an additional 

degree of freedom was needed to allow the optimizer to specify the airfoil at the tip section (and therefore 

the entire wing for wings of uniform cross-section). As a result, the degrees of freedom were equal to the 

number of control points for each viscous analysis. The initial rectangular wing design used to start each 

viscous analysis was identical to that used in the corresponding inviscid analyses except that the airfoil 

section at each control point was initialized to the airfoil section of the baseline elliptic wing, i.e. 

max
3.59%cz = . The drag results for this initial rectangular wing and the baseline elliptic wing in viscous flow 

are summarized in Table 3.6. 

 

Table 3.5  Aerodynamic coefficients for the NACA X412 family of airfoils in viscous, incompressible 

flow at a Reynolds number of 
6

10Re = . 

Airfoil 0L
  (rad) 

0
a  (rad-1) 

0d
c  

1d
c  

2d
c  

NACA 0012 0.00000 6.4194 0.00562 0.00000 0.00804 

NACA 2412 -0.03720 6.2639 0.00612 -0.00362 0.00827 

NACA 4412 -0.07536 6.1093 0.00780 -0.00753 0.00829 

NACA 6412 -0.11176 6.0833 0.01091 -0.01067 0.00739 

NACA 8412 -0.15006 5.9184 0.01556 -0.01556 0.00821 
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Table 3.6  Drag coefficients for initial rectangular wing and baseline elliptic wing in viscous flow. 

Component Initial Rectangular Wing Baseline Elliptic Wing Percent Difference 

iDC  0.010643 0.009952 6.94% 

pDC  0.006149 0.006085 1.06% 

DC  0.016792 0.016037 4.71% 

 

 

3.4.1 Optimized Planform Shapes for Minimum Total Drag 

Here we present the planform shapes that correspond to minimum total drag, including viscous effects, 

as determined by Optix and MachUp for 2, 3, 6, and 11 control points. Total drag results for these cases are 

summarized in Table 3.7. The viscous cases generally required more BFGS iterations than their inviscid 

counterparts listed in Table 3.2. The one exception to this is 11N = , where the viscous case required four 

fewer BFGS iterations than the inviscid case, a reduction in computational cost of about 10%. In all four 

cases, the airfoil section selected by the optimizer matched that selected for the baseline elliptic wing to 

within 0.01% maximum camber. 

The planform designs produced by the optimizer are plotted in Figure 3.4 and are nearly indistinguishable 

from those shown in Figure 3.1. Indeed, the chord lengths at each control point differ between the two cases 

by less than 1% of the average chord. These slight differences became smaller as the number of control points 

increased, and we therefore conclude that the optimum planform design for an untwisted wing is essentially 

the same in both viscous and inviscid flows and has the elliptic spanwise chord distribution defined by Eq. 

(3.3.5).  

 

Table 3.7  Minimum total drag results for untwisted wings with optimized planforms. 

Case 
BFGS 

Iterations D
C  

Difference from 

Baseline Elliptic Wing 

Rectangular – 0.016792 4.710% 

N = 2 11 0.016182 0.907% 

N = 3 13 0.016078 0.256% 

N = 6 21 0.016045 0.048% 

N = 11 34 0.016039 0.014% 

Elliptic – 0.016037 – 
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Figure 3.4  Optimized planforms for minimum total drag. 

  

 We note one issue in how viscous effects have been included in these analyses. The viscous airfoil 

coefficients included in Table 3.5 correspond to a Reynolds number based on chord length of 
610Re = . In 

the optimized planform analyses, however, the chord length is a function of spanwise location and so, 

therefore, is the Reynolds number. In fact, the spanwise Reynolds numbers for the elliptic planform vary 

from 
61.27 10  at the root to 0 at the tip. Adjustments to the airfoil coefficients due to these variations in 

Reynolds number were not attempted during the analyses presented here. This issue does not affect the 

inviscid optimization cases presented previously, nor does it affect the following optimization cases in which 

the chord length is held constant.  

 

3.4.2  Optimized Geometric Twist Distributions for Minimum Total Drag 

Table 3.8 summarizes the results for optimized geometric twist distributions to minimize total drag on a 

rectangular wing with uniform cross section. In each case the drag was more than 1% higher than the baseline 

elliptic solution. This increased drag came almost entirely from parasitic drag, as shown in Table 3.9 for the 

case of 11N = . 
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Table 3.8  Minimum total drag results for geometric-twist-optimized rectangular wings. 

Case 
BFGS 

Iterations D
C  

Difference from 

Baseline Elliptic Wing 

Rectangular – 0.016792 4.710% 

N = 2 6 0.016284 1.537% 

N = 3 10 0.016213 1.099% 

N = 6 18 0.016200 1.014% 

N = 11 29 0.016199 1.008% 

Elliptic – 0.016037 – 

 

Table 3.9  Drag components for geometric-twist-optimized rectangular wing with 11 control points. 

Component Value 
Difference from 

Baseline Elliptic Wing 

iDC  0.009959 0.065% 

pDC  0.006240 2.549% 

DC  0.016199 1.008% 

 

 

 Again, the airfoil section selected by the optimizer for each case matched that selected for the baseline 

elliptic wing to within 0.01% maximum camber. The optimized geometric twist distributions are plotted in 

Figure 3.5. For each case, the geometric twist angle selected at each control point differed from the 

corresponding value for minimum induced drag (see Figure 3.2) by less than 0.06 deg. The only exceptions 

  

 
Figure 3.5  Optimized geometric twist distributions for minimum total drag. 
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to this were at the wing tip for 6N =  and 11N = , where the slope of the twist distribution curve is large 

and the influence on wing drag is small. 

 

3.4.3 Optimized Aerodynamic Twist Distributions for Minimum Total Drag 

Optimized aerodynamic twist distributions for minimizing total drag are summarized in Table 3.10. 

Values here are lower than those for the corresponding optimized geometric twist cases, but not as low as 

those for the optimized planform cases. The parasitic drag component is still the largest contributor to the 

increase in drag above the baseline elliptic wing result, as shown in Table 3.11 for the case of 11N =  . 

 Optimized aerodynamic twist distributions are plotted in Figure 3.6. Noticeable differences between these 

data and the inviscid data presented in Figure 3.3, especially around / 0.25y b = , indicate that the optimized 

aerodynamic twist distribution for minimum total drag does not converge to the elliptic distribution described 

by Eq. (3.3.10) as the number of control points increases. This is primarily due to the differences in the 

parasitic drag equation coefficients of the airfoils in the NACA X412 family. Essentially, the optimizer is 

favoring an increase in induced drag in these profiles to achieve a more substantial decrease in parasitic drag. 

 

Table 3.10  Minimum total drag results for aerodynamic-twist-optimized rectangular wings. 

Case 
BFGS 

Iterations D
C   

Difference from 

Baseline Elliptic Wing 

Rectangular – 0.016792 4.710% 

N = 2 13 0.016203 1.033% 

N = 3 20 0.016107 0.435% 

N = 6 46 0.016095 0.362% 

N = 11 122 0.016093 0.351% 

Elliptic – 0.016037 – 

 

 

Table 3.11  Drag components for aerodynamic-twist-optimized rectangular wing with 11 control 

points. 

Component Value 
Difference from 

Baseline Elliptic Wing 

iDC  0.009962 0.103% 

pDC  0.006131 0.755% 

DC  0.016093 0.351% 
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Figure 3.6  Optimized aerodynamic twist distributions for minimum total drag. 

 

3.5 Visualization of the Design Space for Wing Shape Optimization 

Let us here consider the aerodynamic-performance design space within which airfoil sections of a finite 

wing must operate. The total drag produced by any section of an airfoil wing is the sum of the section induced 

and parasitic drags. The section induced drag is a function of the section lift and induced angle of attack 
i  

as given by 

 sin( )
id l ic c =   (3.5.1) 

The section parasitic drag is a function of the section lift coefficient and parasitic drag coefficients 
0dc , 

1dc , 

and 
2dc  from Eq. (2.6.1). The section lift coefficient is, in turn, a function of the section angle of attack  , 

the section lift slope 
0a , and the section zero-lift angle of attack 

0L  according to 

 
0 0( )l Lc a  −=   (3.5.2) 

Note that the local angle of attack   is a function of the wing angle of attack wing , the local induced angle 

of attack 
i , and the local geometric twist geometric  according to 

 wing geometrici   + −=    (3.5.3) 

0

1

2

3

4

5

6

7

0.0 0.1 0.2 0.3 0.4 0.5

α
ae

ro
d
y
n
am

ic
(d

eg
)

y/b

Elliptic

N=2

N=3

N=6

N=11



65 

The relationships described above have been used to generate the contour plots shown in Figure 3.7. Although 

these contour plots do not follow the traditional approach to visualizing drag as a function of lift or angle of 

attack, great care has been taken to construct this figure in a manner that portrays the key relationships when 

considering the additional dimensions of variable airfoils and wing geometries. Visualizing the data in this 

format can provide significant insights into the intricacies of wing shape optimization. 

 Figure 3.7(a) presents contours of section induced drag as a function of section induced angle of attack 

and section lift coefficient, and it is independent of airfoil section. Figure 3.7(b) presents contours of section 

parasitic drag as a function of section angle of attack and section lift coefficient, and it is specific to the 

NACA X412 family of airfoils defined in Table 3.5. Figure 3.7(b) uses the same linear interpolation scheme 

implemented in MachUp for determining lift and parasitic drag coefficients for airfoils intermediate to those 

listed in Table 3.5. First-order discontinuities in the contour lines are artifacts of this interpolation scheme. 

 The locus of minimum parasitic drag values for each section lift coefficient has been plotted as a solid 

line in Figure 3.7(b) and indicates the airfoil section that provides the minimum parasitic drag for a given lift 

coefficient. The locus of minimum parasitic drag values is first-order discontinuous for the same reason as 

the contour lines. Using a higher-order interpolation scheme or refining the airfoil data by adding additional 

airfoils will lead to more realistic contour lines and a smoother locus of minimum parasitic drag values. 

 

 
Figure 3.7  Contours of (a) induced and (b) parasitic drag for finite wing sections. Results are included 

for rectangular wings with = 8A , 0.5
L

C = , and optimized aerodynamic twist for variable N. 
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 Unlike the locus of minimum parasitic drag values, the corresponding locus of minimum induced drag 

values is a function of aspect ratio. For an untwisted elliptic wing, downwash is uniform and all sections of 

the wing experience the same induced angle of attack and, therefore, the same section lift coefficient. Thus 

l Lc C=  and 
i id Dc C=  along the entire wingspan. Using these substitutions in Eq. (3.3.4), we can then 

combine Eqs. (3.3.4) and (3.5.1) to yield 

 sin( )l iAc  =  (3.5.4) 

Equation (3.5.4) has been plotted in Figure 3.7(a) for a selection of aspect ratios.  

 Now consider again the untwisted elliptic wing. Downwash is uniform for this wing, and therefore every 

section along the wingspan operates at the same angle of attack, induced angle of attack, and lift coefficient. 

The data for every section along the wingspan therefore collapses to a single point on each of the contour 

plots in Figure 3.7. This point is shown for an untwisted elliptic wing with an aspect ratio of 8A =  and 

uniform camber of 
max

3.59%cz = , operating at a lift coefficient of 0.5LC = .  

 Prandtl [10,11] showed analytically that an untwisted elliptic wing produces the least amount of induced 

drag possible for a given aspect ratio and lift coefficient, and Phillips [69] extended this work to show that 

the same minimum in induced drag can be achieved by a rectangular wing having an elliptic twist distribution. 

This can be seen visually in Figure 3.7(a). Because the relationship between lift and induced drag is 

approximately linear for small angles (see Eq. (3.5.1)), any two wings whose sections all lie along the same 

line of constant 
i  and integrate to the same lift coefficient will also integrate to the same induced drag 

coefficient. 

 The relationship between lift and parasitic drag is nonlinear and strongly dependent on the characteristics 

of the airfoils selected, so that designs which produce minimum induced drag may not necessarily produce 

minimum parasitic drag. It is the job of an optimizer, then, to balance these two competing objectives in order 

to find a design that represents the minimum total drag for a given design space and given constraints. 

 The patterned lines with symbols in Figure 3.7 represent data from the optimization cases of Sec. 3.4.3 – 

that is, optimized aerodynamic twist distributions for minimum total drag produced by a rectangular wing of 

aspect ratio 8A =  with no geometric twist and operating at a lift coefficient of 0.5LC = . The symbols 

indicate the aerodynamic state at each control point. The connecting lines represent the distribution of 
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aerodynamic states at spanwise locations between control points. Note that, for a given wing, changing the 

camber at one control point will affect the downwash along the entire wingspan, adjusting the location of all 

other control points for that wing and the shape of the lines connecting them. This is also true of changes in 

geometric twist and chord in designs where those parameters are allowed to vary. There is no mechanism 

whereby the optimizer can adjust the aerodynamic state of one control point without affecting the 

aerodynamic state of every section along the wingspan. 

 The data for a rectangular wing with no geometric twist and an elliptic aerodynamic twist distribution – 

see Eq. (3.3.10) – would form a vertical line on both contour plots in Figure 3.7. This would minimize induced 

drag but not parasitic drag. A rectangular wing with a twist and camber distribution such that the data for 

each section of the wing lie somewhere along the locus of minimum parasitic drag would minimize parasitic 

drag but not induced drag. In an optimization analysis, the optimizer must find a solution that represents the 

best possible balance between these two competing objectives, with the added restriction of a limited number 

of control points. 

 The ability to visualize this design space and understand the balancing act between the two components 

of drag is significant. Several rudimentary implications of the data portrayed in Figure 3.7 have been 

discussed here. More detailed studies of this plot and similar plots based on other families of airfoils may 

provide additional insights that can aid in our understanding of the design space of finite wings. This level of 

insight is impossible to gain from traditional approaches to aerodynamic shape optimization that rely on high-

fidelity CFD simulations to evaluate the objective function (see Lyu et al. [4]). By limiting the section profiles 

of the wing to a family of airfoils with known aerodynamic properties, the optimization method presented 

here reduces the number of design variables and the complexity of the numerical solution by several orders 

of magnitude. Additionally, this approach allows us to generate drag contours of the design space in order to 

more fully understand the optimized distributions arrived at through numerical optimization. For applications 

that lie within the assumptions of lifting line theory, the benefits are realized without a significant reduction 

in accuracy. For applications that lie outside the limits of these assumptions, this method should be applied 

with caution but may still be useful in providing qualitative insights to the design space and optimization 

problem of the specific application. 
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4 ANALYTICAL LIFTING LINE METHOD FOR WINGS OF ARBITRARY ASPECT RATIO 

4.1 Introduction 

 In 1918, Prandtl [10,11] published his landmark paper on what is known today as classical lifting line 

theory. This groundbreaking innovation was the first practical method for analyzing flow over a finite three-

dimensional wing. From this theory, Prandtl was able to show that the most efficient wing design in terms of 

minimizing induced drag is one which produces an elliptic spanwise lift distribution. This finding led to the 

distinctive elliptic planform design of the famous British Supermarine Spitfire, which is considered one of 

the most strategically important fighter aircraft of World War II. Many other valuable insights to aircraft 

design and performance have been gleaned from this theory in the one hundred years since its publication. 

 Despite its successes, classical lifting line theory is not without limitations. For example, it was originally 

formulated for wings with no sweep or dihedral, and it quickly became clear that Prandtl’s theory did not 

adequately account for the effects of aspect ratio for aspect ratios below about 4 (for example, see Birnbaum 

[70] and Blenk [71]). However, by building upon the solid foundation laid by Prandtl, researchers have been 

able to produce methods for overcoming one or more of the early limitations of classical lifting line theory. 

One method, published in 2000 by Phillips and Snyder [16], accounts for sweep and dihedral in the wing and 

provides a method for integrating viscous effects into the solution. Another method, known as lifting surface 

theory (see Multhopp (1938) [72]), extends the applicable range of aspect ratios to less than 1. Küchemann 

[73] provides an elegant formulation of lifting surface theory which recasts it in such a way that the concepts 

of lifting surface theory can be readily applied to classical lifting line theory. The current work seeks to 

combine the efforts of Phillips and Snyder [16] and Küchemann [73] into a single method that incorporates 

the advantages of both methods. In essence, we seek to use Küchemann’s development to modify the 

numerical lifting line algorithm of Phillips and Snyder so that its range of validity extends to slender wings 

as well as high-aspect ratio wings. 

 In this chapter, a rigorous development of classical lifting line theory is presented, along with some 

important observations regarding elliptic wings that arose from direct application of classical lifting line 

theory. The equations for slender wing theory and lifting surface theory are also developed. Several 

observations are made in comparing these theories with classical lifting line theory, and a modified equation 

for slender wing theory is proposed. Several empirical equations are discussed and compared for modifying 
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classical lifting line theory to bring it into closer agreement with results from lifting surface theory and a 

high-order panel method. A generalized formulation of lifting line theory is presented that allows us to more 

easily compare the various modifications that have been presented in the literature. Finally, a new equation 

is proposed that provides a reasonable balance between simplicity and accuracy for wings of arbitrary aspect 

ratio and planform shape.  

4.2 Lift Generated by a Finite Wing 

 We begin with a statement of the most basic equation which we are trying to solve – that of lift generated 

by a finite wing. From classical airfoil theory, the lift generated by a 2D airfoil is related to the angle of attack 

by the approximation 

 ( )0 0l Lc a  = −   (4.2.1) 

where small angles have been assumed for both   and 
0L . This equation works well for 2D airfoils (i.e. 

wings of infinite span), but quickly breaks down when we move to 3D wings of finite span. At the wing tips 

of a finite wing, nothing separates the airflow below the wing from the airflow above the wing. The pressure 

difference across the wing causes some of the higher-pressure air below the wing to escape around the wingtip 

and into the lower-pressure region above the wing. As a result, the airflow below the wing will have a slight 

outward motion (from root to tip), while the airflow above the wing will have a slight inward motion (from 

tip to root). This effect is more exaggerated at the wingtips but is present along the entire span of a finite 

wing. 

 The circulation of air around the wingtips, as just described, generates a sheet of vorticity immediately 

behind the trailing edge of the wing. The energy that goes into generating this vortex sheet reduces the 

effectiveness of the wing in generating lift, and Eq. (4.2.1) no longer holds. Empirically, we can modify Eq. 

(4.2.1) by defining two new angles: the “effective” angle of attack, 
e , and the “induced” angle of attack, 

i . These angles are defined such that 

 
0( )e iL  = − −   (4.2.2) 

and Eq. (4.2.1) becomes 

 
0l ec a =   (4.2.3) 
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 To determine the total lift generated by a finite wing, we take the area-weighted average of the lift 

coefficients at each spanwise location by integrating Eq. (4.2.3) over the wingspan, 

 

2 2

0

2 2

1 1
b b

L l e

w wy b y b

C c cdy a cdy
S S


=− =−

= =    (4.2.4) 

In doing so, we have relied upon an assumption that was first made by Prandtl [10,11] in his original 

development of classical lifting line theory – that is, that the spanwise sections of a finite wing behave the 

same as a 2D airfoil section operating at the same angle of attack. While Prandtl offered no mathematical 

justification for this assumption, it has proven to be quite reliable through a century of application. 

 The trick now, and the focus of this chapter, is to determine an expression for 
e  such that Eq. (4.2.4) is 

accurate for finite wings ranging in aspect ratio from slender to infinite. Several researchers, beginning with 

Prandtl [10,11], have presented methods for determining an appropriate expression for 
e  under various 

assumptions. Those of greatest interest to the present work are classical lifting line theory, slender wing 

theory, and lifting surface theory. Each, in turn, shall here be presented and discussed.  

4.3 Classical Lifting Line Theory 

 Consider a flat or uniformly cambered wing of finite span in an infinite potential flow field. The boundary 

condition for this flow field requires that the flow is everywhere tangent to the wing surface such that 

 0L

w dz

V dx




= − = −   (4.3.1) 

where we have applied the small angle approximation 
0 0t )an( L L   −  − . Note that we have defined the 

downwash w to be positive for positive angle of attack, so that positive downwash acts in the direction of the 

–z axis. 

 Prandtl proposed satisfying this boundary condition by representing the wing as a series of horseshoe 

vortices, each horseshoe vortex consisting of a single spanwise vortex segment aligned with the quarter-chord 

of the wing and two semi-infinite vortex segments extending chordwise downstream, as shown in Figure 4.1. 

In the limit as the number of horseshoe vortices goes to infinity, the streamwise vortex segments form a 

continuous vortex sheet trailing behind the wing. It is this vortex sheet that is responsible for the reduced 
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Figure 4.1  Discrete system of overlapping horseshoe vortices on a finite wing. 

 

effectiveness of the wing as was explained earlier. The spanwise vortex segments, on the other hand, generate 

a force on the surrounding fluid that is equal in magnitude but opposite in direction to the lift force 

experienced by the wing. This is the “lifting line” from which Prandtl’s theory derives its name. 

 It is important to note here that each horseshoe vortex is a continuous vortex filament that must abide by 

the vortex theorems of Helmholtz [74] – namely, that the filament cannot end in a fluid (so that the trailing 

vortex segments must be semi-infinite), and that the circulation strength of the vortex filament cannot vary 

along its length. Therefore, the strength of each spanwise vortex segment must be equal to that of the two 

trailing vortex segments to which it is attached, and the direction of circulation must be unchanged along the 

entire filament (as shown in Figure 4.1). 

 The problem is now to determine the continuous distribution of vortex strengths ( )y  such that the 

boundary condition of Eq. (4.3.1) is satisfied. To facilitate this, we first decompose w  into two components, 

ew  and 
iw , such that 

 
e iw w w= +   (4.3.2) 

where 
ew , or the “effective downwash,” is the downwash due to the spanwise vortex segments; and 

iw , or 

the “induced downwash,” is the downwash due to the trailing vortex sheet. Again, both components of 

downwash are considered positive in the –z direction. Note that by dividing Eq. (4.3.2) by V
, applying the 

x

y

z



72 

small angle approximation, and rearranging, we arrive at Eq. (4.2.2), so that both are equivalent statements 

of the boundary condition. 

 Consider the semi-infinite vortex filament shown in Figure 4.2. The origin O and the arbitrary point P lie 

on the same plane perpendicular to the vortex filament, with the vector h pointing from O to P. From the 

Biot-Savart law (see Sec. 5.2 of Anderson [75]), the differential velocity vector dV induced at point P due to 

the differential vortex element of length dl located at point Q is given by 

 
34 r

=
 dl r

dV   (4.3.3) 

where r is the vector pointing from Q to P. The total velocity induced at point P by the entire vortex filament 

is then 

 
0

34 r




= =


 
dl r

V dV   (4.3.4) 

By inspection, the length from O to Q is )tan(h   so that 

 
2 ( )n

d
h

d
si

l 


= −   (4.3.5) 

and the magnitudes of the vectors r and h are related by 

 sinr h =   (4.3.6) 

Using Eqs. (4.3.5) and (4.3.6) in Eq. (4.3.4) and taking the magnitude, we get 

 
2

sin

4 4 h
V d

h








 
=

 
=    (4.3.7) 

   

Figure 4.2  Velocity induced at point P by a semi-infinite vortex filament. 
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The direction of V is given by the cross product of the vectors OQ  and OP . 

 Now consider the trailing vortex sheet proposed by Prandtl, consisting of an infinite number of differential 

semi-infinite vortex filaments originating at the quarter chord line and extending in the direction of the chord. 

By analogy to Eq. (4.3.7), the differential induced downwash at a point y along the quarter chord by a 

differential slice of this vortex sheet located at y =  is 

 
( )

( )
4 ( )

i

d
dw y

y



 


=

−
  (4.3.8) 

The total induced downwash due to the trailing vortex sheet is then the integral of Eq. (4.3.8) over the 

wingspan 

 

/2

/2

1 ( )
( )

4

b

i

b

d d
w y d

y


 


 
=−


=

−   (4.3.9) 

 The effective downwash ( )ew y  cannot be determined in the same manner, i.e. using the potential flow 

equations of a vortex filament, because the locations at which we are interested in determining the velocity 

lie along the axis of the spanwise vortex segments where the velocity is singular. Prandtl therefore turned to 

an alternative means for computing the effective downwash – namely, the two-dimensional Kutta-Joukowski 

theorem. At this point, Prandtl injects his hypothesis that each spanwise section of a finite wing could be 

modeled as a two-dimensional airfoil subject to the same circulation. The spanwise section lift is then, by the 

Kutta-Joukowski theorem, 

 ( ) ( )l y V y =    (4.3.10) 

and from classical airfoil theory we have 

 1 1
02

2

2

2( ) ( ) ( ) ( ) ( )l el y V c y c y V c y a y     = =   (4.3.11) 

Equating the right-hand sides of Eqs. (4.3.10) and (4.3.11) and solving for 
e  gives 

 
0

2 ( )
( )

( )
e

y
y

V a c y





=   (4.3.12) 

so that the effective downwash becomes 

 
0
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( ) ( )

( )
e e
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w y V y
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
= =   (4.3.13) 
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Substituting the right-hand sides of Eqs. (4.3.9) and (4.3.13) into Eq. (4.3.2) and substituting that result in for 

the total downwash in Eq. (4.3.1) gives 
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which is the fundamental equation of Prandtl’s classical lifting line theory. The only unknown in Eq. (4.3.14) 

is the circulation distribution ( )y , all other variables being parameters of either the wing geometry or the 

operating conditions. Solution methods to this equation are not directly relevant to the current discussion; the 

reader is instead referred to Anderson [75] and Phillips [53]. 

 One important solution to Eq. (4.3.14) is the elliptic circulation distribution given by 
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  (4.3.15) 

Besides being the most efficient circulation distribution in terms of minimizing induced drag, it conveniently 

results in uniform induced downwash across the entire wingspan. We can see this by inserting the derivative 

of Eq. (4.3.15) with respect to y into Eq. (4.3.9) and evaluating. The substitution gives 
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A convenient method for solving this integral is to use the change of variables 02
cos( )by = −  and 

2
cos( )b = − , which gives 
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Eq. (4.3.17) can be evaluated from (see Karamcheti [76]) 
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By inspection we see that 1n =  so that 

 ( ) 0
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
=   (4.3.19) 

 Consider a flat or uniformly-cambered wing with the elliptic circulation distribution given by Eq.  

(4.3.15).  Eq. (4.3.19) states that the induced downwash is uniform along the wingspan, and therefore by Eq. 
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(4.3.2) the effective downwash must also be uniform. Substituting the circulation distribution, Eq. (4.3.15), 

into Eq. (4.3.13) gives 
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which (assuming 
0a  to be constant over the wingspan) can only be constant if the chord distribution is also 

elliptic, i.e. 
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so that Eq. (4.3.20) becomes 
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Substituting the right-hand sides of Eqs. (4.3.19) and (4.3.22) into Eq. (4.3.2) and solving for 
0 , we get 
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where 
2

wA b S b c= =  is the aspect ratio of the wing. Using this result in Eqs. (4.3.19) and (4.3.22) gives 
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respectively; or, by Eq. (4.3.1), 
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We can now use Eq. (4.3.27) in Eq. (4.2.4) to solve for the total lift coefficient of the wing. The chord is the 

only variable that is a function of y, and the integral of the chord over the wingspan gives the planform area 

wS . Then Eq. (4.2.4) evaluates to 
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and the effective wing lift slope becomes 
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+
=   (4.3.29) 

 Equation (4.3.28) gives the lift coefficient of a finite elliptic wing according to Prandtl’s classical lifting 

line theory. Note that in developing this equation we have assumed 
0a ,  , and 

0L  are all constant along 

the wingspan. This led to the requirement that the chord distribution be elliptic according to Eq. (4.3.21). In 

reality, the same circulation distribution specified in Eq. (4.3.15) can be achieved through an unlimited 

number of wing configurations in which the twist ( ), camber (
0L ), thickness (

0a ), and chord are all 

potential functions of y . In any case, Eq. (4.3.10) still holds so that an elliptic circulation distribution will 

always produce an elliptic lift distribution. The implications these alternative wing designs have on drag were 

considered in detail in Chapter 3. 

 We can now also compute the induced drag generated on the wing by the trailing vortex sheet. This drag 

is not due to viscous effects (recall that everything we have considered so far is based on inviscid potential 

flow), but instead is due to the change in local angle of attack resulting from the induced downwash 
iw . By 

definition, lift is the component of the aerodynamic force that is normal to the freestream, and drag is the 

component tangent to the freestream. The section lift coefficient given by Eq. (4.2.3) is therefore not actually 

lift relative to the wing but the total resultant aerodynamic force coefficient, 
rc , generated by the wing section 

and acting at an angle 
i  to the direction of lift. However, applying the small angle approximation we get 

 cos( )l r i rc c c=    (4.3.30) 

so that Eq. (4.2.3) still holds to a good approximation. The induced drag coefficient is given by 

 sin( )
id r i r ic c c =    (4.3.31) 

and the total induced drag is then the area-weighted average of Eq. (4.3.31) similar to Eq. (4.2.4). Evaluating 

this integral with the definitions for the induced and effective angles of attack from Eqs. (4.3.26) and (4.3.27) 

gives 
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which is the well-known solution first given by Prandtl [10,11].  

 Equation (4.3.33) was developed under the assumption that the wing has an elliptic lift distribution, which 

Prandtl [10,11] showed produces the minimum induced drag for a wing of given aspect ratio and lift. A span 

efficiency factor (
se ) can be used to adjust Eq. (4.3.33) for other lift distributions. See Phillips [53]. Equation 

(4.3.33) is then 
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where 1se =  for any wing with an elliptic lift distribution and 1se   for all other lift distributions. 

4.4 Slender Wing Theory 

 The limitations of classical lifting line theory with respect to aspect ratio were recognized shortly after its 

publication. Prandtl’s model was based on the assumption that the chordwise vorticity distribution at every 

section of a finite wing is the same as that predicted by classical airfoil theory for a two-dimensional wing. 

This assumption is only strictly true for wings of infinite aspect ratio. For finite wings, the chordwise vorticity 

distribution is a function of spanwise location. Deviations from the predictions of classical airfoil theory 

become more pronounced as aspect ratio is reduced, especially at spanwise sections near the wing tips. 

 In considering the lower limit of aspect ratio, the works of Munk [77], Bollay [78], and Jones [79] provide 

analytical relationships for the aerodynamic characteristics of finite wings in the limit as 0A→ . Their results 

form the basis of slender wing theory. Here we present a modified formulation of classical lifting line theory 

based on their results, which is only valid for small aspect ratios ( 1A  ). 

 In order to develop a formulation for slender wing theory similar to Eq. (4.3.14), we must first consider 

several important results obtained through the development of slender wing theory. Munk [77] demonstrated 

that flow in planes perpendicular to the x-axis of a slender body can be viewed as two-dimensional, and he 

introduced the concept of an “additional apparent mass,” 'm , that represents the mass of fluid displaced by 

each chordwise section of the wing as the wing moves into the flow. Jones [79] extended this concept to 

develop relations for the lift generated by an uncambered slender delta wing. He used Munk’s relation for 

the additional apparent mass, 
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which is equivalent to the mass of fluid within a cylindrical volume of diameter b and length dx. The 

momentum imparted to the wing at each chordwise section must balance the momentum imparted to the 

additional apparent mass of fluid at that chordwise section, so that the lift force on the wing becomes 

 ( )
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l
d

x V
dm
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
  (4.4.2) 

The time derivative of the additional apparent mass is given by 
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so that the lift becomes 
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and the lift coefficient becomes 
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The total lift coefficient generated by the delta wing is then given by integration, as in Eq. (4.2.4), but this 

time we are integrating over the chord. We get 
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since, for any delta wing, 0b =  at 0x =  and 
maxb b=  at x c= . This gives for the lift slope of a slender delta 

wing 
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a
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which is the well-known result from Jones [79]. 

 Jones then made three observations critical to our current development. The first is that, in order to satisfy 

the Kutta condition, only sections of increasing span (i.e. 0db dx  ) can generate lift, so that the use of 
maxb  

in Eq. (4.4.6) is general for any planform regardless of the chordwise location at which 
maxb  actually occurs. 

The second, which Jones demonstrated through a development of the surface potential, is that the spanwise 

lift distribution of a slender wing is elliptical and independent of chord distribution. The third observation, 

which also came about through Jones’ development of the surface potential, is that the vorticity distribution 
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of a slender wing is concentrated at the leading edge of the wing, so that the aerodynamic center is also 

located at the leading edge. We expect these observations to be true for any viable formulation of the slender 

wing problem. 

 We now proceed to cast Eq. (4.3.14) in terms of these findings. First we consider the system of horseshoe 

vortices that must be used to represent a slender wing. In Figure 4.1, the system of horseshoe vortices from 

classical lifting line theory is shown with the lifting line located at the quarter-chord of the wing, which 

corresponds to the aerodynamic center for wings of infinite span. Jones [79] demonstrated that the 

aerodynamic center of a slender wing is located at the leading edge of the wing. Küchemann [73] therefore 

proposed moving the lifting line from the quarter-chord to the leading edge when evaluating slender wings, 

and – to represent the infinite chord-to-span ratio of slender wings – placing the leading edge of the wing at 

x = − .  

 With this modified system of horseshoe vortices, the only change needed to Eqs. (4.3.4) and (4.3.7) is the 

lower limit of integration, so that Eq. (4.3.8) becomes 
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and the induced downwash becomes 
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 Next we consider the effective downwash generated by slender wings. Küchemann [73] states – and it is 

obvious from Eq. (4.4.6) that he is correct – that 0LC →  as 0A→ , so that the effective downwash must 

also go to zero. Thus 
e iw w  by Eq. (4.3.2) and we can write, to a good approximation, 
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There is only one possible solution to Eq. (4.4.10), namely 
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which is both elliptic and independent of chord distribution in agreement with the observations of Jones [79] 

stated earlier. Note that Eq. (4.4.11) differs by a factor of 2 from the elliptic circulation distribution given by 
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Eqs. (4.3.15) and (4.3.23) in the limit as 0A→ . The lift can now be found by integrating Eq. (4.3.10) over 

the span. In nondimensional form we get 
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which agrees exactly with the lift slope predicted by Jones [79], Eq. (4.4.7). 

 Previous works on slender wing theory have ended at this point, and we are left with Eq. (4.4.10) as our 

lifting line theory equivalent of slender wing theory. However, there is one additional step we can take due 

to the knowledge that our circulation distribution is elliptic according to Eq. (4.4.11). Recall that the induced 

and effective downwashes produced by a high-aspect-ratio wing with elliptic circulation, Eqs. (4.3.24) and 

(4.3.25) respectively, are constant over the span. Since our slender wing solution is forced to an elliptic 

circulation distribution, we conjecture that the two components of downwash are constant in this case as well. 

Then from Eq. (4.2.4) and (4.4.12) we have 
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Solving for 
e  and multiplying by V

, we get 
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Solving Eq. (4.4.11) for w and substituting, we get 
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which is identical to Eq. (4.3.13) except that the actual spanwise chord distribution has been replaced by the 

elliptic chord distribution of Eq. (4.3.21). Thus for elliptic wings, Eqs. (4.3.13) and (4.4.15) are equivalent. 

This again agrees with the observations of Jones [79] stated earlier, specifically that the results for a slender 

wing are independent of chord distribution. 

 By Eqs. (4.4.9) and (4.4.15) we now have for our slender wing lifting line equation 

 0
2

0

/2

/2

1 ( )

2

2

4 2
1

L

b

b

d d
d

V y
V

c y

b
a














 =−




= −

− 



+


 −  
  
 

   (4.4.16) 



81 

Eq. (4.4.16) is a more complete statement of slender wing theory than has been presented previously. Results 

computed using Eq. (4.4.16) are nearly identical to those computed using the slender wing theory of Jones 

[79] for aspect ratios less than about 1, which is typically considered the upper limit for slender wing theory. 

Inclusion of the effective downwash term, however, offers important insights as we look to combine slender 

wing theory and classical lifting line theory into a single theory applicable for all aspect ratios. We shall refer 

to this formulation hereinafter as the “modified slender wing equation.”  

4.5 Lifting Surface Theory 

 Early efforts to extend the concepts of lifting line theory to wings of low aspect ratio began with the works 

of Birnbaum [70] and Blenk [71] and developed into what is known today as lifting surface theory. Blenk 

[71] was able to show good results for aspect ratios down to about 1 by replacing the single lifting line in 

Prandtl’s formulation with a chordwise distribution of lifting lines, thus forming a lifting surface. His overall 

formulation, however, was limited to a single finite wing of rectangular planform in inviscid, incompressible 

flow. He attributed the error for aspect ratios less than one to nonlinear effects that could not be accounted 

for in his linear formulation. 

 Zimmerman [80,81] and Winter [82] performed experimental studies on low-aspect-ratio wings. They 

attributed the divergence between their results and lifting surface theory to stalling phenomena that could not 

be treated with inviscid theoretical methods. Bollay [78] later developed analytical solutions for a flat 

rectangular plate in which he attributed the phenomena seen by the aforementioned experimenters to the 

finite angle at which the trailing vortices leave the plate. 

 The only purely analytical solution of lifting surface theory currently available in the literature is that of 

Hauptman and Miloh [83]. By assuming an elliptic planform with a straight midchord, they derived the 

acceleration potential (see Prandtl [84]) in terms of ellipsoidal harmonics and applied this to a linearized 

formulation of lifting surface theory. The result was a set of closed-form equations for spanwise lift as a 

function of aspect ratio. While Hauptman and Miloh [83] state that these equations “are exact within the 

realm of the linear theory,” the equations are too cumbersome to apply practically as they involve evaluation 

of the complete elliptic integral of the second kind (see Hauptman and Miloh [85], Smith [86], and Laitone 

[87]) and, for spanwise distributions, evaluation of infinite summations that do not readily converge. 
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 Using numerical calculations from lifting surface theory, several authors have proposed empirical and 

semi-empirical expressions for the lift slope of low-aspect-ratio wings. Some of the more interesting 

proposals come from Jones [88], Helmbold [89], Van Dyke [90], Germain [91], Kida and Miyai [92], and 

Laitone [87]; but there are many others. Unfortunately, none of these provide spanwise lift distributions in 

their developments, but only provide equations for the total lift coefficient produced by a wing as a function 

of aspect ratio. Küchemann [73], on the other hand, presents a very elegant method for correcting the two 

components of downwash in classical lifting line theory, Eq. (4.3.14), which does allow for the calculation 

of spanwise lift distributions. He facilitates this by assuming that the effects of aspect ratio are uniform over 

the span, which is obviously not true near the wing tips, but Küchemann [73] observes that “the error cannot 

be serious, however, as the lift falls to zero there.” 

4.6 A Unifying Formulation of Lifting Line, Slender Wing, and Lifting Surface Methods 

 Without considering spanwise lift distributions (since most of the methods mentioned above lack 

sufficient development to facilitate consideration of such), we shall here present a unifying formulation of 

the three theories described above for calculating the wing lift coefficients. All the methods presented here 

consider only an elliptic planform in their development. Most consider a straight quarter-chord line while 

some – namely Hauptman and Miloh [83] and Küchemann [73] – consider a straight mid-chord. Panair results 

given in Figure H.6 of Appendix H show little difference between the two, so we shall not attempt any 

correction to the methods based on where the straight chord line is located. 

 In general, the lift coefficient of a finite wing has already been given as 
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where 

 
0( )e iL  = − −   (4.2.2) 

For an elliptic wing, the effective and induced angles of attack predicted by classical lifting line theory are 

constant over the wingspan and Eq. (4.2.4) becomes 

 ( )0 00 L iL eC a a   = = − −  (4.6.1) 

The induced angle of attack is related to the lift coefficient according to Eq. (4.3.32), 
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and by definition the effective wing lift slope is related to the lift coefficient according to 

 ( )0L LC a  −=   (4.6.2) 

Using Eqs. (4.3.32) and (4.6.2) in Eq. (4.6.1) and solving for a we get 
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where we have designated this coefficient with the subscript “classical” to indicate it is the effective lift slope 

predicted by classical lifting line theory. This equation is strikingly similar to that commonly used to 

determine the total resistance in a circuit of two parallel resistors, namely 
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where, by analogy, 
0a  is the resistance of the first resistor and 

L iC A =  is the resistance of the second. 

We shall use this analogy in comparing the equations of Refs. [10,73,79,83,88–91] by casting the wing lift 

slope given by each method in the form of Eq. (4.6.4) and comparing the values of 
1R  and 

2R . 

 Additionally, we also wish to consider the limits of a for the two bounding conditions. From Eq. (4.6.3) 

we get 
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which is the exact value predicted by classical airfoil theory, and 
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which is twice the value predicted by slender wing theory, Eq. (4.4.7). 

 From slender wing theory, Jones [79] gives 
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By comparison to Eq. (4.6.4), 
1R =   and 

2 2R A= , and the trivial bounding limits are 
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 The modified slender wing equation – Eq. (4.4.16) – gives for the wing lift slope 
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which has the limits 

 0modifie _sle ded n rlim
A

a a
→

=   (4.6.10) 

 
lmodifie _s ended r

0 2
lim
A

A
a



→
=   (4.6.11) 

 Now let us consider some of the other proposals that attempt to bridge the gap between the two bounding 

theories. Helmbold [89] proposed 
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which, when recast in the form of Eq. (4.6.4), gives 
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Helmbold’s equation is especially remarkable because it is quite elegant compared to the other proposals and 

gives the correct limits for both the upper and lower bounds of aspect ratio, namely 
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It was also proposed much earlier than most of the other methods considered here, including Jones’ slender 

wing theory [79]. 

 Before publishing his paper on slender wing theory, Jones [88] used potential flow theory to show that 

the ratio of velocity around the edge of an infinite elliptic wing to that around the edge of a finite wing is 

equal to the ratio of parameters E for the wings, where E is itself a ratio of the semiperimeter to the span. The 

parameter E for an infinite wing is 1 so that the ratio of velocities becomes 1 E . Jones then proposed 

adjusting the wing lift coefficient according to the relation 
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or, in the form of Eq. (4.6.4) 
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This equation has the upper and lower limits of 
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 Van Dyke [90] approached this problem as a singular perturbation problem in which the span and chord 

are primary and secondary characteristic dimensions, respectively. He presented a third-order approximation 

to the lift slope equation as 
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Recast in the form of Eq. (4.6.4), Eq. (4.6.20) becomes 
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with upper and lower limits of 
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Van Dyke’s equation provides reasonable accuracy for aspect ratios above about 2, but fails to converge to 

the correct limit as 0A→ . Even worse, it has an asymptote at about 0.4749A =  and approaches the lower 

limit from the wrong direction. Germain [91] presented a modified version of Van Dyke’s equation which 

somewhat alleviated these concerns. Germain’s original equation perpetuated an error introduced by Van 

Dyke, which Van Dyke later corrected [93] to give 
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which can be rearranged as 
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This equation eliminates the asymptote found in Van Dyke’s equation, and the lower limit 
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comes within about 10% of that predicted by slender wing theory.  

 Hauptman and Miloh [83] have provided closed-form expressions for the wing lift slope based on the 

acceleration potential of an ellipse (see Prandtl [84]) and a linearized formulation of lifting surface theory. 

Their derivation resulted in a piecewise formulation, namely 
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  (4.6.27) 

where h is the eccentricity of the ellipse, 
21k h= − , and ( )E h  is the complete elliptic integral of the second 

kind. Note that, by definition, the eccentricity of an ellipse is always real and between the limits of 0 and 1, 

i.e. 0 1h  . Also note that Eq. (4.6.27) was taken from Laitone [87], as it corrects a typo in the original 

paper of Hauptman and Miloh [83]. Rearranging Eq. (4.6.27) gives 
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  (4.6.28) 

This function approaches the correct limits for both slender and infinite wings, namely 
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However, the section lift slope 
0a  does not appear explicitly in Eq. (4.6.27) due to the method by which it 

was derived, and it is unclear how to correct this equation for section lift slopes other than 2 . 

 The last equation that we shall consider from the literature is that of Küchemann [73]. Küchemann uses 

the flat plate distribution of Birnbaum [70] to demonstrate that classical lifting line theory can actually be 

considered a lifting surface theory. Birnbaum [70] showed that the pressure distribution over a flat infinite 

plate at angle of attack is given by  

 

1/2

2 1
( )p

x c
x

x c

C
C

V

−


 
= −  

 
  (4.6.31) 

which can similarly be expressed as a continuous sheet of vorticity ( )x x  through the Kutta-Joukowski law, 

where the coefficient C must be determined. The section lift is given by 
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Inserting Eq. (4.6.31) into Eq. (4.6.32) and performing the integration gives 
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or, rearranging, 
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The effective downwash can now be determined by applying the Biot-Savart Law, 
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Combining Eqs. (4.6.34) and (4.6.35), we get 

 2l ec =   (4.6.36) 

which gives the section lift slope of a thin airfoil. This demonstrates that using a section lift slope of 
0 2a =   

in classical lifting line theory is equivalent to a lifting surface theory with the chordwise pressure distribution 

of Eq. (4.6.31). Other pressure distributions will result in a different section lift slope, so that the chordwise 

pressure distribution of any section can be incorporated into classical lifting line theory through the use of an 

appropriate section lift slope. 
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 Küchemann [73] then showed that a slightly modified pressure distribution, 
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can be used to obtain the slender wing results of Jones [79] in a similar manner. The obvious parallels between 

Eqs. (4.6.31) and (4.6.37) led Küchemann [73] to propose a more general distribution, namely 
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where the parameter n can be defined such that a smooth transition occurs between the chordwise 

distributions of Eqs. (4.6.31) and (4.6.37). Using Eq. (4.6.38) in Eq. (4.6.32) and performing the integration 

gives 
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Applying the Biot-Savart Law, Eq. (4.6.35), gives 
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The coefficient in front of 
e  can be interpreted as the “effective” section lift slope. Note that, for added 

generality, 2  in the numerator can be replaced with 
0a . 

 The only known requirements on n are that it must go to 1 in the limit 0A→  and it must go to 1/ 2  in 

the limit A→ . On this basis Küchemann [73] proposed, somewhat arbitrarily, to use 
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Noting the similarities between Eqs. (4.3.9) and (4.4.9), Küchemann [73] then proposed multiplying the 

induced downwash term by the same parameter n. The result was an expression similar to Eqs. (4.3.14) and 

(4.4.16), from classical lifting line theory and slender wing theory respectively, but general enough to be 

applied over the whole range of aspect ratio, 
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By assuming an elliptic lift distribution and following the same methodology as was used to arrive at Eq. 

(4.3.29), the wing lift slope resulting from this equation can be determined. It is 
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or, recast in the form of Eq. (4.6.4), 
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The limits of this equation are 
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 What is significant here is that Küchemann [73] has provided us with a mechanism whereby any 

formulation cast in the form of Eq. (4.6.4), with definitions for 
1R  and 

2R , can be directly implemented in 

the more general lifting line equation 
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This equation can be solved in the same manner as Eq. (4.3.14). 

 Let us consider again the elliptic circulation distribution given by Eq. (4.3.15), namely 
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but this time applied to the general lifting line equation, Eq. (4.6.47). The induced downwash is given by 
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which, following the same solution procedure as before (see Eqs. (4.3.17) and (4.3.18)), reduces to 
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The effective downwash, following the same reasoning as was given with Eqs. (4.3.20)-(4.3.22), is then 
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In applying the elliptic chord distribution from Eq. (4.3.21) here, we have relied on the assumptions that both 

0a  and 
1R  are constant over the wingspan. Substituting the right hand sides of Eqs. (4.6.49) and (4.6.50) 

into Eq. (4.3.2) and solving for 
0 , we get 
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Substitution of Eq. (4.6.51) into Eqs. (4.6.49) and (4.6.50) now gives 
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respectively; or, by Eq. (4.3.1), 
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The total lift coefficient of the wing is found by integrating Eq. (4.2.4) over the wingspan with the effective 

angle of attack given by Eq. (4.6.55). This gives 
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and the effective wing lift slope becomes 
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Equation (4.6.56) can be rewritten in terms of induced angle of attack as 
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so that the drag coefficient is now 
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in contrast to Eq. (4.3.33). Note that Eqs. (4.6.58) and (4.6.59) reduce to Eqs. (4.3.32) and (4.3.33) when the 

resistance values from classical lifting line theory – see Eq. (4.6.3) – are used. Similar relations can be 

obtained for the lift and drag coefficients based on the other low-aspect-ratio formulations discussed above. 

 We can derive an aspect ratio efficiency factor similar to the span efficiency factor discussed in Sec. 4.3 

by direct comparison of Eqs. (4.6.59) and (4.3.34). The aspect ratio efficiency factor, 
Ae , is then 

 0 2
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A R
=   (4.6.60) 

Note, however, that this efficiency factor only considers the effects of aspect ratio and does not account for 

deviations from the elliptic lift distribution. It is therefore not a replacement of the span efficiency factor so 

that our generalized induced drag equation becomes 
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where 1Ae →  as A→  (from classical lifting line theory) and 1 2Ae →  as 0A→  (from the modified 

slender wing equation). The span efficiency factor 
se  has the same properties as in Eq. (4.3.34). 

 While all of the formulations discussed above were developed specifically for untwisted elliptic wings, 

Eq. (4.6.47) allows us to consider these same relations for other planforms and twist distributions, under the 

assumption that the effects of aspect ratio are unchanged for these other configurations. We have also 

assumed in the development of Eq. (4.6.47) that the effects of aspect ratio are felt equally along the wingspan. 

This last assumption could be removed, however, by allowing 
1R  and 

2R  to be functions of spanwise 

location. Doing so, however, would affect the result of the integration so that Eq. (4.6.57) could no longer be 

used to find the effective wing lift slope a. In this case a comprehensive solution of Eq. (4.6.47), either 

analytical or numerical, would be required. 

 Comparing Eq. (4.6.47) with Eqs. (4.3.14) and (4.4.16) gives the exact values for 
1R  and 

2R  in the limits 

as A→  and 0A→ . These values are summarized in Table 4.1. Note that by Eq. (4.3.21), 
1 0constR a= =  

for an elliptic wing. While the modified slender wing equation and the equations of Helmbold [89], Hauptman 

and Miloh [83] (assuming a section lift slope of 
0 2a = ), and Küchemann [73] have the correct limits for 

wing lift slope, none of them match all of the limits given in Table 4.1 for 
1R  and 

2R . 
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Table 4.1  Summary of limits for 
1

R  and 
2

R  
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 It is a simple matter to conceive of other possible forms for 
1R  and 

2R  than have already been presented. 

An alternative equation is here proposed by the author which is both simple and accurate, though developed 

empirically. It is given in the form of Eq. (4.6.4) as 
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which gives 
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For an elliptic wing, this equation meets all four limit requirements from Table 4.1.  

4.7 Results and Discussion 

 Table 4.2 provides a summary of the equations discussed in the previous section, which includes the 

values for wing lift slope predicted by these equations in the upper and lower limits of aspect ratio. Tables 

4.3 and 4.4 summarize the resistance values to be used in Eqs. (4.6.4) and (4.6.47) for each of the methods 

considered, including their respective limiting values. While the modified slender wing equation and the 

equations of Helmbold [89], Hauptman and Miloh [83] (assuming a section lift slope of 
0 2a = ), and 

Küchemann [73] have the correct limits for wing lift slope, none of them match all of the limits given in 

Table 4.1 for 
1R  and 

2R . Only Eq. (4.6.62) achieves all the correct limits from Table 4.1. We note, however, 

that Küchemann [73] does match all the correct limits if the lower limits are taken from Jones’ [79] slender 

wing theory given by Eq. (4.4.12) as opposed to the modified slender wing equation given by Eq. (4.4.16). 
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Table 4.2  Comparison of methods for calculating the wing lift slope of a finite elliptic wing 

Method Equation Wing Lift Slope ( )    

Classical lifting line theory [10,11] Eq. (4.6.3)      

Slender wing theory [79] Eq. (4.6.7)    

Modified slender wing equation Eq. (4.6.9)     

Helmbold [89] Eq. (4.6.12)     

Jones [88] Eq. (4.6.16)    

Van Dyke [90] Eq. (4.6.20)     

Germain [91] Eq. (4.6.24) 
 

  

Hauptman & Miloh [83] Eq. (4.6.27)    

Küchemann [73] Eq. (4.6.43) ,     

Hodson Eq. (4.6.62)     
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Table 4.3  Comparison of resistance values  from methods for calculating the wing lift slope of a finite elliptic wing 

Method Equation    

Classical lifting line theory [10,11] Eq. (4.6.3)    

Slender wing theory [79] Eq. (4.6.7) ∞ ∞ ∞ 

Modified slender wing equation Eq. (4.6.9)    

Helmbold [89] Eq. (4.6.13)    

Jones [88] Eq. (4.6.17)    

Van Dyke [90] Eq. (4.6.21)    

Germain [91] Eq. (4.6.25)    

Hauptman & Miloh [83] Eq. (4.6.28)     

Küchemann [73] Eq. (4.6.44)  ,   0 

Hodson Eq. (4.6.62)    
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Table 4.4  Comparison of resistance values  from methods for calculating the wing lift slope of a finite elliptic wing 

Method Equation    

Classical lifting line theory [10,11] Eq. (4.6.3)    

Slender wing theory [79] Eq. (4.6.7)    

Modified slender wing equation Eq. (4.6.9)    

Helmbold [89] Eq. (4.6.13)    

Jones [88] Eq. (4.6.17)    

Van Dyke [90] Eq. (4.6.21) 
  

  

Germain [91] Eq. (4.6.25) 
  

  

Hauptman & Miloh [83] Eq. (4.6.28)    

Küchemann [73] Eq. (4.6.44)     

Hodson Eq. (4.6.62)    
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 Figure 4.3 compares the wing lift slope calculations from classical lifting line theory, slender wing theory, 

the modified slender wing equation, Helmbold [89], Küchemann [73], Hauptman and Miloh [83], and the 

current author with numerical lifting surface results from Kinner [94], Krienes [95], Jordan [96], and Medan 

[97]. Also included are high-order panel method results computed by the author using Panair [98–100] and 

described in Appendix H. In these calculations we have modeled an elliptic wing with a uniform, symmetric 

cross section having a section lift slope of 
0 2a = . 

 While the equations of Helmbold [89] and Küchemann [73] show reasonable agreement with the 

numerical results presented in Figure 4.3, the equations of Hauptman and Miloh [83] and the present author 

perform better. However, Eq. (4.6.27) from Hauptman and Miloh [83] is a piecewise formulation that requires 

a solution of the complete elliptic integral of the second kind. These additional complexities in Eq. (4.6.27)

make Eq. (4.6.62) a more reasonable choice for any practical applications of the solution method discussed 

herein. 

 

 
Figure 4.3  Comparison of lift slope calculation methods applied to a finite elliptic wing 
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 It is necessary to remember that the equations presented above and summarized in Table 4.2 have been 

developed specifically for wings of elliptic planform according to Eq. (4.3.21). For arbitrary planforms, the 

correct value of 
1R  must be dependent on spanwise location at low aspect ratio, and the rate at which 

1R  

transitions between the upper and lower limits cannot be determined from a study of elliptic planforms. Since 

most wing designs are not elliptic, it is of interest to the present study to consider the validity of the proposed 

equations to other planform designs. Figures 4.4 and 4.5 provide comparisons of solutions to Eq. (4.6.47) for 

rectangular and tapered planforms using the resistance values from classical lifting line theory, the modified 

slender wing equation, and Eqs. (4.6.63)-(4.6.64). Results computed using Panair are also included. Solutions 

  

 
Figure 4.4  Comparison of lift slope calculation methods applied to a finite rectangular wing 

 

 

 
Figure 4.5  Comparison of lift slope calculation methods applied to a tapered wing with 70. 5

T
R =   
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to Eq. (4.6.47) were obtained using Pralines,* an open-source Fortran code developed by the author. This 

code is based on the solution procedure presented by Phillips [53], in which Eq. (4.6.47) is approximated as 

a truncated Fourier sine series. The source code is given in Appendix K. 

 Despite having been developed specifically for elliptic planforms, the proposed equation shows excellent 

agreement with the Panair results for the rectangular and tapered planforms considered. It outperforms 

classical lifting line theory over the full range of aspect ratios for both rectangular and tapered cases.  

 At this point we have only considered predictions of the total wing lift slope of a finite wing without 

regard to the spanwise lift distribution. In fact the development presented here has assumed that the influence 

of aspect ratio beyond that already captured in classical lifting line theory is felt uniformly along the 

wingspan. Pralines can be used to scrutinize this assumption. For an elliptic wing, Eq. (4.6.47) predicts an 

elliptic lift distribution (i.e. a constant section lift coefficient), regardless of the resistance values used. This 

is shown and compared to Panair results in Figure 4.6 for a selection of aspect ratios. The results computed 

using Eqs. (4.6.63) and (4.6.64) in Eq. (4.6.47) show good agreement with Panair results for / 0.4y b   

regardless of aspect ratio. As expected, larger discrepancies are seen at the wing tips. However, the 

magnitudes of the discrepancies shown in Figure 4.6 can be misleading since they are scaled 

by the inverse of the chord length and the chord length goes to zero at the wing tip. Figure 4.7 shows the 

same data but with the spanwise lift coefficients multiplied by the local chord ratio /c c , which more 

accurately reflects the relative influence of each spanwise value on the overall wing lift coefficient. From 

Figure 4.7 we see that the results computed using Eqs. (4.6.63) and (4.6.64) provide excellent agreement with 

the Panair results over the entire wingspan. There is a slight outward shift of lift when compared to the Panair 

results, but overall this shift is small – less than half a percent of the total lift generated by the wing. 

 Figures 4.8 and 4.9 compare lifting line theory and Panair results for rectangular and tapered planforms. 

The lift coefficients have again been scaled by the local chord ratio /c c , as in Figure 4.7, to better visualize 

the influence of the spanwise values on the overall lift generated by the wing. The lifting line results based 

on the resistance values given by Eqs. (4.6.63) and (4.6.64) again do an excellent job of matching the Panair 

results, though the discrepancies are slightly larger for rectangular and tapered wings than for elliptic wings. 

                                                           

* https://github.com/joddlehod/pralines 

https://github.com/joddlehod/pralines
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Figure 4.6  Comparison of spanwise lift coefficient distributions for elliptic wings. 

 

 

 
Figure 4.7  Comparison of spanwise lift distributions for elliptic wings. 
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Figure 4.8  Comparison of spanwise lift distributions for rectangular wings. 

 

 
Figure 4.9  Comparison of spanwise lift distributions for tapered wings with = 0.75

T
R . 
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 Finally, we wish to consider how the proposed lifting line formulation affects induced drag calculations. 

Here we used the same codes, namely Pralines and Panair, to evaluate the lift and drag coefficients of several 

wings of varying aspect ratios, and then apply Eq. (4.6.61) to compute the aspect ratio efficiency factor for 

each analysis. These results, along with direct calculations of the aspect ratio efficiency factor using Eq. 

(4.6.60), are presented in Figure 4.10.  

 Some difficulty was encountered in obtaining accurate drag results from Panair. In computing lift results, 

we computed the solution on three different grid sizes and applied Richardson Extrapolation to improve the 

accuracy of the results. This method could not be applied to the drag results, however, because the results 

from successively refined grid sizes did not exhibit asymptotic convergence. Instead, each Panair data point 

presented in Figure 4.10 was computed from a single Panair analysis using a 4%-thick symmetric Joukowski 

  

 
Figure 4.10  Sample calculations of the aspect ratio efficiency factor using Pralines and Panair. 
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airfoil for the cross section and an 80 80  grid size. This, however, still did not yield satisfactory results. 

The Panair data show an inverse trend in 
Ae  to what is expected, indicating that as aspect ratio increases, 

both 
e  and 

i  increase. This would seem to violate the boundary condition given by Eq. (4.3.2), bringing 

into question the validity of the drag calculations produced by Panair. 

 In contrast, the lifting line results shown in Figure 4.10 agree well with the theory presented in this 

chapter. The results using classical lifting line theory give an aspect ratio efficiency factor of 1Ae =  

regardless of aspect ratio, while the modified slender wing equation gives an aspect ratio efficiency factor of 

1/ 2Ae = . These represent the theoretical upper and lower limits, respectively, of the aspect ratio efficiency 

factor. The equation proposed by the present author – see Eqs. (4.6.62)-(4.6.64) – shows a smooth transition 

between the two limits. While the shape of this transition cannot be confirmed due to the unreliability of the 

Panair drag results, it can be assumed that the shape is reasonable as it satisfies the boundary condition given 

by Eq. (4.3.2) and the corresponding lift values have already been shown to be satisfactory. Any alternative 

would require the influence of an aerodynamic phenomenon that has not been considered here or in the other 

works reviewed. 
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5 NUMERICAL LIFTING LINE METHOD FOR WINGS OF ARBITRARY ASPECT RATIO 

5.1 Introduction 

 In the previous chapter, several equations for the wing lift slope of finite wings have been considered, 

and a method for modifying classical lifting line theory, Eq. (4.3.14), to match these equations has been 

presented. This formulation, however, is inapplicable to wings with sweep or dihedral, and is also limited to 

single isolated lifting surfaces. The numerical lifting line method of Phillips and Snyder [16] is based heavily 

on classical lifting line theory, but presents a formulation that allows for consideration of sweep, dihedral, 

and interactions between multiple lifting surfaces. In their original presentation of this method, Phillips and 

Snyder [16] showed the accuracy to be comparable to numerical panel methods and inviscid computational 

fluid dynamics solutions, but at a small fraction of the computational cost. It would be advantageous, 

therefore, to be able to extend the applicability of this numerical formulation to lifting surfaces of low aspect 

ratio, as was done for classical lifting line theory in the previous section. To do so, we begin with a 

comprehensive derivation of the method as originally presented by Phillips and Snyder [16]. We will then 

discuss the necessary modifications to this method to achieve our purpose. 

 As with classical lifting line theory, a lifting surface in numerical lifting line theory is represented as a 

series of horseshoe vortices, each horseshoe vortex consisting of a single spanwise vortex segment coincident 

with the quarter-chord of the wing and two semi-infinite vortex segments extending chordwise downstream. 

However, in contrast to the overlapping horseshoe vortices shown in Figure 4.1, the lifting surface is 

composed of non-overlapping, side-by-side horseshoe vortices as shown in Figure 5.1. While a gap is shown 

between adjacent horseshoe vortices in the figure, this is simply for illustration purposes. In reality, the 

incoming and outgoing vortex segments of adjacent horseshoe vortices are coincident, and vorticity is shed 

from the wing at each of these interfaces in an amount equal to the difference in vortex strengths between the 

two adjacent horseshoe vortices that comprise the interface. While this simple change in arrangement of the 

horseshoe vortices seems trivial, it affords some significant advantages over the arrangement used in classical 

lifting line theory. Each horseshoe vortex is now tied to a specific section of the finite wing being modeled, 

so that the properties of each section are now decoupled from one another. For example, the sweep, dihedral, 
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Figure 5.1  Discrete system of side-by-side horseshoe vortices on a finite wing. 

 

and section lift slope (
0a ) can all be specified individually for each section of the wing. In classical lifting 

line theory, where the largest horseshoe vortex spans from wing tip to wing tip, each of these values is 

required to be constant over the entire wing. 

 The fundamental problem we must solve with this new arrangement is the same as that of classical lifting 

line theory – namely, to determine the vortex strengths ( )y  such that the boundary condition of Eq. (4.3.1) 

is satisfied. We shall follow the same general development as was done for classical lifting line theory, but 

using a more general three-dimensional formulation due to the new arrangement of horseshoe vortices. This 

complete development can be found in its original form in Phillips and Snyder [16]. We shall then consider 

how the low aspect ratio modifications presented in the previous chapter can be applied to this numerical 

method. Finally, we shall compare results from the modified method with those of other approaches.  

5.2 The Phillips and Snyder Numerical Lifting Line Method 

 Consider the arbitrary vortex segment OR  shown in Figure 5.2. Let l be the vector from point O to point 

R, and consider the vortex element dl  located at point Q. The velocity induced at point P by this differential 

vortex element is given by the Biot-Savart law, 

 
34 r

=
 dl r

dV   (5.2.1) 
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Figure 5.2  Velocity induced at point P by an arbitrary vortex segment OR . 

 

Let   be the ratio of the lengths of the line segments OQ  and OR . The vector r can be expressed as the 

difference of the two vectors 
r  and  l , so that the magnitude is given by 

 2 2 2

1 12r r l = −  +lr   (5.2.2) 

and the cross product in Eq. (5.2.1) can be rewritten as 

 ( ) ( ) ( )1 1 1d d d     =  − =  −  = dl r l r l l r l l l r   (5.2.3) 

Using Eqs. (5.2.2) and (5.2.3) in Eq. (5.2.1), we get 

 

( )
1

3/2
2 2 2

1 1
4 2

d

r l  


=

−



 +

l r
d

r
V

l
  (5.2.4) 

The total velocity induced at point P by the vortex segment OR  is then found by integrating Eq. (5.2.4) over 

the length of the vortex segment, 
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( )( )
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1

1 1 2 1 2

3/2
2 2 2

1 2 1 2 10 1 1
4 42

rd
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+−  +

 


r

V
l

l r r

r r r
  (5.2.5) 

A complete proof of the integral in Eq. (5.2.5) is provided in Appendix L. For a semi-infinite vortex with 

2r →  in the direction of the freestream, Eq. (5.2.5) becomes 

 
( )

( )
1

1 1 14 r r





 
=

− 
V

u

u

r

r
  (5.2.6) 

where 
u  is the unit vector in the direction of the freestream. The velocity induced at an arbitrary point by a 

complete horseshoe vortex is then 
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( )

( )

( )( )

( )

( )

( )
2 1 2 1 2 1

2 2 2 1 2 1 2 1 2 1 1 14

r r

r r r r r r r r

 

 

  +  
= + − 

−  +  −   

 u r r r u r
V

u r r r u r
  (5.2.7) 

where 
1r  and 

2r  are now the vectors from the two corner points of the horseshoe vortex to the arbitrary point. 

 Now consider the discrete system of horseshoe vortices used to represent a finite wing as shown in Figure 

5.1. A control point placed anywhere along the quarter-chord of the wing (i.e. the lifting line) will experience 

an induced velocity due to each horseshoe vortex according to Eq. (5.2.7). The induced downwash vector at 

the control point by a system of n horseshoe vortices is then given by 

 
( )
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u r r r u r
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u r r r u r
  (5.2.8) 

where  1jr  and 2jr  are the vectors from the two corner points of the jth horseshoe vortex to the control point. 

The velocity vector at the control point can now be expressed as the sum of the freestream velocity and the 

induced downwash, namely 

 
i= +V V w   (5.2.9) 

 Note that the middle term within the square brackets of Eq. (5.2.8) is indeterminate when the angle 

between 1jr  and 2jr  is g180de . However, this condition is only satisfied when the control point lies exactly 

on the axis of the vortex. Since the velocity induced by a straight vortex segment along its axis is zero, the 

appropriate value for this term is zero anytime 1jr  and 2jr  are coaxial. 

 In the development of classical lifting line theory, Prandtl [10,11] used the Kutta-Joukowski theorem 

given by Eq. (4.3.10) to relate the lift force to the circulation for any spanwise section of the wing. Phillips 

and Snyder [16] take a similar approach, but use the more general three-dimensional vortex lifting law (see 

Saffman [101]). This can be written for a differential segment dl  of the lifting line as 

  = V dldF   (5.2.10) 

 Following Prandtl’s development of classical lifting line theory, we can equate the magnitude of this 

spanwise differential force to the lift predicted by 2D airfoil theory, namely 

 
2

0

1

2
eV a dS  =dF   (5.2.11) 

where 
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 1tan n

e

a

 −  
=  



 

V u

V u
  (5.2.12) 

is the effective angle of attack, 
nu  is the unit vector normal to the local airfoil chord, and 

au  is the unit 

vector aligned axially with the local airfoil chord. Both vectors 
nu  and 

au  lie within the section plane. 

Equating the right hand sides of Eqs. (5.2.10) and (5.2.11) gives 

 2

0

1

2
eV a dS      =V dl   (5.2.13) 

 Expressed in this form, Eq. (5.2.13) is a single equation with n unknowns, namely the vorticities 1,2,...,n  

for each horseshoe vortex. The control point, since it has been constrained to lie along the lifting line, also 

lies along the axis of one of the n horseshoe vortices. The values of the parameters  , V , dl , 
e , and dS  

in Eq. (5.2.13) are associated with the wing section and corresponding horseshoe vortex along which the 

control point lies. By placing a control point on each of the n horseshoe vortices and writing Eq. (5.2.13) for 

each control point, we generate a system of n nonlinear equations in n unknowns that can be solved using an 

iterative root-finding algorithm such as the Newton-Raphson method. 

 In Secs. 4.3 and 4.6, we were able to develop closed-form relations for the lift and drag coefficients of 

wings with elliptic lift distributions. Development of similar equations using the numerical formulation of 

Phillips and Snyder [16] is not straightforward due to the discrete summation and the vector notation used in 

the formulation. Instead, a solver that implements this method can compute the resultant force vector at each 

control point and then compute a vector sum the forces over the wing. Lift and drag components relative to 

the freestream can then be computed using the vector dot product. 

 In the original paper by Phillips and Snyder [16], results using this method are shown to be equivalent to 

those of classical lifting line theory for straight elliptic wings of various aspect ratios. Additionally, results 

are shown to be in good agreement with experimental and high-order numerical results for straight wings, 

wings with sweep, and wings with dihedral. However, in all comparisons the aspect ratios are greater than 4. 

Figure 5.3 compares wing lift slope results computed using the numerical lifting line method of Phillips and 

Snyder with results from classical lifting line theory and a vortex panel method. Solutions to the numerical 

lifting line method were computed using MachUp (see Sec. 2.6.1) with 100 nodes per semispan and a section  
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Figure 5.3  Comparison of wing lift slope calculations for finite elliptic wings.  

 

lift slope of 
0 2a = . Solutions to classical lifting line theory were computed using Eq. (4.6.3) with a section 

lift slope of 
0 2a = . Vortex panel method results were computed using Panair [98–100]. From these data it 

is clear that the numerical lifting line method of Phillips and Snyder is subject to the same aspect ratio 

limitations as classical lifting line theory. 

5.3 Modifications to the Numerical Lifting Line Method for Wings of Arbitrary Aspect Ratio 

 As stated in the previous section and illustrated in Figure 5.3, computations performed using the 

numerical lifting line method of Phillips and Snyder [16] are subject to the same aspect ratio limitations as 

classical lifting line theory. However, we have already developed a method for modifying classical lifting 

line theory to accurately account for aspect ratio (see Sec. 4.6). We shall now present a method for applying 

this same modification to Eq. (5.2.13). 

 First, we note that the effective angle of attack appears explicitly in Eq. (5.2.13). Solving for 
e  gives 

 
0

2
e

a V dS





=

 lV d
 (5.3.1) 

which is quite similar to Eq. (4.3.13). In Eq. (4.6.47) a correction factor of 
0 1( )a R  has been applied to the 

effective angle of attack. We therefore, by analogy, apply this same factor here so that Eq. (5.3.1) becomes 

 0

0 1

2
e

a

a V dS R




  
=  



 

V dl
  (5.3.2) 

for arbitrary aspect ratios. 
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 The induced angle of attack does not appear explicitly in Eq. (5.2.13), but the induced downwash given 

by Eq. (5.2.8) is used in the calculation of V , which appears in the left hand side of Eq. (5.2.13) and in the 

definition for 
i  given by Eq. (5.2.12). Since, by the small angle approximation, 

 
i iw V =   (5.3.3) 

we conjecture that the induced downwash given by Eq. (5.2.8) must be scaled by the same factor as the 

induced angle of attack in Eq. (4.6.47), namely ( )2A R . This gives 
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 These two simple changes are all that is required to allow the application of any one of the correction 

methods described in Sec. 4.6 to the numerical lifting line method of Phillips and Snyder [16]. The nature 

and complexity of the equations to be solved has not been changed, so that the same algorithms used to solve 

the unmodified equations can be used to solve the modified ones. For completeness, the equations to be 

solved for the modified numerical lifting line algorithm are summarized below. 

 20
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i= +V V w   (5.2.9) 
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 As was mentioned in the previous section, closed-form expressions for lift and drag coefficients of wings 

with elliptic lift distributions are not available based on this numerical formulation, so that they must be 

computed as a vector summation of the resultant force vectors at each control point. This procedure is the 

same for the modified formulation described here as for the original formulation of Phillips and Snyder [16] 

discussed in the previous section, so that the additional rotation of the resultant force vector due to the 

modifications presented in this section will be automatically accounted for in any application that correctly 

implements this method. 
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5.4 Results and Discussion 

 In order to evaluate the effectiveness of the modifications described above, the MachUp source code has 

been modified to include these changes, and an additional parameter has been added to the input file format 

to allow selection of the resistance values to be used in an analysis. Figure 5.4 shows a comparison of wing 

lift slopes computed using this modified version of MachUp with the analytical solutions from Chapter 4 for 

classical lifting line theory, the modified slender wing equation, and Eqs. (4.6.63)-(4.6.64). Results computed 

using Panair are also included. 

 The numerical model for these calculations was composed of 100 spanwise sections for one semispan 

with a symmetry boundary condition at the wing root. The uniform cross section was modeled as a thin 

symmetric airfoil with 
0 2a = . The iterative nonlinear solver was used with a convergence tolerance of 

1010−
. With these settings, the numerical results agree with the analytical results to at least four digits of 

precision. Additionally, the differences between the Panair results and the numerical results based on the 

formulation proposed by the present author are less than 1% for A ≥ 1. 

 

 
Figure 5.4  Comparison of analytical and numerical calculations for wing lift slope of elliptic wings. 
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 Figures 5.5-5.7 compare the lift distributions for elliptic, rectangular, and tapered planforms predicted by 

the modified MachUp code to those predicted by Panair. The results are essentially identical to the analytical 

results shown in Figures 4.7-4.9. From these data we conclude that the modified equations described in Sec. 

5.3 are the numerical equivalent to the analytical lifting line formulation given in Eq. (4.6.47). 

 This work has considered only isolated wings with no sweep; no geometric or aerodynamic twist; no 

dihedral; and only elliptic, rectangular, and tapered planforms. The formulation given in Sec. 5.3, however, 

is not limited to any of these constraints. Previous publications (see Refs. [12–14]) have applied the numerical 

lifting line algorithm described in Sec.5.2 to a variety of other wing designs with reasonable success. While 

beyond the scope of the present work, it is expected that the proposed method can produce useful results for 

arbitrary wing designs. 

 Figure 5.8 shows aspect ratio efficiency factors computed using MachUp and Panair. The Panair results 

were discussed in Sec. 4.7. The MachUp results are equivalent to the Pralines results shown in Figure 4.10. 

This provides added confidence in the derivations leading to Eq. (4.6.59) since that equation is used directly 

to calculate drag in Pralines but not in MachUp.  

 

 
Figure 5.5  Comparison of spanwise lift distributions for elliptic wings. 
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Figure 5.6  Comparison of spanwise lift distributions for rectangular wings. 

 

 
Figure 5.7  Comparison of spanwise lift distributions for tapered wings with = 0.75

T
R . 
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Figure 5.8  Sample calculations of the aspect ratio efficiency factor using MachUp and Panair. 

  

 In 2017, Hodson et al. [102] presented wind tunnel data for several subscale test articles of the variable-

camber compliant wing (VCCW) developed at the U.S. Air Force Research Laboratory (AFRL). For a 

description of the VCCW, see Refs. [5,6]. Of particular interest here is the aspect ratio of the VCCW – 3A =  

– which falls below the generally accepted range of validity for classical lifting line theory.  The data 

presented by Hodson et al. [102] includes lift, drag, and pitching moment coefficients as functions of angle 

of attack for five subscale test articles generated from 3D scans of the VCCW in various morphed 

configurations, as well as three test articles generated from 3D CAD models with uniform NACA 0010, 

2410, and 8410 airfoil cross-sections. For a description of each test article, see Ref. [102]. 

 In order to compare numerical results generated with MachUp to the Hodson et al. [102] experimental 

data, an airfoil database needed to be created containing airfoil coefficients for the different cross sections in 



114 

the models. For this analysis, the cross sections were approximated as NACA X410 series airfoils. XFOIL 

(see Refs. [51,52]) was used to generate viscous airfoil coefficients assuming a Reynolds number based on 

chord length of 
52. 04 1cRe =  . The XFOIL results were tabulated for angles of attack between -10 deg and 

+10 deg. Airfoil coefficient tables for airfoils having 0%, 2%, 4%, 6%, and 8% maximum camber were 

generated and are listed in Appendix M. Properties for wing sections having maximum camber values 

between the values listed were linearly interpolated from the two closest airfoils. 

 Comparisons of lift coefficients for the test articles based on the 3D CAD models are given in Figures 

5.9-5.11. Uncertainty bands representing 95% confidence intervals are included on the experimental data. 

For the CAD-0 and CAD-2 models, the corrected numerical results agree exceptionally well with the 

experimental data and outperform the numerical results calculated using the classical lifting line formulation. 

For the CAD-8 model, the corrected numerical results lie slightly below the experimental data but are still 

within the same range of accuracy as the classical lifting line results. Moreover, they provide a closer 

approximation to the lift slope for this data than the classical lifting line results provide. 

 

 
Figure 5.9  Comparison of numerical and experimental lift coefficients for the CAD-0 test. 
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Figure 5.10  Comparison of numerical and experimental lift coefficients for the CAD-2 test. 

 

 
Figure 5.11  Comparison of numerical and experimental lift coefficients for the CAD-8 test. 
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 Comparisons of lift coefficients for the subscale test articles generated from 3D scans of the VCCW are 

given in Figures 5.12-5.16. As with the CAD-0 and CAD-2 test articles, the corrected lifting line results for 

the VCCW-2 and VCCW-CD test articles are in excellent agreement with the experimental data. The 

corrected lifting line results for the VCCW-8 and VCCW-LW test articles lie slightly below the experimental 

data but have the correct lift slopes. The corrected numerical results for the VCCW-CU test article are the 

least satisfactory. They lie further below the experimental results than the classical lifting line results, and 

though the lift slope is slightly improved it is still too high. The reasons for the discrepancy in the VCCW-

CU results are unknown, but there are several possibilities. The actual cross-sectional profiles of the VCCW-

CU configuration may differ significantly from the NACA X410 profiles assumed in the numerical analysis. 

The XFOIL results for the airfoils used in the numerical analyses of the VCCW-CU may be in error, though 

this would likely also affect the comparisons of other test articles rather than be isolated to a single test article. 

There may also be an error in the experimental data that was not identified during the uncertainty analysis, 

though this too would likely also affect the comparisons of other test articles unless the error source was 

related directly to the setup and installation of the VCCW-CU test article in the wind tunnel. There also 

remains the possibility that the corrections to lifting line theory implemented here do not accurately account 

for the effects of thickness, camber, and viscosity, as none of these factors were considered in the theoretical 

development of the modifications. The VCCW-CU configuration may be such that these discrepancies are 

significantly amplified. Further investigation of this issue is needed. 

 Comparisons of drag coefficients for the test articles based on the 3D CAD models are given in Figures 

5.17-5.19. In these plots, the numerical results using the corrected formulation and classical lifting line theory 

are quite similar because the only correction to drag was to the induced drag component, while most of the 

drag in these analyses comes from parasitic drag. In all three cases and for both numerical models the shape 

of the drag curve is slightly too concave. The largest source of error here is likely the parasitic drag 

coefficients determined from the XFOIL results. 
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Figure 5.12  Comparison of numerical and experimental lift coefficients for the VCCW-2 test. 

 

 

 
Figure 5.13  Comparison of numerical and experimental lift coefficients for the VCCW-8 test. 
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Figure 5.14  Comparison of numerical and experimental lift coefficients for the VCCW-CU test. 

 

 

 

 

 
Figure 5.15  Comparison of numerical and experimental lift coefficients for the VCCW-CD test. 
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Figure 5.16  Comparison of numerical and experimental lift coefficients for the VCCW-LW test. 

 

 

 
Figure 5.17  Comparison of numerical and experimental drag coefficients for the CAD-0 test. 
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Figure 5.18  Comparison of numerical and experimental drag coefficients for the CAD-2 test. 

 

 

 
Figure 5.19  Comparison of numerical and experimental drag coefficients for the CAD-8 test. 
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 Comparisons of lift coefficients for the subscale test articles generated from 3D scans of the VCCW are 

given in Figures 5.20-5.24. Again the differences between the two numerical formulations are mostly quite 

small, though the corrected model predicts a measurable increase in drag in the case of the VCCW-8 over 

the classical model. This is because 
pD LC C   is quite steep in the region at which this wing operates for 

the NACA 8410 airfoil, so that a relatively small change in lift results in a much larger change in drag. From 

these plots, only the results for the VCCW-CU model do a reasonable job of matching the experimental data. 

Results for the other models show too narrow of a drag curve, but this observation is true for both numerical 

formulations. The most likely source of error here is again the parasitic drag coefficients determined from 

the XFOIL results. This error is compounded by the fact that the cross-sectional profiles of the scanned 

models do not match the NACA X410 family of airfoils exactly. Large discrepancies between the cross-

sectional profiles and the NACA X410 family of airfoils were noted especially in sections with high camber. 

Improved estimation of the parasitic drag properties of the airfoils used in these analyses is expected to 

resolve most of the error seen in these drag calculations. 

 

 
Figure 5.20  Comparison of numerical and experimental drag coefficients for the VCCW-2 test. 
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Figure 5.21  Comparison of numerical and experimental drag coefficients for the VCCW-8 test. 

 

 

 
Figure 5.22  Comparison of numerical and experimental drag coefficients for the VCCW-CU test. 
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Figure 5.23  Comparison of numerical and experimental drag coefficients for the VCCW-CD test. 

 

 

 

 

 
Figure 5.24  Comparison of numerical and experimental drag coefficients for the VCCW-LW test. 

 

  



124 

6 SUMMARY AND CONCLUSIONS 

In this work, several limitations on analysis relative to wing shape optimization have been addressed. 

First, an efficient method for computing gradients with respect to design parameters in an aerodynamic 

analysis has been presented and integrated into MachUp, an open-source aerodynamic analysis tool based on 

a numerical lifting line method. The gradients are computed automatically using DNAD, a forward-mode 

automatic differentiation package that allows derivatives with respect to multiple input parameters to be 

computed in a single run. The DNAD module was integrated into the MachUp source code in such a way 

that inclusion or exclusion of the DNAD module can be controlled entirely at compile-time. In this way, the 

integration of the DNAD module does not affect the performance of MachUp when derivatives are not 

needed, and source code modifications are not required to convert between gradient-capable and non-

gradient-capable versions of the code. To the author’s knowledge, this is the first time this type of integration 

has been achieved with a practical engineering analysis tool. 

Second, a process and suite of tools for performing efficient wing shape optimization has been presented 

and demonstrated. Optix, an open-source optimization framework that allows objective function evaluations 

to be run in parallel across available resources, was described in Sec. 3.2 and the source code is listed in 

Appendix F. Optix is written entirely in Python and is therefore cross-platform, easy to interface with, and 

easily customizable to a wide range of optimization problems. Its most significant features include the ability 

to execute independent function evaluations in parallel and to perform quadratic line-searching, both of which 

have the potential to significantly reduce the time required for complex optimization problems. It can also 

leverage automatic differentiation capabilities within objective functions to expedite efficient gradient 

calculations. Currently, constraints must be enforced through use of the penalty function method, and global 

minimization of non-convex design spaces cannot be guaranteed without the use of an outer wrapper 

implementing a globally convergent optimization method. These two limitations represent the primary areas 

of focus for future work in improving and expanding the capabilities of Optix. 

Optix and MachUp were used together to solve several inviscid wing shape optimization problems with 

known solutions, and the solutions were shown to converge toward the correct solution as the number of 

degrees of freedom was increased. Solutions to several viscous wing shape optimization problems were also 

solved using this method.  
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The most significant source of error in the viscous results lies in the aerodynamic properties of the airfoils 

and the interpolation scheme used for determining aerodynamic properties of intermediate airfoils. Note that 

this is a problem with the data input to the analysis, however, and not a problem with the analysis tools 

themselves or the underlying methodology. Improving the accuracy of the airfoil aerodynamic properties and 

improving the interpolation scheme used for intermediate airfoils should provide the greatest improvement 

to the accuracy of these results. 

Perhaps the most useful product of the optimization work presented in Chapter 3 is the contour plot shown 

in Figure 3.7. Using high-fidelity analysis tools such as CFD for wing shape optimization is not only 

computationally prohibitive but also precludes the ability to visualize the design and configuration space of 

a morphing wing. In this work, we have demonstrated a method for rapidly visualizing the design and 

configuration space of a finite morphing wing using MachUp. Figure 3.7 illustrates important relationships 

between lift, induced drag, and parasitic drag and demonstrates how changes in a finite wing design can 

impact these performance characteristics. The ability demonstrated here to quickly visualize and explore the 

design and configuration space of a morphing wing is a significant enabler in the push to develop advanced 

morphing wing technologies. 

Although Chapter 3 only considered optimization of planform, geometric twist, and aerodynamic twist 

on a straight wing, the tools presented can be used to evaluate and optimize geometries of multiple interacting 

lifting surfaces as well as wings with more complex geometries. Examples of interacting lifting surfaces 

include the interaction of main wings and stabilizers, wings in formation, wings with winglets, and wings in 

ground effect. Due to modern composite manufacturing methods, very complex wing shapes can be designed 

and manufactured. The tools presented in this work can be used to optimize these complex wing designs in 

both single- and multi-wing systems. 

Finally, development of new analytical and numerical formulations of lifting line theory have been 

presented. These formulations are based heavily on the classical lifting line theory of Prandtl [10,11] and the 

numerical lifting line method of Phillips and Snyder [16], but also draw on the works of several others (see 

Refs. [73,79,83,85,88–91,93]) to form a lifting line model accurate over the entire range of aspect ratios, 

from the slender wing to the infinite wing. The new formulations have been implemented in code and 

demonstrated to outperform classical lifting line theory in matching the lift results of an inviscid panel code 
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for elliptic, rectangular, and tapered wings of arbitrary aspect ratio. They were also shown to outperform 

classical lifting line theory in matching the lift results of a viscous experimental investigation of the VCCW, 

a low-aspect-ratio rectangular wing with morphable cross-sections.  

Drag predictions using the modified analytical and numerical formulations have been shown to agree 

with the theory presented, but results from Panair were contrary to the theory and no way to reconcile the 

discrepancies has yet been found. Additionally, drag predictions using the corrected numerical formulation 

compared to the VCCW experimental data set showed no improvement over classical lifting line theory 

predictions. Further research on the mechanisms that influence drag for low-aspect-ratio wings is needed to 

reconcile these data. 
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A MODIFIED DNAD SOURCE CODE 

1 !****************************************************************************** 
2 !* Dual Number Automatic Differentiation (DNAD) of Fortran Codes 
3 !*----------------------------------------------------------------------------- 
4 !* COPYRIGHT (c) Joshua Hodson, All rights reserved, you are free to copy, 
5 !* modify, or translate this code to other languages such as c/c++. This is a 
6 !* fork of the original Fortran DNAD module developed by Dr. Wenbin Yu. See 
7 !* original copyright information below. You can download the original version 
8 !* at https://cdmhub.org/resources/374 
9 !* 
10 !* COPYRIGHT (c) Wenbin Yu, All rights reserved, you are free to copy, 
11 !* modify or translate this code to other languages such as c/c++. If 
12 !* you find a bug please let me know through wenbinyu.heaven@gmail.com. If 
13 !* you added new functions and want to share with others, please let me know 
14 !* too. You are welcome to share your successful stories with us through 
15 !* http://groups.google.com/group/hifi-comp. 
16 !****************************************************************************** 
17 !* Acknowledgements 
18 !*----------------------------------------------------------------------------- 
19 !* The development of DNAD is supported, in part, by the Chief Scientist 
20 !* Innovative Research Fund at AFRL/RB WPAFB, and by Department of Army 
21 !* SBIR (Topic A08-022) through Advanced Dynamics Inc. The views and 
22 !* conclusions contained herein are those of the authors and should not be 
23 !* interpreted as necessarily representing the official policies or 
24 !* endorsement, either expressed or implied, of the funding agency. 
25 !* 
26 !* Additional development of DNAD has been supported under a Department of 
27 !* Energy (DOE) Nuclear Energy University Program (NEUP) Graduate Fellowship. 
28 !* Any opinions, findings, conclusions or recommendations expressed in this 
29 !* publication are those of the authors and do not necessarily reflect the 
30 !* views of the Department of Energy Office of Nuclear Energy. 
31 !****************************************************************************** 
32 !* Citation 
33 !*----------------------------------------------------------------------------- 
34 !* Your citation of the following two papers is appreciated: 
35 !* Yu, W. and Blair, M.: "DNAD, a Simple Tool for Automatic Differentiation of 
36 !* Fortran Codes Using Dual Numbers," Computer Physics Communications, vol. 
37 !* 184, 2013, pp. 1446-1452. 
38 !* 
39 !* Spall, R. and Yu, W.: "Imbedded Dual-Number Automatic Differentiation for 
40 !* CFD Sensitivity Analysis," Journal of Fluids Engineering, vol. 135, 2013, 
41 !* 014501. 
42 !****************************************************************************** 
43 !* Quick Start Guide 
44 !*----------------------------------------------------------------------------- 
45 !* To integrate DNAD into an existing Fortran program, do the following: 
46 !* 
47 !*   1. Include the DNAD module in the source files by adding "use dnadmod" to 
48 !*      the beginning of all modules, global functions, and global subroutines 
49 !*      that include definitions of floating-point variables. 
50 !*   2. Redefine all floating-point variables as type(dual). This can be done 
51 !*      using precompiler directives so that the integration can be turned on 
52 !*      or off at compile-time, eliminating the need for maintaining two 
53 !*      separate code bases for the same project. 
54 !*   3. All I/O involving floating-point variables will need to be examined. 
55 !*      A method will need to be determined for inputting and outputting 
56 !*      derivative values. This customization is typically unique for each 
57 !*      piece of software and needs to be determined on a case-by-case basis. 
58 !*   4. When compiling DNAD, use the compiler option "-Dndv=#", where # is the 
59 !*      number of design variables desired. This sizes the derivative array 
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60 !*      that is stored with each floating point number. 
61 !*   5. When compiling DNAD, use compiler options to specify precision. If no 
62 !*      compiler options are specified, DNAD will default to single-precision 
63 !*      floating-point arithmetic. Most popular Fortran compilers provide 
64 !*      options for specifying precision at compile-time so that it does not 
65 !*      have to be hard-coded into the source code. For example, use the 
66 !*      "-fdefault-real-8" compiler in gfortran or the "-r8" compiler option 
67 !*      with Intel Fortran to compile DNAD as double-precision. 
68 !*   6. Modify the compilation process for the target software to include the 
69 !*      DNAD module in the resulting executable or library. 
70 !****************************************************************************** 
71 !* Change Log 
72 !*----------------------------------------------------------------------------- 
73 !* 
74 !*  2016-04-29  Joshua Hodson 
75 !*  - Updated copyright, acknowledgments, and quick start guide. 
76 !*  - Removed overloads for single-precision reals. 
77 !*  - Added tan, dtan, atan, and atan2 intrinsic function overloads. 
78 !*  - Removed macro for precision and defined all floating-point variables as 
79 !*    default real. Compiler options can now be used to set precision. 
80 !*  - Added checks for undefined derivatives when only constants are used in 
81 !*    the calculation (i.e. all partial derivatives are zero). This limits the 
82 !*    perpetuation of NaN values in the code. 
83 !*  - Combined the header and source files into a single file. 
84 !* 
85 !*  2015-07-29  Joshua Hodson 
86 !*  - Added maxloc intrinsic function overload. 
87 !*  - Converted UPPERCASE to lowercase for readability. 
88 !*  - Added macros for defining precision and number of design variables. 
89 !*  - Renamed module from Dual_Num_Auto_Diff to dnadmod 
90 !*  - Renamed dual number type from DUAL_NUM to dual 
91 !*  - Renamed components of dual number type from (xp_ad_, xp_ad_) to (x, dx) 
92 !* 
93 !*  2014-06-05  Wenbin Yu 
94 !*  - Forked from original DNAD repository, see https://cdmhub.org/resources/374 
95 !* 
96 !****************************************************************************** 
97  
98 ! Number of design variables (default = 1) 
99 #ifndef ndv 
100 #define ndv 1 
101 #endif 
102  
103 module dnadmod 
104  
105     implicit none 
106  
107     private 
108  
109     real :: negative_one = -1.0 
110     type,public:: dual  ! make this private will create difficulty to use the 
111                         ! original write/read commands, hence x and dx are 
112                         ! variables which can be accessed using D%x and D%dx in 
113                         ! other units using this module in which D is defined 
114                         ! as type(dual). 
115         sequence 
116         real :: x  ! functional value 
117         real :: dx(ndv)  ! derivative 
118     end type dual 
119  
120  
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121 !******** Interfaces for operator overloading 
122     public assignment (=) 
123     interface assignment (=) 
124         module procedure assign_di  ! dual=integer, elemental 
125         module procedure assign_dr  ! dual=real, elemental 
126         module procedure assign_id  ! integer=dual, elemental 
127     end interface 
128  
129  
130     public operator (+) 
131     interface operator (+) 
132         module procedure add_d   ! +dual number, elemental 
133         module procedure add_dd  ! dual + dual, elemental 
134         module procedure add_di  ! dual + integer, elemental 
135         module procedure add_dr  ! dual + real, elemental 
136         module procedure add_id  ! integer + dual, elemental 
137         module procedure add_rd  ! real + dual, elemental 
138     end interface 
139  
140     public operator (-) 
141     interface operator (-) 
142         module procedure minus_d   ! negate a dual number,elemental 
143         module procedure minus_dd  ! dual -dual,elemental 
144         module procedure minus_di  ! dual-integer,elemental 
145         module procedure minus_dr  ! dual-real,elemental 
146         module procedure minus_id  ! integer-dual,elemental 
147         module procedure minus_rd  ! real-dual,elemental 
148     end interface 
149  
150     public operator (*) 
151     interface operator (*) 
152         module procedure mult_dd    ! dual*dual, elemental 
153         module procedure mult_di    ! dual*integer,elemental 
154         module procedure mult_dr    ! dual*real,elemental 
155         module procedure mult_id    ! integer*dual,elemental 
156         module procedure mult_rd    ! real*dual,elemental 
157     end interface 
158  
159     public operator (/) 
160     interface operator (/) 
161         module procedure div_dd ! dual/dual,elemental 
162         module procedure div_di ! dual/integer, elemental 
163         module procedure div_dr ! dual/real,emental 
164         module procedure div_id ! integer/dual, elemental 
165         module procedure div_rd ! real/dual, elemental 
166     end interface 
167  
168     public operator (**) 
169     interface operator (**) 
170         module procedure pow_i ! dual number to an integer power,elemental 
171         module procedure pow_r ! dual number to a real power, elemental 
172         module procedure pow_d ! dual number to a dual power, elemental 
173     end interface 
174  
175     public operator (==) 
176     interface operator (==) 
177         module procedure eq_dd ! compare two dual numbers, elemental 
178         module procedure eq_di ! compare a dual and an integer, elemental 
179         module procedure eq_dr ! compare a dual and a real, elemental 
180         module procedure eq_id ! compare integer with a dual number, elemental 
181         module procedure eq_rd ! compare a real with a dual number, elemental 
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182     end interface 
183  
184     public operator (<=) 
185     interface operator (<=) 
186         module procedure le_dd  ! compare two dual numbers, elemental 
187         module procedure le_di  ! compare a dual and an integer, elemental 
188         module procedure le_dr  ! compare a dual and a real,elemental 
189         module procedure le_id ! compare integer with a dual number, elemental 
190         module procedure le_rd ! compare a real with a dual number, elemental 
191     end interface 
192  
193     public operator (<) 
194     interface operator (<) 
195         module procedure lt_dd  !compare two dual numbers, elemental 
196         module procedure lt_di  !compare a dual and an integer, elemental 
197         module procedure lt_dr  !compare dual with a real, elemental 
198         module procedure lt_id ! compare integer with a dual number, elemental 
199         module procedure lt_rd ! compare a real with a dual number, elemental 
200     end interface 
201  
202     public operator (>=) 
203     interface operator (>=) 
204         module procedure ge_dd ! compare two dual numbers, elemental 
205         module procedure ge_di ! compare dual with integer, elemental 
206         module procedure ge_dr ! compare dual with a real number, elemental 
207         module procedure ge_id ! compare integer with a dual number, elemental 
208         module procedure ge_rd ! compare a real with a dual number, elemental 
209     end interface 
210  
211     public operator (>) 
212     interface operator (>) 
213         module procedure gt_dd  !compare two dual numbers, elemental 
214         module procedure gt_di  !compare a dual and an integer, elemental 
215         module procedure gt_dr  !compare dual with a real, elemental 
216         module procedure gt_id ! compare integer with a dual number, elemental 
217         module procedure gt_rd ! compare a real with a dual number, elemental 
218     end interface 
219  
220     public operator (/=) 
221     interface operator (/=) 
222         module procedure ne_dd  !compare two dual numbers, elemental 
223         module procedure ne_di  !compare a dual and an integer, elemental 
224         module procedure ne_dr  !compare dual with a real, elemental 
225         module procedure ne_id ! compare integer with a dual number, elemental 
226         module procedure ne_rd ! compare a real with a dual number, elemental 
227     end interface 
228  
229  
230 !------------------------------------------------ 
231 ! Interfaces for intrinsic functions overloading 
232 !------------------------------------------------ 
233     public abs 
234     interface abs 
235         module procedure abs_d  ! absolute value of a dual number, elemental 
236     end interface 
237      
238     public dabs 
239     interface dabs 
240         module procedure abs_d ! same as abs, used for some old fortran commands 
241     end interface 
242      
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243     public acos 
244     interface acos 
245         module procedure acos_d ! arccosine of a dual number, elemental 
246     end interface 
247      
248     public asin 
249     interface asin 
250         module procedure asin_d ! arcsine of a dual number, elemental 
251     end interface 
252      
253     public atan 
254     interface atan 
255         module procedure atan_d ! arctan of a dual number, elemental 
256     end interface 
257      
258     public atan2 
259     interface atan2 
260         module procedure atan2_d ! arctan of a dual number, elemental 
261     end interface 
262      
263     public cos 
264     interface cos 
265         module procedure cos_d ! cosine of a dual number, elemental 
266     end interface 
267      
268     public dcos 
269     interface dcos 
270         module procedure cos_d ! cosine of a dual number, elemental 
271     end interface 
272      
273     public dot_product 
274     interface dot_product 
275         module procedure dot_product_dd ! dot product two dual number vectors 
276     end interface 
277      
278     public exp 
279     interface exp 
280         module procedure exp_d ! exponential of a dual number, elemental 
281     end interface 
282      
283     public int 
284     interface int 
285         module procedure int_d ! integer part of a dual number, elemental 
286     end interface 
287      
288     public log 
289     interface log 
290         module procedure log_d ! log of a dual number, elemental 
291     end interface 
292      
293     public log10 
294     interface log10 
295         module procedure log10_d ! log of a dual number, elemental 
296     end interface 
297      
298     public matmul 
299     interface matmul 
300         module procedure matmul_dd ! multiply two dual matrices 
301         module procedure matmul_dv ! multiply a dual matrix with a dual vector 
302         module procedure matmul_vd ! multiply a dual vector with a dual matrix 
303     end interface 
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304      
305      
306     public max 
307     interface max 
308         module procedure max_dd ! max of from two to four dual numbers, 

elemental 
309         module procedure max_di ! max of a dual number and an integer, elemental 
310         module procedure max_dr ! max of a dual number and a real, elemental 
311         module procedure max_rd ! max of a real,and a dual number,  elemental 
312     end interface 
313      
314     public dmax1 
315     interface dmax1 
316         module procedure max_dd ! max of from two to four dual numbers, 

elemental 
317     end interface 
318      
319     public maxval 
320     interface maxval 
321         module procedure maxval_d ! maxval of a dual number vector 
322     end interface 
323      
324     public min 
325     interface min 
326         module procedure min_dd ! min of from two to four dual numbers, 

elemental 
327         module procedure min_dr ! min of a dual and a real, elemental 
328     end interface 
329      
330     public dmin1 
331     interface dmin1 
332         module procedure min_dd ! min of from two to four dual numbers, 

elemental 
333     end interface 
334      
335     public minval 
336     interface minval 
337         module procedure minval_d ! obtain the maxval  of a dual number vectgor 
338     end interface 
339      
340     public nint 
341     interface nint 
342         module procedure nint_d ! nearest integer to the argument, elemental 
343     end interface 
344      
345     public sign 
346     interface  sign 
347       module procedure  sign_dd ! sign(a,b) with two dual numbers, elemental 
348       module procedure  sign_rd ! sign(a,b) with a real and a dual, elemental 
349     end interface 
350      
351     public sin 
352     interface sin 
353         module procedure sin_d ! obtain sine of a dual number, elemental 
354     end interface 
355      
356     public dsin 
357     interface dsin 
358         module procedure sin_d ! obtain sine of a dual number, elemental 
359     end interface 
360      
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361     public tan 
362     interface tan 
363         module procedure tan_d ! obtain sine of a dual number, elemental 
364     end interface 
365      
366     public dtan 
367     interface dtan 
368         module procedure tan_d ! obtain sine of a dual number, elemental 
369     end interface 
370      
371     public sqrt 
372     interface sqrt 
373         module procedure sqrt_d ! obtain the sqrt of a dual number, elemental 
374     end interface 
375      
376     public sum 
377     interface sum 
378         module procedure sum_d ! sum a dual array 
379     end interface 
380      
381     public maxloc 
382     interface maxloc 
383         module procedure maxloc_d ! location of max in a dual array 
384     end interface 
385  
386 contains 
387  
388 !*********Begin: functions/subroutines for overloading operators 
389  
390 !******* Begin: (=) 
391 !--------------------- 
392  
393     !----------------------------------------- 
394     ! dual = integer 
395     ! <u, du> = <i, 0> 
396     !----------------------------------------- 
397     elemental subroutine assign_di(u, i) 
398          type(dual), intent(out) :: u 
399          integer, intent(in) :: i 
400  
401          u%x = real(i)  ! This is faster than direct assignment 
402          u%dx = 0.0 
403  
404     end subroutine assign_di 
405  
406  
407     !----------------------------------------- 
408     ! dual = real(double) 
409     ! <u, du> = <r, 0> 
410     !----------------------------------------- 
411     elemental subroutine assign_dr(u, r) 
412         type(dual), intent(out) :: u 
413         real, intent(in) :: r 
414  
415         u%x = r 
416         u%dx = 0.0 
417  
418     end subroutine assign_dr 
419  
420  
421     !----------------------------------------- 
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422     ! integer = dual 
423     ! i = <u, du> 
424     !----------------------------------------- 
425     elemental subroutine assign_id(i, v) 
426          type(dual), intent(in) :: v 
427          integer, intent(out) :: i 
428  
429          i = int(v%x) 
430  
431     end subroutine assign_id 
432  
433 !******* End: (=) 
434 !--------------------- 
435  
436  
437 !******* Begin: (+) 
438 !--------------------- 
439  
440     !----------------------------------------- 
441     ! Unary positive 
442     ! <res, dres> = +<u, du> 
443     !----------------------------------------- 
444     elemental function add_d(u) result(res) 
445          type(dual), intent(in) :: u 
446          type(dual) :: res 
447  
448          res = u  ! Faster than assigning component wise 
449  
450     end function add_d 
451  
452  
453     !----------------------------------------- 
454     ! dual + dual 
455     ! <res, dres> = <u, du> + <v, dv> = <u + v, du + dv> 
456     !----------------------------------------- 
457     elemental function add_dd(u, v) result(res) 
458          type(dual), intent(in) :: u, v 
459          type(dual) :: res 
460  
461          res%x = u%x + v%x 
462          res%dx = u%dx + v%dx 
463  
464     end function add_dd 
465  
466  
467     !----------------------------------------- 
468     ! dual + integer 
469     ! <res, dres> = <u, du> + i = <u + i, du> 
470     !----------------------------------------- 
471     elemental function add_di(u, i) result(res) 
472          type(dual), intent(in) :: u 
473          integer, intent(in) :: i 
474          type(dual) :: res 
475  
476          res%x = real(i) + u%x 
477          res%dx = u%dx 
478  
479     end function add_di 
480  
481  
482     !----------------------------------------- 
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483     ! dual + double 
484     ! <res, dres> = <u, du> + <r, 0> = <u + r, du> 
485     !----------------------------------------- 
486     elemental function add_dr(u, r) result(res) 
487         type(dual), intent(in) :: u 
488         real, intent(in) :: r 
489         type(dual) :: res 
490  
491         res%x = r + u%x 
492         res%dx = u%dx 
493  
494     end function add_dr 
495  
496  
497     !----------------------------------------- 
498     ! integer + dual 
499     ! <res, dres> = <i, 0> + <v, dv> = <i + v, dv> 
500     !----------------------------------------- 
501     elemental function add_id(i, v) result(res) 
502         integer, intent(in) :: i 
503         type(dual), intent(in) :: v 
504         type(dual) :: res 
505  
506         res%x = real(i) + v%x 
507         res%dx = v%dx 
508  
509     end function add_id 
510  
511  
512     !----------------------------------------- 
513     ! double + dual 
514     ! <res, dres> = <r, 0> + <v, dv> = <r + v, dv> 
515     !----------------------------------------- 
516     elemental function add_rd(r, v) result(res) 
517         real, intent(in) :: r 
518         type(dual), intent(in) :: v 
519         type(dual) :: res 
520  
521         res%x = r + v%x 
522         res%dx = v%dx 
523  
524     end function add_rd 
525  
526 !******* End: (+) 
527 !--------------------- 
528  
529  
530 !******* Begin: (-) 
531 !--------------------- 
532  
533     !------------------------------------------------- 
534     ! negate a dual 
535     ! <res, dres> = -<u, du> 
536     !------------------------------------------------- 
537     elemental function minus_d(u) result(res) 
538         type(dual), intent(in) :: u 
539         type(dual) :: res 
540  
541         res%x = -u%x 
542         res%dx = -u%dx 
543  
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544     end function minus_d 
545  
546  
547     !------------------------------------------------- 
548     ! dual - dual 
549     ! <res, dres> = <u, du> - <v, dv> = <u - v, du - dv> 
550     !------------------------------------------------- 
551     elemental function minus_dd(u, v) result(res) 
552         type(dual), intent(in) :: u, v 
553         type(dual) :: res 
554  
555         res%x = u%x - v%x 
556         res%dx = u%dx - v%dx 
557  
558     end function minus_dd 
559  
560     !------------------------------------------------- 
561     ! dual - integer 
562     ! <res, dres> = <u, du> - i = <u - i, du> 
563     !------------------------------------------------- 
564     elemental function minus_di(u, i) result(res) 
565         type(dual), intent(in) :: u 
566         integer, intent(in) :: i 
567         type(dual) :: res 
568  
569         res%x = u%x - real(i) 
570         res%dx = u%dx 
571  
572     end function minus_di 
573  
574      
575     !------------------------------------------------- 
576     ! dual - double 
577     ! <res, dres> = <u, du> - r = <u - r, du> 
578     !------------------------------------------------- 
579     elemental function minus_dr(u, r) result(res) 
580         type (dual), intent(in) :: u 
581         real,intent(in) :: r 
582         type(dual) :: res 
583  
584         res%x = u%x - r 
585         res%dx = u%dx 
586  
587     end function minus_dr 
588  
589  
590     !------------------------------------------------- 
591     ! integer - dual 
592     ! <res, dres> = i - <v, dv> = <i - v, -dv> 
593     !------------------------------------------------- 
594     elemental function minus_id(i, v) result(res) 
595         integer, intent(in) :: i 
596         type(dual), intent(in) :: v 
597         type(dual) :: res 
598  
599         res%x = real(i) - v%x 
600         res%dx = -v%dx 
601  
602     end function minus_id 
603  
604  



148 

605     !------------------------------------------------- 
606     ! double - dual 
607     ! <res, dres> = r - <v, dv> = <r - v, -dv> 
608     !------------------------------------------------- 
609     elemental function minus_rd(r, v) result(res) 
610          real, intent(in) :: r 
611          type(dual), intent(in) :: v 
612          type(dual) :: res 
613  
614         res%x = r - v%x 
615         res%dx = -v%dx 
616  
617     end function minus_rd 
618  
619 !******* END: (-) 
620 !--------------------- 
621  
622  
623 !******* BEGIN: (*) 
624 !--------------------- 
625  
626     !---------------------------------------- 
627     ! dual * dual 
628     ! <res, dres> = <u, du> * <v, dv> = <u * v, u * dv + v * du> 
629     !---------------------------------------- 
630     elemental function mult_dd(u, v) result(res) 
631         type(dual), intent(in) :: u, v 
632         type(dual) :: res 
633  
634         res%x = u%x * v%x 
635         res%dx = u%x * v%dx + v%x * u%dx 
636  
637     end function mult_dd 
638  
639  
640     !----------------------------------------- 
641     ! dual * integer 
642     ! <res, dres> = <u, du> * i = <u * i, du * i> 
643     !----------------------------------------- 
644     elemental function mult_di(u, i) result(res) 
645         type(dual), intent(in) :: u 
646         integer, intent(in) :: i 
647         type(dual) :: res 
648  
649         real :: r 
650  
651         r = real(i) 
652         res%x = r * u%x 
653         res%dx = r * u%dx 
654  
655     end function mult_di 
656  
657     !----------------------------------------- 
658     ! dual * double 
659     ! <res, dres> = <u, du> * r = <u * r, du * r> 
660     !---------------------------------------- 
661     elemental function mult_dr(u, r) result(res) 
662         type(dual), intent(in) :: u 
663         real, intent(in) :: r 
664         type(dual) :: res 
665  
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666         res%x = u%x * r 
667         res%dx = u%dx * r 
668  
669     end function mult_dr 
670  
671  
672     !----------------------------------------- 
673     ! integer * dual 
674     ! <res, dres> = i * <v, dv> = <i * v, i * dv> 
675     !----------------------------------------- 
676     elemental function mult_id(i, v) result(res) 
677         integer, intent(in) :: i 
678         type(dual), intent(in) :: v 
679         type(dual) :: res 
680  
681         real :: r 
682  
683         r = real(i) 
684         res%x = r * v%x 
685         res%dx = r * v%dx 
686  
687     end function mult_id 
688  
689  
690     !----------------------------------------- 
691     ! double * dual 
692     ! <res, dres> = r * <v, dv> = <r * v, r * dv> 
693     !----------------------------------------- 
694     elemental function mult_rd(r, v) result(res) 
695         real, intent(in) :: r 
696         type(dual), intent(in) :: v 
697         type(dual) :: res 
698  
699         res%x = r * v%x 
700         res%dx = r * v%dx 
701  
702     end function mult_rd 
703  
704 !******* END: (*) 
705 !--------------------- 
706  
707  
708 !******* BEGIN: (/) 
709 !--------------------- 
710  
711     !----------------------------------------- 
712     ! dual / dual 
713     ! <res, dres> = <u, du> / <v, dv> = <u / v, du / v - u * dv / v^2> 
714     !----------------------------------------- 
715     elemental function div_dd(u, v) result(res) 
716         type(dual), intent(in) :: u, v 
717         type(dual) :: res 
718  
719         real :: inv 
720  
721         inv = 1.0 / v%x 
722         res%x = u%x * inv 
723         res%dx = (u%dx - res%x * v%dx) * inv 
724  
725     end function div_dd 
726  
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727  
728     !----------------------------------------- 
729     ! dual / integer 
730     ! <res, dres> = <u, du> / i = <u / i, du / i> 
731     !----------------------------------------- 
732     elemental function div_di(u, i) result(res) 
733         type(dual), intent(in) :: u 
734         integer, intent(in) :: i 
735         type(dual) :: res 
736  
737         real :: inv 
738  
739         inv = 1.0 / real(i) 
740         res%x = u%x * inv 
741         res%dx = u%dx * inv 
742  
743     end function div_di 
744  
745  
746     !----------------------------------------- 
747     ! dual / double 
748     ! <res, dres> = <u, du> / r = <u / r, du / r> 
749     !---------------------------------------- 
750     elemental function div_dr(u, r) result(res) 
751         type(dual), intent(in) :: u 
752         real, intent(in) :: r 
753         type(dual):: res 
754  
755         real :: inv 
756  
757         inv = 1.0 / r 
758         res%x = u%x * inv 
759         res%dx = u%dx * inv 
760  
761     end function div_dr 
762  
763  
764     !----------------------------------------- 
765     ! integer / dual 
766     ! <res, dres> = i / <v, dv> = <i / v, -i / v^2 * du> 
767     !----------------------------------------- 
768     elemental function div_id(i, v) result(res) 
769         integer, intent(in) :: i 
770         type(dual), intent(in) :: v 
771         type(dual) :: res 
772  
773         real :: inv 
774  
775         inv = 1.0 / v%x 
776         res%x = real(i) * inv 
777         res%dx = -res%x * inv * v%dx 
778  
779     end function div_id 
780  
781  
782     !----------------------------------------- 
783     ! double / dual 
784     ! <res, dres> = r / <u, du> = <r / u, -r / u^2 * du> 
785     !----------------------------------------- 
786     elemental function div_rd(r, v) result(res) 
787         real, intent(in) :: r 
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788         type(dual), intent(in) :: v 
789         type(dual) :: res 
790  
791         real :: inv 
792  
793         inv = 1.0 / v%x 
794         res%x = r * inv 
795         res%dx = -res%x * inv * v%dx 
796  
797     end function div_rd 
798  
799 !******* END: (/) 
800 !--------------------- 
801  
802 !******* BEGIN: (**) 
803 !--------------------- 
804  
805     !----------------------------------------- 
806     ! power(dual, integer) 
807     ! <res, dres> = <u, du> ^ i = <u ^ i, i * u ^ (i - 1) * du> 
808     !----------------------------------------- 
809     elemental function pow_i(u, i) result(res) 
810         type(dual), intent(in) :: u 
811         integer, intent(in) :: i 
812         type(dual) :: res 
813  
814         real :: pow_x 
815  
816         pow_x = u%x ** (i - 1) 
817         res%x = u%x * pow_x 
818         res%dx = real(i) * pow_x * u%dx 
819  
820     end function pow_i 
821  
822     !----------------------------------------- 
823     ! power(dual, double) 
824     ! <res, dres> = <u, du> ^ r = <u ^ r, r * u ^ (r - 1) * du> 
825     !----------------------------------------- 
826     elemental function pow_r(u, r) result(res) 
827         type(dual), intent(in) :: u 
828         real, intent(in) :: r 
829         type(dual) :: res 
830  
831         real :: pow_x 
832  
833         pow_x = u%x ** (r - 1.0) 
834         res%x = u%x * pow_x 
835         res%dx = r * pow_x * u%dx 
836  
837     end function pow_r 
838  
839     !----------------------------------------- 
840     ! POWER dual numbers to a dual power 
841     ! <res, dres> = <u, du> ^ <v, dv> 
842     !     = <u ^ v, u ^ v * (v / u * du + Log(u) * dv)> 
843     !----------------------------------------- 
844     elemental function pow_d(u, v) result(res) 
845         type(dual), intent(in)::u, v 
846         type(dual) :: res 
847  
848         res%x = u%x ** v%x 
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849         res%dx = res%x * (v%x / u%x * u%dx + log(u%x) * v%dx) 
850  
851     end function pow_d 
852  
853 !******* END: (**) 
854 !--------------------- 
855  
856  
857 !******* BEGIN: (==) 
858 !--------------------- 
859     !----------------------------------------- 
860     ! compare two dual numbers, 
861     ! simply compare the functional value. 
862     !----------------------------------------- 
863     elemental function eq_dd(lhs, rhs) result(res) 
864          type(dual), intent(in) :: lhs, rhs 
865          logical :: res 
866  
867          res = (lhs%x == rhs%x) 
868  
869     end function eq_dd 
870  
871  
872     !----------------------------------------- 
873     ! compare a dual with an integer, 
874     ! simply compare the functional value. 
875     !----------------------------------------- 
876     elemental function eq_di(lhs, rhs) result(res) 
877          type(dual), intent(in) :: lhs 
878          integer, intent(in) :: rhs 
879          logical :: res 
880  
881          res = (lhs%x == real(rhs)) 
882  
883     end function eq_di 
884  
885  
886     !----------------------------------------- 
887     ! compare a dual number with a real number, 
888     ! simply compare the functional value. 
889     !----------------------------------------- 
890     elemental function eq_dr(lhs, rhs) result(res) 
891         type(dual), intent(in) :: lhs 
892         real, intent(in) :: rhs 
893         logical::res 
894  
895         res = (lhs%x == rhs) 
896  
897     end function eq_dr 
898  
899  
900     !----------------------------------------- 
901     ! compare an integer with a dual, 
902     ! simply compare the functional value. 
903     !---------------------------------------- 
904     elemental function eq_id(lhs, rhs) result(res) 
905          integer, intent(in) :: lhs 
906          type(dual), intent(in) :: rhs 
907          logical :: res 
908  
909          res = (lhs == rhs%x) 
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910  
911     end function eq_id 
912  
913  
914     !----------------------------------------- 
915     ! compare a real with a dual, 
916     ! simply compare the functional value. 
917     !----------------------------------------- 
918     elemental function eq_rd(lhs, rhs) result(res) 
919          real, intent(in) :: lhs 
920          type(dual), intent(in) :: rhs 
921          logical :: res 
922  
923          res = (lhs == rhs%x) 
924  
925     end function eq_rd 
926  
927 !******* END: (==) 
928 !--------------------- 
929  
930  
931 !******* BEGIN: (<=) 
932 !--------------------- 
933     !----------------------------------------- 
934     ! compare two dual numbers, simply compare 
935     ! the functional value. 
936     !----------------------------------------- 
937     elemental function le_dd(lhs, rhs) result(res) 
938          type(dual), intent(in) :: lhs, rhs 
939          logical :: res 
940  
941          res = (lhs%x <= rhs%x) 
942  
943     end function le_dd 
944  
945  
946     !----------------------------------------- 
947     ! compare a dual with an integer, 
948     ! simply compare the functional value. 
949     !----------------------------------------- 
950     elemental function le_di(lhs, rhs) result(res) 
951          type(dual), intent(in) :: lhs 
952          integer, intent(in) :: rhs 
953          logical :: res 
954  
955          res = (lhs%x <= rhs) 
956  
957     end function le_di 
958  
959  
960     !----------------------------------------- 
961     ! compare a dual number with a real number, 
962     ! simply compare the functional value. 
963     !----------------------------------------- 
964     elemental function le_dr(lhs, rhs) result(res) 
965          type(dual), intent(in) :: lhs 
966          real, intent(in) :: rhs 
967          logical :: res 
968  
969          res = (lhs%x <= rhs) 
970  
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971     end function le_dr 
972  
973  
974     !----------------------------------------- 
975     ! compare a dual number with an integer, 
976     ! simply compare the functional value. 
977     !----------------------------------------- 
978     elemental function le_id(i, rhs) result(res) 
979          integer, intent(in) :: i 
980          type(dual), intent(in) :: rhs 
981          logical :: res 
982  
983          res = (i <= rhs%x) 
984  
985     end function le_id 
986  
987  
988     !----------------------------------------- 
989     ! compare a real with a dual, 
990     ! simply compare the functional value. 
991     !----------------------------------------- 
992     elemental function le_rd(lhs, rhs) result(res) 
993          real, intent(in) :: lhs 
994          type(dual), intent(in) :: rhs 
995          logical :: res 
996  
997          res = (lhs <= rhs%x) 
998  
999     end function le_rd 
1000  
1001 !******* END: (<=) 
1002 !--------------------- 
1003  
1004 !******* BEGIN: (<) 
1005 !--------------------- 
1006     !----------------------------------------- 
1007     ! compare two dual numbers, simply compare 
1008     ! the functional value. 
1009     !----------------------------------------- 
1010     elemental function lt_dd(lhs, rhs) result(res) 
1011         type(dual), intent(in) :: lhs, rhs 
1012         logical :: res 
1013  
1014         res = (lhs%x < rhs%x) 
1015  
1016     end function lt_dd 
1017  
1018     !----------------------------------------- 
1019     ! compare a dual with an integer, 
1020     ! simply compare the functional value. 
1021     !----------------------------------------- 
1022     elemental function lt_di(lhs, rhs) result(res) 
1023         type(dual), intent(in) :: lhs 
1024         integer, intent(in) :: rhs 
1025         logical :: res 
1026  
1027         res = (lhs%x < rhs) 
1028  
1029     end function lt_di 
1030  
1031  
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1032     !----------------------------------------- 
1033     ! compare a dual number with a real number, simply compare 
1034     ! the functional value. 
1035     !---------------------------------------- 
1036     elemental function lt_dr(lhs, rhs) result(res) 
1037         type(dual), intent(in) :: lhs 
1038         real, intent(in) :: rhs 
1039         logical :: res 
1040  
1041         res = (lhs%x < rhs) 
1042  
1043     end function lt_dr 
1044  
1045  
1046     !----------------------------------------- 
1047     ! compare a dual number with an integer 
1048     !----------------------------------------- 
1049     elemental function lt_id(i, rhs) result(res) 
1050          integer, intent(in) :: i 
1051          type(dual), intent(in) :: rhs 
1052          logical :: res 
1053  
1054          res = (i < rhs%x) 
1055  
1056     end function lt_id 
1057  
1058  
1059     !----------------------------------------- 
1060     ! compare a real with a dual 
1061     !---------------------------------------- 
1062     elemental function lt_rd(lhs, rhs) result(res) 
1063          real, intent(in) :: lhs 
1064          type(dual), intent(in) :: rhs 
1065          logical :: res 
1066  
1067          res = (lhs < rhs%x) 
1068  
1069     end function lt_rd 
1070  
1071 !******* END: (<) 
1072 !--------------------- 
1073  
1074 !******* BEGIN: (>=) 
1075 !--------------------- 
1076     !----------------------------------------- 
1077     ! compare two dual numbers, simply compare 
1078     ! the functional value. 
1079     !---------------------------------------- 
1080     elemental function ge_dd(lhs, rhs) result(res) 
1081         type(dual), intent(in) :: lhs, rhs 
1082         logical :: res 
1083  
1084         res = (lhs%x >= rhs%x) 
1085  
1086     end function ge_dd 
1087  
1088  
1089     !----------------------------------------- 
1090     ! compare a dual with an integer 
1091     !----------------------------------------- 
1092     elemental function ge_di(lhs, rhs) result(res) 
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1093         type(dual), intent(in) :: lhs 
1094         integer, intent(in) :: rhs 
1095         logical :: res 
1096  
1097         res = (lhs%x >= rhs) 
1098  
1099     end function ge_di 
1100  
1101  
1102     !----------------------------------------- 
1103     ! compare a dual number with a real number, simply compare 
1104     ! the functional value. 
1105     !----------------------------------------- 
1106     elemental function ge_dr(lhs, rhs) result(res) 
1107         type(dual), intent(in) :: lhs 
1108         real, intent(in) :: rhs 
1109         logical :: res 
1110  
1111         res = (lhs%x >= rhs) 
1112  
1113     end function ge_dr 
1114  
1115  
1116     !----------------------------------------- 
1117     ! compare a dual number with an integer 
1118     !----------------------------------------- 
1119     elemental function ge_id(i, rhs) result(res) 
1120         integer, intent(in) :: i 
1121         type(dual), intent(in) :: rhs 
1122         logical :: res 
1123  
1124         res = (i >= rhs%x) 
1125  
1126     end function ge_id 
1127  
1128  
1129     !----------------------------------------- 
1130     ! compare a real with a dual 
1131     !----------------------------------------- 
1132     elemental function ge_rd(lhs, rhs) result(res) 
1133          real, intent(in) :: lhs 
1134          type(dual), intent(in) :: rhs 
1135          logical :: res 
1136  
1137          res = (lhs >= rhs%x) 
1138  
1139     end function ge_rd 
1140  
1141 !******* END: (>=) 
1142 !--------------------- 
1143  
1144 !******* BEGIN: (>) 
1145 !--------------------- 
1146     !----------------------------------------- 
1147     ! compare two dual numbers, simply compare 
1148     ! the functional value. 
1149     !----------------------------------------- 
1150     elemental function gt_dd(lhs, rhs) result(res) 
1151         type(dual), intent(in) :: lhs, rhs 
1152         logical :: res 
1153  



157 

1154         res = (lhs%x > rhs%x) 
1155  
1156     end function gt_dd 
1157  
1158  
1159     !----------------------------------------- 
1160     ! compare a dual with an integer 
1161     !----------------------------------------- 
1162     elemental function gt_di(lhs, rhs) result(res) 
1163         type(dual), intent(in) :: lhs 
1164         integer, intent(in) :: rhs 
1165         logical :: res 
1166  
1167         res = (lhs%x > rhs) 
1168  
1169     end function gt_di 
1170  
1171  
1172     !----------------------------------------- 
1173     ! compare a dual number with a real number, simply compare 
1174     ! the functional value. 
1175     !----------------------------------------- 
1176     elemental function gt_dr(lhs, rhs) result(res) 
1177         type(dual), intent(in) :: lhs 
1178         real, intent(in) :: rhs 
1179         logical :: res 
1180  
1181         res = (lhs%x > rhs) 
1182  
1183     end function gt_dr 
1184  
1185  
1186     !----------------------------------------- 
1187     ! compare a dual number with an integer 
1188     !----------------------------------------- 
1189     elemental function gt_id(i, rhs) result(res) 
1190         integer, intent(in) :: i 
1191         type(dual), intent(in) :: rhs 
1192         logical :: res 
1193  
1194         res = (i > rhs%x) 
1195  
1196     end function gt_id 
1197  
1198  
1199     !----------------------------------------- 
1200     ! compare a real with a dual 
1201     !----------------------------------------- 
1202     elemental function gt_rd(lhs, rhs) result(res) 
1203          real, intent(in) :: lhs 
1204          type(dual), intent(in) :: rhs 
1205          logical :: res 
1206  
1207          res = (lhs > rhs%x) 
1208  
1209     end function gt_rd 
1210  
1211 !******* END: (>) 
1212 !--------------------- 
1213  
1214 !******* BEGIN: (/=) 
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1215 !--------------------- 
1216     !----------------------------------------- 
1217     ! compare two dual numbers, simply compare 
1218     ! the functional value. 
1219     !----------------------------------------- 
1220     elemental function ne_dd(lhs, rhs) result(res) 
1221         type(dual), intent(in) :: lhs, rhs 
1222         logical :: res 
1223  
1224         res = (lhs%x /= rhs%x) 
1225  
1226     end function ne_dd 
1227  
1228  
1229     !----------------------------------------- 
1230     ! compare a dual with an integer 
1231     !----------------------------------------- 
1232     elemental function ne_di(lhs, rhs) result(res) 
1233         type(dual), intent(in) :: lhs 
1234         integer, intent(in) :: rhs 
1235         logical :: res 
1236  
1237         res = (lhs%x /= rhs) 
1238  
1239     end function ne_di 
1240  
1241  
1242     !----------------------------------------- 
1243     ! compare a dual number with a real number, simply compare 
1244     ! the functional value. 
1245     !----------------------------------------- 
1246     elemental function ne_dr(lhs, rhs) result(res) 
1247         type(dual), intent(in) :: lhs 
1248         real, intent(in) :: rhs 
1249         logical :: res 
1250  
1251         res = (lhs%x /= rhs) 
1252  
1253     end function ne_dr 
1254  
1255  
1256     !----------------------------------------- 
1257     ! compare a dual number with an integer 
1258     !----------------------------------------- 
1259     elemental function ne_id(i, rhs) result(res) 
1260         integer, intent(in) :: i 
1261         type(dual), intent(in) :: rhs 
1262         logical :: res 
1263  
1264         res = (i /= rhs%x) 
1265  
1266     end function ne_id 
1267  
1268  
1269     !----------------------------------------- 
1270     ! compare a real with a dual 
1271     !----------------------------------------- 
1272     elemental function ne_rd(lhs, rhs) result(res) 
1273         real, intent(in) :: lhs 
1274         type(dual), intent(in) :: rhs 
1275         logical :: res 
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1276  
1277         res = (lhs /= rhs%x) 
1278  
1279     end function ne_rd 
1280  
1281 !******* END: (/=) 
1282 !--------------------- 
1283  
1284     !--------------------------------------------------- 
1285     ! Absolute value of dual numbers 
1286     ! <res, dres> = abs(<u, du>) = <abs(u), du * sign(u)> 
1287     !--------------------------------------------------- 
1288     elemental function abs_d(u) result(res) 
1289          type(dual), intent(in) :: u 
1290          type(dual) :: res 
1291          integer :: i 
1292  
1293          if(u%x > 0) then 
1294             res%x = u%x 
1295             res%dx = u%dx 
1296          else if (u%x < 0) then 
1297             res%x = -u%x 
1298             res%dx = -u%dx 
1299          else 
1300             res%x = 0.0 
1301             do i = 1, ndv 
1302                 if (u%dx(i) .eq. 0.0) then 
1303                     res%dx(i) = 0.0 
1304                 else 
1305                     res%dx(i) = set_NaN() 
1306                 end if 
1307             end do 
1308          endif 
1309  
1310     end function abs_d 
1311  
1312  
1313     !----------------------------------------- 
1314     ! ACOS of dual numbers 
1315     ! <res, dres> = acos(<u, du>) = <acos(u), -du / sqrt(1 - u^2)> 
1316     !---------------------------------------- 
1317     elemental function acos_d(u) result(res) 
1318         type(dual), intent(in) :: u 
1319         type(dual) :: res 
1320  
1321         res%x = acos(u%x) 
1322         if (u%x == 1.0 .or. u%x == -1.0) then 
1323             res%dx = set_Nan()  ! Undefined derivative 
1324         else 
1325             res%dx = -u%dx / sqrt(1.0 - u%x**2) 
1326         end if 
1327  
1328     end function acos_d 
1329  
1330  
1331     !----------------------------------------- 
1332     ! ASIN of dual numbers 
1333     ! <res, dres> = asin(<u, du>) = <asin(u), du / sqrt(1 - u^2)> 
1334     !---------------------------------------- 
1335     elemental function asin_d(u) result(res) 
1336         type(dual), intent(in) :: u 



160 

1337         type(dual) :: res 
1338  
1339         res%x = asin(u%x) 
1340         if (u%x == 1.0 .or. u%x == -1.0) then 
1341             res%dx = set_NaN()  ! Undefined derivative 
1342         else 
1343             res%dx = u%dx / sqrt(1.0 - u%x**2) 
1344         end if 
1345  
1346     end function asin_d 
1347  
1348  
1349     !----------------------------------------- 
1350     ! ATAN of dual numbers 
1351     ! <res, dres> = atan(<u, du>) = <atan(u), du / (1 + u^2)> 
1352     !---------------------------------------- 
1353     elemental function atan_d(u) result(res) 
1354         type(dual), intent(in) :: u 
1355         type(dual) :: res 
1356  
1357         res%x = atan(u%x) 
1358         res%dx = u%dx / (1.0 + u%x**2) 
1359  
1360     end function atan_d 
1361  
1362  
1363     !----------------------------------------- 
1364     ! ATAN2 of dual numbers 
1365     ! <res, dres> = atan2(<u, du>, <v, dv>) 
1366     !             = <atan2(u, v), v / (u^2 + v^2) * du - u / (u^2 + v^2) * dv> 
1367     !---------------------------------------- 
1368     elemental function atan2_d(u, v) result(res) 
1369         type(dual), intent(in) :: u, v 
1370         type(dual) :: res 
1371  
1372         real :: usq_plus_vsq 
1373  
1374         res%x = atan2(u%x, v%x) 
1375  
1376         usq_plus_vsq = u%x**2 + v%x**2 
1377         res%dx = v%x / usq_plus_vsq * u%dx - u%x / usq_plus_vsq * v%dx 
1378  
1379     end function atan2_d 
1380  
1381  
1382     !----------------------------------------- 
1383     ! COS of dual numbers 
1384     ! <res, dres> = cos(<u, du>) = <cos(u), -sin(u) * du> 
1385     !---------------------------------------- 
1386     elemental function cos_d(u) result(res) 
1387         type(dual), intent(in) :: u 
1388         type(dual) :: res 
1389  
1390         res%x = cos(u%x) 
1391         res%dx = -sin(u%x) * u%dx 
1392  
1393     end function cos_d 
1394  
1395  
1396     !----------------------------------------- 
1397     ! DOT PRODUCT two dual number vectors 
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1398     ! <res, dres> = <u, du> . <v, dv> = <u . v, u . dv + v . du> 
1399     !----------------------------------------- 
1400     function dot_product_dd(u, v) result(res) 
1401         type(dual), intent(in) :: u(:), v(:) 
1402         type(dual) :: res 
1403  
1404         integer :: i 
1405  
1406         res%x = dot_product(u%x, v%x) 
1407         do i = 1, ndv 
1408             res%dx(i) = dot_product(u%x, v%dx(i)) + dot_product(v%x, u%dx(i)) 
1409         end do 
1410  
1411     end function dot_product_dd 
1412  
1413  
1414     !----------------------------------------- 
1415     ! EXPONENTIAL OF dual numbers 
1416     ! <res, dres> = exp(<u, du>) = <exp(u), exp(u) * du> 
1417     !----------------------------------------- 
1418     elemental function exp_d(u) result(res) 
1419         type(dual), intent(in) :: u 
1420         type(dual) :: res 
1421  
1422         real :: exp_x 
1423  
1424         exp_x = exp(u%x) 
1425         res%x = exp_x 
1426         res%dx = u%dx * exp_x 
1427  
1428     end function exp_d 
1429  
1430  
1431     !----------------------------------------- 
1432     ! Convert dual to integer 
1433     ! i = int(<u, du>) = int(u) 
1434     !---------------------------------------- 
1435     elemental function int_d(u) result(res) 
1436          type(dual), intent(in) :: u 
1437          integer :: res 
1438  
1439          res = int(u%x) 
1440  
1441     end function int_d 
1442  
1443  
1444     !----------------------------------------- 
1445     ! LOG OF dual numbers,defined for u%x>0 only 
1446     ! the error control should be done in the original code 
1447     ! in other words, if u%x<=0, it is not possible to obtain LOG. 
1448     ! <res, dres> = log(<u, du>) = <log(u), du / u> 
1449     !---------------------------------------- 
1450     elemental function log_d(u) result(res) 
1451         type(dual), intent(in) :: u 
1452         type(dual) :: res 
1453  
1454         real :: inv 
1455  
1456         inv = 1.0 / u%x 
1457         res%x = log(u%x) 
1458         res%dx = u%dx * inv 
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1459  
1460     end function log_d 
1461  
1462  
1463     !----------------------------------------- 
1464     ! LOG10 OF dual numbers,defined for u%x>0 only 
1465     ! the error control should be done in the original code 
1466     ! in other words, if u%x<=0, it is not possible to obtain LOG. 
1467     ! <res, dres> = log10(<u, du>) = <log10(u), du / (u * log(10))> 
1468     ! LOG<u,up>=<LOG(u),up/u> 
1469     !---------------------------------------- 
1470     elemental function log10_d(u) result(res) 
1471         type(dual), intent(in) :: u 
1472         type(dual) :: res 
1473  
1474         real :: inv 
1475  
1476         inv = 1.0 / (u%x * log(10.0)) 
1477         res%x = log10(u%x) 
1478         res%dx = u%dx * inv 
1479  
1480     end function log10_d 
1481  
1482  
1483     !----------------------------------------- 
1484     ! MULTIPLY two dual number matrices 
1485     ! <res, dres> = <u, du> . <v, dv> = <u . v, du . v + u . dv> 
1486     !---------------------------------------- 
1487     function matmul_dd(u,v) result(res) 
1488         type(dual), intent(in) :: u(:,:), v(:,:) 
1489         type(dual) :: res(size(u,1), size(v,2)) 
1490  
1491         integer :: i 
1492  
1493         res%x = matmul(u%x, v%x) 
1494         do i = 1, ndv 
1495             res%dx(i) = matmul(u%dx(i), v%x) + matmul(u%x, v%dx(i)) 
1496         end do 
1497  
1498     end function matmul_dd 
1499  
1500  
1501     !----------------------------------------- 
1502     ! MULTIPLY a dual number matrix with a dual number 
1503     ! vector 
1504     ! 
1505     ! <u,up>.<v,vp>=<u.v,up.v+u.vp> 
1506     !---------------------------------------- 
1507     function matmul_dv(u, v) result(res) 
1508         type(dual), intent(in) :: u(:,:), v(:) 
1509         type(dual) :: res(size(u,1)) 
1510         integer :: i 
1511  
1512         res%x = matmul(u%x, v%x) 
1513         do i = 1, ndv 
1514             res%dx(i) = matmul(u%dx(i), v%x) + matmul(u%x, v%dx(i)) 
1515         end do 
1516  
1517     end function matmul_dv 
1518  
1519  
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1520     !----------------------------------------- 
1521     ! MULTIPLY a dual vector with a  dual matrix 
1522     ! 
1523     ! <u,up>.<v,vp>=<u.v,up.v+u.vp> 
1524     !---------------------------------------- 
1525     function matmul_vd(u, v) result(res) 
1526         type(dual), intent(in) :: u(:), v(:,:) 
1527         type(dual) :: res(size(v, 2)) 
1528         integer::i 
1529  
1530         res%x = matmul(u%x, v%x) 
1531         do i = 1, ndv 
1532             res%dx(i) = matmul(u%dx(i), v%x) + matmul(u%x, v%dx(i)) 
1533         end do 
1534  
1535     end function matmul_vd 
1536  
1537     !----------------------------------------- 
1538     ! Obtain the max of 2 to 5 dual numbers 
1539     !---------------------------------------- 
1540     elemental function max_dd(val1, val2, val3, val4,val5) result(res) 
1541         type(dual), intent(in) :: val1, val2 
1542         type(dual), intent(in), optional :: val3, val4,val5 
1543         type(dual) :: res 
1544  
1545         if (val1%x > val2%x) then 
1546             res = val1 
1547         else 
1548             res = val2 
1549         endif 
1550         if(present(val3))then 
1551            if(res%x < val3%x) res = val3 
1552         endif 
1553         if(present(val4))then 
1554            if(res%x < val4%x) res = val4 
1555         endif 
1556         if(present(val5))then 
1557            if(res%x < val5%x) res = val5 
1558         endif 
1559  
1560     end function max_dd 
1561  
1562  
1563     !----------------------------------------- 
1564     ! Obtain the max of a dual number and an integer 
1565     !---------------------------------------- 
1566     elemental function max_di(u, i) result(res) 
1567         type(dual), intent(in) :: u 
1568         integer, intent(in) :: i 
1569         type(dual) :: res 
1570  
1571         if (u%x > i) then 
1572             res = u 
1573         else 
1574             res = i 
1575         endif 
1576  
1577     end function max_di 
1578  
1579     !----------------------------------------- 
1580     ! Obtain the max of a dual number and a real number 
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1581     !---------------------------------------- 
1582     elemental function max_dr(u, r) result(res) 
1583         type(dual), intent(in) :: u 
1584         real, intent(in) :: r 
1585         type(dual) :: res 
1586  
1587         if (u%x > r) then 
1588             res = u 
1589         else 
1590             res = r 
1591         endif 
1592  
1593     end function max_dr 
1594  
1595  
1596     !--------------------------------------------------- 
1597     ! Obtain the max of a real and a dual 
1598     !--------------------------------------------------- 
1599      elemental function max_rd(n, u) result(res) 
1600         real, intent(in) :: n 
1601         type(dual), intent(in) :: u 
1602         type(dual) :: res 
1603  
1604         if (u%x > n) then 
1605             res = u 
1606         else 
1607             res = n 
1608         endif 
1609  
1610     end function max_rd 
1611  
1612  
1613     !----------------------------------------- 
1614     ! Obtain the max value of vector u 
1615     !---------------------------------------- 
1616     function maxval_d(u) result(res) 
1617         type(dual), intent(in) :: u(:) 
1618         integer :: iloc(1) 
1619         type(dual) :: res 
1620  
1621         iloc=maxloc(u%x) 
1622         res=u(iloc(1)) 
1623  
1624     end function maxval_d 
1625  
1626  
1627     !----------------------------------------- 
1628     ! Obtain the min of 2 to 4 dual numbers 
1629     !---------------------------------------- 
1630     elemental function min_dd(val1, val2, val3, val4) result(res) 
1631         type(dual), intent(in) :: val1, val2 
1632         type(dual), intent(in), optional :: val3, val4 
1633         type(dual) :: res 
1634  
1635         if (val1%x < val2%x) then 
1636             res = val1 
1637         else 
1638             res = val2 
1639         endif 
1640         if(present(val3))then 
1641            if(res%x > val3%x) res = val3 
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1642         endif 
1643         if(present(val4))then 
1644            if(res%x > val4%x) res = val4 
1645         endif 
1646  
1647     end function min_dd 
1648  
1649  
1650     !----------------------------------------- 
1651     ! Obtain the min of a dual and a double 
1652     !---------------------------------------- 
1653     elemental function min_dr(u, r) result(res) 
1654         type(dual), intent(in) :: u 
1655         real, intent(in) :: r 
1656         type(dual) :: res 
1657  
1658         if (u%x < r) then 
1659             res = u 
1660         else 
1661             res = r 
1662         endif 
1663  
1664     end function min_dr 
1665  
1666  
1667   !----------------------------------------- 
1668     ! Obtain the min value of vector u 
1669     !---------------------------------------- 
1670     function minval_d(u) result(res) 
1671         type(dual), intent(in) :: u(:) 
1672         integer :: iloc(1) 
1673         type(dual) :: res 
1674  
1675         iloc=minloc(u%x) 
1676         res=u(iloc(1)) 
1677  
1678     end function minval_d 
1679  
1680      
1681     !------------------------------------------------------ 
1682     !Returns the nearest integer to u%x, ELEMENTAL 
1683     !------------------------------------------------------ 
1684     elemental function nint_d(u) result(res) 
1685         type(dual), intent(in) :: u 
1686         integer :: res 
1687  
1688         res=nint(u%x) 
1689  
1690     end function nint_d 
1691  
1692  
1693     !---------------------------------------------------------------- 
1694     ! SIGN(a,b) with two dual numbers as inputs, 
1695     ! the result will be |a| if b%x>=0, -|a| if b%x<0,ELEMENTAL 
1696     !---------------------------------------------------------------- 
1697     elemental function sign_dd(val1, val2) result(res) 
1698         type(dual), intent(in) :: val1, val2 
1699         type(dual) :: res 
1700  
1701         if (val2%x < 0.0) then 
1702             res = -abs(val1) 
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1703         else 
1704             res =  abs(val1) 
1705         endif 
1706  
1707      end function sign_dd 
1708  
1709  
1710     !---------------------------------------------------------------- 
1711     ! SIGN(a,b) with one real and one dual number as inputs, 
1712     ! the result will be |a| if b%x>=0, -|a| if b%x<0,ELEMENTAL 
1713     !---------------------------------------------------------------- 
1714     elemental function sign_rd(val1, val2) result(res) 
1715         real, intent(in) :: val1 
1716         type(dual), intent(in) :: val2 
1717         type(dual) :: res 
1718  
1719         if (val2%x < 0.0) then 
1720             res = -abs(val1) 
1721         else 
1722             res = abs(val1) 
1723         endif 
1724  
1725      end function sign_rd 
1726  
1727  
1728     !----------------------------------------- 
1729     ! SIN of dual numbers 
1730     ! <res, dres> = sin(<u, du>) = <sin(u), cos(u) * du> 
1731     !---------------------------------------- 
1732     elemental function sin_d(u) result(res) 
1733         type(dual), intent(in) :: u 
1734         type(dual) :: res 
1735  
1736         res%x = sin(u%x) 
1737         res%dx = cos(u%x) * u%dx 
1738  
1739     end function sin_d 
1740  
1741  
1742     !----------------------------------------- 
1743     ! TAN of dual numbers 
1744     ! <res, dres> = tan(<u, du>) = <tan(u), du / cos(u)^2> 
1745     !---------------------------------------- 
1746     elemental function tan_d(u) result(res) 
1747         type(dual), intent(in) :: u 
1748         type(dual) :: res 
1749  
1750         res%x = tan(u%x) 
1751         res%dx = u%dx / cos(u%x)**2 
1752  
1753     end function tan_d 
1754  
1755  
1756     !----------------------------------------- 
1757     ! SQRT of dual numbers 
1758     ! <res, dres> = sqrt(<u, du>) = <sqrt(u), du / (2 * sqrt(u))> 
1759     !---------------------------------------- 
1760     elemental function sqrt_d(u) result(res) 
1761         type(dual), intent(in) :: u 
1762         type(dual) :: res 
1763         integer :: i 
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1764  
1765         res%x = sqrt(u%x) 
1766  
1767         if (res%x .ne. 0.0) then 
1768             res%dx = 0.5 * u%dx / res%x 
1769         else 
1770             do i = 1, ndv 
1771                 if (u%dx(i) .eq. 0.0) then 
1772                     res%dx(i) = 0.0 
1773                 else 
1774                     res%dx(i) = set_NaN() 
1775                 end if 
1776             end do 
1777         end if 
1778  
1779     end function sqrt_d 
1780  
1781  
1782     !----------------------------------------- 
1783     ! Sum of a dual array 
1784     !----------------------------------------- 
1785     function sum_d(u) result(res) 
1786         type(dual), intent(in) :: u(:) 
1787         type(dual) :: res 
1788         integer :: i 
1789  
1790         res%x = sum(u%x) 
1791         do i = 1, ndv 
1792             res%dx(i) = sum(u%dx(i)) 
1793         end do 
1794  
1795     end function sum_d 
1796  
1797  
1798     !----------------------------------------- 
1799     ! Find the location of the max value in an 
1800     ! array of dual numbers 
1801     !----------------------------------------- 
1802     function maxloc_d(array) result(ind) 
1803         type(dual), intent(in) :: array(:) 
1804         integer :: ind(1) 
1805  
1806         ind = maxloc(array%x) 
1807  
1808     end function maxloc_d 
1809  
1810  
1811     elemental function set_NaN() result(res) 
1812         real :: res 
1813  
1814         res = sqrt(negative_one) 
1815  
1816     end function set_NaN 
1817  
1818 end module dnadmod 
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B ONE-DIMENSIONAL SCALAR TRANSPORT SOLVER IN FORTRAN 

B.1 User Interface 

1 program main 
2     use adpsolver 
3     use adpio 
4     implicit none 
5      
6     type(adpmodel) :: solver  ! adpmodel object 
7  
8     integer :: nargs  ! Number of command line arguments 
9     character*80 :: arg  ! Command line argument 
10     character*80 :: opt  ! Option from command line argument 
11     character*80 :: val  ! Value from command line argument 
12  
13     character*80 :: infile  ! Input file name 
14     character*80 :: outfile  ! Output file name 
15  
16     integer :: err  ! Error flag 
17  
18     ! Get command line arguments 
19     nargs = command_argument_count() 
20     if (nargs .gt. 0) then 
21         call get_command_argument(1, infile) 
22     else 
23         write(*, *) "An input file must be specified." 
24         call exit(1) 
25     end if 
26  
27     ! Initialize solver 
28     write(*, *) "Initializing solver..." 
29     call solver%init() 
30  
31     ! Read the input file 
32     write(*, *) "Reading input file '", trim(infile), "'..." 
33     err = readInput(solver, infile) 
34     if (err .ne. 0) then 
35         write(*, *) "Error reading input file, aborting!" 
36         call exit(2) 
37     end if 
38  
39     ! Calculate a solution 
40     write(*, *) "Solving..." 
41     err = solver%solve() 
42     if (err .ne. 0) then 
43         write(*, *) "Solution error, aborting!" 
44         call exit(3) 
45     end if 
46  
47     ! Determine the output file name 
48     if (nargs .gt. 1) then 
49         call get_command_argument(2, outfile) 
50     else 
51         outfile = trim(solver%jobname) // ".out" 
52     end if 
53  
54     ! Write the output 
55     write(*, *) "Writing output to file '", trim(outfile), "'..." 
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56     err = writeOutput(solver, outfile) 
57     if (err .ne. 0) then 
58         write(*, *) "Error generating output file!" 
59         call exit(4) 
60     end if 
61      
62     call solver%dealloc() 
63  
64 end program main 

 

B.2 Physics Module 

1 module adpsolver 
2     implicit none 
3      
4     type :: adpmodel 
5         character*80 :: jobname  ! Job name 
6          
7         real :: phi0  ! Scalar value at x = 0 
8         real :: phi1  ! Scalar value at x = 1 
9          
10         real :: u  ! Velocity 
11         real :: gamma  ! Diffusivity 
12         real :: c  ! Proportionality constant for scalar production 
13          
14         integer :: npts  ! Number of grid points on discretized domain 
15                          ! (spaced uniformly from x = 0 to x = 1) 
16         real :: dx  ! Distance between points in x array 
17          
18         real, allocatable, dimension(:) :: x  ! array of grid coordinates 
19         real, allocatable, dimension(:) :: phi  ! scalar field function 
20  
21     contains 
22         procedure :: init => adpmodel_init 
23         procedure :: alloc => adpmodel_alloc 
24         procedure :: dealloc => adpmodel_dealloc 
25         procedure :: solve => adpmodel_solve 
26         procedure :: solveImplicit => adpmodel_solveImplicit 
27          
28     end type adpmodel 
29      
30 contains 
31     !!! Initialize an adpmodel object 
32     !!! 
33     !!! Input: 
34     !!!     this = adpmodel object to initialize 
35     subroutine adpmodel_init(this) 
36         class(adpmodel), intent(inout) :: this 
37          
38         this%jobname = "ADPSolution1" 
39          
40         this%phi0 = 1.0d0 
41         this%phi1 = 0.0d0 
42          
43         this%u = 1.0d0 
44         this%gamma = 0.1d0 
45         this%c = -1.0d0 
46          
47         this%npts = 11 
48     end subroutine adpmodel_init 
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49      
50      
51     !!! Allocate dynamic memory 
52     !!! 
53     !!! Input: 
54     !!!     this = adpmodel object 
55     !!! 
56     !!! Return: 
57     !!!     stat = Error status flag (0 = success, 
58     !!!                               1 = Allocation error) 
59     integer function adpmodel_alloc(this) result(stat) 
60         class(adpmodel), intent(inout) :: this 
61  
62         integer :: n 
63         integer :: err 
64  
65         ! Initialize error flags 
66         err = 0 
67         stat = 0 
68  
69         call this%dealloc() 
70  
71         n = this%npts 
72         allocate(this%x(n), this%phi(n), stat = err) 
73         if (err .ne. 0) then 
74             write(*, *) "Error: Could not allocate arrays!" 
75             stat = 1 
76         end if 
77     end function adpmodel_alloc 
78  
79  
80     !!! Deallocate dynamic memory 
81     !!! 
82     !!! Input: 
83     !!!     this = adpmodel object 
84     subroutine adpmodel_dealloc(this) 
85         class(adpmodel), intent(inout) :: this 
86  
87         if (allocated(this%phi)) deallocate(this%phi) 
88         if (allocated(this%x)) deallocate(this%x) 
89     end subroutine adpmodel_dealloc 
90  
91      
92     !!! Run the solution 
93     !!!  
94     !!! Input: 
95     !!!     this = adpmodel object 
96     !!! 
97     !!! Return: 
98     !!!     stat = Error status (0 = success, 
99     !!!                          1 = problem not overdamped, 
100     !!!                          2 = error allocating arrays, 
101     !!!                          3 = error executing solver) 
102     integer function adpmodel_solve(this) result(stat) 
103         class(adpmodel), intent(inout) :: this 
104  
105         integer :: err  ! Temporary error flag 
106         integer :: i  ! Loop control variable 
107  
108         ! Initialize the error flags 
109         err = 0 
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110         stat = 0 
111  
112         ! Make sure we are in the overdamped regime 
113         if (this%u**2 .le. 4.0d0 * this%c * this%gamma) then 
114             write(*, *) "Error: The specified properties do not meet ", & 
115                 "the overdamping requirement for this analysis." 
116             stat = 1 
117             return 
118         end if 
119  
120         ! Allocate solution arrays 
121         err = this%alloc() 
122         if (err .ne. 0) then 
123             stat = 2 
124             return 
125         end if 
126  
127         ! Populate x array for npts 
128         this%dx = 1.0d0 / (this%nPts - 1) 
129         do i = 1, this%npts 
130             this%x(i) = (i - 1) * this%dx 
131         end do 
132  
133         ! Solve the problem 
134         err = this%solveImplicit() 
135  
136         ! Check solution status 
137         if (err .ne. 0) then 
138             stat = 3 
139             return 
140         end if 
141  
142     end function adpmodel_solve 
143  
144      
145     !!! Solve the problem implicitly 
146     !!! 
147     !!! Inputs: 
148     !!!     this = AdvectionSolver object 
149     !!! 
150     !!! Return: 
151     !!!     stat = Error status (0 = success) 
152     integer function adpmodel_solveImplicit(this) result(stat) 
153         class(adpmodel), intent(inout) :: this 
154  
155         integer :: i, j  ! Loop control variables 
156         integer :: n  ! Shortcut to npts 
157         real, dimension(:), allocatable :: ld  ! Lower diagonal vector 
158         real, dimension(:), allocatable :: md  ! Middle diagonal vector 
159         real, dimension(:), allocatable :: ud  ! Uppder diagonal vector 
160         real, dimension(:), allocatable :: bc  ! BC vector 
161  
162         real :: aE, aW, aP  ! Matrix coefficients 
163         real :: w  ! temporary variable 
164  
165         ! Initialize error flag 
166         stat = 0 
167  
168         ! Allocate the solution matrix and BC vector 
169         n = this%npts 
170         allocate(bc(n), ld(n), md(n), ud(n)) 
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171         bc = 0.0d0 
172         ld = 0.0d0 
173         md = 0.0d0 
174         ud = 0.0d0 
175  
176         ! Calculate the matrix coefficients (1st-order upwinding) 
177      aW = -this%gamma / this%dx**2; aE = aW 
178      if (this%u > 0.0d0) then 
179          aW = aW - this%u / this%dx 
180      else 
181          aE = aE + this%u / this%dx 
182      end if 
183  
184         aP = -aE - aW - this%c 
185  
186         ! Populate the diagonal and BC vectors 
187         bc(1) = this%phi0 
188         md(1) = 1.0d0 
189         do i = 2, n - 1 
190             bc(i) = 0.0d0 
191             ld(i) = aW 
192             md(i) = aP 
193             ud(i) = aE 
194         end do 
195         bc(n) = this%phi1 
196         md(n) = 1.0d0 
197  
198         do i = 2, n 
199             w = ld(i) / md(i - 1) 
200             md(i) = md(i) - w * ud(i - 1) 
201             bc(i) = bc(i) - w * bc(i - 1) 
202         end do 
203          
204         this%phi(n) = bc(n) / md(n) 
205         do i = n - 1, 1, -1 
206             this%phi(i) = (bc(i) - ud(i) * this%phi(i + 1)) / md(i) 
207         end do 
208  
209         deallocate(bc, ld, md, ud) 
210  
211     end function adpmodel_solveImplicit 
212  
213 end module adpsolver 

 

B.3 I/O Module 

1 module adpio 
2     use adpsolver 
3     implicit none 
4      
5     integer, parameter :: ioUnit = 10  ! IO unit for files 
6  
7 contains 
8     !!! Read and parse the input file 
9     !!!  
10     !!! Input: 
11     !!!     model = adpmodel object 
12     !!!     filename = Name of input file to read/parse 
13     !!! 
14     !!! Return: 
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15     !!!     stat = Error status (0 = success, 
16     !!!                          1 = error opening input file, 
17     !!!                          2 = error parsing card(s)) 
18     integer function readInput(model, filename) result(stat) 
19         class(adpmodel), intent(inout) :: model 
20         character*80, intent(in) :: filename  ! Name of input file 
21  
22         character*80 :: card 
23         character*80 :: id 
24  
25         integer :: err  ! I/O error flag 
26  
27         ! Initialize the error flags 
28         err = 0 
29         stat = 0 
30  
31         ! Open the file for reading 
32         open(unit = ioUnit, file = filename, status = 'old', & 
33             &  action = 'read', iostat = err) 
34         if (err .ne. 0) then 
35             write(*, '(A)') "ERROR: The input file could not be read." 
36             write(*, '(A, A)') "    Filename = ", trim(filename) 
37             write(*, '(A, I3)') "    I/O Error = ", err 
38             close(ioUnit) 
39             stat = 1 
40             return 
41         end if 
42  
43         ! Begin processing input cards 
44         read(ioUnit, '(A)', iostat = err) card 
45         do while (.not. is_iostat_end(err)) 
46             ! Remove all whitespace from card 
47             card = removeWhitespace(card) 
48              
49             if (card(1:1) .eq. '*') then 
50                 write(*, '(A, 1X, A)') "Found card:", trim(card) 
51                 err = parseCard(model, card) 
52                 if (err .ne. 0) then 
53                     stat = 2 
54                 end if 
55             else if (len(trim(card)) .gt. 1) then 
56                 write(*, '(A, 1X, A)') "Found comment:", trim(card) 
57             end if 
58  
59             ! Read the next card 
60             read(ioUnit, '(A)', iostat = err) card 
61         end do 
62  
63         if (stat .eq. 2) then 
64             write(*, *) "Error: Some input cards were not processed." 
65         end if 
66  
67         close(unit = ioUnit) 
68  
69     end function readInput 
70  
71      
72     !!! Parse an input card and extract all parameter data 
73     !!! 
74     !!! Input: 
75     !!!     model = adpmodel object 
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76     !!!     card = Input card to parse and extract data from 
77     !!! 
78     !!! Return: 
79     !!!     stat = Error status flag (0 = success, 
80     !!!                               1 = I/O error parsing card, 
81     !!!                               2 = error parsing words on card, 
82     !!!                               3 = invalid word parameter name, 
83     !!!                               4 = invalid card ID) 
84     integer function parseCard(model, card) result(stat) 
85         class(adpmodel), intent(inout) :: model 
86         character*80, intent(in) :: card  ! Card string 
87  
88         character*80 :: id  ! Card ID (first word on card) 
89         integer :: nWords  ! Number of words on card (excludes ID) 
90         character*80 :: word  ! List of words on card (excludes ID) 
91  
92         integer :: i  ! Loop control variable 
93         integer :: ind  ! End index of last word 
94         integer :: err  ! Error flag 
95  
96         character*80 :: paramName  ! Parameter name 
97         character*80 :: paramValue  ! Parameter value 
98  
99         ! Initialize the error flags 
100         err = 0 
101         stat = 0 
102  
103         ! Get the card ID (first word on card) 
104         read(card, *, iostat = err) id 
105         if (err .ne. 0) then 
106             write(*, *) "Unknown error parsing card ID:", trim(card) 
107             stat = 1 
108             return 
109         end if 
110  
111         ! Get the number of remaining words 
112         nwords = count(transfer(card, 'A', len(trim(card))) == ",") 
113  
114         ! Get the words 
115         ind = index(card, trim(id)) + len(trim(id)) + 1  ! Add 1 for comma 
116         do i = 1, nWords 
117             ! Read the next word from the card 
118             read(card(ind:80), *, iostat = err) word 
119             if (err .ne. 0) then 
120                 write(*, '(A, I2, A, A)') "Unknown error parsing word ", & 
121                     &   i, ":", trim(card) 
122                 stat = 2 
123                 return 
124             end if 
125  
126             ! Get the starting index of the next word (add 1 for comma) 
127             ind = index(card, trim(word)) + len(trim(word)) + 1 
128  
129             ! Parse the word to extract the parameter name and value 
130             err = parseArg(word, paramName, paramValue) 
131             if (err .ne. 0) then 
132                 write(*, '(A, I2, A, A)') "Invalid string on word ", & 
133                     &   i, ":", trim(card) 
134                 stat = 2 
135                 cycle 
136             end if 
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137  
138             ! Extract the data based on card type 
139             select case(id) 
140                 case ("*job") 
141                     err = setJobField(model, paramName, paramValue) 
142                 case ("*bcs") 
143                     err = setBCField(model, paramName, paramValue) 
144                 case ("*props") 
145                     err = setPropsField(model, paramName, paramValue) 
146                 case ("*grid") 
147                     err = setGridField(model, paramName, paramValue) 
148                 case ("*solver") 
149                     err = setSolverField(model, paramName, paramValue) 
150                 case default 
151                     write(*, '(2X, A, A, A)') "Unrecognized card ID: ", & 
152                         &   trim(id), ". Card skipped!" 
153                     stat = 4 
154                     return 
155             end select 
156  
157             ! Check for an error setting fields 
158             if (err .ne. 0) then 
159                 stat = 3 
160             end if 
161         end do 
162  
163     end function parseCard 
164      
165      
166     !!! Set a field from the job card 
167     !!! 
168     !!! Input: 
169     !!!     this = adpmodel object 
170     !!!     paramName = Name of field to set 
171     !!!     paramValue = String representation of parameter value 
172     !!! 
173     !!! Return: 
174     !!!     stat = Error status flag (0 = success, 
175     !!!                               1 = Unrecognized parameter name) 
176     integer function setJobField(model, paramName, paramValue) result (stat) 
177         class(adpmodel), intent(inout) :: model 
178         character*80, intent(in) :: paramName  ! Parameter name 
179         character*80, intent(in) :: paramValue  ! Parameter value 
180  
181         ! Initialize the error flag 
182         stat = 0 
183  
184         select case(paramName) 
185             case ("name") 
186                 model%jobName = paramValue 
187             case default 
188                 write(*, '(6X, A)') & 
189                     &   "Unrecognized parameter name on job card:", & 
190                     &    trim(paramName) 
191                 stat = 1 
192         end select 
193  
194     end function setJobField 
195  
196      
197     !!! Set a field from the bcs card 
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198     !!! 
199     !!! Input: 
200     !!!     model = adpmodel object 
201     !!!     paramName = Name of field to set 
202     !!!     paramValue = String representation of parameter value 
203     !!! 
204     !!! Return: 
205     !!!     stat = Error status flag (0 = success, 
206     !!!                               1 = Unrecognized parameter name) 
207     integer function setBCField(model, paramName, paramValue) result(stat) 
208         class(adpmodel), intent(inout) :: model 
209         character*80, intent(in) :: paramName  ! Parameter name 
210         character*80, intent(in) :: paramValue  ! Parameter value 
211  
212         ! Initialize the error flag 
213         stat = 0 
214  
215         select case(paramName) 
216             case ("phi0") 
217                 model%phi0 = stringToReal(paramValue) 
218             case ("phi1") 
219                 model%phi1 = stringToReal(paramValue) 
220             case default 
221                 write(*, '(6X, A, 1X, A)') & 
222                     &   "Unrecognized parameter name on bcs card:", & 
223                     &    trim(paramName) 
224                 stat = 1 
225         end select 
226     end function setBCField 
227  
228      
229     !!! Set a field from the props card 
230     !!! 
231     !!! Input: 
232     !!!     model = adpmodel object 
233     !!!     paramName = Name of field to set 
234     !!!     paramValue = String representation of parameter value 
235     !!! 
236     !!! Return: 
237     !!!     stat = Error status flag (0 = success, 
238     !!!                               1 = Unrecognized parameter name) 
239     integer function setPropsField(model, paramName, paramValue) result(stat) 
240         class(adpmodel), intent(inout) :: model 
241         character*80, intent(in) :: paramName  ! Parameter name 
242         character*80, intent(in) :: paramValue  ! Parameter value 
243  
244         ! Initialize the error flag 
245         stat = 0 
246  
247         select case(paramName) 
248             case ("u") 
249                 model%u = stringToReal(paramValue) 
250             case ("gamma") 
251                 model%gamma = stringToReal(paramValue) 
252             case ("c") 
253                 model%c = stringToReal(paramValue) 
254             case default 
255                 write(*, '(6X, A, 1X, A)') & 
256                     &   "Unrecognized parameter name on props card:", & 
257                     &    trim(paramName) 
258                 stat = 1 
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259             end select 
260     end function setPropsField 
261  
262      
263     !!! Set a field from the grid card 
264     !!! 
265     !!! Input: 
266     !!!     model = adpmodel object 
267     !!!     paramName = Name of field to set 
268     !!!     paramValue = String representation of parameter value 
269     !!! 
270     !!! Return: 
271     !!!     stat = Error status flag (0 = success, 
272     !!!                               1 = Unrecognized parameter name) 
273     integer function setGridField(model, paramName, paramValue) result(stat) 
274         class(adpmodel), intent(inout) :: model 
275         character*80, intent(in) :: paramName  ! Parameter name 
276         character*80, intent(in) :: paramValue  ! Parameter value 
277  
278         ! Initialize the error flag 
279         stat = 0 
280  
281         select case(paramName) 
282             case ("npts") 
283                 model%npts = stringToInt(paramValue) 
284             case default 
285                 write(*, '(6X, A, 1X, A)') & 
286                     &   "Unrecognized parameter name on grid card:", & 
287                     &    trim(paramName) 
288                 stat = 1 
289             end select 
290     end function setGridField 
291  
292      
293     !!! Set a field from the model card 
294     !!! 
295     !!! Input: 
296     !!!     model = adpsolver object 
297     !!!     paramName = Name of field to set 
298     !!!     paramValue = String representation of parameter value 
299     !!! 
300     !!! Return: 
301     !!!     stat = Error status flag (0 = success, 
302     !!!                               1 = Unrecognized parameter name) 
303     integer function setSolverField(model, paramName, paramValue) result(stat) 
304         class(adpmodel), intent(inout) :: model 
305         character*80, intent(in) :: paramName  ! Parameter name 
306         character*80, intent(in) :: paramValue  ! Parameter value 
307  
308         ! Initialize the error flag 
309         stat = 0 
310  
311         select case(paramName) 
312             case ("method") 
313                 select case(paramValue) 
314                     case ("analytical") 
315                         model%method = analytical 
316                     case ("implicit") 
317                         model%method = implicit 
318                     case default 
319                         write(*, '(6X, A, 1X, A)') & 
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320                             &   "Unrecognized solution method:", paramValue 
321                 end select 
322             case ("derivatives") 
323                 select case (paramValue) 
324                     case ("yes") 
325                         model%computeDerivatives = .true. 
326                     case ("no") 
327                         model%computeDerivatives = .false. 
328                     case default 
329                         write(*, '(A)') "Derivatives option must be ", & 
330                             &   "yes/no. Defaulting to no." 
331                 end select 
332             case default 
333                 write(*, '(6X, A, 1X, A)') & 
334                     &   "Unrecognized parameter name on solver card:", & 
335                     &    trim(paramName) 
336                 stat = 1 
337             end select 
338          
339     end function setSolverField 
340  
341  
342     REAL function stringToReal(str) result (val) 
343         character*80, intent(in) :: str  ! String to convert 
344          
345         integer :: err  ! I/O error status 
346  
347         read(str, *, iostat = err) val 
348         if (err .ne. 0) then 
349             write(*, '(6X, A, A)') "Error converting string to real: ", str 
350         end if 
351     end function stringToReal 
352  
353  
354     integer function stringToInt(str) result (val) 
355         character*80, intent(in) :: str  ! String to convert 
356  
357         integer :: err  ! I/O error status 
358  
359         read(str, *, iostat = err) val 
360         if (err .ne. 0) then 
361             write(*, '(6X, A, A)') "Error converting string to int: ", str 
362         end if 
363     end function stringToInt 
364  
365      
366     !!! Write the results to an output file 
367     !!! 
368     !!! Inputs: 
369     !!!     model = adpmodel object 
370     !!!     filename_opt = Optional output filename (defaults to jobName.out) 
371     !!! 
372     !!! Return: 
373     !!!     stat = Error status (0 = success, 
374     !!!                          1 = Error opening output file) 
375     integer function writeOutput(model, filename_opt) result(stat) 
376         class(adpmodel), intent(inout) :: model  ! adpmodel object 
377         character*80, intent(in), optional :: filename_opt  ! Optional filename 
378  
379         character*80 :: filename  ! Output file name 
380         integer :: err  ! Error status flag 
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381  
382         stat = 0 
383  
384         ! Get the filename to write to 
385         if (present(filename_opt)) then 
386             filename = filename_opt 
387         else 
388             filename = trim(model%jobname) // ".out" 
389         end if 
390  
391         ! Open the output file for writing 
392         open(unit = ioUnit, file = filename, action = 'write', iostat = err) 
393         if (err .ne. 0) then 
394             write(*, *) "Error: Unable to open output file for writing." 
395             stat = 1 
396             return 
397         end if 
398  
399         ! Write the header and results 
400         call writeData(model) 
401  
402         ! Close the output file 
403         close(unit = ioUnit) 
404  
405     end function writeOutput 
406      
407  
408     subroutine writeData(model) 
409         class(adpmodel), intent(inout) :: model  ! adpmodel object 
410          
411         integer :: i, j  ! Loop control variable 
412         character*80 :: fmtString 
413          
414         if (model%method .eq. analytical .and. model%computeDerivatives) then 
415             ! Header 
416             write(ioUnit, '(A)') "x,phi,dPhi/dX,dPhi/dU,dPhi/dGamma,dPhi/dC" 
417  
418             ! Results 
419             write(fmtString, *) '(5(ES23.15, ", "), ES23.15)' 
420             do i=1, model%npts 
421                 write(ioUnit, fmtString) model%x(i), model%phi(i), & 
422                     &   model%dPhi_dU(i), model%dPhi_dGamma(i), model%dPhi_dC(i) 
423             end do 
424  
425         else 
426             ! Header 
427             write(ioUnit, '(A)') "x,phi" 
428  
429             ! Results 
430             write(fmtString, *) '(ES23.15, ", ", ES23.15)' 
431             do i=1, model%npts 
432                 write(ioUnit, fmtString) model%x(i), model%phi(i) 
433             end do 
434         end if 
435     end subroutine writeData 
436      
437      
438     character*80 function removeWhitespace(str) result(mstr) 
439         character*80, intent(in) :: str 
440  
441         integer :: i  ! Loop control variable 
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442         integer :: l  ! Length of modified string 
443  
444         character, parameter :: tab = achar(9)  ! Tab character 
445  
446         ! Initialize length of modified string to 0 
447         l = 0 
448         mstr = char(0) 
449  
450         ! Loop over each character in unmodified string 
451         do i = 1, len(str) 
452             ! Only consider non-space, non-tab characters 
453             if (str(i:i) .ne. ' ' .and. str(i:i) .ne. tab) then 
454                 l = l + 1  ! Increment the count 
455                 mstr(l:l) = str(i:i)  ! Add the non-whitespace character 
456             end if 
457         end do 
458     end function removeWhitespace 
459  
460      
461     !!! Parse an argument to determine the name and value 
462     !!! 
463     !!! Input: 
464     !!!     arg = Argument string to parse 
465     !!! 
466     !!! Output: 
467     !!!     argName = name extracted from argument string 
468     !!!     argValue = value extracted from argument string 
469     !!! 
470     !!! Return: 
471     !!!     stat = Error status (0 = success, 
472     !!!                          1 = argument value missing, 
473     !!!                          2 = argument name and value missing) 
474     integer function parseArg(arg, argName, argValue) result(stat) 
475         character*80, intent(in) :: arg  ! Argument string to parse 
476         character*80, intent(out) :: argName  ! Name of argument 
477         character*80, intent(out) :: argValue  ! Value of argument 
478  
479         character*80 :: trimmedArg 
480         integer :: ind  ! Index of equal sign in argument 
481  
482         argName = "" 
483         argValue = "" 
484  
485         trimmedArg = trim(adjustl(arg)) 
486         ind = index(trimmedArg, "=") 
487         if (len(trimmedArg) .eq. 0) then 
488             stat = 2 
489             return 
490         else if (ind .eq. 0) then 
491             argName = trimmedArg 
492             stat = 1 
493         else 
494             argName = trimmedArg(1 : ind - 1) 
495             argValue = trimmedArg(ind + 1 :) 
496             stat = 0 
497         end if 
498     end function parseArg 
499      
500 end module adpio  
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C SUMMARY OF CODE CHANGES TO APPENDIX B FOR DNAD INTEGRATION 

C.1 Changes to adpsolver Module 

Original: lines 1-2 

1 module adpsolver 
2     implicit none 

 

Modified: lines 1-6 

1 module adpsolver 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     implicit none 

C.2 Changes to adpio Module 

Original: lines 1-2 

1 module adpio 
2     implicit none 

 

Modified: lines 1-6 

1 module adpio 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use adpsolver 

 
 

Original: lines 5-7 

5     integer, parameter :: ioUnit = 10  ! IO unit for files 
6      
7 contains 

 

Modified: lines 9-16 

9     integer, parameter :: ioUnit = 10  ! IO unit for files 
10 #ifdef dnad 
11     integer, parameter :: maxdvs = 3  ! Maximum number of derivatives supported 
12     integer :: dvcount = 0  ! Count of partial derivatives requested 
13     character*80, dimension(maxdvs) :: dvnames = ""  ! List of derivative names 
14 #endif 
15      
16 Contains 

 
 

Original: lines 149-150 

149                     err = setSolverField(model, paramName, paramValue) 
150                 case default 
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Modified: lines 158-163 

158                     err = setSolverField(model, paramName, paramValue) 
159 #ifdef dnad 
160                 case ("*dnad") 
161                     err = setDNADField(model, paramName, paramValue) 
162 #endif 
163                 case default 

 

Original: lines 339-342 

339     end function setSolverField 
340  
341  
342     real function stringToReal(str) result (val) 

 

Modified: lines 352-414 

352     end function setSolverField 
353  
354  
355 #ifdef dnad 
356     !!! Set a field from the dnad card 
357     !!! 
358     !!! Input: 
359     !!!     model = adpmodel object 
360     !!!     paramName = Name of field to set 
361     !!!     paramValue = String representation of parameter value 
362     !!! 
363     !!! Return: 
364     !!!     stat = Error status flag (0 = success, 
365     !!!                               1 = Unrecognized parameter name, 
366     !!!                               2 = Number of allowed dvs exceeded) 
367     integer function setDNADField(model, paramName, paramValue) result(stat) 
368         class(adpmodel), intent(inout) :: model 
369         character(len=*), intent(in) :: paramName  ! Parameter name 
370         character(len=*), intent(in) :: paramValue  ! Parameter value 
371  
372         ! Initialize the error flag 
373         stat = 0 
374  
375         select case(paramName) 
376             case ("dv") 
377                 ! Check number of design variables 
378                 if (dvcount .ge. ndv) then 
379                     write(*, '(6X, A, I0, A, /, 6X, A, A)') & 
380                         &   "The maximum number of design variables (", & 
381                         &   ndv, ") has been reached.", paramValue, & 
382                         &   " will not be included as a design variable." 
383                 else 
384                     select case(paramValue) 
385                         case ("u") 
386                             dvcount = dvcount + 1 
387                             model%u%dx(dvcount) = 1.0 
388                             dvnames(dvcount) = "dPhi/dU" 
389                         case ("gamma") 
390                             dvcount = dvcount + 1 
391                             model%gamma%dx(dvcount) = 1.0 
392                             dvnames(dvcount) = "dPhi/dGamma" 
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393                         case ("c") 
394                             dvcount = dvcount + 1 
395                             model%c%dx(dvcount) = 1.0 
396                             dvnames(dvcount) = "dPhi/dC" 
397                         case default 
398                             write(*, '(6X, A, 1X, A)') & 
399                                 &   "Unrecognized design variable:", & 
400                                 &   paramValue 
401                     end select 
402                 end if 
403             case default 
404                 write(*, '(6X, A, 1X, A)') & 
405                     &   "Unrecognized parameter name on dnad card:", & 
406                     &    trim(paramName) 
407                 stat = 1 
408             end select 
409          
410     end function setDNADField 
411 #endif 
412  
413  
414     REAL function stringToReal(str) result (val) 

 

Original: lines 405-408 

405     end function writeOutput 
406      
407  
408     subroutine writeData(model) 

 

Modified: lines 477-481 

477     end function writeOutput 
478      
479  
480 #ifndef dnad 
481     subroutine writeData(model) 

 

Original: lines 435-438 

435     end subroutine writeData 
436      
437  
438     character*80 function removeWhitespace(str) result(mstr) 

 

Modified: lines 508-546 

508     end subroutine writeData 
509 #else 
510     subroutine writeData(model) 
511         class(adpmodel), intent(inout) :: model  ! adpmodel object 
512          
513         integer :: i, j  ! Loop control variable 
514         character*80 :: fmtString 
515          
516         if (model%method .eq. analytical .and. model%computeDerivatives) then 
517             ! Header 
518             write(fmtString, *) '(', 4 + dvcount, '(A, ","), A)' 
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519             write(ioUnit, fmtString) "x", "phi", "dPhi/dU", "dPhi/dGamma", & 
520                 &   "dPhi/dC", (trim(dvnames(j))//"_AD", j=1, dvcount)  
521  
522             ! Results 
523             write(fmtString, *) '(', 4 + dvcount, '(ES23.15, ", "), ES23.15)' 
524             do i=1, model%npts 
525                 write(ioUnit, fmtString) model%x(i)%x, model%phi(i)%x, & 
526                     &   model%dPhi_dU(i)%x, model%dPhi_dGamma(i)%x, & 
527                     &   model%dPhi_dC(i)%x, (model%phi(i)%dx(j), j=1, dvcount) 
528             end do 
529         else 
530             ! Header 
531             write(fmtString, *) '(', 1 + dvcount, '(A, ","), A)' 
532             write(ioUnit, fmtString) "x", "phi", & 
533                 &   (trim(dvnames(j))//"_AD", j=1, dvcount) 
534  
535             ! Results 
536             write(fmtString, *) '(', 1 + dvcount, '(ES23.15, ", "), ES23.15)' 
537             do i=1, model%npts 
538                 write(ioUnit, fmtString) model%x(i)%x, model%phi(i)%x, & 
539                     &   (model%phi(i)%dx(j), j=1, dvcount) 
540             end do 
541         end if 
542     end subroutine writeData 
543 #endif 
544      
545      
546     character*80 function removeWhitespace(str) result(mstr) 
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D SUMMARY OF CODE CHANGES TO MACHUP FOR DNAD INTEGRATION 

D.1 Changes to loads_m Module 

Original: lines 1-2 

1 module loads_m 
2     use plane_m 

 

Modified: lines 1-6 

1 module loads_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use plane_m 

 

Original: lines 58-61 

58    real :: ans(7),P(3),percent,span,chord 
59    120 Format(A15, 100ES25.13) 
60  
61    !Get filename if specified 

 
 

Modified: lines 62-68 

62    real :: ans(7),P(3),percent,span,chord 
63    real :: zero 
64    120 Format(A15, 100ES25.13) 
65  
66    zero = 0.0 
67  
68    !Get filename if specified 
 

D.2 Changes to plane_m Module 

Original: lines 1-2 

1 module plane_m 
2     use myjson_m 
 

Modified: lines 1-6 

1 module plane_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use myjson_m 
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Original: lines 150-174 

150     call t%json%get('plane.name', cval); call json_check(); t%name = trim(cval) 
151     t%CG(1) = json_file_required_real(t%json,'plane.CGx') 
152     t%CG(2) = json_file_required_real(t%json,'plane.CGy') 
153     t%CG(3) = json_file_required_real(t%json,'plane.CGz') 
154  
155     t%Sr = json_file_required_real(t%json,'reference.area') 
156     t%long_r = json_file_required_real(t%json,'reference.longitudinal_length') 
157     t%lat_r = json_file_required_real(t%json,'reference.lateral_length') 
158  
159     t%alpha = json_file_required_real(t%json,'condition.alpha'); t%alpha = 

t%alpha*pi/180.0 
160     t%beta = json_file_optional_real(t%json,'condition.beta',0.0); t%beta = 

t%beta*pi/180.0 
161  
162     t%omega(1) = json_file_optional_real(t%json,'condition.omega.roll',0.0) 
163     t%omega(2) = json_file_optional_real(t%json,'condition.omega.pitch',0.0) 
164     t%omega(3) = json_file_optional_real(t%json,'condition.omega.yaw',0.0) 
165  
166     t%hag = json_file_optional_real(t%json,'condition.ground',0.0) 
167     if(t%hag.gt.0.0) t%groundplane = 1 
168  
169     call t%json%get('solver.type', cval); call json_check(); solver = trim(cval) 
170     jacobian_converged = json_file_optional_real(t%json,'solver.convergence', 

1.0e-6) 
171     jacobian_omega = json_file_optional_real(t%json,'solver.relaxation',0.9) 
172     nonlinear_maxiter = json_file_optional_integer(t%json,'solver.maxiter',100) 
173  
174     call t%json%get('airfoil_DB', cval); call json_check(); DB_Airfoil = 

trim(cval) 
 

Modified: lines 154-178 

154     call t%json%get('plane.name', cval); call json_check(); t%name = trim(cval) 
155     call myjson_get(t%json,'plane.CGx', t%CG(1)) 
156     call myjson_get(t%json,'plane.CGy', t%CG(2)) 
157     call myjson_get(t%json,'plane.CGz', t%CG(3)) 
158  
159     call myjson_get(t%json,'reference.area', t%Sr) 
160     call myjson_get(t%json,'reference.longitudinal_length', t%long_r) 
161     call myjson_get(t%json,'reference.lateral_length', t%lat_r) 
162  
163     call myjson_get(t%json,'condition.alpha',t%alpha); t%alpha=t%alpha*pi/180.0 
164     call myjson_get(t%json,'condition.beta',t%beta,0.0); t%beta=t%beta*pi/180.0 
165  
166     call myjson_get(t%json,'condition.omega.roll', t%omega(1), 0.0) 
167     call myjson_get(t%json,'condition.omega.pitch', t%omega(2), 0.0) 
168     call myjson_get(t%json,'condition.omega.yaw', t%omega(3), 0.0) 
169  
170     call myjson_get(t%json,'condition.ground', t%hag, 0.0) 
171     if(t%hag.gt.0.0) t%groundplane = 1 
172  
173     call t%json%get('solver.type', cval); call json_check(); solver = trim(cval) 
174     call myjson_get(t%json,'solver.convergence', jacobian_converged, 1.0e-6) 
175     call myjson_get(t%json,'solver.relaxation', jacobian_omega, 0.9) 
176     call myjson_get(t%json,'solver.maxiter', nonlinear_maxiter, 100) 
177  
178     call t%json%get('airfoil_DB', cval); call json_check(); DB_Airfoil = 

trim(cval) 
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Original: lines 193-196 

193             call json_check(); 
194             call t%json%get('controls.'//trim(j_cont%name)//'.deflection',    

t%controls(icontrol)%deflection); 
195             call json_check() 
196             t%controls(icontrol)%deflection = pi/180.0*t%controls(icontrol)% 

deflect 

 

 

Modified: lines 197-199 

197             call json_check(); 
198             call myjson_get(t%json, 'controls.'//trim(j_cont%name)// 

'.deflection', t%controls(icontrol)%deflection) 
199             t%controls(icontrol)%deflection = pi/180.0*t%controls(icontrol)% 

deflect 

 

Original: lines 232-251 

232         call t%json%get('wings.'//trim(j_wing%name)//'.ID', t%wings(iwing)%ID); 
call json_check() 

233         call t%json%get('wings.'//trim(j_wing%name)//'.side', cval);         
call json_check();  

234         t%wings(iwing)%orig_side = trim(cval) 
235         call t%json%get('wings.'//trim(j_wing%name)//'.connect.ID',  

t%wings(iwing)%connectid); call json_check() 
236         call t%json%get('wings.'//trim(j_wing%name)//'.connect.location', cval); 

call json_check();  
237         t%wings(iwing)%connectend = trim(cval) 
238         call t%json%get('wings.'//trim(j_wing%name)//'.connect.dx', 

t%wings(iwing)%doffset(1)); call json_check() 
239         call t%json%get('wings.'//trim(j_wing%name)//'.connect.dy', 

t%wings(iwing)%doffset(2)); call json_check() 
240         call t%json%get('wings.'//trim(j_wing%name)//'.connect.dz', 

t%wings(iwing)%doffset(3)); call json_check() 
241         call t%json%get('wings.'//trim(j_wing%name)//'.connect.yoffset',    

t%wings(iwing)%dy); call json_check() 
242         call t%json%get('wings.'//trim(j_wing%name)//'.span', 

t%wings(iwing)%span); call json_check() 
243         call t%json%get('wings.'//trim(j_wing%name)//'.sweep', sweep);        

call json_check() 
244         call t%json%get('wings.'//trim(j_wing%name)//'.dihedral', dihedral); 

call json_check() 
245         call t%json%get('wings.'//trim(j_wing%name)//'.mounting_angle', mount); 

call json_check() 
246         call t%json%get('wings.'//trim(j_wing%name)//'.washout', washout); call 

json_check() 
247         call t%json%get('wings.'//trim(j_wing%name)//'.root_chord', 

t%wings(iwing)%chord_1); call json_check() 
248         call t%json%get('wings.'//trim(j_wing%name)//'.tip_chord', 

t%wings(iwing)%chord_2); call json_check() 
249  
250         call t%json%get('wings.'//trim(j_wing%name)//'.sweep_definition', 

t%wings(iwing)%sweep_definition);  
251         if(json_failed()) t%wings(iwing)%sweep_definition=1 
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Modified: lines 235-254 

235         call t%json%get('wings.'//trim(j_wing%name)//'.ID', t%wings(iwing)%ID); 
call json_check() 

236         call t%json%get('wings.'//trim(j_wing%name)//'.side', cval); call 
json_check(); 

237         t%wings(iwing)%orig_side = trim(cval) 
238         call t%json%get('wings.'//trim(j_wing%name)//'.connect.ID', 

t%wings(iwing)%connectid); call json_check() 
239         call t%json%get('wings.'//trim(j_wing%name)//'.connect.location', cval); 

call json_check(); 
240                                                                                 

t%wings(iwing)%connectend = trim(cval) 
241         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.connect.dx', 

t%wings(iwing)%doffset(1)) 
242         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.connect.dy', 

t%wings(iwing)%doffset(2)) 
243         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.connect.dz', 

t%wings(iwing)%doffset(3)) 
244         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.connect.yoffset', 

t%wings(iwing)%dy) 
245         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.span', 

t%wings(iwing)%span) 
246         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.sweep', sweep) 
247         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.dihedral', 

dihedral) 
248         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.mounting_angle', 

mount) 
249         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.washout',washout) 
250         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.root_chord', 

t%wings(iwing)%chord_1) 
251         call myjson_get(t%json, 'wings.'//trim(j_wing%name)//'.tip_chord', 

t%wings(iwing)%chord_2) 
252  
253         call t%json%get('wings.'//trim(j_wing%name)//'.sweep_definition', 

t%wings(iwing)%sweep_definition); 
254         if(json_failed()) t%wings(iwing)%sweep_definition=1 

 

Original: lines 286-303 

286         !control surface defs 
287         call t%json%get('wings.'//trim(j_wing%name)//'.control.span_root', 

t%wings(iwing)%control_span_root); 
288         if(json_failed()) then 
289             call json_clear_exceptions() 
290             t%wings(iwing)%has_control_surface = 0 
291         else 
292             t%wings(iwing)%has_control_surface = 1 
293             call t%json%get('wings.'//trim(j_wing%name)//'.control.span_root', 

t%wings(iwing)%control_span_root); 
294             call json_check() 
295             call t%json%get('wings.'//trim(j_wing%name)//'.control.span_tip',  

t%wings(iwing)%control_span_tip );  
296             call json_check() 
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297             call t%json%get('wings.'//trim(j_wing%name)//'.control.chord_root', 
t%wings(iwing)%control_chord_root);  

298             call json_check() 
299             call t%json%get('wings.'//trim(j_wing%name)//'.control.chord_tip',  

t%wings(iwing)%control_chord_tip );  
300             call json_check() 
301             call t%json%get('wings.'//trim(j_wing%name)//'.control.is_sealed',  

t%wings(iwing)%control_is_sealed);  
302             call json_check() 
303         end if 
 

Modified: lines 289-302 

289         !control surface defs 
290         call myjson_get(t%json, 'wings.'//trim(j_wing%name)// 

'.control.span_root', t%wings(iwing)%control_span_root, -1.0) 
291  
292         if(t%wings(iwing)%control_span_root < 0.0) then 
293             call json_clear_exceptions() 
294             t%wings(iwing)%has_control_surface = 0 
295         else 
296             t%wings(iwing)%has_control_surface = 1 
297             call myjson_get(t%json, 'wings.'//trim(j_wing%name)// 

'.control.span_tip', t%wings(iwing)%control_span_tip) 
298             call myjson_get(t%json, 'wings.'//trim(j_wing%name)// 

'.control.chord_root', t%wings(iwing)%control_chord_root) 
299             call myjson_get(t%json, 'wings.'//trim(j_wing%name)// 

'.control.chord_tip', t%wings(iwing)%control_chord_tip) 
300             call t%json%get('wings.'//trim(j_wing%name)//'.control.is_sealed',  

t%wings(iwing)%control_is_sealed); 
301             call json_check() 
302         end if 

 

Original: lines 377-384 

377         case ('linear') 
378             airfoils(i)%aL0 = json_file_required_real(f_json,trim(prefix)// 

'properties.alpha_L0'); 
379             airfoils(i)%CLa = json_file_required_real(f_json,trim(prefix)// 

'properties.CL_alpha');  
380             airfoils(i)%CmL0 = json_file_required_real(f_json,trim(prefix)// 

'properties.Cm_L0'); 
381             airfoils(i)%Cma = json_file_required_real(f_json,trim(prefix)// 

'properties.Cm_alpha');  
382             airfoils(i)%CD0 = json_file_required_real(f_json,trim(prefix)// 

'properties.CD_min'); 
383             airfoils(i)%CLmax = json_file_optional_real(f_json,trim(prefix)// 

'properties.CL_max',-1.0); 
384             airfoils(i)%has_data_file = 0 
 

Modified: lines 376-383 

376         case ('linear') 
377             call myjson_get(f_json, trim(prefix)//'properties.alpha_L0', 

airfoils(i)%aL0); 
378             call myjson_get(f_json, trim(prefix)//'properties.CL_alpha', 

airfoils(i)%CLa); 
379             call myjson_get(f_json, trim(prefix)//'properties.Cm_L0', 

airfoils(i)%CmL0); 
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380             call myjson_get(f_json, trim(prefix)//'properties.Cm_alpha', 
airfoils(i)%Cma); 

381             call myjson_get(f_json, trim(prefix)//'properties.CD_min', 
airfoils(i)%CD0); 

382             call myjson_get(f_json, trim(prefix)//'properties.CL_max', 
airfoils(i)%CLmax, -1.0); 

383             airfoils(i)%has_data_file = 0 

 

Original: lines 604-607 

604                     if(trim(j_mix%name).eq.trim(t%controls(icontrol)%name)) then 
605                         call t%json%get('wings.'//trim(t%wings(iwing)%name) 

//'.control.mix.'//trim(j_mix%name), ratio); 
606                         call json_check() 
607                         if(t%controls(icontrol)%is_symmetric.eq.1) then 
 

Modified: lines 603-605 

603                     if(trim(j_mix%name).eq.trim(t%controls(icontrol)%name)) then 
604                         call myjson_get(t%json, 'wings.'// trim(t%wings(iwing)% 

name) //'.control.mix.'//trim(j_mix%name), ratio) 
605                         if(t%controls(icontrol)%is_symmetric.eq.1) then 

 

Original: lines 720-722 

720     integer :: i 
721     real :: time1,time2 
722     call cpu_time(time1) 
 

Modified: lines 718-720 

718     integer :: i 
719     REAL :: time1,time2 
720     call cpu_time(time1) 

 

Original: lines 1133-1136 

1133     real :: A(3,3),Atemp(3,3),X(3),B(3),span,span1,span2,span3,F0(3),F1(3),P(3), 
percent 

1134     120 Format(A15, 100ES25.13) 
1135  
1136     filename = trim(adjustl(t%master_filename))//'_loads.txt' 
 

Modified: lines 1131-1137 

1131     real :: A(3,3),Atemp(3,3),X(3),B(3),span,span1,span2,span3,F0(3),F1(3),P(3), 
percent 

1132     real :: zero 
1133     120 Format(A15, 100ES25.13) 
1134  
1135     zero = 0.0 
1136  
1137     filename = trim(adjustl(t%master_filename))//'_loads.txt' 
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Original: lines 1153-1155 

1153     call ds_create_from_data(dist,30,2,rawdata) 
1154     call ds_cubic_setup(dist,1,2,0.0,2,0.0) 
1155     call ds_print_data(dist) 

 

Modified: lines 1154-1156 

1153     call ds_create_from_data(dist,30,2,rawdata) 
1154     call ds_cubic_setup(dist, 1, 2, zero, 2, zero) 
1155     call ds_print_data(dist) 
 

D.3 Changes to special_functions_m Module 

Original: lines 1-2 

1 module special_functions_m 
2     use plane_m 
 

Modified: lines 1-6 

1 module special_functions_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use plane_m 

 

Original: lines 459-460 

459     start_alpha = json_optional_real(json_command,'start_alpha',0.0) 
460     start_alpha = (start_alpha+1.0)*pi/180.0 

 

 

Modified: lines 463-464 

463     call myjson_get(json_command, 'start_alpha', start_alpha, 0.0) 
464     start_alpha = (start_alpha+1.0)*pi/180.0 

 

Original: lines 469-471 

469     do ialpha = -10, 300, 1 
470         t%alpha = real(ialpha)/10.0*pi/180.0 + start_alpha 
471         call plane_run_current(t) 
 

Modified: lines 473-475 

473     do ialpha = -10, 300, 1 
474         t%alpha = REAL(ialpha)/10.0*pi/180.0 + start_alpha 
475         call plane_run_current(t) 
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Original: lines 581-598 

581     write(*,*) 'Using control surface: ',trim(controlname) 
582  
583     call json_get(json_command,'CL',CL_target,json_found) 
584  
585     if(json_failed()) then 
586         call json_clear_exceptions() 
587         trimType = 2 
588  
589         CW_target = json_required_real(json_command,'CW'); 
590         climb=json_optional_real(json_command,'climb',0.0); climb=climb*pi/180.0 
591         thrust_x = json_optional_real(json_command,'thrust.x',0.0); 
592         thrust_z = json_optional_real(json_command,'thrust.z',0.0); 
593         thrust_a = json_optional_real(json_command,'thrust.angle',0.0); 
594  
595     else !trim using CL, Cm 
596         trimType = 1 
597         Cm_target = json_optional_real(json_command,'Cm',0.0); 
598     end if 
 

Modified: lines 585-602 

585     write(*,*) 'Using control surface: ',trim(controlname) 
586  
587     call myjson_get(json_command, 'CL', CL_target, -1.0) 
588  
589     if(CL_target < 0.0) then 
590         call json_clear_exceptions() 
591         trimType = 2 
592  
593         call myjson_get(json_command, 'CW', CW_target) 
594         call myjson_get(json_command,'climb',climb,0.0); climb=climb*pi/180.0 
595         call myjson_get(json_command, 'thrust.x', thrust_x, 0.0); 
596         call myjson_get(json_command, 'thrust.z', thrust_z, 0.0); 
597         call myjson_get(json_command, 'thrust.angle', thrust_a, 0.0); 
598  
599     else !trim using CL, Cm 
600         trimType = 1 
601         call myjson_get(json_command, 'Cm', Cm_target, 0.0); 
602     end if 

 

Original: lines 606-611 

606     de = t%controls(icontrol)%deflection !radians 
607  
608     delta  = json_optional_real(json_command,'delta',0.5); 
609     maxres = json_optional_real(json_command,'convergence',1.0e-10); 
610     relaxation = json_optional_real(json_command,'relaxation',1.0); 
611     maxiter = json_optional_integer(json_command,'maxiter',50); 
 

Modified: lines 610-615 

610     de = t%controls(icontrol)%deflection !radians 
611  
612     call myjson_get(json_command, 'delta', delta, 0.5); 
613     call myjson_get(json_command, 'convergence', maxres, 1.0e-10); 
614     call myjson_get(json_command, 'relaxation', relaxation, 1.0); 
615     call myjson_get(json_command, 'maxiter', maxiter, 50); 
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Original: lines 755-769 

755     write(*,*) '---------- Finding alpha to target CL -----------' 
756  
757     CL_target = json_required_real(json_command,'CL'); 
758  
759     !store alpha and de in case no solution is found 
760     alpha_temp = t%alpha !radians 
761  
762     alpha = 0.0 !t%alpha !radians 
763  
764     delta  = json_optional_real(json_command,'delta',0.5); 
765     maxres = json_optional_real(json_command,'convergence',1.0e-10); 
766     relaxation = json_optional_real(json_command,'relaxation',1.0); 
767     maxiter = json_optional_integer(json_command,'maxiter',50); 
768  
769     write(*,*) 
 

Modified: lines 759-773 

759     write(*,*) '---------- Finding alpha to target CL -----------' 
760  
761     call myjson_get(json_command, 'CL', CL_target); 
762  
763     !store alpha and de in case no solution is found 
764     alpha_temp = t%alpha !radians 
765  
766     alpha = 0.0 !t%alpha !radians 
767  
768     call myjson_get(json_command, 'delta', delta, 0.5); 
769     call myjson_get(json_command, 'convergence', maxres, 1.0e-10); 
770     call myjson_get(json_command, 'relaxation', relaxation, 1.0); 
771     call myjson_get(json_command, 'maxiter', maxiter, 50); 
772  
773     write(*,*) 

 

Original: lines 843-855 

843     type(plane_t) :: t 
844     character(len=:),allocatable :: cval 
845     character(100) :: target_var, change_var 
846     real :: result,x0,x1,xnew,f0,f1, target_val, tolerance 
847     integer :: ios 
848  
849     !Read json target info 
850     call t%json%get('run.target.variable',        cval);   call json_check();   

target_var = trim(cval) 
851     call t%json%get('run.target.value',     target_val);   call json_check() 
852     call t%json%get('run.target.tolerance',  tolerance);   call json_check() 
853     call t%json%get('run.target.change',          cval);   call json_check();   

change_var = trim(cval) 
854  
855     write(*,*) '    target variable = ',trim(target_var) 
 

Modified: lines 847-857 

847     type(plane_t) :: t 
848     character(len=:), allocatable :: target_var, change_var 
849     real :: result,x0,x1,xnew,f0,f1, target_val, tolerance 



194 

850  
851     !Read json target info 
852     call myjson_get(t%json, 'run.target.variable', target_var) 
853     call myjson_get(t%json, 'run.target.value', target_val) 
854     call myjson_get(t%json, 'run.target.tolerance', tolerance) 
855     call myjson_get(t%json, 'run.target.change', change_var) 
856  
857     write(*,*) '    target variable = ',trim(target_var) 

 

Original: lines 922-927 

922         call json_get(json_command,trim(c_var%name)//'.file', cval,json_found); 
call json_check(); var_file = trim(cval) 

923         save_file = json_optional_integer(json_command,trim(c_var%name)// 
'.save', 0) 

924  
925         call f_json%load_file(filename = var_file);       call json_check() 
926         call f_json%get(trim(var_name),   var_value);     call json_check() 
927         call json_value_add(p_root, trim(c_var%name), var_value) 
 

Modified: lines 924-929 

924         call json_get(json_command,trim(c_var%name)//'.file', cval,json_found); 
call json_check(); var_file = trim(cval) 

925         call myjson_get(json_command,trim(c_var%name)//'.save', save_file, 0); 
926  
927         call f_json%load_file(filename = var_file);       call json_check() 
928         call myjson_get(f_json, trim(var_name), var_value) 
929         call json_value_add(p_root, trim(c_var%name), var_value) 

 

Original: lines 961-964 

961     call f_json%load_file(filename = fn);                  call json_check() 
962     call f_json%get(trim(fitness_var),   fitness_val);     call json_check() 
963  
964     open(unit = 10, File = 'fitness.txt', action = 'write', iostat = ios) 
 

Modified: lines 963-966 

963     call f_json%load_file(filename = fn);                  call json_check() 
964     call myjson_get(f_json, trim(fitness_var), fitness_val) 
965  
966     open(unit = 10, File = 'fitness.txt', action = 'write', iostat = ios) 

 

Original: lines 984-989 

984     call f_json%load_file(filename = fn);                  call json_check() 
985     call f_json%get('total.MyAirplane.CD',   CD);     call json_check() 
986     call f_json%get('total.Wing_1_left.Cl',   Cl);     call json_check() 
987     call f_json%get('total.Wing_1_left.Cn',   Cn);     call json_check() 
988  
989     if(opt_type.eq.1) then 
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Modified: lines 986-991 

986     call f_json%load_file(filename = fn);                  call json_check() 
987     call myjson_get(f_json, 'total.MyAirplane.CD', CD) 
988     call myjson_get(f_json, 'total.MyAirplane.Cl', Cl) 
989     call myjson_get(f_json, 'total.MyAirplane.Cn', Cn) 
990  
991     if(opt_type.eq.1) then 

 

Original: lines 1028-1031 

1028     call f_json%load_file(filename = fn);          call json_check() 
1029     call f_json%get(trim(read_var),   result);     call json_check() 
1030  
1031 end subroutine sf_run_single 

 

 

Modified: lines 1030-1033 

1028     call f_json%load_file(filename = fn);          call json_check() 
1029     call myjson_get(f_json, trim(read_var), result) 
1030  
1031 end subroutine sf_run_single 
 

D.4 Changes to view_m Module 

Original: lines 1-2 

1 module view_m 
2     use plane_m 
 

Modified: lines 1-6 

1 module view_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use plane_m 

 

Original: line 124 

124         delta = gpsize/real(gnum) 

 

Modified: line 128 

128         delta = gpsize/REAL(gnum) 
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Original: lines 132-133 

132             P1(1) = P0(1) - gpsize*cos(t%alpha); P1(2) = P0(2) + real(i)*delta; 
P1(3) = P0(3) - gpsize*sin(t%alpha) 

133             P2(1) = P0(1) + gpsize*cos(t%alpha); P2(2) = P0(2) + real(i)*delta; 
P2(3) = P0(3) + gpsize*sin(t%alpha) 

 

Modified: lines 136-137 

136             P1(1) = P0(1) - gpsize*cos(t%alpha); P1(2) = P0(2) + REAL(i)*delta; 
P1(3) = P0(3) - gpsize*sin(t%alpha) 

137             P2(1) = P0(1) + gpsize*cos(t%alpha); P2(2) = P0(2) + REAL(i)*delta; 
P2(3) = P0(3) + gpsize*sin(t%alpha) 

 

Original: lines 140-141 

140             P1(1) = P0(1) - real(i)*delta*cos(t%alpha); P1(2) = P0(2) + gpsize; 
P1(3) = P0(3) - real(i)*delta*sin(t%alpha) 

141             P2(1) = P0(1) - real(i)*delta*cos(t%alpha); P2(2) = P0(2) - gpsize; 
P2(3) = P0(3) - real(i)*delta*sin(t%alpha) 

 

Modified: lines 144-145 

144             P1(1) = P0(1) - REAL(i)*delta*cos(t%alpha); P1(2) = P0(2) + gpsize; 
P1(3) = P0(3) - REAL(i)*delta*sin(t%alpha) 

145             P2(1) = P0(1) - REAL(i)*delta*cos(t%alpha); P2(2) = P0(2) - gpsize; 
P2(3) = P0(3) - REAL(i)*delta*sin(t%alpha) 

 

D.5 Changes to wing_m Module 

Original: lines 1-2 

1 module wing_m 
2     use section_m 
 

Modified: lines 1-6 

1 module wing_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use section_m 

 

Original: lines 71-73 

71     integer :: isec 
72     real :: start(3),qvec(3),nvec(3),avec(3),fvec(3),dtheta,percent_1,percent_2, 

percent_c,chord_1,chord_2,RA,span 
73     real :: my_sweep,my_dihedral,my_twist,temp 
 

Modified: lines 75-78 

75     integer :: isec 
76     REAL :: dtheta 



197 

77     real :: start(3), qvec(3), nvec(3), avec(3), fvec(3), percent_1, percent_2, 
percent_c, chord_1, chord_2, RA, span 

78     real :: my_sweep, my_dihedral, my_twist, temp 

 

Original: lines 104-112 

104     call wing_allocate(t) 
105     dtheta = pi/real(t%nSec) 
106     t%area = 0.0 
107     span = 0.0 
108     do isec=1,t%nSec 
109         percent_1 = 0.5*(1.0-cos(dtheta*real(isec-1))) 
110         percent_2 = 0.5*(1.0-cos(dtheta*real(isec))) 
111         percent_c = 0.5*(1.0-cos(dtheta*(real(isec)-0.5))) 
112         if(t%side.eq.'left') then !must handle differently for left wing 
 

Modified: lines 109-117 

109     call wing_allocate(t) 
110     dtheta = pi/REAL(t%nSec) 
111     t%area = 0.0 
112     span = 0.0 
113     do isec=1,t%nSec 
114         percent_1 = 0.5*(1.0-cos(dtheta*REAL(isec-1))) 
115         percent_2 = 0.5*(1.0-cos(dtheta*REAL(isec))) 
116         percent_c = 0.5*(1.0-cos(dtheta*(REAL(isec)-0.5))) 
117         if(t%side.eq.'left') then !must handle differently for left wing 

 

Original: lines 274-276 

274     integer :: isec 
275     real :: A,B,C,D,P1(3),P2(3),P3(3),tempv(3),tempr,temp_percent 
276     P1(1) = CG(1) - hag*sin(alpha) !offset from CG 
 

Modified: lines 279-282 

279     integer :: isec 
280     real :: A,B,C,D,P1(3),P2(3),P3(3),tempv(3),tempr,temp_percent,zero 
281     zero = 0.0 
282     P1(1) = CG(1) - hag*sin(alpha) !offset from CG 

 

Original: lines 295-302 

295         t%sec(isec)%chord_2 = tempr 
296  
297         call math_reflect_point(A,B,C,0.0,t%sec(isec)%un,tempv) 
298         t%sec(isec)%un = tempv 
299         call math_reflect_point(A,B,C,0.0,t%sec(isec)%ua,tempv) 
300         t%sec(isec)%ua = tempv 
301         call math_reflect_point(A,B,C,0.0,t%sec(isec)%uf,tempv) 
302         t%sec(isec)%uf = tempv 
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Modified: lines 301-308 

301         t%sec(isec)%chord_2 = tempr 
302  
303         call math_reflect_point(A,B,C,zero,t%sec(isec)%un,tempv) 
304         t%sec(isec)%un = tempv 
305         call math_reflect_point(A,B,C,zero,t%sec(isec)%ua,tempv) 
306         t%sec(isec)%ua = tempv 
307         call math_reflect_point(A,B,C,zero,t%sec(isec)%uf,tempv) 
308         t%sec(isec)%uf = tempv 
 

D.6 Changes to airfoil_m Module 

Original: lines 1-2 

1 module airfoil_m 
2     use dataset_m 
 

Modified: lines 1-6 

1 module airfoil_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use dataset_m 
 

D.7 Changes to atmosphere_m Module 

Original: lines 1-2 

1 module atmosphere_m 
2     use dataset_m 
 

Modified: lines 1-6 

1 module atmosphere_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use dataset_m 

 

Original: line 12 

12    real :: temp(36,7) 
 

Modified: lines 17-20 

17    real :: temp(36,7) 
18    real :: zero 
19  
20    zero = 0.0 
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Original: lines 52-55 

52     call ds_create_from_data(t%properties,36,7,temp(:,:)) 
53     call ds_cubic_setup(t%properties,1,2,0.0,2,0.0) 
54  
55 end subroutine atm_create 
 

Modified: lines 60-63 

60     call ds_create_from_data(t%properties,36,7,temp(:,:)) 
61     call ds_cubic_setup(t%properties,1,2,zero,2,zero) 
62  
63 end subroutine atm_create 
 

D.8 Changes to dataset_m Module 

Original: lines 1-2 

1 module dataset_m 
2     use math_m 
 

Modified: lines 1-6 

1 module dataset_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use math_m 

 

D.9 Changes to math_m Module 

Original: lines 1-4 

1 module math_m 
2     implicit none 
3     real, parameter :: pi = 3.1415926535897932 
4 contains 
 

Modified: lines 1-9 

1 module math_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6  
7     implicit none 
8     REAL, parameter :: pi = 3.1415926535897932 
9 contains 

 

Original: lines 225-229 

225     INTEGER::n,D,info 
226     REAL,DIMENSION(n)::B,X 
227     REAL,DIMENSION(n,n)::A 
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228      
229     INTEGER,allocatable,DIMENSION(:) :: INDX 
 

Modified: lines 230-234 

230     INTEGER::n,D,info 
231     real,DIMENSION(n)::B,X 
232     real,DIMENSION(n,n)::A 
233      
234     INTEGER,allocatable,DIMENSION(:) :: INDX 

 

Original: lines 274-277 

274     REAL, PARAMETER :: TINY=1.5D-16 
275     REAL  AMAX,DUM, SUM, A(N,N) 
276     REAL,ALLOCATABLE,DIMENSION(:) :: VV 
277     INTEGER N, CODE, D, INDX(N) 
 

Modified: lines 279-282 

279     REAL, PARAMETER :: TINY=1.5D-16 
280     real  AMAX,DUM, SUM, A(N,N) 
281     real,ALLOCATABLE,DIMENSION(:) :: VV 
282     INTEGER N, CODE, D, INDX(N) 

 

Original: lines 356-357 

356     integer :: N 
357     REAL  SUM, A(N,N),B(N) 
358     INTEGER INDX(N) 
 

Modified: lines 361-363 

361     integer :: N 
362     real  SUM, A(N,N),B(N) 
363     INTEGER INDX(N) 
 

D.10 Changes to section_m Module 

Original: lines 1-2 

1 module section_m 
2     use airfoil_m 
 

Modified: lines 1-6 

1 module section_m 
2 #ifdef dnad 
3     use dnadmod 
4 #define real type(dual) 
5 #endif 
6     use airfoil_m 
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D.11 Changes to myjson_m Module 

Original: lines 1-134 

1 module myjson_m 
2     use json_m 
3     implicit none 
4  
5     logical :: json_found 
6      
7 contains 
8  
9 !-------------------------------------------------------------------------------

- 
10 real function json_required_real(json,name) 
11     implicit none 
12     type(json_value),intent(in),pointer :: json 
13     character(len=*) :: name 
14     real :: value 
15  
16     call json_get(json, name, value, json_found) 
17     if(json_failed()) then 
18         write(*,*) 'Error: Unable to read required value: ',name 
19         STOP 
20     end if 
21  
22     json_required_real = value 
23 end function json_required_real 
24  
25 !-------------------------------------------------------------------------------

- 
26 real function json_optional_real(json,name,default_value) 
27     implicit none 
28     type(json_value),intent(in),pointer :: json 
29     character(len=*) :: name 
30     real :: value, default_value 
31  
32     call json_get(json, name, value, json_found) 
33     if((.not.json_found) .or. json_failed()) then 
34         write(*,*) trim(name),' set to ',default_value 
35         value = default_value 
36         call json_clear_exceptions() 
37     end if 
38  
39     json_optional_real = value 
40 end function json_optional_real 
41  
42 !-------------------------------------------------------------------------------

- 
43 integer function json_optional_integer(json,name,default_value) 
44     implicit none 
45     type(json_value),intent(in),pointer :: json 
46     character(len=*) :: name 
47     integer :: value, default_value 
48  
49     call json_get(json, name, value, json_found) 
50     if((.not.json_found) .or. json_failed()) then 
51         write(*,*) trim(name),' set to ',default_value 
52         value = default_value 
53         call json_clear_exceptions() 
54     end if 
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55  
56     json_optional_integer = value 
57 end function json_optional_integer 
58  
59 !-------------------------------------------------------------------------------

- 
60 real function json_file_required_real(json,name) 
61     implicit none 
62     type(json_file) :: json 
63     character(len=*) :: name 
64     real :: value 
65  
66     call json%get(name, value) 
67     if(json_failed()) then 
68         write(*,*) 'Error: Unable to read required value: ',name 
69         STOP 
70     end if 
71  
72     json_file_required_real = value 
73 end function json_file_required_real 
74  
75 !-------------------------------------------------------------------------------

- 
76 real function json_file_optional_real(json,name,default_value) 
77     implicit none 
78     type(json_file) :: json 
79     character(len=*) :: name 
80     real :: value, default_value 
81  
82     call json%get(name, value) 
83     if(json_failed()) then 
84         write(*,*) name,' set to ',default_value 
85         value = default_value 
86         call json_clear_exceptions() 
87     end if 
88  
89     json_file_optional_real = value 
90 end function json_file_optional_real 
91  
92 !-------------------------------------------------------------------------------

- 
93 integer function json_file_optional_integer(json,name,default_value) 
94     implicit none 
95     type(json_file) :: json 
96     character(len=*) :: name 
97     integer :: value, default_value 
98  
99     call json%get(name, value) 
100     if(json_failed()) then 
101         write(*,*) trim(name),' set to ',default_value 
102         value = default_value 
103         call json_clear_exceptions() 
104     end if 
105  
106     json_file_optional_integer = value 
107 end function json_file_optional_integer 
108  
109 !-------------------------------------------------------------------------------

- 
110 subroutine json_check() 
111     if(json_failed()) then 
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112         call print_json_error_message() 
113         STOP 
114     end if 
115 end subroutine json_check 
116 !-------------------------------------------------------------------------------

- 
117 subroutine print_json_error_message() 
118     implicit none 
119     character(len=:),allocatable :: error_msg 
120     logical :: status_ok 
121  
122     !get error message: 
123     call json_check_for_errors(status_ok, error_msg) 
124  
125     !print it if there is one: 
126     if (.not. status_ok) then 
127         write(*,'(A)') error_msg 
128         deallocate(error_msg) 
129         call json_clear_exceptions() 
130     end if 
131  
132 end subroutine print_json_error_message 
133  
134 end module myjson_m 
 

Modified: lines 1-305 

1 module myjson_m 
2 #ifdef dnad 
3     use dnadmod 
4 #ifndef ndv 
5 #define ndv 1 
6 #endif 
7 #endif 
8     use json_m 
9     implicit none 
10  
11     logical :: json_found 
12 #ifdef dnad 
13     integer, save :: n_design_vars = 0 
14 #endif 
15  
16     interface myjson_get 
17         module procedure :: myjson_value_get_real, myjson_file_get_real 
18 #ifdef dnad 
19         module procedure :: myjson_value_get_dual, myjson_file_get_dual 
20 #endif 
21         module procedure :: myjson_value_get_integer, myjson_file_get_integer 
22         module procedure :: myjson_file_get_string 
23     end interface myjson_get 
24  
25 #ifdef dnad 
26     interface json_value_add 
27         module procedure :: myjson_value_add_dual, myjson_value_add_dual_vec 
28     end interface 
29 #endif 
30  
31 contains 
32  
33 !--------------------------------------------------------------------------- 
34 subroutine myjson_value_get_real(json, name, value, default_value) 
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35     implicit none 
36     type(json_value),intent(in),pointer :: json 
37     character(len=*), intent(in) :: name 
38     real, intent(out) :: value 
39     real, intent(in), optional :: default_value 
40  
41     call json_get(json, name, value, json_found) 
42     if(json_failed() .or. (.not. json_found)) then 
43         if (present(default_value)) then 
44             write(*,*) trim(name),' set to ',default_value 
45             value = default_value 
46             call json_clear_exceptions() 
47         else 
48             write(*,*) 'Error: Unable to read required value: ',name 
49             STOP 
50         end if 
51     end if 
52 end subroutine myjson_value_get_real 
53  
54 #ifdef dnad 
55 !--------------------------------------------------------------------------- 
56 subroutine myjson_value_get_dual(json, name, value, default_value) 
57     implicit none 
58     type(json_value),intent(in),pointer :: json 
59     character(len=*), intent(in) :: name 
60     type(dual), intent(out) :: value 
61     real, intent(in), optional :: default_value 
62  
63     real, dimension(:), allocatable :: vec 
64  
65     call json_get(json, name, value%x, json_found) 
66     if(json_failed() .or. (.not. json_found)) then 
67         call json_clear_exceptions() 
68         call json_get(json, name, vec, json_found) 
69         if(json_found .and. (.not. json_failed())) then 
70             value = vec(1)  ! This will initialize derivatives to zero 
71             if(vec(2) /= 0) then 
72                 if(n_design_vars < ndv) then 
73                     n_design_vars = n_design_vars + 1 
74                     value%dx(n_design_vars) = vec(2) 
75                 else 
76                     write(*,*) 'Error: The number of design variables ', & 
77                         &   'exceeds the compiled limit: ', ndv 
78                     write(*,*) '       Reduce the number of design ', & 
79                         &   'variables, or increase the limit by' 
80                     write(*,*) '       specifying -Dndv=<num> when compiling.' 
81                     STOP 
82                 end if 
83             end if 
84         else 
85             if (present(default_value)) then 
86                 value = default_value 
87                 write(*,*) trim(name),' set to ', value 
88                 call json_clear_exceptions() 
89             else 
90                 write(*,*) 'Error: Unable to read required value: ',name 
91                 STOP 
92             end if 
93         end if 
94     end if 
95  
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96 end subroutine myjson_value_get_dual 
97  
98 #endif 
99 !--------------------------------------------------------------------------- 
100 subroutine myjson_value_get_integer(json, name, value, default_value) 
101     implicit none 
102     type(json_value),intent(in),pointer :: json 
103     character(len=*), intent(in) :: name 
104     integer, intent(out) :: value 
105     integer, intent(in), optional :: default_value 
106  
107     call json_get(json, name, value, json_found) 
108     if((.not.json_found) .or. json_failed()) then 
109         if (present(default_value)) then 
110             write(*,*) trim(name),' set to ',default_value 
111             value = default_value 
112             call json_clear_exceptions() 
113         else 
114             write(*,*) 'Error: Unable to read required value: ', name 
115             STOP 
116         end if 
117     end if 
118  
119 end subroutine myjson_value_get_integer 
120  
121 !--------------------------------------------------------------------------- 
122 subroutine myjson_file_get_real(json, name, value, default_value) 
123     implicit none 
124     type(json_file) :: json 
125     character(len=*), intent(in) :: name 
126     real, intent(out) :: value 
127     real, intent(in), optional :: default_value 
128  
129     call json%get(name, value) 
130     if(json_failed()) then 
131         if (present(default_value)) then 
132             write(*,*) trim(name), ' set to ', default_value 
133             value = default_value 
134             call json_clear_exceptions() 
135         else 
136             write(*,*) 'Error: Unable to read required value: ', trim(name) 
137             STOP 
138         end if 
139     end if 
140  
141 end subroutine myjson_file_get_real 
142  
143 #ifdef dnad 
144 !--------------------------------------------------------------------------- 
145 subroutine myjson_file_get_dual(json, name, value, default_value) 
146     implicit none 
147     type(json_file) :: json 
148     character(len=*), intent(in) :: name 
149     type(dual), intent(out) :: value 
150     real, intent(in), optional :: default_value 
151  
152     real :: temp 
153     real, dimension(:), allocatable :: vec 
154  
155     call json%get(name, temp) 
156     if(.not. json_failed()) then 
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157         value = temp  ! Derivatives not specified, initialize to zero 
158     else 
159         call json_clear_exceptions() 
160         call json%get(name, vec) 
161         if(.not. json_failed()) then 
162             value = vec(1)  ! This will initialize derivatives to zero 
163             if(vec(2) /= 0) then 
164                 if(n_design_vars < ndv) then 
165                     n_design_vars = n_design_vars + 1 
166                     value%dx(n_design_vars) = vec(2) 
167                 else 
168                     write(*,*) 'Error: The number of design variables ', & 
169                         &   'exceeds the compiled limit: ', ndv 
170                     write(*,*) '       Reduce the number of design ', & 
171                         &   'variables, or increase the limit by' 
172                     write(*,*) '       specifying -Dndv=<num> when compiling.' 
173                     STOP 
174                 end if 
175             end if 
176         else 
177             if (present(default_value)) then 
178                 value = default_value 
179                 write(*,*) trim(name),' set to ', value 
180                 call json_clear_exceptions() 
181             else 
182                 write(*,*) 'Error: Unable to read required value: ', trim(name) 
183                 STOP 
184             end if 
185         end if 
186     end if 
187  
188 end subroutine myjson_file_get_dual 
189  
190 #endif 
191 !--------------------------------------------------------------------------- 
192 subroutine myjson_file_get_integer(json, name, value, default_value) 
193     implicit none 
194     type(json_file) :: json 
195     character(len=*), intent(in) :: name 
196     integer, intent(out) :: value 
197     integer, intent(in), optional :: default_value 
198  
199     call json%get(name, value) 
200     if(json_failed()) then 
201         if (present(default_value)) then 
202             write(*,*) trim(name),' set to ',default_value 
203             value = default_value 
204             call json_clear_exceptions() 
205         else 
206             write(*,*) 'Error: Unable to read required value: ',name 
207             STOP 
208         end if 
209     end if 
210 end subroutine myjson_file_get_integer 
211  
212 !--------------------------------------------------------------------------- 
213 subroutine myjson_file_get_string(json, name, value) 
214     implicit none 
215     type(json_file) :: json 
216     character(len=*), intent(in) :: name 
217     character(:), allocatable, intent(out) :: value 
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218  
219     call json%get(name, value) 
220     if(json_failed()) then 
221         write(*,*) 'Error: Unable to read required value: ',name 
222         STOP 
223     end if 
224  
225     value = trim(value) 
226 end subroutine myjson_file_get_string 
227  
228 !--------------------------------------------------------------------------- 
229 subroutine json_check() 
230     if(json_failed()) then 
231         call print_json_error_message() 
232         STOP 
233     end if 
234 end subroutine json_check 
235 !--------------------------------------------------------------------------- 
236 subroutine print_json_error_message() 
237     implicit none 
238     character(len=:),allocatable :: error_msg 
239     logical :: status_ok 
240  
241     !get error message: 
242     call json_check_for_errors(status_ok, error_msg) 
243  
244     !print it if there is one: 
245     if (.not. status_ok) then 
246         write(*,'(A)') error_msg 
247         deallocate(error_msg) 
248         call json_clear_exceptions() 
249     end if 
250  
251 end subroutine print_json_error_message 
252  
253 #ifdef dnad 
254 subroutine myjson_value_add_dual(me, name, val) 
255  
256     implicit none 
257  
258     type(json_value), pointer   :: me 
259     character(len=*),intent(in) :: name 
260     type(dual),intent(in)       :: val 
261  
262     real,allocatable,dimension(:) :: vec 
263     integer :: vec_length 
264  
265     ! Dual numbers are written to json as a vector: [u, du/dx, du/dy, ...] 
266     vec_length = size(val%dx) + 1 
267     allocate(vec(vec_length)) 
268     vec(1) = val%x 
269     vec(2:) = val%dx 
270  
271     call json_value_add(me, name, vec) 
272  
273 end subroutine myjson_value_add_dual 
274  
275 subroutine myjson_value_add_dual_vec(me, name, val) 
276  
277     implicit none 
278  
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279     type(json_value), pointer         :: me 
280     character(len=*),intent(in)       :: name 
281     type(dual),dimension(:),intent(in)  :: val 
282  
283     type(json_value),pointer :: var 
284     integer :: i 
285  
286     !create the variable as an array: 
287     call json_value_create(var) 
288     call to_array(var,name) 
289  
290     !populate the array: 
291     do i=1,size(val) 
292         call json_value_add(var, '', val(i)) 
293     end do 
294  
295     !add it: 
296     call json_value_add(me, var) 
297  
298     !cleanup: 
299     nullify(var) 
300  
301 end subroutine myjson_value_add_dual_vec 
302 !*************************************************************************** 
303  
304 #endif 
305 end module myjson_m 
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E EXAMPLE MACHUP INPUT FILES 

E.1 Example JSON-Formatted Input File 

{ 
    "run": { 
        "targetcl": { 
            "CL": 0.5, "delta": 0.1, "relaxation": 1.0, "maxiter": 100, 
            "convergence": 1.0E-12, "run": 1  
        }, 
        "forces": {"run": 1}, 
        "distributions": {"run": 1}, 
        "stl": {"run": 1} 
    }, 
    "solver": { "type": "nonlinear", "convergence": 1.0E-12, "relaxation": 0.9 }, 
    "plane": { "name": "MyAirplane", "CGx": 0, "CGy": 0, "CGz": 0 }, 
    "reference": { "area": 8.0, "longitudinal_length": 1.0, "lateral_length": 8.0 }, 
    "condition": { "alpha": 5.0, "beta": 0.0 }, 
    "airfoil_DB": "./AirfoilDB", 
    "wings": { 
        "wing_main": { 
            "name": "wing_main", "ID": 1, "is_main": 1, "side": "both", 
            "connect": { 
                "ID": 0, "location": "tip", "dx": 0, "dy": 0, "dz": 0, "yoffset": 0 
            }, 
            "span": 4, "mounting_angle": 0, 
            "sweep": 0.0, "dihedral": 0.0, "washout": 0, 
            "root_chord": 1.27323954473516, "tip_chord": -1, 
            "airfoils": { "NACA_2412": "" }, 
            "grid": 100, 
            "control": {} 
        } 
    } 
} 
 

E.2 Example Parameter File for a NACA 2412 Airfoil in Inviscid Incompressible Flow 

 
{ 
    "NACA_2412": { 
        "properties": { 
            "type": "linear", 
            "alpha_L0": -0.0380, 
            "CL_alpha":  6.8583, 
            "Cm_L0": 0.0, 
            "Cm_alpha": 0.0, 
            "CD0": 0.0, 
            "CD0_L": 0.0, 
            "CD0_L2": 0.0, 
            "CL_max": 1.4, 
            "Comments": "All angles in radians and slopes in 1/radians" 
        } 
    } 
} 
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E.3 Example Profile File for a NACA 2412 Airfoil 

          50 

    1.0000000000000000E+00  -7.1367152187917782E-09 

    9.9585604667663574E-01  -3.1594577012583613E-04 

    9.8349648714065552E-01  -1.2519687879830599E-03 

    9.6313685178756714E-01  -2.7746756095439196E-03 

    9.3513005971908569E-01  -4.8345020040869713E-03 

    8.9995884895324707E-01  -7.3724603280425072E-03 

    8.5822510719299316E-01  -1.0325845330953598E-02 

    8.1063729524612427E-01  -1.3630562461912632E-02 

    7.5799691677093506E-01  -1.7218593508005142E-02 

    7.0118451118469238E-01  -2.1010775119066238E-02 

    6.4114278554916382E-01  -2.4906730279326439E-02 

    5.7886141538619995E-01  -2.8774760663509369E-02 

    5.1535928249359131E-01  -3.2445460557937622E-02 

    4.5166760683059692E-01  -3.5712052136659622E-02 

    3.8890376687049866E-01  -3.8347791880369186E-02 

    3.2840368151664734E-01  -4.0438853204250336E-02 

    2.7069056034088135E-01  -4.1869580745697021E-02 

    2.1664057672023773E-01  -4.2349778115749359E-02 

    1.6707630455493927E-01  -4.1626252233982086E-02 

    1.2276169657707214E-01  -3.9503570646047592E-02 

    8.4396116435527802E-02  -3.5854429006576538E-02 

    5.2605386823415756E-02  -3.0618341639637947E-02 

    2.7930552139878273E-02  -2.3790119215846062E-02 

    1.0814117267727852E-02  -1.5401563607156277E-02 

    1.5862619038671255E-03  -5.5013755336403847E-03 

    4.6834559179842472E-04   5.7065724395215511E-03 

    7.6267276890575886E-03   1.7224393784999847E-02 

    2.3013709113001823E-02   2.8722338378429413E-02 

    4.6425748616456985E-02   3.9908505976200104E-02 

    7.7515803277492523E-02   5.0407152622938156E-02 

    1.1579234898090363E-01   5.9802222996950150E-02 

    1.6062285006046295E-01   6.7684493958950043E-02 

    2.1124278008937836E-01   7.3695354163646698E-02 

    2.6677113771438599E-01   7.7561683952808380E-02 

    3.2623127102851868E-01   7.9118162393569946E-02 

    3.8857534527778625E-01   7.8316092491149902E-02 

    4.5230948925018311E-01   7.5411744415760040E-02 

    5.1669228076934814E-01   7.0949688553810120E-02 

    5.8073848485946655E-01   6.5182760357856750E-02 

    6.4338487386703491E-01   5.8385424315929413E-02 

    7.0359897613525391E-01   5.0850689411163330E-02 

    7.6039564609527588E-01   4.2882818728685379E-02 

    8.1285268068313599E-01   3.4793458878993988E-02 

    8.6012434959411621E-01   2.6899019256234169E-02 

    9.0145480632781982E-01   1.9516089931130409E-02 

    9.3618875741958618E-01   1.2953279539942741E-02 

    9.6377998590469360E-01   7.4985213577747345E-03 

    9.8379832506179810E-01   3.4026026260107756E-03 

    9.9593400955200195E-01   8.6140306666493416E-04 

    1.0000000000000000E+00   7.1367152187917782E-09 
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F OPTIX SOURCE CODE 

1 import json 
2 from myjson import myjson 
3 from collections import OrderedDict, Iterable 
4 import numpy as np 
5 import os 
6 import shutil 
7 import time 
8  
9 import multiprocessing 
10  
11 np.set_printoptions(precision = 14) 
12  
13 zero = 1.0e-20 
14  
15  
16 class objective_model(object): 
17     """Defines the evaluation model of an objective function 
18      
19     This class defines a model consisting of an objective function that can be 
20     evaluated individually and with gradients. The class allows this function 
21     to be executed at multiple design points, either synchronously or 
22     asynchronously (using the Python multiprocessing module). 
23      
24     Two methods for evaluating the function are used. The first method is 
25     required and evaluates only the function itself, while the second method 
26     is optional and evaluates the function and its gradient with respect to the 
27     design variables. If the second function is not provided, a second-order 
28     central differencing scheme is used to approximate gradients when needed. 
29     """ 
30     def __init__(self, 
31                  objective_fcn, 
32                  objective_fcn_with_gradient = None, 
33                  max_processes = 1, 
34                  dx = 0.01 
35                 ): 
36         """Constructor 
37          
38         Constructor for the objective_model class 
39          
40         Inputs 
41         ------ 
42         objective_fcn: 
43             The function to evaluate through this model. The function should 
44             accept two arguments. The first argument is a list of design 
45             variable values specifying a fixed design point. The second 
46             argument is the case number assigned to the evaluation. The 
47             function should return a single result that is the value of the 
48             objective function at the specified design point. 
49         objective_fcn_with_gradient: 
50             The function to evaluate through this model when gradients are 
51             requested. The function should accept the same two arguments as 
52             objective_fcn. The function should return two results: the value 
53             of the objective function at the specified design point and the 
54             gradient of the objective function at the specified design point. 
55             Note that the first return value should be equal to the 
56             objective_fcn return value for a given design point. 
57              
58             If objective_fcn_with_gradient is not specified (default), a 
59             second-order central difference approximation will be used with 
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60             objective_fcn when gradients are needed. 
61              
62         max_processes: 
63             The maximum number of simultaneous processes to use. If set to 1 
64             (default), all function evaluations will be executed sequentially. 
65             Otherwise, the Python multiprocessing module will be used to 
66             execute multiple function evaluations simultaneously. 
67              
68         dx: 
69             The perturbation size to use if the second-order central difference 
70             approximation is used to estimate the gradient of the function. If 
71             objective_fcn_with_gradient is specified, dx is not used. 
72         """ 
73         # Set the objective function 
74         self.obj_fcn = objective_fcn 
75          
76         # Set the gradient function 
77         if objective_fcn_with_gradient is not None: 
78             # Use the user-specified function to calculate gradients 
79             self.obj_fcn_with_gradient = objective_fcn_with_gradient 
80         else: 
81             # Use central differencing scheme to approximate the gradient 
82             self.obj_fcn_with_gradient = self.central_difference 
83             self.dx = dx 
84              
85         # Set the maximum number of simultaneous processes 
86         self.max_processes = max_processes 
87          
88         # Initialize the number of function/gradient evaluations 
89         self.n_fcn_evals = 0 
90         self.n_grad_evals = 0 
91  
92          
93     def evaluate(self, design_points): 
94         """Evaluate the function at multiple design points 
95          
96         This routine evaluates the objective function at multiple design 
97         points, each specified by a list of design variables. 
98          
99         Inputs 
100         ------ 
101         design_points = A list of design points. A design point is defined by 
102                         a list of design variables that are passed into the 
103                         objective function for a single evaluation. Therefore, 
104                         design_points is a list of lists. 
105                 
106         Outputs 
107         ------- 
108         objective = A list of results from the objective function, 
109                     corresponding to the value of the objective function at 
110                     each design point specified. 
111          
112         """ 
113         objective = [] 
114         if self.max_processes > 1: 
115             # Execute function at multiple design points in parallel 
116             with multiprocessing.Pool(processes = self.max_processes) as pool: 
117                 args = [(design_points[i], i + 1) 
118                         for i in range(len(design_points))] 
119                 objective = pool.map(self.obj_fcn, args) 
120         else: 
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121             # Execute function at each design point sequentially 
122             for i in range(len(design_points)): 
123                 objective.append(self.obj_fcn((design_points[i], i + 1))) 
124  
125         # Increment the number of function evaluations 
126         self.n_fcn_evals += len(design_points) 
127          
128         return objective 
129  
130          
131     def evaluate_gradient(self, design_point): 
132         """Evaluate the function and its gradient at a specified design point 
133          
134         This routine evaluates the objective function and its gradient at a 
135         single design point. 
136          
137         Inputs 
138         ------ 
139         design_point = The design point at which to evaluate the function and 
140                        its gradient. The design point is defined as a list of 
141                        values, one value for each design variable required by 
142                        the objective function. 
143                         
144         Outputs 
145         ------- 
146         objective = The value of the objective function at the specified design 
147                     point. 
148                      
149         gradient = The gradient of the objective function at the specified 
150                    design point. 
151         """ 
152         objective, gradient = self.obj_fcn_with_gradient((design_point, 0)) 
153         self.n_fcn_evals += 1 
154         self.n_grad_evals += 1 
155  
156         return objective, gradient 
157      
158      
159     def central_difference(self, args): 
160         """Approximate the gradient of a function using central differencing 
161          
162         This routine approximates the gradient of a specified function with 
163         respect to all design variables at a specified design point. The 
164         gradient is approximated using second-order central differencing. 
165          
166         Inputs 
167         ------ 
168         design_point = A list of design variables defining the design point at 
169                        which the objective function and its gradient will be 
170                        evaluated 
171                         
172         case_id = The case ID to use for the objective function evaluation. The 
173                   case IDs for gradient evaluations will be incremented 
174                   sequentially starting from (case_id + 1). 
175         """ 
176         design_point = args[0] 
177         case_id = args[1] 
178         # Initialize a list of objective function arguments by perturbing each 
179         # variable by +/-dx 
180         n_design_vars = len(design_point) 
181         argslist = [(design_point[:], i) for i in range(case_id, 
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182                 case_id + 2 * n_design_vars + 1)] 
183         for i in range(1, n_design_vars + 1): 
184             argslist[i][0][i - 1] += self.dx 
185             argslist[i + n_design_vars][0][i - 1] -= self.dx 
186          
187         if self.max_processes > 1: 
188             # Execute function at multiple design points in parallel 
189             with multiprocessing.Pool(processes = self.max_processes) as pool: 
190                 results = pool.map(self.obj_fcn, argslist) 
191         else: 
192             # Execute function at each design point sequentially 
193             results = [] 
194             for a in argslist: 
195                 results.append(self.obj_fcn(a)) 
196                  
197         # Get the objective function value at the specified design point 
198         objective = results[0] 
199          
200         # Calculate the gradient of the objective function from results 
201         # at the perturbed design points 
202         gradient = [] 
203         for i in range(1, n_design_vars + 1): 
204             gradient.append((results[i] - results[i + n_design_vars]) / 
205                     (2.0 * self.dx)) 
206  
207         return objective, gradient 
208  
209          
210 class settings(object): 
211     """Defines the various settings used by the optimization algorithm 
212     """ 
213     def __init__(self): 
214         self.opt_file = 'optimization.txt' 
215         self.grad_file = 'gradient.txt' 
216         self.verbose = False 
217          
218         self.nvars = 0 
219         self.varnames = [] 
220         self.varsinit = [] 
221         self.opton = [] 
222          
223         self.default_alpha = 0.0 
224         self.stop_delta = 1.0E-12 
225         self.nsearch = 8 
226         self.line_search_type = 'quadratic' 
227         self.alpha_tol = 0.1 
228         self.max_refinements = 100 
229         self.rsq_tol = 0.99 
230         self.max_alpha_factor = 100 
231  
232         self.wolfe_armijo = 1.0e-4 
233         self.wolfe_curv = 0.9 
234          
235         self.nconstraints = 0 
236         self.constrainttype = [] 
237         self.constraintnames = [] 
238         self.constraintvalues = [] 
239         self.penalty = [] 
240         self.penalty_factor = [] 
241  
242  
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243     def load(settings_file): 
244         self = settings() 
245         input = myjson(settings_file) 
246              
247         # Read settings from JSON file 
248         json_settings = input.get('settings', OrderedDict) 
249         self.default_alpha = json_settings.get('default_alpha', float) 
250         self.stop_delta = json_settings.get('stop_delta', float) 
251         self.nsearch = json_settings.get('n_search', int) 
252         self.line_search_type = json_settings.get('line_search_type', str, 
253                 'quadratic') 
254         self.verbose = json_settings.get('verbose', bool, False)  # optional 
255          
256         self.alpha_tol = json_settings.get('alpha_tol', float, self.alpha_tol) 
257         self.max_refinements = json_settings.get('max_refinements', int, 
258                 self.max_refinements) 
259         self.rsq_tol = json_settings.get('rsq_tol', float, self.rsq_tol) 
260         self.max_alpha_factor = json_settings.get('max_alpha_factor', int, 
261                 self.max_alpha_factor) 
262  
263         self.wolfe_armijo = json_settings.get('wolfe_armijo', float, 
264                 self.wolfe_armijo) 
265         self.wolfe_curv = json_settings.get('wolfe_curvature', float, 
266                 self.wolfe_curv) 
267          
268         # Read variables 
269         json_variables = input.get('variables', OrderedDict, OrderedDict()) 
270         self.nvars = 0 
271         self.varnames = [] 
272         self.varsinit = [] 
273         self.opton = [] 
274         for var_name in json_variables.data: 
275             self.add_variable(var_name, 
276                     json_variables.get(var_name +'.init', float), 
277                     json_variables.get(var_name + '.opt', str) == 'on') 
278          
279         # Read constraints 
280         json_constraints = input.get('constraints', OrderedDict, OrderedDict()) 
281         self.nconstraints = len(json_constraints.data) 
282         self.nconstraints = 0 
283         self.contrainttype = [] 
284         self.constraintnames = [] 
285         self.constraintvalues = [] 
286         self.penalty = [] 
287         self.penalty_factor = [] 
288         valid_constraint_types = ['=', '<', '>'] 
289         for const_name in json_constraints.data: 
290             json_constraint_data = json_constraints.get(const_name, 
291                     OrderedDict) 
292             const_type = json_constraint_data.get('type', str) 
293             if const_type not in valid_constraint_types: 
294                 print('Unknown constraint type: {0}. Constraint {1} skipped.' 
295                     .format(const_type, const_name)) 
296                 print('Valid constraint types are {0}.' 
297                         .format(valid_constraint_types)) 
298                 continue 
299              
300             self.constrainttype.append(const_type) 
301             self.constraintnames.append(const_name) 
302             self.constraintvalues.append( 
303                     json_constraint_data.get('value', float)) 
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304             self.penalty.append( 
305                     json_constraint_data.get('penalty', float)) 
306             self.penalty_factor.append( 
307                     json_constraint_data.get('factor', float)) 
308              
309         return self 
310  
311  
312     def write(self, settings_file): 
313         data = OrderedDict() 
314         data['settings'] = OrderedDict() 
315         data['settings']['default_alpha'] = self.default_alpha 
316         data['settings']['stop_delta'] = self.stop_delta 
317         data['settings']['n_search'] = self.nsearch 
318         data['settings']['line_search_type'] = self.line_search_type 
319         data['settings']['verbose'] = self.verbose 
320  
321         data['settings']['alpha_tol'] = self.alpha_tol 
322         data['settings']['max_refinements'] = self.max_refinements 
323         data['settings']['rsq_tol'] = self.rsq_tol 
324         data['settings']['max_alpha_factor'] = self.max_alpha_factor 
325  
326         data['settings']['wolfe_armijo'] = self.wolfe_armijo 
327         data['settings']['wolfe_curvature'] = self.wolfe_curv 
328  
329         data['variables'] = OrderedDict() 
330         for i in range(self.nvars): 
331             data['variables'][self.varnames[i]] = OrderedDict() 
332             data['variables'][self.varnames[i]]['init'] = self.varsinit[i] 
333             data['variables'][self.varnames[i]]['opt'] = self.opton[i] 
334  
335         with open(settings_file, 'w') as settings: 
336             json.dump(data, settings, indent = 4) 
337  
338  
339     def add_variable(self, varname, varinit, opton = True): 
340         if varname in self.varnames: 
341             i = self.varnames.index(varname) 
342             self.varsinit[i] = varinit 
343             self.opton[i] = opton 
344         else: 
345             self.varnames.append(varname) 
346             self.varsinit.append(varinit) 
347             self.opton.append(opton) 
348             self.nvars += 1 
349  
350  
351 def optimize(obj_model, settings): 
352     """ 
353     """ 
354     header = ('{0:>4}, {1:>5}, {2:>5}, {3:>20}, {4:>20}, {5:>20}' 
355         .format('iter', 'outer', 'inner', 'fitness', 'alpha', 'mag(dx)')) 
356     for name in settings.varnames: header += ', {0:>20}'.format(name) 
357     with open(settings.opt_file, 'w') as opt_file: 
358         opt_file.write(header + '\n') 
359      
360     with open(settings.grad_file, 'w') as grad_file: 
361         grad_file.write(header + '\n') 
362      
363     print('---------- Variables ----------') 
364     for i in range(settings.nvars): 
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365         print('{0} = {1}'.format(settings.varnames[i], settings.varsinit[i])) 
366     print('') 
367      
368     print('---------- Constraints ----------') 
369     for i in range(settings.nconstraints): 
370         print('{0}, {1}, {2}'.format(settings.constraintnames[i], 
371             settings.constrainttype[i], settings.constraintvalues[i])) 
372     print('')     
373      
374     print('---------- Settings ----------') 
375     print('      default alpha: {0}'.format(settings.default_alpha)) 
376     print('     stopping delta: {0}'.format(settings.stop_delta)) 
377     print('') 
378      
379     iter = 0 
380     o_iter = 0 
381     mag_dx = 1.0 
382     design_point = settings.varsinit[:] 
383     while mag_dx > settings.stop_delta: 
384         design_point_init = np.copy(design_point) 
385         i_iter = 0 
386          
387         print('Constraint Penalties') 
388         for i in range(settings.nconstraints): 
389             print('{0} {1}'.format(settings.constraintnames[i], 
390                     settings.penalty[i])) 
391              
392         print('Beginning new update matrix') 
393         print(header) 
394          
395         alpha = 0.0 
396         while mag_dx > settings.stop_delta: 
397             obj_value, gradient = obj_model.evaluate_gradient(design_point) 
398             append_file(iter, o_iter, i_iter, obj_value, alpha, mag_dx, 
399                     design_point, gradient, settings) 
400              
401             # Initialize N to the identity matrix 
402             if (i_iter == 0): 
403                 N = np.eye(settings.nvars)  # n x n 
404  
405             else: 
406                 dx = np.matrix(design_point - design_point_prev)  # 1 x n 
407                 gamma = np.matrix(gradient - gradient_prev)  # 1 x n 
408                 NG = N * np.transpose(gamma)  # n x 1 
409                 denom = dx * np.transpose(gamma)  # 1 x 1 
410                 N += ((1.0 + np.dot(gamma, NG) / denom)[0,0] *  
411                         (np.transpose(dx) * dx) / denom 
412                       - ((np.transpose(dx) * (gamma * N)) + (NG * dx)) / denom 
413                      ) 
414  
415                 # Calculate the second Wolfe condition for the previous 
416                 # iteration. The curvature condition ensures that the slope is 
417                 # sufficiently large to contribute to a reduction in the 
418                 # objective function. If this condition is not met, the inner 
419                 # loop is stopped and the direction matrix is reset to the 
420                 # direction of steepest descent. 
421                 if np.dot(s, gradient) < settings.wolfe_curv * 
422                         np.dot(s, gradient_prev): 
423                     print("Wolfe condition (ii): curvature condition " + 
424                             "not satisified!") 
425                     break 
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426                  
427             s = -np.dot(N, gradient) 
428             design_point_prev = np.copy(design_point) 
429             gradient_prev = np.copy(gradient) 
430              
431             alpha, design_point = line_search(design_point[:], obj_value, 
432                     gradient, s, obj_model, settings) 
433              
434             dx = design_point - design_point_prev 
435             mag_dx = np.linalg.norm(dx) 
436             i_iter += 1 
437             iter += 1 
438          
439         dx = design_point - design_point_init 
440         mag_dx = np.linalg.norm(dx) 
441         append_file(iter, o_iter, i_iter, obj_value, alpha, mag_dx, 
442                 design_point, gradient, settings) 
443          
444         o_iter += 1 
445         for i in range(settings.nconstraints): 
446             settings.penalty[i] = (settings.penalty[i] * 
447                     settings.penalty_factor[i]) 
448      
449     # Run the final case 
450     obj_value = obj_model.obj_fcn((design_point, -1)) 
451     append_file(iter, o_iter, i_iter, obj_value, 0.0, mag_dx, design_point, 
452             gradient, settings) 
453     return (obj_value, design_point) 
454      
455      
456 def line_search(design_point, obj_value, gradient, s, obj_model, settings): 
457     if settings.line_search_type == 'quadratic': 
458         return line_search_quad(design_point, obj_value, gradient, s, 
459                 obj_model, settings) 
460     else: 
461         return line_search_lin(design_point, obj_value, s, obj_model, settings) 
462      
463      
464 def line_search_lin(design_point, obj_value, s, obj_model, settings): 
465     if settings.verbose: 
466         print('line search ----------------------------------------------') 
467  
468     s_norm = np.linalg.norm(s) 
469     alpha = max(settings.default_alpha, 1.1 * settings.stop_delta / s_norm) 
470     alpha_mult = settings.nsearch / 2.0 
471      
472     found_min = False 
473     while not found_min: 
474         xval, yval = run_mult_cases(settings.nsearch, alpha, s, design_point, 
475                 obj_value, obj_model) 
476         if settings.verbose: 
477             for i in range(settings.nsearch + 1): 
478                 print('{0:5d}, {1:15.7E}, {2:15.7E}' 
479                         .format(i, xval[i], yval[i])) 
480          
481         mincoord = yval.index(min(yval)) 
482         if yval[1] > yval[0]: 
483             if (alpha * s_norm) < settings.stop_delta: 
484                 print('Line search within stopping tolerance: alpha = {0}' 
485                         .format(alpha)) 
486                 return alpha, design_point 
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487             elif mincoord == 0: 
488                 if settings.verbose: print('Too big of a step. Reducing alpha') 
489                 alpha /= alpha_mult 
490             else: 
491                 if mincoord < settings.nsearch: found_min = True 
492                 else: alpha *= alpha_mult 
493         else: 
494             if settings.verbose: print('mincoord = {0}'.format(mincoord)) 
495             if mincoord == 0: return alpha, design_point 
496             elif mincoord < settings.nsearch: found_min = True 
497             else: alpha *= alpha_mult 
498      
499     a1 = xval[mincoord - 1] 
500     a2 = xval[mincoord] 
501     a3 = xval[mincoord + 1] 
502     f1 = yval[mincoord - 1] 
503     f2 = yval[mincoord] 
504     f3 = yval[mincoord + 1] 
505      
506     da = a2 - a1 
507     alpha = a1 + da * (4.0 * f2 - f3 - 3.0 * f1) / (2.0 * (2.0 * f2 - f3 - f1)) 
508     if alpha > a3 or alpha < a1: 
509         if f2 > f1: alpha = a1 
510         else: alpha = a2 
511          
512     for i in range(len(design_point)): 
513         design_point[i] += alpha * s[i] 
514  
515     if settings.verbose: print('Final alpha = {0}'.format(alpha)) 
516     return alpha, design_point 
517  
518  
519 def line_search_quad(design_point, obj_value, gradient, s, obj_model, settings): 
520     """Perform a quadratic line search to minimize the objective function 
521      
522     This subroutine evaluates the objective function multiple times in the 
523     direction of s and fits a parabola to the results using a least-squares 
524     algorithm to identify the minimum value for the objective function in 
525     the current direction. 
526      
527     Inputs 
528     ------ 
529     design_point = A list of design variables defining the design point at 
530                    which to begin the line search 
531   
532     obj_value = The value of the objective function at the specified design 
533                 point. 
534     gradient = The gradient of the objective function at the specified design 
535                point. 
536                  
537     s = The direction matrix defining the direction in which to conduct the 
538         line search. 
539      
540     obj_model = The objective model object 
541      
542     settings = The optimization settings object 
543     Outputs 
544     ------- 
545     alpha_min = The alpha corresponding to the minimum value of the objective 
546                 function in the current direction 
547                  
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548     design_point = The design point corresponding to the minimum value of the 
549                    objective function in the current direction 
550     """ 
551     if settings.verbose: 
552         print('Performing quadratic line search...') 
553  
554     # Determine the initial step size to use in the direction of s 
555     stop_delta = settings.stop_delta / np.linalg.norm(s) 
556     alpha = max(settings.default_alpha, 1.1 * stop_delta) 
557  
558     found_min = False 
559     line_search_min = (0.0, obj_value) 
560     alpha_history = [] 
561  
562     # Determine the maximum number of adjustments in alpha to attempt. 
563     nadjust = int(np.ceil(-np.log10(stop_delta) / 
564         np.log10(np.ceil(settings.nsearch / 2)))) 
565  
566     for i in range(nadjust): 
567         # Compute the objective function multiple times in the direction of s 
568         alphas, obj_vals = run_mult_cases(settings.nsearch, alpha, s, 
569                 design_point, obj_value, obj_model) 
570         alpha_history.append(alpha) 
571  
572         # Save the minimum data point for later comparisons 
573         ind = obj_vals.index(min(obj_vals)) 
574         if obj_vals[ind] < line_search_min[1]: 
575             line_search_min = (alphas[ind], obj_vals[ind]) 
576         alpha_min_est = line_search_min[0] 
577  
578         if settings.verbose: 
579             for j in range(settings.nsearch + 1): 
580                 print('{:5d}, {:23.15E}, {:23.15E}'.format( 
581                     j, alphas[j], obj_vals[j])) 
582              
583         # Check for invalid results 
584         if np.isnan(obj_vals).any(): 
585             print('Found NaN') 
586             break 
587  
588         # Check for plateau 
589         if min(obj_vals) == max(obj_vals): 
590             print('Objective function has plateaued') 
591             break 
592              
593         # Check stopping criteria 
594         if alpha <= stop_delta and ind < settings.nsearch - 1: 
595             print('stopping criteria met') 
596             break 
597              
598         # Fit a quadratic through the data and find the resulting minimum 
599         q = quadratic(np.asarray(alphas), np.asarray(obj_vals)) 
600         (alpha_min_est, obj_value_est) = q.vertex() 
601          
602         if (alpha_min_est is None or alpha_min_est < 0 or not q.convex() or 
603                 q.rsq < settings.rsq_tol): 
604             # Can't find a better minimum by curve fitting all data points. 
605             # Try a quadratic through minimum and two closest neighbors. 
606             left = min(max(ind - 1, 0), len(alphas) - 3) 
607             right = left + 3 
608             q = quadratic(np.asarray(alphas[left:right]), 
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609                     np.asarray(obj_vals[left:right])) 
610             (alpha_min_est, obj_value_est) = q.vertex() 
611              
612             if (alpha_min_est is None or alpha_min_est < 0 or not q.convex()): 
613                 if ind == settings.nsearch: 
614                     # If minimum is at the end, try increasing alpha 
615                     alpha_min_est = alpha * 4 
616                 elif ind == 0: 
617                     # If minimum is at beginning, try reducing alpha 
618                     alpha_min_est = alpha / 2 
619                 else: 
620                     # Can't find a better minimum by curve fitting, 
621                     # so just use the current minimum. 
622                     break 
623      
624         # Set alpha for next iteration 
625         alpha = max(alpha / settings.max_alpha_factor, 
626                 min(alpha * settings.max_alpha_factor, 
627                 alpha_min_est / np.ceil(settings.nsearch / 2.0))) 
628         print('alpha for next iteration = ', alpha) 
629          
630         # Check to see if we've already tried close to this alpha 
631         alpha_close = min(alpha_history, key=lambda a: abs(a - alpha) / alpha) 
632         delta = abs(alpha_close - alpha) / alpha 
633         if delta <= settings.alpha_tol: 
634             break 
635      
636     # Update design point based on alpha that minimized objective function 
637     alpha_min = line_search_min[0] 
638     design_point[:] += alpha_min * s[:] 
639  
640     # Calculate the first Wolfe condition. This is a measure of how much the 
641     # step length (alpha) decreases the objective function, but has no effect 
642     # on the behavior of the quadratic line search. 
643     armijo = obj_value + settings.wolfe_armijo * alpha_min * np.dot(s, gradient) 
644     if line_search_min[1] > armijo: 
645         print("Wolfe condition (i): Armijo rule not satisfied.") 
646  
647     if settings.verbose: print('Line search minimized at alpha = {0}' 
648             .format(alpha_min)) 
649     return alpha_min, design_point 
650  
651  
652 def run_mult_cases(nevals, alpha, s, dp0, obj_fcn0, obj_model): 
653     # Calculate linearly distributed alphas for the line search 
654     alphas = [(i * alpha) for i in range(nevals + 1)] 
655      
656     # Set up the design points in the direction of the line search 
657     design_points = [] 
658     for i in range(nevals): 
659         design_points.append([(dp0[j] + alphas[i + 1] * s[j]) 
660                 for j in range(len(dp0))]) 
661  
662     # Evaluate the function at each design point 
663     obj_fcn_values = [obj_fcn0] + obj_model.evaluate(design_points) 
664      
665     return alphas, obj_fcn_values 
666      
667      
668 def append_file(iter, o_iter, i_iter, obj_fcn_value, alpha, mag_dx, 
669         design_point, gradient, settings): 
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670     msg = ('{0:4d}, {1:5d}, {2:5d}, {3: 20.13E}, {4: 20.13E}, {5: 20.13E}' 
671         .format(iter, o_iter, i_iter, obj_fcn_value, alpha, mag_dx)) 
672     values_msg = msg 
673     for value in design_point: 
674         values_msg = ('{0}, {1: 20.13E}'.format(values_msg, value)) 
675     print(values_msg) 
676     with open(settings.opt_file, 'a') as opt_file: 
677         print(values_msg, file = opt_file) 
678  
679     grad_msg = msg 
680     for grad in gradient: 
681         grad_msg = ('{0}, {1: 20.13E}'.format(grad_msg, grad)) 
682     with open(settings.grad_file, 'a') as grad_file: 
683         print(grad_msg, file = grad_file) 
684  
685  
686 class quadratic(object): 
687     """Class for fitting, evaluating, and interrogating quadratic functions 
688     This class is used for fitting a quadratic function to a data set 
689     evaluating the function at specific points, and determining the 
690     characteristics of the function. 
691     """ 
692     def __init__(self, x, y): 
693         """ 
694         Construct a quadratic object from tabulated data. 
695         Quadratic is of the form f(x) = ax^2 + bx + c 
696         Inputs 
697         ------ 
698         x = List of independent values 
699         y = List of dependent values 
700         """ 
701         super().__init__() 
702  
703         # Calculate the quadratic coefficients 
704         x_sq = [xx**2 for xx in x] 
705         A = np.vstack([x_sq, x, np.ones(len(x))]).T 
706         self.a, self.b, self.c = np.linalg.lstsq(A, y)[0] 
707          
708         # Calculate the coefficient of determination 
709         f = [self.f(xx) for xx in x] 
710         ssres = ((f - y)**2).sum() 
711         sstot = ((y - y.mean())**2).sum() 
712  
713         if abs(sstot) < zero: 
714             # Data points actually formed a horizontal line 
715             self.rsq = 0.0 
716         else: 
717             self.rsq = 1 - ssres / sstot 
718  
719  
720     def convex(self): 
721         """ 
722         Test to see if the quadratic is convex (opens up). 
723         """ 
724         # Convex has positive curvature (2nd derivative) 
725         # f"(x) = 2a, so a > 0 corresponds to convex 
726         return (self.a > 0) 
727  
728  
729     def vertex(self): 
730         """ 
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731         Find the coordinates of the vertex 
732         """ 
733         if self.a != 0.0: 
734             # Find x where f'(x) = 2ax + b = 0 
735             x = -0.5 * self.b / self.a 
736             return (x, self.f(x)) 
737         else: 
738             # Quadratic is actually a line, no minimum! 
739             return (None, None) 
740  
741  
742     def f(self, x): 
743         """ 
744         Evaluate the quadratic function at x 
745         """ 
746         if x is not None: return self.a * x**2 + self.b * x + self.c 
747         else: return None 
748  
749  
750 class myjson: 
751     def __init__(self, filename=None, parent=None, data=None, path=None): 
752         self.file = '' 
753         self.data = OrderedDict() 
754         self.path = '' 
755          
756         if filename is not None: self.load(filename) 
757         elif parent is not None: 
758             self.file = parent.file 
759             self.data = data 
760             self.path = parent.path + path 
761  
762  
763     def load(self, filename): 
764         if not os.path.isfile(filename): 
765             print('Error: Cannot find file "{0}". Make sure'.format(filename)) 
766             print('       the path is correct and the file is accessible.') 
767             raise IOError(filename) 
768  
769         self.file = filename 
770         with open(self.file) as file: 
771             self.data = json.load(file, object_pairs_hook = OrderedDict) 
772              
773      
774     def get(self, value_path, value_type, default_value = None): 
775         abs_path = self.path + '.' + value_path 
776              
777         json_data = self.data 
778         for path in value_path.split('.'): 
779             try: 
780                 json_data = json_data[path] 
781             except KeyError as exc: 
782                 if default_value is None: 
783                     print('Error: required JSON path not found. Op aborted.') 
784                     print('       Missing path is "{0}"'.format(abs_path)) 
785                     raise 
786                 else: 
787                     json_data = default_value 
788          
789         if not isinstance(value_type, Iterable): value_type = [value_type] 
790         if type(json_data) not in value_type: 
791             print('Error: JSON value is of an incorrect type.') 
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792             print('       Expected {0} but found {1}' 
793                 .format(value_type, type(json_data))) 
794             print('       Invalid path is "{0}"'.format(abs_path)) 
795             raise KeyError(value_path) 
796  
797         if type(json_data) is OrderedDict: 
798             return myjson(parent = self, data = json_data, path = value_path) 
799         else: 
800             return json_data 
801  
802  
803 def load(filename): 
804     return myjson(filename) 
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G INPUT FILES AND PYTHON SCRIPTS FOR WING SHAPE OPTIMIZATION 

 The sections below list the Python scripts and main input file required to run the optimization analyses 

presented in Secs. 3.3 and 3.4. The objective functions (evaluate and evaluate_with_gradient) and the 

get_list_of_vars helper function are contained in a single Python script file called obj_fcn.py. Required 

MachUp executables, the main input file (input.json), and all other supporting input files referenced in the 

main input file must be contained in a folder called OrigFiles that must reside within the current working 

directory. An airfoil database must also exist within the current working directory that contains all the 

necessary airfoils referenced by the input files. Note that the files in this database will be different between 

inviscid and viscous analyses. 

G.1 Main Optimization Execution Script 

1 import optix 
2 import argparse 
3 import obj_fcn 
4 from timeit import default_timer as timer 
5  
6 parser = argparse.ArgumentParser() 
7 parser.add_argument('-nchord', 
8         help = '-nchord N (Number of chord control points)', 
9         type = int, required = False, default = 0) 
10 parser.add_argument('-ntwist', 
11         help = '-ntwist N (Number of twist control points)', 
12         type = int, required = False, default = 0) 
13 parser.add_argument('-ncamber', 
14         help = '-ncamber N (Number of camber control points)', 
15         type = int, required = False, default = 0) 
16 args = parser.parse_args() 
17 nchord = args.nchord 
18 ntwist = args.ntwist 
19 ncamber = args.ncamber 
20  
21 # Create a settings object 
22 settings = optix.settings() 
23 settings.default_alpha = 1.0 
24 settings.stop_delta = 1e-10 
25 settings.nsearch = 4 
26 settings.line_search_type = 'quadratic' 
27 settings.verbose = True 
28 settings.alpha_tol = 0.1 
29 settings.max_refinements = 100 
30 settings.rsq_tol = 0.99 
31 settings.max_alpha_factor = 100 
32 settings.wolfe_armijo = 0.0001 
33 settings.wolfe_curvature = 0.9 
34  
35 # Set up the control point parameters 
36 for i in range(nchord): 
37     settings.add_variable('chord{}'.format(i), 1.0, True) 
38  
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39 for i in range(1, ntwist): 
40     settings.add_variable('twist{}'.format(i), 0.0, True) 
41  
42 for i in range(ncamber): 
43     settings.add_variable('camber{}'.format(i), 1.0, True) 
44  
45 settings.write('settings.json') 
46  
47 # Number of design variables 
48 ndv = nchord + ntwist + ncamber + 1  # Add 1 for angle of attack 
49 if nchord > 0: ndv += 2  # Add 1 for area and 1 for longitudinal length 
50 if ntwist > 0: ndv -= 1  # Subtract 1 for root twist 
51  
52 # Create the objective model 
53 model = optix.objective_model(obj_fcn.evaluate, 
54         obj_fcn.evaluate_with_gradient, max_processes = 4) 
55  
56 # Begin the optimization 
57 start = timer() 
58 optix.optimize(model, settings) 
59  
60 end = timer() 
61 print("Optimization time: {0} seconds.".format(end - start)) 
62 print("Number of function evaluations: {0}".format(model.n_fcn_evals)) 
63 print("Number of gradient evaluations: {0}".format(model.n_grad_evals)) 

 

G.2 Objective Function (obj_fcn.evaluate) 

1 import os 
2 import shutil 
3 import json 
4 import numpy as np 
5 from collections import OrderedDict 
6  
7 def evaluate(args): 
8  
9     # Get the list of variables 
10     with open('settings.json', 'r') as settings_file: 
11         settings_data = json.load(settings_file, 
12                 object_pairs_hook = OrderedDict) 
13  
14     chord = get_list_of_vars(settings_data, 'chord', 0.01, 3.0, args[0]) 
15     twist = get_list_of_vars(settings_data, 'twist', -90.0, 90.0, args[0]) 
16     camber = get_list_of_vars(settings_data, 'camber', 0.0, 5.0, args[0]) 
17  
18     case_id = args[1] 
19  
20     # Get the current working directory 
21     work_dir = os.getcwd() 
22      
23     # Get the current working directory and case directory names 
24     orig_dir = work_dir + '/' + 'OrigFiles' 
25     case_dir = work_dir + '/' + str(case_id) 
26      
27     # Remove existing folder with same case ID 
28     if os.path.exists(case_dir): shutil.rmtree(case_dir) 
29      
30     # Copy original files into case directory 
31     shutil.copytree(orig_dir, case_dir) 
32      
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33     # Make the temporary directory current 
34     os.chdir(case_dir) 
35      
36     # Generate chord input file 
37     if len(chord) > 0: 
38         # Get the desired area, wingspan, and average chord 
39         with open('input.json', 'r') as input_file: 
40             input_data = json.load(input_file, object_pairs_hook = OrderedDict) 
41         area = input_data['reference']['area'] 
42         b = input_data['reference']['lateral_length'] 
43         cavg = area / b 
44  
45         # Calculate the chord length at the wing tip 
46         c_tip = 2.0 * len(chord) * cavg - chord[0] - 2.0 * sum(chord[1:]) 
47         chord += [c_tip] 
48  
49         # Write the chord files 
50         y_chord = np.linspace(0.0, 1.0, len(chord)) 
51         design_vars = {} 
52         for i in range(len(chord)): 
53             row = 'r' + str(i + 1) 
54             design_vars[row] = {} 
55             design_vars[row]['c1'] = y_chord[i] 
56             design_vars[row]['c2'] = chord[i] 
57         with open('chord_left.json', 'w') as data_file: 
58             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
59         with open('chord_right.json', 'w') as data_file: 
60             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
61      
62     # Generate twist input file 
63     if len(twist) > 0: 
64         twist = [0.0] + twist 
65         y_twist = np.linspace(0.0, 1.0, len(twist)) 
66         design_vars = {} 
67         for i in range(len(twist)): 
68             row = 'r' + str(i + 1) 
69             design_vars[row] = {} 
70             design_vars[row]['c1'] = y_twist[i] 
71             design_vars[row]['c2'] = twist[i] 
72         with open('twist_left.json', 'w') as data_file: 
73             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
74         with open('twist_right.json', 'w') as data_file: 
75             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
76      
77     # Generate camber input file 
78     if len(camber) > 0: 
79         y_camber = np.linspace(0.0, 1.0, len(camber)) 
80         design_vars = {} 
81         for i in range(len(camber)): 
82             row = 'r' + str(i + 1) 
83             design_vars[row] = {} 
84             design_vars[row]['c1'] = y_camber[i] 
85             design_vars[row]['c2'] = camber[i] 
86         with open('af_ratio_left.json', 'w') as data_file: 
87             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
88         with open('af_ratio_right.json', 'w') as data_file: 
89             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
90  
91     # Execute MachUp with DNAD integration 
92     os.system('./MachUp_DNAD1.out input.json > out.txt') 
93      
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94     # Extract cost function from MachUp results 
95     with open('input_forces.json') as forces_file: 
96         forces_data = json.load(forces_file) 
97      
98     # Get the drag and DNAD derivatives 
99     cd = forces_data['total']['MyAirplane']['CD'][0] 
100          
101     # Move to the original work directory 
102     os.chdir(work_dir) 
103      
104     return cd 

 

G.3 Objective Function with Gradient Calculations (obj_fcn.evaluate_with_gradient) 

1 import os 
2 import shutil 
3 import json 
4 import numpy as np 
5 from collections import OrderedDict 
6  
7 def evaluate_gradient(args): 
8     # Get the list of variables 
9     with open('settings.json', 'r') as settings_file: 
10         settings_data = json.load(settings_file, object_pairs_hook = 

OrderedDict) 
11  
12     chord = get_list_of_vars(settings_data, 'chord', 0.1, 10.0, args[0]) 
13     twist = get_list_of_vars(settings_data, 'twist', -90.0, 90.0, args[0]) 
14     camber = get_list_of_vars(settings_data, 'camber', 0.0, 4.0, args[0]) 
15     ndv = len(chord) + len(twist) + len(camber) + 1  # Add 1 for alpha 
16     if len(chord) > 0: ndv += 1  # Add 1 for chord at wingtip 
17  
18     case_id = args[1] 
19  
20     # Get the current working directory 
21     work_dir = os.getcwd() 
22      
23     # Get the current working directory and case directory names 
24     orig_dir = work_dir + '/' + 'OrigFiles' 
25     case_dir = work_dir + '/' + str(case_id) 
26      
27     # Remove existing folder with same case ID 
28     if os.path.exists(case_dir): shutil.rmtree(case_dir) 
29      
30     # Copy original files into case directory 
31     shutil.copytree(orig_dir, case_dir) 
32      
33     # Make the temporary directory current 
34     os.chdir(case_dir) 
35      
36  
37  
38     # Generate chord input file 
39     if len(chord) > 0: 
40         # Get the desired area, wingspan, and average chord 
41         with open('input.json', 'r') as input_file: 
42             input_data = json.load(input_file, object_pairs_hook = OrderedDict) 
43         area = input_data['reference']['area'] 
44         b = input_data['reference']['lateral_length'] 
45         cavg = area / b 
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46  
47         # Calculate the chord length at the wing tip 
48         c_tip = 2.0 * len(chord) * cavg - chord[0] - 2.0 * sum(chord[1:]) 
49         chord += [c_tip] 
50  
51         # Write the chord files 
52         y_chord = np.linspace(0.0, 1.0, len(chord)) 
53         design_vars = {} 
54         for i in range(len(chord)): 
55             row = 'r' + str(i + 1) 
56             design_vars[row] = {} 
57             design_vars[row]['c1'] = y_chord[i] 
58             design_vars[row]['c2'] = [chord[i], 1.0] 
59         with open('chord_left.json', 'w') as data_file: 
60             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
61         design_vars = {} 
62         for i in range(len(chord)): 
63             row = 'r' + str(i + 1) 
64             design_vars[row] = {} 
65             design_vars[row]['c1'] = y_chord[i] 
66             design_vars[row]['c2'] = chord[i] 
67         with open('chord_right.json', 'w') as data_file: 
68             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
69      
70     # Generate twist input file 
71     if len(twist) > 0: 
72         twist = [0.0] + twist 
73         y_twist = np.linspace(0.0, 1.0, len(twist)) 
74         design_vars = {} 
75         for i in range(len(twist)): 
76             row = 'r' + str(i + 1) 
77             design_vars[row] = {} 
78             design_vars[row]['c1'] = y_twist[i] 
79             design_vars[row]['c2'] = [twist[i], 1.0] if i > 0 else twist[i] 
80         with open('twist_left.json', 'w') as data_file: 
81             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
82  
83         for i in range(len(twist)): 
84             row = 'r' + str(i + 1) 
85             design_vars[row] = {} 
86             design_vars[row]['c1'] = y_twist[i] 
87             design_vars[row]['c2'] = twist[i] 
88         with open('twist_right.json', 'w') as data_file: 
89             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
90  
91     # Generate camber input file 
92     if len(camber) > 0: 
93         y_camber = np.linspace(0.0, 1.0, len(camber)) 
94         design_vars = {} 
95         for i in range(len(camber)): 
96             row = 'r' + str(i + 1) 
97             design_vars[row] = {} 
98             design_vars[row]['c1'] = y_camber[i] 
99             design_vars[row]['c2'] = [camber[i], 1.0] 
100         with open('af_ratio_left.json', 'w') as data_file: 
101             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
102      
103         for i in range(len(camber)): 
104             row = 'r' + str(i + 1) 
105             design_vars[row] = {} 
106             design_vars[row]['c1'] = y_camber[i] 
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107             design_vars[row]['c2'] = camber[i] 
108         with open('af_ratio_right.json', 'w') as data_file: 
109             json.dump(design_vars, data_file, sort_keys = False, indent = 4) 
110              
111     # Execute MachUp with DNAD integration 
112     os.system('./MachUp_DNAD{}.out input.json > out.txt'.format(ndv)) 
113      
114     # Extract cost function from MachUp results 
115     with open('input_forces.json') as forces_file: 
116         forces_data = json.load(forces_file) 
117      
118     # Get the induced drag and DNAD derivatives 
119     cd = forces_data['total']['MyAirplane']['CD'][0] 
120  
121     # Calculate the gradient 
122     grad_left = forces_data['total']['MyAirplane']['CD'][2:] 
123     grad = [2 * gl for gl in grad_left] 
124     if len(chord) > 0: 
125         # Get d(CD)/d(c_tip) 
126         dCD_dctip = grad[len(chord) - 1] 
127  
128         # Remove derivative for wingtip chord from gradient 
129         grad = grad[:len(chord) - 1] + grad[len(chord):] 
130  
131         # Apply the partial derivative factor for the wingtip chord 
132         grad[0] += -dCD_dctip 
133         for i in range(1, len(chord) - 1): 
134             grad[i] += -2.0 * dCD_dctip 
135  
136     # Move to the original work directory 
137     os.chdir(work_dir) 
138      
139     return cd, grad 

 

G.4 Helper Function for Extracting Variable Names (get_list_of_vars) 

1 def get_list_of_vars(settings_data, prefix, minval, maxval, allvalues = None): 
2     # Get a mask identifying indices for variables with matching prefix 
3     mask = [var.find(prefix) == 0 for var in settings_data['variables']] 
4  
5     # If allvalues is not specified, get initial values from settings file 
6     if allvalues is None: 
7         allvalues = [settings_data['variables'][var]['init'] 
8                 for var in settings_data['variables']] 
9  
10     # Unpack variables with matching prefix into a list 
11     values = [min(max(allvalues[i], minval), maxval) 
12             for i in range(len(allvalues)) if mask[i]] 
13  
14     # Return the resulting list 
15     return values 

 

G.5 Main MachUp Input File 

{ 
    "run": { 
        "targetcl": { 
            "CL": 0.5, 
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            "delta": 0.1, 
            "relaxation": 1.0, 
            "maxiter": 100, 
            "convergence": 1.000001E-12, 
            "run": 1 
        }, 
        "forces": {"run": 1}, 
        "distributions": {"run": 0}, 
        "stl": {"run": 0} 
    }, 
    "solver": { 
        "type": "nonlinear", 
        "convergence": 1.000001E-12, 
        "relaxation": 0.9 
    }, 
    "plane": { 
        "name": "MyAirplane", 
        "CGx": 0, 
        "CGy": 0, 
        "CGz": 0 
    }, 
    "reference": { 
        "area": 8.0, 
        "longitudinal_length": 1.0, 
        "lateral_length": 8.0 
    }, 
    "condition": { 
        "alpha": 3.0, 
        "beta": 0.0 
    }, 
    "airfoil_DB": "../AirfoilDatabase", 
    "wings": { 
        "Wing_left": { 
            "name": "Wing_1", 
            "ID": 1, 
            "is_main": 1, 
            "side": "left", 
            "connect": { 
                "ID": 0, 
                "location": "tip", 
                "dx": 0, 
                "dy": 0, 
                "dz": 0, 
                "yoffset": 0 
            }, 
            "span": 4, 
            "sweep": 0.0, 
            "dihedral": 0.0, 
            "mounting_angle": 0, 
            "washout": 0, 
            "washout_file": "twist_left.json", 
            "root_chord": 1, 
            "tip_chord": 1, 
            "chord_file": "chord_left.json", 
            "airfoils": { 
                "NACA_n2412": "", 
                "NACA_0012": "", 
                "NACA_2412": "", 
                "NACA_4412": "", 
                "NACA_6412": "", 
                "NACA_8412": "" 
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            }, 
            "af_ratio_file": "af_ratio_left.json", 
            "grid": 100, 
            "control": {} 
        }, 
        "Wing_right": { 
            "name": "Wing_right", 
            "ID": 1, 
            "is_main": 1, 
            "side": "right", 
            "connect": { 
                "ID": 0, 
                "location": "tip", 
                "dx": 0, 
                "dy": 0, 
                "dz": 0, 
                "yoffset": 0 
            }, 
            "span": 4, 
            "sweep": 0.0, 
            "dihedral": 0.0, 
            "mounting_angle": 0, 
            "washout": 0, 
            "washout_file": "twist_right.json", 
            "root_chord": 1, 
            "tip_chord": 1, 
            "chord_file": "chord_right.json", 
            "airfoils": { 
                "NACA_n2412": "", 
                "NACA_0012": "", 
                "NACA_2412": "", 
                "NACA_4412": "", 
                "NACA_6412": "", 
                "NACA_8412": "" 
            }, 
            "af_ratio_file": "af_ratio_right.json", 
            "grid": 100, 
            "control": {} 
        } 
    } 
} 
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H AERODYNAMIC CALCULATIONS USING PANAIR 

Panair is an open-source Fortran code that implements a high-order panel method for performing potential 

flow analysis of arbitrary geometries. It was originally developed by Boeing Military Airplane Development 

under contract to NASA in the latter part of the twentieth century, and has seen wide use in industry and 

academia since that time. Source code,* documentation,†,‡,§ and a list of research publications** related to 

Panair can be found online. Because of its established reliability in performing aerodynamic calculations, 

Panair has been used in the present research to perform baseline calculations against which the accuracy of 

various formulations of lifting line theory can be measured. 

In order to rapidly process finite wing models of different configurations with Panair, several functions 

were added to the MachUp source code for converting wing geometry data into properly-formatted Panair 

input files. These functions are listed in Appendix I. For each wing configuration analyzed, a MachUp input 

file was generated with the planform shape, airfoil geometry, and number of spanwise sections defined. 

MachUp was then executed to generate a Panair input file for this geometry. The Panair input file was then 

processed by Panair to calculate pressure distributions over the wing surface. Upon successful execution, 

Panair produces an output file that defines the predicted pressure coefficient at each node specified in the 

input file. A suite of Python scripts were used to integrate the pressures calculated by Panair to determine the 

spanwise section lift distribution and the total lift generated by the wing. 

A wing representation in the Panair input file is divided into two panel networks – one representing the 

upper surface of the wing and another representing the lower surface. For rectangular and tapered wings, 

where the tip chord is nonzero, a third panel network is needed to define an endcap to close the volume of 

the wing. This endcap network is automatically added to the Panair input file by MachUp. Since all wings 

considered in the present work are symmetric about the root plane, a symmetry boundary condition is defined 

at the root so that only one semispan of the wing is modeled. A representative Panair input file is included in 

Appendix J. This model represents an elliptic wing with an aspect ratio of 4A = , an average chord length of 

                                                           

* http://www.pdas.com/panairdownload.html 
† https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840020672.pdf 
‡ https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920013405.pdf 
§ https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920013622.pdf 
** http://www.pdas.com/panairrefs.html 

http://www.pdas.com/panairdownload.html
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840020672.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920013405.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920013622.pdf
http://www.pdas.com/panairrefs.html
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avg 1mc = , and a symmetric Joukowski airfoil with maximum thickness 
max 4%t = . The wing is operating at 

a geometric angle of attack of 1deg =  in incompressible flow with freestream density 
31kg / m =  and 

velocity 1m / sV = . There are 11 chordwise nodes and 21 spanwise nodes each for the upper and lower 

wing surface networks, defining a combined 20 20  mesh of panels for a total of 400 panels in the model. 

The spanwise lift distribution computed using this input file is shown in Figure H.1. 

The physical scale of the model was found to have a noticeable effect on the pressure results, especially 

near the wing tip and for fine panel meshes. The source of this variation in the results based on physical scale 

is unknown since the pressure coefficients written to the Panair output file are nondimensional. It is theorized 

that data written to and read from intermediate solution files on disk during the solution process may be of 

limited precision so that, when read in, rounding error is introduced into the solution. If true, this rounding 

error could then be reduced by increasing the physical scale of the model so that more digits of precision are 

written to disk. This theory has not been tested, however, and a different source of error may be present in 

the code. In order to alleviate this problem, multiple Panair solutions were evaluated with increasing scales 

until a reasonably converged solution was achieved. An example of this using a mesh size of 80 80  panels 

for the elliptic wing described previously is shown in Figure H.2. For the wing configurations considered in 

this work, the results become independent of scale for 5mc  . 

 

 
Figure H.1  Lift distribution with a 20×20  mesh for an elliptic wing with = 4A  and 

max
4%t = . 
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Figure H.2  Lift distributions as a function of average chord length with an 80×80  mesh for an elliptic 

wing with = 4A  and 
max

= 4%t . 

 



236 

 The number of panels that can be included in a Panair model is extremely limited, driven by the state of 

computer hardware available at the time Panair was developed. In order to obtain the most accurate results 

possible, three models of successively increasing mesh sizes ( 20 20 , 40 40 , and 80 80 ) were used for 

each wing configuration, and the results were extrapolated using Richardson Extrapolation to estimate a 

fully-grid-resolved solution. A result set showing the extrapolated data for the same wing configuration as 

has already been described is given in Figure H.3. The extrapolated results are in good agreement with results 

from the 80 80  mesh. 

The lifting line calculations presented in Chapters 4 and 5 represent wings having uniform, thin, 

symmetric sections with 
0 2a = . Since the wing geometry provided to Panair must have a non-zero 

thickness, the thin sections were approximated by solving three result sets of successively decreasing airfoil 

thicknesses (
max 16%t = , 8% , and 4% ) and extrapolating the results to a solution for 

max 0%t =  using a 

linear least squares regression algorithm. A result set showing the thickness-extrapolation results for the 

elliptic wing described above is given in Figure H.4. Since the result sets for each airfoil thickness were 

themselves extrapolated from three Panair analyses of different grid sizes, a total of nine Panair analyses 

were needed to produce Figure H.4 and each of the Panair datasets used in the comparisons in Chapters 4 

and 5. 

 Most of the low-aspect-ratio models discussed in Chapter 4 were developed for elliptic wings with straight 

quarter-chords, while others (namely Hauptman and Miloh [83] and Küchemann [73]) were developed for 

elliptic wings with straight mid-chords. In the interest of facilitating comparisons between these models, 

Panair was used to quantify the differences in wing lift coefficients and spanwise lift distributions between 

these two wing configurations. Figure H.5 shows wing lift coefficients computed using Panair for aspect 

ratios ranging from 1 to 8. Figure H.6 shows the spanwise lift distributions (scaled by the local chord ratio 

/c c ) computed using Panair for aspect ratios of 0.5, 2, and 8. From these results we conclude that the 

differences in lift are negligible between the two configurations, so that comparisons between the different 

low-aspect-ratio models discussed in Chapter 4 can be made without adjustment to the data. 
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Figure H.3  Mesh refinement and extrapolated results computed for an elliptic wing with = 4A  and 

max
= 4%t .  

 

 
Figure H.4  Lift coefficient results computed for elliptic wings of different airfoil thicknesses with 

= 4A  and extrapolated results for 
max

= 0%t . 
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Figure H.5  Comparison of wing lift coefficients for wings with straight quarter-chord and straight 

mid-chord. 

 

 

 

Figure H.6  Comparison of spanwise lift coefficients for wings with straight quarter-chord and straight 

mid-chord. 
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I MACHUP FUNCTIONS FOR WRITING PANAIR INPUT FILES 

1 subroutine view_panair(t, json_command) 
2     type(plane_t), intent(in) :: t 
3     type(json_value), intent(in), pointer :: json_command 
4  
5     real, allocatable, dimension(:,:) :: af_points 
6     character(100) :: filename, upper_network, lower_network, endcap_network 
7     integer :: i, iwing, af_datasize, symmetric 
8     integer :: ierror = 0 
9  
10     integer :: endcap_npts 
11     real :: endcap_scale 
12  
13     call myjson_get(json_command, 'endcap_npts', endcap_npts, 0) 
14     call myjson_get(json_command, 'endcap_scale', endcap_scale, 1.0) 
15  
16     do i=1,size(airfoils) 
17         call af_create_geom_from_file(airfoils(i),DB_Airfoil) 
18     end do 
19  
20     ! Open the file 
21     write(filename, '(A)') trim(adjustl(t%master_filename))//'_view.panair' 
22     open(unit = 10, File = trim(adjustl(filename)), action = 'write', iostat = 

ierror) 
23  
24     ! Determine symmetry 
25     symmetric = 1 
26     do iwing = 1, t%nrealwings 
27         if(t%wings(iwing)%orig_side .eq. 'right' .or. t%wings(iwing)%orig_side 

.eq. 'left') then 
28             symmetric = 0 
29         end if 
30     end do 
31  
32     ! Write Header information 
33     call view_write_panair_header(t, symmetric) 
34  
35     do iwing=1,t%nrealwings !real wings 
36         ! If symmetric, only write out the right wings 
37         if(symmetric .eq. 1 .and. t%wings(iwing)%side .ne. 'right') then 
38             cycle 
39         end if 
40  
41         ! Make sure all airfoils have the same number of points 
42         af_datasize = t%wings(iwing)%airfoils(1)%p%geom%datasize 
43         do i=1, t%wings(iwing)%nairfoils 
44             if(t%wings(iwing)%airfoils(i)%p%geom%datasize .ne. af_datasize) then 
45                 write(*,*) 'All airfoils for wing ',t%wings(iwing)%name,' must 

have same number of nodes.' 
46                 stop 
47             end if 
48         end do 
49  
50         ! Allocate space for the points on an airfoil 
51         if (mod(af_datasize, 2) .eq. 0) af_datasize = af_datasize + 1  ! Must be 

odd number of points for Panair! 
52         allocate(af_points(af_datasize,3)) 
53  
54         ! Write the network header information 
55         call view_write_panair_network_header(t%wings(iwing)) 
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56  
57         ! Write the upper network 
58         write(upper_network, '(A, I0)') 'upper_', t%wings(iwing)%ID 
59         call view_write_panair_network(t%wings(iwing), af_points, 

trim(adjustl(upper_network)), af_datasize, af_datasize / 2 + 1) 
60  
61         ! Write the lower network 
62         write(lower_network, '(A, I0)') 'lower_', t%wings(iwing)%ID 
63         call view_write_panair_network(t%wings(iwing), af_points, 

trim(adjustl(lower_network)), af_datasize / 2 + 1, 1) 
64  
65         ! Write the endcap network 
66         if(t%wings(iwing)%chord_2 >= 0.0) then 
67             write(endcap_network, '(A, I0)') 'endcap_', t%wings(iwing)%ID 
68             call view_write_panair_endcap(t%wings(iwing), af_points, 

trim(adjustl(endcap_network)), endcap_npts, endcap_scale) 
69         end if 
70  
71         ! Attach a wake to the trailing edge of the upper network 
72         call view_write_panair_wake(trim(adjustl(upper_network))) 
73         deallocate(af_points) 
74     end do 
75  
76     write(10, "(A)") "$END" 
77     close(10) 
78  
79 end subroutine view_panair 
80  
81  
82 subroutine view_write_panair_header(plane, symmetric) 
83     type(plane_t), intent(in) :: plane 
84     integer, intent(in) :: symmetric 
85  
86     write(10, '(A)') '$TITLE' 
87     write(10, '(A)') plane%name 
88     write(10, '(A)') 'Generated by MachUp' 
89     write(10, '(A)') '$DATACHECK' 
90     write(10, '(A)') '=ndtchk' 
91     write(10, '(A)') '0.0' 
92     write(10, '(A)') '$SYMMETRIC' 
93     write(10, '(A, T11, A)') '=xzpln', 'xypln' 
94     write(10, '(I0, A, T11, A)') symmetric, '.0', '0.0' 
95     write(10, '(A)') '$MACH NUMBER' 
96     write(10, '(A)') '=amach' 
97     write(10, '(F10.6)') 0.0 
98     write(10, '(A)') '$CASES' 
99     write(10, '(A)') '=nacase' 
100     write(10, '(A)') '1.0' 
101     write(10, '(A)') '$ANGLES OF ATTACK' 
102     write(10, '(A)') '=alpc' 
103     write(10, '(F10.6)') 0.0 
104     write(10, '(A)') '=alpha(0)' 
105     write(10, '(F10.6)') plane%alpha * 180.0 / pi 
106     write(10, '(A)') '$YAW ANGLE' 
107     write(10, '(A)') '=betc' 
108     write(10, '(F10.6)') 0.0 
109     write(10, '(A)') '=beta(0)' 
110     write(10, '(F10.6)') plane%beta * 180.0 / pi 
111     write(10, '(A)') '$REFERENCE DATA' 
112     write(10, '(A, T11, A, T21, A)') '=xref', 'yref', 'zref' 
113     write(10, '(3F10.6)') 0.0, 0.0, 0.0 
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114     write(10, '(A, T11, A, T21, A, T31, A)') '=sref', 'bref', 'cref', 'dref' 
115     write(10, '(4F10.6)') plane%Sr, plane%lat_r, plane%long_r, plane%lat_r 
116     write(10, '(A)') '$PRINTOUT CONTROL' 
117     write(10, '(A, T11, A, T21, A, T31, A, T41, A, T51, A)') '=isings', 

'igeomp', 'isingp', 'icontp', 'ibconp', 'iedgep' 
118     write(10, '(A, T11, A, T21, A, T31, A, T41, A, T51, A)') '0.0', '0.0', 

'0.0', '0.0', '0.0', '0.0' 
119     write(10, '(A, T11, A, T21, A, T31, A, T41, A)') '=ipraic', 'nexdgn', 

'ioutpr', 'ifmcpr', 'icostp' 
120     write(10, '(A, T11, A, T21, A, T31, A, T41, A)') '0.0', '0.0', '1.0', '0.0', 

'0.0' 
121 end subroutine view_write_panair_header 
122  
123  
124 subroutine view_write_panair_network_header(wi) 
125     type(wing_t), intent(in) :: wi 
126  
127     integer :: nnetworks 
128  
129     if(wi%chord_2 >= 0.0) then 
130         nnetworks = 3 
131     else 
132         nnetworks = 2 
133     end if 
134  
135     ! Write header info 
136     write(10, "(A, I0)") "$POINTS for wing ", wi%ID 
137     write(10, "(A)") "=kn"  ! Number of networks in $POINTS block 
138     write(10, "(I0, T2, A)") nnetworks, ".0" 
139     write(10, "(A)") "=kt"  ! Boundary condition (1 = solid surface) 
140     write(10, "(A)") "1.0" 
141  
142 end subroutine view_write_panair_network_header 
143  
144  
145 subroutine view_write_panair_network(wi, af_points, network, istart, iend) 
146     type(wing_t), intent(in) :: wi 
147     real, allocatable, dimension(:,:), intent(inout) :: af_points 
148     character(len=*), intent(in) :: network 
149     integer, intent(in) :: istart, iend 
150  
151     integer :: isec, isec_start, isec_end, isec_inc 
152     type(section_t), pointer :: si 
153  
154     write(10, "(A, T11, A)") "=nm", "nn" 
155     write(10, "(I0, T11, I0, T71, A)") istart - iend + 1, wi%nSec + 1, network 
156  
157     if(wi%side .eq. "left") then 
158         isec_start = wi%nSec 
159         isec_end = 1 
160         isec_inc = -1 
161     else 
162         isec_start = 1 
163         isec_end = wi%nSec 
164         isec_inc = 1 
165     end if 
166  
167     do isec = isec_start, isec_end, isec_inc 
168         si => wi%sec(isec) 
169         call view_create_local_airfoil_panair(wi, si, 1, af_points) 
170         call view_write_panair_points(istart, iend, af_points) 



242 

171     end do 
172  
173     call view_create_local_airfoil_panair(wi, si, 2, af_points) 
174     call view_write_panair_points(istart, iend, af_points) 
175  
176 end subroutine view_write_panair_network 
177  
178  
179 subroutine view_create_local_airfoil_panair(wi, si, sec_side, af_points) 
180     type(wing_t), intent(in) :: wi 
181     type(section_t), pointer, intent(in) :: si 
182     integer, intent(in) :: sec_side 
183     real, allocatable, dimension(:,:), intent(inout) :: af_points 
184  
185     real :: percent, chord, RA 
186     integer :: i, mid 
187     integer :: af_datasize 
188  
189     real :: a, b, c 
190     real, dimension(3) :: midpoint 
191  
192     af_datasize = size(af_points, 1) 
193     if (mod(af_datasize, 2) .eq. 0) then 
194         write(*,*) "Allocated size of af_points must always be odd for Panair 

interface!" 
195         write(*,*) "If the number of points on an airfoil is even, allocate 

af_points to" 
196         write(*,*) "one more than this." 
197         stop 
198     end if 
199  
200     if(sec_side .eq. 1) then 
201         percent = si%percent_1 
202     else if(sec_side .eq. 2) then 
203         percent = si%percent_2 
204     else 
205         percent = si%percent_c 
206     end if 
207  
208     if(wi%chord_2 >= 0.0) then 
209         chord = wi%chord_1 + percent*(wi%chord_2 - wi%chord_1) 
210     else 
211         RA = 8.0 * wi%span / pi / wi%chord_1 
212         chord = 8.0 * wi%span / pi / RA * sqrt(1.0 - percent**2) 
213     end if 
214  
215     if(sec_side .eq. 1) then 
216         call view_create_local_airfoil(si%af1_a, si%af1_b, wi%side, 

si%af_weight_1, chord, & 
217                 & si%twist1, si%dihedral1, si%P1, af_points) 
218     else if(sec_side .eq. 2) then 
219         call view_create_local_airfoil(si%af2_a, si%af2_b, wi%side, 

si%af_weight_2, chord, & 
220                 & si%twist2, si%dihedral2, si%P2, af_points) 
221     else 
222         call view_create_local_airfoil(si%afc_a, si%afc_b, wi%side, 

si%af_weight_c, chord, & 
223                 & si%twist, si%dihedral, si%PC, af_points) 
224     end if 
225  
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226     ! If the number of points on an airfoil is even, add an additional point at 
the leading edge 

227     if (mod(si%af1_a%geom%datasize, 2) .eq. 0) then 
228         ! Find the index of the second leading-edge point 
229         mid = si%af1_a%geom%datasize / 2 + 1 
230  
231         ! Calculate the new midpoint between the first and second leading-edge 

points 
232         midpoint(:) = 0.5 * (af_points(mid - 1, :) + af_points(mid, :)) 
233  
234         ! Fit a parabola through three points at the leading edge 
235         call quadratic_fit(af_points(mid - 1 : mid + 1, 3:1:-2), a, b, c) 
236         if (.not. isnan(a) .and. .not. isnan(b) .and. .not. isnan(c)) then 
237             midpoint(1) = a * midpoint(3)**2 + b * midpoint(3) + c 
238         end if 
239  
240         ! Shift the last half of the point array to the end 
241         af_points(si%af1_a%geom%datasize + 1 : mid + 1 : -1, :) = 

af_points(si%af1_a%geom%datasize : mid : -1, :) 
242  
243         ! Place the new midpoint between the two leading-edge points 
244         af_points(mid, :) = midpoint(:) 
245  
246     end if 
247  
248     do i = 1, af_datasize 
249         af_points(i, 1) = -af_points(i, 1) 
250         af_points(i, 3) = -af_points(i, 3) 
251     end do 
252  
253 end subroutine view_create_local_airfoil_panair 
254  
255  
256 subroutine view_write_panair_points(istart, iend, af_points) 
257     integer, intent(in) :: istart, iend 
258     real, dimension(:, :), intent(in) :: af_points 
259  
260     integer :: ipt 
261  
262     do ipt = istart, iend + 1, -2 
263         write(10, "(6F10.6)") af_points(ipt, :), af_points(ipt - 1, :) 
264     end do 
265     if (ipt == iend) then 
266         write(10, "(3F10.6)") af_points(ipt, :) 
267     end if 
268 end subroutine view_write_panair_points 
269  
270  
271 subroutine view_write_panair_endcap(wi, af_points, network, npts, rscale) 
272     type(wing_t), intent(in) :: wi 
273     real, allocatable, dimension(:, :), intent(inout) :: af_points 
274     character(len=*), intent(in) :: network 
275     integer, intent(in) :: npts 
276     real, intent(in) :: rscale 
277  
278     real, allocatable, dimension(:, :) :: af_points_scaled, c 
279     real :: r 
280     real :: theta, theta_start, theta_end, dtheta 
281     integer :: i, j, af_mid, af_end 
282  
283     ! Calculate the midpoint index 
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284     af_end = size(af_points, 1) 
285     af_mid = (af_end + 1) / 2 
286  
287     ! Write the network header info 
288     write(10, "(A, T11, A)") "=nm", "nn" 
289     write(10, "(I0, T11, I0, T71, A)") af_mid, npts + 2, network 
290  
291     ! Get the airfoil points 
292     call view_create_local_airfoil_panair(wi, wi%sec(wi%nSec), 2, af_points) 
293     allocate(af_points_scaled(af_mid, 3)) 
294     allocate(c(af_mid, 3)) 
295  
296     ! Set up theta 
297     if(wi%side .eq. 'left') then 
298         theta_start = 0.0 
299         theta_end = pi 
300     else 
301         theta_start = pi 
302         theta_end = 0.0 
303     end if 
304     dtheta = (theta_end - theta_start) / REAL(npts + 1) 
305  
306     ! calculate the centerline of the airfoil (not quite camber line...) 
307     c(:, :) = 0.5 * (af_points(1:af_mid, :) + af_points(af_end:af_mid:-1, :)) 
308  
309     theta = theta_start 
310     do i = 1, npts + 2 
311         ! Scale the airfoil points 
312         do j = 1, af_mid 
313             r = 0.5 * (af_points(af_end - j + 1, 3) - af_points(j, 3)) 
314             af_points_scaled(j, 1) = c(j, 1) 
315             af_points_scaled(j, 2) = c(j, 2) + rscale * r * sin(theta) 
316             af_points_scaled(j, 3) = c(j, 3) + r * cos(theta) 
317         end do 
318  
319         call view_write_panair_points(af_mid, 1, af_points_scaled) 
320  
321         theta = theta + dtheta 
322     end do 
323  
324 end subroutine view_write_panair_endcap 
325  
326  
327 subroutine view_write_panair_wake(network) 
328     character(*), intent(in) :: network 
329     write(10, "(A)") "$TRAILING matchw=0" 
330     write(10, "(A)") "=kn" 
331     write(10, "(A)") "1.0" 
332     write(10, "(A, T11, A)") "=kt", "matchw" 
333     write(10, "(A, T11, A)") "18.0", "0.0" 
334     write(10, "(A, T11, A, T21, A, T31, A)") "=inat", "insd", "xwake", "twake" 
335     write(10, "(A, T11, A, T21, A, T31, A, T71, A)") network, "1.0", "10.0", 

"0.0", "wake" 
336 end subroutine view_write_panair_wake 
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J EXAMPLE PANAIR INPUT FILE 

$TITLE 
myairplane           
Generated by MachUp 
$DATACHECK 
=ndtchk 
0.0 
$SYMMETRIC 
=xzpln    xypln 
1.0       0.0 
$MACH NUMBER 
=amach 
  0.000000 
$CASES 
=nacase 
1.0 
$ANGLES OF ATTACK 
=alpc 
  0.000000 
=alpha(0) 
  1.000000 
$YAW ANGLE 
=betc 
  0.000000 
=beta(0) 
  0.000000 
$REFERENCE DATA 
=xref     yref      zref 
  0.000000  0.000000  0.000000 
=sref     bref      cref      dref 
  4.000000  1.000000  4.000000  1.000000 
$PRINTOUT CONTROL 
=isings   igeomp    isingp    icontp    ibconp    iedgep 
0.0       0.0       0.0       0.0       0.0       0.0 
=ipraic   nexdgn    ioutpr    ifmcpr    icostp 
0.0       0.0       1.0       0.0       0.0 
$POINTS for wing 1 
=kn 
2.0 
=kt 
1.0 
=nm       nn 
11        21                                                          upper_1 
  0.954930  0.000000  0.000000  0.918311  0.000000  0.000377 
  0.813166  0.000000  0.002748  0.652742  0.000000  0.007923 
  0.456480  0.000000  0.014992  0.246982  0.000000  0.021670 
  0.047048  0.000000  0.025288 -0.122724  0.000000  0.023915 
 -0.245660  0.000000  0.017131 -0.310112  0.000000  0.006222 
 -0.319908  0.000000 -0.000000 
  0.951986  0.156918  0.000000  0.915480  0.156918  0.000376 
  0.810659  0.156918  0.002739  0.650729  0.156918  0.007899 
  0.455073  0.156918  0.014946  0.246220  0.156918  0.021603 
  0.046903  0.156918  0.025210 -0.122346  0.156918  0.023841 
 -0.244902  0.156918  0.017078 -0.309156  0.156918  0.006203 
 -0.318922  0.156918 -0.000000 
  0.943173  0.312869  0.000000  0.907005  0.312869  0.000372 
  0.803155  0.312869  0.002714  0.644705  0.312869  0.007826 
  0.450860  0.312869  0.014807  0.243941  0.312869  0.021403 
  0.046469  0.312869  0.024977 -0.121213  0.312869  0.023620 
 -0.242635  0.312869  0.016920 -0.306294  0.312869  0.006146 
 -0.315969  0.312869 -0.000000 
  0.928545  0.466891  0.000000  0.892938  0.466891  0.000367 
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  0.790698  0.466891  0.002672  0.634706  0.466891  0.007704 
  0.443867  0.466891  0.014578  0.240158  0.466891  0.021071 
  0.045748  0.466891  0.024589 -0.119333  0.466891  0.023254 
 -0.238872  0.466891  0.016658 -0.301544  0.466891  0.006051 
 -0.311069  0.466891 -0.000000 
  0.908192  0.618034  0.000000  0.873366  0.618034  0.000359 
  0.773367  0.618034  0.002613  0.620794  0.618034  0.007535 
  0.434138  0.618034  0.014258  0.234894  0.618034  0.020609 
  0.044745  0.618034  0.024050 -0.116718  0.618034  0.022744 
 -0.233636  0.618034  0.016293 -0.294934  0.618034  0.005918 
 -0.304250  0.618034 -0.000000 
  0.882240  0.765367  0.000000  0.848409  0.765367  0.000348 
  0.751268  0.765367  0.002539  0.603055  0.765367  0.007320 
  0.421732  0.765367  0.013851  0.228181  0.765367  0.020020 
  0.043467  0.765367  0.023363 -0.113383  0.765367  0.022094 
 -0.226960  0.765367  0.015827 -0.286506  0.765367  0.005749 
 -0.295556  0.765367 -0.000000 
  0.850849  0.907981  0.000000  0.818221  0.907981  0.000336 
  0.724536  0.907981  0.002448  0.581597  0.907981  0.007060 
  0.406727  0.907981  0.013358  0.220062  0.907981  0.019308 
  0.041920  0.907981  0.022532 -0.109348  0.907981  0.021308 
 -0.218884  0.907981  0.015264 -0.276312  0.907981  0.005544 
 -0.285040  0.907981 -0.000000 
  0.814211  1.044997  0.000000  0.782989  1.044997  0.000322 
  0.693338  1.044997  0.002343  0.556554  1.044997  0.006756 
  0.389213  1.044997  0.012783  0.210587  1.044997  0.018476 
  0.040115  1.044997  0.021562 -0.104640  1.044997  0.020391 
 -0.209459  1.044997  0.014607 -0.264414  1.044997  0.005306 
 -0.272766  1.044997 -0.000000 
  0.772554  1.175571  0.000000  0.742929  1.175571  0.000305 
  0.657865  1.175571  0.002223  0.528079  1.175571  0.006410 
  0.369300  1.175571  0.012129  0.199812  1.175571  0.017531 
  0.038063  1.175571  0.020459 -0.099286  1.175571  0.019348 
 -0.198743  1.175571  0.013859 -0.250886  1.175571  0.005034 
 -0.258811  1.175571 -0.000000 
  0.726134  1.298896  0.000000  0.698289  1.298896  0.000287 
  0.618336  1.298896  0.002090  0.496349  1.298896  0.006025 
  0.347110  1.298896  0.011400  0.187806  1.298896  0.016478 
  0.035776  1.298896  0.019229 -0.093320  1.298896  0.018185 
 -0.186801  1.298896  0.013027 -0.235811  1.298896  0.004732 
 -0.243260  1.298896 -0.000000 
  0.675237  1.414214  0.000000  0.649344  1.414214  0.000267 
  0.574995  1.414214  0.001943  0.461558  1.414214  0.005603 
  0.322780  1.414214  0.010601  0.174642  1.414214  0.015323 
  0.033268  1.414214  0.017881 -0.086779  1.414214  0.016910 
 -0.173708  1.414214  0.012114 -0.219282  1.414214  0.004400 
 -0.226209  1.414214 -0.000000 
  0.620177  1.520812  0.000000  0.596395  1.520812  0.000245 
  0.528109  1.520812  0.001785  0.423922  1.520812  0.005146 
  0.296460  1.520812  0.009736  0.160402  1.520812  0.014073 
  0.030555  1.520812  0.016423 -0.079703  1.520812  0.015531 
 -0.159543  1.520812  0.011126 -0.201402  1.520812  0.004041 
 -0.207764  1.520812 -0.000000 
  0.561294  1.618034  0.000000  0.539770  1.618034  0.000222 
  0.477967  1.618034  0.001615  0.383672  1.618034  0.004657 
  0.268312  1.618034  0.008812  0.145172  1.618034  0.012737 
  0.027654  1.618034  0.014864 -0.072136  1.618034  0.014057 
 -0.144395  1.618034  0.010069 -0.182279  1.618034  0.003657 
 -0.188037  1.618034 -0.000000 
  0.498949  1.705280  0.000000  0.479816  1.705280  0.000197 
  0.424878  1.705280  0.001436  0.341057  1.705280  0.004140 
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  0.238510  1.705280  0.007833  0.129048  1.705280  0.011322 
  0.024583  1.705280  0.013213 -0.064123  1.705280  0.012495 
 -0.128357  1.705280  0.008951 -0.162033  1.705280  0.003251 
 -0.167151  1.705280 -0.000000 
  0.433529  1.782013  0.000000  0.416904  1.782013  0.000171 
  0.369170  1.782013  0.001248  0.296339  1.782013  0.003597 
  0.207238  1.782013  0.006806  0.112127  1.782013  0.009838 
  0.021359  1.782013  0.011481 -0.055716  1.782013  0.010857 
 -0.111527  1.782013  0.007777 -0.140788  1.782013  0.002825 
 -0.145235  1.782013 -0.000000 
  0.365436  1.847759  0.000000  0.351422  1.847759  0.000144 
  0.311185  1.847759  0.001052  0.249793  1.847759  0.003032 
  0.174687  1.847759  0.005737  0.094516  1.847759  0.008293 
  0.018005  1.847759  0.009677 -0.046965  1.847759  0.009152 
 -0.094010  1.847759  0.006556 -0.118675  1.847759  0.002381 
 -0.122423  1.847759 -0.000000 
  0.295089  1.902113  0.000000  0.283774  1.902113  0.000117 
  0.251282  1.902113  0.000849  0.201708  1.902113  0.002448 
  0.141060  1.902113  0.004633  0.076322  1.902113  0.006696 
  0.014539  1.902113  0.007814 -0.037924  1.902113  0.007390 
 -0.075913  1.902113  0.005294 -0.095830  1.902113  0.001923 
 -0.098857  1.902113 -0.000000 
  0.222924  1.944740  0.000000  0.214375  1.944740  0.000088 
  0.189830  1.944740  0.000641  0.152380  1.944740  0.001850 
  0.106563  1.944740  0.003500  0.057657  1.944740  0.005059 
  0.010983  1.944740  0.005903 -0.028649  1.944740  0.005583 
 -0.057348  1.944740  0.003999 -0.072394  1.944740  0.001453 
 -0.074681  1.944740 -0.000000 
  0.149384  1.975377  0.000000  0.143655  1.975377  0.000059 
  0.127207  1.975377  0.000430  0.102111  1.975377  0.001239 
  0.071409  1.975377  0.002345  0.038636  1.975377  0.003390 
  0.007360  1.975377  0.003956 -0.019198  1.975377  0.003741 
 -0.038430  1.975377  0.002680 -0.048512  1.975377  0.000973 
 -0.050045  1.975377 -0.000000 
  0.074923  1.993835  0.000000  0.072050  1.993835  0.000030 
  0.063800  1.993835  0.000216  0.051214  1.993835  0.000622 
  0.035815  1.993835  0.001176  0.019378  1.993835  0.001700 
  0.003691  1.993835  0.001984 -0.009629  1.993835  0.001876 
 -0.019274  1.993835  0.001344 -0.024331  1.993835  0.000488 
 -0.025100  1.993835 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 
=nm       nn 
11        21                                                          lower_1 
 -0.319908  0.000000 -0.000000 -0.310112  0.000000 -0.006223 
 -0.245660  0.000000 -0.017131 -0.122724  0.000000 -0.023915 
  0.047048  0.000000 -0.025288  0.246982  0.000000 -0.021670 
  0.456480  0.000000 -0.014992  0.652742  0.000000 -0.007923 
  0.813166  0.000000 -0.002748  0.918311  0.000000 -0.000377 
  0.954930  0.000000 -0.000000 
 -0.318922  0.156918 -0.000000 -0.309156  0.156918 -0.006203 
 -0.244902  0.156918 -0.017078 -0.122346  0.156918 -0.023841 
  0.046903  0.156918 -0.025210  0.246220  0.156918 -0.021603 
  0.455073  0.156918 -0.014946  0.650730  0.156918 -0.007899 
  0.810659  0.156918 -0.002739  0.915480  0.156918 -0.000376 
  0.951986  0.156918 -0.000000 
 -0.315969  0.312869 -0.000000 -0.306294  0.312869 -0.006146 
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 -0.242635  0.312869 -0.016920 -0.121213  0.312869 -0.023620 
  0.046469  0.312869 -0.024977  0.243941  0.312869 -0.021403 
  0.450860  0.312869 -0.014807  0.644705  0.312869 -0.007826 
  0.803155  0.312869 -0.002714  0.907005  0.312869 -0.000372 
  0.943173  0.312869 -0.000000 
 -0.311069  0.466891 -0.000000 -0.301544  0.466891 -0.006051 
 -0.238872  0.466891 -0.016658 -0.119333  0.466891 -0.023254 
  0.045748  0.466891 -0.024589  0.240158  0.466891 -0.021071 
  0.443867  0.466891 -0.014578  0.634706  0.466891 -0.007704 
  0.790698  0.466891 -0.002672  0.892938  0.466891 -0.000367 
  0.928545  0.466891 -0.000000 
 -0.304250  0.618034 -0.000000 -0.294934  0.618034 -0.005918 
 -0.233636  0.618034 -0.016293 -0.116718  0.618034 -0.022744 
  0.044745  0.618034 -0.024050  0.234894  0.618034 -0.020609 
  0.434138  0.618034 -0.014258  0.620794  0.618034 -0.007535 
  0.773367  0.618034 -0.002613  0.873366  0.618034 -0.000359 
  0.908192  0.618034 -0.000000 
 -0.295556  0.765367 -0.000000 -0.286506  0.765367 -0.005749 
 -0.226960  0.765367 -0.015827 -0.113382  0.765367 -0.022094 
  0.043467  0.765367 -0.023363  0.228181  0.765367 -0.020020 
  0.421732  0.765367 -0.013851  0.603055  0.765367 -0.007320 
  0.751268  0.765367 -0.002539  0.848409  0.765367 -0.000348 
  0.882240  0.765367 -0.000000 
 -0.285040  0.907981 -0.000000 -0.276312  0.907981 -0.005544 
 -0.218884  0.907981 -0.015264 -0.109348  0.907981 -0.021308 
  0.041920  0.907981 -0.022532  0.220062  0.907981 -0.019308 
  0.406727  0.907981 -0.013358  0.581597  0.907981 -0.007060 
  0.724536  0.907981 -0.002448  0.818221  0.907981 -0.000336 
  0.850849  0.907981 -0.000000 
 -0.272766  1.044997 -0.000000 -0.264414  1.044997 -0.005306 
 -0.209459  1.044997 -0.014607 -0.104640  1.044997 -0.020391 
  0.040115  1.044997 -0.021562  0.210587  1.044997 -0.018476 
  0.389213  1.044997 -0.012783  0.556554  1.044997 -0.006756 
  0.693338  1.044997 -0.002343  0.782989  1.044997 -0.000322 
  0.814211  1.044997 -0.000000 
 -0.258811  1.175571 -0.000000 -0.250886  1.175571 -0.005034 
 -0.198743  1.175571 -0.013859 -0.099286  1.175571 -0.019348 
  0.038063  1.175571 -0.020459  0.199812  1.175571 -0.017531 
  0.369300  1.175571 -0.012129  0.528079  1.175571 -0.006410 
  0.657865  1.175571 -0.002223  0.742929  1.175571 -0.000305 
  0.772554  1.175571 -0.000000 
 -0.243260  1.298896 -0.000000 -0.235811  1.298896 -0.004732 
 -0.186801  1.298896 -0.013027 -0.093320  1.298896 -0.018185 
  0.035776  1.298896 -0.019229  0.187806  1.298896 -0.016478 
  0.347110  1.298896 -0.011400  0.496349  1.298896 -0.006025 
  0.618336  1.298896 -0.002090  0.698289  1.298896 -0.000287 
  0.726134  1.298896 -0.000000 
 -0.226209  1.414214 -0.000000 -0.219282  1.414214 -0.004400 
 -0.173708  1.414214 -0.012114 -0.086779  1.414214 -0.016910 
  0.033268  1.414214 -0.017881  0.174643  1.414214 -0.015323 
  0.322780  1.414214 -0.010601  0.461558  1.414214 -0.005603 
  0.574995  1.414214 -0.001943  0.649344  1.414214 -0.000267 
  0.675237  1.414214 -0.000000 
 -0.207764  1.520812 -0.000000 -0.201402  1.520812 -0.004041 
 -0.159543  1.520812 -0.011126 -0.079703  1.520812 -0.015531 
  0.030555  1.520812 -0.016423  0.160402  1.520812 -0.014073 
  0.296460  1.520812 -0.009736  0.423922  1.520812 -0.005146 
  0.528109  1.520812 -0.001785  0.596395  1.520812 -0.000245 
  0.620177  1.520812 -0.000000 
 -0.188037  1.618034 -0.000000 -0.182279  1.618034 -0.003657 
 -0.144395  1.618034 -0.010069 -0.072136  1.618034 -0.014057 
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  0.027654  1.618034 -0.014864  0.145172  1.618034 -0.012737 
  0.268312  1.618034 -0.008812  0.383672  1.618034 -0.004657 
  0.477967  1.618034 -0.001615  0.539770  1.618034 -0.000222 
  0.561294  1.618034 -0.000000 
 -0.167151  1.705280 -0.000000 -0.162033  1.705280 -0.003251 
 -0.128357  1.705280 -0.008951 -0.064123  1.705280 -0.012495 
  0.024583  1.705280 -0.013213  0.129048  1.705280 -0.011322 
  0.238510  1.705280 -0.007833  0.341057  1.705280 -0.004140 
  0.424878  1.705280 -0.001436  0.479816  1.705280 -0.000197 
  0.498949  1.705280 -0.000000 
 -0.145235  1.782013 -0.000000 -0.140788  1.782013 -0.002825 
 -0.111527  1.782013 -0.007777 -0.055716  1.782013 -0.010857 
  0.021359  1.782013 -0.011481  0.112127  1.782013 -0.009838 
  0.207238  1.782013 -0.006806  0.296339  1.782013 -0.003597 
  0.369170  1.782013 -0.001248  0.416904  1.782013 -0.000171 
  0.433529  1.782013 -0.000000 
 -0.122423  1.847759 -0.000000 -0.118675  1.847759 -0.002381 
 -0.094010  1.847759 -0.006556 -0.046965  1.847759 -0.009152 
  0.018005  1.847759 -0.009677  0.094516  1.847759 -0.008293 
  0.174687  1.847759 -0.005737  0.249793  1.847759 -0.003032 
  0.311185  1.847759 -0.001052  0.351422  1.847759 -0.000144 
  0.365436  1.847759 -0.000000 
 -0.098857  1.902113 -0.000000 -0.095830  1.902113 -0.001923 
 -0.075913  1.902113 -0.005294 -0.037924  1.902113 -0.007390 
  0.014539  1.902113 -0.007814  0.076322  1.902113 -0.006696 
  0.141060  1.902113 -0.004633  0.201708  1.902113 -0.002448 
  0.251282  1.902113 -0.000849  0.283774  1.902113 -0.000117 
  0.295089  1.902113 -0.000000 
 -0.074681  1.944740 -0.000000 -0.072394  1.944740 -0.001453 
 -0.057348  1.944740 -0.003999 -0.028649  1.944740 -0.005583 
  0.010983  1.944740 -0.005903  0.057657  1.944740 -0.005059 
  0.106563  1.944740 -0.003500  0.152380  1.944740 -0.001850 
  0.189830  1.944740 -0.000641  0.214375  1.944740 -0.000088 
  0.222924  1.944740 -0.000000 
 -0.050045  1.975377 -0.000000 -0.048512  1.975377 -0.000973 
 -0.038430  1.975377 -0.002680 -0.019198  1.975377 -0.003741 
  0.007360  1.975377 -0.003956  0.038636  1.975377 -0.003390 
  0.071409  1.975377 -0.002345  0.102111  1.975377 -0.001239 
  0.127207  1.975377 -0.000430  0.143655  1.975377 -0.000059 
  0.149384  1.975377 -0.000000 
 -0.025100  1.993835 -0.000000 -0.024331  1.993835 -0.000488 
 -0.019274  1.993835 -0.001344 -0.009629  1.993835 -0.001876 
  0.003691  1.993835 -0.001984  0.019378  1.993835 -0.001700 
  0.035815  1.993835 -0.001176  0.051214  1.993835 -0.000622 
  0.063800  1.993835 -0.000216  0.072050  1.993835 -0.000030 
  0.074923  1.993835 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 -0.000000  2.000000 -0.000000 
 -0.000000  2.000000 -0.000000 
$TRAILING matchw=0 
=kn 
1.0 
=kt       matchw 
18.0      0.0 
=inat     insd      xwake     twake 
upper_1   1.0       10.0      0.0                                     wake_1 

$END 
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K PRALINES SOURCE CODE 

K.1 Pralines Main Program (main.f90) 

1 program PrandtlsLiftingLine 
2     use LiftingLineInterface 
3  
4     implicit none 
5  
6     !Begin execution 
7     call BeginLiftingLineInterface() 
8  
9 end program 

 

K.2 Interface Module (liftinglineinterface.f90) 

1 module LiftingLineInterface 
2     use class_Planform 
3     use LiftingLineSetters 
4     use LiftingLineSolver 
5     use LiftingLineOutput 
6     use LiftingLineSolver_Test 
7  
8     implicit none 
9  
10 contains 
11     subroutine BeginLiftingLineInterface() 
12         type(Planform) :: pf 
13         character*2 :: inp = 'A' 
14  
15         call InitPlanform(pf) 
16  
17         do while(inp /= 'Q') 
18             inp = PlanformParamters(pf) 
19             if (inp == 'A') then 
20                 call ComputeCMatrixAndCoefficients(pf) 
21                 call OutputPlanform(pf) 
22                 do while(inp /= 'Q' .and. inp /= 'B') 
23                     inp = OperatingConditions(pf) 
24                     if (inp /= 'Q') then 
25                         call UpdateOperatingConditions(pf, inp) 
26                     end if 
27                 end do 
28             else if (inp /= 'Q') then 
29                 call UpdatePlanformParameters(pf, inp) 
30             end if 
31         end do 
32     end subroutine BeginLiftingLineInterface 
33  
34     character*2 function PlanformParamters(pf) result(inp) 
35         type(Planform), intent(inout) :: pf 
36  
37         character*80 :: msg 
38  
39         ! Clear the screen and output the header 
40         call system('cls') 
41         call OutputHeader() 
42  
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43         ! Display options to user 
44         write(6, '(28x, a)') "Planform Design Menu" 
45         write(6, *) 
46         write(6, '(a)') "Select from the following menu options:" 
47         write(6, *) 
48  
49         ! Wing parameters 
50         write(6, '(2x, a)') "Wing Parameters:" 
51  
52         msg = "WT - Edit wing type" 
53         call DisplayMessageWithTextDefault(msg, GetWingType(pf), 4) 
54  
55         msg = "N  - Edit number of nodes per semispan" 
56         call DisplayMessageWithIntegerDefault(msg, (pf%NNodes + 1) / 2, 4) 
57  
58         msg = "RA - Edit aspect ratio" 
59         call DisplayMessageWithRealDefault(msg, pf%AspectRatio, 4) 
60  
61         if (pf%WingType == Tapered) then 
62             msg = "RT - Edit taper ratio" 
63             call DisplayMessageWithRealDefault(msg, pf%TaperRatio, 4) 
64         end if 
65  
66         msg = "S  - Edit section lift slope" 
67         call DisplayMessageWithRealDefault(msg, pf%SectionLiftSlope, 4) 
68  
69         if (pf%WingType == Combination) then 
70             msg = "TZ - Edit z/b at the transition from tapered to elliptic" 
71             call DisplayMessageWithRealDefault(msg, pf%TransitionPoint, 4) 
72  
73             msg = "TC - Edit c/croot at the transition from tapered to elliptic" 
74             call DisplayMessageWithRealDefault(msg, pf%TransitionChord, 4) 
75         end if 
76  
77         if (pf%WingType /= Elliptic) then 
78             msg = "WD - Toggle washout distribution type" 
79             call DisplayMessageWithTextDefault(msg, 

GetWashoutDistributionType(pf), 4) 
80         end if 
81  
82         msg = "LC - Edit low-aspect-ratio correction method" 
83         call DisplayMessageWithTextDefault(msg, GetLowAspectRatioMethod(pf), 4) 
84  
85         ! Aileron parameters 
86         write(6, *) 
87         write(6, '(2x, a)') "Aileron Parameters:" 
88  
89         msg = "ZR - Edit z/b of aileron root" 
90         call DisplayMessageWithRealDefault(msg, pf%AileronRoot, 4) 
91  
92         msg = "ZT - Edit z/b of aileron tip" 
93         call DisplayMessageWithRealDefault(msg, pf%AileronTip, 4) 
94  
95         msg = "PH - Make hinge line parallel with quarter-chord line?" 
96         call DisplayMessageWithLogicalDefault(msg, pf%ParallelHingeLine, 4) 
97  
98         msg = "CR - Edit cf/c of aileron root" 
99         call DisplayMessageWithRealDefault(msg, pf%FlapFractionRoot, 4) 
100  
101         msg = "CT - Edit cf/c of aileron tip" 
102         call DisplayMessageWithRealDefault(msg, pf%FlapFractionTip, 4) 
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103  
104         msg = "HE - Edit aileron hinge efficiency" 
105         call DisplayMessageWithRealDefault(msg, pf%HingeEfficiency, 4) 
106  
107         ! Output and Plotting options 
108         write(6, *) 
109         write(6, '(2x, a)') "Output and Plotting Options:" 
110         msg = "C  - Output C matrix and Fourier Coefficients?" 
111         call DisplayMessageWithLogicalDefault(msg, pf%OutputMatrices, 4) 
112  
113         msg = "F  - Edit output file name" 
114         call DisplayMessageWithTextDefault(msg, pf%FileName, 4) 
115  
116         write(6, '(4x, a)') "PP - Plot planform in ES-Plot" 
117  
118         ! Main Execution commands 
119         write(6, *) 
120         write(6, '(2x, a)') "A - Advance to Operating Conditions Menu" 
121         write(6, '(2x, a)') "T - Test solver against Problem 1.34b solution" 
122         write(6, '(2x, a)') "Q - Quit" 
123  
124         write(6, *) 
125         write(6, '(a)') "Your selection: " 
126  
127         inp = GetCharacterInput("  ") 
128         write(6, *) 
129     end function PlanformParamters 
130  
131     character*2 function OperatingConditions(pf) result(inp) 
132         type(Planform), intent(inout) :: pf 
133  
134         integer :: i 
135         character*80 :: msg 
136  
137         ! Clear the screen and output the header 
138         call system('cls') 
139         call OutputHeader() 
140  
141         ! Output the Planform summary 
142         call OutputPlanformSummary(6, pf) 
143         call OutputOperatingConditions(6, pf) 
144         call OutputFlightCoefficients(6, pf) 
145         write(6, '(80a)') ("*", i=1,80) 
146  
147         ! Display options to user 
148         write(6, '(28x, a)') "Operating Conditions Menu" 
149         write(6, *) 
150         write(6, '(a)') "Select from the following menu options:" 
151  
152         ! Operating Conditions 
153         write(6, *) 
154         write(6, '(2x, a)') "Operating Conditions:" 
155  
156         msg = "AA - Edit root aerodynamic angle of attack" 
157         call DisplayMessageWithAngleDefault(msg, pf%AngleOfAttack, 4) 
158  
159         msg = "CL - Edit coefficient of lift" 
160         call DisplayMessageWithRealDefault(msg, pf%LiftCoefficient, 4) 
161  
162         msg = "OW - Use optimum total washout" 
163         call DisplayMessageWithLogicalDefault(msg, pf%UseOptimumWashout, 4) 
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164  
165         msg = "W  - Edit total amount of washout" 
166         call DisplayMessageWithAngleDefault(msg, pf%Washout, 4) 
167  
168         msg = "AD - Edit aileron deflection" 
169         call DisplayMessageWithAngleDefault(msg, pf%AileronDeflection, 4) 
170  
171         msg = "SR - Use steady dimensionless rolling rate" 
172         call DisplayMessageWithLogicalDefault(msg, pf%UseSteadyRollingRate, 4) 
173  
174         msg = "R  - Edit dimensionless rolling rate" 
175         call DisplayMessageWithRealDefault(msg, pf%RollingRate, 4) 
176  
177         ! Plotting options 
178         write(6, *) 
179         write(6, '(2x, a)') "Plotting Options:" 
180         write(6, '(4x, a)') "PP - Plot Planform in ES-Plot" 
181         write(6, '(4x, a)') "PW - Plot Dimensionless Washout Distribution in ES-

Plot" 
182         write(6, '(4x, a)') "PL - Plot Section Lift Distribution in ES-Plot" 
183         write(6, '(4x, a)') "WL - Write Section Lift Distribution to 

'liftdistribution.dat'" 
184         write(6, '(4x, a)') "PN - Plot Normalized Section Lift Coefficient in 

ES-Plot" 
185         write(6, '(4x, a)') "WN - Write Normalized Section Lift Coefficient in 

ES-Plot" 
186  
187         ! Main Execution commands 
188         write(6, *) 
189         msg = "S - Save Flight coefficients to output file" 
190         call DisplayMessageWithTextDefault(msg, pf%FileName, 2) 
191  
192         write(6, '(2x, a)') "B - Back to Planform Design Menu" 
193         write(6, '(2x, a)') "Q - Quit" 
194  
195         write(6, *) 
196         write(6, '(a)') "Your selection: " 
197  
198         inp = GetCharacterInput("  ") 
199         write(6, *) 
200     end function OperatingConditions 
201  
202     subroutine UpdatePlanformParameters(pf, input) 
203         type(Planform), intent(inout) :: pf 
204         character*2, intent(in) :: input 
205  
206         ! Process input command 
207         ! Wing parameters 
208         if (input == 'WT') then 
209             call EditWingType(pf) 
210         else if (input == 'N') then 
211             call EditNNodes(pf) 
212         else if (input == 'RA') then 
213             call EditAspectRatio(pf) 
214         else if (input == 'RT' .and. pf%WingType == Tapered) then 
215             call EditTaperRatio(pf) 
216         else if (input == 'S') then 
217             call EditLiftSlope(pf) 
218         else if (input == 'TZ' .and. pf%WingType == Combination) then 
219             call EditTransitionPoint(pf) 
220         else if (input == 'TC' .and. pf%WingType == Combination) then 
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221             call EditTransitionChord(pf) 
222         else if (input == 'WD' .and. pf%WingType /= Elliptic) then 
223             call EditWashoutDistribution(pf) 
224         else if (input == 'LC') then 
225             call EditLowAspectRatioCorrectionMethod(pf) 
226  
227         ! Aileron parameters 
228         else if (input == 'ZR') then 
229             call EditAileronRoot(pf) 
230         else if (input == 'ZT') then 
231             call EditAileronTip(pf) 
232         else if (input == 'PH') then 
233             call ToggleParallelHinge(pf) 
234         else if (input == 'CR') then 
235             call EditFlapFractionRoot(pf) 
236         else if (input == 'CT') then 
237             call EditFlapFractionTip(pf) 
238         else if (input == 'HE') then 
239             call EditHingeEfficiency(pf) 
240  
241         ! Output options 
242         else if (input == 'C') then 
243             pf%OutputMatrices = .not. pf%OutputMatrices 
244         else if (input == 'F') then 
245             call EditFileName(pf) 
246         else if (input == 'PP') then 
247             call PlotPlanform(pf) 
248  
249         ! Testing options 
250         else if (input == 'T') then 
251             call TestLiftingLineSolver() 
252         end if 
253     end subroutine UpdatePlanformParameters 
254  
255     subroutine UpdateOperatingConditions(pf, input) 
256         type(Planform), intent(inout) :: pf 
257         character*2, intent(in) :: input 
258  
259         ! Operating Conditions 
260         if (input == 'AA') then 
261             call EditAngleOfAttack(pf) 
262         else if (input == 'CL') then 
263             call EditLiftCoefficient(pf) 
264         else if (input == 'OW') then 
265             call ToggleUseOptimumWashout(pf) 
266         else if (input == 'W') then 
267             call EditWashout(pf) 
268         else if (input == 'AD') then 
269             call EditAileronDeflection(pf) 
270         else if (input == 'SR') then 
271             call ToggleUseSteadyRollingRate(pf) 
272         else if (input == 'R') then 
273             call EditRollingRate(pf) 
274  
275         ! Output and Plotting options 
276         else if (input == 'PP') then 
277             call PlotPlanform(pf) 
278         else if (input == 'PW') then 
279             call PlotWashout(pf) 
280         else if (input == 'PL') then 
281             call PlotSectionLiftDistribution(pf) 
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282         else if (input == 'WL') then 
283             call WriteSectionLiftDistribution(pf) 
284         else if (input == 'PN') then 
285             call PlotNormalizedLiftCoefficient(pf) 
286         else if (input == 'WN') then 
287             call WriteNormalizedLiftCoefficient(pf) 
288         else if (input == 'S') then 
289             call OutputFlightConditions(pf) 
290         end if 
291  
292         call ComputeFlightConditions(pf) 
293     end subroutine UpdateOperatingConditions 
294  
295     subroutine EditWingType(pf) 
296         type(Planform), intent(inout) :: pf 
297  
298         logical :: cont 
299         character*2 :: inp 
300  
301         write(6, *) 
302         write(6, '(a)') "Select from the following wing type options:" 
303         write(6, '(2x, a)') "T - Tapered" 
304         write(6, '(2x, a)') "E - Elliptic" 
305         write(6, '(2x, a)') "C - Combination (Tapered with elliptic tip)" 
306         write(6, *) 
307         write(6, '(a)') "Your selection: " 
308  
309         cont = .true. 
310         do while(cont) 
311             inp = GetCharacterInput("  ") 
312             write(6, *) 
313  
314             if (inp == "T") then 
315                 call SetWingType(pf, Tapered) 
316                 cont = .false. 
317             else if (inp == "E") then 
318                 call SetWingType(pf, Elliptic) 
319                 cont = .false. 
320             else if (inp == "C") then 
321                 call SetWingType(pf, Combination) 
322                 cont = .false. 
323             else 
324                 write(6, '(a)') "Invalid input, please make a selection from the 

above menu." 
325             end if 
326         end do 
327     end subroutine EditWingType 
328  
329     subroutine EditTransitionPoint(pf) 
330         type(Planform), intent(inout) :: pf 
331  
332         character*80 :: msg 
333         real*8 :: tp_old 
334         logical :: isValid 
335  
336         tp_old = pf%TransitionPoint 
337  
338         msg = "Enter z/b at the transition point from tapered to elliptic" 
339         call DisplayMessageWithRealDefault(msg, pf%TransitionPoint, 0) 
340         call SetTransitionPoint(pf, GetRealInput(0.0d0, 0.5d0, 

pf%TransitionPoint)) 
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341  
342         isValid = AreCombinationWingCoefficientsValid(pf) 
343         do while(.not. isValid) 
344             call SetTransitionPoint(pf, tp_old) 
345             write(6, *) 
346             write(6, '(a)') "The input provided results in invalid ellipse 

coefficients." 
347             write(6, '(a)') "Try a new value or press <ENTER> to accept 

default." 
348  
349             call SetTransitionPoint(pf, GetRealInput(0.0d0, 0.5d0, 

pf%TransitionPoint)) 
350             isValid = AreCombinationWingCoefficientsValid(pf) 
351         end do 
352     end subroutine EditTransitionPoint 
353  
354     subroutine EditTransitionChord(pf) 
355         type(Planform), intent(inout) :: pf 
356  
357         character*80 :: msg 
358         real*8 :: tc_old 
359         logical :: isValid 
360  
361         tc_old = pf%TransitionChord 
362  
363         msg = "Enter c/croot at the transition point from tapered to elliptic" 
364         call DisplayMessageWithRealDefault(msg, pf%TransitionChord, 0) 
365         call SetTransitionChord(pf, GetRealInput(0.0d0, 10.0d0, 

pf%TransitionChord)) 
366  
367         isValid = AreCombinationWingCoefficientsValid(pf) 
368         do while(.not. isValid) 
369             call SetTransitionChord(pf, tc_old) 
370             write(6, *) 
371             write(6, '(a)') "The input provided results in invalid ellipse 

coefficients." 
372             write(6, '(a)') "Try a new value or press <ENTER> to accept 

default." 
373  
374             call SetTransitionChord(pf, GetRealInput(0.0d0, 2.0d0, 

pf%TransitionChord)) 
375             isValid = AreCombinationWingCoefficientsValid(pf) 
376         end do 
377     end subroutine EditTransitionChord 
378  
379     subroutine EditWashoutDistribution(pf) 
380         type(Planform), intent(inout) :: pf 
381  
382         if (pf%WashoutDistribution == Linear) then 
383             call SetWashoutDistribution(pf, Optimum) 
384         else 
385             call SetWashoutDistribution(pf, Linear) 
386         end if 
387     end subroutine EditWashoutDistribution 
388  
389     subroutine EditLowAspectRatioCorrectionMethod(pf) 
390         type(Planform), intent(inout) :: pf 
391  
392         logical :: cont 
393         character*2 :: inp 
394  
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395         write(6, *) 
396         write(6, '(a)') "Select from the following low-aspect-ratio correction 

methods:" 
397         write(6, '(2x, a)') "C - Classical Lifting Line Theory (no correction)" 
398         write(6, '(2x, a)') "H - Hodson" 
399         write(6, '(2x, a)') "M - Modified Slender Wing" 
400         write(6, '(2x, a)') "K - Kuchemann" 
401         write(6, *) 
402         write(6, '(a)') "Your selection: " 
403  
404         cont = .true. 
405         do while(cont) 
406             inp = GetCharacterInput("  ") 
407             write(6, *) 
408  
409             if (inp == "C") then 
410                 call SetLowAspectRatioMethod(pf, Classical) 
411                 cont = .false. 
412             else if (inp == "H") then 
413                 call SetLowAspectRatioMethod(pf, Hodson) 
414                 cont = .false. 
415             else if (inp == "M") then 
416                 call SetLowAspectRatioMethod(pf, ModifiedSlender) 
417                 cont = .false. 
418             else if (inp == "K") then 
419                 call SetLowAspectRatioMethod(pf, Kuchemann) 
420                 cont = .false. 
421             else 
422                 write(6, '(a)') "Invalid input, please make a selection from the 

above menu." 
423             end if 
424         end do 
425     end subroutine 
426  
427     subroutine EditNNodes(pf) 
428         type(Planform), intent(inout) :: pf 
429  
430         character*80 :: msg 
431         integer :: npss 
432         character*80 :: int_str 
433  
434         npss = (pf%NNodes + 1) / 2 
435  
436         msg = "Enter number of nodes per semispan or press <ENTER> to accept 

default" 
437         call DisplayMessageWithIntegerDefault(msg, npss, 0) 
438         call SetNNodes(pf, GetIntInput(4, 1000, npss)) 
439     end subroutine EditNNodes 
440  
441     subroutine EditAspectRatio(pf) 
442         type(Planform), intent(inout) :: pf 
443  
444         character*80 :: msg 
445  
446         write(6, *) 
447         msg = "Enter new aspect ratio or press <ENTER> to accept default" 
448         call DisplayMessageWithRealDefault(msg, pf%AspectRatio, 0) 
449         call SetAspectRatio(pf, GetRealInput(1.0d-12, 100.0d0, pf%AspectRatio)) 
450     end subroutine EditAspectRatio 
451  
452     subroutine EditTaperRatio(pf) 
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453         type(Planform), intent(inout) :: pf 
454  
455         character*80 :: msg 
456  
457         write(6, *) 
458         msg = "Enter new taper ratio or press <ENTER> to accept default" 
459         call DisplayMessageWithRealDefault(msg, pf%TaperRatio, 0) 
460         call SetTaperRatio(pf, GetRealInput(0.0d0, 100.0d0, pf%TaperRatio)) 
461     end subroutine EditTaperRatio 
462  
463     subroutine EditLiftSlope(pf) 
464         type(Planform), intent(inout) :: pf 
465  
466         character*80 :: msg 
467  
468         write(6, *) 
469         msg = "Enter new section lift slope or press <ENTER> to accept default" 
470         call DisplayMessageWithRealDefault(msg, pf%SectionLiftSlope, 0) 
471         call SetSectionLiftSlope(pf, GetRealInput(-100.0d0 * pi, 100.0d0 * pi, & 
472             & pf%SectionLiftSlope)) 
473     end subroutine EditLiftSlope 
474  
475     subroutine EditAileronRoot(pf) 
476         type(Planform), intent(inout) :: pf 
477  
478         character*80 :: msg 
479  
480         write(6, *) 
481         msg = "Enter new z/b for aileron root or press <ENTER> to accept 

default" 
482         call DisplayMessageWithRealDefault(msg, pf%AileronRoot, 0) 
483         call SetAileronRoot(pf, GetRealInput(0.0d0, pf%AileronTip, 

pf%AileronRoot)) 
484     end subroutine EditAileronRoot 
485  
486     subroutine EditAileronTip(pf) 
487         type(Planform), intent(inout) :: pf 
488  
489         character*80 :: msg 
490  
491         write(6, *) 
492         msg = "Enter new z/b for aileron tip or press <ENTER> to accept default" 
493         call DisplayMessageWithRealDefault(msg, pf%AileronTip, 0) 
494         call SetAileronTip(pf, GetRealInput(pf%AileronRoot, 0.5d0, 

pf%AileronTip)) 
495     end subroutine EditAileronTip 
496  
497     subroutine EditFlapFractionRoot(pf) 
498         type(Planform), intent(inout) :: pf 
499  
500         character*80 :: msg 
501  
502         write(6, *) 
503         if (pf%ParallelHingeLine) then 
504             write(6, '(a)') "NOTE: Hinge is no longer constrained to be parallel 

with quarter-chord line." 
505         end if 
506  
507         msg = "Enter new cf/c at aileron root or press <ENTER> to accept 

default" 
508         call DisplayMessageWithRealDefault(msg, pf%DesiredFlapFractionRoot, 0) 
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509         call SetFlapFractionRoot(pf, GetRealInput(0.0d0, 1.0d0, 
pf%DesiredFlapFractionRoot)) 

510     end subroutine EditFlapFractionRoot 
511  
512     subroutine EditFlapFractionTip(pf) 
513         type(Planform), intent(inout) :: pf 
514  
515         character*80 :: msg 
516  
517         write(6, *) 
518         msg = "Enter new cf/c at aileron tip or press <ENTER> to accept default" 
519         call DisplayMessageWithRealDefault(msg, pf%FlapFractionTip, 0) 
520         call SetFlapFractionTip(pf, GetRealInput(0.0d0, 1.0d0, 

pf%FlapFractionTip)) 
521     end subroutine EditFlapFractionTip 
522  
523     subroutine ToggleParallelHinge(pf) 
524         type(Planform), intent(inout) :: pf 
525  
526         if (pf%ParallelHingeLine) then 
527             call SetFlapFractionRoot(pf, pf%DesiredFlapFractionRoot) 
528         else 
529             call SetParallelHingeLine(pf) 
530         end if 
531     end subroutine ToggleParallelHinge 
532  
533     subroutine EditHingeEfficiency(pf) 
534         type(Planform), intent(inout) :: pf 
535  
536         character*80 :: msg 
537  
538         write(6, *) 
539         msg = "Enter aileron hinge efficiency or press <ENTER> to accept 

default" 
540         call DisplayMessageWithRealDefault(msg, pf%HingeEfficiency, 0) 
541         call SetHingeEfficiency(pf, GetRealInput(0.0d0, 1.0d0, 

pf%HingeEfficiency)) 
542     end subroutine EditHingeEfficiency 
543  
544     subroutine EditDeflectionEfficiency(pf) 
545         type(Planform), intent(inout) :: pf 
546  
547         character*80 :: msg 
548  
549         write(6, *) 
550         msg = "Enter deflection efficiency or press <ENTER> to accept default" 
551         call DisplayMessageWithRealDefault(msg, pf%DeflectionEfficiency, 0) 
552         call SetDeflectionEfficiency(pf, GetRealInput(0.0d0, 1.0d0, & 
553             & pf%DeflectionEfficiency)) 
554     end subroutine EditDeflectionEfficiency 
555  
556     subroutine EditFileName(pf) 
557         type(Planform), intent(inout) :: pf 
558  
559         character*80 :: msg 
560  
561         write(6, *) 
562         msg = "Enter output file name or press <ENTER> to accept default" 
563         call DisplayMessageWithTextDefault(msg, pf%FileName, 0) 
564         call SetFileName(pf, GetStringInput(pf%FileName)) 
565     end subroutine EditFileName 
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566  
567     subroutine EditAngleOfAttack(pf) 
568         type(Planform), intent(inout) :: pf 
569  
570         character*80 :: msg 
571  
572         write(6, *) 
573         write(6, '(a, a)') "NOTE: This operation will calculate a new lift ", & 
574             & "coefficient and optimum washout." 
575  
576         msg = "Enter angle of attack or press <ENTER> to accept default" 
577         call DisplayMessageWithAngleDefault(msg, pf%DesiredAngleOfAttack, 0) 
578         call SetAngleOfAttack(pf, GetRealInput(-12.0d0, 12.0d0, & 
579             & pf%DesiredAngleOfAttack * 180.0d0 / pi)) 
580     end subroutine EditAngleOfAttack 
581  
582     subroutine EditLiftCoefficient(pf) 
583         type(Planform), intent(inout) :: pf 
584  
585         character*80 :: msg 
586         real*8 :: mn, mx, dflt 
587  
588         mn = CL1(pf%CLa, -12.0d0 * pi / 180.0d0, pf%EW, pf%Washout) 
589         mx = CL1(pf%CLa,  12.0d0 * pi / 180.0d0, pf%EW, pf%Washout) 
590         if (pf%DesiredLiftCoefficient < mn) then 
591             dflt = mn 
592         else if (pf%DesiredLiftCoefficient > mx) then 
593             dflt = mx 
594         else 
595             dflt = pf%DesiredLiftCoefficient 
596         end if 
597  
598         write(6, *) 
599         write(6, '(a, a)') "NOTE: This operation will calculate a new alpha ", & 
600             & "and optimum washout" 
601         msg = "Enter lift coefficient or press <ENTER> to accept default" 
602         call DisplayMessageWithRealDefault(msg, dflt, 0) 
603         call SetLiftCoefficient(pf, GetRealInput(mn, mx, dflt)) 
604     end subroutine EditLiftCoefficient 
605  
606     subroutine EditWashout(pf) 
607         type(Planform), intent(inout) :: pf 
608  
609         character*80 :: msg 
610  
611         write(6, *) 
612         if (pf%UseOptimumWashout) then 
613             write(6, '(a)') "NOTE: Use of optimum total washout has been 

disabled." 
614         end if 
615         msg = "Enter total washout or press <ENTER> to accept default" 
616         call DisplayMessageWithAngleDefault(msg, pf%DesiredWashout, 0) 
617         call SetWashout(pf, GetRealInput(-12.0d0, 12.0d0, pf%DesiredWashout * 

180.0d0 / pi)) 
618     end subroutine EditWashout 
619  
620     subroutine ToggleUseOptimumWashout(pf) 
621         type(Planform), intent(inout) :: pf 
622  
623         if (pf%UseOptimumWashout) then 
624             call SetWashout(pf, pf%DesiredWashout * 180.0d0 / pi) 
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625         else 
626             call SetOptimumWashout(pf) 
627         end if 
628     end subroutine ToggleUseOptimumWashout 
629  
630     subroutine EditAileronDeflection(pf) 
631         type(Planform), intent(inout) :: pf 
632  
633         character*80 :: msg 
634  
635         write(6, *) 
636         msg = "Enter aileron deflection or press <ENTER> to accept default" 
637         call DisplayMessageWithAngleDefault(msg, pf%AileronDeflection, 0) 
638         call SetAileronDeflection(pf, GetRealInput(-12.0d0, 12.0d0, & 
639             & pf%AileronDeflection * 180.0d0 / pi)) 
640     end subroutine EditAileronDeflection 
641  
642     subroutine ToggleUseSteadyRollingRate(pf) 
643         type(Planform), intent(inout) :: pf 
644  
645         pf%UseSteadyRollingRate = .not. pf%UseSteadyRollingRate 
646         if (pf%UseSteadyRollingRate) then 
647             call SetSteadyRollingRate(pf) 
648         else 
649             call SetRollingRate(pf, pf%DesiredRollingRate) 
650         end if 
651     end subroutine ToggleUseSteadyRollingRate 
652  
653     subroutine EditRollingRate(pf) 
654         type(Planform), intent(inout) :: pf 
655  
656         character*80 :: msg 
657  
658         write(6, *) 
659  
660         if (pf%UseSteadyRollingRate) then 
661             write(6, '(a)') "NOTE: Use of steady rolling rate has been 

disabled." 
662         end if 
663  
664         msg = "Enter dimensionless rolling rate or press <ENTER> to accept 

default" 
665         call DisplayMessageWithRealDefault(msg, pf%DesiredRollingRate, 0) 
666         call SetRollingRate(pf, GetRealInput(-100.0d0, 100.0d0, 

pf%DesiredRollingRate)) 
667     end subroutine EditRollingRate 
668  
669     subroutine DisplayMessageWithRealDefault(msg, dflt, tab) 
670         character*80, intent(in) :: msg ! Message to be displayed 
671         real*8, intent(in) :: dflt ! Default value to show in parenthesis 
672         integer, intent(in) :: tab ! Size of indentation to use 
673  
674         call DisplayMessageWithTextDefault(msg, FormatReal(dflt, 5), tab) 
675     end subroutine DisplayMessageWithRealDefault 
676  
677     subroutine DisplayMessageWithAngleDefault(msg, dflt, tab) 
678         character*80, intent(in) :: msg ! Message to be displayed 
679         real*8, intent(in) :: dflt ! Default value to show in parenthesis 
680         integer, intent(in) :: tab ! Size of indentation to use 
681  
682         character*80 :: dflt_deg 
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683  
684         write(dflt_deg, '(a, a)') trim(FormatReal(dflt * 180.0d0 / pi, 5)), " 

degrees" 
685         call DisplayMessageWithTextDefault(msg, dflt_deg, tab) 
686     end subroutine DisplayMessageWithAngleDefault 
687  
688     subroutine DisplayMessageWithIntegerDefault(msg, dflt, tab) 
689         character*80, intent(in) :: msg ! Message to be displayed 
690         integer, intent(in) :: dflt ! Default value to show in parenthesis 
691         integer, intent(in) :: tab ! Size of indentation to use 
692  
693         call DisplayMessageWithTextDefault(msg, FormatInteger(dflt), tab) 
694     end subroutine DisplayMessageWithIntegerDefault 
695  
696     subroutine DisplayMessageWithTextDefault(msg, dflt, tab) 
697         character*80, intent(in) :: msg ! Message to be displayed 
698         character*80, intent(in) :: dflt ! Default value to show in parenthesis 
699         integer, intent(in) :: tab ! Size of indentation to use 
700  
701         character*80 :: msg_fmt 
702  
703         if (tab == 0) then 
704             msg_fmt = "(a, a, a, a)" 
705         else 
706             write(msg_fmt, '(a, i1, a)') "(", tab, "x, a, a, a, a)" 
707         end if 
708  
709         write(6, msg_fmt) trim(msg), " ( ", trim(dflt), " )" 
710     end subroutine DisplayMessageWithTextDefault 
711  
712     subroutine DisplayMessageWithLogicalDefault(msg, dflt, tab) 
713         character*80, intent(in) :: msg ! Message to be displayed 
714         logical, intent(in) :: dflt ! Default value to show in parenthesis 
715         integer, intent(in) :: tab ! Size of indentation to use 
716  
717         character*80 :: tf 
718  
719         if (dflt) then 
720             tf = "True" 
721         else 
722             tf = "False" 
723         end if 
724         call DisplayMessageWithTextDefault(msg, tf, tab) 
725  
726     end subroutine DisplayMessageWithLogicalDefault 
727  
728 end module LiftingLineInterface 

 

K.3 Planform Class Module (class_Planform.f90) 

1 module class_Planform 
2     use Utilities 
3     implicit none 
4  
5     public :: Planform 
6  
7     ! Supported wing types 
8     enum, bind(C) 
9         enumerator :: Tapered = 1, Elliptic = 2, Combination = 3 
10     end enum 
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11  
12     ! Supported washout distribution types 
13     enum, bind(C) 
14         enumerator :: Linear = 1, Optimum = 2 
15     end enum 
16  
17     ! Supported low-aspect-ratio methods 
18     enum, bind(C) 
19         enumerator :: Classical=1, Hodson=2, ModifiedSlender=3, Kuchemann=4 
20     end enum 
21  
22     type Planform 
23         ! Wing Parameters 
24         integer :: WingType = Tapered ! Wing type 
25         integer :: WashoutDistribution = Linear ! Washout distribution type 
26         integer :: NNodes = 99 ! Total number of nodes 
27         real*8 :: AspectRatio = 5.56d0 ! Aspect ratio 
28         real*8 :: TaperRatio = 1.0d0 ! Taper ratio (tapered wing only) 
29         real*8 :: TransitionPoint = 0.25d0 ! Transition point (Combination wing 

only) 
30         real*8 :: TransitionChord = 1.0d0 ! c/croot at transtion point 

(Combination wing only) 
31         real*8 :: SectionLiftSlope = 2.0d0 * pi ! Section lift slope 
32         real*8 :: AileronRoot = 0.253d0 ! Location of aileron root (z/b) 
33         real*8 :: AileronTip = 0.438d0 ! Location of aileron tip (z/b) 
34         logical :: ParallelHingeLine = .true. ! Is the hinge line parallel to 

the 
35                                               ! quarter-chord line? When true, 
36                                               ! FlapFractionTip will be 

calculated 
37         real*8 :: DesiredFlapFractionRoot = 0.28d0 ! Desired flap fraction at 

aileron root (cf/c) 
38         real*8 :: FlapFractionRoot = 0.28d0 ! Flap fraction at aileron root 

(cf/c) 
39         real*8 :: FlapFractionTip = 0.25d0 ! Flap fraction at aileron tip (cf/c) 
40         real*8 :: HingeEfficiency = 0.85d0 ! Aileron hinge efficiency 
41         real*8 :: DeflectionEfficiency = 1.0d0 ! Aileron deflection efficiency 
42         integer :: LowAspectRatioMethod = Classical ! Low-Aspect-Ratio 

correction method 
43  
44         ! Coefficients for Tapered wing with elliptic tip 
45         real*8 :: C1 = 0.0d0 ! Represents transition point 
46         real*8 :: C2 = 0.0d0 ! Represents slope of tapered section 
47         real*8 :: C3 = 0.0d0 ! Represents secondary axis of ellipse 
48         real*8 :: C4 = 0.0d0 ! Represents ellipse center offset 
49         real*8 :: C5 = 0.0d0 ! Represents croot/b 
50  
51         ! Output Options 
52         logical :: OutputMatrices = .true.  ! Write C Matrix and Fourier 

coefficients to output file? 
53         character*80 :: FileName = "planform.out" ! Name of output file 
54  
55         ! Operating Conditions 
56         real*8 :: DesiredAngleOfAttack = pi / 36.0d0 ! Desired root aerodynamic 

angle of Attack 
57                                                      ! (alpha - alpha_L0), in 

radians 
58                                                      ! When specified, a new 

LiftCoefficient is calculated 
59         real*8 :: AngleOfAttack = pi / 36.0d0 ! Root Aerodynamic Angle of Attack 
60                                               ! (alpha - alpha_L0), in radians 
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61         real*8 :: DesiredLiftCoefficient = 0.4d0 ! Desired lift coefficient 
62                                                  ! When specified, a new 

AngleOfAttack is calculated 
63         real*8 :: LiftCoefficient = 0.4d0 ! Lift coefficient (user input, 

ignored if SpecifyAlpha == .true.) 
64         real*8 :: DesiredWashout = 0.0d0 ! Desired total washout, in radians 
65         real*8 :: OptimumWashout1 = 0.0d0 ! Optimum total washout, in radians 

(Eq. 1.8.37) 
66         real*8 :: OptimumWashout2 = 0.0d0 ! Optimum total washout, in radians 

(Eq. 1.8.42) 
67         real*8 :: Washout = 0.0d0 ! Total washout to use 
68         logical :: UseOptimumWashout = .true. ! Use the optimum total washout? 
69         real*8 :: AileronDeflection = 0.0d0 ! Aileron deflection, in radians 
70         real*8 :: DesiredRollingRate = 0.0d0 ! Desired dimensionless rolling 

rate (constant over wingspan) 
71         real*8 :: RollingRate = 0.0d0 ! Dimensionless rolling rate (constant 

over wingspan) 
72         logical :: SpecifyAlpha = .true. ! Was alpha specified? 
73                                          ! .true.  = Use desired alpha to 

calculate CL 
74                                          ! .false. = Use desired CL to calculate 

alpha 
75         logical :: UseSteadyRollingRate = .true. ! Use the steady dimensionless 

rolling rate? 
76  
77         ! Planform Calculations 
78         real*8, allocatable, dimension(:,:) :: BigC, BigC_Inv 
79         real*8, allocatable, dimension(:) :: a, b, c, d, BigA 
80         real*8, allocatable, dimension(:) :: Omega 
81         logical :: IsAllocated = .false. 
82  
83         ! Lift Coefficient Calculations 
84         real*8 :: KL  ! Lift slope factor 
85         real*8 :: EW  ! Washout effectiveness (epsilon omega) 
86         real*8 :: CLa ! Wing lift slope (derivative of CL with respect to alpha) 
87         real*8 :: CL1 ! Lift Coefficient (Eq. 1.8.24) 
88         real*8 :: CL2 ! Lift Coefficient (Eq. 1.8.5) 
89  
90         ! Drag Coefficient Calculations 
91         real*8 :: KD   ! Induced drag factor 
92         real*8 :: KDL  ! Lift-washout contribution to induced drag 
93         real*8 :: KDW  ! Washout contribution to induced drag 
94         real*8 :: ES   ! Span efficiency factor 
95         real*8 :: CDi1 ! Induced drag coefficient (Eq. 1.8.25) 
96         real*8 :: CDi2 ! Induced drag coefficient (Eq. 1.8.6) 
97         real*8 :: CDi3 ! Induced drag coefficient (Eq. 32, Wing Flapping paper) 
98  
99         ! Roll/yaw calculations 
100         real*8 :: CRM_da   ! Change in rolling moment coefficient with respect 

to alpha 
101         real*8 :: CRM_pbar ! Change in rolling moment coefficient with respect 

to rolling rate 
102         real*8 :: CRM      ! Rolling moment coefficient 
103         real*8 :: CYM      ! Yawing moment coefficient 
104  
105     end type Planform 
106  
107     contains 
108         character*80 function GetWingType(pf) result(name) 
109             type(Planform), intent(in) :: pf 
110  
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111             if (pf%WingType .eq. Tapered) then 
112                 name = "Tapered" 
113             else if (pf%WingType .eq. Elliptic) then 
114                 name = "Elliptic" 
115             else if (pf%WingType .eq. Combination) then 
116                 name = "Tapered with elliptic tip" 
117             else 
118                 name = "Unknown" 
119             end if 
120         end function GetWingType 
121  
122         character*80 function GetWashoutDistributionType(pf) result(name) 
123             type(Planform), intent(in) :: pf 
124  
125             if (pf%WashoutDistribution .eq. Linear) then 
126                 name = "Linear" 
127             else if (pf%WashoutDistribution .eq. Optimum) then 
128                 name = "Optimum" 
129             else 
130                 name = "Unknown" 
131             end if 
132         end function GetWashoutDistributionType 
133  
134         character*80 function GetLowAspectRatioMethod(pf) result(name) 
135             type(Planform), intent(in) :: pf 
136  
137             if (pf%LowAspectRatioMethod .eq. Classical) then 
138                 name = "Classical" 
139             else if (pf%LowAspectRatioMethod .eq. Hodson) then 
140                 name = "Hodson" 
141             else if (pf%LowAspectRatioMethod .eq. ModifiedSlender) then 
142                 name = "Modified Slender Wing" 
143             else if (pf%LowAspectRatioMethod .eq. Kuchemann) then 
144                 name = "Kuchemann" 
145             else 
146                 name = "Unknown" 
147             end if 
148         end function GetLowAspectRatioMethod 
149  
150         real*8 function theta_i(i, nnodes) result(theta) 
151             integer, intent(in) :: i 
152             integer, intent(in) :: nnodes 
153  
154             if (i < 1 .or. i > nnodes) then 
155                 write(6, '(a, i3)') "ERROR: Function theta_i called with i = ", 

i 
156                 if (i < 1) then 
157                     theta = 0.0d0 
158                 else 
159                     theta = pi 
160                 end if 
161             else 
162                 theta = real(i-1, 8) / real(nnodes - 1, 8) * pi 
163             end if 
164         end function theta_i 
165  
166         real*8 function theta_zb(zb) result(theta) 
167             real*8, intent(in) :: zb  ! z/b 
168  
169             if (zb < -0.5d0 .or. zb > 0.5d0) then 
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170                 write(6, '(a, f7.4)') "ERROR: Function theta_d called with z/b = 
", zb 

171                 if (zb < -0.5d0) then 
172                     theta = 0.0d0 
173                 else 
174                     theta = pi 
175                 end if 
176             else 
177                 theta = acos(-2.0d0 * zb) 
178             end if 
179         end function theta_zb 
180  
181         real*8 function c_over_b_i(pf, i) result(cb) 
182             type(Planform), intent(in) :: pf 
183             integer, intent(in) :: i 
184  
185             real*8 :: theta 
186  
187             theta = theta_i(i, pf%NNodes) 
188             cb = c_over_b(pf, theta) 
189         end function c_over_b_i 
190  
191         real*8 function c_over_b_zb(pf, zb) result(cb) 
192             type(Planform), intent(in) :: pf 
193             real*8, intent(in) :: zb  ! z/b 
194  
195             real*8 :: theta 
196  
197             theta = theta_zb(zb) 
198             cb = c_over_b(pf, theta) 
199         end function c_over_b_zb 
200  
201         real*8 function c_over_b(pf, theta) result(cb) 
202             type(Planform), intent(in) :: pf 
203             real*8, intent(in) :: theta 
204  
205             real*8 :: zb, u 
206  
207             if (pf%WingType == Tapered) then 
208                 ! Calculate c/b for tapered wing 
209                 cb = (2.0d0 * (1.0d0 - (1.0d0 - pf%TaperRatio) * & 
210                     & dabs(cos(theta)))) / (pf%AspectRatio * (1.0d0 + 

pf%TaperRatio)) 
211             else if (pf%WingType == Elliptic) then 
212                 ! Calculate c/b for elliptic wing 
213                 cb = (4.0d0 * sin(theta)) / & 
214                     & (pi * pf%AspectRatio) 
215             else if (pf%WingType == Combination) then 
216                 ! Calculate c/b for combination wing 
217                 zb = abs(z_over_b(theta)) 
218                 if (zb <= pf%TransitionPoint) then 
219                     cb = pf%C5 * (1.0d0 - pf%C2 * zb) 
220                 else 
221                     u = (zb - pf%C4) / (0.5d0 - pf%C4) 
222                     cb = pf%C5 * pf%C3 * sqrt(1.0d0 - u**2) 
223                 end if 
224             else 
225                 ! Unknown wing type! 
226                 stop "*** Unknown Wing Type ***" 
227             end if 
228         end function c_over_b 
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229  
230         real*8 function z_over_b_i(i, nnodes) result(zb) 
231             integer, intent(in) :: i 
232             integer, intent(in) :: nnodes 
233  
234             zb = z_over_b(theta_i(i, nnodes)) 
235         end function z_over_b_i 
236  
237         real*8 function z_over_b(theta) result(zb) 
238             real*8, intent(in) :: theta 
239  
240             zb = -0.5d0 * cos(theta) 
241         end function z_over_b 
242  
243         real*8 function cf_over_c_i(pf, i) result(cfc) 
244             type(Planform), intent(in) :: pf 
245             integer, intent(in) :: i 
246  
247             real*8 :: zbi 
248  
249             zbi = z_over_b_i(i, pf%NNodes) 
250             if (Compare(dabs(zbi), pf%AileronRoot, zero) == -1 .or. & 
251                 & Compare(dabs(zbi), pf%AileronTip, zero) == 1) then 
252                 cfc = 0.0d0 
253             else 
254                 cfc = 0.75d0 - y_i(pf, i) / c_over_b_i(pf, i) 
255             end if 
256         end function cf_over_c_i 
257  
258         real*8 function y_i(pf, i) result(y) 
259             type(Planform), intent(in) :: pf 
260             integer, intent(in) :: i 
261  
262             real*8 :: zb_i, cb_i 
263             real*8 :: zb_root, cfc_root, theta_root, cb_root, y_root 
264             real*8 :: zb_tip, cfc_tip, theta_tip, cb_tip, y_tip 
265             real*8 :: slope, offst 
266  
267             zb_root = pf%AileronRoot 
268             cfc_root = pf%FlapFractionRoot 
269             theta_root = theta_zb(zb_root) 
270             cb_root = c_over_b(pf, theta_root) 
271             y_root = (0.75d0 - cfc_root) * cb_root 
272  
273             zb_tip = pf%AileronTip 
274             cfc_tip = pf%FlapFractionTip 
275             theta_tip = theta_zb(zb_tip) 
276             cb_tip = c_over_b(pf, theta_tip) 
277             y_tip = (0.75d0 - cfc_tip) * cb_tip 
278  
279             slope = (y_tip - y_root) / (zb_tip - zb_root) 
280             offst = y_root - slope * zb_root 
281  
282             zb_i = z_over_b_i(i, pf%NNodes) 
283             y = slope * dabs(zb_i) + offst 
284         end function y_i 
285  
286         real*8 function FlapEffectiveness(pf, i) result(eps_f) 
287             type(Planform), intent(in) :: pf 
288             integer, intent(in) :: i 
289  
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290             real*8 :: theta_f, eps_fi 
291  
292             theta_f = acos(2.0d0 * cf_over_c_i(pf, i) - 1.0d0) 
293             eps_fi = 1.0d0 - (theta_f - sin(theta_f)) / pi 
294             eps_f = eps_fi * pf%HingeEfficiency * pf%DeflectionEfficiency 
295         end function FlapEffectiveness 
296  
297         subroutine DeallocateArrays(pf) 
298             type(Planform), intent(inout) :: pf 
299  
300             if (pf%IsAllocated) then 
301                 deallocate(pf%BigC) 
302                 deallocate(pf%BigC_Inv) 
303                 deallocate(pf%a) 
304                 deallocate(pf%b) 
305                 deallocate(pf%c) 
306                 deallocate(pf%d) 
307                 deallocate(pf%BigA) 
308                 deallocate(pf%Omega) 
309  
310                 pf%IsAllocated = .false. 
311             end if 
312         end subroutine DeallocateArrays 
313  
314         subroutine AllocateArrays(pf) 
315             type(Planform), intent(inout) :: pf 
316  
317             if (pf%IsAllocated) call DeallocateArrays(pf) 
318  
319             allocate(pf%BigC(pf%NNodes, pf%NNodes)) 
320             allocate(pf%BigC_Inv(pf%NNodes, pf%NNodes)) 
321             allocate(pf%a(pf%NNodes)) 
322             allocate(pf%b(pf%NNodes)) 
323             allocate(pf%c(pf%NNodes)) 
324             allocate(pf%d(pf%NNodes)) 
325             allocate(pf%BigA(pf%NNodes)) 
326             allocate(pf%Omega(pf%NNodes)) 
327             pf%IsAllocated = .true. 
328         end subroutine AllocateArrays 
329  
330 end module class_Planform 

 

K.4 Module of Setter Functions (liftinglinesetters.f90) 

1 module LiftingLineSetters 
2     use class_Planform 
3     implicit none 
4  
5 contains 
6     subroutine InitPlanform(pf) 
7         type(Planform), intent(inout) :: pf 
8  
9         call SetParallelHingeLine(pf) 
10     end subroutine InitPlanform 
11  
12     ! Planform Parameters 
13     subroutine SetWingType(pf, wingType) 
14         type(Planform), intent(inout) :: pf 
15         integer, intent(in) :: wingType 
16  
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17         if (pf%WingType /= wingType) then 
18             pf%WingType = wingType 
19             call DeallocateArrays(pf) 
20  
21             if (pf%WingType == Combination) then 
22                 call SetCombinationWingCoefficients(pf) 
23             else if (pf%ParallelHingeLine) then 
24                 call SetParallelHingeLine(pf) 
25             end if 
26             if (pf%WingType == Elliptic) then 
27                 pf%WashoutDistribution = Linear 
28             end if 
29         end if 
30     end subroutine SetWingType 
31  
32     subroutine SetWashoutDistribution(pf, washoutDist) 
33         type(Planform), intent(inout) :: pf 
34         integer, intent(in) :: washoutDist 
35  
36         if (pf%WingType /= Elliptic .and. pf%WashoutDistribution /= washoutDist) 

then 
37             pf%WashoutDistribution = washoutDist 
38             call DeallocateArrays(pf) 
39         end if 
40     end subroutine SetWashoutDistribution 
41  
42     subroutine SetLowAspectRatioMethod(pf, lowAspectRatioMethod) 
43         type(Planform), intent(inout) :: pf 
44         integer, intent(in) :: lowAspectRatioMethod 
45  
46         if (pf%LowAspectRatioMethod /= lowAspectRatioMethod) then 
47             pf%LowAspectRatioMethod = lowAspectRatioMethod 
48             call DeallocateArrays(pf) 
49         end if 
50     end subroutine SetLowAspectRatioMethod 
51  
52     subroutine SetTransitionPoint(pf, tp) 
53         type(Planform), intent(inout) :: pf 
54         real*8, intent(in) :: tp 
55  
56         if (Compare(pf%TransitionPoint, tp, zero) /= 0) then 
57             pf%TransitionPoint = tp 
58             call DeallocateArrays(pf) 
59             call SetCombinationWingCoefficients(pf) 
60         end if 
61     end subroutine SetTransitionPoint 
62  
63     subroutine SetTransitionChord(pf, tc) 
64         type(Planform), intent(inout) :: pf 
65         real*8, intent(in) :: tc 
66  
67         if (Compare(pf%TransitionChord, tc, zero) /= 0) then 
68             pf%TransitionChord = tc 
69             call DeallocateArrays(pf) 
70             call SetCombinationWingCoefficients(pf) 
71         end if 
72     end subroutine SetTransitionChord 
73  
74     subroutine SetCombinationWingCoefficients(pf) 
75         type(Planform), intent(inout) :: pf 
76  
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77         real*8 :: u, asin_u 
78  
79         pf%C1 = pf%TransitionPoint 
80         pf%C2 = (1.0d0 - pf%TransitionChord) / pf%C1 
81         pf%C4 = (pf%C1 - 0.25d0 * pf%C2) / (pf%C1 * pf%C2 - pf%C2 + 1.0d0) 
82         u = (pf%C1 - pf%C4) / (0.5d0 - pf%C4) 
83         asin_u = asin(u) 
84         pf%C3 = (1.0d0 - pf%C1 * pf%C2) / sqrt(1.0d0 - u**2) 
85         pf%C5 = 1.0d0 / (pf%AspectRatio * (2.0d0 * pf%C1 - pf%C1**2 * pf%C2 + & 
86             & 0.5d0 * pf%C3 * (0.5d0 - pf%C4) * (pi - 2.0d0 * asin_u - & 
87             & sin(2.0d0 * asin_u)))) 
88  
89         if (pf%ParallelHingeLine) then 
90             call SetParallelHingeLine(pf) 
91         end if 
92     end subroutine SetCombinationWingCoefficients 
93  
94     logical function AreCombinationWingCoefficientsValid(pf) result(isValid) 
95         type(Planform), intent(in) :: pf 
96  
97         real*8 :: u, d1, d2 
98  
99         u = (pf%C1 - pf%C4) / (0.5d0 - pf%C4) 
100         d1 = -pf%C2 
101         d2 = -(pf%C3 * u) / (sqrt(1.0d0 - u**2) * (0.5d0 - pf%C4)) 
102  
103         if (Compare(pf%C1, 0.0d0, zero) /= 1 .and. & 
104             & Compare(pf%C1, 0.5d0, zero) /= -1) then 
105             isValid = .false. 
106         else if (Compare(pf%C1 * pf%C2 - pf%C2 + 1.0d0, 0.0d0, zero) == 0) then 
107             isValid = .false. 
108         else if (Compare(pf%C4, 0.5d0, zero) == 0) then 
109             isValid = .false. 
110         else if (Compare(dabs(u), 1.0d0, zero) /= -1) then 
111             isValid = .false. 
112         else if (Compare(d1, d2, zero) /= 0) then 
113             isValid = .false. 
114         else 
115             isValid = .true. 
116         end if 
117     end function AreCombinationWingCoefficientsValid 
118  
119     subroutine SetNNodes(pf, npss) 
120         type(Planform), intent(inout) :: pf 
121         integer, intent(in) :: npss 
122  
123         integer :: nnodes 
124  
125         nnodes = npss * 2 - 1 
126         if (pf%NNodes /= nnodes) then 
127             pf%NNodes = nnodes 
128             call DeallocateArrays(pf) 
129         end if 
130     end subroutine SetNNodes 
131  
132     subroutine SetAspectRatio(pf, ra) 
133         type(Planform), intent(inout) :: pf 
134         real*8, intent(in) :: ra 
135  
136         if (Compare(pf%AspectRatio, ra, zero) /= 0) then 
137             pf%AspectRatio = ra 
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138             call DeallocateArrays(pf) 
139         end if 
140     end subroutine SetAspectRatio 
141  
142     subroutine SetTaperRatio(pf, rt) 
143         type(Planform), intent(inout) :: pf 
144         real*8, intent(in) :: rt 
145  
146         if (Compare(pf%TaperRatio, rt, zero) /= 0) then 
147             pf%TaperRatio = rt 
148             call DeallocateArrays(pf) 
149  
150             if (pf%ParallelHingeLine) then 
151                 call SetParallelHingeLine(pf) 
152             end if 
153         end if 
154     end subroutine SetTaperRatio 
155  
156     subroutine SetSectionLiftSlope(pf, cla_sec) 
157         type(Planform), intent(inout) :: pf 
158         real*8, intent(in) :: cla_sec 
159  
160         if (Compare(pf%SectionLiftSlope, cla_sec, zero) /= 0) then 
161             pf%SectionLiftSlope = cla_sec 
162             call DeallocateArrays(pf) 
163         end if 
164     end subroutine SetSectionLiftSlope 
165  
166     subroutine SetAileronRoot(pf, ar) 
167         type(Planform), intent(inout) :: pf 
168         real*8, intent(in) :: ar 
169  
170         if (Compare(pf%AileronRoot, ar, zero) /= 0) then 
171             pf%AileronRoot = ar 
172             call DeallocateArrays(pf) 
173         end if 
174     end subroutine SetAileronRoot 
175  
176     subroutine SetAileronTip(pf, at) 
177         type(Planform), intent(inout) :: pf 
178         real*8, intent(in) :: at 
179  
180         if (Compare(pf%AileronTip, at, zero) /= 0) then 
181             pf%AileronTip = at 
182             call DeallocateArrays(pf) 
183         end if 
184     end subroutine SetAileronTip 
185  
186     subroutine SetParallelHingeLine(pf) 
187         type(Planform), intent(inout) :: pf 
188  
189         real*8 :: cfc_root_par 
190  
191         pf%ParallelHingeLine = .true. 
192         cfc_root_par = ParallelRootFlapFraction(pf) 
193         if (Compare(pf%FlapFractionRoot, cfc_root_par, zero) /= 0) then 
194             pf%FlapFractionRoot = cfc_root_par 
195             call DeallocateArrays(pf) 
196         end if 
197     end subroutine SetParallelHingeLine 
198  
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199     subroutine SetFlapFractionRoot(pf, cfc_root) 
200         type(Planform), intent(inout) :: pf 
201         real*8, intent(in) :: cfc_root 
202  
203         pf%ParallelHingeLine = .false. 
204         pf%DesiredFlapFractionRoot = cfc_root 
205         if (Compare(pf%FlapFractionRoot, cfc_root, zero) /= 0) then 
206             pf%FlapFractionRoot = cfc_root 
207             call DeallocateArrays(pf) 
208         end if 
209     end subroutine SetFlapFractionRoot 
210  
211     subroutine SetFlapFractionTip(pf, cfc_tip) 
212         type(Planform), intent(inout) :: pf 
213         real*8, intent(in) :: cfc_tip 
214  
215         if (Compare(pf%FlapFractionTip, cfc_tip, zero) /= 0) then 
216             pf%FlapFractionTip = cfc_tip 
217             call DeallocateArrays(pf) 
218  
219             if (pf%ParallelHingeLine) then 
220                 call SetParallelHingeLine(pf) 
221             end if 
222         end if 
223     end subroutine SetFlapFractionTip 
224  
225     subroutine SetHingeEfficiency(pf, eff_hinge) 
226         type(Planform), intent(inout) :: pf 
227         real*8, intent(in) :: eff_hinge 
228  
229         if (Compare(pf%HingeEfficiency, eff_hinge, zero) /= 0) then 
230             pf%HingeEfficiency = eff_hinge 
231             call DeallocateArrays(pf) 
232         end if 
233     end subroutine SetHingeEfficiency 
234  
235     subroutine SetDeflectionEfficiency(pf, eff_def) 
236         type(Planform), intent(inout) :: pf 
237         real*8, intent(in) :: eff_def 
238  
239         if (Compare(pf%DeflectionEfficiency, eff_def, zero) /= 0) then 
240             pf%DeflectionEfficiency = eff_def 
241             call DeallocateArrays(pf) 
242         end if 
243     end subroutine SetDeflectionEfficiency 
244  
245     subroutine ToggleOutputMatricies(pf) 
246         type(Planform), intent(inout) :: pf 
247  
248         pf%OutputMatrices = .not. pf%OutputMatrices 
249     end subroutine ToggleOutputMatricies 
250  
251     subroutine SetFileName(pf, filename) 
252         type(Planform), intent(inout) :: pf 
253         character*80, intent(in) :: filename 
254  
255         pf%FileName = trim(filename) 
256     end subroutine SetFileName 
257  
258  
259     ! Operating Conditions 
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260     subroutine SetAngleOfAttack(pf, alpha) 
261         type(Planform), intent(inout) :: pf 
262         real*8, intent(in) :: alpha 
263  
264         pf%SpecifyAlpha = .true. 
265         pf%DesiredAngleOfAttack = alpha * pi / 180.0d0 
266         pf%AngleOfAttack = pf%DesiredAngleOfAttack 
267         if (pf%UseOptimumWashout) then 
268             call SetOptimumWashout(pf) 
269         end if 
270         pf%LiftCoefficient = CL1(pf%CLa, pf%AngleOfAttack, pf%EW, pf%Washout) 
271     end subroutine SetAngleOfAttack 
272  
273     subroutine SetLiftCoefficient(pf, cl) 
274         type(Planform), intent(inout) :: pf 
275         real*8, intent(in) :: cl 
276  
277         pf%SpecifyAlpha = .false. 
278         pf%DesiredLiftCoefficient = cl 
279         pf%LiftCoefficient = pf%DesiredLiftCoefficient 
280         if (pf%UseOptimumWashout) then 
281             call SetOptimumWashout(pf) 
282         end if 
283         pf%AngleOfAttack = RootAlpha(pf%CLa, pf%LiftCoefficient, pf%EW, 

pf%Washout) 
284     end subroutine SetLiftCoefficient 
285  
286     subroutine SetAileronDeflection(pf, da) 
287         type(Planform), intent(inout) :: pf 
288         real*8, intent(in) :: da 
289  
290         pf%AileronDeflection = da * pi / 180.0d0 
291     end subroutine SetAileronDeflection 
292  
293     subroutine SetWashout(pf, washout) 
294         type(Planform), intent(inout) :: pf 
295         real*8, intent(in) :: washout 
296  
297         pf%DesiredWashout = washout * pi / 180.0d0 
298         pf%Washout = pf%DesiredWashout 
299         pf%UseOptimumWashout = .false. 
300         if (pf%SpecifyAlpha) then 
301             pf%LiftCoefficient = CL1(pf%CLa, pf%AngleOfAttack, pf%EW, 

pf%Washout) 
302         else 
303             pf%AngleOfAttack = RootAlpha(pf%CLa, pf%LiftCoefficient, pf%EW, 

pf%Washout) 
304         end if 
305     end subroutine SetWashout 
306  
307     subroutine SetOptimumWashout(pf) 
308         type(Planform), intent(inout) :: pf 
309  
310         logical :: cont 
311         integer :: i 
312         real*8 :: oldCL, newCL, resCL 
313         real*8 :: oldOmega, newOmega, resOmega 
314  
315         if (pf%SpecifyAlpha) then 
316             oldCL = pf%LiftCoefficient 
317             oldOmega = pf%Washout 



274 

318             cont = .true. 
319             i = 0 
320             do while (i < 100 .or. (cont .and. i < 1000)) 
321                 i = i + 1 
322                 newOmega = OptimumWashout1(pf%KDL, oldCL, pf%KDW, pf%CLa) 
323                 newCL = CL1(pf%CLa, pf%AngleOfAttack, pf%EW, newOmega) 
324  
325                 resCL = Residual(oldCL, newCL) 
326                 resOmega = Residual(oldOmega, newOmega) 
327  
328                 cont = (Compare(resCL, 0.0d0, zero) /= 0 .or. Compare(resOmega, 

0.0d0, zero) /= 0) 
329                 oldOmega = newOmega 
330                 oldCL = newCL 
331             end do 
332  
333             if (i >= 1000) then 
334                 stop "*** Max number of convergence iterations reached! ***" 
335             else 
336                 pf%LiftCoefficient = newCL 
337                 pf%OptimumWashout1 = newOmega 
338             end if 
339         end if 
340  
341         pf%OptimumWashout1 = OptimumWashout1(pf%KDL, pf%LiftCoefficient, & 
342             & pf%KDW, pf%CLa) 
343         if (pf%WashoutDistribution == Optimum) then 
344             pf%OptimumWashout2 = OptimumWashout2(pf, pf%LiftCoefficient, & 
345                 pf%AspectRatio, pf%SectionLiftSlope) 
346         end if 
347         pf%Washout = pf%OptimumWashout1 
348         pf%UseOptimumWashout = .true. 
349  
350         if (.not. pf%SpecifyAlpha) then 
351             pf%AngleOfAttack = RootAlpha(pf%CLa, pf%LiftCoefficient, pf%EW, 

pf%Washout) 
352         end if 
353     end subroutine SetOptimumWashout 
354  
355     subroutine SetRollingRate(pf, rollingrate) 
356         type(Planform), intent(inout) :: pf 
357         real*8, intent(in) :: rollingrate 
358  
359         pf%DesiredRollingRate = rollingrate 
360         pf%RollingRate = rollingrate 
361         pf%UseSteadyRollingRate = .false. 
362     end subroutine 
363  
364     subroutine SetSteadyRollingRate(pf) 
365         type(Planform), intent(inout) :: pf 
366  
367         real*8 :: steady_pbar 
368  
369         pf%RollingRate = SteadyRollingRate(pf) 
370         pf%UseSteadyRollingRate = .true. 
371     end subroutine SetSteadyRollingRate 
372  
373     real*8 function ParallelRootFlapFraction(pf) result(cfc_root_par) 
374         type(Planform), intent(in) :: pf 
375  
376         real*8 :: cb_root, cfc_root 
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377         real*8 :: cb_tip, cfc_tip 
378  
379         cb_tip = c_over_b_zb(pf, pf%AileronTip) 
380         cfc_tip = pf%FlapFractionTip 
381         cb_root = c_over_b_zb(pf, pf%AileronRoot) 
382         cfc_root_par = 0.75d0 - cb_tip / cb_root * (0.75d0 - cfc_tip) 
383     end function ParallelRootFlapFraction 
384  
385     real*8 function RootAlpha(cla, cl, ew, omega) result(alpha) 
386         real*8, intent(in) :: cla 
387         real*8, intent(in) :: cl 
388         real*8, intent(in) :: ew 
389         real*8, intent(in) :: omega 
390  
391         alpha = cl / cla + ew * omega 
392     end function RootAlpha 
393  
394     real*8 function SteadyRollingRate(pf) result(pbar_steady) 
395         type(Planform), intent(in) :: pf 
396  
397         ! Calculate steady dimensionless rolling rate (Eq. 1.8.59) 
398         pbar_steady = -pf%CRM_da / pf%CRM_pbar * pf%AileronDeflection 
399     end function SteadyRollingRate 
400  
401     real*8 function OptimumWashout1(kdl, cl, kdw, cla) result(ow1) 
402         real*8, intent(in) :: kdl 
403         real*8, intent(in) :: cl 
404         real*8, intent(in) :: kdw 
405         real*8, intent(in) :: cla 
406  
407         ow1 = (kdl * cl) / (2.0d0 * kdw * cla) 
408     end function OptimumWashout1 
409  
410     real*8 function OptimumWashout2(pf, cl, ra, ls) result(ow2) 
411         type(Planform), intent(in) :: pf 
412         real*8, intent(in) :: cl 
413         real*8, intent(in) :: ra 
414         real*8, intent(in) :: ls 
415  
416         ow2 = (4.0d0 * cl) / (pi * ra * ls * c_over_b(pf, pi / 2.0d0)) 
417     end function OptimumWashout2 
418  
419     real*8 function CL1(cla, alpha, ew, w) result(cl) 
420         real*8, intent(in) :: cla 
421         real*8, intent(in) :: alpha 
422         real*8, intent(in) :: ew 
423         real*8, intent(in) :: w 
424  
425         cl = cla * (alpha - ew * w)  ! Eq. 1.8.24 
426     end function CL1 
427  
428     real*8 function CL2(ra, bigA1) result(cl) 
429         real*8, intent(in) :: ra 
430         real*8, intent(in) :: bigA1 
431  
432         cl = pi * ra * bigA1  ! Eq. 1.8.5 
433     end function CL2 
434  
435     real*8 function CDi1(pf) result(cdi) 
436         type(Planform), intent(in) :: pf 
437  
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438         real*8 :: n, a0, A, r1, r2 
439  
440         a0 = pf%SectionLiftSlope 
441         A = pf%AspectRatio 
442  
443         ! Set the low aspect ratio method parameters 
444         if (pf%LowAspectRatioMethod == Hodson) then 
445             r1 = a0 
446             r2 = A * (pi - atan((2.0 * a0) / (pi * A))) 
447         else if (pf%LowAspectRatioMethod == ModifiedSlender) then 
448             r1 = a0 
449             r2 = 0.5 * pi * A 
450         else if (pf%LowAspectRatioMethod == Kuchemann) then 
451             n = 1.0 - 0.5 * (1.0 + (a0 / (pi * A))**2)**(-0.25) 
452             r1 = 2 * n * a0 / (1.0 - pi * n / tan(pi * n)) 
453             r2 = pi * A / (2.0 * n) 
454         else ! Assume Classical 
455             r1 = a0 
456             r2 = pi * A 
457         end if 
458  
459         cdi = (pf%CL1**2 * (1.0d0 + pf%KD) - pf%KDL * pf%CL1 * pf%CLa * & 
460             & pf%Washout + pf%KDW * (pf%CLa * pf%Washout)**2) / (pi * A) & 
461             & * (r1 / r2) * (pi * A) / a0  ! Low-RA correction 
462     end function CDi1 
463  
464     real*8 function CDi2(pf) result(cdi) 
465         type(Planform), intent(in) :: pf 
466  
467         integer :: i 
468  
469         cdi = 0.0d0 
470         do i = 1, pf%NNodes 
471             cdi = cdi + real(i, 8) * pf%BigA(i)**2 
472         end do 
473         cdi = cdi * pi * pf%AspectRatio 
474     end function CDi2 
475  
476     real*8 function CDi3(pf) result(cdi) 
477         type(Planform), intent(in) :: pf 
478  
479         integer :: i 
480         real*8 :: ri 
481  
482         cdi = 0.0d0 
483         do i = 1, pf%NNodes 
484             ri = real(i, 8) 
485             cdi = cdi + ri * pf%BigA(i)**2 
486         end do 
487         cdi = (cdi - 0.5d0 * pf%RollingRate * pf%BigA(2)) * pi * pf%AspectRatio 
488     end function CDi3 
489  
490 end module LiftingLineSetters 

 

K.5 Solver Module (liftinglinesolver.f90) 

1 module LiftingLineSolver 
2     use class_Planform 
3     use LiftingLineSetters 
4     use LiftingLineOutput 
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5     use matrix 
6     implicit none 
7  
8 contains 
9     subroutine ComputeCMatrixAndCoefficients(pf) 
10         type(Planform), intent(inout) :: pf 
11  
12         write(6, '(a)') "Calculating C matrix and Fourier coefficients, please 

wait..." 
13         write(6, '(a, a, a)') "Estimated calculation time: ", & 
14             & trim(FormatReal(pf%NNodes**2 * 1.0d-5, 3)), " seconds" 
15         write(6, *) 
16  
17         if (.not. pf%IsAllocated) then 
18             if (pf%WingType == Combination) then 
19                 call SetCombinationWingCoefficients(pf) 
20             end if 
21  
22             call AllocateArrays(pf) 
23  
24             call ComputeC(pf, pf%BigC) 
25             call ComputeCInverse(pf, pf%BigC_Inv) 
26             call ComputeFourierCoefficients_a(pf, pf%a) 
27             call ComputeFourierCoefficients_b(pf, pf%b, pf%Omega) 
28             call ComputeFourierCoefficients_c(pf, pf%c) 
29             call ComputeFourierCoefficients_d(pf, pf%d) 
30  
31             call ComputeLiftCoefficientParameters(pf) 
32             call ComputeDragCoefficientParameters(pf) 
33             call ComputeRollCoefficientParameters(pf) 
34             call ComputeFlightConditions(pf) 
35         end if 
36     end subroutine ComputeCMatrixAndCoefficients 
37  
38     subroutine ComputeFourierCoefficients_a(pf, a) 
39         type(Planform), intent(in) :: pf 
40         real*8, intent(out) :: a(pf%NNodes) 
41  
42         real*8 :: ones(pf%NNodes) 
43         integer :: i 
44         integer :: nnodes 
45  
46         nnodes = pf%NNodes 
47         ones = (/ (1.0d0, i=1, nnodes) /) 
48         if (pf%WingType == Tapered .and. Compare(pf%TaperRatio, 0.0d0, zero) == 

0) then 
49             ones(1) = 0.0d0 
50             ones(nnodes) = 0.0d0 
51         end if 
52  
53         a = matmul(pf%BigC_Inv, ones) 
54     end subroutine ComputeFourierCoefficients_a 
55  
56     subroutine ComputeFourierCoefficients_b(pf, b, omega) 
57         type(Planform), intent(in) :: pf 
58         real*8, intent(out) :: b(pf%NNodes) 
59         real*8, intent(out) :: omega(pf%NNodes) 
60  
61         real*8 :: croot_over_b, theta 
62         integer :: i 
63         integer :: nnodes 
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64  
65         nnodes = pf%NNodes 
66         if (pf%WashoutDistribution == Linear) then 
67             omega = (/ (dabs(cos(theta_i(i, nnodes))), i=1, nnodes) /) 
68             if (pf%WingType == Tapered .and. Compare(pf%TaperRatio, 0.0d0, zero) 

== 0) then 
69                 omega(1) = 0.0d0 
70                 omega(nnodes) = 0.0d0 
71             end if 
72         else if (pf%WashoutDistribution == Optimum) then 
73             croot_over_b = c_over_b(pf, pi / 2.0d0) 
74             do i = 1, nnodes 
75                 theta = theta_i(i, nnodes) 
76                 omega(i) = 1.0d0 - sin(theta) / (c_over_b(pf, theta) / 

croot_over_b) 
77             end do 
78  
79             if (pf%WingType == Combination) then 
80                 omega(1) = 1.0d0 - sqrt(1.0d0 - 2.0d0 * pf%C4) / pf%C3 
81                 omega(nnodes) = omega(1) 
82             else if (pf%WingType == Tapered .and. Compare(pf%TaperRatio, 0.0d0, 

zero) == 0) then 
83                 omega(1) = 2.0d0 
84                 omega(nnodes) = 2.0d0 
85             end if 
86         else 
87             write(6, '(a)') "Unknown washout distribution type!" 
88             stop 
89         end if 
90  
91         b = matmul(pf%BigC_Inv, omega) 
92     end subroutine ComputeFourierCoefficients_b 
93  
94     subroutine ComputeFourierCoefficients_c(pf, c) 
95         type(Planform), intent(in) :: pf 
96         real*8, intent(out) :: c(pf%NNodes) 
97  
98         real*8 :: chi(pf%NNodes) 
99         real*8 :: zbi 
100         integer :: i 
101         integer :: nnodes 
102  
103         nnodes = pf%NNodes 
104         do i = 1, nnodes 
105             zbi = z_over_b_i(i, nnodes) 
106             chi(i) = -sign(FlapEffectiveness(pf, i), zbi) 
107         end do 
108  
109         if (pf%WingType == Tapered .and. Compare(pf%TaperRatio, 0.0d0, zero) == 

0) then 
110             chi(1) = 0.0d0 
111             chi(nnodes) = 0.0d0 
112         end if 
113  
114         c = matmul(pf%BigC_Inv, chi) 
115     end subroutine ComputeFourierCoefficients_c 
116  
117     subroutine ComputeFourierCoefficients_d(pf, d) 
118         type(Planform), intent(in) :: pf 
119         real*8, intent(out) :: d(pf%NNodes) 
120  
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121         real*8 :: cos_theta(pf%NNodes) 
122         integer :: i 
123         integer :: nnodes 
124  
125         nnodes = pf%NNodes 
126         cos_theta = (/ (cos(theta_i(i, nnodes)), i=1, nnodes) /) 
127         if (pf%WingType == Tapered .and. Compare(pf%TaperRatio, 0.0d0, zero) == 

0) then 
128             cos_theta(1) = 0.0d0 
129             cos_theta(nnodes) = 0.0d0 
130         end if 
131  
132         d = matmul(pf%BigC_Inv, cos_theta) 
133     end subroutine ComputeFourierCoefficients_d 
134  
135     subroutine ComputeBigACoefficients(pf, bigA) 
136         type(Planform), intent(in) :: pf 
137         real*8, intent(out) :: bigA(pf%NNodes) 
138  
139         integer :: i 
140  
141         do i = 1, pf%NNodes 
142             bigA(i) = pf%a(i) * pf%AngleOfAttack - pf%b(i) * pf%Washout + & 
143                 & pf%c(i) * pf%AileronDeflection + pf%d(i) * pf%RollingRate 
144         end do 
145     end subroutine ComputeBigACoefficients 
146  
147     subroutine ComputeLiftCoefficientParameters(pf) 
148         type(Planform), intent(inout) :: pf 
149  
150         pf%KL = Kappa_L(pf%AspectRatio, pf%SectionLiftSlope, pf%a(1)) 
151         pf%EW = Epsilon_Omega(pf%a(1), pf%b(1)) 
152         pf%CLa = C_L_alpha(pf%AspectRatio, pf%a(1)) 
153     end subroutine ComputeLiftCoefficientParameters 
154  
155     subroutine ComputeDragCoefficientParameters(pf) 
156         type(Planform), intent(inout) :: pf 
157  
158         pf%KD = Kappa_D(pf%NNodes, pf%a) 
159         pf%ES = SpanEfficiencyFactor(pf%KD) 
160         pf%KDL = Kappa_DL(pf%NNodes, pf%a, pf%b) 
161         pf%KDW = Kappa_DOmega(pf%NNodes, pf%a, pf%b) 
162     end subroutine ComputeDragCoefficientParameters 
163  
164     subroutine ComputeRollCoefficientParameters(pf) 
165         type(Planform), intent(inout) :: pf 
166  
167         pf%CRM_da = CRM_dAlpha(pf%AspectRatio, pf%c(2)) 
168         pf%CRM_pbar = CRM_PBar(pf%AspectRatio, pf%d(2)) 
169     end subroutine ComputeRollCoefficientParameters 
170  
171     real*8 function Kappa_L(ra, cla_section, a1) result(kl) 
172         real*8, intent(in) :: ra 
173         real*8, intent(in) :: cla_section 
174         real*8, intent(in) :: a1 
175  
176         kl = 1.0d0 / ((1.0d0 + pi * ra / cla_section) * a1) - 1.0d0 
177     end function Kappa_L 
178  
179     real*8 function Epsilon_Omega(a1, b1) result(ew) 
180         real*8, intent(in) :: a1 
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181         real*8, intent(in) :: b1 
182  
183         ew = b1 / a1 
184     end function Epsilon_Omega 
185  
186     real*8 function C_L_alpha(ra, a1) result(cla) 
187         real*8, intent(in) :: ra 
188         real*8, intent(in) :: a1 
189  
190         cla = pi * ra * a1 
191     end function C_L_alpha 
192  
193     real*8 function Kappa_D(nnodes, a) result(kd) 
194         integer, intent(in) :: nnodes 
195         real*8, intent(in) :: a(nnodes) 
196  
197         integer :: i 
198  
199         kd = 0.0d0 
200         do i = 2, nnodes 
201             kd = kd + real(i, 8) * (a(i) / a(1))**2 
202         end do 
203     end function Kappa_D 
204  
205     real*8 function SpanEfficiencyFactor(kd) result(es) 
206         real*8, intent(in) :: kd 
207         es = 1.0d0 / (1.0d0 + kd) 
208     end function SpanEfficiencyFactor 
209  
210     real*8 function Kappa_DL(nnodes, a, b) result (kdl) 
211         integer, intent(in) :: nnodes 
212         real*8, intent(in) :: a(nnodes) 
213         real*8, intent(in) :: b(nnodes) 
214  
215         integer :: i 
216  
217         kdl = 0.0d0 
218         do i = 2, nnodes 
219             kdl = kdl + real(i, 8) * a(i) / a(1) * & 
220                 & (b(i) / b(1) - a(i) / a(1)) 
221         end do 
222         kdl = kdl * 2.0d0 * b(1) / a(1) 
223     end function Kappa_DL 
224  
225     real*8 function Kappa_DOmega(nnodes, a, b) result(kdw) 
226         integer, intent(in) :: nnodes 
227         real*8, intent(in) :: a(nnodes) 
228         real*8, intent(in) :: b(nnodes) 
229  
230         integer :: i 
231  
232         kdw = 0.0d0 
233         do i = 2, nnodes 
234             kdw = kdw + real(i, 8) * (b(i) / b(1) - a(i) / a(1))**2 
235         end do 
236         kdw = kdw * (b(1) / a(1))**2 
237     end function Kappa_DOmega 
238  
239     real*8 function CRM_dAlpha(ra, c2) result(crmda) 
240         real*8, intent(in) :: ra 
241         real*8, intent(in) :: c2 
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242  
243         crmda = -pi * ra / 4.0d0 * c2 
244     end function CRM_dAlpha 
245  
246     real*8 function CRM_PBar(ra, d2) result(crmpbar) 
247         real*8, intent(in) :: ra 
248         real*8, intent(in) :: d2 
249  
250         crmpbar = -pi * ra / 4.0d0 * d2 
251     end function CRM_PBar 
252  
253     subroutine ComputeFlightConditions(pf) 
254         type(Planform), intent(inout) :: pf 
255  
256         ! Make sure planform characteristics have been computed 
257         if (.not. pf%IsAllocated) then 
258             call ComputeCMatrixAndCoefficients(pf) 
259         end if 
260  
261         ! Compute root aerodynamic angle of attack, if necessary 
262         if (.not. pf%SpecifyAlpha) then 
263             pf%AngleOfAttack = RootAlpha(pf%CLa, pf%LiftCoefficient, pf%EW, 

pf%Washout) 
264         else 
265             pf%LiftCoefficient = CL1(pf%CLa, pf%AngleOfAttack, pf%EW, 

pf%Washout) 
266         end if 
267  
268         ! Compute optimum total washout, if necessary 
269         if (pf%UseOptimumWashout) then 
270             call SetOptimumWashout(pf) 
271         else 
272             call SetWashout(pf, pf%DesiredWashout * 180.0d0 / pi) 
273         end if 
274  
275         ! Compute steady rolling rate, if necessary 
276         if (pf%UseSteadyRollingRate) then 
277             call SetSteadyRollingRate(pf) 
278         end if 
279  
280         ! Compute BigA Fourier Coefficients 
281         call ComputeBigACoefficients(pf, pf%BigA) 
282  
283         ! Compute lift coefficients 
284         call ComputeLiftCoefficients(pf) 
285  
286         ! Compute drag coefficient 
287         call ComputeDragCoefficients(pf) 
288  
289         ! Compute roll coefficient 
290         pf%CRM = CRoll(pf%CRM_da, pf%CRM_pbar, pf%AileronDeflection, 

pf%RollingRate) 
291  
292         ! Compute yaw coefficient 
293         pf%CYM = CYaw(pf, pf%CL1, pf%BigA) 
294     end subroutine ComputeFlightConditions 
295  
296     subroutine ComputeLiftCoefficients(pf) 
297         type(Planform), intent(inout) :: pf 
298  
299         pf%CL1 = CL1(pf%CLa, pf%AngleOfAttack, pf%EW, pf%Washout) 
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300         pf%CL2 = CL2(pf%AspectRatio, pf%BigA(1)) 
301     end subroutine ComputeLiftCoefficients 
302  
303     subroutine ComputeDragCoefficients(pf) 
304         type(Planform), intent(inout) :: pf 
305  
306         pf%CDi1 = CDi1(pf) 
307         pf%CDi2 = CDi2(pf) 
308         pf%CDi3 = CDi3(pf) 
309     end subroutine ComputeDragCoefficients 
310  
311     real*8 function CRoll(crmda, crmpbar, da, pbar) result(crm) 
312         real*8, intent(in) :: crmda 
313         real*8, intent(in) :: crmpbar 
314         real*8, intent(in) :: da 
315         real*8, intent(in) :: pbar 
316  
317         crm = crmda * da + crmpbar * pbar 
318     end function CRoll 
319  
320     real*8 function CYaw(pf, cl, bigA) result(cym) 
321         type(Planform), intent(in) :: pf 
322         real*8, intent(in) :: cl 
323         real*8, intent(in) :: bigA(pf%NNodes) 
324  
325         integer :: i 
326         integer :: nnodes 
327         nnodes = pf%NNodes 
328  
329         cym = cl / 8.0d0 * (6.0d0 * bigA(2) - pf%RollingRate) + & 
330             & pi * pf%AspectRatio / 8.0d0 * (10.0d0 * bigA(2) - & 
331             & pf%RollingRate) * bigA(3) 
332         do i = 4, nnodes 
333             cym = cym + 0.25d0 * pi * pf%AspectRatio * & 
334                 & (2.0d0 * real(i, 8) - 1.0d0) * bigA(i-1) * bigA(i) 
335         end do 
336     end function CYaw 
337  
338     subroutine ComputeC(pf, c) 
339         type(Planform), intent(in) :: pf 
340         real*8, intent(inout) :: c(pf%NNodes, pf%NNodes) 
341  
342         integer :: i 
343         integer :: nnodes 
344  
345         nnodes = pf%NNodes 
346  
347         ! Compute values for i=1, i=N 
348         call C1j_Nj(c, pf) 
349  
350         ! Compute values for i=2 to i=N-1 
351         do i = 2, nnodes-1 
352             call Cij(c, i, pf) 
353         end do 
354     end subroutine ComputeC 
355  
356     subroutine ComputeCInverse(pf, c_inv) 
357         type(Planform), intent(in) :: pf 
358         real*8, intent(inout) :: c_inv(pf%NNodes, pf%NNodes) 
359  
360         call matinv_gauss(pf%NNodes, pf%BigC, c_inv) 
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361     end subroutine ComputeCInverse 
362  
363     subroutine C1j_Nj(c, pf) 
364         real*8, dimension(:,:), intent(inout) :: c 
365         type(Planform), intent(in) :: pf 
366  
367         integer :: j 
368         integer :: jsq 
369         integer :: nnode 
370         real*8 :: cb0 
371  
372         nnode = pf%NNodes 
373         do j = 1, nnode 
374             jsq = j**2 
375             c(1, j) = real(jsq, 8) 
376             c(nnode, j) = real((-1)**(j + 1) * jsq, 8) 
377         end do 
378  
379         cb0 = c_over_b(pf, pi) 
380         if (dabs(cb0) < 1.0d-10) then 
381             call C1j_Nj_zero_chord(c, pf) 
382         end if 
383  
384     end subroutine C1j_Nj 
385  
386     subroutine Cij(c, i, pf) 
387         real*8, dimension(:,:), intent(inout) :: c 
388         integer, intent(in) :: i 
389         type(Planform), intent(in) :: pf 
390  
391         integer :: j 
392         integer :: nnode 
393         real*8 :: theta 
394         real*8 :: cb 
395         real*8 :: sin_theta 
396         real*8 :: a0, A, r1, r2, r1y 
397         real*8 :: n 
398  
399         nnode = pf%NNodes 
400         theta = theta_i(i, nnode) 
401         cb = c_over_b_i(pf, i) 
402         sin_theta = sin(theta) 
403  
404         a0 = pf%SectionLiftSlope 
405         A = pf%AspectRatio 
406  
407         ! Set the low aspect ratio method parameters 
408         if (pf%LowAspectRatioMethod == Hodson) then 
409             r1 = a0 * (A / cb * sin_theta)**exp(-8.0 * A) 
410             r2 = A * (pi - atan((2.0 * a0) / (pi * A))) 
411         else if (pf%LowAspectRatioMethod == ModifiedSlender) then 
412             r1 = a0 
413             r2 = 0.5 * pi * A 
414         else if (pf%LowAspectRatioMethod == Kuchemann) then 
415             n = 1.0 - 0.5 * (1.0 + (a0 / (pi * A))**2)**(-0.25) 
416             r1 = 2 * n * a0 / (1.0 - pi * n / tan(pi * n)) 
417             r2 = pi * A / (2.0 * n) 
418         else ! Assume Classical 
419             r1 = a0 
420             r2 = pi * A 
421         end if 
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422  
423         do j = 1, nnode 
424             c(i, j) = (4.0d0 / (pf%SectionLiftSlope * cb) * (a0 / r1) + & 
425                 & real(j, 8) / sin_theta * ((pi * A) / r2)) * sin(real(j, 8) * 

theta) 
426         end do 
427     end subroutine Cij 
428  
429     subroutine C1j_Nj_zero_chord(c, pf) 
430         real*8, dimension(:,:), intent(inout) :: c 
431         type(Planform), intent(in) :: pf 
432  
433         integer :: j, n 
434  
435         n = pf%NNodes 
436  
437         if (pf%WingType == Tapered) then 
438             do j = 1, n 
439                 c(1, j) = 2.0d0 * pf%AspectRatio * (1.0d0 + real(j, 8)) 
440                 c(n, j) = real((-1)**(j + 1), 8) * c(1, j) 
441             end do 
442         else if (pf%WingType == Elliptic) then 
443             do j = 1, n 
444                 c(1, j) = c(1, j) + real(j, 8) * pi * & 
445                     & pf%AspectRatio / pf%SectionLiftSlope 
446                 c(n, j) = c(n, j) + real((-1)**(j + 1) * j, 8) * pi * & 
447                     & pf%AspectRatio / pf%SectionLiftSlope 
448             end do 
449         else if (pf%WingType == Combination) then 
450             ! TODO: Add code for combination wing type 
451             do j = 1, n 
452                 c(1, j) = c(1, j) + 4.0d0 * real(j, 8) * & 
453                     & sqrt(1.0d0 - 2.0d0 * pf%C4) / & 
454                     & (pf%C3 * pf%C5 * pf%SectionLiftSlope) 
455                 c(n, j) = c(n, j) + 4.0d0 * real((-1)**(j + 1) * j, 8) * & 
456                     & sqrt(1.0d0 - 2.0d0 * pf%C4) / & 
457                     & (pf%C3 * pf%C5 * pf%SectionLiftSlope) 
458             end do 
459         else 
460             stop "*** Unknown Wing Type ***" 
461         end if 
462  
463     end subroutine C1j_Nj_zero_chord 
464  
465 end module LiftingLineSolver 

 

K.6 Output Module (liftinglineoutput.f90) 

1 module LiftingLineOutput 
2     use Utilities 
3     use class_Planform 
4     use LiftingLineSetters 
5     use matrix 
6     implicit none 
7  
8 contains 
9     subroutine OutputHeader() 
10         integer :: i 
11  
12         write(6, ('(80a)')) ("*", i=1, 80) 
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13         write(6, '(34x, a)') "Pralines v1.0" 
14         write(6, *) 
15         write(6, '(28x, a)') "Author: Josh Hodson" 
16         write(6, '(28x, a)') "Release Date: 20 Nov 2013" 
17         write(6, *) 
18         write(6, ('(80a)')) ("*", i=1, 80) 
19     end subroutine OutputHeader 
20  
21     subroutine OutputPlanform(pf) 
22         type(Planform), intent(in) :: pf 
23  
24         ! Open a clean file for output 
25         open(unit=10, file=pf%FileName, action='WRITE') 
26  
27         ! Output the planform summary to output file 
28         call OutputPlanformSummary(10, pf) 
29  
30         ! Output C matrix and fourier coefficients to output file 
31         if (pf%OutputMatrices) then 
32             call OutputC(10, pf%NNodes, pf%BigC) 
33             call OutputCInverse(10, pf%NNodes, pf%BigC_Inv) 
34             call OutputFourierCoefficients(10, pf) 
35         end if 
36  
37         ! Close the output file 
38         close(unit=10) 
39     end subroutine OutputPlanform 
40  
41     subroutine OutputLiftCoefficientParameters(u, pf) 
42         integer, intent(in) :: u  ! Output unit 
43         type(Planform), intent(in) :: pf 
44  
45         write(u, '(a)') "Lift Coefficient Parameters:" 
46         write(u, '(2x, a, f20.15)') "KL    = ", pf%KL 
47         write(u, '(2x, a, f20.15)') "CL,a  = ", pf%CLa 
48         write(u, '(2x, a, f20.15)') "EW    = ", pf%EW 
49         write(u, *) 
50     end subroutine OutputLiftCoefficientParameters 
51  
52     subroutine OutputDragCoefficientParameters(u, pf) 
53         integer, intent(in) :: u  ! Output unit 
54         type(Planform), intent(in) :: pf 
55  
56         write(u, '(a)') "Drag Coefficient Parameters:" 
57         write(u, '(2x, a, f20.15)') "KD    = ", pf%KD 
58         write(u, '(2x, a, f20.15)') "KDL   = ", pf%KDL 
59         write(u, '(2x, a, f20.15)') "KDW   = ", pf%KDW 
60         write(u, '(2x, a, f20.15)') "es    = ", pf%ES 
61         write(u, *) 
62     end subroutine OutputDragCoefficientParameters 
63  
64     subroutine OutputRollCoefficientParameters(u, pf) 
65         integer, intent(in) :: u  ! Output unit 
66         type(Planform), intent(in) :: pf 
67  
68         write(u, '(a)') "Rolling Moment Coefficient Parameters:" 
69         write(u, '(2x, a, f20.15)') "Cl,da = ", pf%Crm_da 
70         write(u, '(2x, a, f20.15)') "Cl,pb = ", pf%Crm_pbar 
71         write(u, *) 
72     end subroutine OutputRollCoefficientParameters 
73  
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74     subroutine OutputFlightConditions(pf) 
75         type(Planform), intent(in) :: pf 
76  
77         ! Open the file and append flight conditions to end 
78         open(unit=10, file=pf%FileName, access="append") 
79  
80         ! Output flight conditions to output file 
81         call OutputOperatingConditions(10, pf) 
82         call OutputFlightCoefficients(10, pf) 
83  
84         ! Close the output file 
85         close(unit=10) 
86     end subroutine OutputFlightConditions 
87  
88     subroutine OutputOperatingConditions(u, pf) 
89         integer, intent(in) :: u  ! Output unit 
90         type(Planform), intent(in) :: pf 
91  
92         write(u, '(a15, 19x, 1x, a1, f20.15, 1x, a)') "Optimum washout", & 
93             & "=", pf%OptimumWashout1 * 180.0d0 / pi, "degrees (Eq. 1.8.37)" 
94         if (pf%WashoutDistribution == Optimum) then 
95             write(u, '(a15, 19x, 1x, a1, f20.15, 1x, a)') "Optimum washout", & 
96                 & "=", pf%OptimumWashout2 * 180.0d0 / pi, "degrees (Eq. 1.8.42)" 
97         end if 
98         write(u, '(a28, 6x, 1x, a1, f20.15, 1x, a)') "Washout used in 

calculations", & 
99             & "=", pf%Washout * 180.0d0 / pi, "degrees" 
100         write(u, '(a18, 16x, 1x, a1, f20.15, 1x, a)') & 
101             & "Aileron deflection", "=", & 
102             & pf%AileronDeflection * 180.0d0 / pi, "degrees" 
103         write(u, '(a33, 1x, 1x, a1, f20.15)') & 
104             & "Steady dimensionless rolling rate", "=", SteadyRollingRate(pf) 
105         write(u, '(a31, 3x, 1x, a1, f20.15)') & 
106             & "Dimensionless rolling rate used", "=", pf%RollingRate 
107         write(u, '(a32, 2x, 1x, a1, f20.15, 1x, a)') & 
108             & "Root aerodynamic angle of attack", "=", & 
109             & pf%AngleOfAttack * 180.0d0 / pi, "degrees" 
110         write(u, *) 
111     end subroutine OutputOperatingConditions 
112  
113     subroutine OutputFlightCoefficients(u, pf) 
114         integer, intent(in) :: u  ! Output unit 
115         type(Planform), intent(in) :: pf 
116  
117         write(u, '(a)') "Flight Coefficients:" 
118         write(u, '(2x, a, f20.15, a)') "CL    = ", pf%CL1, " (Eq. 1.8.24)" 
119         write(u, '(2x, a, f20.15, a)') "CL    = ", pf%CL2, " (Eq. 1.8.5)" 
120         write(u, '(2x, a, f20.15, a)') "CDi   = ", pf%CDi1, " (Eq. 1.8.25)" 
121         write(u, '(2x, a, f20.15, a)') "CDi   = ", pf%CDi2, " (Eq. 1.8.6)" 
122         write(u, '(2x, a, f20.15, a)') "CDi   = ", pf%CDi3, " (Exact)" 
123         write(u, '(2x, a, f20.15)') "Croll = ", pf%CRM 
124         write(u, '(2x, a, f20.15)') "Cyaw  = ", pf%CYM 
125         write(u, *) 
126     end subroutine OutputFlightCoefficients 
127  
128     subroutine OutputPlanformSummary(u, pf) 
129         integer, intent(in) :: u 
130         type(Planform), intent(in) :: pf 
131  
132         character*80 :: fmt_str 
133         integer :: len_nnodes 
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134  
135         len_nnodes = int(log10(real(pf%NNodes))) + 1 
136         write(fmt_str, '(a,i1,a,i1,a)') "(2x, a15, 11x, 1x, a1, 3x, i", & 
137             & len_nnodes, ", 1x, a, i", len_nnodes, ",a)" 
138  
139         write(u, '(a)') "Planform Summary:" 
140  
141         ! Wing type 
142         write(u, '(2x, a9, 17x, 1x, a1, 3x, a)') "Wing type", "=", & 
143             & trim(GetWingType(pf)) 
144  
145         ! Number of nodes 
146         write(u, fmt_str) "Number of nodes", "=", pf%NNodes, " (", & 
147             & (pf%NNodes + 1) / 2, " nodes per semispan)" 
148  
149         ! Section Lift Slope 
150         write(u, '(2x, a26, 1x, a1, f20.15)') & 
151             & "Airfoil section lift slope", "=", pf%SectionLiftSlope 
152  
153         ! Aspect Ratio 
154         write(u, '(2x, a12, 14x, 1x, a1, f20.15)') & 
155             & "Aspect Ratio", "=", pf%AspectRatio 
156  
157         ! Taper Ratio 
158         if (pf%WingType == Tapered) then 
159             write(u, '(2x, a11, 15x, 1x, a1, f20.15)') & 
160                 & "Taper Ratio", "=", pf%TaperRatio 
161         end if 
162  
163         ! Transition from tapered to elliptic 
164         if (pf%WingType == Combination) then 
165             write(u, '(2x, a20, 6x, 1x, a1, f20.15)') "Transition Point z/b", & 
166                 & "=", pf%TransitionPoint 
167             write(u, '(2x, a20, 6x, 1x, a1, f20.15)') "Transition Point 

c/croot", & 
168                 & "=", pf%TransitionChord 
169         end if 
170  
171         ! Washout distribution type 
172         if (pf%WingType /= Elliptic) then 
173             write(u, '(2x, a20, 6x, 1x, a1, 3x, a)') "Washout Distribution", & 
174                 & "=", trim(GetWashoutDistributionType(pf)) 
175         end if 
176  
177         ! Location of aileron root, tip 
178         write(u, '(2x, a19, 7x, 1x, a1, f20.15)') & 
179             & "z/b at aileron root", "=", pf%AileronRoot 
180         write(u, '(2x, a18, 8x, 1x, a1, f20.15)') & 
181             & "z/b at aileron tip", "=", pf%AileronTip 
182  
183         ! Flap fraction at aileron root, tip 
184         write(u, '(2x, a20, 6x, 1x, a1, f20.15)') & 
185             & "cf/c at aileron root", "=", pf%FlapFractionRoot 
186         write(u, '(2x, a19, 7x, 1x, a1, f20.15)') & 
187             & "cf/c at aileron tip", "=", pf%FlapFractionTip 
188  
189         ! Hinge Efficiency Factor 
190         write(u, '(2x, a16, 10x, 1x, a1, f20.15)') & 
191             & "Hinge Efficiency", "=", pf%HingeEfficiency 
192  
193         ! Deflection efficiency factor 
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194         write(u, '(2x, a21, 5x, 1x, a1, f20.15)') & 
195             & "Deflection Efficiency", "=", pf%DeflectionEfficiency 
196  
197         write(u, *) 
198  
199         call OutputLiftCoefficientParameters(u, pf) 
200         call OutputDragCoefficientParameters(u, pf) 
201         call OutputRollCoefficientParameters(u, pf) 
202     end subroutine OutputPlanformSummary 
203  
204     subroutine OutputFourierCoefficients(u, pf) 
205         integer, intent(in) :: u 
206         type(Planform), intent(in) :: pf 
207  
208         integer :: i 
209  
210         write(u, '(a)') "Fourier Coefficients:" 
211         write(u, '(a3, 4(2x, a20))') & 
212             & "i", "a(i)", "b(i)", "c(i)", "d(i)" 
213         do i = 1, pf%NNodes 
214             write(u, '(i3, 4(2x, f20.15))') & 
215                 & i, pf%a(i), pf%b(i), pf%c(i), pf%d(i) 
216         end do 
217         write(u, *) 
218     end subroutine OutputFourierCoefficients 
219  
220     subroutine OutputC(u, nnodes, c) 
221         integer, intent(in) :: u 
222         integer, intent(in) :: nnodes 
223         real*8, intent(in) :: c(nnodes, nnodes) 
224  
225         write(u, *) "[C] Matrix:" 
226         call printmat(u, nnodes, nnodes, c) 
227         write(u, *) 
228  
229     end subroutine OutputC 
230  
231     subroutine OutputCInverse(u, nnodes, c_inv) 
232         integer, intent(in) :: u 
233         integer, intent(in) :: nnodes 
234         real*8, intent(in) :: c_inv(nnodes, nnodes) 
235  
236         write(u, *) "[C]^-1 Matrix:" 
237         call printmat(u, nnodes, nnodes, c_inv) 
238         write(u, *) 
239  
240     end subroutine OutputCInverse 
241  
242     subroutine OutputHingeLine(u, pf) 
243         integer, intent(in) :: u 
244         type(Planform), intent(in) :: pf 
245  
246         integer :: i 
247  
248         do i = 1, pf%NNodes 
249             write(u, '(i3, 2x, f20.15, 2x, f20.15)') i, z_over_b_i(i, 

pf%NNodes), y_i(pf, i) 
250         end do 
251     end subroutine OutputHingeLine 
252  
253     subroutine PlotPlanform(pf) 
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254         type(Planform), intent(in) :: pf 
255  
256         integer :: i 
257  
258         ! Generate temporary text file for plotting 
259         open(unit=11, file='.\Output\planform.dat') 
260         write(11, '(a)') "$ Planform Geometry" 
261  
262         ! Write data points for planform 
263         write(11, '(a)') "! Wing" 
264         do i=1, pf%NNodes 
265             write(11, '(f22.15, a, 2x, f22.15)') & 
266                 & z_over_b_i(i, pf%NNodes), ";", 0.25d0 * c_over_b_i(pf, i) 
267             write(11, '(f22.15, a, 2x, f22.15)') & 
268                 & z_over_b_i(i, pf%NNodes), ";", -0.75d0 * c_over_b_i(pf, i) 
269             write(11, '(f22.15, a, 2x, f22.15)') & 
270                 & z_over_b_i(i, pf%NNodes), ";", 0.25d0 * c_over_b_i(pf, i) 
271         end do 
272         do i=pf%NNodes, 1, -1 
273             write(11, '(f22.15, a, 2x, f22.15)') & 
274                 & z_over_b_i(i, pf%NNodes), ";", -0.75d0 * c_over_b_i(pf, i) 
275         end do 
276         write(11, '(f22.15, a, 2x, f22.15)') & 
277             & z_over_b_i(1, pf%NNodes), ";", 0.25d0 * c_over_b_i(pf, 1) 
278  
279         ! Write data points for right aileron 
280         write(11, '(a)') "$" 
281         write(11, '(a)') "! Right Aileron" 
282         write(11, '(f22.15, a, 2x, f22.15)') pf%AileronRoot, ";", & 
283             & -0.75d0 * c_over_b_zb(pf, pf%AileronRoot) 
284         write(11, '(f22.15, a, 2x, f22.15)') pf%AileronRoot, ";", & 
285             & (-0.75d0 + pf%FlapFractionRoot) * c_over_b_zb(pf, pf%AileronRoot) 
286         write(11, '(f22.15, a, 2x, f22.15)') pf%AileronTip, ";", & 
287             & (-0.75d0 + pf%FlapFractionTip) * c_over_b_zb(pf, pf%AileronTip) 
288         write(11, '(f22.15, a, 2x, f22.15)') pf%AileronTip, ";", & 
289             & -0.75d0 * c_over_b_zb(pf, pf%AileronTip) 
290  
291         ! Write data points for left aileron 
292         write(11, '(a)') "$" 
293         write(11, '(a)') "! Left Aileron" 
294         write(11, '(f22.15, a, 2x, f22.15)') -pf%AileronRoot, ";", & 
295             & -0.75d0 * c_over_b_zb(pf, pf%AileronRoot) 
296         write(11, '(f22.15, a, 2x, f22.15)') -pf%AileronRoot, ";", & 
297             & (-0.75d0 + pf%FlapFractionRoot) * c_over_b_zb(pf, pf%AileronRoot) 
298         write(11, '(f22.15, a, 2x, f22.15)') -pf%AileronTip, ";", & 
299             & (-0.75d0 + pf%FlapFractionTip) * c_over_b_zb(pf, pf%AileronTip) 
300         write(11, '(f22.15, a, 2x, f22.15)') -pf%AileronTip, ";", & 
301             & -0.75d0 * c_over_b_zb(pf, pf%AileronTip) 
302  
303         ! Close the geometry file 
304         close(unit=11) 
305  
306         ! System call to plot planform 
307         call system('"C:\Program Files (x86)\ESPlot v1.3c\esplot.exe" ' & 
308             & // '.\Output\planform.dat .\Templates\planform.qtp') 
309     end subroutine PlotPlanform 
310  
311     subroutine PlotWashout(pf) 
312         type(Planform), intent(in) :: pf 
313  
314         integer :: i 
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315  
316         open(unit=11, file='.\Output\washout.dat') 
317         write(11, '(a)') "$ Dimensionless Washout Distribution" 
318  
319         ! Write washout distribution 
320         do i = 1, pf%NNodes 
321             write(11, '(f22.15, a, 2x, f22.15)') & 
322                 & z_over_b_i(i, pf%NNodes), ";", pf%Omega(i) 
323         end do 
324  
325         close(unit=11) 
326  
327         call system('"C:\Program Files (x86)\ESPlot v1.3c\esplot.exe" ' & 
328             & // '.\Output\washout.dat .\Templates\washout.qtp') 
329     end subroutine PlotWashout 
330  
331     subroutine WriteSectionLiftDistribution(pf) 
332         type(Planform), intent(in) :: pf 
333  
334         integer :: i 
335         real*8 :: zb, cl(pf%NNodes) 
336  
337         call GetLiftDistribution(pf, cl) 
338  
339         open(unit=11, file='liftdistribution.dat') 
340         write(11, '(a)') "$ Section Lift Distribution" 
341  
342         do i = 1, pf%NNodes 
343             zb = z_over_b_i(i, pf%NNodes) 
344             write(11, '(f22.15, a, 2x, f22.15)') zb, ";", cl(i) 
345         end do 
346  
347         close(unit=11) 
348  
349  
350     end subroutine 
351  
352     subroutine PlotSectionLiftDistribution(pf) 
353         type(Planform), intent(in) :: pf 
354  
355         call WriteSectionLiftDistribution(pf) 
356         call system('"C:\Program Files (x86)\ESPlot v1.3c\esplot.exe" ' & 
357             & // 'liftdistribution.dat .\Templates\liftdistribution.qtp') 
358     end subroutine PlotSectionLiftDistribution 
359  
360     subroutine WriteNormalizedLiftCoefficient(pf) 
361         type(Planform), intent(in) :: pf 
362  
363         integer :: i 
364         real*8 :: zb, cb, cl1, cl_over_cl, cl(pf%NNodes) 
365          ! Don't normalize if CL1 == 0 
366         if (Compare(pf%CL1, 0.0d0, zero) == 0) then 
367             cl1 = 1.0d0 
368         else 
369             cl1 = pf%CL1 
370         end if 
371  
372         call GetLiftDistribution(pf, cl) 
373  
374         open(unit=11, file='liftcoefficient.dat') 
375         write(11, '(a)') "$ Normalized Section Lift Coefficient" 
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376  
377         do i = 1, pf%NNodes 
378             zb = z_over_b_i(i, pf%NNodes) 
379             cb = c_over_b_zb(pf, zb) 
380             if (Compare(cb, 0.0d0, zero) == 0) then 
381                 if (Compare(cl(i), 0.0d0, zero) == 0) then 
382                     if (pf%WingType == Elliptic) then 
383                         cl_over_cl = NLC_ZeroChord_Elliptic(pf, zb, cb, cl1) 
384                     else if (pf%WingType == Tapered) then 
385                         cl_over_cl = NLC_ZeroChord_Tapered(pf, zb, cb, cl1) 
386                     else if (pf%WingType == Combination) then 
387                         cl_over_cl = NLC_ZeroChord_Tapered(pf, zb, cb, cl1) 
388                     else 
389                         stop "***Unknown Wing Type***" 
390                     end if 
391                 else 
392                     ! Finite lift from zero-chord section, should never happen 
393                     cl_over_cl = 1.0d0 / zero 
394                 end if 
395             else 
396                 cl_over_cl = cl(i) / cb / cl1 
397             end if 
398             write(11, '(f22.15, a, 2x, f22.15)') zb, ";", cl_over_cl 
399         end do 
400  
401         close(unit=11) 
402     end subroutine 
403  
404     subroutine PlotNormalizedLiftCoefficient(pf) 
405         type(Planform), intent(in) :: pf 
406  
407         call WriteNormalizedLiftCoefficient(pf) 
408         call system('"C:\Program Files (x86)\ESPlot v1.3c\esplot.exe" ' & 
409             & // 'liftcoefficient.dat .\Templates\liftcoefficient.qtp') 
410     end subroutine PlotNormalizedLiftCoefficient 
411  
412     subroutine GetLiftDistribution(pf, cl) 
413         type(Planform), intent(in) :: pf 
414         real*8, intent(out) :: cl(pf%NNodes) 
415  
416         integer :: i, j 
417         real*8 :: zb, theta 
418  
419         do i = 1, pf%NNodes 
420             zb = z_over_b_i(i, pf%NNodes) 
421             theta = theta_zb(zb) 
422             cl(i) = 0.0d0 
423             do j = 1, pf%NNodes 
424                 cl(i) = cl(i) + pf%BigA(j) * sin(real(j, 8) * theta) 
425             end do 
426             cl(i) = cl(i) * 4.0d0 
427         end do 
428     end subroutine GetLiftDistribution 
429  
430     real*8 function NLC_ZeroChord_Elliptic(pf, zb, cb, cl) result(cl_over_cl) 
431         type(Planform), intent(in) :: pf 
432         real*8, intent(in) :: zb 
433         real*8, intent(in) :: cb 
434         real*8, intent(in) :: cl 
435  
436         integer :: i 
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437         real*8 :: theta 
438  
439         theta = theta_zb(zb) 
440         cl_over_cl = 0.0d0 
441         do i = 1, pf%NNodes 
442             cl_over_cl = cl_over_cl + real(i, 8) * pf%BigA(i) * & 
443                 & cos(real(i, 8) * theta) / cos(theta) 
444         end do 
445         cl_over_cl = cl_over_cl * pi * pf%AspectRatio / cl 
446     end function NLC_ZeroChord_Elliptic 
447  
448     real*8 function NLC_ZeroChord_Tapered(pf, zb, cb, cl) result(cl_over_cl) 
449         type(Planform), intent(in) :: pf 
450         real*8, intent(in) :: zb 
451         real*8, intent(in) :: cb 
452         real*8, intent(in) :: cl 
453  
454         integer :: i 
455         real*8 :: theta, cb2 
456  
457         if (zb < 0) then 
458             theta = 1.0d-5 
459         else 
460             theta = pi - 1.0d-5 
461         end if 
462         cb2 = c_over_b(pf, theta) 
463         cl_over_cl = 0.0d0 
464         do i = 1, pf%NNodes 
465             cl_over_cl = cl_over_cl + pf%BigA(i) * sin(real(i, 8) * theta) 
466         end do 
467         cl_over_cl = 4.0d0 * cl_over_cl / cb2 / cl 
468     end function NLC_ZeroChord_Tapered 
469 end module LiftingLineOutput 

 

K.7 Matrix Solver Module (matrix.f90) 

1 module matrix 
2     implicit none 
3  
4 contains 
5     subroutine matinv_gauss(n, mat, mat_inv) 
6         integer, intent(in) :: n 
7         real*8, intent(in) :: mat(n,n) 
8         real*8, intent(out) :: mat_inv(n,n) 
9  
10         real*8 :: b(n, n), c, d, temp(n) 
11         integer :: i, j, k, m, imax(1), ipvt(n) 
12  
13         b = mat 
14         ipvt = (/ (i, i=1, n) /) 
15  
16         do k = 1, n 
17             imax = maxloc(abs(b(k:n, k))) 
18             m = k - 1 + imax(1) 
19  
20             if (m /= k) then 
21                 ipvt( (/m, k/) ) = ipvt( (/k, m/) ) 
22                 b( (/m, k/), :) = b( (/k, m/), :) 
23             end if 
24  
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25             d = 1.0d0 / b(k, k) 
26  
27             temp = b(:, k) 
28             do j = 1, n 
29                 c = b(k, j) * d 
30                 b(:, j) = b(:, j) - temp * c 
31                 b(k, j) = c 
32             end do 
33             b(:, k) = temp * (-d) 
34             b(k, k) = d 
35         end do 
36  
37         mat_inv(:, ipvt) = b 
38     end subroutine matinv_gauss 
39  
40  
41     subroutine printmat(u, m, n, mat) 
42         integer, intent(in) :: u 
43         integer, intent(in) :: m 
44         integer, intent(in) :: n 
45         real*8, intent(in) :: mat(m, n) 
46  
47         integer :: i, j 
48         character*80 :: format_string 
49  
50         if (u == 6) then 
51             write(format_string, '(a, i10, a)') "(", n, "(F9.5, 2x))" 
52         else 
53             write(format_string, '(a, i10, a)') "(", n, "(F24.15, 2x))" 
54         end if 
55  
56         do i = 1, m 
57             write(u, format_string) (mat(i, j), j=1, n) 
58         end do 
59     end subroutine printmat 
60  
61 end module matrix 

 

K.8 Utilities Module (utilities.f90) 

1 module Utilities 
2     implicit none 
3  
4     real*8, parameter :: pi = acos(-1.0d0) 
5     real*8, parameter :: zero = 1.0d-10 
6  
7 contains 
8     integer function Compare(a, b, tol) result(eq) 
9     ! Comparison function 
10     ! Inputs: 
11     !   a = First argument to compare 
12     !   b = Second argument to compare 
13     !   tol = Relative tolerance for comparison 
14     ! Return Value (eq): 
15     !   -1 = a < (b - tol) 
16     !    0 = a == b (within tolerance) 
17     !    1 = a > (b + tol) 
18         real*8, intent(in) :: a, b, tol 
19  
20         if (abs(a) < tol .and. abs(b) < tol) then 
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21             eq = 0 
22         else if (abs(a - b) / max(abs(a), abs(b)) < tol) then 
23             eq = 0 
24         else if (a < b) then 
25             eq = -1 
26         else 
27             eq = 1 
28         end if 
29     end function Compare 
30  
31     real*8 function Residual(oldVal, newVal) result(res) 
32         real*8, intent(in) :: oldVal 
33         real*8, intent(in) :: newVal 
34  
35         res = dabs(oldVal - newVal) / max(dabs(oldVal), dabs(newVal), zero) 
36     end function Residual 
37  
38     integer function CompareFiles(a, b) result(badline) 
39         character*80, intent(in) :: a, b  ! Filenames of files to compare 
40  
41         integer :: i, ios1, ios2 
42         character*5000 :: results_line, work_line 
43  
44         open(unit=11, file=a) 
45         open(unit=12, file=b) 
46  
47         badline = 0 
48         ios1 = 0 
49         i = 0 
50         do while (badline == 0 .and. ios1 == 0) 
51             i = i + 1 
52  
53             results_line(1:5000) = " " 
54             read(11, '(A)', iostat=ios1, end=99) results_line 
55  
56             work_line(1:5000) = " " 
57             read(12, '(A)', iostat=ios2, end=99) work_line 
58  
59             if (ios1 == 0) then 
60                 if (work_line /= results_line) then 
61                     badline = i 
62                 end if 
63             else if (len(trim(work_line)) /= 0) then 
64                 badline = i 
65             end if 
66         end do 
67  
68         close(unit=11) 
69         close(unit=12) 
70 99  continue 
71     end function CompareFiles 
72  
73     character*2 function GetCharacterInput(def) result(inp) 
74         character*2, intent(in) :: def  ! Default value if invalid input 
75  
76         integer :: i 
77         character :: a 
78  
79         read(5, '(a)') inp 
80         if (len(inp) > 2 .or. len(inp) < 1) then 
81             inp = def 
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82         else 
83             do i = 1, 2 
84                 a = inp(i:i) 
85                 if(iachar(a) >= iachar('a') .and. iachar(a) <= iachar('z')) then 
86                     inp(i:i) = char(iachar(a) - 32) 
87                 end if 
88             end do 
89         end if 
90     end function GetCharacterInput 
91  
92     character*80 function GetStringInput(def) result(inp) 
93         character*80, intent(in) :: def  ! Default value if invalid input 
94  
95         integer :: i, ios 
96         character :: a 
97  
98         read(5, '(a)', iostat=ios) inp 
99         if (len(trim(inp)) < 1 .or. ios /= 0) then 
100             inp = def 
101         end if 
102     end function GetStringInput 
103  
104     integer function GetIntInput(mn, mx, def) result(inp) 
105         integer, intent(in) :: mn   ! Minimum accepted value 
106         integer, intent(in) :: mx   ! Maximum accepted value 
107         integer, intent(in) :: def  ! Default value if invalid input 
108  
109         logical :: cont 
110         character*80 :: inp_str 
111         integer :: ios 
112         integer :: len_mn, len_mx 
113         character*80 :: msg_fmt 
114  
115         cont = .true. 
116         do while (cont) 
117             read(5, '(a)', iostat=ios) inp_str 
118             if (ios == 0 .and. trim(inp_str) /= "") then 
119                 read(inp_str, *, iostat=ios) inp 
120                 if (ios /= 0 .or. inp < mn .or. inp > mx) then 
121                     len_mn = int(log10(real(abs(mn)))) + 1 
122                     if (mn < 0) len_mn = len_mn + 1 
123  
124                     len_mx = int(log10(real(abs(mx)))) + 1 
125                     if (mx < 0) len_mx = len_mx + 1 
126  
127                     write(msg_fmt, '(a, i1, a, i1, a)') "(a, a, i", len_mn, & 
128                         & ", a, i", len_mx, ", a)" 
129  
130                     write(6, *) 
131                     write(6, msg_fmt) "Invalid input. Please ", & 
132                         & "specify an integer between ", mn, " and ", mx, "," 
133                     write(6, '(a)') "or press <ENTER> to accept the default 

value." 
134                 else 
135                     cont = .false. 
136                 end if 
137             else 
138                 inp = def 
139                 cont = .false. 
140             end if 
141         end do 
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142     end function GetIntInput 
143  
144     real*8 function GetRealInput(mn_orig, mx_orig, dflt_orig) result(inp) 
145         real*8, intent(in) :: mn_orig   ! Minimum accepted value 
146         real*8, intent(in) :: mx_orig   ! Maximum accepted value 
147         real*8, intent(in) :: dflt_orig ! Default value for input 
148  
149         logical :: cont 
150         character*80 :: inp_str 
151         integer :: ios 
152         integer :: len_mn, ndec_mn 
153         integer :: len_mx, ndec_mx 
154         character*80 :: msg_fmt 
155         real*8 :: mn, mx, dflt 
156  
157         if (Compare(mn_orig, 0.0d0, zero) == 0) then 
158             mn = 0.0d0 
159         else 
160             mn = mn_orig 
161         end if 
162  
163         if (Compare(mx_orig, 0.0d0, zero) == 0) then 
164             mx = 0.0d0 
165         else 
166             mx = mx_orig 
167         end if 
168  
169         if (Compare(dflt_orig, 0.0d0, zero) == 0) then 
170             dflt = 0.0d0 
171         else 
172             dflt = dflt_orig 
173         end if 
174  
175         cont = .true. 
176         do while (cont) 
177             read(5, '(a)', iostat=ios) inp_str 
178             if (ios == 0 .and. trim(inp_str) /= "") then 
179                 ios = ParseFormula(trim(inp_str), inp) 
180                 write(*,*) ios, inp_str, inp 
181                 if (ios /= 0 .or. inp < mn .or. inp > mx) then 
182                     write(6, *) 
183                     write(6, '(a, a, a, a, a, a)') "Invalid input. Please ", & 
184                         & "enter a number between ", trim(FormatReal(mn, 5)), & 
185                         & " and ", trim(FormatReal(mx, 5)), "," 
186                     write(6, '(a)') "or press <ENTER> to accept the default 

value." 
187                 else 
188                     cont = .false. 
189                 end if 
190             else 
191                 inp = dflt 
192                 cont = .false. 
193             end if 
194         end do 
195     end function GetRealInput 
196  
197     integer function ParseFormula(inp_str, num) result(estat) 
198         character(len=*), intent(in) :: inp_str 
199         real*8, intent(out) :: num 
200  
201         integer :: i, j, n_oper, last_ind, strlen, ios 
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202         character*40 :: operators, temp_num 
203         real*8, Dimension(41) :: numbers 
204  
205         estat = 0 
206         strlen = len(trim(inp_str)) 
207         n_oper = 0 
208         last_ind = 0 
209         do i = 2, strlen 
210             if (inp_str(i:i) == '*' .or. inp_str(i:i) == '/') then 
211                 n_oper = n_oper + 1 
212                 operators(n_oper:n_oper) = inp_str(i:i) 
213                 temp_num = "                                        " 
214                 temp_num(1:i-last_ind-1) = inp_str(last_ind+1:i-1) 
215                 if ((temp_num(1:1) == 'P' .or. temp_num(1:1) == 'p') .and. & 
216                     & (temp_num(2:2) == 'I' .or. temp_num(2:2) == 'i')) then 
217                     numbers(n_oper) = pi 
218                 else 
219                     read(temp_num, *, iostat=ios) numbers(n_oper) 
220                     if (ios /= 0) then 
221                         estat = 1 
222                     end if 
223                 end if 
224                 last_ind = i 
225             end if 
226         end do 
227  
228         temp_num = "                                        " 
229         temp_num(1:strlen-last_ind) = inp_str(last_ind+1:strlen) 
230         if ((temp_num(1:1) == 'P' .or. temp_num(1:1) == 'p') .and. & 
231             & (temp_num(2:2) == 'I' .or. temp_num(2:2) == 'i')) then 
232             numbers(n_oper + 1) = pi 
233         else 
234             read(temp_num, *, iostat = ios) numbers(n_oper + 1) 
235             if (ios /= 0) then 
236                 estat = 1 
237             end if 
238         end if 
239  
240         num = numbers(1) 
241         do i = 1, n_oper 
242             if (operators(i:i) == '*') then 
243                 num = num * numbers(i + 1) 
244             else if (operators(i:i) == '/') then 
245                 num = num / numbers(i + 1) 
246             else 
247                 estat = 2 
248             end if 
249         end do 
250     end function ParseFormula 
251  
252     recursive character*80 function FormatReal(r, ndigits) result(real_str) 
253         real*8, intent(in) :: r 
254         integer, intent(in) :: ndigits 
255  
256         integer :: order, width, ndecimal 
257         character*80 :: real_fmt 
258         real*8 :: r_div_pi 
259         integer :: num, denom 
260  
261         if (Compare(r, 0.0d0, zero) /= 0 .and. (IsFactorOfPi(r, ndigits) & 
262             & .or. IsFractionOfPi(r, num, denom))) then 
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263             if (Compare(r, pi, zero) == 0) then 
264                 write(real_str, '(a)') "PI" 
265             else if (IsFractionOfPi(r, num, denom)) then 
266                 if (denom == 1) then 
267                     write(real_str, '(a, a)') trim(FormatInteger(num)), "*PI" 
268                 else 
269                     write(real_str, '(a, a, a, a)') trim(FormatInteger(num)), & 
270                         & "/", trim(FormatInteger(denom)), "*PI" 
271                 end if 
272             else 
273                 r_div_pi = r / pi 
274                 write(real_str, '(a, a)') trim(FormatReal(r_div_pi, ndigits)), & 
275                     & "*PI )" 
276             end if 
277         else 
278             if (Compare(r, 0.0d0, zero) == 0) then 
279                 order = 1 
280             else 
281                 ! Determine the location of the first non-zero digit in the 

number 
282                 order = int(log10(real(abs(r), 8))) + 1 
283             end if 
284  
285             ! Check for sizes that should use exponential format 
286             if (order <= -4 .or. order >= ndigits) then 
287                 if (r < 0.0d0) then 
288                     width = ndigits + 6  ! e.g. -1.2345E+67 - 5 digits + 6 other 
289                 else 
290                     width = ndigits + 5  ! e.g. 1.2345E-67 - 5 digits + 5 other 
291                 end if 
292  
293                 write(real_fmt, '(a, i2, a, i2, a)') "(ES", width, ".", & 
294                     & ndigits - 1, ")" 
295             else 
296                 if (r < 0.0d0) then 
297                     width = ndigits + 2  ! e.g. -12.345 - 5 digits + 2 other 
298                 else 
299                     width = ndigits + 1  ! e.g. 123.45 - 5 digits + 1 other 
300                 end if 
301  
302                 if (order <= 0) then 
303                     width = width - order + 1  ! e.g. -0.012345 - additional for 

leading 0 
304                 end if 
305  
306                 write(real_fmt, '(a, i2, a, i2, a)') "(F", width, ".", & 
307                     & ndigits - order, ")" 
308             end if 
309             write(real_str, real_fmt) r 
310         end if 
311     end function FormatReal 
312  
313     character*80 function FormatInteger(i) result(int_str) 
314         integer, intent(in) :: i 
315  
316         integer :: len_i 
317         character*80 :: int_fmt 
318  
319         if (i == 0) then 
320             len_i = 1 
321         else 
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322             len_i = int(log10(real(abs(i)))) + 1 
323             if (i < 0) then 
324                 len_i = len_i + 1 
325             end if 
326         end if 
327  
328         write(int_fmt, '(a, i2, a)') "(i", len_i, ")" 
329         write(int_str, int_fmt) i 
330     end function FormatInteger 
331  
332     logical function IsFactorOfPi(r, ndigits) result(isFactor) 
333         real*8, intent(in) :: r 
334         integer, intent(in) :: ndigits 
335  
336         real*8 :: rx, rx_trunc 
337  
338         rx = r / pi * 10**ndigits 
339         rx_trunc = real(int(rx), 8) 
340  
341         if (Compare(rx, rx_trunc, zero) == 0) then 
342             isFactor = .true. 
343         else 
344             isFactor = .false. 
345         end if 
346     end function IsFactorOfPi 
347  
348     logical function IsFractionOfPi(r, num, denom) result(isFraction) 
349         real*8, intent(in) :: r 
350         integer, intent(out) :: num 
351         integer, intent(out) :: denom 
352  
353         integer :: i, num2, denom2 
354         real*8 :: r_div_pi, r_div_pi_i 
355  
356         isFraction = .false. 
357         r_div_pi = r / pi 
358         do i = 1, 360 
359             r_div_pi_i = r_div_pi * real(i, 8) 
360             if (Compare(r_div_pi_i , real(int(r_div_pi_i), 8), zero) == 0) then 
361                 num = int(r_div_pi_i) 
362                 denom = i 
363                 isFraction = .true. 
364                 return 
365             end if 
366         end do 
367     end function IsFractionOfPi 
368  
369 end module Utilities 
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L PROOF OF EQUATION (5.2.5) 

 The derivation of the induced velocity at a point P due to a single straight vortex segment has been 

presented in Sec. 5.2. Eq. (5.2.5) gives the solution to the integral of the differential velocity over the vortex 

filament OR  (see Figure 5.2). Here we present the complete proof to this integral.  

 The first equality in Eq. (5.2.5) gives the integral to be solved, specifically 
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To solve this integral we apply u-substitution, with 
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This gives for Eq. (L.1) 
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We now look for an appropriate expression v so that we can apply the quotient rule of differentiation, namely 
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We try 
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where c is a constant found by substitution of Eqs. (L.2), (L.3), (L.7), and (L.8) into Eq. (L.6). This gives 
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which suggests that our guess for v is valid since c is indeed constant with respect to  . The indefinite 

integral of Eq. (L.1) is then 
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Applying the limits from Eq. (L.1) gives 
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We now wish to rewrite this equation in terms of 
1r  and 

2r  instead of 
1r  and l . We use the vector identities 

1 2= −l r r  and 
1 1 2 =l r rr  to get 
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Further algebraic manipulation of Eq. (L.12) gives 
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which is the result given in Eq. (5.2.5). 
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M TABULATED PROPERTIES OF THE NACA X410 FAMILY OF AIRFOILS 

Tables M.1-M.4 present aerodynamic performance characteristics of the NACA X410 family of airfoils 

computed using XFOIL. The airfoil geometries were modeled using XFOIL’s internal NACA airfoil modeler 

with a grid size of 200 nodes. Nodes were clustered near the leading and trailing edges to obtain higher 

resolution in areas of large curvature and flow gradients. The analyses were run assuming incompressible 

flow with a Reynolds number of 
52.4 10Re =  . Turbulence in the boundary layer was modeled using 

XFOIL’s turbulence transition model with a value of 2.6 for the Ncrit input parameter. This value was 

estimated based on information provided in a wind tunnel survey of the AFRL Vertical Wind Tunnel (VWT). 

The data tabulated below were used in the numerical and experimental comparisons discussed in Sec. 5.4. 

 

Table M.1  Airfoil Coefficient Data for the NACA 2410 Airfoil 

α  (deg) l
c  

d
c  (rad-1) 

-20 -0.4578 0.19659 

-19 -0.4441 0.18661 

-17.95 -0.4185 0.17502 

-16.95 -0.4196 0.16702 

-15.95 -0.3829 0.15457 

-14.95 -0.3734 0.14418 

-13.95 -0.358 0.13471 

-12.95 -0.3544 0.1246 

-11.95 -0.3844 0.11457 

-10.95 -0.3606 0.10158 

-9.95 -0.4168 0.08026 

-8.9 -0.6626 0.04901 

-7.9 -0.6604 0.03277 

-6.9 -0.6058 0.02358 

-5.9 -0.5249 0.01891 

-4.9 -0.4348 0.01624 

-3.9 -0.2883 0.0137 

-2.85 -0.1259 0.01164 

-1.8 0.0218 0.00935 

-0.8 0.1708 0.00856 

0.15 0.3087 0.00816 

1.15 0.4067 0.00817 

2.15 0.5054 0.00858 
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3.2 0.6095 0.00929 

4.2 0.7083 0.01014 

5.25 0.8103 0.01121 

6.25 0.8984 0.01317 

7.25 0.9721 0.01722 

8.25 1.0462 0.02107 

9.25 1.1188 0.02536 

10.25 1.1926 0.03082 

11.25 1.2514 0.03812 

12.25 1.2716 0.0481 

13.25 1.214 0.06136 

14.25 1.1301 0.08412 

 

 

Table M.2  Airfoil Coefficient Data for the NACA 4410 Airfoil 

α  (deg) l
c  

d
c  (rad-1) 

-10 -0.3503 0.11021 

-9 -0.3582 0.09857 

-8 -0.4013 0.08906 

-7 -0.3943 0.07846 

-6 -0.2827 0.02824 

-5 -0.1411 0.01988 

-4 0.0082 0.0158 

-3 0.1372 0.01314 

-2 0.2545 0.01145 

-0.95 0.3644 0.00937 

0 0.4777 0.00853 

1 0.5842 0.00884 

2 0.6907 0.00941 

3 0.7966 0.01014 

4 0.9022 0.01097 

5 1.0061 0.01186 

6 1.1027 0.0127 

7 1.1945 0.01376 

8 1.258 0.01667 

9.05 1.2808 0.02292 

10.05 1.304 0.0285 

11.05 1.3313 0.03488 

12.05 1.368 0.04179 
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13.05 1.4054 0.04913 

14.05 1.4185 0.05986 

15.05 1.3891 0.07539 

16.05 1.317 0.09885 

17.05 1.2122 0.13502 

 

 

Table M.3  Airfoil Coefficient Data for the NACA 6410 Airfoil 

α  (deg) l
c  

d
c  (rad-1) 

-10 -0.2956 0.12505 

-9 -0.2606 0.11127 

-8 -0.1966 0.09564 

-7 -0.1127 0.07956 

-6 -0.0078 0.06244 

-5 0.1103 0.0435 

-3.9 0.2533 0.01859 

-2.9 0.3706 0.01451 

-1.9 0.4829 0.01268 

-0.9 0.5939 0.01163 

0.05 0.6974 0.01096 

1.1 0.8051 0.01 

2.1 0.9118 0.01072 

3.1 1.019 0.01159 

4.1 1.1249 0.01253 

5.1 1.2305 0.01356 

6.1 1.3345 0.01469 

7.2 1.4319 0.01557 

8.2 1.5097 0.01661 

9.2 1.5531 0.01862 

10.2 1.4981 0.02819 

11.2 1.4764 0.03854 

12.2 1.4658 0.04972 

13.2 1.4592 0.06147 
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Table M.4  Airfoil Coefficient Data for the NACA 8410 Airfoil 

α  (deg) l
c  

d
c  (rad-1) 

-10 -0.0797 0.11796 

-8.98 -0.0003 0.10197 

-7.98 0.0609 0.09024 

-6.98 0.1152 0.07774 

-5.98 0.1736 0.06648 

-4.97 0.2692 0.0537 

-3.97 0.3837 0.04202 

-2.96 0.5574 0.02251 

-1.95 0.6862 0.01502 

-0.95 0.7981 0.01335 

0.04 0.9052 0.01285 

1.05 1.0128 0.01285 

2.06 1.1137 0.01225 

3.06 1.2194 0.01322 

4.06 1.325 0.01428 

5.06 1.4289 0.01542 

6.06 1.5333 0.01667 

7.06 1.6341 0.01806 

8.06 1.7177 0.0191 

9.06 1.7757 0.02009 

10.06 1.791 0.0221 

11.06 1.7452 0.03019 

12.07 1.6346 0.04922 

13.07 1.5755 0.06769 

14.07 1.5411 0.08482 

15.07 1.5224 0.09989 

16.07 1.5298 0.11027 

17.07 1.565 0.11521 

18.07 1.5887 0.12357 

19.07 1.6011 0.13384 
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