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Effects of Thinning on Dynamics and
Drought Resistance of Aspen-White
Spruce Mixtures: Results From Two
Study Sites in Saskatchewan
Philip G. Comeau*

Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada

Drought stress associated with warm temperatures is causing increased mortality and

reduced growth of trees in drier portions of the boreal forests of western Canada with

both warming and drought expected to increase over the coming decades.While thinning

is often shown to reduce drought stress, there is little information on its effects in stands

comprised of mixtures of trembling aspen and white spruce that are common in the

forests of this region. This study examined effects of pre-commercial thinning on aspen

and spruce growth, response to drought stress, and stand dynamics for two study sites

located in Saskatchewan, Canada. In unthinned plots aspen densities declined from initial

densities of 40,000 to 200,000 trees ha−1 to 2,639 trees ha−1 at age 26. Twenty-one

years after thinning (i.e., at age 26) diameter of aspen and spruce had increased, with

largest trees being found at the lowest aspen densities (200 aspen ha−1 for aspen and 0

aspen ha−1 for spruce). Aspen density affected average height but not height of aspen

top height trees. Spruce height decreased significantly with increasing aspen density.

Crown width and live crown ratio of both aspen and spruce declined with increasing

aspen density. Data from cores collected from aspen and spruce indicate significant

positive effects of tree size (basal area at beginning of the year), and CMI (Climate

Moisture Index) on basal area increment of both aspen and spruce while increasing aspen

basal area (m2ha−1) had negative effects on aspen and spruce growth. Increasing tree

size (basal area) and aspen competition (basal area ha−1) both had negative effects on

drought resistance and resilience for both aspen and spruce. Yield projections provided

by the Mixedwood Growth Model (MGM) suggest that the mixture of 1,500 aspen ha−1

and 1,000 spruce ha−1 has the potential to provide a 23% increase in total mean annual

increment (MAI) with a single harvest at age 100, compared to unthinned aspen stands,

but with a 44% reduction in spruce MAI compared to pure spruce stands. Thinning of

aspen to densities below 4,000 trees ha−1 at age 5 resulted in reduced aspen yields but

increased spruce yields.
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INTRODUCTION

Mixtures of trembling aspen (Populus tremuloides Michx.) and
white spruce (Picea glauca (Moench) Voss) are a common natural
stand type on upland sites in the western boreal forests of
Canada. In this region mixedwood stands represent a range of
early- to mid-seral successional stages (Chen and Popadiouk,
2002) and develop most commonly on mesic and subhygric sites
(Lieffers et al., 1996). When aspen and white spruce regenerate
at approximately the same time following disturbance, aspen
will form an overstory above spruce for at least 50 to 60 years
(Chen and Popadiouk, 2002; Bergeron et al., 2014). After that
time, white spruce begins to grow through the canopy and
aspen decreases in dominance and basal area. In the absence
of disturbances such as fire or harvesting the mixedwood stand
may become a spruce-dominated stand over the ensuing 100
to 200 years (Chen and Popadiouk, 2002; Bergeron et al.,
2014). When there are seed trees nearby white spruce may
also establish naturally in the understory of mature aspen
stands and grow up through the aspen in a similar manner
(Kabzems and Garcia, 2004).

Since mixedwoods contribute to improved species and
structural diversity, wildlife habitat, and visual quality
(Macdonald et al., 2010) managing these stands as mixedwood
rather than as pure white spruce or aspen stands is desirable.
Overstory aspen is also a nurse crop for young spruce through
reducing the incidence of growing season frost, by providing
protection from environmental extremes (Filipescu and
Comeau, 2011), reducing the vigor of competing vegetation
such as bluejoint reedgrass (Calamagrostis canadensis (Michx.)
Beauv.) (Lieffers and Stadt, 1994) and reducing damage by
white pine weevil (Pissodes strobi Peck) (Taylor et al., 1996).
Mixedwoods can potentially provide greater diversity of products
(MacDonald, 1996) and higher total yield than single-species
stands (Man and Lieffers, 1999; Kabzems et al., 2016).

Historically, mixedwood stands have developed through
natural regeneration of both species following fire or other severe
disturbances. However, for much of the past four decades white
spruce have been planted to regenerate spruce and mixedwood
stands following harvesting while aspen is regenerated naturally.
Following harvesting of upland mixedwood stands, aspen
regenerates vigorously from root sprouts and dominates during
early stages of stand development. When conditions are ideal,
aspen can regenerate to very high densities, sometimes exceeding
100,000 trees ha−1 at age 2 (Steneker, 1976; Bella, 1986; Frey
et al., 2003). However, self-thinning generally results in dramatic
reductions in aspen densities during the first 20 years (Peterson
and Peterson, 1992; Bokalo et al., 2007).

Early juvenile spacing of aspen can accelerate the growth

of residual trees (Bickerstaff, 1946; Steneker, 1976; Perala,
1978; Bokalo et al., 2007; Kabzems et al., 2016), accelerating

achievement of merchantable diameter and improving the
quality of the stand. Rice et al. (2001) found that, thinning

of young aspen (5–15 years old) did not significantly change
merchantable stand volume 15 years after treatment but did
result in significant increases in diameter of the remaining
trees. Reducing aspen densities also increases growth of

spruce in mixed stands (Bokalo et al., 2007; Kabzems et al.,
2016).

Recent periods of drought and large fires have highlighted
potential effects of warm periods and long-term warming
trends in Canada’s western boreal region. While periodic
shifts in temperature, precipitation, and drought have occurred
historically, mean annual temperature has increased by up to
3.0◦C between 1901 and 2000 (Price et al., 2013). Projections of
future climate for the boreal plains of western Canada suggest
continuing increases in temperature with increases in winter
temperatures of up to 6.5◦C andwith increases in spring, summer
and fall temperatures of up to 4.5◦C between 1990 and 2100
(Price et al., 2013). Both growing season and annual precipitation
are projected to continue to increase slightly over this period,
however increased evapotranspiration is expected to result in
reduced soil moisture. While temperature increases and longer
growing seasons may be beneficial to forest productivity in
Canada’s western boreal forest, increasing drought could lead
to reductions in growth and to reductions in forest cover in
drier portions of the region (Peng et al., 2011; Price et al.,
2013; Worrall et al., 2013). In addition, damage by insects
such as forest tent caterpillar (Malacosoma disstria Hbn.) (Chen
et al., 2017b; Cortini and Comeau, 2020), mountain pine beetle
(Dendrochtonus ponderosae Hopkins) (Vore et al., 2020) and
spruce beetle (Dendroctonus rufipennis Kirby) (Campbell et al.,
2019) are expected to increase as a consequence of increases in
both temperature and drought stress. Frequency and magnitude
of fire damage (Vore et al., 2020) is also expected to increase due
to warming and drought.

The southern extent of stands with more than 60% white
spruce content in north America is near the 18◦C July
temperature isotherm (Burns and Honkala, 1990), suggesting
that contraction in spruce distribution may occur in the boreal
plains where projected July temperatures may reach 18.5 to
19.8 in 2100 (Price et al., 2013), as also reported by Gray and
Hamann (2013). Hogg et al. (2017) report reductions in growth
of white spruce in Saskatchewan and Alberta associated with
severe drought in 2001–2003. Chen et al. (2017c) also indicate
that temperature induced drought is the main climatic factor
influencing growth of white spruce in central and northern
Alberta. However, competition can also have significant effects
on white spruce growth. Alam et al. (2017) report that growth of
white spruce in this area is constrained largely by competition
with minor but significant effects of drought while Cortini
et al. (2012) indicate that competition from aspen can constrain
potential benefits of increasing temperature on spruce growth.

Northward and elevational shifts in aspen habitat are expected
under climate change (Gray and Hamann, 2013) with declines in
aspen associated with severe drought being evident, particularly
in marginal habitats (Worrall et al., 2013). Decreases in growth
and increases in mortality of aspen have been reported in central
Alberta and Saskatchewan associated with severe and prolonged
drought events (Hogg et al., 2005, 2008; Chen et al., 2017a)
most notably the 2001–2003 drought (Michaelian et al., 2011).
Kweon and Comeau (2017) also report that increasing summer
dryness appears to be associated with a decrease in the maximum
densities that can be carried by aspen stands.
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Applying thinning treatments to reduce stand density may
reduce drought stress and increase resistance and resilience of
stands to drought (Spittlehouse and Stewart, 2003; D’Amato et al.,
2013; Keenan, 2015; Sohn et al., 2016; Ammer, 2017; Bottero
et al., 2017; del Rio et al., 2017; Holofsky et al., 2018; Andrews
et al., 2020; Steckel et al., 2020) through reducing transpiration
and rainfall interception and through increasing size of root
systems of remaining trees. In aspen stands, thinning has been
shown to reduce impacts of drought stress (Bell et al., 2014)
and could also increase moisture availability to white spruce in
mixed stands. Thinning also accelerates development of stands
to merchantable sizes which could provide timber that could
be harvested in advance of or salvaged immediately following
mortality events.

While growing mixtures can improve ecosystem resistance,
recovery and resilience and lead to better growth in response to
drought and temperature stresses, outcomes depend on species,
site, level of stress, and other factors (Ammer, 2017). Stand
density may influence complementary effects, with facilitative
effects being weak at very low densities and competitive
effects dominating at very high densities (Forrester, 2014).
The degree to which facilitation or reductions in intraspecific
competition occur in mixtures determine whether mixtures lead
to improved ability of stands to deal with drought (Forrester,
2015; Ammer, 2017). Consequently, there are cases where
mixed stands may be negatively influenced by drought as well
as cases where they are less affected by drought with this
resulting from the combined effects of species identity, stand
composition, stand structure, stand density, differences in species
functional/structural traits, tree size, tree age, soil and site
factors, both historical and current climate, drought intensity and
drought frequency (Ammer, 2017). There is a lack of published
quantitative information on effects of thinning on the dynamics
of young aspen-spruce mixtures in the western Canadian boreal
forests, including information on how thinning influences the
growth of components species and there is little information on
how thinning of these mixed stands may influence responses to
increasing temperature and drought stress.

In this paper effects of pre-commercial thinning treatments
applied at age 5 on aspen and spruce diameter and height, basal
area and stand density are examined based on measurements
collected at age 26 at two sites located ∼30 km north of the
town of Big River, Saskatchewan, Canada. In addition, effects
of climate, tree size and aspen basal area on annual basal area
growth and on resistance, resilience and recovery of the aspen
and spruce to drought events in 2003 and 2013 are examined.
Working hypotheses are: (1) height and diameter of aspen and
white spruce will decline with increasing aspen density; (2)
aspen and spruce growth will increase with increases in tree size
and climate moisture index (CMI) and decline with increases
in aspen density; (3) resistance, recovery and resilience will be
increased by thinning, but with resistance, recovery and resilience
of spruce being highest when spruce are grown with a low to
moderate density of aspen; and, (4) stand yield estimated using
the Mixedwood Growth Model (MGM) (assuming no effects of
climate change) will be highest in mixed stands with moderate

densities of aspen and white spruce while spruce yield will be
highest without aspen.

METHODS

Study Sites and Study Design
The Western Boreal Growth and Yield (WESBOGY) [now
the WESBOGY project of the Forest Growth Organization of
Western Canada (FGrOW)] Long Term Study was initiated by
the Western Boreal Growth and Yield Association in 1990 to
advance knowledge of the dynamics of mixedwood stands and
effects of aspen density on spruce and aspen growth (Bokalo
et al., 2007). The study involved planting white spruce seedlings
in recently clearcut areas where aspen regeneration had already
been established. Aspen were thinned to create six densities [0,
200, 500, 1,500, and 4,000 trees ha−1 plus unthinned (natural)]
at age 5. Spruce were established at 1,000 and 2,000 trees ha−1

and thinned at age 5 to 500 and 1,000 trees ha−1, respectively in
each of six plots in each replicate. Three additional pure aspen
treatments with densities of 1,500 and 4,000 trees ha−1 and
unthinned were also established. Each installation consists of two
replications of the 15 treatments. The study currently includes a
total of 615 plots with 20 installations established andmaintained
in Alberta, British Columbia, Manitoba, Saskatchewan and the
Northwest Territories.

The Big River, Saskatchewan installations used in this study
were established byWeyerhaeuser Canada in 1992∼30 km north
of the town of Big River, Saskatchewan. The Median (54.09◦N
107.07◦W, elev. 515m) and Superior (54.05◦N 106.98◦W, elev.
505m) installations were harvested in June of 1992, with aspen
allowed to regenerate naturally by root suckering and with spruce
planted (at double the final treatment density) in September of
1992. Thinning to treatment target densities was completed in
September of 1996. Both installations were level, with moderately
well-drained Gray Luvisolic soils and with mesic to subhygric soil
moisture regimes.

Data Collection
Measurement of the Median installation was completed during
August 2018 and measurement of the Superior was completed
during May 2019. Measurement plots are 20 × 20m (0.04 ha)
with a 5-m-wide treated buffer on each side of the measurement
plot. In thinned plots all spruce and aspen within the 20 ×

20mmeasurement plot weremeasured (diameter at breast height
(1.3m) (DBH), height, height to base of live crown, and crown
radius). In plots where aspen were not thinned, spruce were
measured in the 20 × 20m plot while aspen were measured in
four 5 × 5m subplots located within the main plot as well as in
previously established 2 × 2m subplots nested within the 5 ×

5m subplots. In unthinned plots previous aspen measurements
had used 1× 1m (to age 5), and 2× 2m (ages 6–23) subplots.

Dendrochronology
Cores were collected at 1.3m height from two spruce and two
aspen in the treated buffer of 13 plots (cores were not collected
in plots where aspen density was reduced to 200 trees ha−1)
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using a 5mm diameter increment corer. Healthy trees in the
tallest size classes in each plot for each species were selected
for coring. Cores were scanned and measured using WinDendro
software (Regent Instruments Inc., Quebec) and a calibrated
EPSONPerfectionV700 Photo scanner. Cross dating was visually
performed for trees in each plot and across plots guided by wide
and narrow rings. Due to the young age and good vigor of the
cored trees there were nomissing rings and there was no evidence
of white rings associated with insect damage in this area. DBH of
each sampled tree was measured in the field and previous years
tree basal area and basal area increment were calculated based on
annual ring widths.

Meteorological Data
Climate data [mean annual temperature, growing degree days
above 5C and climate moisture index (CMI)] were obtained from
ClimateNA version 6.31 (Wang et al., 2016) which extracts and
downscales gridded monthly climate data for North America.

CMI, calculated as the difference between monthly
precipitation and monthly evapotranspiration, was used as
a measure of drought stress. CMI was calculated based on
methods presented by Hogg et al. (2013) using the Penman-
Monteith method to calculate evapotranspiration with the
exception that CMI calculated by ClimateNA version 6.31 for
each calendar year was used. All analysis used CMI averaged
over a 3-year period (current year plus the previous 2 years) in
order to account for lags associated with water storage in the root
zone (Hogg et al., 2005). A 3 year period was used in this study
following results from preliminary analysis which indicated that
this resulted in better description of growth variation than using
the 4 year period suggested by Hogg et al. (2005).

Data Analysis
Mixed models were used to examine effects of prescribed aspen
and spruce density on DBH, quadratic mean diameter (QMD),
height, slenderness, crown width and live crown ratio at age 26
for this randomized complete block design, using SAS9.4 proc
Mixed. Installation, replicate and plot were included as nested
random effects in the mixed models.

Annual basal area increment from 1998 to 2018 was calculated
using the tree ring data obtained for individual spruce and aspen.
A linear mixed model, with repeated measures, was used to
examine effects of tree size (basal area at the beginning of each
year), aspen basal area, and CMI (CMI3 – which was calculated
as average CMI for the current year and for 2 preceeding years)
using SAS 9.4 proc Mixed. Aspen basal area (determined at the
plot level using the measurement closest in time to the growth
year and expressed as m2 ha−1) was used as a measure of aspen
competition. Plot level spruce basal area could not be included
in the models since it had a strong and significant negative
linear relationship with aspen basal area (i.e., strong collinearity).
Linear and quadratic terms for mean annual temperature (MAT)
and CMI (CMI3) and interactions of these climate variables with
aspen basal area were included in the initial models. Backward
selection was used to select a parsimoniousmodel which included
only significant variables. Installation, replicate, plot and tree
were included as nested random effects in the mixed models.

Denominator degrees of freedom (DDFM) were calculated using
the “Kenward-Rogers” option and a heterogenous autoregressive
[ARH(1)] covariance structure was applied. Due to strong and
significant (p < 0.001) collinearity with CMI3, mean annual
temperature and growing degree days were excluded from these
models. Since spruce did not reach 2.0m height in several plots
with aspen densities above 1,500 until 2006, only data from 2007
to 2018 were used for model development. Effects of the severe
multi-year drought in 2001–2003 created poor model fits for
aspen, consequently data for the 2007–2018 period were also used
for aspen.

Short-term growth responses of cored aspen and spruce trees
to multiyear drought events in 2003 and 2013 were assessed using
Lloret et al. (2011) drought response indices.

Resistance (Rt) indicates a trees’ ability to maintain growth
during a drought event:

Rt = Gdr/Gpre; (1)

Recovery (Rc) represents a trees’ ability to recover to a higher
level of growth after drought:

Rc = Gpost/Gdr; (2)

Resilience (Rs) indicates a trees’ ability to recover to pre-
drought levels:

Rs = Gpost/Gpre; (3)

Where:
Gdr = growth during the year;
Gpre = average annual growth during the 3 preceeding years;
Gpost = average annual growth during the 3 subsequent years.

To accommodate nesting of plots within replicates and
installations, linear mixed-effects models were used to examine
effects of initial tree size and aspen basal area on resistance,
recovery and resilience. Denominator degrees of freedom
(DDFM) were calculated using the “BETWITHIN” option.

RESULTS

Temporal Trends of Aspen Density in
Unthinned Plots
Aspen densities have declined substantially in the unthinned
plots from initial values of between 40,000 and 200,000 trees
ha−1 (averaging 97,000 trees ha−1) in 1992 (age 0) to values of
between 1,400 and 4,500 trees ha−1 (averaging 2,639 trees ha−1 in
2018 (age 26) (Figure 1). Self-thinning was particularly dramatic
during the first 12 years with densities at age 12 ranging between
3,125 and 18,750 trees ha−1.

Treatment Effects on Densities
While the ranking of treatments in terms of stand densities at
age 26 follows treatment order, treatment densities have declined
below target densities over the 21 year period following thinning
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FIGURE 1 | Aspen density trends for the 12 unthinned plots. Panel (A) shows density trends across the full range of ages and panel (B) shows trends from ages 12 to

26. Plot labels refer to installation (M or S for median and superior, respectively), first number refers to replicate (1 or 2) and last number refers to plot number [6 (1,000

spruce ha−1), 12 (500 spruce ha−1) or 15 (0 spruce ha−1)].
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TABLE 1 | Effects of thinning treatments applied at age 5 on stand density and stand basal area at age 26.

Aw treatment density

(trees ha-1)

Sw treatment density

(trees ha-1)

Aw density (trees

ha-1)

Aw Basal Area

(m2ha-1)

Sw density (trees

ha-1)

Sw Basal Area/ha (m2ha-1)

SwTDen = 500 SwTDen = 1000

0 4.7a 11.4ab

200 159.5c 5.5c 3.3ab 12.6a

500 386.0bc 9.8c 3.5a 4.9abc

1500 1067.2b 15.7b 1.5bc 5.1abc

4000 1978.8a 21.2a 1.3c 2.0bc

Unthinned 2638.7a 19.4ab 0.4c 1.6c

500 306.4b 2.46b

1000 709.1a 6.24a

P AwTDen <0.0001 <0.0001 ns <0.0001 <0.0081

P SwTDen ns ns 0.0031 <0.0001

For aspen (Aw) treatment density (AwTDen) and spruce (Sw) treatment density (SwTDen) means followed by different letters were found to differ significantly (α = 0.05) based on Tukey’s

HSD test.

(Table 1). Aspen basal area in the unthinned at age 26 did not
differ significantly from basal area in the 4,000 or 1,500 trees ha−1

treatments. Spruce basal area in the treatment with 500 trees ha−1

of spruce was about 40% of that found in the 1,000 spruce trees
ha−1 at age 26.

Temporal Trends of Aspen and Spruce Size
Figure 2 illustrates trends in aspen and spruce average height
and DBH. Thinning of the aspen at age 5 has caused a
persistent increase in average aspen height (Figure 2A) over the
untreated, although differences between aspen thinning levels
are diminishing after age 18. Thinning of the aspen has also
resulted in an increase in white spruce height (Figure 2B), with
the difference between low aspen densities (0, 200 and 500 trees
ha−1) and unthinned increasing over time.

Average DBH of aspen has consistently decreased with
increasing aspen density over the 21 years since thinning
(Figure 2C). After age 16, average spruce DBH declined with
increasing aspen density, with differentiation between aspen
densities increasing with age (Figure 2D).

Treatment Effects on Aspen and Spruce
Sizes at Age 26
Analysis of data from age 26 indicate significant (α < 0.05) effects
of aspen density on average height, DBH, QMD, slenderness
(ratio of height: DBH), crown width and live crown ratio (ratio
of crown length to height) of aspen (Table 2). Thinning to 200
trees ha−1 resulted in a significant increase in average aspen
height over the unthinned, while intermediate densities have
intermediate height values. Average DBH of aspen declined with
increasing aspen density, with 200 trees ha−1 being larger than
1,500, 4,000, and unthinned, and with 1,500 trees ha−1 being
larger than unthinned. QMD shows a similar outcome, although
with greater differentiation between individual treatments.
Slenderness increased with increasing aspen density with 200,
500 < 1,500 < 4,000 < unthinned. Crown width decreased with
increasing density with 200 trees ha−1 being larger than 1,500,
4,000, and unthinned, and with 1,500 trees ha−1 being larger than

unthinned. Live crown ratio decreased with increasing aspen
density with 200, 500 > 1,500 > 4,000 >unthinned. To remove
the influence of the “chain-saw effect,” where thinning from
below causes an increase in average height and diameter due to
the removal of small trees, it is common to examine treatment
effects for a subsample of dominant trees when analyzing data
from thinning experiments. Analysis based on the use of the four
top height trees in each plot (Table 2) shows no significant effect
of treatment on height of top height trees at age 26. Results from
analysis of top height trees for other variables (DBH, slenderness,
crown width and live crown ratio) show significant effects of
thinning treatments and are similar to results from analysis of
overall averages.

Aspen density, but not spruce density, had significant (α <

0.05) effects on spruce height, DBH, QMD, Slenderness, crown
width and live crown ratio (Table 3). Slenderness increased with
increasing aspen density while other variables decreased with
increasing aspen density. Although values for height, DBH,
crown width and live crown ratio are higher and values for
slenderness are lower, similar trends were obtained from analysis
using only the four largest DBH spruce in each plot.

Effects of Climate on Basal Area Increment
and Interactions With Treatment
Analysis of effects of climate focused on effects of mean annual
temperature and climate moisture index (CMI) on basal area
increment of cored trees. Variation in key climate variables
between 1995 and 2018 is shown in Figure 3. Data for the 2007 to
2017 period included CMI values ranging between−6.36 in 2011
and 12.89 in 2010 and 3 year average CMI (CMI3) values ranging
between −1.85 in 2013 and 4.61 in 2010. MAT was tested but
found to be non-significant in these models. Tree size (basal area)
at the beginning of each year was used as a covariate to account
directly for effects of initial tree size on growth and to remove
the need for standardization to account for tree size effects.
Basal area increment of cored aspen and spruce increased with
increasing 3 year average CMI (CMI3) and with increasing size
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FIGURE 2 | Trends in average height (A,B) and DBH (C,D) for aspen and white spruce for the six aspen densities (AwTDen; values are in trees ha−1).

but decreased with increasing aspen basal area ha−1 across the 11
years (2007–2017) included in the analysis presented in Table 4.
Figures 4, 5 show growth trends predicted by these models for
aspen and spruce.

Treatment Effects on Resistance, Recovery
and Resilience to Drought
As a result of 3 years of drought, with severe drought in 2001 and
2003, 3 year average CMI (CMI3) for the 2001 to 2003 period
was−13.2 for the median installation and−13.7 for the superior
installation (Figure 3). A mild drought event associated with low
CMI in 2011 and 2013 resulted in 3 year average CMI for 2011-
2013 of−2.2 for themedian installation and−1.8 for the superior
installation. Examination of resistance, recovery and resilience of
aspen was conducted for 2003 and 2013.

For the 2003 drought event, aspen resistance was 1.358 at
minimum aspen basal area, with tree size and aspen basal area

having significant negative effects (Table 5, Figures 6A,B). Aspen
recovery was 1.255 and resilience was 1.692 at minimum aspen
basal area. While tree size and aspen basal area had significant
negative effects on aspen resilience, their effects on recovery were
not significant. Figure 6 illustrates the interactions between tree
size and aspen density, with resistance dropping below 1.0 when
initial tree basal area exceeds 145 cm2 and aspen basal area is 3.28

m2 ha−1, when tree basal area exceeds 100 cm2 and aspen basal

area is 17.09 m2 ha−1, and when initial tree basal area exceeds 65

cm2 when aspen basal area is 27.94 m2 ha−1. Resilience remains
above 1.0 across the full range of tree sizes when aspen basal area

is 3.28 m2 ha−1, but when aspen basal area is 17.09 m2 ha−1

resilience drops below 1.0 when tree basal area exceeds 160 cm2

and when aspen basal area is 27.94 m2ha−1 Rs drops below 1.0
when tree basal area exceeds 140 cm2.

In response to the milder 2013 drought, resistance of aspen
was slightly positive but not influenced by aspen basal area or
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TABLE 2 | Treatment effects on aspen at age 26.

Aw treatment

density

(trees ha-1)

Height (m) DBH (cm) QMD (cm) Slenderness Crown width (m) Live crown ratio

All trees 200 8.89a 11.87a 21.10a 0.811d 3.63a 0.769a

500 8.07ab 9.81ab 17.70b 0.881d 3.02ab 0.723a

1500 7.76ab 7.81bc 13.61c 1.053c 2.46bc 0.673b

4000 7.37ab 6.23cd 11.75cd 1.269b 1.95cd 0.589c

Unthinned 6.47b 4.37d 9.75d 1.682a 1.34d 0.463d

p 0.0097 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Top Height Trees 200 15.05 22.46a 0.677c 6.43a 0.671a

500 15.08 20.23ab 0.747c 5.27ab 0.575b

1500 15.81 18.35b 0.864b 4.25bc 0.548bc

4000 16.20 18.17b 0.896b 4.07bc 0.491cd

Unthinned 15.79 14.68c 1.096a 3.58c 0.454d

p 0.4124 <0.0001 <0.0001 0.001 <0.0001

All trees indicates means for all trees within each plot and treatment. Top height trees represent the four largest diameter trees in each 20 × 20m plot, or the largest 100 trees per

hectare. Within each column, groupings based on Tukey’s HSD (α = 0.05) are indicated using letters. Significant p values are shown in bold.

TABLE 3 | Treatment effects on spruce at age 26.

Aw treatment

density

(trees ha-1)

Height (m) DBH (cm) QMD (cm) Slenderness Crown width (m) Live crown ratio

All trees 0 3.03a 4.32a 13.53a 1.274b 1.66a 0.813a

200 3.07a 3.85ab 12.25a 1.364b 1.61ab 0.780a

500 3.26a 3.80ab 10.65ab 1.321b 1.65a 0.806a

1500 3.09a 3.30bc 8.73bc 1.456ab 1.63ab 0.789a

4000 2.86ab 2.51cd 6.54cd 1.763a 1.36bc 0.771a

Unthinned 2.41b 2.16d 5.30d 1.781a 1.28c 0.701b

p 0.0069 <0.0001 <0.0001 0.0002 0.0009 <0.0001

Top Height Trees 0 8.04ab 17.30a 0.471b 3.92a 0.891a

200 8.29ab 16.90ab 0.566ab 3.64a 0.826b

500 8.10ab 12.91abc 0.670ab 3.56a 0.885a

1500 8.05ab 11.53bcd 0.708ab 3.28ab 0.889a

4000 8.98a 8.10cd 1.169a 2.60bc 0.879a

Unthinned 5.40b 6.90d 0.793ab 2.23c 0.818b

p 0.0489 <0.0001 0.0435 0.0001 0.0313

All trees indicates means for all trees within each plot and treatment. Top height trees represent the four largest diameter trees in each 20 × 20m plot, or the largest 100 trees per

hectare. Within each column, groupings based on Tukey’s HSD (α = 0.05) are indicated using letters. Significant p values are shown in bold.

treatments. Recovery and resilience are low (0.449 and 0.466,
respectively) which is likely associated with drought stress in
2015 and 2016 (as indicated by low annual CMI and high MAT
for these years), but are not influenced by tree size or aspen
basal area.

Spruce data were not sufficient to allow analysis for 2003 since
<50% of cored spruce had reached 1.3m height by 2000 and
the trees that had passed 1.3m height by 2003 were growing in
plots with very low aspen basal area. Spruce resistance, recovery
and resilience to the 2013 drought were all above 1 when aspen

basal area was zero (Table 5) with resistance and resilience (but
not recovery) showing significant negative effects of tree size
and aspen basal area. Interactions between spruce size and aspen
density are evident (Figure 7), with resistance dropping below
1.0 when initial tree basal area exceeds 120 cm2 and aspen basal
area is 0 m2 ha−1, when spruce basal area exceeds 20 cm2 and
aspen basal area is 12.68 m2 ha−1, and is below 1.0 across the
full range of spruce sizes when aspen basal area is 27.90 m2

ha−1. Resilience drops below 1.0 when spruce size exceeds 120
cm2 when aspen basal area is 0 m2 ha−1, but when aspen basal
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FIGURE 3 | Trends in (A) mean annual temperature (MAT), (B) mean annual precipitation (MAP) and 3 year running average of mean annual precipitation (MAP3), (C)

mean summer precipitation (MSP) and 3 year running average of mean summer precipitation (MSP3), and (D) climate moisture index (CMI) and 3 year running average

CMI (CMI3) for the two Big River installations (med, median; sup, superior).

TABLE 4 | Results for models describing variation in annual basal area increment

of cored aspen and spruce trees for the 2007–2017 period.

Aspen Spruce

Effect Estimate p Estimate p

a Intercept 1.2467 <0.001 0.497 <0.001

b ln(ba_b) 0.3551 <0.001 0.5165 <0.001

c Aw_baha −0.01031 <0.001 −0.02755 <0.001

d CMI3 0.02745 <0.001 0.01475 0.006

e CMI3sq 0.00064 <0.001 −0.00401 0.002

f ln(ba_b)*CMI3 −0.00221 <0.001 0.00121 <0.001

# of Observations 1756 979

Model: ln(bi)=a+b*ln(ba_b)+c*Aw_baha+d*CMI3+e*CMI3sq+f*ln(ba_b)*CMI3.

ln(bi) = natural log of annual basal area increment; ln(ba_b) = natural log of tree basal

area at start of each year; Aw_baha = plot level aspen basal area (m2 ha-1 ); MAT =mean

annual temperature for that year (◦C); CMI3 = 3 year average for CMI (current year and

preceeding 2 years); CMI3sq = square of CMI3; ln(ba_b)*CMI3 = term for interaction of

ln(ba_b) with CMI3.

area is 12.68 m2 ha−1 Rs drops below 1.0 when spruce basal
area exceeds 20 cm2 and when aspen basal area is 27.94 m2

ha−1 Rs drops below 1.0 across the full range of spruce size. The
scatter plot (Figures 7B,D) shows points associated with aspen

basal areas of between 3 and 8 m2 ha−1 having higher resistance
and resilience than points associated with zero aspen basal area
which suggests the possibility of some beneficial effects at these
low aspen densities. However, a quadratic term was tested in this
model but was not significant (p > 0.4).

MGM Forecasts of Effects of Spruce and
Aspen Densities on Yield
The Mixedwood Growth Model (MGM18_VS1_2_18_37_
Rev6115, March 2020; https://mgm.ualberta.ca/) was used to
examine effects of treatments on growth and yield. MGM was
initialized for each plot using treelists that included diameter,
height, and tree factor (number of trees ha−1 represented by
each tree calculated based on the size of the measurement plot)
created from measurements collected in 2018/2019. Site Index
was calculated using Alberta Site Index curves (Huang et al.,
2009) for each installation based on average spruce top height
in replicates of plots 1 and 7 (zero aspen density) and aspen
top height in replicates of plots 6, 12, and 15 (natural aspen
densities) measured in 2018/2019 (age 26). Site index for the
Median installation was calculated to be 17.9 m@age50 for white
spruce and 23.1 m@age50 for trembling aspen and site index for
the Superior installation was calculated to be 16.8 m@age50 for
white spruce and 23.2 m@age50 for trembling aspen.
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FIGURE 4 | Trends described by the model for annual basal area increment of aspen described in Table 4. Effects of initial basal area and aspen basal area on basal

area increment are shown in (A,B), respectively. (C) Shows effects of interactions between CMI3 and initial basal area (ba_b) and (D) shows interaction between CMI3

and aspen basal area (Aw_baha) (for each panel, average values were used for all other variables in the model).

Figure 8 shows volume-age curves for aspen and spruce
in each treatment from age 30 to 150 based on Chapman-
Richards curves fit to data from the plot level MGM predictions
(Supplementary Figures 1, 2 show volume-age curves for
individual plots). Aspen volume increases with increasing aspen
density, with the largest aspen volumes being found in plots
where aspen were not thinned (plots 6, 12, and 15) or in plots
where aspen was thinned to 4,000 trees ha−1 (plots 5, 11, and
14) (Figure 8A, Table 6). At low densities maximum aspen stand
volumes are achieved at earlier ages due to accelerated diameter
growth of aspen and earlier mortality (DBH is a major driver of
aspen mortality in MGM). For plots 2 and 8, where aspen had
been thinned to 200 trees ha−1, maximum deciduous volumes of
90 to 105 m3ha−1 occur at ages 50 to 60, while plots where aspen
was thinned to 500 trees ha−1 (plots 3 and 9) have maximum
deciduous volumes of 175 to 190 m3ha−1 at ages 60 to 70, plots
thinned to 1500 aspen ha−1 (plots 4 and 10) have maximum
deciduous volumes of 247 to 300 m3ha−1 at age 80, plots thinned
to 4,000 aspen ha−1 (plots 5, 11, and 14) reach maximum

deciduous volumes of 300 to 330 at age 80 and unthinned (plots
6, 12, and 15) reach maximum deciduous volumes (290 to 325
m3ha−1) at age 90. Spruce volume at any stand age (Figure 8B)
declines with both decreasing spruce density and increasing
aspen density. With the exception of plot 1 (1000 Sw/0Aw),
stand level spruce volumes do not appear to reach a maximum
by age 150. Variability in spruce and aspen densities, as well
as variation in tree sizes at age 26 (i.e., in the plot data used to
initialize MGM) are the primary sources of variation in plot level
projections in each treatment.

Spruce DBH at age 100, as predicted by MGM declines with
increases in either aspen or spruce density (Table 6). For aspen,
DBH at age 100 is reduced primarily by aspen density, with the
largest diameters being evident in plots 2 and 8 which were both
thinned to 200 aspen ha−1 at age 5.

Aspen yields (gross total volume) at age 100 and aspen MAI
range up to a maximum of 312 m3ha−1 and 3.1 m3ha−1y−1,
respectively. Yield and MAI of aspen generally increase with
increases in initial aspen density (Table 6). However, in some
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FIGURE 5 | Trends described by the model for annual basal area increment of spruce described in Table 4. Effects of initial basal area and aspen basal area on basal

area increment are shown in (A,B), respectively. (C) Shows effects of interactions between CMI3 and initial basal area (ba_b) and (D) shows interaction between CMI3

and aspen basal area (Aw_baha) (for each panel, average values were used for all other variables in the model).

cases the 4,000 aspen ha−1 treatment has slightly higher aspen
yield and MAI than the unthinned. Spruce yield at age 100 shows
effects of both aspen and spruce density and decreases with
increasing aspen density while increasing with increased spruce
density (Table 6). Spruce MAI was 2.5 m3ha−1 y−1 with 0 aspen
and 1,000 spruce (plot 1), 1.2 m3ha−1y−1 with 0 aspen and 500
spruce (plot 7), while with natural aspen densities (unthinned)
1000 spruce (plot 6) had a spruce MAI of 0.7 m3ha−1y−1 and
500 spruce (plot 12) spruce MAI was 0.2 m3ha−1y−1 (Table 6).
Total, aspen + spruce, MAI was higher in mixed than in pure
stands, with the highest MAI (3.73 m3ha−1y−1) evident in plot 4
with 1,500 aspen and 1,000 spruce ha−1. This contrasts with pure
spruce plots, plots 1 and 7, with MAI’s of 2.5 and 1.2 m3ha−1y−1,
respectively, and with pure aspen plots, plots 14 and 15, withMAI
of 3.1 m3ha−1y−1. MAI of these stands is at the higher end of
values observed for natural stands and reflects selection of good
aspen sites, with good initial stocking for the study as well as
planting of spruce.

Culmination age increases with increasing aspen density.
In addition, volume at culmination increases with increasing
density. Small effects of increasing spruce density on aspen
volumes are evident for the two lowest aspen densities (200
and 500 aspen ha−1). Both spruce and aspen densities influence
spruce yields, with culmination of spruce occurring later with
increasing aspen density.

DISCUSSION

Do Thinning Treatments Influence Aspen
and Spruce Growth?
Effects of aspen and spruce densities on aspen and spruce size
at age 26 at Big River are consistent with other published

studies which show that thinning in young, healthy aspen stands
can accelerate the growth of residual trees (Bickerstaff, 1946;

Steneker, 1976; Perala, 1978; Peterson and Peterson, 1992; Rice
et al., 2001), accelerating achievement of merchantable diameter
and improving the quality of the stand. These results support

hypothesis 1 (height and diameter of aspen and white spruce
decline with increasing aspen density). Height and height growth
of aspen were increased by thinning in three of the seven stands
that Bella and Yang (1991) studied. In contrast, Penner et al.
(2001) found no benefit to thinning a stand with 4000 to 5000
trees ha−1 at age 20, due to the fact that unspaced plots had self-
thinned to densities similar to those of thinned plots by age 36.
Results for Big River also indicate that substantial self-thinning
has occurred in the unthinned plots, with aspen densities in the
unthinned plots averaging 2,639 trees ha−1 at age 26.

Positive effects of thinning of aspen on spruce growth (Bokalo
et al., 2007; Kabzems et al., 2016) are also evident for Big
River. Reducing aspen densities using manual, mechanical,
or chemical spacing treatments or removal of aspen around
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TABLE 5 | Results from linear mixed-effects model examining effects of tree size (basal area) and aspen stand level basal area on tree drought responses in 2003 and 2013 for trembling aspen and white spruce.

Species Year Response

variable

Mean Statistic Intercept ba_b Aw_baha Mean ba_b Minimum

Aw_baha

Response

variable value at

mean ba_b, min

Aw_baha

Aspen 2003 Rt–Resistance 1.1795 Estimate 1.6492 −0.00417 −0.01291 59.72 3.28 1.358

SE 0.1093 0.001009 0.004876

p <0.0001 0.0002 0.0114

Rc–Recovery 1.3580 Estimate 1.2297 −0.00015 0.008034 59.72 3.28 1.255

SE 0.1259 0.001188 0.005550

p <0.0001 0.9003 0.1552

Rs–Resilience 1.5537 Estimate 2.0543 −0.00551 −0.01004 59.72 3.28 1.692

SE 0.1103 0.001057 0.004818

p <0.0001 <0.0001 0.0434

Aspen 2013 Rt–Resistance 1.0519 Estimate 1.1689 −0.00058 −0.00025 194.28 6.89 1.054

SE 0.1265 0.000467 0.00413

p <0.0001 0.2220 0.9515

Rc–Recovery 0.4499 Estimate 0.4320 0.000084 0.000089 194.28 6.89 0.449

SE 0.08081 0.000297 0.002670

p <0.0001 0.7792 0.9737

Rs–Resilience 0.4685 Estimate 0.5094 −0.00023 0.000203 194.28 6.89 0.466

SE 0.1002 0.000362 0.003404

p <0.0001 0.5314 0.9527

White

spruce

2013 Rt–Resistance 0.9408 Estimate 1.3147 −0.00259 −0.01928 49.86 0 1.186

SE 0.09304 0.001017 0.003865

p <0.0001 0.0151 <0.0001

Rc–Recovery 1.6838 Estimate 1.7590 0.003971 −0.00252 49.86 0 1.957

SE 0.1629 0.006753 0.001784

p <0.0001 0.5601 0.1666

Rs–Resilience 1.5550 Estimate 2.2737 −0.00694 −0.02942 49.86 0 1.928

SE 0.1857 0.002010 0.007845

p <0.0001 0.0014 0.0006

For aspen n = 88 in 2003 and n = 86 in 2013, for spruce n = 34 in 2003 and n = 77 in 2013. Interaction between ba_b and Aw_baha was tested but found to be non-significant in all models. Significant independent variables are

shown in bold.
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FIGURE 6 | Effects of tree size (A,C) and aspen basal area (B,D) on aspen resistance (Rt) and resilience (Rs) in 2003. + Shows data points and lines show predicted

values. Aw_baha = aspen basal area (m2ha−1) and ba_b = initial tree size (m2 ).

crop conifers, gives consistent improvements in growing
conditions for white spruce when aspen has established at
high densities.

Both intra- and inter- specific competition have immediate

effects on diameter growth of trees, while impacts on height
growth do not generally appear until severe competition levels

are reached or competition remains at sufficient intensity for

a period of time. As a result, the ratio of height to root

collar diameter (HDR) or height to DBH (slenderness) increase
in response to increases in competition (Bokalo et al., 2007;

Kabzems et al., 2016), as also found for the Big River installations.

In addition, crown width and live crown ratio are strongly
influenced by social status of a tree and by both intra- and inter-

specific competition (Groot and Schneider, 2011; Kabzems et al.,

2016). At Big River, increases in aspen density led to increases

in slenderness and decreases in crown width and live crown
ratio of white spruce, with the strongest differences being evident

between the 0 aspen and unthinned treatments. Variation in

plots where aspen had been thinned reflects variation in degree
and duration of competition reduction. As spruce crown closure
develops in some treatments, effects of intraspecific competition
on crown width and live crown ratio are expected. In addition,
self-shading is expected to influence crown width and live-crown
ratio as spruce become larger (Kershaw et al., 1990).

How Do Tree Size, Competition and
Climate Influence Growth of Spruce and
Aspen?
Results from analysis of effects of tree size, aspen basal area, and
CMI on annual growth of cored aspen and spruce are consistent
with observations from other studies. Similar increases in growth
with size, particularly within the range of sizes encountered in
these young stands, have been reported by other studies (Comeau
et al., 2003; Filipescu and Comeau, 2007). Positive effects of
increasing CMI and negative effects of competition on growth of
these species in western Canada have also been reported by other
studies (Alam et al., 2017; Chen et al., 2017b,c; Jiang et al., 2018).
Despite expectations to the contrary, the regression models fit
to the annual basal area growth data at these sites highlight
competitive effects of aspen on spruce growth over facilitative
effects and support hypothesis 2.

Does Thinning Influence Resistance,
Recovery and Resilience of These Stands
to Drought?
Tree size, species, competition, and magnitude and duration of
drought influence resistance, recovery, and resilience of stands
to drought (Sohn et al., 2016; Schmitt et al., 2020; Steckel et al.,
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FIGURE 7 | Effects of tree size (A,C) and aspen basal area (B,D) on white spruce resistance (Rt) and resilience (Rs) in 2013. Aw_baha = aspen basal area (m2 ha−1)

and ba_b = initial tree size (m2).

FIGURE 8 | Treatment level volume-age curves for (A) aspen and (B) white spruce based on MGM forecasts of aspen gross stand volumes for each treatment.

[Treatments (trees ha−1 at age 5): Plot 1 = 1000Sw/0Aw; plot 2 = 1000Sw/200Aw; plot 3 = 1000Sw/500Aw; plot 4 = 1000Sw/1500Aw; plot 5 = 1000Sw/4000Aw;

plot 6 = 1000Sw/unthinned Aw; plot 7 = 500Sw/0Aw; plot8 = 500Sw/200Aw; plot 9 = 500Sw/500Aw; plot 10 = 500Sw/1500Aw; plot 11 = 500Sw/4000Aw; plot

12 = 500Sw/unthinned Aw; plot 13 = 0Sw/1500Aw; plot 14 = 0Sw/4000Aw; plot 15 = 0Aw/unthinned Aw].

2020). In this study, conducted in young mixtures of trembling
aspen and white spruce, tree size and aspen basal area have
negative effects on resistance and resilience of both trembling

aspen and white spruce and support hypothesis 3 (resistance,
recovery and resilience will be increased by thinning) in relation
to resistance and resilience but not recovery. Data were not
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sufficient to allow detailed analysis of effects of magnitude or
duration of drought, although outcomes for aspen differ between
the severe 2001–2003 drought and themilder 2011–2013 drought
and suggest that aspen may be well-equipped for handling mild
short-term drought events on these two sites.

Results indicate that resistance and resilience of spruce was
best at low aspen basal areas (3 to 7m2ha−1) although these could
not be shown to be significantly better than at an aspen basal
area of 0 m2ha−1. Resistance and resilience of aspen was also
highest at the lowest stand basal area and declinedwith increasing
basal area, as reported for other species (e.g., Sohn et al., 2016).
Benefits of thinning are still evident 21 years after treatment,
due to the long duration of their effects on aspen basal area,
consistent with Giuggiola et al. (2013). In their meta-analysis
Sohn et al. (2016) found that benefits of thinning decrease
with time since thinning, highlighting a need for continuing
measurement of these stands to document whether the benefits
of thinning decrease. Declining resistance and resilience with
increasing tree size has been reported for some, but not all,
previous studies (Ammer, 2017; Andrews et al., 2020).

Acceleration of growth and associated increases in tree
size and water demand following thinning can result in older
thinned stands having lower resistance and resilience than
unthinned stands (D’Amato et al., 2013) which could be
due to drought sensitivity increasing with tree size due to
increased leaf area (Ammer, 2017). Other studies indicate long-
term benefits of thinning to drought resistance (Giuggiola
et al., 2013; Ammer, 2017) due to reductions in stand level
transpiration and increases in soil water availability. Further
examination of effects of thinning of these mixed stands on
resistance, recovery, and resilience including data covering a
longer time period, severe drought events, and includingmultiple
sites with a range of drought stress is needed to improve
our understanding of consequences of drought, and effects of
drought severity and duration. Examination of effects of a
broader range of spruce densities, and of key processes would also
be useful.

How Does Thinning Influence Stand
Volume and MAI?
Yield outcomes for Big River are similar to results reported by
Kabzems et al. (2016), with increasing aspen densities leading
to increased aspen yield and decreased spruce yield and delayed
culmination age for spruce volume. These findings are in general
agreement with hypothesis 4 (stand yield will be highest in
mixed stands with moderate densities of aspen and white spruce
while spruce yield will be highest without aspen). Thinning of
aspen to densities below 4,000 trees ha−1 resulted in reduced
volumes at harvest as reported by Bella and Yang (1991). Total
(aspen plus spruce) mean annual increment (MAI) for the two
Big River installations averaged 2.52 m3ha−1y−1 for the 1,000
spruce ha−1 treatment, 3.15 m3ha−1y−1 in the stands with 4,000
aspen ha−1 or unthinned, and 3.73 m3ha−1y−1 for the mixture
with 1,500 aspen ha−1 and 1,000 spruce ha−1. The 1,500 aspen
ha−1 and 1,000 spruce ha−1 mixture provided a 23% increase

in total (aspen plus spruce) MAI over the pure aspen stands,
with little reduction in aspen MAI and with a 44% reduction in
spruceMAI. Kabzems et al. (2016) indicate, based on results from
MGM, that the highest total stand yields were achieved with an
aspen density of 2,000 to 5,000 trees ha−1 and a spruce density
of 1,300 trees ha−1. Differences between Kabzems et al. (2016)
and this study reflect differences in treatments, site, climate and
other factors.

Potential overyielding at Big River is indicated by estimated
total stand MAI being higher in mixtures with 1,500 or
4,000 aspen ha−1 and with either 500 or 1,000 spruce ha−1.
Consistent with the evidence of overyielding indicated by MGM
estimates of higher MAI of mixed stands with aspen density
above 1,500 trees ha−1 compared to pure stands, Kweon and
Comeau (2019) also found that overyielding was strongest in
plots with 1,500 aspen ha−1, based on analysis of data from
seven similar WESBOGY installations in Alberta. Overyielding
is thought to result from differences in growth rates and
shade tolerance of aspen and white spruce which leads to
niche separation, and the ability of the mixed stand to use
more light and carry a larger total number of trees than is
the case for pure stands (Kabzems et al., 2016; Kweon and
Comeau, 2019). Alternative management strategies could see
removal of aspen at earlier ages while leaving spruce to grow
to culmination. The application of this “understory protection”
approach has the potential to increase yields of both aspen
and spruce.

Study Limitations
Analysis of effects of climate on growth and on resistance,
recovery and resilience to drought stress was limited by sampling
of only the largest trees of each species across the plots used in this
study, and by the short time period over which useable tree ring
data were available (most notably for white spruce). Collection of
cores from or annual diameter measurement for a larger sample
of trees representing the full range of tree sized and spanning
a longer time period, would be beneficial. Using average CMI
over a 3-year period to examine effects of drought stress requires
further testing based on the dynamics of soil water storage on
these and on other sites. Data from sites covering a broader
range of climatic conditions are needed to provide more general
inferences regarding effects of stand density and composition
on responses of mixedwood stands to drought. In addition,
supplemental studies are required to improve understanding of
the mechanisms associated with these responses. Since MGM18
does not consider potential effects of changing climate on yield,
the yield forecasts need to be interpreted cautiously.

Ongoing remeasurement of this study at 5-year intervals
is planned and will provide valuable long-term information
on treatment effects and stand dynamics. Coring and/or
annual measurement of diameter increment, coupled with
field measurements of soil moisture across several sites with
similar treatments over a 20 year or longer time period would
contribute substantially to understanding of the effects of
thinning treatments on resilience of boreal aspen-white spruce
mixtures to drought and increasing temperatures.
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TABLE 6 | MGM forecasts of aspen and spruce diameters, yields and MAI at age 100 for the 15 treatments.

Plot AwTDen SwTDen D_AvDbh C_AvDbh D_TVol C_TVol TVol D_Mai C_MAI St_MAI

(Trees ha-1) (Trees ha-1) (cm) (cm) (m3ha-1) (m3ha-1) (m3ha-1) (m3ha-1y-1) (m3ha-1y-1) (m3ha-1y-1)

1 0 1000 0.00

(0.00)

28.03

(1.60)

0.00

(0.00)

251.92

(22.54)

251.92

(22.54)

0.00

(0.00)

2.52

(0.23)

2.52

(0.23)

2 200 1000 51.16

(1.65)

26.17

(1.06)

54.54

(17.30)

195.25

(32.44)

249.79

(16.51)

0.55

(0.17)

1.95

(0.32)

2.50

(0.17)

3 500 1000 44.37

(0.77)

25.69

(2.20)

155.36

(47.73)

116.80

(63.76)

272.15

(111.28)

1.55

(0.48)

1.17

(0.64)

2.72

(1.11)

4 1500 1000 34.85

(1.33)

23.38

(1.26)

237.65

(58.70)

135.08

(22.42)

372.73

(39.58)

2.38

(0.59)

1.35

(0.22)

3.73

(0.40)

5 4000 1000 29.19

(0.41)

21.77

(0.72)

297.26

(17.38)

66.53

(20.85)

363.79

(13.06)

2.97

(0.17)

0.67

(0.21)

3.64

(0.13)

6 Unthinned 1000 29.62

(3.11)

21.56

(1.36)

281.81

(44.80)

67.19

(20.30)

349.00

(46.55)

2.82

(0.45)

0.67

(0.20)

3.49

(0.47)

7 0 500 0.00

(0.00)

30.66

(2.76)

0.00

(0.00)

121.97

(17.69)

121.97

(17.69)

0.00

(0.00)

1.22

(0.18)

1.22

(0.18)

8 200 500 49.28

(4.30)

27.78

(0.88)

50.27

(16.37)

98.82

(23.55)

149.09

(21.50)

0.50

(0.16)

0.99

(0.24)

1.49

(0.22)

9 500 500 45.46

(2.24)

27.57

(1.17)

158.98

(29.86)

93.07

(12.10)

252.05

(25.72)

1.59

(0.30)

0.93

(0.12)

2.52

(0.26)

10 1500 500 34.23

(0.90)

24.81

(2.40)

283.17

(29.67)

46.36

(28.79)

329.54

(42.37)

2.83

(0.30)

0.46

(0.29)

3.30

(0.42)

11 4000 500 31.36

(2.63)

21.92

(1.10)

295.49

(35.74)

35.62

(21.66)

331.11

(56.92)

2.95

(0.36)

0.36

(0.22)

3.31

(0.57)

12 Unthinned 500 27.78

(0.98)

21.07

(1.59)

309.33

(17.87)

23.74

(12.84)

333.06

(7.41)

3.09

(0.18)

0.24

(0.13)

3.33

(0.07)

13 1500 0 35.52

(1.06)

0.00

(0.00)

287.19

(28.37)

0.00

(0.00)

287.19

(28.37)

2.87

(0.28)

0.00

(0.00)

2.87

(0.28)

14 4000 0 31.16

(1.00)

0.00

(0.00)

312.06

(12.81)

0.00

(0.00)

312.06

(12.81)

3.12

(0.13)

0.00

(0.00)

3.12

(0.13)

15 Unthinned 0 27.69

(1.54)

0.00

(0.00)

309.14

(32.91)

0.00

(0.00)

309.14

(32.91)

3.09

(0.33)

0.00

(0.00)

3.09

(0.33)

Means and (STD) for the four plots in each treatment are included. [AwTDEN, Aspen treatment density; SwTDen, Spruce treatment density; D_AvDbh, deciduous (aspen) average DBH at age 100; C_AvDbh, conifer (spruce) average

DBH at age 100; D_TVol, deciduous (aspen) gross total volume at age 100; C_TVol, conifer (spruce) gross total volume at age 100; TVol, total (deciduous+conifer) gross total volume at age 100; D_MAI, deciduous (aspen) mean annual

increment; C_MAI, conifer (spruce) mean annual increment; St_MAI, total (deciduous+conifer) mean annual increment].
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CONCLUSIONS

Results from analysis of data collected at age 26 (21 years after
pre-commercial thinning) for the Big River WESBOGY LTS
installations indicate:

1. Thinning lead to significant increases in aspen average height,
average and top DBH and reductions in average and top
slenderness but did not alter top height at age 26;

2. Spruce height and diameter at age 26 increased and spruce
slenderness decreased with reductions in aspen density;

3. Crown width and live crown ratio of both aspen and spruce at
age 26 increased following thinning, with values being highest
at the lowest aspen densities;

4. Tree size and CMI had significant positive effects while aspen
basal area had significant negative effects on the growth of
individual trees cored in 10 (spruce) or 11 (aspen) plots in
each of the two installations;

5. Resistance and resilience of aspen and spruce to drought
events were negatively affected by increases in tree size (basal
area) and aspen density (basal area). Results suggest that
thinning of the aspen had enduring effects on growth, and on
drought resistance and resilience of both species;

6. Aspen yield (at age 100) is potentially reduced but aspen
DBH at age 100 is increased by thinning of the aspen while
spruce yield was increased by thinning the aspen. Spruce
yield was higher for 1,000 trees ha−1 than for 500 trees ha−1

initial densities.
7. Yield projections suggest that the mixture of 1,500 aspen

and 1,000 spruce per hectare has the potential to provide
a 23% increase in total MAI with a single harvest at age
100, compared to unthinned aspen stands, but with a 44%
reduction in spruce MAI compared to pure spruce stands.
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