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Summary

� It is increasingly evident that the plant microbiome is a strong determinant of plant health.

While the ability to manipulate the microbiome in plants and ecosystems recovering from dis-

turbance may be useful, our understanding of the plant microbiome in regenerating plant

communities is currently limited.
� Using 16S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region ampli-

con sequencing, we characterized the leaf, stem, fine root, rhizome, and rhizosphere micro-

biome of < 1-yr-old aspen saplings and the associated bulk soil after a recent high-intensity

prescribed fire across a burn severity gradient.
� Consistent with previous studies, we found that soil microbiomes are responsive to fire. We

extend these findings by showing that certain plant tissue microbiomes also change in

response to fire. Differences in soil microbiome compositions could be attributed to soil chemi-

cal characteristics, but, generally, plant tissue microbiomes were not related to plant tissue ele-

mental concentrations. Using source tracking modeling, we also show that fire influences the

relative dominance of microbial inoculum and the vertical inheritance of the sapling micro-

biome from the parent tree.
� Overall, our results demonstrate how fire impacts plant microbiome assembly, diversity,

and composition and highlights potential for further research towards increasing plant fitness

and ecosystem recovery after fire events.

Introduction

As wildfires are currently growing in size, severity, and frequency
(Westerling et al., 2006; Miller et al., 2009; Adams, 2013),
understanding how vegetation regenerates post-fire is essential in
mitigating the ecological effects of fire and may have applications
toward accelerating ecosystem recovery. A growing body of litera-
ture recognizes that microorganisms living inside or in close asso-
ciation with plant tissues, collectively known as the plant
microbiome, are integral to plant health and survival (Compant
et al., 2005; Santoyo et al., 2016). For instance, the plant micro-
biome can confer resistance to pests (Hubbard et al., 2019),
provide nutrients (Moyes et al., 2016), and promote plant
growth (Santoyo et al., 2016). However, an understanding of
plant microbiome assembly in a post-fire context is currently
lacking. Such an understanding of the plant microbiome
response to fire may be particularly important for quaking aspen
(Populus tremuloides), as it is widely distributed throughout
North America (Little, 1976) and aspen forests support habitat
for numerous wildlife and understory plant species (Perala,
1990). Aspen is a fire-associated species and relies largely on fire
to regenerate (Shinneman et al., 2013). This regeneration occurs

primarily through vegetative reproduction, specifically through
root-associated suckering, from living roots that survive even
intense fires belowground (Brown & DeByle, 1987). Under-
standing the aspen microbiome, especially after fire, could lead to
management strategies that promote the sustainability of this
important plant species, as has been done in native prairie
restoration (Koziol et al., 2018).

As with other Populus species (Hacquard & Schadt, 2015) the
aspen microbiome and factors influencing the composition of the
microbiome have been partially described. While aspen geno-
types differ substantially in their ability to produce phenolic gly-
cosides and condensed tannins (Holeski et al., 2012), which act
as defense compounds against insect herbivory and fungal patho-
genesis (Hwang & Lindroth, 1997; Holeski et al., 2009), the bac-
terial leaf endospheric community seems to be consistent across
genotypes (Mason et al., 2014). However, certain bacterial strains
in the aspen leaf endosphere have the ability to metabolize these
compounds, possibly leading to reduced plant herbivore defense
(Mason et al., 2016). In this way, leaf chemistry, the microbiome,
and health of aspen are inextricably linked. Additionally, fire may
alter aspen leaf chemistry, because aspen saplings growing in
post-fire environments have greater concentrations of phenolic
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glycosides in their leaves which may reduce herbivory (Lindroth
& Clair, 2013). However, it is currently unclear whether this
response interacts with the plant microbiome and if this has con-
sequences for plant health and ecosystem recovery.

Given that fire significantly changes the soil microbiome
(Xiang et al., 2014; Glassman et al., 2015; Whitman et al., 2019)
and that the soil microbiome is a major source of plant endo-
spheric microorganisms living within tissues both belowground
and aboveground (Grady et al., 2019), it seems likely that plants
regenerating in burned soils will have different microbiomes than
those growing in unburned soils. Similarly, fire can alter numer-
ous edaphic properties (Certini, 2005; Dove et al., 2020b), which
have also been shown to impact plant microbiomes (Shakya
et al., 2013). However, in the context of clonal plants, such as
aspen, the plant microbiome in regenerating ramets may be
somewhat resistant to the effects of fire if the source of microbial
inoculum is the buried, living roots and rhizomes which are insu-
lated from the effects of fire. It is these lateral roots that give rise
to clonal saplings (or ‘suckers’) that are characteristic of aspen
regeneration immediately following fires. Understanding the
sources of the endospheric microorganisms in such clonal plants
is fundamental to resolving mechanisms of plant microbiome
assembly and the functional role of lateral roots in this process.
However, the relative importance of horizontal (i.e. soil to
sapling) or vertical (i.e. rhizome to sapling) transmission of
microbes in determining the endospheric microbiome composi-
tion in clonal plants is currently unknown. From a biotechnology
standpoint, understanding microbial assembly patterns could
inform the design of successful microbial inoculation treatments,
especially those intended to increase the success of plant regenera-
tion post-fire (Pizarro-Tob�ıas et al., 2015).

The current understanding of the impacts of fire on the plant
microbiome is confined to the plant rhizosphere, and predomi-
nantly consists of the studies of mycorrhizal symbionts rather
than the broader microbiome (Jonsson et al., 1999; Stendell
et al., 1999; Glassman et al., 2015; Dove & Hart, 2017). From
the mycorrhizal literature, it is becoming clear that the impact of
fire on mycorrhizal colonization of plant roots is generally nega-
tive in terms of both diversity and colonization rate. For example,
a recent global-scale meta-analysis shows that, on average, fire
reduces mycorrhizal colonization by 21% (Dove & Hart, 2017),
which likely negatively impacts plant survivability post-fire.
However, fire has also been shown to select for certain plant
growth-promoting bacteria in the holm oak (Quercus ilex) rhizo-
sphere (Fern�andez-Gonz�alez et al., 2017). Metagenomic assess-
ment of these same samples showed an enrichment of nitrogen
(N) cycling functional genes, which may further support plant
growth by increasing nutrient availability (Cobo-D�ıaz et al.,
2015). These studies indicate that fire impacts plant rhizospheres,
which may lead to changes in plant health and recovery. How-
ever, we know of no study that has investigated the response of
the endospheric plant microbiome to fire and how the collection
of plant microbiomes across tissue types interact with each other
and the soil in a post-fire context. Given the importance of the
plant microbiome for plant health, especially in stressful condi-
tions such as after fire, understanding the plant microbiome

response to fire could constrain predictions of plant propagule
success and the trajectory of plant community recovery in post-
fire environments.

To improve our understanding of the aspen microbiome
responses to disturbance by fire, we sampled < 1 year old saplings
or ‘suckers’ (clonal ramets) from burned and unburned areas
along a burn severity gradient and sequenced microbial DNA
extracted from leaves, stems, fine roots, rhizomes, rhizospheres,
and bulk soils. We hypothesized that not only would the micro-
bial community differ among habitats (e.g. leaf, stem, root, rhi-
zome, rhizosphere, and bulk soil), but the impact of fire on the
microbial community composition would vary among habitats
(i.e. a habitat 9 fire interaction on microbial community compo-
sition). Specifically, we expected that because the plant micro-
biomes were not directly impacted by fire (saplings emerged in
the weeks after the fire disturbance), endospheric microbiomes
would be relatively less impacted by fire when compared to the
rhizosphere and bulk soil microbiomes. We hypothesized that
these changes in microbiome composition would be partially
explained by plant and soil chemistry, which may lead to altered
plant health through differences in the functional roles of these
microbiomes (e.g. potential plant pathogens and mycorrhizal
fungi). Using source tracking modeling (Shenhav et al., 2019),
we also hypothesized that due to decreased microbial abundance
in soil post-fire (Dove et al., 2020b), the relative importance of
vertical transmission (i.e. sourced from the rhizome rather than
the soil) of endospheric microorganisms in fine roots, stems, and
leaves would increase with burn severity. Our overall goal is to
characterize the aspen microbiome and its response to fire and to
elucidate how the microbiome responds to the effects of fire. As
this is a novel area of research, our findings provide fundamental
knowledge of plant microbiome community assembly and how
this is impacted by disturbance that could be beneficial towards
utilizing microbial communities to enhance plant and ecosystem
regeneration.

Materials and Methods

Site description, experimental design, and sample collection

The study was conducted on the Fishlake National Forest, in cen-
tral Utah, USA. Dominant tree species in our study area include
trembling aspen (Populus trembuloides), subalpine fir (Abies
lasiocarpa), Douglas-fir (Pseudotsuga menziesii), and Engelmann
spruce (Picea engelmannii). Soils are in the Sessions-Faim-
Embargo-Elwood-Clayburn and Bickmore families and classified
as Agricryolls (USDA-NRCS, 2015). Our study area lies between
2900 and 3000 m elevation, and the mean annual temperature
and precipitation for the site is 4°C and 762 mm, respectively.

As part of the Fire and Smoke Model Evaluation Experiment
(FASMEE) project (Prichard et al., 2019), on 20 June 2019,
Fishlake National Forest personnel conducted a high-intensity
prescribed fire that reached the forest crown (essentially a planned
‘wildfire’) across 2200 acres with the objective of studying fire
and smoke behavior to improve fire-modeling efforts, as well as
the forest management objectives of reducing encroaching
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conifers and restoring aspen clones via increased post-fire sucker-
ing (i.e. vertical growth from buried rhizomes), thereby improv-
ing wildlife habitat. We collected samples later that growing,
season about 12 weeks after the fire, on 12–13 September 2019
when regenerating aspen were about 0.5 to 1 m in height. We
sampled plants and soils from nine, 5 m radius plots in each burn
severity level (unburned, moderate-severity burn, and high-sever-
ity burn) for a total of 27 plots (Supporting Information Fig. S1)
over the three sites. These sites were relatively flat (i.e. little slope
or aspect influence), on the same soil type (see earlier), and within
a relatively small geographic area (< 1.5 km). At the high-severity
burn site and the unburned site, we laid out plots in two bisecting
100 m north–south and east–west transects in the shape of an ‘X’
and the sampled 5 m diameter plots spaced every 25 m across
these transects. At the medium severity site, a contiguous location
for fully bisecting transects could not be located due to the patchy
nature of the burn in that area, so instead of an ‘X’, our transects
formed a ‘T’ where only the northern end of the north–south
transect intersected the middle of the east–west transect. We
assessed soil burn severity visually in the field following the scale
of Parsons et al. (2010; Fig. S1) and photographed representative
plots. At each plot we sampled and composited plant tissues
(leaves, stems, fine roots, and rhizomes) from three < 1 year old
aspen saplings within a 5 m radius of the plot centroids (plant tis-
sue types were kept separate). Rhizosphere was operationally
defined and collected as the soil adhering to the fine roots at the
time of collection, thus the roots were not cleaned before placing
samples in sterile Whirl-Pak (Madison, WI, USA) bags in the
field. We also sampled and composited c. 30 g of bulk soil near
each plant (within 30 cm) to a depth of 5 cm. Plant tissues and
soils were sampled into Whirl-Pak bags, sealed, then stored and
shipped on dry ice, and were kept frozen in ultra-cold freezers
(�80°C) in the laboratory until further analysis.

Sample pre-processing and DNA extraction

Before DNA extraction, stems, fine roots, and rhizomes were
washed and surface-sterilized as previously described (see Cregger
et al., 2018). Leaves were not surface-sterilized because the freez-
ing process in the field caused the leaves to become brittle and
break, so the leaf microbiome represented a combination of leaf
phyllosphere (surface) and internal leaf endosphere (tissue)
microbiomes. Plant tissues were then cut into fine pieces (c.
5 mm) and extracted with the Qiagen PowerPlant Pro DNA Kit
(Qiagen, Venlo, the Netherlands) following the standard proto-
col with the following exceptions: (1) before extraction, frozen
stem, fine root, and rhizome tissues were bead-beaten on a Retsch
tissue lyser (Qiagen, Venlo, the Netherlands) for two 1-min
intervals at 30 s�1 with a sterile 3 mm steel bead, (2) 50 mg of
leaf or bead-beaten stem, fine root, or rhizome tissue samples
were lysed in sterile bead tubes using the Precellys 24 tissue
homogenizer (at 5500 rpm for three cycles of 30 s bead-beat, 30 s
rest; Bertin Instruments, Montigny-le-Bretonneux, France), and
(3) 50 ll of the optional phenolic separating solution from the
Qiagen PowerPlant Pro DNA Kit was added to leaf extractions
during the homogenization step. Rhizosphere soil was collected

as the pre-sterilized rinsate of the fine roots which had adhering
soil attached from time of collection. Rinsates were centrifuged at
10 000 g, and we removed the supernatant. We then used the
Qiagen PowerSoil DNA Kit (Qiagen) to extract these rhizo-
spheres (i.e. the soil pelleted after centrifugation of the rinsate) as
well as the bulk soils following the standard protocol again using
a Precellys tissue homogenizer to bead-beat extractions. We used
a Zymo DNA Clean and Concentrator-5 kit (Zymo Research
Corp., Irvine, CA, USA) to purify and concentrate all extractions
before polymerase chain reaction (PCR) amplification. Extrac-
tions were quantified using the Qubit dsDNA BR Assay Kit
(Invitrogen, Waltham, MA, USA).

PCR amplification, sequencing, and bioinformatics

A two-step PCR approach was used with barcode tagged-tem-
plates and primers targeting the V4 region of the 16S ribosomal
RNA (rRNA) gene for Archaea and Bacteria and the internal
transcribed spacer 2 (ITS2) region for Fungi using pooled primer
sets to increase coverage of archaeal, bacterial, and fungal taxa
(Cregger et al., 2018 – see Supporting Information Table S1).
The first step of PCR included 2.5 lM of peptide nucleotide acid
(PNA) blockers targeting the plant plastid and mitochondria
rRNA gene for 16S rRNA gene amplifications (GGCAAGTCT
TCTTCGGA and GGCTCAACCCTGGACAG) and 2.5 lM
of PNA targeting plant nuclear rRNA genes for ITS2 region
(CGAGGGCACGTCTGCCTGG) were used to reduce amplifi-
cation of plant material. Each reaction contained 2ll of template
DNA, 0.25 lM of primer pair, 19 of KAPA HiFi HotStart
ReadyMix, and molecular grade water for a total reaction volume
of 25 ll. PCR amplifications were performed with the conditions
95°C for 3 min, 25 cycles (30 cycles for endosphere) of 95°C for
30 s, 78°C for 30 s, 55°C for 30 s and 72°C for 30 s and a final
extension of 72°C for 5 min. The second step of PCRs were
amplified following the Illumina 16S Metagenomic Sequencing
Library Preparation note with the conditions 95°C for 3 min,
eight cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 30 s
and a final extension of 72°C for 5 min.

After PCRs, all experimental units were pooled based on band
intensity and purified with Agencourt AMPure XP beads (0.7 : 1
bead to DNA ratio; Beckman Coulter Inc., Pasadena, CA, USA).
Paired end sequencing (29 251) was completed on pooled pre-
pared libraries on an Illumina MiSeq instrument (San Diego,
CA, USA) at Oak Ridge National Laboratory using V2 chemistry
and included a ≥ 15% PhiX sequencing control library.

Both 16S and ITS2 datasets were denoised, joined, delineated
into amplicon sequence variants (ASVs), and assigned taxonomy
in the QIIME2 environment (v.2019.7, Bolyen et al., 2019).
Before ASV delineation using DADA2 (Callahan et al., 2016), 16S
reads were truncated to 200 bases (to remove low quality base
calls) with the first 19 bases trimmed (to remove primers). For
ITS2, reads were trimmed (including primers) using the
ITSXPRESS plugin under the default parameters (Rivers et al.,
2018) with no further trimming/truncation prior to ASV delin-
eation. We then assigned representative sequences a taxonomic
classification using the Na€ıve Bayes classifier through the SKLEARN
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python package for 16S rRNA sequences with the SILVA
database (release 132; Quast et al., 2013) and a confidence of 0.7.
We assigned taxonomic classifications of the ITS2 of the riboso-
mal operon to representative sequences using consensus BLAST

(percent identity: 80%; e-value: 0.001; minimum fraction of
assignments: 0.51; Camacho et al., 2009) and the UNITE refer-
ence database (v.8.0; Abarenkov et al., 2010). We removed
remaining 16S reads assigned as mitochondria and chloroplasts
and kept only reads assigned to Bacteria and Archaea. On aver-
age, these removed reads accounted for 67% and 10% of 16S
reads in the plant tissue and soil samples, respectively. All ITS
reads were assigned to the fungal kingdom. Fungal ASVs were
further classified as mycorrhizal or potentially pathogenic using
FUNGUILD (Nguyen et al., 2016) because the direct impact of
these two guilds on plant fitness is reasonably defined. For this
classification, ‘Possible’, ‘Probable’, and ‘Highly Probable’ guild
classifications were used, and in instances where multiple guild
classifications were given (i.e. saprotrophic/ectomycorrhizal),
guilds besides mycorrhizal and pathogenic were dropped (there
were no instances of ASVs having both mycorrhizal and
pathogenic classifications). The FUNGUILD classifications were
manually curated to remove classifications disproven in the
Populus system, of which we did not find any. All ASVs assigned
to the family Glomeraceae were classified as arbuscular mycor-
rhizal (AM) fungi.

Soil and plant chemistry

To determine relationships between microbial community com-
position and soil and plant chemistry, frozen sub-samples were
sent to the University of Georgia Extension Soil, Plant, and
Water Laboratory for chemical analyses. Soils were dried,
ground, and analyzed for total carbon (C) and N concentrations
by direct combustion using the Elementar vario MAX CNS Ele-
ment Analyzer (Elementar, Langenselbold, Germany). Addition-
ally, fresh soil was measured for pH in a well-mixed 1 : 1, w/v soil
: calcium chloride (CaCl2) slurry (0.01M) using a Fisherbrand
accuTupH Rugged Double Junction pH Combination Electrode
(Waltham, MA, USA). Bulk soil was additionally assessed for
inorganic N concentrations by extracting 5 g of fresh soil with a
20 ml 1.0M potassium chloride (KCl) solution. Extracts were fil-
tered and measured for ammonium and nitrate concentrations
using an Astoria continuous flow analyzer (Astoria-Pacific,
Clackamas, OR, USA) and a OI Analytical FS 3100 (College Sta-
tion, TX, USA), respectively. We did not measure inorganic N
on rhizosphere soils because we were limited by sample mass.

Plant C and N were assessed by direct combustion similar to
soils earlier. Concentrations of boron (B), calcium (Ca), iron
(Fe), potassium (K), magnesium (Mg), manganese (Mn), phos-
phorus (P), sulfur (S), and zinc (Zn) were determined by
microwave digestion and inductively coupled plasma-optical
emission spectrometry (ICP-OES). Briefly, dried samples were
digested using 0.5 g of sample and 10 ml of nitric acid (HNO3)
in a CEM Mars 6 Microwave (Matthews, NC, USA; Kingston &
Walter, 1995). Digests were then measured using ICP-OES using
a Spectro Arcos FHS16 (Kleve, Germany; Creed et al., 1994).

Statistical analyses

All statistical analyses were conducted in R v.4.0.2 (R Develop-
ment Core Team, 2008) with the BETAREG (Cribari-Neto &
Zeileis, 2010), EMMEANS (Lenth, 2020), HILLR (Li, 2018), NLME

(Pinheiro et al., 2017), PHYLOSEQ (McMurdie & Holmes, 2013),
and VEGAN (Oksanen et al., 2013) packages. The R code used to
conduct statistical analyses and generate figures can be found at
https://github.com/nicholascdove/burned_aspen_microbiome.

Differences in a-diversity were compared by means of Hill
numbers (Jost, 2006) of samples rarefied to 2000 reads for 16S
and 1000 reads for ITS (the average integer of reads was used
after 999 rarefactions) at orders of q = 0, q = 1 and q = 2 (rarefac-
tion curves are presented in Fig. S2). Hill numbers express the
effective diversity of a sample (i.e. the number of equally abun-
dant species that would be needed to give the same value of a
diversity measure) among different metrics of q (Chao et al.,
2014). Because the parameter q determines the relative weighting
of rare species, multiple traditional a-diversity indices (e.g. rich-
ness, Shannon’s, Simpson’s) can be compared in a unified frame-
work by adjusting the q metric. For instance, at q = 0, all species
are weighted equally (richness); at q = 1, species are weighted pro-
portionally to their relative abundance (analogous to Shannon’s
index); and at q = 2, rare species are down-weighted (analogous
to Simpson’s index). Differences in means of Hill numbers
among habitats and burn severity were assessed by nested
ANOVA with plot as random effects. Because we were primarily
interested in an effect of burn severity, where we found significant
interactions between habitats and burn severity, we performed
individual ANOVAs and corrected the P-values using the Ben-
jamini and Hochberg false discovery rate adjustment (Benjamini
& Hochberg, 1995). The resulting ANOVAs did not include
plot as a random effect because the resulting models had one
composite sample per plot (i.e. only one habitat was tested at a
time). Where independent variables were significant, we assessed
multiple comparisons by Tukey’s HSD (honestly significant dif-
ference) test. We used Q–Q plots and scale-location plots to
inspect normality and homoscedasticity, respectively.

Differences in the community composition of the archaeal
and bacterial and fungal microbiomes among habitats and burn
severity levels were assessed by permutational multivariate analy-
sis of variance (PERMANOVA; Anderson, 2001). For the
PERMANOVAs, we used Bray–Curtis dissimilarity applied to
proportionally normalized data (i.e. not rarefied). Similar to our
approach for a-diversity, where we found significant interactions,
we performed individual PERMANOVAs for each habitat (e.g.
soil or tissue type) and corrected the P-values as described earlier.
Heterogeneity of multivariate dispersions were tested for by using
the ‘betadisper’ function in VEGAN (Anderson et al., 2006; Oksa-
nen et al., 2013). When broken up by habitat, the data were
homoscedastic. Archaeal and bacterial and fungal community
compositions were visualized using principal coordinates analysis
using Bray–Curtis dissimilarity applied to proportionally
normalized data.

We determined differences in plant and soil chemistry among
fire severities for each habitat with ANOVA using beta-regression
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to better fit the distributions of the dependent variables. Beta-re-
gression fits models when the data are beta-distributed and do
not pass assumptions of parametric models. Where significant,
multiple comparisons among burn severities were assessed by
Tukey’s HSD test. The relationship between the microbiome
composition and the associated plant habitat tissue chemistry
were assessed individually for each habitat using distance-based
redundancy analysis (dbRDA) with Bray–Curtis dissimilarities
applied to proportionally normalized microbiome data (Legendre
& Anderson, 1999). Marginal effect of each term included in the
model (i.e. the significance of each term) was assessed using
ANOVA.

Differences in fungal potential pathogen and mycorrhizal rela-
tive abundance and richness among habitats and burn severities
were assessed by nested ANOVA with plot as a random effect fol-
lowing the same statistical approach as for a-diversity. Differ-
ences in ectomycorrhizal composition among habitats and burn
severities were analyzed by PERMANOVA following the same
approach as for the archaeal and bacterial and fungal communi-
ties.

Finally, we used FEAST (Shenhav et al., 2019) to determine the
relative dominance of vertical (i.e. sourced from the bulk soil and
rhizosphere) versus horizontal (i.e. sourced from the rhizome)
microbial transmission into the leaf, stem, and fine root micro-
biomes, controlling for plot. FEAST is a Bayesian modeling
approach that estimates proportions of microbial sources in a
given community by leveraging its structure and measuring the
respective similarities between a sink community and potential
source environments using Gibbs sampling. FEAST is similar, but
is a faster and more accurate algorithm, than the popular micro-
bial Source Tracker algorithm (Knights et al., 2011). Differences
in the relative contributions of ‘sources’ in relation to burn sever-
ity were also assessed by individual ANOVAs for each ‘sink’
microbiome.

Results

Sequencing results

After quality and taxonomic filtering (i.e. removal of plant
nuclear and organelle DNA), we sequenced 2.499 106 16S reads
across 153 samples (nine samples were removed from statistical
analyses due to low read depth primarily in endophytic samples
(< 2000)), with a minimum read depth of 2221 and a maximum
of 160 207. For ITS, we sequenced 8.689 106 reads across 161
samples (one sample was removed from statistical analyses due to
low read depths (< 1000)) with a minimum read depth of 1026
and a maximum of 218 783. While differences in read depth by
burn severity for individual habitats occurred (Kruskal–Wallis H
test: P < 0.05, Table S2), such differences were idiosyncratic and
did not explain our results, suggesting that variable read depths
did not affect our findings.

a-Diversity

Archaea and Bacteria Both habitat and burn severity signifi-
cantly affected archaeal and bacterial a-diversity (ANOVA:
P < 0.05, Table S3; Fig. 1). Across the unburned samples, habitat
was a significant predictor of archaeal and bacterial a-diversity
(ANOVA: P < 0.001, Table S4), and the soil and rhizosphere
were about two to six times as diverse as the plant endosphere
microbiomes (see Table S5 for complete statistics).

We also analyzed the differences in archaeal and bacterial a-di-
versity for each habitat individually. At q = 0 (analogous to
species richness), burn severity was only a significant predictor of
leaf archaeal and bacterial a-diversity (leaf: F2,25 = 8.1, P = 0.002;
all others: P > 0.05; Table S6; Fig. 1), with a 40% decrease in
diversity in burned relative to unburned plots on average. At
q = 1 (analogous to Shannon’s diversity) and q = 2 (analogous to
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inverse Simpson’s diversity), we failed to detect differences in leaf
archaeal and bacterial a-diversity among burn severity levels
(P > 0.05; Fig. S3; Table S6). Hence, the decrease in archaeal and
bacterial a-diversity at q = 0 in the leaf microbiome was primarily
due to a loss of rare taxa in the burned plots. Instead, at q = 1 and
q = 2, burn severity was only a significant predictor of the rhizo-
sphere and bulk soil microbiomes (Fig. S3; Table S6).

Fungi Habitat and burn severity interacted in their effect on
fungal a-diversity (ANOVA: P < 0.10, Table S3; Fig. 1). Across
the unburned samples, habitat was a significant predictor of fun-
gal a-diversity (ANOVA: P < 0.001, Table S4), and soil and rhi-
zosphere microbiomes were 3–5 times more diverse than the
plant endosphere microbiomes (Table S5).

Because of the interaction between habitat and burn severity,
we also analyzed the differences in fungal a-diversity for each
habitat individually. At q = 0, burn severity was only a significant
predictor of fungal a-diversity in belowground habitats, with the
strongest differences between the high-severity and unburned
plots (Table S6; Fig. 1). Alternatively, at q = 1 and q = 2, burn
severity was only a significant predictor of fungal a-diversity in
the leaf microbiome (Fig. S3; Table S6).

Microbial community composition

Archaea and Bacteria Habitat explained 26.1% of the variation
in the Archaea and Bacteria community composition
(PERMANOVA: P < 0.001, R2 = 0.261; Fig. S4A). Because there
was an interaction between habitat and burn severity level
(P < 0.001), we analyzed each habitat separately. When separated
by habitat, the leaf, rhizome, rhizosphere, and bulk soil micro-
biomes exhibited differences among burn severity levels
(PERMANOVA: rhizome – P = 0.073, others – P < 0.001;
Fig. 2; Table S7). For the leaf, rhizosphere, and bulk soil, these
differences were noted at the phylum and class level with greater

relative abundances of Firmicutes (particularly the order Bacil-
lales) and Gammaproteobacteria (particularly family Burkholde-
riaceae) in fire-affected samples (Figs S5–S7). For the rhizome,
however, taxonomic differences were noted at the genus level
with greater relative abundances of Pseudomonas in burned sam-
ples and Streptomyces in the high-severity burn samples (Fig. S8).
Overall, Archaea represented relatively few reads in our dataset
(0.44% of 16S reads in the final ASV table) and decreased in rela-
tive abundance in the rhizosphere and bulk soil microbiomes
with increasing burn severity (Fig. S5). Among habitats, we did
not detect evidence of spatial autocorrelation of the archaeal and
bacterial microbiome composition at each burn site, suggesting
that plots within sites were indeed independent (Fig. S9;
Table S8).

Fungi Habitat explained 16.3% of the variation in fungal com-
munity composition (PERMANOVA: P < 0.001, R2 = 0.163,
Fig. S4B). Because there was an interaction between habitat and
burn severity level (P < 0.001), we analyzed each habitat sepa-
rately. Similar to patterns of the archaeal and bacterial communi-
ties, among habitats, the fungal community composition
displayed differences among burn severities in only the leaf, rhi-
zosphere, and bulk soil (PERMANOVA: P < 0.05; Fig. 3;
Table S7). These differences were noted at multiple taxonomic
levels. At the phylum level, increasing burn severity led to an
increase in the ratio of Basidiomycota to Ascomycota reads in
both the leaves and bulk soil as well as an increase in the relative
abundances of Mortierellomycota and Mucoromycota in the rhi-
zosphere (Fig. S10). At the family level, the effect of fire corre-
sponded to an increase in the relative abundances of the plant
pathogen containing families Ustilginaceae and Pleosporaceae
(particularly genus Alternaria) in the leaf (Figs S11, S12). At the
genus level, increased burn severity was associated with a shift in
the bulk soil ectomycorrhizal community from Cortinarius-,
Inocybe-, and Wilcoxina-dominated to Russula-dominated;
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however, these genus-level differences in the bulk soil were only
somewhat apparent in the rhizosphere (Fig. S12). Among habi-
tats, we only found spatial autocorrelation for the fungal rhizo-
sphere community composition in the unburned site (we did not
detect spatial autocorrelation in other habitats and sites, Fig. S13;
Table S8).

Relationships between microbiome composition and soil
and plant chemistry

Soil pH was significantly greater in the high-severity burn treat-
ment relative to the unburned site in both the rhizosphere and

the bulk soil (Table S9). Fire did not significantly affect bulk soil
C and N concentrations or these elemental concentrations in the
rhizosphere (Table S9). However, inorganic N concentrations
increased with increasing burn severity in the bulk soil
(Table S9). In the bulk soil, differences in soil chemistry related
with both the archaeal and bacterial and fungal community com-
position, explaining 33.5% and 27.2% of the composition,
respectively (Table S10; Fig. 4a,b). For bulk soil Archaea and
Bacteria, pH, total N, and ammonium cation (NH4

+) were the
only significant individual terms in the dbRDA (Table S11). In
contrast, for bulk soil Fungi, all terms but pH were significant in
the dbRDA (Table S11). Similar to the bulk soils, in the
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rhizosphere, differences in soil chemistry related with archaeal
and bacterial and fungal community composition, explaining
21.1% and 17.0% of the composition, respectively (statistics in
Table S10; Fig. 4c,d). Soil pH, C and N were all significant indi-
vidual terms for both the archaeal and bacterial (Table S11) and
fungal rhizosphere communities (Table S11).

Among the different plant tissues, numerous elemental con-
centrations varied across burn severities (Table S12). However,
we did not detect generalizable patterns across plant tissues. Nev-
ertheless, similar to differences in microbiome composition, leaf
tissues had the greatest differences in elemental composition with
burn severity. For instance, N, P and Mn concentrations
increased with burn severity while K and Ca concentrations
decreased with burn severity (Table S12). Unlike the soil micro-
biomes, the plant tissue microbiome compositions generally did
not relate to the chemistry of the plant organ (Table S10). In the
singular exception, the fungal leaf microbiome, 50.2% of the
variation in the leaf fungal microbiome composition was signifi-
cantly explained by the elemental composition of the leaf tissue
(Fig. S14). However, when assessed individually, none of the ele-
mental concentrations were significant predictors of the leaf fun-
gal microbiome composition (P > 0.10).

Potential pathogens and mycorrhizal fungi

Our fungal guild classifications resulted in 55 arbuscular mycror-
rhizal (AM), 554 ectomycorrhizal (EM), and 243 potential
pathogen ASVs (Table S13). The relative abundance of potential
fungal pathogens differed among habitats and was highest in
aboveground plant tissues (ANOVA: F5,119 = 27.3, P < 0.001,
Fig. S15). However, the effect of burn severity on the relative
abundance of potential fungal pathogens interacted with habitat
(F10,160 = 3.6, P < 0.001), so we investigated each habitat individ-
ually. We found that burn severity only influenced the relative
abundance of potential fungal pathogens in the leaf microbiome
(leaf: F10,160 = 7.7, P = 0.016; all others P < 0.05; Figs 5, S15). In
the leaf microbiome, the relative abundance of potential fungal
pathogens increased almost four-fold in high-severity plots com-
pared to unburned plots. This increase was mainly attributed to
the genera Cladosporium and Alternaria, which individually more
than doubled and increased 30-fold in relative abundance,
respectively (Fig. 5). Additionally, Erysiphe was not present in the
unburned leaf habitat, but made up almost 10% of the leaf
microbiome under high burn severity (Fig. 5).

Fire resulted in compositional changes to the EM community
(PERMANOVA: P = 0.003, R2 = 0.053, Fig. S16) without
affecting the relative abundance or a-diversity of EM reads across
habitats (ANOVA: P < 0.05; Figs S17, S18). Interestingly, the
effect of fire on the relative abundance of specific genera differed
among habitats. For example, while fire resulted in an increase in
Wilcoxina and Tuber in the fine root endosphere, these genera
decreased in the bulk soil microbiomes in fire-affect plots. In con-
trast, fire decreased the relative abundance of Russula in the fine
roots but increased Russula abundance in the bulk soil micro-
biome (Fig. S16). Fire decreased relative abundance of AM reads
in the bulk soil, but not in the rhizosphere or fine root tissues

(Fig. S17). There were only 10 AM ASVs after rarefaction; this
prevented robust diversity analyses.

Endospheric microbiome source tracking

Across the sink microbiomes (e.g. leaf, stem, and fine root) we
were able to determine the source for 20%, on average, of the
archaeal and bacterial and fungal communities (Fig. 6). The rela-
tive contribution of these sources was in some instances impacted
by level of burn severity. The relative contribution of these
sources varied with burn conditions for the archaeal and bacterial
stem microbiome (F4,47 = 2.6, P = 0.053), fungal leaf micro-
biome (F4,80 = 5.6, P < 0.001), and fungal stem microbiome
(F4,80 = 5.5, P < 0.001). The contribution of rhizome-derived
Archaea and Bacteria to the stem microbiome increased (Fig. 6).
Furthermore, while in unburned plots the rhizosphere was a sub-
stantial source of leaf and stem fungal taxa (~40%), the contribu-
tion of the rhizosphere to these microbiomes in burned
conditions was significantly smaller (~4%, Fig. 6). The source
contributions to the archaeal and bacterial leaf and fine root
microbiome as well as the fungal fine root microbiome did not
differ among burn severities (Fig. 6).

Discussion

This work demonstrates, for the first time to our knowledge, that
fire impacts the broader plant microbiome, outside of the bulk
soil and rhizosphere (for fire impacts on the rhizosphere see:
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Cobo-D�ıaz et al., 2015; Fern�andez-Gonz�alez et al., 2017). Simi-
lar to previous studies we show that the soil microbiome is
responsive to fire (Xiang et al., 2014; Tas� et al., 2014; Whitman
et al., 2019; Yang et al., 2020); however, we build upon this by
showing that certain plant tissue microbiomes also appear to
change in response to fire, affecting both a-diversity and commu-
nity composition. While the plant microbiome composition in
certain plant habitats was unresponsive to fire, fire explained the
greatest proportion of both the archaeal and bacterial and fungal
composition in the leaf phyllosphere. The impact of fire on the
leaf microbiome was even greater than that on the rhizosphere or
bulk soil microbiomes. This was unexpected because unlike these
two soil microbiomes, the leaves, of course, emerged after the fire,
so their microbiomes did not experience the direct impacts of the
fire disturbance (e.g. heat-induced mortality). These results,
therefore, highlight the importance of the indirect impacts of fire
on the plant microbiome as has been demonstrated in soils (Mik-
ita-Barbato et al., 2015; Whitman et al., 2019; Adkins et al.,
2020).

Contrary to our hypothesis, the indirect impacts of fire on the
plant microbiome composition were difficult to relate to specific
chemical changes within the plant tissues. For example, while half
of the analyzed elements differed significantly in concentrations
among burn severities in the leaf, these differences only related
with the fungal community composition, not the archaeal and
bacterial composition. The lack of a relationship between the
archaeal and bacterial composition and plant elemental concen-
trations was unexpected because leaf N concentration correlates
positively with chlorophyll content (Niinemets, 1997). Greater
chlorophyll contents and photosynthesis should provide addi-
tional sugars to support microbial growth in the leaf (van der
Wal & Leveau, 2011). Indeed, in other plant species such as
Diplotaxis tenuifolia, Pueraria montana, Quercus macrocarpa,
Spinacia oleracea, and Tsuga spp. the leaf phyllosphere microbial
community structure has been shown to be correlated with leaf N

content (Jumpponen & Jones, 2010; Darlison et al., 2019; Dove
et al., 2020a; Shahrtash & Brown, 2020). It is possible that post-
fire differences in the microbial community might be explained
by differences in plant metabolites or site factors that were not
measured, such as solar irradiation. For example, aspen produces
numerous defense metabolites that may impact microbial com-
munity composition (Flores & Hubbes, 1979; Lindroth &
Hwang, 1996), and production of these metabolites may be
altered during high growth rate periods in exposed areas such as
after fire (Donaldson et al., 2006). Specifically, phenolic glyco-
sides in leaf tissues have been shown to increase with burn sever-
ity and increased levels of light, which may combat potential
mammalian herbivory (Lindroth & Clair, 2013). The production
of these defense compounds may also affect the leaf microbiome
composition, as was recently shown in the rhizosphere communi-
ties of Populus trichocarpa by Veach et al. (2019). Furthermore,
solar irradiation may be a better correlate of photosynthesis and
sugar production than leaf N content. Future research into the
plant microbiome response to fire should prioritize detailed mea-
surements of the plant metabolome response as well as differences
in site characteristics such as solar irradiation and temperature
between burned and unburned areas. As the indirect effects of fire
on microbial communities are generally considered to be longer
lasting than the direct impacts (at least in soils, Hart et al., 2005),
understanding these associations between the microbial commu-
nities and the indirect effects of fire may be useful in predicting
and promoting plant sustainability post-fire.

Unlike the plant tissue microbiomes, changes in the rhizo-
sphere and bulk soil microbiomes with burn severity, were consis-
tently explained by differences in soil chemistry associated with
fire. Increased pH and inorganic N in our burned sites are cor-
roborated by numerous studies with samples from vastly different
ecosystems (Covington & Sackett, 1992; Neary et al., 1999;
Dove et al., 2020b). Consistent increases in soil pH after fire are
primarily due to the denaturation of organic acids (Certini,
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2005) and the release of base cations during the incomplete com-
bustion of organic matter (Arocena & Opio, 2003). Given that
pH is consistently a strong determinant of soil microbial commu-
nity composition (Fierer & Jackson, 2006; Tedersoo et al.,
2014), it was not surprising that fire-enhanced pH correlated
with differences in microbial community composition among
burn severities.

Nitrogen availability within a few years after fire is generally
high (Covington & Sackett, 1992; DeLuca & Sala, 2006), origi-
nating from fire-induced N mineralization (St John & Rundel,
1976), increased rates of organic matter decomposition (Kaye &
Hart, 1998), and increases in N-fixing plant abundance (Johnson
et al., 2005). Increases in N availability can decrease N limitation
of soil microorganisms and increase nitrification (Kurth et al.,
2014; Hanan et al., 2016). Therefore, increases in inorganic N in
the bulk soil should favor copiotrophic microorganisms with
high N-demand (Ramirez et al., 2012) as well as those that rely
on ammonia for energy production (i.e. ammonia oxidizers).
Indeed, the relative abundance of Proteobacteria, which are gen-
erally regarded as copiotrophs, increased in burned plots. How-
ever, prominent ammonia-oxidizing bacteria (e.g. Nitrosospira
and Nitrosomonas) and archaea (e.g. Nitrocosmicus and
Nitrososphaera) had similar relative abundances across burn sever-
ities in our study. This could reflect the heat sensitivity of these
populations (Dunn et al., 1985), which leads to longer recovery
times (Yeager et al., 2005; Dove et al., 2020b). Nevertheless, our
results contribute to the growing literature showing that the soil
microbiome is not only sensitive to fire but also depends on the
severity of the fire, in part due to changes in soil chemistry (Whit-
man et al., 2019).

Increased relative abundance of pathogenetic fungi, specifically
Alternaria, Cladosporium, and Erysiphe, in the leaf phyllosphere
with increasing burn severity could impact plant health, surviv-
ability and re-establishment of beneficial ecosystem properties
after fire. Alternaria spp. are common pathogens of aspen plants,
and leaves infected with Alternaria can become discolored and
eventually senesce (Dey & Debata, 2000). To combat Alternaria,
aspen generate phytoalexins to suppress the germination of fungal
spores and reduce infection (Flores & Hubbes, 1979). It is possi-
ble that after disturbance, increased light to the understory
resulted in increased growth and photosynthetic capacity (evi-
denced by increased leaf N) at the expense of pathogen protec-
tion. Such trade-offs have been shown in aspen (Donaldson
et al., 2006) and are likely to impact the survivability of these
aspen ramets. We were unable to confidently identify bacterial
ASVs that were potentially pathogenic to aspen in our study from
the existing literature. However, it is likely that such Bacteria
exist in our dataset, and future pathogen screening of common
Bacteria that change in response to fire will be important in
understanding aspen fitness post-fire.

Our hypothesis that fire would impact mycorrhizal associa-
tions of the aspen plants was somewhat supported by the data.
Interestingly, although fire is generally considered to reduce both
EM colonization and diversity (Dove & Hart, 2017), we found
that the relative abundance and richness of EM reads in the root
endosphere, rhizosphere, and bulk soil did not depend on burn

severity. However, changes in the composition of the EM com-
munity are corroborated by numerous other post-fire studies
(Jonsson et al., 1999; Stendell et al., 1999; Glassman et al.,
2015), which suggests that EM species have variable abilities to
withstand the effects of fire and colonize post-fire environments.
For instance, laboratory experiments have shown that spores of
Wilcoxina mikolae are relatively resistant to temperatures up to
65°C (Peay et al., 2009). Interestingly, in our study we found
increased Wilcoxina relative abundances in burned fine root sam-
ples, which may be the result of heat-stress tolerance. It is likely
that trade-offs exist between stress resistance and nutrient uptake
(Grime, 1977), which could affect plant nutrient use and the
degree to which plants benefit from mycorrhizal associations (i.e.
along the mutualism-parasitism continuum, Johnson et al.,
1997). These trade-offs may have manifested in increased abun-
dance of Russula (and Basidiomycetes, in general), which typi-
cally decrease in response to fire (P�erez-Izquierdo et al., 2021). It
is possible that at our study site reduced EM competition post-
fire may have enabled proliferation of Russula, as antagonistic
relationships among other EM fungi are common (Koide et al.,
2005). These differences among studies highlights the nuanced
response to fire of the soil microbiome among ecosystems.

It is also possible that differences in modes of microbial colo-
nization among burn severities affected changes in the microbial
community composition. Our hypothesis that vertical transmis-
sion (i.e. microbes sourced from the rhizome) would increase in
dominance relative to horizontal transmission (i.e. microbes
sourced from the surrounding soil) with increasing burn severity
was somewhat supported by the data. While we did not measure
microbial biomass, it is well-documented that fire results in
decreased microbial abundances in upper soil depths (Dooley &
Treseder, 2012; Pressler et al., 2019). It is likely that this resulted
in decreased inoculum for horizontal colonization. However, our
source tracking modeling approach comes with several limita-
tions. For instance, we were unable to pinpoint the source of a
majority of sink taxa in any burn severity9 habitat9 amplicon
combination. This might have occurred because sequencing
depths were not sufficient to classify the source of rare taxa. Also,
other sources besides the rhizome and soil exist. For example,
dust-derived microorganisms may play an important role in colo-
nizing environments where microbial abundances are relatively
low (e.g. recently burned areas; Barber�an et al., 2015). Addition-
ally, our analysis may have missed ephemeral microorganisms that
were once but are no longer present in the soils post-fire and
pyro-aeolian inoculation sources (i.e. microbes traveling on ash
particles), which may play a particularly important role in post-
fire microbial colonization (Kobziar et al., 2018). Nevertheless,
these source modeling results present an opportunity to develop
hypotheses of how clonal plant species accumulate endospheric
microorganisms. Future studies of source tracking modeling with
robust spatial and temporal sampling coupled with empirical con-
firmation could provide invaluable information on plant micro-
biome assembly and on best practices for microbial inoculation.

No previous study has characterized the whole plant micro-
biome response to fire, and thus, our findings provide fundamen-
tal knowledge of plant microbiome community assembly and
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how this is impacted by disturbance. Overall, our results demon-
strate a strong impact of fire on the aspen microbiome, which dif-
fers between microbial habitats in the plant and soil. It is likely
that these microbiome differences contribute to the variable sur-
vival of aspen recruits post-fire (Smith et al., 2011; Long &
Mock, 2012) as differences in leaf pathogen load and EM com-
position are key determinants of plant health (Smith & Read,
2008; Dean et al., 2012). Furthermore, unknown interactions
between plant-associated bacteria and the plant may also influ-
ence plant survival. Future research should prioritize elucidating
these microbiome effects through inoculation/sterilization
glasshouse growth trials (e.g. Hewitt et al., 2016). As fires are
increasing in size, severity, and frequency worldwide (Adams,
2013), our understanding of post-fire revegetation will become
increasingly important in maintaining the critical ecosystem ser-
vices provided by plants.
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