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Abstract: European aspen (Populus tremula L.) is a keystone species for biodiversity of boreal forests.
Large-diameter aspens maintain the diversity of hundreds of species, many of which are threatened
in Fennoscandia. Due to a low economic value and relatively sparse and scattered occurrence of
aspen in boreal forests, there is a lack of information of the spatial and temporal distribution of
aspen, which hampers efficient planning and implementation of sustainable forest management
practices and conservation efforts. Our objective was to assess identification of European aspen at
the individual tree level in a southern boreal forest using high-resolution photogrammetric point
cloud (PPC) and multispectral (MSP) orthomosaics acquired with an unmanned aerial vehicle (UAV).
The structure-from-motion approach was applied to generate RGB imagery-based PPC to be used
for individual tree-crown delineation. Multispectral data were collected using two UAV cameras:
Parrot Sequoia and MicaSense RedEdge-M. Tree-crown outlines were obtained from watershed
segmentation of PPC data and intersected with multispectral mosaics to extract and calculate spectral
metrics for individual trees. We assessed the role of spectral data features extracted from PPC and
multispectral mosaics and a combination of it, using a machine learning classifier—Support Vector
Machine (SVM) to perform two different classifications: discrimination of aspen from the other
species combined into one class and classification of all four species (aspen, birch, pine, spruce)
simultaneously. In the first scenario, the highest classification accuracy of 84% (F1-score) for aspen
and overall accuracy of 90.1% was achieved using only RGB features from PPC, whereas in the second
scenario, the highest classification accuracy of 86 % (F1-score) for aspen and overall accuracy of 83.3%
was achieved using the combination of RGB and MSP features. The proposed method provides a new
possibility for the rapid assessment of aspen occurrence to enable more efficient forest management
as well as contribute to biodiversity monitoring and conservation efforts in boreal forests.

Keywords: tree species classification; European aspen; UAV; biodiversity; deciduous trees; machine
learning; multispectral data; boreal forest

1. Introduction

Tree species composition of a forest plays a significant role in maintaining biodiver-
sity. Mixed-species forests can host greater species richness and provide more important
ecosystem services compared to monocultures of conifers [1–4]. In boreal environments,
particularly old deciduous trees have been recognized to promote species richness [5,6].
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Accurate identification of tree species is thus essential for effective mapping and monitoring
of biodiversity and sustainable forest management [7,8].

European aspen (Populus tremula L.) is a keystone species for biodiversity of boreal
forests [9,10]. It has a widespread, but sparse occurrence in North European forest types
from dry rocky areas to water-logged sites. Aspen hosts a wide variety of associated and
dependent species, such as invertebrates [11,12], epiphytic bryophytes and lichens [13,14],
polypores [15], mammals [16], and birds [17,18], many of which are red-listed [1,19] and
threatened in Fennoscandia [20–22]. Large-diameter aspen trees (>20–25 cm) are the most
valuable from an ecological perspective as they can provide suitable habitat for hundreds
of species [23–25].

There is a lack of spatial and temporal information of aspen occurrence in boreal
forests [10,25,26]. This is because aspen is a sparsely occurring deciduous species with low
economic value and often pooled with other minor deciduous species in forest resource
datasets. Moreover, patchy occurrence of aspen poses challenges for ordinary inventory
and mapping methods [27–30]. From the biodiversity viewpoint, spatially explicit data of
aspen abundance, occurrence of old tree individuals, and long-term occurrence dynamics
are urgently needed for understanding the current status and predicting the future state of
different aspen-associated species and their populations [10,31]. In boreal forests, accurately
detected keystone features, such as aspen, can provide cost-effective indicators of biological
diversity, ecosystem functions and ecosystem services.

Various remote sensing techniques such as airborne laser scanning (ALS), aerial pho-
togrammetry, and satellite-based approaches have been widely studied for tree species
classification at different spatial scales [7,30–37]. Development of Unmanned Aerial Ve-
hicles (UAVs, also referred to as drones) has grown rapidly during the recent decade,
including in the field of forestry-oriented applications [38–42]. UAVs can host a wide
range of sensors, their operational costs are low, and missions can be flexibly planned [42].
UAV-based very high-resolution data on-demand allow estimating structural parameters
of forests with high accuracy and provide detailed information for identification of tree
species [43–48].

In general, high spatial and temporal resolution UAV imagery provides new oppor-
tunities for measuring and mapping various ecological phenomena and enables more
efficient management and monitoring of natural resources and biodiversity in addition
to direct forestry applications [49–51]. For example, Baena et al. [52] used UAV images to
identify and quantify keystone tree species and their health in the Pacific Equatorial dry
forest, and Michez et al. [53] employed multitemporal UAV imagery to classify deciduous
tree species and their health status in critically endangered riparian forests in Belgium.
UAVs have also been utilized for detecting non-native and invasive species with potentially
adverse effects on biodiversity and ecosystems [54–57].

UAV-based tree species classification, utilizing hyperspectral imagery and photogram-
metric point clouds (PPC) derived from RGB imagery, has been recently studied in boreal
forests [58–61]. The study of Nevalainen et al. [58] performed artificial neural networks and
random forest machine-learning methods to detect Scots pine (Pinus sylvestris L.), Norway
spruce (Picea abies (L.) Karst), silver birch (Betula pendula), and larch (Larix sibirica) with over-
all accuracy of around 95%. Nezami et al. [59] achieved 97.6% of accuracy in classification of
Scots pine, Norway spruce and silver birch in boreal forest using convolutional neural net-
works. The results of Tuominen et al. [60] and Saarinen et al. [61] showed that the amount
of main tree species Scots pine, Norway spruce, and birch (Betula pendula and pubescens L.)
was predicted more accurately compared to aspen due to the low number of observations
of the latter within the study area. Fewer studies have been conducted to classify tree
species based on UAV multispectral imagery [62,63]. Franklin and Ahmed [64] studied
deciduous forest species classification, including quaking aspen (Populus tremuloides) in a
Canadian hardwood forest using multispectral UAV imagery. Aspen was classified with
high accuracy, but the number of sample trees was very low in the study.
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The objective of this study was to assess the possibilities to recognize European
aspen at the individual tree level in a boreal forest using high-resolution photogrammetric
point cloud and multispectral imagery acquired with UAV. Specifically, we asked the
following questions:

(1) How accurately can aspen be discriminated from the main tree species, Scots
pine, Norway spruce and birches (B. pendula and pubescens) with the commonly used
multispectral UAV cameras?

(2) What are the most important spectral data features to discriminate aspen trees?
To answer these questions, we assessed the performance of different spectral data

features, extracted from high-resolution UAV PPC and multispectral orthomosaics using
an SVM machine-learning classifier and studied the effect of feature selection for the
model performance.

2. Materials and Methods
2.1. Study Area and Field Data

The study was conducted in a boreal forest area in the Evo region in the Hämeenlinna
municipality (61◦11′N. 25◦06′E) located in southern Finland (Figure 1). The area includes
both managed and protected southern boreal forests. The main tree species are Scots pine
(Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), silver birch (Betula pendula) and
downy birch (Betula pubescens L.). European aspen (Populus tremula L.) has a relatively
sparse and scattered occurrence in the area.
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Most of the field data were collected simultaneously with the flight campaign in
July 2018. Separate field datasets were collected for study areas covered by MicaSense
and Sequoia sensors (see chapter 2.2). Field measurements of the main tree species were
conducted from 25 circular 9-m radius sample plots situated in semiclosed and fully closed
canopy forests. Within each sample plot, tree species, diameter at breast height (DBH),
tree height, and tree positions were recorded for all trees with DBH > 45 mm. In order
to ensure the crown visibility from the UAV images and to better capture the mature and
old-growth aspens, only the living and standing trees with DBH over 200 mm were selected
for the analyses. The sparse and clustered occurrence of aspen in the study area led to



Remote Sens. 2021, 13, 1723 4 of 18

an unbalanced main tree species proportion in the dataset for an analysis. To ensure a
sufficient sample size of main trees species, we measured within the study sites more
individual tree species in autumn 2019 as complementary data (Table 1). The locations
of trees in the field plots and complementary dataset were measured using Trimble R10
RTK-GPS device using VRS Trimnet network in Finland.

Table 1. Abundance of tree species in field data.

Species MicaSense Dataset Sequoia Dataset

Scots pine (Pinus sylvestris L.) 75 120
Norway spruce (Picea abies L.) 66 120

Downy birch (Betula pubescens L.) and Silver birch (Betula pendula) 75 107
Aspen (Populus tremula L.) 90 118

Total: 306 465

2.2. UAV Data

The complete workflow is presented in Figure 1. UAV RGB and multispectral imagery
for the analysis were obtained over the 9 test sites within the study area in July 2018 with
leaf-on canopy conditions (Figure 2). The research sites were selected based on visual
detection of aspen hotspots in the area, accessibility to the roads, and proximity to the
landing spots of the UAVs.
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RGB images were collected using an eBee Plus RTK fixed-wing platform (SenseFly
SA, Cheseaux-sur-Lausanne, Switzerland) and a multirotor platform Phantom 4 RTK (DJI,
Shenzhen, China), both equipped with real-time kinematic (RTK) receiver. The eBee was
equipped with a 20 megapixel global shutter S.O.D.A camera with a field of view of 64◦

(SenseFly SA, Cheseaux-sur-Lausanne, Switzerland). The Phantom 4 had an integrated
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camera with a field of view of 84◦ and 1/2.3 CMOS sensor that can capture red–green–blue
(RGB) spectral information. The altitude of 130–150 m above ground level resulted in a
ground sampling distance (GSD) of 3.9–4.9 cm for the RGB imagery. Images were collected
in TIFF format with the camera set in automatic mode at noon under clear sky and calm
conditions to minimize wind and shadow effects on images. RGB images acquired with
the eBee and Phantom 4 were further pre-processed for precision geotagging in eMotion
3 software (SenseFly SA, Cheseaux-sur-Lausanne, Switzerland) and DJI software (DJI,
Shenzhen, China), respectively. The trajectory correction data were obtained online during
the flight from Trimnet VRS network in Finland.

Multispectral data were collected using the eBee equipped with a Parrot Sequoia
camera (Parrot Drone SAS, Paris, France) and a multirotor platform DJI Matrice 210
(DJI, Shenzhen, China) equipped with MicaSense RedEdge-M camera (MicaSense, Inc.,
Seattle, WA, USA). The monochromatic multispectral Sequoia camera produces four 1.2-
megapixel images in the green (550 nm), red (660 nm), red edge (735 nm) and near infrared
(NIR) (790 nm) wavelengths. The MicaSense RedEdge-M sensor (further MicaSense)
produces five 1.2-megapixel images in blue (475 nm), green (560 nm), red (668 nm), red
edge (717 nm) and NIR (840 nm) wavelengths. In order to improve the radiometric quality
of the multispectral data, both cameras were equipped with the irradiance sensors, which
were attached on the top of the body to correct the illumination conditions during the flight.
Additionally, prior to each flight and right after, the radiometric calibration targets with
premeasured reflectance values were used for subsequent radiometric correction of the
multispectral images. Ground control points (GCPs) were not used due to the low visibility
in the dense forest from the air. Therefore, the absolute spatial accuracy of the multispectral
orthomosaics was corrected using manually selected natural objects as GCPs, extracted
from the RGB orthomosaics with a typical accuracy of 2 cm in the horizontal direction.
The altitude of 140–150 m above ground resulted a GSD of 8.6–14.5 cm for multispectral
imagery. The total flight area covered with the UAV is 1819 ha. A full summary of the UAV
flight parameters is presented as an Appendix A in Table A1.

2.3. Calculation of Dense Point Clouds and Image Orthomosaics

The analysis workflow of this study is presented in Figure 2. Processing of the
UAV images for generating 3D point clouds and producing orthomosaics was carried out
using the Agisoft Metashape software (Agisoft LLC, St. Petersburg, Russia), which is a
commercial photogrammetry processing software that uses the Structure from Motion (SfM)
approach to reconstruct the environment in 3D from a set of overlapping images and allows
generation of dense 3D point clouds and orthomosaics. The standard photogrammetric
workflow starts from the image alignment procedure, where images are processed using
their full resolution (corresponds to “high quality” settings) to find the orientation and
produce the sparse point cloud. During the image alignment, the software performs the
camera calibration based on Brown’s distortion model [65]. Based on estimated image
positions the software calculates depth information for each image to be combined into a
single dense point cloud. During this stage, the software generates PPC using downscaled
images to the factor of 4 (corresponds to “high quality” settings) together with a depth
filtering mode “Mild” to obtain detailed and accurate geometry without outliers among the
points [44,66]. Resulting point cloud included XYZ coordinates and spectral information
(i.e., red, green, and blue) for each point. Orthomosaics, geometrically corrected aerial
images that are composed from individual still images and stitched together, were produced
from multispectral and RGB images, respectively, using the same software and procedure
described above. Once the point cloud was generated, it was further used to create
orthophotos. RGB orthomosaics were used only for visual verification of field-measured
trees and the quality of further individual tree-crown segmentation results. The dense point
clouds and multispectral orthomosaics were exported in LAS and TIF formats, respectively,
for further processing.
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2.4. Individual Tree Detection and Spectral Data Features Extraction

The photogrammetric point cloud from each site was normalized with the publicly
available ALS-based digital terrain model (2m) provided by the National Land Survey of
Finland. The canopy height model was created using lastools [67]. Individual tree detection
(ITD) was performed in R-software [68] using R-package rlidar [69] to detect the location
and height of individual trees within the PPC-derived Canopy Height Model (CHM). The
algorithm implemented in this function was local maxima with a fixed window size. The
maximum value of crown diameter was set to 3 m to capture only the tree top and reduce
mixing with nearby tree crowns. Then the created tree segments were overlaid with the
multispectral mosaics and field-measured trees to further extract the spectral features of all
bands for each corresponding tree top and field measured tree. Only pixels located inside
the tree-crown segment were taken into analysis. Some of the tree segments contained
multiple field measurements. In case the measurements represented only one tree species,
they were included in the analysis. All segments with measurements from multiple tree
species were excluded from the analysis. Results of the segmentation were visually assessed
against the RGB orthomosaics (Figure 3). In total 30 and 36 spectral features for Sequoia
and MicaSense datasets, respectively, were extracted for each individual tree segment and
mean, min, max, median and 25%, 75% percentiles of each spectral band were calculated
for each segment; a full list of the spectral features is presented as an appendix in Table A2.
Before classification, the spectral variables were normalized by dividing the brightness at
each band by the sum of all brightness values observed for the same point [70].
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2.5. Statistical Analysis

The segment data derived from the RGB point clouds, MicaSense and Sequoia mo-
saics were imported into statistical software R for classification with the machine learning
method SVM. The SVM is implemented in the package caret [71]. We implemented SVM
with radial basis function kernel that separates different classes by projecting the original
data into new dimensionality such that it becomes easier to separate through linear hyper-
planes. SVM is a commonly used method due to its ability to generalize well, even with
smaller training samples [72].

Before fitting the SVM models, we applied recursive feature elimination (RFE), a
wrapper feature selection algorithm implemented in caret to avoid model overfitting by
eliminating unimportant and potentially noisy features [73]. The model was first fit to
all predictors in the feature set and predictors were ranked based on their importance to
the model. The least important predictor in the feature set was eliminated, and a second
model was fitted with the remaining predictors. The iteration continued until no more
improvement in model performance could be observed. We used external validation with
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10-fold cross-validation as an outer resampling method to the RFE algorithm. Feature
selection was applied separately for three different feature sets: spectral features extracted
from PPC (hereafter referred as RGB), spectral features extracted from multispectral mosaics
(hereafter MSP), and the combination of the two (RGB+MSP). Due to the stochastic nature
of the RFE algorithm, we iterated it 21 times to select the final number of features for each
model based on median overall accuracy value.

Data partitioning was applied to divide the total of 306 samples of MicaSense and
465 samples of Sequoia datasets into 70% training and 30% testing sets using proportional
stratified random sampling [71]. The first set was used only for model training, while
the second set was used as an independent hold-out test set for accuracy assessment and
feature importance calculations.

After feature selection and data partitioning, separate SVM models were fit with
the three alternative feature sets, which were centered and scaled for model training.
Furthermore, SVM hyperparameters cost and sigma were optimized with grid search [73]
from 15 values ranging from 0.25 to 4096 for cost, and 0.01 to 0.35 for sigma. We iterated
training and prediction steps 21 times for each SVM model to get more stable results due
to the stochastic nature of the machine-learning algorithm.

We used model class reliance (MCR) implemented in iml r-package [74] to examine
which spectral features are important to discriminate aspen from the other common tree
species. The MCR is “the highest and lowest degree to which any well-performing model
within a given class may rely on a variable of interest for prediction accuracy” [75]. The
importance of each feature was assessed by calculating the increase in the model’s classifi-
cation error after permuting the feature and repeating the permutations 20 times to obtain
more stable results. The results can be interpreted as follows. If permuting a feature’s
values increases the error, the feature can be considered “important”, but if permutations
leave the value unchanged, it is “unimportant”. This is because in the first case, the model
relied on the feature for the prediction, and in the latter, because the model ignored it [74].
In practical terms, the MCR value of 2 can be interpreted as heavy model reliance on the
feature, while a value closer to 1 signifies less or no reliance [74].

The F1-score, confusion matrices and Cohen’s kappa coefficients were calculated to
measure the classification accuracy. F1 score considers harmonic mean of both precision
and recall, equivalent to the user’s (UA) and producer’s accuracy (PA) [73], and calculated
using following equation:

F1 =
2×UA× PA

UA + PA
(1)

the values range between 0 and 1, with the best value being 1 and the worst being 0.

3. Results
3.1. Accuracy Assessment of the 2-Class Classification Model

The accuracy assessment of the model performance for a 2-class classification ap-
proach (aspen vs. other species) after feature selection is presented in Table 2. For the
MicaSense dataset, similar results were achieved with only RGB features and a combination
of RGB and MSP features (OA = 90.1%, Kappa = 0.76–0.77, F1-score for aspen = 82–84%).
Model fitted with only MSP features produced slightly less accurate results (OA = 87.9%,
Kappa = 0.72, F1-score for aspen = 81%). The feature selection did not find any features to
eliminate from the models fitted with either RGB or MSP features, but for the RGB+MSP
model some simplification was observed with four eliminated spectral features.
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Table 2. Accuracy assessment of the 2-class classification model. MSP = spectral features extracted
from multispectral mosaics, RGB = spectral features extracted from PPC.

Camera (Feature Set) Number of
Features

F1-Score (%) Overall
Accuracy (%) Kappa

Aspen Other

MicaSense (RGB) 6 84 93 90.1 0.77
MicaSense (MSP) 30 81 91 87.9 0.72

MicaSense
(RGB+MSP) 32 82 93 90.1 0.76

Sequoia (RGB) 6 79 93 89.9 0.73
Sequoia (MSP) 21 68 90 84.2 0.57

Sequoia (RGB+MSP) 29 77 93 89.2 0.70

In a similar fashion, the Sequoia dataset also yielded equally good results with models
including only RGB features or a combination of RGB and MSP features (OA = 89.2–89.9%,
Kappa = 0.70–0.73, F1-score for aspen = 77–79%). Again, accuracy metrics of the MSP model
were considerably worse compared to the other two models (OA = 84.1%, Kappa = 0.57,
F1-score for aspen = 68%). The feature selection algorithm eliminated three features from
MSP and one feature from RGB+MSP feature sets.

The confusion matrices for the best SVM model using MicaSense and Sequoia datasets
are shown on Table 3.

Table 3. Confusion matrix for the best SVM model for a) for the MicaSense dataset (RGB fea-
tures) and b) the Sequoia dataset (RGB features). UA = user’s accuracy, PA = producer’s accuracy,
OA = overall accuracy.

(a)

MicaSense (RGB)
Predicted

Aspen Other Total UA (%)

Observed Aspen 23 5 28 82.1
Other 4 59 63 93.7
Total 27 64 91

PA (%) 85.2 92.2
OA (%) 90.1

(b)

Sequoia (RGB)
Predicted

Aspen Other Total UA (%)

Observed Aspen 27 6 33 81.8
Other 8 98 106 92.5
Total 35 104 139

PA (%) 77.1 94.2
OA (%) 88.9

3.2. Accuracy Assessment of the 4-Class Classification Model

Table 4 shows the accuracy assessment of the model performance for a 4-class clas-
sification approach (all species as separate classes). In general, the models trained with
all spectral data features provided the best results for both datasets (Kappa = 0.75–0.78,
OA = 81.3–83.3% and F1-score of aspen = 80–86%). Similar to the 2-class models, the initial
feature count was kept for MicaSense and Sequoia models fitted with only RGB features.
The feature selection did have an impact on simplifying the models fitted with MSP and
RGB+MSP features. Six spectral features were eliminated from the MicaSense MSP model,
and seven from the Sequoia model with the same feature set. Eight features were eliminated
from the MicaSense RGB+MSP model and four from the Sequoia RGB+MSP model. The
confusion matrices for the best SVM model for MicaSense and Sequoia datasets (RGB+MSP
features) are shown on Table 5.
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Table 4. Accuracy assessment of the 4-class classification model. MSP = spectral features extracted
from multispectral mosaics, RGB = spectral features extracted from PPC, OA = overall accuracy.

Camera (Feature Set) Number of
Features

F1-Score (%)
OA (%) Kappa

Aspen Birch Pine Spruce

MicaSense (RGB) 6 82 78 79 76 78.9 0.72
MicaSense (MSP) 24 84 76 71 91 81.1 0.75

MicaSense (RGB+MSP) 28 86 78 80 88 83.3 0.78
Sequoia (RGB) 6 78 64 89 93 81.3 0.75
Sequoia (MSP) 17 63 57 72 79 68.3 0.58

Sequoia (RGB+MSP) 26 80 69 81 94 81.3 0.75

Table 5. Confusion matrix for the best SVM model for a) the MicaSense dataset (MSP and RGB
features) and b) the Sequoia dataset (MSP and RGB features). UA = user’s accuracy, PA = producer’s
accuracy, OA = overall accuracy.

(a)

MicaSense (RGB+MSP)
Predicted

UA (%)
Aspen Birch Pine Spruce Total

Observed Aspen 24 3 1 1 29 82.8
Birch 1 16 1 1 23 84.2
Pine 1 3 16 1 16 76.2

Spruce 1 0 1 19 22 90.5
Total 27 22 19 22 90

PA (%) 88.9 72.7 84.2 86.4
OA (%) 83.3

(b)

Sequoia (RGB+MSP)
Predicted

UA (%)
Aspen Birch Pine Spruce Total

Observed Aspen 28 6 1 0 35 80.0
Birch 4 22 5 1 32 68.8
Pine 3 3 30 2 38 78.9

Spruce 0 1 0 33 34 97.1
Total 35 32 36 36 139

PA (%) 80.0 68.8 83.3 91.7
OA (%) 81.3

3.3. Spectral Feature Importance

The permutation feature importance plots with the 10 most important features in the
SVM models for the MicaSense and Sequoia datasets are shown in Figures 4 and 5. The
importance is measured as the factor by which the model’s classification error increases
compared to the unpermuted classifications when the feature is permuted. Each permuta-
tion was repeated 20 times. Here, the horizontal line denotes the 5% and 95% quantiles
of importance values, and point denotes median importance. When median classification
error is close to 2 the model relies heavily on the feature. Different multispectral features
had major importance for most of the species in the 4-class classification models with the
MicaSense dataset. We did not find notable differences in feature importance of aspen
and pine with the MicaSense dataset: classification error scores of the top-10 features are
close to 1, signifying rather low model reliance on these features. For spruce, Gmean (mean
value of the green band from PPC) showed heavy model reliance with a classification error
close to 2, while RE_25 (25% percentile of red-edge band) also stood out from the other
features. Moreover, the Gmean was in top-3 among most important features for birch, pine,
and spruce.
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In contrast, the classification accuracy of the model trained with the Sequoia dataset
relied much more on the spectral features extracted from PPC for all species, while the
multispectral features played a less important role. The mean value of the blue band
(Bmean) was the most important feature for all four species, with classification error close
to or above 2 (Figure 5). We also found that NIR_25 (25% percentile of near infrared band)
and Rsd (standard deviation of red band extracted from PPC) played an important role in
discriminating deciduous trees (aspen, birch) from coniferous trees (pine, spruce) in the
Micasense and Sequoia datasets, respectively.
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4. Discussion

In this study we tested the performance of spectral features for discriminating Eu-
ropean aspen from the three main tree species (Scots Pine, Norway spruce, and birch) in
mature boreal forest. For this we used PPC and multispectral orthomosaics acquired from
UAVs. We investigated if including only the spectral data features into the classification
models is enough to accurately discriminate aspen from pine, spruce, and birch.

The results show that the 2-class and 4-class SVM models perform well in separating
aspen from the main tree species for both UAV datasets utilized in the study. We observed
that the highest classification accuracy of aspen was slightly improved in the 4-class model,
trained with RGB and MSP features, compared to the 2-class model with only RGB features
included (Aspen’s F1-score 86% vs. 84% for MicaSense and 80% vs. 79% for Sequoia
datasets, respectively). Therefore, for the purpose of rapid and low-cost inventory of mature
and old-growth aspen trees, a UAV platform equipped with only RGB sensor is sufficient.
However, compared to lower-priced RGB sensors, MSP sensors are proven to be more stable
over time and remain less affected by changes in environmental conditions (e.g., sunlight
angle and cloud cover) due to their irradiance sensor [76–78]. Moreover, in the 4-class
model, spruce is well-separated from pine, which makes the proposed method also suitable
for applications in commercial forestry focusing on more valuable coniferous tree species.

We found that the most important spectral features in classifying aspen in the Mi-
caSense dataset are different from those in the Sequoia dataset. In MicaSense, the best
performing model relied more on the multispectral features compared to the best per-
forming model built with Sequoia dataset, which relied more on the PPC features. Eight
of the 10 most important features in MicaSense for aspen classification are multispectral
(Figure 4). It is also worth mentioning that the classification did not rely on any particular
feature and all the spectral features performed quite equally. In contrast to the MicaSense
dataset, in the classification model of aspen based on the Sequoia dataset, the three most
important features were from PPC (Figure 5), although different multispectral features
had a positive impact on the model performance as well. The reason for that could be
related to a difference in spatial resolution of the multispectral data. MicaSense data with
the spatial resolution of 8.6–9.2 cm most likely was more sensitive to detect more detailed
species-specific spectral information than Sequoia data with 13.5–14.5 cm.

It is challenging to compare the classification accuracy results with other studies due
to, e.g., the different vegetation types, number of species, forest structure, and spatial
distribution of the species. Compared to the recent European aspen review by Kivinen
et al. [10], where aspen detection accuracy from various remote sensing methods ranged
from 56% to 86% (user’s accuracy) and from 24% to 71% (producer’s accuracy), our results
are promising. In our study we obtained the highest F1-score for Aspen = 86% and overall
accuracy = 83.3%, which are close to accuracy results reported by Viinikka et al. [31] and
Mäyrä et al. [37] utilizing the airborne hyperspectral and airborne laser scanning data in
detecting European aspen in the same study area (F1-score for aspen 92%, overall accuracy
= 84% and F1-score for aspen 91%, overall accuracy = 87%, respectively). Our study
was done by including only the spectral data features into the classification model, and
according to the previous studies, including height features from PPC, vegetation indices
and texture features might improve the classification results [62,63].

There are several potential sources that bring uncertainty in our study. In general, the
delineation accuracy of deciduous trees is a common problem in remote sensing [79,80].
Crowns of deciduous trees are often more complex than the crowns of conifers, which
results in, e.g., multiple height peaks within single tree crowns [81,82]. In terms of data-
related challenges, one of the key issues is combining datasets with different spatial
resolution. Here, the high-resolution PPC was fused with the multispectral mosaics with
coarser spatial resolution for extracting the spectral features. In data fusion, the difference
in spatial resolution often leads to a mismatch between data sources. The GSD of the
multispectral data was twice as big as that of the RGB data used for the ITD algorithm
(8.6–14.5 and 3.9–4.9 cm, respectively). Even though the resulting tree-crown segments
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were well aligned with the field-measured trees (see Figure 3), there were still inclusions
of the tree-crown background into segments that may affect the spectral signature of the
whole segment. One possibility to avoid this is to replace the multispectral mosaic with
a multispectral point cloud, produced from high-resolution multispectral images, and
implement the individual tree detection algorithm based on it, then filter the points based
on the specific height to select only the points belonging to the tree crown and exclude
the surroundings of the tree crown. Enhancing spatial resolution of the multispectral data
would allow more detailed investigation of species-specific spectral attributes.

Another way to improve the aspen detection accuracy and separation from birch
species is to consider the seasonal phenology response of deciduous tree species to spectral
composition during the UAV data acquisition [83,84] when, for example, birches have
earlier leaf flush in spring than aspen trees in boreal forests [85]. It has been previously
studied that inclusion of the near-infrared information remains more sensitive to leaf
development than just RGB-based information [86,87].

Detection of the smaller trees under the dominant canopy layer is challenging from
PPC because passive aerial images only capture the outer canopy envelope without pene-
trating it as LiDAR sensors do. In our study, we focused on the mature and old-growth
aspens, which are easier to detect. Our approach suits well for detecting aspen-associated
biodiversity values, as old large-diameter aspens are ecologically valuable [10,23].

Aspen tree occurrences derived from UAV imagery enable estimates of the ability of
the forest area to support viable populations of aspen-associated species. Such information
is crucial, because some species may persist in the small remaining patches of host trees
for some time but ultimately become threatened as the number of aspen trees and their
connectivity further decrease in the landscape [26,88,89]. Integration of various species
data with information of the occurrence of individual aspen trees and their spatial patterns
in the forest landscape could significantly increase our understanding of the landscape-
level prerequisites for the occurrences of aspen-related species. Detecting aspen dynamics
using multitemporal UAV imagery could also provide essential information for forest
management and conservation purposes of future status of aspen-related species [10].

Our results highlight the potential of commonly used multispectral cameras to provide
accurate information of boreal tree species at a local scale. Acquiring data over larger
geographical regions with UAVs is often costly and time-consuming. Combined use of
UAV data with other remote-sensing data with wider coverage but lower spatial resolution
provides opportunities to significantly expand the extent of the mapped area. UAV-based
orthoimages have been utilized as substitutes for labor-intensive traditional field surveys
in estimating fractional coverage of target objects using optical satellite imagery [90–92].
Upscaling information of the aspen occurrence over wide geographical areas by using
UAV-acquired imagery and high-resolution satellite imagery could provide a highly useful
biodiversity indicator for assessing the state of biodiversity in boreal forests.

5. Conclusions

In this paper, we presented a workflow for a European aspen-recognition method
based on individual tree detection approach using high-resolution photogrammetric point
cloud and multispectral images, acquired from fixed-wing and multirotor UAVs. We
compared the performance of a SVM classifier in combination with different spectral
features derived from UAV data to discriminate aspen from birch, pine, and spruce species
in boreal forests. The results of the study show that a combination of RGB and MSP
features from PPC and multispectral orthomosaics provides the highest accuracy for aspen
classification (F1-score = 86 %) from the dominant tree species in the study area (overall
accuracy = 83.3 %). The proposed method can be used for rapid inventory of mature
and old-growth aspen in desired areas for biodiversity assessment needs, but also for
commercial forestry operations in boreal forests, where species-specific information is
required, and provide valuable, precise, and low-cost information on demand compared to
the traditional remote-sensing techniques.
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Appendix A

Table A1. Summary of flight characteristics for each research site.

Research Site Flight Date UAV Platform Sensor Number of Images Overlap, % GSD, cm

1 1 10.7.18 eBee plus RTK S.O.D.A 341 85/85 4.7
2 10.7.18 eBee plus RTK S.O.D.A 670 85/85 4.7
3 10.7.18 eBee plus RTK Sequoia 864 80/80 13.7
4 10.7.18 eBee plus RTK Sequoia 936 80/80 13.7

2 5 10.7.18 eBee plus RTK S.O.D.A 303 85/85 4.9
6 10.7.18 eBee plus RTK Sequoia 448 80/80 13.5

3 7 10.7.18 eBee plus RTK S.O.D.A 546 85/85 4.9
8 10.7.18 eBee plus RTK Sequoia 832 80/80 14.5

4 9 10.7.18 eBee plus RTK S.O.D.A 444 85/85 4.9
10 10.7.18 eBee plus RTK Sequoia 770 80/80 14

5 11 28.6.18 eBee plus RTK S.O.D.A 500 85/85 4.9
12 11.7.18 eBee plus RTK S.O.D.A 765 85/85 4.9
13 11.7.18 eBee plus RTK S.O.D.A 875 85/85 4.9
14 11.7.18 eBee plus RTK S.O.D.A 611 85/85 4.9
15 12.7.18 eBee plus RTK S.O.D.A 829 85/85 4.9
16 12.7.18 eBee plus RTK S.O.D.A 735 85/85 4.9
17 11.7.18 eBee plus RTK Sequoia 1063 80/80 13.7
18 11.7.18 eBee plus RTK Sequoia 196 80/80 13.7
19 12.7.18 eBee plus RTK Sequoia 1067 80/80 13.7
20 12.7.18 eBee plus RTK Sequoia 851 80/80 13.7

6 21 09.7.18 Phantom 4 RTK Phantom 199 80/80 4.0
22 10.7.18 Matrice 210 MicaSense 338 88/75 9.2

7 23 10.7.18 Phantom 4 RTK Phantom 517 80/80 3.9
24 10.7.18 Matrice 210 MicaSense 359 88/75 8.6

8 25 10.7.18 Phantom 4 RTK Phantom 322 80/80 4.2
26 10.7.18 Matrice 210 MicaSense 309 88/75 8.8

9 27 10.7.18 Phantom 4 RTK Phantom 320 80/80 4.3
28 10.7.18 Matrice 210 MicaSense 185 88/75 8.9
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Table A2. Table of abbreviations of the spectral data features.

Feature Source Description

Rmean RGB point cloud Mean value of the red band
Gmean RGB point cloud Mean value of the green band
Bmean RGB point cloud Mean value of the blue band

Rsd RGB point cloud Standard deviation of the red band
Gsd RGB point cloud Standard deviation of the green band
Bsd RGB point cloud Standard deviation of the blue band

Red_min MSP orthomosaic Minimum value of the red band
Red_max MSP orthomosaic Maximum value of the red band

Red_mean MSP orthomosaic Mean value of the red band
Red_25 MSP orthomosaic 25% percentile of the red band
Red_50 MSP orthomosaic 50% percentile of the red band
Red_75 MSP orthomosaic 75% percentile of the red band

Green_min MSP orthomosaic Minimum value of the green band
Green_max MSP orthomosaic Maximum value of the green band

Green_mean MSP orthomosaic Mean value of the green band
Green_25 MSP orthomosaic 25% percentile of the green band
Green_50 MSP orthomosaic 50% percentile of the green band
Green_75 MSP orthomosaic 75% percentile of the green band
NIR_min MSP orthomosaic Minimum value of the near infrared band
NIR_max MSP orthomosaic Maximum value of the near infrared band

NIR_mean MSP orthomosaic Mean value of the near infrared band
NIR_25 MSP orthomosaic 25% percentile of the near infrared band
NIR_50 MSP orthomosaic 50% percentile of the near infrared band
NIR_75 MSP orthomosaic 75% percentile of the near infrared band
RE_min MSP orthomosaic Minimum value of the red edge band
RE_max MSP orthomosaic Maximum value of the red edge band

RE_mean MSP orthomosaic Mean value of the red edge band
RE_25 MSP orthomosaic 25% percentile of the red edge band
RE_50 MSP orthomosaic 50% percentile of the red edge band
RE_75 MSP orthomosaic 75% percentile of the red edge band

Blue_min * MSP orthomosaic Minimum value of the blue band
Blue_max * MSP orthomosaic Maximum value of the blue band

Blue_mean * MSP orthomosaic Mean value of the blue band
Blue_25 * MSP orthomosaic 25% percentile of the blue band
Blue_50 * MSP orthomosaic 50% percentile of the blue band
Blue_75 * MSP orthomosaic 75% percentile of the blue band

*—applied only for MicaSense dataset.
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