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ABSTRACT 

 

Advancing Water Resources Systems Modeling Cyberinfrastructure To Enable 

Systematic Data Analysis, Modeling, and Comparisons

by  

Adel Mohammad Kheir Abdallah, Doctor of Philosophy 

Utah State University, 2020 

 

Major Professor: Dr. David E. Rosenberg 

Department: Civil and Environmental Engineering 

 

Since its emergence half a century ago, the water resources systems analysis 

community has made significant advancements to improve the modeling of interrelated 

natural and built water resources infrastructure and inform decisions regarding systems 

planning and management. Despite modeling advances, modelers face three basic technical 

challenges to i) identify, organize, and analyze data used in models that are stored and 

described in different formats and vocabularies, ii) prepare and populate data to models, 

and iii) visualize system model networks, plot, and compare input and output for different 

management scenarios. Existing tools to store, query, and visualize modeling data are 

model, location, and dataset-specific, and developing such tools is time-consuming and 

requires programming experience.  

This dissertation contributes a novel software architecture and tools that generalize 

data management used in modeling water systems to enable systematic data and modeling 

comparisons and reuse across many models and datasets. First, the Water Management 
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Data Model (WaMDaM) is designed to help modelers organize, store, and compare water 

management data from multiple sources and models. WaMDaM uses metadata to help 

interpret and relate values and controlled vocabulary across models. Second, an open-

source Python software is designed to automate the process to prepare and load large input 

data into the Water Evaluation and Planning system (WEAP) model or extract for already 

existing WEAP models outside its proprietary database using its Application Programming 

Interface. Third, a software interoperability among WaMDaM and other existing 

independently developed, state-of-the-art, generalized tools is designed to visualize water 

resources systems modeling data. The software connected Hydra Platform, OpenAgua, and 

HydroShare web-based tools to visualize, compare, edit, publish, discover, and analyze 

model networks, input, and output data for many models.  

The dissertation software architecture was guided and demonstrated by use cases 

that represent common tasks performed by modelers and water managers over a dozen of 

different water resources datasets and four models in three watersheds located in the USA 

and Mexico. The use cases show a fundamental significance to the science of water 

management by enabling comparisons that generate insight across datasets and models 

within or across study locations.        

                    (183 Pages) 
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PUBLIC ABSTRACT 

 

Advancing Water Resources Systems Modeling Cyberinfrastructure to Enable Systematic 

Data Analysis, Modeling, and Comparisons 

Adel Mohammad Kheir Abdallah 

 

Water resources systems models aid in managing water resources holistically 

considering water, economic, energy, and environmental needs, among others. Developing 

such models require data that represent a water system’s physical and operational 

characteristics such as inflows, demands, reservoir storage, and release rules. However, 

such data is stored and described in different formats, metadata, and terminology. 

Therefore, Existing tools to store, query, and visualize modeling data are model, location, 

and dataset-specific, and developing such tools is time-consuming and requires 

programming experience. This dissertation presents an architecture and three software 

tools to enable researchers to more readily and consistently prepare and reuse data to 

develop, compare, and synthesize results from multiple models in a study area: (1) a 

generalized database design for consistent organization and storage of water resources 

datasets independent of study area or model, (2) software to extract data out of and populate 

data for any study area into the Water Evaluation and Planning system, and (3) software 

tools to visualize online, compare, and publish water management networks and their data 

for many models and study areas. The software tools are demonstrated using dozens of 

example and diverse local, regional, and national datasets from three watersheds for four 

models; the Bear and Weber Rivers in the USA and the Monterrey River in Mexico.  
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CHAPTER I 

                                                           Introduction 

Data synthesis and analysis are necessary in developing water resources 

management models (Loucks et al., 2005), and the way data are organized can enable or 

inhibit the analysis that water managers and researchers perform (Horsburgh et al., 2008). 

Current practices to organize, manipulate, compare, prepare, and visualize water resources 

data in developing water resources systems models are specific to the data sources, models, 

and study location (Brown et al., 2015). Water resources systems models represent the 

natural and built environment and their interactions as networks of nodes and links. Source-

, model-, and study area-specific practices arise because models have varying data 

requirements for their components, store data in different file formats, have varying spatial 

coverage, use inconsistent metadata to describe methods, sources, and units, and use 

different semantic terms to name similar system components and their attributes (Miller et 

al., 2004; Laituri and Sternlieb, 2014; Maidment, 2016). This heterogeneity hampers 

synthesis of information from multiple studies (Brown et al., 2015), and source-, model- 

and study area-specific practices often require considerable effort and time to develop 

models (Ridley and Stoker, 2001; Draper et al., 2003; Miller et al., 2004; CUAHSI, 2005; 

Michener, 2006; Maidment, 2008; Hey et al., 2009; Beniston et al., 2012; Leonard and 

Duffy, 2013; Watkins, 2013). Most of the published studies in the broad field of hydrology 

do not have their data published which inhibits data reuse, synthesis, and study 

reproducibility (Stagge et al., 2019; Rosenberg et al., 2020). Modelers would benefit from 

generalized tools that work for multiple datasets, models, and study locations to i) organize 



2 
 

 
 

and store data with consistent metadata and terminology, ii) automate loading data to 

models, iii) visualize and compare results in a web-browser, and publish modeling data 

(Bajcsy, 2008; Govindaraju et al., 2009; Brown et al., 2015; Vogel et al., 2015). These 

tools should be reusable, independent of any systems modeling specific software, and 

require minimal programming to increase the chance of their uptake by the water resources 

community. 

Existing methods for organizing water management data provide limited 

capabilities across many systems models and their different data types. Data used in 

systems modeling include: 1) representations of different water resources systems 

components in space through nodes and links, including hydrology, infrastructure, and 

demand sites, and 2) multiple data types that represent quantitative and qualitative 

attributes of the system components like time series and multi-column arrays. As an 

example system, the Data System Storage of the Hydrologic Engineering Center of the 

U.S. Army Corps of Engineers (HEC-DSS) organizes and retrieves large sequential 

datasets, like time series and paired tabular data to support hydrologic and hydraulic 

modeling using HEC models (HEC, 2009). In some cases, the HEC-DSS is used to manage 

and query a water resources model’s time series data through its propriety software, but 

users organize any data about the network’s nodes and links in spreadsheets or Microsoft 

Access (Jenkins et al., 2004).  

As another example, the Arc Hydro Framework data model organizes hydrologic 

data with limited metadata for hydrologic system components, including stream networks, 

monitoring points, and watersheds within the propriety ArcGIS environment (Maidment, 

2002). Organizing time series data for system components like monitoring sites along with 
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its metadata in Arc Hydro requires users to adopt either a rudimentary representation of 

time series metadata or to pair Arc Hydro with other data models like the Observations 

Data Model (ODM1 and ODM2) for spatially discrete locations of environmental and earth 

observations (Horsburgh et al., 2008; Horsburgh et al., 2016). ODM uses metadata to 

describe monitoring sites, observed variables, units, sources, and methods used to collect 

and measure observations at a site. ODM also uses controlled vocabularies to reconcile the 

use of different terms for synonymous variables.  

Other data systems like HydraPlatform have functionality to organize, visualize, 

and export systems water management data to simulation and optimizations solvers like 

the General Algebraic Modeling System (GAMS) (Harou et al., 2010; Knox et al., 2014; 

Rosenthal, 2014). HydraPlatform uses a binary data storage format for its time series and 

multi-column arrays, which needs third party software to access and compare its stored 

data. Other water resources simulation and optimization models, such as RiverWare 

(Zagona et al., 2001), and Water Evaluation and Planning (WEAP) (Yates et al., 2005), 

manage input and output data using their own specific and sometimes propriety data 

storage systems.  

The different and, in some cases, proprietary data management environments for 

systems models hampers efforts to prepare input data and reuse their output data as input 

to other aggregate models. Researchers often need to write specific scripts or use manual 

methods to prepare input data for models or reuse output data of a small scale model as 

input for another regional model (Wurbs, 2005). Existing methods to facilitate exchanging 

specific output data from one model as input to another are more prominent in hydrologic 

models, and they are intended to exchange data during simulation, like the Open Modeling 

file:///C:/Users/Adel/Desktop/intro_old_stuff.docx%23_ENREF_15
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Interface (OpenMI) (Moore and Tindall, 2005) and the Community Surface Dynamics 

Modeling System (CSDMS) (Peckham et al., 2013). Such methods are mainly used to 

couple components of hydrologic models to execute in sequence without archiving either 

of the models’ data. For water resources systems models, we focus on archiving models 

input and output to allow for their reuse in other models and data synthesis after the study 

is completed.   

This dissertation presents a framework to advance cyberinfrastructure in three 

software tools to enable systematic data analysis, modeling, and cross-comparisons 

between overlapping datasets and models. The cross-comparisons demonstrate a 

fundamental scientific activity that is needed and used by water resources systems 

modelers in developing models. Comparisons also show how the same software tools work 

for many datasets and models opposed to existing tools that often focus on a single model 

or dataset. The dissertation focuses on developing open source tools to enable their 

progress by the water resources community with no cost barrier to use. I use Python as the 

main programming language due to its powerful open source capabilities for data 

manipulations and visualizations. The dissertation is presented in the following three 

standalone chapters. Chapter 5 summarizes the dissertation and suggests future work.  

1. A Data Model to Manage Data for Water Resources Systems Modeling 

Limitations with model and dataset-specific methods to identify, organize, 

analyze, and serve data to water resources systems models are addressed by 

designing a generalized database design and supporting software tools to organize 

and store water management data from multiple sources and models. The 
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overarching motivating question is: how can data from multiple sources be 

organized and described in a semantically and syntactically consistent way to 

facilitate data query, comparison, joining, and analysis that will ultimately help 

modelers choose input data to build and run water resources systems models? The 

main contributions of this work include: 

● Design of the Water Management Data Model (WaMDaM) that allows 

modelers to use metadata and controlled vocabularies to link water systems 

terms across different datasets and models.   

● Prototype software tools that enable modelers to manage shared controlled 

vocabularies online and help them load datasets into an instance of the 

WaMDaM relational data model. 

● Demonstrate five use cases with thirteen overlapping datasets and models 

focused in the Bear River Watershed, United States to show how a user can 

identify, compare, and choose from multiple types of data, networks, and 

scenario elements then serve data to models. 

2. Open Source Python Software to Manage, Populate, and Compare WEAP Models 

and Scenarios  

Limitations in study-specific methods to prepare and populate the world-

wide used Water Evaluation and Planning system (WEAP) model with input data 

and perform sensitivity analysis are addressed by designing an open-source Python 

software that generalizes and automates the process to prepare and load large input 

data into WEAP, or extract its network and data for many already existing models 
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and scenarios. In one application, input data are often needed for sensitivity analysis 

that quantify the effect of changes in systems operation, physical, or socio-

economic factors on the system performance such as meeting demand. The 

overarching motivating question is: how to automate the process to extract data out 

of WEAP and populate it with input data to enable reusable, comparative data and 

scenarios analysis across WEAP models? The main contributions of this chapter 

include: 

● Design of generic data workflows to first allow modelers to extract networks 

and data for WEAP models and load them into WaMDaM to then publish data 

to the HydroShare online repository. Second, design data workflows to allow 

modelers to prepare and populate WEAP models with input data from 

WaMDaM as a single source of consistent data that originates from multiple 

disparate datasets. 

● Allow modelers to programmatically query input data of the two different 

WEAP models extracted into WaMDaM database to compare and benchmark 

how regulated their river basins against others. 

● Allow modelers to perform automated sensitivity analysis and compare how 

water system’s demand reliability in two different WEAP models in response 

to changes in changes in reservoir capacity, demand, evaporation, and river 

headflows. 

3. An Interoperable Software Ecosystem to Store, Visualize Online, and Publish 

Water Resources Systems Modelling Data 
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Limitations in model-specific software tools to store, visualize, edit, run, 

and publish systems modeling data are addressed by coupling WaMDaM with three 

existing independently developed, state-of-the-art, generalized software tools into 

a software ecosystem. The tools are Hydra Platform web service for systems 

modeling data, OpenAgua for visualizing systems modeling data online, and 

HydroShare to publish modeling data and enable their discovery and analysis. The 

overarching motivating question is: how can data of multiple systems models be 

stored, visualized, and published using existing interoperable software tools to 

facilitate systems modeling and scenario comparisons? The main contributions of 

this chapter include: 

● Couple data transfer between WaMDaM with Hydra Platform, OpenAgua, and 

HydroShare to allow modelers to store data, visualize it and publish it online.  

● Three use cases that show how modelers can systematically reuse software 

ecosystem tools and web services to visualize three different models in the 

Bear River Watershed, United States and Monterrey, Mexico, set up scenarios, 

update input data, and compare model outputs. The use cases offer comparison 

insights into similarities and differences across the three models in different 

regions.   
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CHAPTER II 

A DATA MODEL TO MANAGE DATA FOR WATER  

RESOURCES SYSTEMS MODELING1 

Abstract  

Current practices to identify, organize, analyze, and serve data to water resources systems 

models are typically model and dataset specific. Data are stored in different formats, 

described with different vocabularies, and require manual, model-specific, and time-

intensive manipulations to find, organize, compare, and then serve to models. This paper 

presents the Water Management Data Model (WaMDaM) implemented in a relational 

database. WaMDaM uses metadata, controlled vocabularies, and supporting software tools 

to organize and store water management data from multiple sources and models and allow 

users to more easily interact with its database. Five use cases use thirteen datasets and 

models focused in the Bear River Watershed, United States to show how a user can 

identify, compare, and choose from multiple types of data, networks, and scenario elements 

then serve data to models. The database design is flexible and scalable to accommodate 

new datasets, models, and associated components, attributes, scenarios, and metadata.  

 
1 Abdallah, Adel M., and David E. Rosenberg. "A data model to manage data for water 

resources systems modeling." Environmental Modelling & Software 115 (2019): 113-127. 

 

Reproduced with permissions from the Journal of the Environmental Modelling & 

Software 
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Keywords 

Data management, systems analysis, systems modeling, data fusion, water resources, open-

source  

Highlights  

• We present a data model to organize water resources systems data and models 

• Controlled vocabularies link native terms across different datasets and models   

• Software tools manage controlled vocabularies and help load datasets  

• Modelers can identify and compare available data then serve data to models 

Software availability  

Name of software: Water Management Data Model (WaMDaM) 

Developer: Adel M. Abdallah  

Contact: Adel M. Abdallah; 8200 Old Main Hill, Logan, UT 84322, USA; Email 

amabdallah@aggiemail.usu.edu  

Year first available: 2018 

Required hardware and software: The WaMDaM data model can be used within any 

relational database management system or platform. The WaMDaM Wizard executable 

(.exe) is available for use with Microsoft Excel (2007 and later) and SQLite3 on Windows 

64-bit computers. 

Input data and directions: Documentation of all source code, datasets, use cases, and 

instructions to use WaMDaM and replicate results are available on GitHub and facilitated 

by Jupyter Notebooks at Abdallah (2019), “WaMDaM Use Cases Repository” Zenodo doi: 

http://doi.org/10.5281/zenodo.1484581 

mailto:amabdallah@aggiemail.usu.edu
http://doi.org/10.5281/zenodo.1484581
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Programming languages: Python 2.7 and Structured Query Language (SQL)  

Cost and license: Free. Software and source-code are released under the New Berkeley 

Software Distribution (BSD) 3-Clause License, which allows for liberal reuse.  

 

Graphical Abstract  

 

 

 
 

 

 

2.1 Introduction 

Data analysis and synthesis are fundamental in developing water resources 

management models (Loucks et al., 2005). Data organization enables or inhibits the 

analysis that water managers and modelers perform (Horsburgh et al., 2008; Brown et al., 

2015). Well organized data can help modelers prepare data for models while poorly 

organized data can make the process time-consuming and frustrating. Current practices to 

organize, manipulate, and compare multiple water resources datasets and develop water 

systems models are typically specific to the data sources, models, and study location 

(Brown et al., 2015). Source-, model-, and study area-specific practices arise because 

models have different data requirements for their components, store data in different file 
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formats, have varying spatial and temporal coverage, use inconsistent metadata to describe 

methods, sources, and units, and use different vocabularies to name similar system 

components and their attributes (Miller et al., 2004; Laituri and Sternlieb, 2014; Maidment, 

2016). These practices limit managers’ and modelers’ ability to reuse datasets and models 

in other applications. To reuse, practitioners often spend up to 75% of their overall 

modeling time to modify, subset, transform, convert, and restructure data (Ridley and 

Stoker, 2001; Draper et al., 2003; Miller et al., 2004; CUAHSI, 2005; Michener, 2006; 

Maidment, 2008; Hey et al., 2009; Beniston et al., 2012; Leonard and Duffy, 2013; 

Watkins, 2013). A common database design to organize and manage water resources 

system data can help modelers and managers spend less time to wrangle with data formats 

and structures and more effort on analysis to learn about and model systems. 

Water management data describe natural and built water system components like 

water supply, infrastructure, and demand sites, and these components are typically 

represented water systems models as networks of nodes and links (Loucks et al., 2005; 

Rosenberg and Madani, 2014; Brown et al., 2015). Each node and link are described with 

properties that represent observed values and input data, or variables that store model 

results. Data can be organized in time series, as seasonal parameters, as multi-variable 

arrays, or in other types.  

In current practice, a water resources system modeler selects a water management 

modeling method and then searches for input data that meets the model’s requirements 

(Brown et al., 2015). Modelers often manually search for, download, synthesize, and 

compare data from disparate datasets to populate input data (Rosenberg and Madani, 2014). 

In their data search, modelers often use a combination of existing methods to manually 
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gather input data for the different supply and demand system components and their 

connectivity from local, state, and federal agencies. Searches can also use national data 

services like the Consortium of Universities for the Advancement of Hydrologic Science, 

Inc. (CUAHSI) Water Data Services (Goodall et al., 2008; Couch et al., 2014). Each dataset 

has a particular file-format, organizational structure, syntax, and descriptive terminology. 

Some datasets also come with modeling scenarios that represent changes to values of 

physical, operational, network topology, or socio-economic attributes of the system. 

Modelers must reconcile structure and terminology heterogeneities in potential input data.  

Many water resources modelers use the U.S. Army Corps of Engineers Hydrologic 

Engineering Center Data Storage System (HEC-DSS) (HEC, 2009) to store and manage 

paired variables and time series data. Modelers also use Hydra Platform (Knox et al., 2014) 

and ArcHydro (Maidment, 2002) for network connectivity. Others may also use the 

Observations Data Model (ODM) for organizing and storing site-specific time series data 

(Horsburgh et al., 2008). Other modelers simply organize data into one or many 

spreadsheets within a Microsoft Excel workbook with consistent column headers (e.g., 

variables) and units. Still other modelers store data that describe the water system and its 

operations in proprietary modeling software systems like the Water Evaluation and 

Planning system (WEAP) (Yates et al., 2005), RiverWare (Zagona et al., 2001), OASIS, 

ModSim, and others (Wurbs, 1993; Loucks et al., 2005; Wurbs, 2012). Although models 

like RiverWare (Zagona et al., 2001) and WEAP (Yates et al., 2005) are not strictly used 

for data management purposes, we consider them data management systems because they 

contain large amounts of data that describe water systems and house the data used for 

numerous river basin management studies around the world. 
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To identify, analyze, or compare water management data stored in one or many of 

the above systems, modelers often develop source- and model-specific workflows to 

manipulate, join, pivot, sort, aggregate (in time and/or space), and visualize data. 

Simultaneously, modelers must keep track of metadata, if present, that describe the source 

of data, methods used for creating the data, and methods used to transform data to a format 

appropriate for a particular model. These metadata elements are typically specific to the 

data source and model. Adding a data source, expanding a study area, or changing the 

underlying model means the modeler must modify the data preparation workflow or create 

a new workflow. Modelers then must manually repeat data manipulations and analyses. 

Thus, there is a need for a generalized method to more readily and consistently 

organize, store, join, query, and compare multiple types of water management data and 

metadata across datasets, models, and study areas (Bajcsy, 2008; Govindaraju et al., 2009; 

Brown et al., 2015; Vogel et al., 2015). This need arises because of two fundamental data 

management challenges related to how data is structured (i.e., syntax) and how key data 

components are named and described (i.e., semantics). An example of different syntaxes is 

the number and order of headers and rows in a spreadsheet. Examples of different 

semantics include hydrologic system component names (e.g., “reservoir” versus “storage 

facility”), attribute names (e.g., “storage” versus “volume”), and system component names 

(e.g., “Hyrum Reservoir” versus “HYRUM”).  

In reviewing more than 40 existing systems to organize water management data 

(Appendix A, Table A1), we found all systems incompletely support structure and syntax 

issues. Systems have different and limited capabilities to query and compare multiple 

datasets and models, no software standards, or no guidelines to organize water management 
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data. Differences include how data is represented in space and time, how data is organized 

within structures (i.e., data type) (DCMI, 2013), the physical means used to store data (i.e., 

database, text file, or other formats) (DCMI, 2013), and software technology. The 

heterogeneity in methods reveals why modelers spend considerable time preparing and 

transferring data across different models, formats, and technologies. 

Several recent efforts to increase data consistency and transparency, such as the 

Open Water Data Initiative (Blodgett et al., 2016), Observations Data Model 2 (Horsburgh 

et al., 2016), the Open and Transparent Water Data Act (Dodd, 2016; Cantor et al., 2018), 

and the Water Data Exchange program (Larsen and Young, 2014) have recommended data 

standards to integrate fragmented water information data into consistent and interoperable 

data systems. Such integrations and requests for them aim at improving access to water 

information to help quantify its availability and use at different scales in the present and 

future. Here, we contribute a generalized data model called the Water Management Data 

Model (WaMDaM) to help organize, join, compare, and analyze multiple water resources 

datasets and models. We also introduce software tools that demonstrate key functionalities 

of the design. The WaMDaM design helps answer the overarching research question of: 

how can data from multiple sources be organized and described in a semantically and 

syntactically consistent way to facilitate data query, comparison, joining, and analysis that 

will ultimately help modelers choose input data to build and run water resources systems 

models? A successful WaMDaM database design must have: 1) modular and extensible 

components, 2) networks of nodes and links, 3) scenarios and version control, 4) reusable 

contextual metadata, 5) support for multiple data types used by systems models, 6) 
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extensible controlled vocabularies, 7) direct access to subsets of data and metadata, and 8) 

an open-source environment.  

Next, we describe the motivation and design requirements for the WaMDaM 

system. Section 2.3 presents the WaMDaM data model design and physical 

implementations. Section 2.4 introduces companion software tools. In Section 2.5, we use 

WaMDaM to join 13 overlapping local, regional, and national models and datasets. We 

demonstrate the utility of the data model in five use cases. The use cases help modelers to 

identify, compare, and select water supply and demand data, connectivity between 

engineered infrastructure and natural systems components, model scenario data, and serve 

selected data to a WEAP model for the Bear River Watershed of Utah. Section 2.6 

discusses how modelers can use WaMDaM, limitations, future work, and an invitation to 

use and improve the design. Section 2.7 concludes. 

2.2 Design Motivation 

WaMDaM focuses on the essential steps to organize, join, compare, analyze, and 

serve multiple datasets to build a water resources model. Because modelers often use 

multiple systems to gather, organize, store, join, and query the water management data they 

need to build models (Figure 2.1-A), they repeat that effort for each new model, data set, 

scenario, system component, and element. Modelers would benefit from a general 

approach that only requires doing the work once but allows others to re-use their effort in 

their other endeavors (Figure 2.1-B). Five use cases guided the WaMDaM design by 

answering key water management data questions. These use case questions sidestep less 
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important aspects that may overcomplicate the design (Szalay and Blakeley, 2009). The 

use case questions are:  

1. What data entered by others can be used to develop a model in a study area? 

2. Which network connectivity should be used in a model?  

3. How do data values differ across datasets, and which values should be chosen for a 

model?  

4. How do scenarios differ, and which scenarios should be chosen in a model?  

5. How do the input data developed in earlier use cases affect model outputs? 

 

 

 
Figure 2.1 (A): Current data practices use different systems and data manipulation 

methods for each data source and study area while (B) a generalized data model 

integrates across the structure and syntax of data sources. The WaMDaM Wizard with 

scripts, SQL, and APIs allow modelers to undertake multiple efforts, such as load data, 

identify data for models, compare networks, data values, and scenarios, and serve data to 

models. 
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2.2.1 Synthesis of design requirements 

We synthesized eight design requirements for an integrative data system from 40 

prior data management approaches (Appendix A, Table A1). Below, we define each design 

requirement and then discuss how the functionality that satisfies these requirements 

improves over prior approaches. 

The first requirement for a modular and extensible design will allow inclusion of 

multiple model types and their system components (e.g., reservoirs, demand sites, canals) 

as reusable data objects (i.e., as classes or modules) with properties or attributes (Zagona 

et al., 2001; Connolly and Begg, 2010; Wurbs, 2012; Knox et al., 2014). Attributes may 

apply to all network components globally or to individual components. For example, a time 

series of inflow applies to one reservoir component, while a budget parameter applies to a 

network. To improve storage efficiency and enable consistent reuse of data, the design 

must be able to share the same value of an attribute across many water resources system 

components. 

Modular and extensible design is supported in most existing data systems and water 

management models such as Hydra Platform and the ODM (Harou et al., 2010; Knox et 

al., 2014). Other systems, such as Arc Hydro and WEAP (Maidment, 2002; Yates et al., 

2005) allow adding new data objects (as in Arc Hydro), but users are still forced to use 

core components and attributes that might not be needed for a case study.  

The second requirement is to represent the spatial configuration of system 

components as networks of nodes (junctions or points) and links between nodes (arcs, 

connections, curves, lines, or edges of a directed graph) (Zeiler, 1999; Rossman, 2000; 

HydroLogics, 2009). Networks help modelers organize and search for system components 
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that are related in purpose (e.g., flow of water through connected pipes), use (e.g., drinking 

water supply), or in a spatial boundary (e.g., Bear River Watershed) (Loucks et al., 2005). 

Networks also represent connectivity, which is a key principle of water mass-balance 

fundamental to most systems models. Although most existing data systems support 

networks, each system uses different data organization methods and terms to manage the 

connectivity of nodes and links. Such different structures require different methods to 

query network data. While the ODM (Horsburgh et al., 2008) stores time series data for 

individual nodes or links, ODM was not designed to describe how the nodes relate to each 

other (upstream, downstream, etc.). A consistent method to represent networks will allow 

users to consistently retrieve information about how nodes are connected to each other 

through links.  

Third, the data system must describe and store scenarios that represent changes to 

the physical, operational, infrastructure, and socio-economic model input data. Scenarios 

allow modelers to test and run current and proposed water management alternatives. The 

scenario requirement also includes the ability to track and manage versions of changes 

from a baseline network. A scenario can be created by one or two potential changes to a 

water system network: i) change network topology like to add or remove an infrastructure 

component and ii) change data for one or more attributes of a component such as to expand 

the capacity of a reservoir or update metadata such as the method or data source. Many 

existing systems (e.g., WEAP) use scenarios to track changes in input data but cannot track 

changes in the network components.   

Fourth, the data system must allow users to add contextual metadata; the additional 

information to help modelers interpret data. Metadata also helps modelers maintain the 
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data provenance  needed to track the history and context of sources, methods, people, and 

organizations that contributed to create the data (Gray et al., 2005; Pokorný, 2006; 

Horsburgh et al., 2008; Campbell et al., 2013; DCMI, 2013; Carata et al., 2014; Goodman 

et al., 2014). Some existing systems store metadata in one table that accepts user-specified 

key-value metadata pairs (e.g., (Refsgaard et al., 2005; Knox et al., 2014). HEC-DSS 

manages and retrieves large sequential datasets, such as time series and paired tabular data. 

Support to describe each time series is limited to six metadata parameters that include the 

variable name, location, and time step. Each parameter must be described in less than 80 

characters (HEC, 2009). The ODM uses contextual metadata to describe units, sources, 

and methods for collecting observational data variables at a site. This requirement 

mandates explicit support for the following fundamental metadata elements the unit, 

source, method, people, and their organization that contributed to creating data. The 

support to explicit metadata elements guides users to populate, reuse, and later to directly 

query them. 

Fifth, the data system must be able to store and describe multiple data types that 

modelers use to represent physical, operational, and descriptive attributes of system 

components: time series, multi-attribute series (e.g., multi-variable for a reservoir 

bathymetry), numeric, categorical values (e.g., gate open or closed), and seasonal 

parameters (e.g., values that are the same for months across the years). Many existing 

systems support multiple data types, but store them as binary data objects, which limits 

users’ ability to access stored data outside the software system (Harou et al., 2010; Knox 

et al., 2014). Supporting multiple data types allows modelers to store, access, and reuse 

different types of data for properties of water systems components.   
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Sixth, the data system must support controlled vocabularies (CVs) as sets of terms 

with definitions for object types, attributes, and names of nodes and links. CVs allow 

modelers to retain the native terms they are familiar with but simultaneously relate native 

terms to consistent names that can be reused across datasets and models (Laniak et al., 

2013). For example, the following native terms are related to a single CV term (e.g., 

Reservoir): reservoir (WEAP), storage reservoir (RiverWare), Reservoir Node (Bear River 

Systems Dynamic Model), reservoir (US Bureau of Reclamation). The CV term then links 

all the fundamentally similar native terms together. Thus, a query for “Reservoir” returns 

all related native terms.  

Seventh, the data system must support direct access to subsets of data and metadata 

that enable search and filtering based on a schema. In contrast, unstructured data storage 

known as the Binary Large OBject (BLOB) formats (Sears et al., 2006) do not allow direct 

access to subsets of stored values but rather to the entire block of data. Although storing 

BLOB data such as blocks of time series or arrays as in Hydra Platform and HEC-DSS 

(HEC, 2009) can be efficient and fast, users must use custom functions to decode and 

access subsets of the content. In a structured data storage, modelers can load and retrieve 

subsets of data based on selected water system components, attributes, metadata, networks, 

scenarios, and data types in space and time without being limited to a custom method.  

The eighth requirement is to develop the WaMDaM implementations using free 

and open-source software tools, to allow access via an open-source code repository, 

promote reproducibility, and help others further advance the method (Easterbrook, 2014; 

Goodman et al., 2014; Gil et al., 2016). At the same time, we recognize that open-source 

software requires documentation to be reusable. Many existing data systems like WEAP, 
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RiverWare, and HEC-DSS are proprietary and require specific tools to access their data. 

Those proprietary approaches contrast with other customized systems models that use a 

mix of spreadsheets, text files, and the General Algebraic Modeling System (GAMS) file 

formats to organize their data and metadata.  

 

2.2.2 Support for Design Features 

To date, existing water resources systems software tools incompletely support the 

eight requirements (Table 2.1). Thus, we designed WaMDaM to support all eight 

requirements. The next section describes how WaMDaM was designed and implemented 

to support the eight requirements, answer four use case questions, and complete a fifth use 

case that serves data to a model. 

 

 

Table 2.1: Support for the identified requirements by select data systems and water 

resources models. An “X” indicates that the system supports the requirement.  
 Select Data System / Model 

Data Management Requirement ODM Hydra Platform HEC-DSS ArcHydro RiverWare WEAP 

Modular and extensible design  X X     

Supports networks of nodes & links  X  X X X 

Supports scenarios & version control  X X  X X 

Reusable contextual metadata X      

Multiple data types for system models  X X  X X 

Extensible controlled vocabularies X      

Direct access to subsets of data X   X   

Open-source environment & license  X X     

 

 

 

2.3 WaMDaM Design 

We used the eight requirements described in Section 2.2 to design the WaMDaM 

data model and its physical implementations to organize, manage, join, query, and compare 

water resources datasets and models. We aimed for a parsimonious design that minimizes 
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the number of data and metadata entities needed to satisfy the eight requirements and 

answer the use case questions (Hey et al., 2009). The criteria for a successful design was a 

design that satisfies the eight requirements and answers the use case questions. Below we 

present the conceptual design, then show the logical design using an Entity Relationship 

Modeling (ERM) diagram. Afterwards, we describe physical implementations. 

2.3.1 WaMDaM Conceptual Design 

The WaMDaM conceptual design has multiple, hierarchal one-to-many 

relationships; color-coded grouped entities represent key design requirements (Figure 2.2). 

In general, the color-coded groups define the steps a modeler would follow to populate a 

physical implementation of the design with data.  

The first group of blue entities supports a modular and extensible design by 

allowing the modeler to define the resource type (e.g., a WEAP model), one or many object 

types (e.g., reservoir, river reach, diversion, etc.) for each resource type, and one or many 

attributes (e.g., storage or diversion capacity, head flow, etc.) for each object type 

(Requirement #1). A resource type represents the types of data (input or output) used in a 

data provider such as a “Model Program” as defined in Morsy et al. (2017), independent 

of implementation. For example, a WEAP model resource type has 21 object types (e.g., 

reservoir, demand site, transmission link, etc.), and each object type has many attributes 

(e.g., “Storage Capacity”, “Net Evaporation”). The resource type entity can also be used 

for datasets. For example, the U.S. Major Dams Inventory shapefile has a list of 18 

attributes that have values for the “Dam” object type. An object type is a system component 
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with typologies such as node or link (e.g., reservoir, canal, water source, or demand site) 

and can have one or more quantitative or qualitative properties or attributes with units. 

The second group of green entities supports networks and scenarios by allowing 

modelers to define a master network with many scenarios where each scenario can have 

one or many instances that are either node or links (Requirements #2 and #3). To specify 

connectivity among instances, links must have start and end nodes. 

The third group of orange entities allows modelers to use reusable, contextual 

metadata where a modeler affiliates people to an organization and specifies methods and 

sources that generate data (Requirement #4). The fourth group of red entities allows 

modelers to store seven distinct types of data values such as time series or categorical data 

(Requirement #5). Within a scenario, an attribute for an instance has a source, method, and 

data type. The fifth group of controlled vocabulary (purple) entities allows modelers to 

relate native terms for object types, attributes, and instances (Requirement #6).  

We satisfied direct access to all data and metadata (Requirement #7) by using 

relational database theory (also referred to as the Relational Model) to implement the data 

model entities as interrelated tables (Codd, 1970; Chen, 1976) as further described in 

Section 2.3.2. We developed a physical implementation of the data model and software 

tools in an open-source physical database system (Requirement #8; see Section 2.3.3). 

Next, we explain how and why the relationships are implemented to form the WaMDaM 

Logical Data Model.  
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Figure 2.2: The conceptual diagram relating the first six design requirements for the 

water management data model. Key controlled vocabularies are introduced to the boxes 

outlined in purple.  

 

 

2.3.2 WaMDaM Logical Data Model 

The Logical Data Model schema shows the one-to-one, one-to-many, and many-

to-one relationships among database entities (Figure 2.3). Blue, green, orange, red, and 

purple colors again indicate tables associated with the resource type, networks and 

scenarios, metadata, data values, and controlled vocabulary design requirements, 

respectively. A WaMDaM data value is described by fourteen required elements 

(Appendix A, Table A2). Here we describe six key requirements that are needed to 

interconnect schema components and specify the fourteen required elements and design 

requirements. We pluralize data model entities and list them in italics and capital letters.  

First, ResourceTypes are datasets (like the U.S. Major Dams Inventory) or models 

(like WEAP) and have one or more system components called ObjectTypes (such as a 

reservoir, canal, water source, or demand site). ObjectTypes have typologies such as node 

or link and one or more quantitative or qualitative properties called Attributes (such as 

storage capacity, net evaporation, or delivery target). Here we use the broad term attribute, 
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as a contextual property which also may include variables that are measured and might 

change with time (Sarle, 1995). Attributes could also describe model outputs. Each 

attribute has a unit, attribute data type, and by choice whether it is used as “Input” or 

“Output” in a water resources model. 

Second, an object type such as a “Reservoir” can be specified (i.e., implemented) 

for zero or more locations as Instances (e.g., Hyrum Reservoir, Bear Lake, and Flaming 

Gorge Reservoir would be three separate reservoir instances). An instance inherits the 

Attributes of its object type and may be geo-referenced as a node in space with longitude 

and latitude coordinates. Instances can also be a link which has start and end nodes. The 

Connections entity specifies a start and end node for links and avoids a circular reference 

problem when connecting the ObjectTypes table directly to all the Instances, Attributes, 

and ValuesMapper tables. A circular reference in a database is problematic to database 

integrity as it may allow multiple transaction paths to insert or delete data. In the data 

systems modelers may represent the same water system component, such as reservoir, as a 

node or a link in a model. Thus, storing nodes and links in the Instances table and link 

connectivity info in the Connections table enables modelers to use the same query to access 

data for nodes or links and improves over prior approaches that require many different 

queries to access data for node or links (Yates et al., 2005; Abdallah and Rosenberg, 2014; 

Knox et al., 2014). 

Third, one or more node and link Instances can be connected into MasterNetworks 

(e.g., water supply/demand, water distribution, or other network for a study area). Each 

master network contains one or many Scenarios in a study area (such as a base case, 

reduced inflow, or new infrastructure). Scenarios within the same master network may 
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share the same exact network topology or versions of the network and its data. Each 

scenario also has a start and end date and time step to track the modeling time step and its 

extent. 

Fourth, the Mappings bridge entity relates Instances to their ObjectTypes, 

Attributes, metadata Sources and Methods, Scenarios, and data values. This bridge entity 

is the central table in the WaMDaM database. This Mappings entity is needed because 

ObjectTypes can have i) many Attributes (e.g., reservoir object type can have evaporation 

depth, storage capacity, and volume-area attributes), ii) each Instance (e.g., Hyrum 

Reservoir, Bear Lake, or Flaming Gorge Reservoir) can have shared or instance-specific 

attribute values, and iii) Instances can also have shared or instance-specific Sources and 

Methods metadata values.  

Fifth, data values are assigned to one of seven supported data types and connected 

through the ValuesMapper entity to the Mappings bridge entity. The seven supported data 

types (numeric, seasonal, categorical, free text, time series, multi-attribute series, electronic 

file) are commonly used in the models we reviewed (Appendix A, Table A3). Similar to 

prior time-series data models such as ODM, the TimeSeries entity (e.g., flow versus time) 

captures key global metadata for the entire time series and can have one or many values, 

time stamps, aggregation statistics (e.g., average, cumulative, etc.), and year types to 

indicate water year or calendar year. The MultiAttributeSeries entity organizes paired data 

(e.g., area-elevation curve) by referencing multiple Attributes. Each paired attribute has 

one or many values and sequential order to preserve the order and pairing of values across 

many attributes within the same array. Additional attribute data types can be added and 

connected to the ValuesMapper entity without affecting any of the existing data model 



33 
 

 
 

relations. The ValuesMapper entity helps to reuse and share attribute data across many 

Instances (Requirement #5). This WaMDaM approach of storing values once and sharing 

them is more efficient and allows the option to register the term one time with a controlled 

vocabulary. Sixth, the ScenarioMappings bridge entity further allows modelers to share 

similar Instances, their Attributes, metadata, and values across Scenarios with no 

duplication. The WaMDaM Wizard, presented later in Section 2.4, also uses the 

ScenarioMappings bridge entity to query and compare how combinations of Instances, 

their Attributes, and data tables change between two Scenarios within the same master 

network. Seventh, People, Organizations, Sources, and Methods support four essential key 

metadata entities needed to interpret Instances and values. The Sources entity describes the 

origin or encompassing package of data such as a shapefile, web service, or a model for a 

study area which may have a citation and a webpage. The Methods entity describes how 

values were created, an instance is defined, data quality, and the resource type works (e.g., 

simulation or optimization method for a model program). Modelers may document 

uncertainty in the data and indicate the quality of data within the method that generated it. 

Each source or method is associated with a person (author) who set up the source or created 

the method. Each person belongs to an organization. If no person is associated with data, 

modelers can define a person as “unknown” and relate to the organization that created the 

source or method. We recognize that there is potential for a more complex and specific 

representation of metadata. We attempted to balance between the principles and 

practicality of metadata usage as recommended by Duval et al. (2002). Complex metadata 

requirements may discourage modelers to provide metadata while too little metadata might 

be insufficient to correctly interpret data. Modelers are required to provide the native unit 
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name for each attribute and are encouraged to relate the unit with a list of controlled units. 

Using controlled unit vocabularies allows the user to convert values into other units. 

Eighth, controlled vocabularies have the following common fields of term, name, category, 

definition, and URL to a source. This approach is the same as the CVs defined for ODM2 

(Horsburgh et al., 2016). The key CVs attach to Object Types, Attributes, and Instances to 

relate native terms and values across Resource Types. Each resource type (e.g., model) has 

its own native terms. Data of different models can be related using three controlled terms, 

object type (e.g., Reservoir), attribute name (e.g., Volume), and instance name (e.g., 

Hyrum) (Figure 2.4). Units can be converted using constant or linear multipliers. For 

example, a value of 1.000 liter has a 0.001 constant fraction in reference to a 1.0 cubic 

meter volume unit. We adopted the list of controlled units from Hydra Platform (Knox, 

2018). Finally, software business rules (i.e., external code) are used to correctly enforce 

some of the complex relationships in the data model, especially when loading data into the 

database. For example, software business rules relate an object type and its typology with 

Instances through a dummy attribute and ensure that each link in the Connections entity 

has a start and end node. Another rule relates a resource type with a master network through 

the “NetworkAttributes” object type, the dummy attribute, and a dummy instance to allow 

modelers to query all the network implementations of a resource type. Correctly 

representing the many-to-many relationships among the entities within the first six design 

requirements while attempting to achieve parsimony and relatively simple querying 

consumed a significant portion of the iterative WaMDaM designs. We summarize the 

software business rules on GitHub (Abdallah, 2018).
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Figure 2.3: WaMDaM logical model tables grouped into the design requirements. Resource Type (Req.#1), Networks and Scenarios 

(Req.#2&3), Metadata (Req.#4), and Data Values (Req.#5). The diagram uses the crow’s foot notation for relationship cardinality 

and participation. An interactive html copy is available at http://schema.wamdam.org/diagrams/01_WaMDaM.html (Abdallah, 

2018). Controlled vocabulary tables (Req.#6) are not shown here for simplicity and can be viewed at 

http://schema.wamdam.org/diagrams/03_CVs.html. Each column name (field) that ends with “CV” indicates that the term is a 

controlled vocabulary.

3
5

 

http://schema.wamdam.org/diagrams/01_WaMDaM.html
http://schema.wamdam.org/diagrams/03_CVs.html
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Figure 2.40: Relating native names with controlled vocabularies for object types, 

attributes, and instance names allows modelers to query and simultaneously access values 

across native terms. Identical storage is shared among scenarios of the Bear River WEAP 

Model while values in the US Dams Datasets are stored separately. 
 

 

 

2.3.3 Physical Model Implementation 

We implemented the logical data model schema within four physical Relational 

Database Management Systems (RDBMS), including PostgreSQL, MySQL, Microsoft 

SQL Server, and SQLite to demonstrate that WaMDaM is independent of the RDBMS 

(Abdallah, 2018b).  

First, we selected a physical data type for each field in each logical model entity 

(e.g., integer, varchar) and we imposed physical constraints on each field (e.g., value 

cannot be null) by following the physical data types convention in the ODM2 (Horsburgh 

et al., 2016). Second, we adapted an existing Python 2.7 script developed by Horsburgh et 

al. (2016) to forward engineer the DBWrench schema file into a Data Definition Language 

(DDL) script containing a set of “create” statements from the for WaMDaM tables for each 
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of the four RDBMS. Finally, we executed each of the DDL script within each RDBMS to 

create a physical blank WaMDaM database that modelers can load with data. 

We chose to express the logical data model as a relational model to: i) support direct 

access to all data and metadata (Requirement #7), ii) be platform independent and 

implement as open-source on different operating systems for different relational database 

systems (Requirement #8), iii) support a standardized and stable Structured Query 

Language (SQL), and iv) follow common use and familiarity with the RDBMS within the 

water resources community (Horsburgh et al., 2008; Harou et al., 2010; Knox et al., 2014; 

Horsburgh et al., 2016).   

The core contribution of WaMDaM is the description of a generalized design to 

help organize, compare, and analyze multiple water resources datasets and models. Our 

implementation in a relational database is just one way to solve the problem. Other 

methods, such as non-relational databases, also known as NoSQL, are increasingly used 

worldwide (Hoberman, 2014) and could likely satisfy the same use cases. NoSQL 

implementations may scale and adapt without being limited to a schema. Future work 

should test WaMDaM’s ability to scale and adapt to much bigger and more diverse datasets 

and models. 

 

2.3.4 Community Feedback on the Design 

We iteratively revised this data model design in five key versions over the course 

of five years to satisfy the design requirements and use cases. The changes were in response 

to feedback from collaborators at the University of Manchester, University of California, 

Davis, and University of Massachusetts, Amherst on WaMDaM design and tools. We 
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acknowledge the need for larger and more diverse community testing and feedback to serve 

a wider audience of users. We also incorporated feedback on an earlier design and its 

description (Abdallah and Rosenberg, 2014). The five key designs are available on GitHub 

(Abdallah, 2018b) 

2.4 WaMDaM Related Software 

We created software tools to demonstrate WaMDaM’s functionality and allow users to 

more easily interact with its database.  

2.4.1 WaMDaM Wizard 

We developed a WaMDaM Wizard (hereafter the Wizard) in Python 2.7 for SQLite 

as a simplified demonstration to auto-read input data from an Excel Workbook template 

into a physical WaMDaM database implementation on the user’s local machine (Abdallah, 

2018c). The WaMDaM Wizard uses SQL Alchemy (https://www.sqlalchemy.org/) to load 

data into the database, and we use direct SQL scripts to query the database through a Python 

SQLite3 (https://www.sqlite.org) library. The Wizard provides key functionalities of the 

design and it is just one of many possible ways to import or export data of the database. 

We chose Microsoft Excel as a generic input data medium because modelers commonly 

use it. The Wizard validates entries to comply with the database schema, maps primary and 

foreign keys, and implements software business rules.  

We elected to use SQLite (https://www.sqlite.org/index.html) because it is free, 

open-source, and server-less to satisfy open-source design (Requirement #8). We also used 

the DB Browser for SQLite (https://sqlitebrowser.org/) as an open-source user interface to 

view and execute queries against WaMDaM database tables.  

https://www.sqlalchemy.org/
https://www.sqlite.org/
https://www.sqlite.org/index.html
https://sqlitebrowser.org/
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The Wizard has tools to i) prepare and pivot a shapefile, time series, or seasonal 

data into the data structure of the workbook template, ii) import time series stream flow 

data from WaterOneFlow CUAHSI web-services, iii) import time-series WaterML files 

for reservoir inflow, release, storage, elevation from the U.S. Bureau of Reclamation 

(USBOR) Water Information System web service (https://water.usbr.gov/), iv) import 

network and data stored in WEAP using its Application Programming Interface (API) into 

the workbook template, v) use the provided controlled vocabularies in the workbook to 

register and relate native terms across sources as discussed in Section 4.2 , vi) adapt and 

use the example Jupyter Notebooks of Python scripts to execute data query, plots, and 

analysis across data sources, and serve data into the model, and vii) compare and verify 

differences in topology or input data values across modeling scenarios.  

2.4.2 Controlled vocabulary registry 

We deployed an online-hosted CVs system to physically implement the CVs design 

(Requirement # 6), allow multiple modelers to access, reuse, or suggest new consistent 

vocabularies across WaMDaM database instances and machines. We adapted the existing 

online CV registry system which is a Python/Django web application API developed by 

the ODM2 design team (Horsburgh et al., 2014; Horsburgh et al., 2016) to manage 

WaMDaM CVs (Abdallah, 2018a) (http://vocabulary.wamdam.org).  

Because we adopted the CVs moderation system developed by the ODM2 team, 

modelers have the option to use WaMDaM CVs, submit suggestions to add new terms 

within the online registry, or use their own native terms without registering them with the 

WaMDaM controlled vocabulary. We populated the CVs system with example WaMDaM 

http://vocabulary.wamdam.org/
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CVs for the datasets we worked with and introduce in the next Section. Modelers can use 

the CVs system seamlessly in an Excel Workbook template and the WaMDaM Wizard. 

Within the Excel Workbook template, there is Visual Basic script button that downloads 

and updates look-up menus for all CVs. Excel sheets in the Workbook template contain a 

column for the native term and another as a controlled look-up term that register or relates 

them together. To get all the native terms registered to a controlled term, modelers can 

write a simple query against their local WaMDaM database. 

2.5 Results 

We present five use cases that demonstrate how WaMDaM and the software tools 

we developed can assist modelers to: i) identify specific input data to expand a model to a 

larger study area from previously-entered datasets in a WaMDaM database, ii) show the 

spatial configuration and network connectivity of natural and engineered system 

components, iii) compare retrieved data to help the user decide which data to use, and iv) 

compare changes in network topology, metadata, and data values among scenarios. These 

use cases also support a final common case to v) serve selected data to run an example 

WEAP model. These five use cases support common operations that water resources 

systems analysts and modelers perform to develop and use models. 

The use cases apply one optimization and two priority-based simulation models for 

the Bear River study area: 1) the Watershed Area of Suitable Habitat (WASH) model that 

allocates water to maximize watershed habitat areas (Alafifi and Rosenberg, 2020), 2) the 

Bear River Systems Dynamic Model (BRSDM) (Sehlke and Jacobson, 2005), and 3) 
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WEAP model. These use cases expand modeling coverage for the Lower Bear River to 

more of the Watershed in Utah, Idaho, and Wyoming (light red to darker red in Figure 2.5). 

The use cases assume a modeler used WaMDaM CVs, Excel templates, and the 

WaMDaM Data Wizard to load 13 diverse and overlapping U.S. national, regional, and 

local data sources and models (Table 2.2) into a WaMDaM SQLite database. The database 

file is 35 Megabytes with 73 ObjectTypes, 563 Attributes, 15,464 Instances, and 214,352 

rows in the central Mappings table. Readers can use the instructions and Python 2.7 scripts 

in Jupyter Notebooks (Abdallah, 2020) to load data into the database and replicate queries 

and figures as well.  

 

 

Table 2.2: Data sources used in WaMDaM use cases 

# Data Source  Instances (#)  File Format  

1 Water Data Exchange (WaDE) Program of the Western 

States Water Council 

http://wade.westernstateswater.org/ 

2 Excel, (Web-service for 

time series is in 

progress) 

2 WaterOneFlow Web Services (CUAHSI) 

http://his.cuahsi.org/wofws.html 

1 Web-service, WaterML 

3 U.S. Bureau of Reclamation Water Information system 

web service https://water.usbr.gov 

2 Web-service, WaterML 

4 US Hydropower Dataset (Samu et al., 2017) 2,398 Excel (.xlsx), Shapefile 

5 US Major Dams Dataset (U.S. Geological Survey, 

2013) 

8,121 Shapefile, text files, 

HTML 

6 Bear River Commission Flows (Personal 

Communications, 2016) 

1 Excel (.xlsx, .xls), 

Quattro Pro (.QPW) 

7 Utah Dams Dataset (Craig Miller-Personal 

Communications, 2016) 

910 Shapefile, Excel (.xlsx) 

8 Utah Flows Dataset (Craig Miller -Personal 

Communications, 2016) 

893 Shapefile, text file 

9 Idaho Flows Dataset (Liz Cresto-Personal 

Communications, 2016) 

164 Shapefile, Excel 

10 Watershed Area of Suitable Habitat model (WASH) 

(Alafifi and Rosenberg, 2020) 

104 Excel (.xlsx), shapefile 

11 Bear River systems Dynamics Model (BRSDM) 

(Sehlke and Jacobson, 2005) 

237 Excel (.xls) 

12 Bear River WEAP Model 2012 for Utah (Rosenberg, 

2017) 

375 CSV, Paradox 

Database, shapefile 

13 Bear River WEAP Model 2017 for Utah and Idaho 

(Rosenberg, 2017) 

150 CSV, Paradox 

Database, shapefile 

http://his.cuahsi.org/wofws.html
https://water.usbr.gov/
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Figure 2.5: The Bear River Watershed in the western U.S. The dotted area shows the 

spatial domain of existing WEAP 2012 and WASH models for the Lower Bear River 

Watershed. Lighter red is area for the WEAP 2017 model and dark red is for the Upper 

Bear River Watershed. Symbols show examples available data. 
 

 

 

Use Case 1: What data entered by others can be used to develop a WEAP water 

supply/demand model for the entire Bear River Watershed?  

Using the populated instance of the WaMDaM database file, the user first specifies 

the resource type to search data (e.g., for the WEAP model) and min and max longitudes 

and latitudes of the Upper Bear River Watershed (dark red in Figure 2.5). Next, the user 

runs the SQL script to identify the available object types and attributes. WaMDaM uses 

CVs to match native WEAP terms with terms from the other 13 loaded data sources. The 

workflow is readily repeated for a second resource type like the WASH model. By 
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excluding categories of water quality and cost attributes that are not used in the WEAP 

2017 model, the WEAP model has 21 object types with 71 attributes, while the WASH 

model has six object types with 61 attributes.  

WaMDaM found six data sources can provide data for the Upper Bear River 

Watershed for five WEAP object types and 15 of their attributes (out of 71 needed 

attributes; Table 2.3). Here, WaMDaM used the Reservoir CV term to mediate between 

the 13 datasets to return the local native terms “Dam” from the U.S. Dams Dataset and 

“Reservoir Node” from the BRSDM model. Similarly, the controlled attribute term 

Volume returns “STORG_ACFT” in the US Major Dam’s Dataset, “Capacity” in the Utah 

Dams Dataset, and “Max Storage Capacity” in the BRSDM model for the WEAP attribute 

“Storage Capacity”. To expand the Lower Bear WASH Model, WaMDaM finds six data 

sources can provide data for six attributes for demand site and reservoir object types. Data 

is still needed for 55 attributes. One reason for this mismatch is that the WASH model uses 

many ecologic parameters that do not have analogues in the other data sources.  

This use case demonstrates that the same WaMDaM data search method can be 

applied to multiple models. Loading more diverse datasets into WaMDaM, such as water 

right priority to demand sites that are required by WEAP, would allow WaMDaM to 

identify more data for models.   

Use Case 2: Which network connectivity should be used in a model?  

After identifying types of data that describe water systems components, modelers 

must determine how water supply, demand, and other system components are connected 

to correctly represent modeled system components. Here, CVs, node connectivity, and 

links help modelers visualize network connectivity and select an appropriate network for a 
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model scenario. We focus the use case on Hyrum Reservoir, which is located on the Little 

Bear River in Utah. 

 

 

Table 2.3: Summary of the identified attributes and node and link instances in WaMDaM 

database to expand the Bear River WEAP Model 2017 to the entire Bear River 

Watershed.  

Object Types WEAP Attributes with Data Instances (#) Resource Type  

Reservoir Inflow, Initial Storage, Max. 

Turbine Flow, Net 

Evaporation, Observed, 

Volume, Storage Capacity, 

Top of Inactive, Volume 

Elevation Curve 

SULPHUR CREEK, Woodruff 

Narrows Reservoir, Node 2.02, 

Node 6.01, Neponset Reservoir, 

…, Whitney Reservoir (34) 

US Dams, Utah 

Dams, BRSDM 

Demand site Annual Activity Level, 

Annual Water Use Rate, 

Consumption, Monthly 

Demand 

Node 1.02, Node 1.02, Bear 

River Watershed ag, Bear River 

Watershed I, Bear River 

Watershed M (4) 

WaDE and 

BRSDM 

Flow 

Requirement 

Minimum Flow Requirement Node 1.02 (1) BRSDM 

Gauge 

streamflow  

Streamflow Data BEAR RIVER AT BORDER, 

WY, BEAR RIVER NEAR 

UTAH-WYOMING STATE 

LINE (2) 

Idaho Flows 

dataset, 

CUAHSI 

Transmission 

link 

Maximum Flow Volume NUFFER, RIGBY, SORENSEN, 

WILLIAMSON (JENSEN) (4) 

Idaho Flows 

dataset 

 

 

 

We used SQL to query all links connected to Hyrum Reservoir in the WaMDaM 

database and then sort them by data source (i.e., model). Next, we used Microsoft Visio to 

draw query results which show Hyrum Reservoir supplies two demand sites in the Bear 

River WEAP Model 2012 (Figure 2.6-A) and three different demand sites in each of the 

Bear River WEAP Model 2017 and WASH models (Figure 2.6-B,C). The latter two models 

also return flow back to Hyrum Reservoir. The WASH Model has the same schematic as 

the Bear River WEAP Model 2017 model but uses different labels for its nodes and links 

(Figure 2.6-C). Using its source and methods metadata, the Bear River WEAP Model 2017 
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model in this area seems to be the most updated and detailed network, so we recommend 

using the Bear River WEAP Model 2017 model to expand coverage to the Upper Bear 

River (Figure 2.6-B).  

 

 

 
Figure 2.6: Node-link schematics for flows entering/leaving Hyrum Reservoir for three 

models in the Lower Bear River Watershed, Utah. Arrows indicate direction of flow. 

Nodes and links with the same color and shape belong to same controlled object type 

across models. 

 

 

Use Case 3: How do data values differ across datasets and which value to choose for a 

model?  

Once modelers have identified the types of data available for a modeling study and 

the model network, they must choose the data sources and values to use for network 

components. Here, WaMDaM’s multiple attribute data types (e.g., time series, seasonal 

parameters), CVs, direct access, and metadata design requirements can help modelers 

compare datasets, put context to values, and select the appropriate value for a modeling 

application. We next illustrate this process using a subset of the data identified in the first 

use case for 1) time series and seasonal streamflow below Stewart Dam, Idaho, 2) water 
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use in Cache Valley, Utah, and 3) storage elevation curves (i.e., bathymetry) for Hyrum 

Reservoir in Utah.  

Use Case 3.1: What water supply flow values should a modeler choose at a site (e.g., below 

Steward Dam)?  

Reusing the query for use case 1, controlled vocabulary for the instance and 

attribute names, and shifting the water year time reference, we identified four data sources 

with flow data for the site below Stewart Dam in Idaho. The datasets are the USGS, the 

Utah Division of Water Resources (UDWR), Idaho Department of Water Resources 

(IDWR), and the Bear River Commission (Figure 2.7-A). We used a second SQL query to 

aggregate and convert all the time series datasets into a comparable cumulative monthly 

flow in acre-feet per calendar year. The query used the time series metadata of attribute 

unit, year type, aggregation statistic, and aggregation interval to automate conversions. The 

four resulting traces span 92 years from 1923-2015 and show data values from the four 

sources are typically identical except for a few discrepancies in 1996 and 1999 (circles in 

Figure 2.7-B). The source and methods metadata show that the data originates from stream 

gage data collected by the PacifiCorp power company. PacifiCorp shares raw data (not 

available to the authors) with each state. The states interpolate missing data points. We 

recommend using the UDWR dataset which has the longest available record and 

documented metadata.  
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Figure 2.7: Compiled time series data of flow below Stewart Dam, Idaho reported by 

different agencies over time. (A) 1923 to 2015 and (B) a six-year window that highlights 

similarities and discrepancies (B-1 and B2) among sources after converting the water 

year into calendar year.  

 

 

Water management models like WEAP also use seasonal (i.e., average monthly) 

flow data, and modelers need to choose appropriate datasets for them. The same query 

above also returned seasonal data from a fifth source, the BRSDM model, which has three 

scenarios for monthly flow (dry, normal, and wet) for the same Stewart Dam site (Figure 

2.8-A). The BRSDM materials did not document how seasonal monthly values were 

derived. However, by comparing seasonal values to June high flow values (UDWR data 

from 1923 to 2015), we estimated the observed flow is lower 48% of the time than the dry 

June flow value of 666 acre-ft/month. We also found the observed flow is higher about 5% 

of the time than the wet June seasonal flow value of 17,187 acre-ft/month (Figure 2.8-B). 

These BRSDM model flow values do not capture dry and wet seasons evenly. Thus, we 

recommend that systems modelers in this study area use newly derived and more 

representative flow-frequencies from the UDWR dataset like the 5, 50, 95 percentiles 

which are 184, 702, and 24,900 acre-ft/month for dry, normal, and wet June months.  

A B 

B-

1 
B-2 
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Figure 2.8: Relating dry, normal, and wet year scenario flows below Stewart Dam, Idaho 

in BRSDM model (A) to cumulative distribution defined by 91 years of UDWR flow 

records (B). 

 

 

Use Case 3.2: What agriculture water use data should a modeler choose for a demand site? 

Systems models often require data for agriculture, and other water uses, which 

might be derived or estimated. Here, we use CVs, metadata, and multiple attribute data 

types to query, aggregate, and compare multiple resource types (data sources) for 

agriculture water use in Cache County in the Lower Bear River, Utah and recommend data 

to use in a WEAP model. The query used the controlled term “diverted flow” and returned 

data from three datasets: WASH model scenarios, WEAP model scenarios, and the WaDE 

web-service source. The Bear River WEAP Model 2017 uses seasonal demand data for 

eight sites and annual demand for two sites. Besides the diverted flow-controlled term, 

using another controlled term, called “depleted flow”, returned a fifth time series form the 

WaDE source which distinguishes the types of demand (dashed line in Figure 2.9).  

We used the source and method descriptions for attributes, node instances, and 

scenarios to identify how the data sources represent water use in spatial and time extents. 

Data either represent i) the entire county area annually in one node as diverted or depleted 

A B 
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water like the WaDE dataset (two curves), ii) the entire county seasonally and annually 

across eight demand sites (WEAP Model 2017), iii) part of the county monthly in one or 

seven sites as in the Bear River WEAP Model 2012 and WASH models, respectively. The 

reported annual water use data in WaDE is close to and validates the annual water demand 

values for the Cache Valley as used in the Bear River WEAP Model 2017. We recommend 

modelers to use the WaDE “Diversions” data which are annually reported by all water 

irrigation users in Cache County compared to using demand data that are constant across 

the years or covers part of Cache County. Here WEAP accepts input data with daily, 

monthly, seasonal, and annual spacing and aggregates or disaggregates them into the 

model’s time step.  

 

 

  

Figure 2.9: Water demand in Cache County, Utah by source with native attribute term in 

quotes.   
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Use Case 3.3: What reservoir volume-elevation curve should a modeler choose for a 

model? 

Modelers also search for data describing multi-attribute series such as reservoir 

bathymetry (elevation versus storage) to represent the physical capacity of reservoirs in 

their models. Here, we use the controlled instance name of Hyrum Reservoir and controlled 

attribute names Volume and Elevation to identify four volume-elevation curves for Hyrum 

Reservoir from the USBOR, Utah Dams, and WEAP model datasets. The USBOR Water 

Info System dataset has two time series datasets for storage and elevation, which have the 

same daily time step from January 2010 to May 2017. We plotted both series (Figure 2.10) 

and used the WaMDaM CVs, metadata, and multiple data types to readily identify and 

compare multi-attribute bathymetry curves across data sources that had different 

semantics, measurement periods, and extrapolated versus measured methods. Metadata and 

semantics are valuable here as misrepresenting the total or live storage or using an old 

survey could over or underestimate water available to meet demand targets, especially in 

dry years.  

Metadata indicate the four curves originate from two sources: the Utah Dams set 

and USBOR who owns the dam. The Bear River WEAP model used an older curve from 

the UDWR, while Utah Dams and USBOR datasets used USBOR source. Here we report 

the following three comparison insights, which are related to semantics, the range of data, 

and date of measurement. First, the top two red curves in Figure 2.10 indicate “live storage” 

which does not account for “dead storage,” while the lower two brown curves reflect “total 

storage.” The percentage of total storage that is dead storage is relatively high, about 17% 

in this small reservoir. Second, the slight differences between the two identical lower 
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curves and the top curve are for two bathymetry surveys in 1935 and 2006, respectively. 

Between the two surveys, total storage decreased by 1,179 acre-feet which is 6% of the 

original storage due to a decrease in both the dead and live storage potential. Third, the 

lower brown curve has physical range that extend up to 70,000 acre-feet volume and 4,750 

feet elevation (not shown) for a future scenario that raised the dam height. From the 

comparative analysis and metadata, we select the BOR 2006 curve which is for the recent 

bathymetry survey, used total storage as needed by WEAP, and stayed within the existing 

operational range of the reservoir. 

 

 

 
Figure 2.10: Four volume-elevation curves for Hyrum Reservoir, Utah. Lighter red and 

brown curves indicate larger volumes at the same elevation. Dead, Live, and Total 

storage zones are from the 2006 USBOR survey. 
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Use Case 4: What are the differences between two scenarios and which scenario should a 

modeler use?  

Modelers use scenarios to evaluate how potential management alternatives can 

affect system performance. However, scenarios typically have numerous attributes and 

inputs and it is often difficult to determine the differences in nodes and links, data values, 

or data sources between multiple scenarios. Here we use the WaMDaM master network, 

scenario requirement, CVs, and the WaMDaM Wizard Data Loader comparison utility to 

help a modeler identify differences between existing scenarios in a model. The Wizard 

executes a script that queries the ScenarioMappings table and identifies the data that is 

shared among and unique to each scenario. Comparison results are exported to an Excel 

Workbook.  

For example, the Bear River WEAP Model 2012 (Utah portion) and Bear River 

WEAP Model 2017 (Utah and Idaho portions) model scenarios share about 12% of the 

network node and link instances, 22% network metadata, 14% attribute metadata, and 14 

% data (Table 2.4). Similarly, the BRSDM dry, normal, and wet scenarios have identical 

master network and metadata for the Wyoming portion of the Bear River Watershed and 

share about 93% of data like demand requirements with 3.5% unique values to each 

scenario, such as change in headflows (i.e., supply inflows into the system) (Appendix A, 

Table A4). The larger percentage of shared elements among the BRSDM model scenarios 

means a correspondingly larger savings in database storage than the WEAP model 

scenarios.  

Because the Bear River WEAP Model 2017 model scenario has more node and link 

elements, metadata, attributes, and data values, we recommend using this model scenario 
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as a starting point to expand coverage to the entire Watershed to include the Wyoming 

(dark red in Figure 2.5). The BRSDM model network covers the Upper Bear River in which 

can be used as a source to expand the WEAP Bear River WEAP Model 2017 to the entire 

Watershed.  

 

 

Table 2.4: Unique and shared network nodes and links, metadata (source and method) 

and data between two WEAP Bear River Watershed model scenarios 

Scenario comparison 

element  

Unique to “Bear 

River WEAP 

Model 2012” 

Scenario  

Count of instances 

(%) 

Shared  

Count of 

instances (%) 

Unique to “Bear 

River WEAP 

Model 2017” 

Scenario 

Count of instances 

(%) 

Network nodes and links 88 (23.5%) 45 (12%) 242 (64.5%) 

Network metadata 88 (20.85%) 92 (21.81%) 242 (57.35%) 

Attributes metadata  1,225 (26.5%) 654 (14.15%) 2,743 (59.35%) 

Data  1,230 (26.61%) 696 (13.93 %) 2,748 (59.45%) 

 

 

Use Case 5: How do annual water shortages at the Bear River Migratory Bird Refuge in 

the Bear River Watershed change when serving the Bear River WEAP Model 2017 model 

with new bathymetry, flow, and demand data selected in use cases 2 and 3?  

We selected the Bear River Migratory Bird Refuge (hereafter, the Bird Refuge) at 

the mouth of Bear River as an environmental demand site to test the sensitivity of water 

shortages to changes in input of upstream supply, demand, and storage identified in use 

cases 2 and 3. The site has an annual 425,761 acre-feet water delivery target that is 

primarily required in the winter months. The WaMDaM CVs, consistent data storage, and 

query method enabled selecting the 1) dry seasonal headflow (i.e., supply inflows into the 
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system) estimates for the Bear River at Stewart Dam that we derived from the UDWR 

dataset, 2) total maximum annual demand as reported by the WaDE dataset for the entire 

Cache County, and 3) bathymetry curve for Hyrum Reservoir from the USBOR dataset. 

We then used a Python 2.7 script in a local Jupyter Notebook and the WEAP API to export 

the selected data and populate data automatically in the Bear River WEAP Model 2017. 

This setup also allowed us to automate the process to create a WEAP scenario for each 

parameter change, execute the model, and report results for annual unmet demand 

(shortage) at the Bird Refuge. Each WEAP model run included the simulation period 1966 

to 2006.  

The modeled annual unmet demand ranged from 0% in wet years to up to 15% of 

total demand in dry years across the four scenarios (Figure 2.11). Updating Hyrum 

Reservoir with the new bathymetry (1,179 acre-feet less storage, 6% of capacity) had no 

observable effect on the annual unmet demand. The average annual unmet demand 

increased to 1.9% and 2.6% of total demand with higher upstream Cache County irrigation 

demand and updated headflows for dry years.  

2.6 Discussion and Further Work 

WaMDaM’s eight design requirements of modular and extensible components, 

networks of nodes and links, scenarios, reusable contextual metadata, support for seven 

data types, extensible controlled vocabularies, direct access to data, and an open-source 

environment improve prior work that focused on managing water management data for a 

single model or dataset and select systems modeling data types. Here we discuss how 
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modelers can use WaMDaM, list limitations of the work, present future work, and invite 

the community to get involved and provide feedback. 

 

 

Figure 2.11: Sensitivity of annual unmet demand at the Bird Refuge, Utah over the 

simulation period 1966-2006 to changes in upstream storage capacity, demand, and 

supplies (mean values are in dash lines) 

 

 

 

2.6.1 How can modelers use WaMDaM database and its software? 

We show how researchers of five recently published systems modeling studies can 

use WaMDaM tools to organize, relate, and analyze input data, networks, and scenarios. 

For example, Ahmadaali et al. (2018) used WEAP to evaluate economic aspects of 

proposed water management strategies in Urmia Lake, Iran while Angarita et al. (2018) 

also used WEAP to examine 97 proposed hydropower facilities within a total of 1400 

scenarios in the Magdalena River basin, Colombia. Both projects can use the WEAP 

importer in WaMDaM Wizard to manage the WEAP networks and compare input data for 

current and future scenarios.  
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Dogan et al. (2018) developed an open-source version of the California Value 

Integrated Network (CALVIN) model and separate the model from model data which is 

stored in a large number of CSV and JSON files in a structured GitHub repository. The 

researchers could use the WaMDaM Wizard to load input data into the WaMDaM database 

and compare the input data for different models runs such as for 10 and 40 years’ time 

spans. Wheeler et al. (2018) developed a systems optimization model to identify 

cooperative management strategies for the large reservoirs on the Eastern Nile Basin. The 

researchers could use WaMDaM and its scenario comparison tool to track different 

projected climate change flows for the Nile Basin. Finally, Chini et al. (2018) created a 

network of virtual water flows for the US electric grid based on six years of empirical data 

on water use and electricity transfers. The authors could use WaMDaM to store the created 

network and its disparate water and energy datasets. WaMDaM can be especially useful to 

manage the data for the proposed analysis to assess regional interdependencies on a 

seasonal scale. For each of these studies, storing the modeling data in WaMDaM with its 

defined schema and publishing it online such as on GitHub will allow other researchers to 

query and reuse data in other studies. This reuse could further increase each study’s impact. 

2.6.2 Current limitations 

WaMDaM supports numerical, seasonal, categorical, free text, time series, multi-

attribute series, and electronic data formats. WaMDaM, however, does not support gridded 

data since gridded data are not common to the water resources models we reviewed. The 

WaMDaM design is implemented in a relational schema, which has limitations to adapt 

and scale compared to NoSQL databases. The WaMDaM tools help users interact with its 
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SQLite database installed on one machine with no distributed access compared to database 

servers with API. These software tools are prototypes that are tested using the study 

datasets on Windows machines. The WaMDaM Wizard is slow to load and validate large 

datasets.   

2.6.3 Future Work 

To improve access and security, future WaMDaM implementations should build 

web-server APIs with data query functions that distribute and manage the access to many 

users at the same time and protect the database integrity from unintended changes. Future 

software tools to load data to the database and export it to models should be time-efficient, 

more user-friendly, and compatible with Windows, Mac, and Linux. To support more use 

cases, future work should involve a larger number of diverse datasets, models, and research 

groups. Future work also should use WaMDaM and web-services to publish, discover, and 

visualize models and their data and allow multiple users to work with the same datasets. 

Additionally, future work could leverage scenario and attribute metadata to test use cases 

that convert data in one-time step to other time steps. 

In response to earlier feedback, we are collaborating to build a software ecosystem 

to make WaMDaM interoperable with Hydra Platform web-services (Knox et al., 2014), 

OpenAgua (Rheinheimer et al., in review), and HydroShare (Tarboton et al., 2014). The 

ecosystem tools will allow WaMDaM users to import data stored in Hydra Platform as a 

new source of data. Users will also be able to export WaMDaM data into Hydra Platform 

and visualize networks and their data in OpenAgua. We are also integrating WaMDaM as 

a new HydroShare resource type to publish populated WaMDaM SQLite files and extract 
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their metadata to enable search and discovery (Horsburgh et al., 2015). Lastly, we are 

developing workflows to automate the steps to prepare and export all the data needed to 

run multiple models. These workflows will more readily allow modelers to use the same 

datasets to run multiple comparison models for the same study domain (e.g., simulation 

versus optimization) or different spatial domains (e.g., Bear River versus Colorado River). 

These tasks are now difficult because the modeler must manually build two (or more) 

models from scratch.  

2.6.4 Invitation to community involvement and feedback  

Over the past five years, we sought and received feedback from colleagues and 

collaborators on the WaMDaM design and tools. There is still need for testing and feedback 

from a larger, more diverse community of users. In all these efforts, we seek community 

involvement to 1) add new datasets and models for new locations, 2) build new exporters 

to serve data to new models, and 3) further define the system of controlled vocabularies 

that can help relate native vocabulary of existing models and datasets. More involvement 

can benefit a variety of people who work with systems simulation and optimization data 

and models. WaMDaM can serve as a first step toward a standardized method to store, 

organize, and share water resources systems modeling data. 

2.7 Conclusions 

This paper addressed the problem of needing multiple methods to organize, store, 

query, and analyze water management data to identify input data to develop or extend a 

water management model. We contributed a new data model (WaMDaM) implemented in 

a relational database to organize water management data with contextual metadata and 

file:///C:/Users/Rosenberg/Downloads/can
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controlled vocabularies to generalize data analysis for multiple data sources, models, and 

study areas.  

The design of WaMDaM integrated eight design requirements that were previously 

only partially supported by forty prior water resources data systems, models, and standards. 

The requirements include: 1) modular and extensible components, 2) networks of nodes 

and links, 3) scenarios and version control, 4) reusable contextual metadata, 5) support for 

multiple data types used by systems models, 6) extensible controlled vocabularies, 7) direct 

access to subsets of data and metadata, and 8) an open-source environment.  

We demonstrated the WaMDaM design by using 13 datasets and models to answer 

five use case questions in the Bear River Watershed, United States. The use cases allowed 

modelers to: i) search for input data within a model study area, ii) identify flow directions 

and connections among natural and engineered system components, iii) identify and 

compare water supply, demand, and reservoir data across multiple datasets and models, iv) 

show data similarities and differences among modeling scenarios, and v) select data, serve 

the data to a model, and run multiple model scenarios.   

Results showed how WaMDaM unifies data formats, structures, and controlled 

vocabulary identified data for 15 attributes (out of 71 needed) from six data sources to 

expand the spatial extent of a WEAP model. Results also showed discrepancies in river 

discharge data, demand, and reservoir area-elevation curves. Results helped select input 

data and develop multiple scenarios. Serving the data to run an existing WEAP model 

revealed and quantified that shortages at an environmental demand site were sensitive to 

changes in upstream agricultural water demand and river headflows but not reservoir 

capacity.   
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The WEAP API and SQL make it possible for users to use WaMDaM to set up 

scenarios, replicate, and extend the work. WaMDaM facilitates these data wrangling tasks 

by reconciling the disparate datasets into a homogenous structure and by using controlled 

vocabularies to relate the different native terms across datasets. Modelers can then spend 

more time on data analysis and synthesis than on time consuming and error-prone steps to 

manipulate data to set up and run a model. 

In further work, we are collaborating on a software ecosystem to make WaMDaM 

interoperable with Hydra Platform and OpenAgua to visualize networks and their data. We 

are also developing workflows to automate the steps to serve the same input data already 

organized in WaMDaM to multiple comparison models for a study area. We also seek 

community involvement to load larger and more diverse data and model sets which will 

allow others to reuse data and build models in new areas. These expansions will require 

more robust methods to define, relate, specify, and expand controlled vocabularies for 

water management data. We invite the systems modeling and hydroinformatics 

communities to provide feedback to improve WaMDaM.  
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CHAPTER III 

OPEN SOURCE PYTHON SOFTWARE TO MANAGE, POPULATE, 

COMPARE, AND ANALYZE WEAP MODELS AND SCENARIOS 

 

Abstract  

The Water Evaluation and Planning system (WEAP) is a proprietary systems simulation 

software that is used globally for water management modeling studies. WEAP has a simple 

and powerful Application Programming Interface (API), however most WEAP modelers 

manually populate data into their WEAP area (model). Manual operations are error-prone 

and time-consuming. We contribute open-source Python software that automates and 

generalizes the processes for WEAP modelers to prepare and load data and run sensitivity 

analysis for multiple WEAP areas and their scenarios without writing code. The software 

also allows users to export and store model data then run independent analyses without a 

WEAP license. We demonstrate the software with existing WEAP areas for the 1) Bear 

River Basin in Idaho and Utah and 2) Weber River Basin in Utah. Results show estimated 

demand reliability for changes in reservoir capacity, demand, evaporation, and river 

headflows. . Reliability to meet demands in both the Bear and Weber Rivers models varied 

from 50% to 100%. 

Keywords 

Sensitivity analysis, reproducibility, systems modeling, water resources, decision support 
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Graphical Abstract 

 

 

 

 

 

Highlights 

● We present a software architecture and functionality to manage and automate data 

import to and export from multiple WEAP models and scenarios  

● Modelers can automate the setup and run of many WEAP models and scenarios, then 

compare results across the models and scenarios  

Software availability  

Name of software: The WaMDaM Wizard 

Developer: Adel M. Abdallah  

Contact: Adel M. Abdallah; 8200 Old Main Hill, Logan, UT 84322, USA; Email 

amabdallah@aggiemail.usu.edu 

Year first available: 2019 
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Required hardware and software: The WaMDaM Wizard executable is available for use 

with Microsoft Excel (2007 and later versions) and SQLite3 on Windows 64-bit computers.  

Input data and directions:  Documentation of all source code, datasets, use cases, and 

instructions to use the WaMDaM Wizard and WEAP and replicate results are available on 

(Abdallah, 2020b). Jiada Li used the WaMDaM Wizard, WEAP, and Jupyter Notebooks 

to replicate use case results.  

 

3.1 Introduction  

The Water Evaluation and Planning (WEAP) system is a proprietary software for 

integrated water resources planning. The user-friendly desktop software is used around the 

world for water-related policy analysis (Yates et al., 2005). WEAP supports integrated 

water resources planning with its built-in functions for aggregated rainfall runoff and 

infiltration, snowmelt, evapotranspiration, crop requirements and yields, surface 

water/groundwater interactions, and instream water quality. The software can read data 

from Excel and comma separated value (CSV) files and has functions to export both input 

and output data to Excel. WEAP has data visualization utilities that support plotting data 

for most model inputs and results. The “Results” dashboard in WEAP also allows users to 

compare select output parameters within and across scenarios. WEAP supports 14 different 

water system components (i.e., object types) such as Reservoir, Wastewater Treatment 

Plants, and Demand Site. Each object type has a list of attributes such as Monthly Demand, 

Capacity, and Capital Costs with a total of 220 attributes (Yates et al., 2005) (Figure 3.1). 

WEAP is similar to other proprietary water systems modeling software such as RiverWare 
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(Zagona et al., 2001), GoldSim (GoldSim Technology Group LLC, 2014) and eWater 

Source (Welsh et al., 2013). 

WEAP’s wide-range modeling capabilities require considerable input data to 

describe the physical system and water operations. WEAP modelers can benefit from a 

generalized, consistent, and reusable software that completely prepares all input data from 

one or more data sources and then populates data into WEAP with minimal user 

intervention. WEAP users can also benefit from a generalized open-source database that 

stores extracted WEAP data and allows users to query, compare, analyze, and plot all input 

and output data across multiple scenarios and models. Storing model data in an open-source 

database will also allow the broader community of researchers to discover, search, analyze, 

and publish   WEAP modeling data online in public repositories such as HydroShare 

(Tarboton et al., 2014) without need for a WEAP license. Journal policies, funding 

agencies, and several recent studies have encouraged publishing modeling data along with 

code and directions to support reproducibility and data reuse (Stagge et al., 2019; 

Rosenberg et al., 2020). 

To manually prepare WEAP input data, users must find the data, organize the data 

in the structure required by WEAP, reconcile the syntax that describes the data to WEAP’s 

nomenclature, then enter data or the link to data in WEAP. For example, a monthly time 

series of flows for a reach high up in a watershed that is specified in an external file must 

be organized as a comma-separated values (CSV) file and related to the WEAP model input 

“headflow”. The file must include three columns, the first for the year, the second for the 

month, and the third for the data value. Then, the user tells WEAP the file’s path and name 

on their machine for the parameter. The user must manually repeat these steps for all other 
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input data such as monthly demand, arrays of reservoir storage and elevation curves, 

numeric parameters for demand priorities, and expressions (i.e., equations) the describe 

complex interactions or rules between system components. Manually preparing large 

volumes of input data and populating data to a WEAP model for a study area is time-

consuming and error prone.  

WEAP has an Application Programming Interface (API) that supports outside 

programming languages such as Python, Visual Basic, and C to read and write data and 

execute commands. Most WEAP publications that we reviewed do not mention using the 

API  (Sanvicente-Sánchez et al., 2009; Mourad and Alshihabi, 2016; Gao et al., 2017; 

Winter et al., 2017).  

If modelers use the API for scenario and sensitivity analysis, they often use a mix 

of custom and study-specific Excel spreadsheets, CSV files, and Visual Basic scripts to 

load data into or extract it out of WEAP (Craven et al., 2017; Jamshid et al., 2017; Mehta 

et al., 2018). .  For example, Jamshid et al. (2017) developed a study-specific Visual Basic 

scripts within Excel that automates changing decision variables of specific reservoirs’ 

storage capacity and its filling priority to couple WEAP to a multi-objective optimization 

model. Craven et al. (2017) developed custom Visual Basic code within Excel to automate 

updating input data in WEAP from input cells in the Excel sheets. Mehta et al. (2018) used 

Visual Basic scripts within Excel to call the WEAP API and populate their WEAP model 

with 84 combinations of the seven identified strategies, two demand projections, three 

climate projections and two groundwater pumping curtailment projections. They then used 

WEAP to evaluate seven water management strategies as part of the groundwater 

sustainability plans for Yolo County in the Central Valley of California. These automation 
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efforts can only be used for the specified model and scenarios. WEAP modelers who want 

to apply the methods to other models and scenarios must develop new custom spreadsheet 

files and Visual Basic code. Developing new files and code is also time consuming and 

error prone. 

Here we develop generic, automated tools to 1) extract, query, compare, and 

analyze many WEAP models’ data outside its proprietary database, and 2) quickly set up 

multiple WEAP models and scenarios and populate them with data stored in an open-

source, relational database called the Water Management Data Model (WaMDaM) 

(Abdallah and Rosenberg, 2019).  The automation tools can work across many WEAP 

models and scenarios because they draw on several generic WaMDaM database 

capabilities to: 

• Organize systems modeling data with metadata which describe the locations, observed 

variables, sources, methods, units, and people and organizations involved in creating 

or reporting input data.  

• Provide users with controlled vocabulary to relate native modeling terms across 

models. For example, relate a native “Transmission Link” term in WEAP to the 

controlled term “Canal” which can be further related to a different native term 

“Diversion Link” in another model. 

• Run supporting Python-based software to validate inputs, 

•  Import data from multiple sources including (i

Generic Microsoft Excel workbook template, (ii) Stream discharge time series data 

from the Consortium of Universities for the Advancement of Hydrologic Science, Inc. 
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(CUAHSI) Hydrologic Information System (HIS) web services, (iii) Reservoir storage 

and releases time series data from the U.S. Bureau of Reclamation Information System, 

(iv) Hydra Platform web-services and the OpenAgua online application (Abdallah, 

2019), and (v) resources published in HydroShare (Abdallah, 2019). 

We demonstrate the capabilities to 1) extract, query, compare, and analyze many 

WEAP models’ data and 2) quickly set up multiple WEAP models and scenarios and 

populate data in two use cases for separate existing WEAP models of the Bear and Weber 

River watersheds, USA. Both watersheds cover 9,913 square miles and terminate into the 

Great Salt Lake (GSL), Utah and on average contribute 1,450,000 acre-feet, about 40% of 

the GSL total annual inflow (SWCA Environmental Consultant, 2013). The use cases 

answer the questions: how are attributes, networks components, and data used among the 

two models similar and different? How is demand reliability in each river basin sensitive 

to response reservoir sedimentation, increased net evaporation and demand, and reduced 

river headflows?   

The remainder of the paper is organized as follows: Section 3.2 describes the 

methods to automate the workflows to extract data out of WEAP into WaMDaM, conduct 

independent analyses, generate scenarios, and then populate scenario data back into 

WEAP. Sections 3.3 and 3.4 describe the Bear and Weber River watersheds and compare 

results across the two WEAP models. Section 3.5 discusses the results, presents limitations 

and recommendations, and invites the community to build similar connections with other 

systems modeling software. Section 3.6 concludes.  
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Figure 3.1: Water Evaluation and Planning (WEAP) software capabilities and use around 

the world    

 

 

 

3.2 Methods  

We first use the WEAP API to i) extract data from each separate WEAP model 

within its proprietary database and store and organize them into a single WaMDaM open 

source database. Then we compare the two models and import new data for external 

scenario analysis into each WEAP model and execute sensitivity analysis. In both import 

and export functions, we used Python, Structured Query Language (SQL) and the WEAP 

API to move data out of WEAP for analysis and comparisons or to prepare new WaMDaM 

data, and populate it into many WEAP models and their scenarios and thus complete the 

circle in moving data (Figure 3.2). We implemented both the extract and populate functions 

in Python scripts as part of the WaMDaM Wizard. To use the functions, users must have 

WEAP installed on their Windows machines with an active license. Users no longer need 

a WEAP license once data is exported from WEAP. The WEAP API is designed to act as 
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a standard Component Object Model (COM) Automation Server which an object-oriented 

system for Windows that supports other programs in languages such as Python and Visual 

Basic. The API allows outside scripts to read and write input data and then execute WEAP. 

We used Python to work with WEAP through the “PyWin32” library which gives Python 

access to the Windows COM Automation Server API (Hammond, 2020). Using Python to 

connect to the WEAP API results in a data object that contains WEAP classes and their 

properties. We mapped those WEAP classes and properties into their equivalent metadata 

elements in WaMDaM (Table 3.1). The next two subsections describe how we specifically 

used these key mapped elements to transfer data between WEAP and WaMDaM.    

 

 
Figure 3.2: Workflow to 1) automate extracting WEAP model data into WaMDaM (green 

arrow)2 and 2) populate new scenario data from WaMDaM into WEAP models (green 

arrow). Outputs can be a published WaMDaM SQLite file in HydroShare for a WEAP 

model’s data 
 

 

 

3.2.1 Extract WEAP Areas into WaMDaM 

There are five steps to extract a WEAP Area, including its structure (i.e., list of 

object types and attributes), network and scenarios, and data into a WaMDaM Excel 
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workbook. The steps are: i) connect to the WEAP API and get its network, scenario, and 

directory of the model files on desktop; ii) get the list of object types and attributes and 

their units in WEAP and load them into WaMDaM database; iii) extract WEAP model 

network of nodes and links; iv) get the values of WEAP variables and transform them to 

WaMDaM data structures; and v) write the extracted WEAP data into WaMDaM 

workbook sheets in Excel according to WaMDaM template. We describe the logic of each 

step in Appendix B.  

 

 

Table 3.1: Mapping the common key equivalent metadata elements between WaMDaM 

and WEAP 

WaMDaM WEAP Common description 

Master Network WEAP Area A collection of node and link interconnected water system 

components that serve a common purpose such as allocating 

water supplies for competing demand sites given the 

capacities of a natural and built system elements.   

Scenario Scenario A specific socio-economic setup of the network that has 

changes in references to a baseline condition.   

Object Type BranchType A water system component type (e.g., reservoir, river) 

Node, Link, 

Network attributes 

Node, Line, key 

assumptions 

The typology of a water system component. 

Attribute Variable A property of a water system component with values 

Instance Branch A specific implementation of a water system component that 

may be referenced geospatially  

Data Value Expression A quantitative or qualitative measure for an attribute of a 

system component instance 

 

 

 

These steps were implemented as Python functions in the WaMDaM Wizard under 

the “Import Data into WaMDaM” tab and “From WEAP” button. We use the WaMDaM 
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Excel workbook template as an intermediate step in the extract process between WEAP 

and WaMDaM SQLite for three reasons: (i) to take advantage of the WaMDaM Wizard 

data loader that works with and validates the Excel workbook data, (ii) to allow users to 

optionally enhance the extracted WEAP data with metadata such as organizations, people, 

sources, and methods that are used in WEAP data, and (iii) to allow users to relate their 

model’s nodes and links native names with controlled vocabulary terms. The WaMDaM 

workbook includes 14 spreadsheets that generically organize water management data, 

metadata, and provide lookup-controlled vocabularies to allow users to relate them with 

their native terms. 

3.2.2 Populate WEAP Models from WaMDaM  

The following are the steps a modeler follows to automate the populating of 

hundreds of attributes into multiple WEAP models and scenarios all at once using a 

generalized Excel workbook without needing to write custom specific scripts or 

spreadsheets. Within WEAP interface for a study area, first, draw a WEAP model node 

and link schematic and choose specific units (i.e., metric or English). Second, use the 

WaMDaM Wizard utility to extract (export) the blank WEAP data structure, which 

includes the network of nodes and links, and scenarios into a WaMDaM workbook. Third, 

provide data values and metadata into the workbook, such as all reservoirs storage or 

demand sites priority. Provide values in bulk (i.e., each value is in a row) rather than manual 

entry of every single value one-at-a-time using the WEAP interface. If needed, we the 

WaMDaM tools to define new scenarios in the workbook and provide data for them such 

as parameter values for sensitivity analysis. Here modelers need to prepare their data to fit 
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into the WaMDaM workbook structure using the same units they chose while defining the 

WEAP Area. Fourth, load the Excel workbook populated with input data into the SQLite 

WaMDaM database. The WaMDaM Wizard checks and validates the provided input data 

and metadata and their correct association with the network components, scenarios, and 

WEAP data structure including data types such as time series, seasonal or numeric data. 

Fifth, from the WaMDaM Wizard “Export Data to Models tab” tab, select the “Serve to 

WEAP” button to serve the WEAP input data in the SQLite database into the WEAP model 

schematic defined in the first step.  

This Wizard function queries the WaMDaM database for the selected model, 

network, and scenario. The function iterates over each object type and its instances (nodes 

or links) in WaMDaM and looks for their match in WEAP. For each object type, the 

function iterates through the object attributes in WaMDaM and looks for a match in the 

attribute name and its unit in WEAP and then queries them based on their data type (e.g., 

time series, seasonal). The function then transforms the structure of each value and prepares 

it as required by WEAP. Finally, each value is provided as an expression in WEAP for its 

location as defined by the unique triple metadata: object type, instance name, and attribute 

name (Appendix B, Table B1). The function only serves data to WEAP where there is a 

match in WEAP and WaMDaM object types, instances and attributes.  

The Wizard creates a subfolder inside its WEAP Area folder for each populated 

scenario Within each folder, the Wizard creates subfolders for the CSV files for seasonal, 

time series, and multi-column data (Figure 3.3). Finally, the Wizard creates a metadata 

Excel file for the record that lists all the input loaded parameters, their source and method 

names, and the data values. WEAP users can share the CSV files for input parameters and 
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they can read their metadata to understand where data originate from and how data were 

calculated in the metadata Excel file.   

 

 

 

Figure 3.3: Files structure that is generated by the WaMDaM Wizard for each scenario 

inside a WEAP Area folder on the user’s desktop machine.  

 

 

3.3 Use Cases  

Two use cases illustrate that automated export of data out of and importing of data 

into WEAP models and scenarios for the Bear and Weber Rivers in Utah, USA.  The use 

cases draw on existing WEAP models for the Bear River (Utah and Idaho portions) 

(Rosenberg, 2017) and Weber River (Utah) (Tesfatsion and Rosenberg, 2013) watersheds 

USA (Figure 3.4). Both WEAP model instances allocate water to competing demand sites 

based on water right priority.  The Weber model spans 1951-2006, and the Bear model 

spans 1966-2006. The models use a mix of data types: seasonal data for demand, time 

series for river headflows, arrays for reservoir storage and elevation curves, numeric 

parameter for demand priority, and expressions (i.e., equations) that represent a text value. 
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We used the same WaMDaM Wizard software to work with the two models and scenarios, 

which demonstrates that the software is independent of the study location, WEAP model 

instance, and scenario. The use cases assume that the user already has a license to the 

WEAP software and has downloaded both WEAP and the WaMDaM Wizard to a windows 

desktop machine. 

Use case 1: How are attributes, networks components, and data used in the Bear and Weber 

WEAP models similar and different?  

The first use case demonstrates how modelers can use the WaMDaM Wizard to 

query, summarize, and compare many WEAP models and their datasets. The use case 

represents modelers’ needs to query, plot, and analyze modeling data across models outside 

the WEAP proprietary database. These steps can help modelers answer the practical 

question how do ratios of river flow to basin storage compare across basins? This ratio is 

sometimes called the flow regulation factor and is the percent of total built-storage divided 

by the average annual river discharge (Nilsson et al., 2005).  

 Here we used the WaMDaM Wizard to extract models for the Bear and Weber 

Rivers into a WaMDaM Excel workbook and load the data into a WaMDaM SQLite 

database. We then used a Python script and Structured Query Language (SQL) in a Jupyter 

Notebook to query and summarize the two models’ input data. Then we estimate, and 

compare the average annual discharge (acre-feet) including river headflows and reach gains 

attributes in WEAP, total built reservoir capacity (acre-feet), and average annual demand 

(acre-feet) for both models. Finally, we used the WaMDaM Wizard to publish the SQLite 
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database into HydroShare to enable its discovery as described in Abdallah and Rosenberg 

(2019). 

Use case 2: Estimate sensitivity of demand reliability to changes in reservoir sedimentation, 

net evaporation, demand, and headflows? 

This use case supports modelers’ needs to prepare, populate, and run WEAP models 

with multiple scenarios and large input data. We defined four scenarios for the Bear and 

Weber Rivers that simulate changes in reservoir sedimentation, net evaporation, demand, 

an supplies and are similar to changes in input data and sensitivity analysis often carried 

by WEAP users (Craven et al., 2017; Jamshid et al., 2017; Mehta et al., 2018). Here we 

define water system reliability as the number of years with zero total annual shortage at a 

demand site divided by the number of simulation years (percentage) (Loucks et al., 2005). 

Reliability was calculated for five demand sites (out of 21) in the Bear River model and 

two out of 19 sites in the Weber River (Figure 3.3). Meeting demand depended on water 

availability, demand target, timing (i.e., month), and demand priority. The higher the 

demand priority (i.e., seniority in water right), the less the demand site is affected by a 

small reduction in water availability. 

The first reservoir sedimentation scenario reduces current reservoirs’ capacities by 

10% at once due to sedimentation generally trapped in reservoirs over time (Graf et al., 

2010; SWCA Environmental Consultant, 2013). Reservoir capacity in WEAP is defined in 

three input parameters, storage capacity, initial storage, and storage elevation curves. The 

second scenario simulates a 10% urban and agriculture demand conservation from current 

demand targets following national conservation trends (Dieter et al., 2018) and partial 
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fulfillment of Utah regional conservation goals (Jones, 2019). The demand input parameter 

is defined as seasonal and represents stationary demand across the simulation years. The 

third scenario increases net evaporation in reservoirs by 10%, which represents warmer 

and drier climate projections (Hill et al., 2014). Net evaporation is often defined as a time 

series or seasonal with monthly time steps. The fourth scenario decreases the rivers’ 

headflow by 10% (Kopytkovskiy et al., 2015). These headflows supply inflows to the 

system and represent climate projections of reduced precipitation. Headflows are often 

specified using time series data, but can also be input as seasonal data, especially for 

springs.   

 We defined the input data for each scenario using the generic WaMDaM Excel 

workbook. Then, we used the WaMDaM Wizard to load them into a WaMDaM SQLite 

database. Finally, we used the WaMDaM Wizard to connect to WEAP and completely 

populate it with input data for each scenario one-at-a-time from the SQLite database. We 

used Jupyter Notebooks and the WEAP API to analyze and plot system reliability to meet 

demand at each site. We then used the WaMDaM Wizard to publish both models’ input 

data in a SQLite file in HydroShare (Abdallah, 2020a). We note that these changes do not 

fully capture the dynamics of geology (for sedimentation), temperature, storage, surface 

area, and evaporation (Mitchell et al., 2018).  

We verified the integrity of the use case steps and workflows. First, we extracted 

the original WEAP model data for both models into the WaMDaM database. Second, we 

created copies of the original WEAP models in WEAP and set input parameters to zeros in 

one copy of each model. Third, we repopulated the WEAP models with input data from 

WaMDaM. Lastly, we ran the saved and repopulated models and compared results. We 
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specifically compared the simulated result of unmet demand at all sites and the total 

supplied water at the most downstream sites. This verification helped us uncover issues 

(e.g., typos in code) and fix them. As a result, WEAP users can organize and store their 

WEAP modeling data into a WaMDaM database and use the WaMDaM Wizard to prepare 

and populate their models with data and allow modelers to perform sensitivity analysis 

using this generalized framework.  

 

3.4 Results  

Results for the first use case to compare attributes, network components, and data 

across the Bear and Weber models show both models have hundreds of nodes/links and 

input parameters that use diverse data types (Table 3.2). The Bear River model represents 

demand in seasonal format as stationary across the years while the Weber model represents 

it as historical time series that reflect demand changes across years. Both models represent 

river headflows as time series which reflect the natural hydrology cycle that includes wet 

and dry years. These comparisons show the large amount of input data that WEAP 

modelers must typically prepare manually.    

Further analysis suggests that the Bear River flow is much more highly regulated 

than the Weber River flow (Table 3.3). The Bear Lake storage capacity alone of 1,516,633 

acre-feet exceeds the Bear River annual demand and discharge. This suggests the lake’s 

significance in the system and the importance of including it in strategic cooperation 

between Idaho and Utah to manage its storage, especially in droughts. The demand to 

storage ratio for both basins indicates that storage can satisfy a fraction of the annual 

demand. Finally, the discharge to demand ratio measures how much the river basin’s flow 
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is used or appropriated where the Bear River’s demand is one and a half times its annual 

discharge and the Weber’s demand is about half of its annual discharge.  

 

 

Table 03.2: Summary for the number of attributes with input data that apply to different 

instances (nodes or links) across the two WEAP different model instances 

 Bear River model Weber River model 

Value type # Attributes # Nodes/Links # Attributes # Nodes/Links 

Descriptive  89 60 32 30 

Numeric  281 197 231 152 

Seasonal  36 32 14 14 

Time series 24 24 27 27 

Array  11 11 8 8 

Total 441 324 312 231 

 

 

 

Table 3.3: Comparisons of total discharge (headflows and reach gains), storage, and 

demand and their ratios between the Bear and Weber River Basins, USA. The Bear River 

model used here only includes Utah and Idaho downstream portion and did not include the 

upstream Utah and Wyoming portions. 

Attribute Bear River Model Weber River Model 

Annual discharge (acre-feet) 2,301,804 975,502 

Storage (acre-feet) 1,657,044 551,240 

Annual demand (acre-feet) 1,068,352 473,385 

Storage/discharge (%) (regulated flow%) 72 57 

Demand/storage (ratio) 0.64 0.86 

Demand /discharge (ratio) 0.46 0.49 

 

 

 

For the second use case that developed and tested scenarios of reservoir 

sedimentation, net evaporation, water conservation, and river headflows, we found that 

reliability to meet demand targets varied from 50% to 100% in the Bear and Weber models 

(Figure 3.5). A few demand sites, such as “Logan Potable” for urban demand in the Bear 

River model and “Wanship to Echo” for agriculture demand in the Weber are insensitive 

to any scenario changes and have a 100% reliability.  
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Figure 3.4: WEAP model schematics for the (a) Bear River Watershed (Utah and Idaho 

portions) and (b) Weber River Watershed (Utah). Both models end in the Great Salt 

Lake, Utah. Demand site names in orange are referenced in results. 
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Both sites have high water demand priority and thus their demand is met much 

earlier. Other demand sites such as Highline and Hyrum Canals are sensitive to changes 

especially to a reduction in river headflows, due to a mix of factors such as demand target 

volume, timing, and priority or demand fulfillment order in comparisons to other sites. 

Conserving or reducing demand seems to improve the demand reliability while reducing 

the capacity of the reservoirs or increasing their net evaporation changes demand reliability 

a small amount. The “Weber Basin Proj. Ogd Valley” site in the Weber model (Figure 3.5) 

is the only demand site out of 19 where reliability is sensitive to all scenarios. This site has 

one of the lowest demand priorities and is located upstream on the South Fork tributary of 

the Weber River.  

 

 

Figure 3.5: System reliability to meet demand targets across scenarios in the Bear (blue) 

and Weber (red) Rivers WEAP models.  
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3.5 Discussion 

 The presented open source Python-based software with its use of the WaMDaM 

database allows WEAP modelers automate keys steps to 1) extract data from the 

proprietary WEAP database and store and organize data in a single WaMDaM open source 

database, 2) query, compare, and analyze model data externally, 3) develop new scenarios, 

and 4) import data for the new scenarios, run multiple WEAP models and scenarios and 

compare results. The tools show the large volume of data needed to set up and run a systems 

model; without the tools modelers manually prepare most of this data. The tools also allow 

modelers to develop additional analysis such as estimating the total built storage in a basin 

and comparing that storage volume to annual discharge, estimate how regulated a river is, 

and compare the regulation factor with other rivers. For example, the Weber River and the 

Bear River Basins regulated-flow to storage ratios of 72% and 57% rank in the top 97% 

and 95% percentiles of ratios reported by Nilsson et al. (2005) for the largest 296 river 

basins in the world. Modelers can also automate and perform a much larger number of 

sensitivity analysis across models and scenarios.  

The automated steps to export data from and input data to WEAP help improve the 

reproducibility of modeling workflows. The steps work across different numbers of 

models, scenarios, attributes, nodes, and links. The automated steps also cover all the types 

of data used by WEAP, including seasonal, time series, multi-column arrays for reservoir 

storage and elevation, numeric, and descriptive texts including equations. While WEAP 

provides version control of changes across a model, it is not easily possible for users to see 

what changed from one version to another. Thus, exporting the network and data of each 

WEAP version into WaMDaM allows a modeler to compare changes to each node, link, 
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and their variables and metadata as demonstrated by (Abdallah and Rosenberg, 2019). 

WEAP users who use the software can also better manage their input data, track metadata 

among scenarios, reproduce WEAP model setup with consistent input data, prepare and 

populate the data with virtually no errors that otherwise can occur due to manual copy and 

paste. Automating these tasks allows modelers to focus more on analyzing and 

communicating results with their stakeholders.  

 By exporting WEAP model data to WaMDaM, modelers can make use of existing 

tools to auto-publish their water systems model data online, such as in HydroShare 

(Abdallah 2020). Publishing WEAP data into HydroShare allows others to discover the 

model data. Publishing also meets funding agency and journal requirements to manage data 

and allows for reuse of model data beyond one study. The model data for this study are 

available in HydroShare at Abdallah (2020).  

3.6 Limitations and Future work 

The presented software does not support customized additions to the default WEAP 

data structure. One custom example is a demand site with sub-groups for “Institutional” 

and “Manufacturing” sectors and within the Manufacturing sector further “Cooling” and 

“Process” categories. Such sub-groupings do not have a “node” typology in the WEAP 

API and thus an import/export script cannot access the group to extract data from WEAP 

or populate data into WEAP. The WEAP import and export functions also require the user 

to define the schematic and the general WEAP configuration parameters such as time step, 

water start year, units, simulation period, month type (calendar, or equal length) because 

these parameters cannot be automatically set through the WEAP API.  The software is most 
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useful when users enter data inputs as values and avoid mathematical operations. Even with 

these limitations, the software functions allow modelers to automate the import and export 

of large volumes of WEAP model data. 

Future work should consider expanding the import and export functions to include 

user customized WEAP data branches and attributes outside the commonly used data 

structure. The WaMDaM Wizard also needs to be improved to be more user friendly, 

especially in handling potential errors and how users could solve them. Using the software 

on a larger inventory of the published WEAP models can develop further capabilities and 

expose limitations outside the Bear and Weber River model cases. Future work should 

consider extending the software to also include WEAP’s sister model “Long-range Energy 

Alternatives Planning systems” (LEAP) which is widely used for energy-policy systems 

modeling (Heaps, 2012). LEAP and WEAP were both developed by Stockholm 

Environment Institute, and they have similar interface and APIs but for two different 

domains: water and energy. Both WEAP and LEAP can be coupled to transfer water 

modeling data into related energy simulations.  

 Another potential extension is to develop import and export functions for the widely 

used RiverWare water resources systems model. RiverWare does not have an API but it 

does have automated demand management interfaces to read input data from and output 

data to standardized Excel, CSV, and database files. Setting up another automated 

connection with WaMDaM requires time to code and test the import and export features 

for multiple models. The set up generally should start with a conceptual mapping between 

the new model and WaMDaM key metadata such as object types, attributes, nodes and 

links, scenarios, and data of different types.  
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3.7 Conclusions  

This paper addressed the problem of developing general – rather than model-

specific – data management systems and scripts to extract data out of the proprietary Water 

Evaluation and Planning system (WEAP) model, set up multiple models and scenarios, 

populate data back into WEAP, and run the large number of models and scenarios. We 

demonstrated the software on two different existing WEAP models and five scenarios for 

the Bear and Weber River Basins in Utah, USA. 

Results show how the software facilitates comparison of input data across two 

different and originally separate WEAP models for the two basins. The comparison shows 

that the Bear River model has the larger network with 441 input data parameters. These 

results show size and complexity of the model and its granular coverage of systems 

components. The results also show the large effort needed to prepare and populate data into 

each model. The data automation presented here helps WEAP modelers prepare and load 

all parameters at once. Comparisons show how the Bear River has much less regulated 

flow than the Weber River. Such estimates can be applied on other WEAP models imported 

into WaMDaM to benchmark and compare rivers’ flow-regulation around the world. These 

comparisons are reproducible and were possible because model data was extracted into the 

open-source WaMDaM database.  

 Results from running large number of model and scenario sensitivity analyses show 

that system reliability to meet demand is sensitive to changes in river headflows and 

demand. Reliability does not change much in response to increasing reservoir evaporation 

or reducing reservoir capacity by 10%. In the Bear River model, reliability to meet demand 

site delivery targets range from 50 to 100% across the scenarios while the Weber model 
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has only one demand site that is sensitive to changes in reservoir sedimentation, water 

conservation, inflows, and evaporation. 

The automated import and export tools allow WEAP users to quickly query model 

data for a river basin, present aggregate analysis for a basin such as storage/discharge and 

demand/ storage estimates, and help modelers compare and benchmark basin 

characteristics across river basins. Using this software allows WEAP modelers to spend 

more time on modeling and communicating results with stakeholders and less time to 

develop study-specific tools that cannot be reused by others. 
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CHAPTER IV 

AN INTEROPERABLE SOFTWARE ECOSYSTEM TO STORE, VISUALIZE, AND 

PUBLISH WATER RESOURCES SYSTEMS MODELLING DATA 

Abstract  

Water modelers often develop and use software tools to store, query, visualize, and share 

their data. Developing these tools is time-consuming, requires programming experience, 

and is model specific. This paper presents an interoperable software ecosystem of 

independently developed, state-of-the-art open-source data storage, web visualization, and 

repository tools to systematically set up scenarios, update input data, compare model 

networks and outputs, discover data inputs, and visualize and publish data and models 

online. Use for two models for the Bear River Watershed, United States and one model for 

Monterrey, Mexico show different spatial extents and depths for the modeling networks, 

differences in modeled urban and agricultural water demand patterns, and how the models 

respond to population growth and conservation. The software ecosystem makes it easier 

for researchers and stakeholders to discover, use, reproduce, extend, and build new water 

resources systems models. We welcome contributions of new open-source tools to expand 

the software system functionality. 

Keywords 

Systems analysis, OpenAgua, WaMDaM, Hydra Platform, open source, HydroShare 
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Highlights 

● Modelers can use the software ecosystem to visualize, compare, edit, run, and publish 

data, models, and scenarios for multiple systems models. 

● The software ecosystem encourages reuse of tools and reproducibility of analysis 

● We welcome additional tools to expand software system functions 

Software availability  

Name of software: The WaMDaM Wizard 

Developer: Adel M. Abdallah  

Contact: Adel M. Abdallah; 8200 Old Main Hill, Logan, UT 84322, USA; Email 

amabdallah@aggiemail.usu.edu 

Year first available: 2019 

Required hardware and software: The WaMDaM Wizard executable is available for use 

with Microsoft Excel (2007 and later versions) and SQLite3 on Windows 64-bit computers. 

Hydra Platform web services are hosted by OpenAgua, which is available online on any 

browser. HydroShare is available online. 

Input data and directions:  Documentation of all source code, datasets, use cases, and 

instructions to use the ecosystem and replicate results are available on GitHub. Jupyter 

Notebooks can be executed on a local machine or run on the cloud using MyBinder service 

https://github.com/WamdamProject/WaMDaM_JupyterNotebooks/blob/master/2_Visuali

zePublish/00_WaMDaM_Directions_and_Use_Cases.ipynb 

Programming languages: Python and Structured Query Language (SQL). 

mailto:amabdallah@aggiemail.usu.edu
https://github.com/WamdamProject/WaMDaM_JupyterNotebooks/blob/master/2_VisualizePublish/00_WaMDaM_Directions_and_Use_Cases.ipynb
https://github.com/WamdamProject/WaMDaM_JupyterNotebooks/blob/master/2_VisualizePublish/00_WaMDaM_Directions_and_Use_Cases.ipynb


95 
 

 
 

Cost and license: Free. Software and source-code are released under the New Berkeley 

Software Distribution (BSD) 3-Clause License, which allows for liberal reuse.  

Graphical Abstract  
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4.1 Introduction  

Over the last half century, the water resources systems analysis community has 

made significant advancements to improve the modeling of interrelated natural and built 

water resources infrastructure and inform decisions regarding system planning and 

management (Maass et al., 1962; Rosenberg and Madani, 2014; Brown et al., 2015). 

Systems models represent mass-balance interactions between supply and demand 

components and have been widely used to support water resource systems analysis. Despite 

modeling advances, modelers face technical challenges to develop and use these models. 

First, systems modelers must manage and store input and output data and track metadata. 

Second, they need to set up socio-economic and infrastructure management scenarios and 

track differences in input and output data (Abdallah and Rosenberg, 2019). Third, modelers 

need to visualize water system components and their connectivity as nodes and links. 

Fourth, modelers must plot input and output data to communicate model results and engage 

stakeholders with minimum technical difficulties (Brown et al., 2015). Fifth, modelers are 

increasingly required by funding agencies and journals to publish the final modeling data 

and results to support reproducible science (Rosenberg and Watkins, 2018; Stagge et al., 

2019; Rosenberg et al., 2020). Currently, most systems modelers use or develop separate, 

model-specific tools for each of these tasks. Developing these tools is time-consuming and 

requires programming experience. Modelers would benefit from generalized tools that can 

store data, visualize and compare results, and publish data for many datasets and models. 

These tools should be reusable, independent of any specific software or model, require 

minimal programming, and be open-source should users want to modify or extend software 

functions. 
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Traditional water resources systems models such as the Water Evaluation and 

Planning system (WEAP) (Yates et al., 2005), RiverWare (Zagona et al., 2001), HEC-

ResSim (HEC, 2007), GoldSim (GoldSim Technology Group LLC, 2014), eWater Source 

(Welsh et al., 2013), Aquatool (Andreu et al., 1996), EPANET (Rossman, 2000), REALM 

(Perera et al., 2005), and the Stormwater Management Model (SWMM) (Rossman, 2010) 

provide data storage, data visualization, and results computation features in a tightly-

coupled software architecture. For example, WEAP and Riverware store data using 

proprietary database methods, as comma-separated-values (CSV), or as data management 

interface files. Modelers often use the software’s graphical user interface (GUI) to 

manually enter and access data while a few models, like WEAP, offer an Application 

Programming Interface (API) that allows programmatic access to its data. Most models 

have their own model engine which is one or more simulation or optimization algorithms 

to execute using input data (Loucks et al., 2005; Knox et al., 2014; Meier et al., 2014; Knox 

et al., 2018). Often, traditional software tools are proprietary such as WEAP, RiverWare, 

HEC-ResSim, GoldSim, eWater Source, and Aquatool and may require paid licenses to 

use. Other systems modeling software such as EPANET (Rossman, 2000), REALM 

(Perera et al., 2005) and the Stormwater Management Model (SWMM) (Rossman, 2010) 

are open source, free to use, but have specific user interfaces or input file formats. No 

software system can publish standardized data and associated metadata to online 

repositories. While each software has a community of users and these communities will 

likely continue to flourish. This heterogeneity among models reveals why it is difficult to 

reuse any of their data storage, visualization, or computational components. Additionally, 

sharing, publishing, or transferring data to another model may require significant effort to 
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first understand the proprietary data structures and then write data export and import 

functions for each model (Abdallah and Rosenberg, 2019). Further, traditional software 

often requires installation on local machines, which adds a barrier to engage stakeholders 

like water resources managers, who often look to inspect models input, network 

configuration, and visualize results of interest (Alminagorta et al., 2016a). 

Systems modelers and researchers also need to develop novel models with 

capabilities beyond traditional models (Lund et al., 2013; Alminagorta et al., 2016a; Kok 

et al., 2018; Lee et al., 2019; Alafifi and Rosenberg, 2020). Researchers often spend the 

time to prepare input data, develop algorithms, and recreate other data storage, 

visualization, and analysis features within their modeling environment even though other 

models support similar features. These modelers often use simple methods to manage data 

like Excel and text files (Sehlke and Jacobson, 2005; Alminagorta et al., 2016b). Using 

Excel allows modelers to easily access data but often requires the author to help others 

query or interpret data values. One reason for such difficulties to interpret and reuse these 

model files is because the files have limited or no metadata, are intended to be read by a 

computer rather than a person, and are intended to be used as input for a specific model in 

a specific location. This specificity can make model coupling and reuse difficult. 

In the broader field of hydrology, researchers have developed a loosely-coupled 

and interoperable software architectures such as OpenMI to couple hydrologic components 

such as snowmelt, runoff, and infiltration processes (Elag and Goodall, 2013). Each 

modeling component exchanges inputs and outputs defined across space and time with the 

other components using a standardized data coupling interface, shared vocabulary, and data 

exchange functions (Moore and Tindall, 2005). The HydroCouple interface extends 
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OpenMI to include geospatial data formats and support simulation on high-performance 

computers (Moore and Tindall, 2005; Buahin and Horsburgh, 2018). The Community 

Surface Dynamics Modeling System (CSDMS) (Peckham et al., 2013) provides an 

environment to couple earth surface models using a common programming language 

interpreter and shared vocabulary. Example coupling methods developed a web-service 

approach to couple components of the TopoFlow spatially distributed hydrologic model 

(Jiang et al. (2017). Zhang et al. (2019) introduced a service-oriented wrapper system for 

geo-analysis models for gridded modeling such as the Soil and Water Assessment Tool 

(SWAT) model and the Unstructured Grid Finite Volume Community Ocean Model 

(FVCOM). In such software or component coupling, the output data of a model is used as 

input data for another where each model still uses its own model-specific database. 

Therefore, such component-based coupling methods are mainly used to couple hydrologic 

models. These methods execute in sequence without archiving model data. While 

hydrology models use gridded data, systems models, represent reservoir, diversion, 

irrigation, municipal, hydropower, return flow, groundwater, river reach, and other 

components as nodes or links (Harou et al., 2010; Knox et al., 2014; Knox et al., 2019). 

Here we build interoperability between four independently developed, active, 

existing open-source software tools for water resources systems modeling. These four 

software frameworks are: 

1. The Water Management Data Model (WaMDaM) with its defined metadata and use 

of controlled vocabulary to enable data query and comparisons across models and 

datasets (Abdallah and Rosenberg, 2019),  
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2. Hydra Platform, which allows users to encode and communicate systems modeling 

data over the web using a web services approach (Knox et al., 2014; Knox et al., 

2019),  

3. OpenAgua, a web-based application that lets users collaboratively visualize and edit 

model networks (Rheinheimer et al., in review), and 

4. HydroShare that supports researchers to publish and discover water-related datasets 

and modeling data (Tarboton et al., 2014). 

We connect the tools into a software ecosystem (Jansen et al., 2009) by defining 

common data sharing functions and their equivalent vocabularies. The software ecosystem 

can assist modelers to perform the following three key tasks: i) organize and store water 

systems modeling data with metadata and controlled vocabularies, ii) visualize, edit, and 

compare networks, datasets, and scenarios in an online application, and iii) publish systems 

modeling data with contextual metadata to enable data discovery and analysis. These tasks 

allow modelers to engage stakeholders, reproduce analyses, and meet journal and funder 

data management requirements. The software ecosystem serves both existing proprietary 

and novel models. Below, we define three use cases that motivate and illustrate the 

software ecosystem. Three subsequent sections describe the software ecosystem 

components -- WaMDaM, Hydra Platform, and OpenAgua, and HydroShare -- their 

coupling, and application in the Bear River Watershed USA and the Monterrey 

metropolitan area, Mexico. The final sections present use case results, limitations, 

recommendations, and invite community involvement to grow the software ecosystem. 
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4.2 Use Cases 

The software ecosystem components focus on supporting three steps that modelers 

commonly follow to develop models: i) store model data, ii) visualize networks and plot 

data, and iii) publish data to enable their discovery. Three use case questions guide the 

software ecosystem work:   

1. How are networks and their data similar and different for different models in the same 

study area?  

2. How do water management scenarios in two different models of the same study area 

compare? 

3. How do the values for an input data parameter compare in two published modeling 

datasets? 

 

The answers to these questions address modelers’ needs to visualize their model networks, 

visualize system data, verify data input, and engage stakeholders. These questions also 

address modelers needs to change model input data, run models, and then visualize output 

data across scenarios and models. Presently, these steps are often manual and specific to 

the model’s input data file structure. 

4.3 Software ecosystem 

4.3.1 Components 

Here we describe four existing, generic, open-source software components that 

provide some of key modeling features (Table 4.1). First, WaMDaM is a well-defined 

data and metadata management framework with software tools to load, relate, and 
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compare data for many systems modeling data (Abdallah and Rosenberg, 2019). The 

WaMDaM Wizard is an open-source Python and desktop-based software that helps users 

load and query data from a WaMDaM SQLite database (Abdallah and Rosenberg, 2019). 

Second, Hydra Platform framework is an early example of a generic open-source user-

interface coupled with a data-manager for systems water management data. Hydra 

Platform provides a web service approach to encode and communicate data between the 

three software components of storage, user interface, and models using a generic data 

storage system for networks and their data while not requiring metadata (e.g., source and 

method of data) (Harou et al., 2010; Knox et al., 2014; Knox et al., 2019). The software 

components that communicate with Hydra Platform are referred to as “client 

applications”. Third, OpenAgua is a client web-based application for collaborative 

modeling and visualization of water resources planning and management that uses Hydra 

Platform as its data storage system (Rheinheimer et al., in review). OpenAgua generically 

manages data for models where users can optionally add metadata and use terminology 

that describe each model. Fourth, HydroShare is the Consortium of Universities for the 

Advancement of Hydrologic Science, Inc. (CUAHSI) online collaboration environment 

with web-services for sharing and discovering data, models, and code (Tarboton et al., 

2014). HydroShare requires metadata according to the Dublin Core Metadata Initiative 

which describe digital resources (i.e., files) such as title, owner, coverage in space and 

time. HydroShare also creates a Digital Object Identifier (DOI) for the published 

resources (e.g., modeling data) so resources can be easily cited in journal publications 

and other documents. Both OpenAgua and HydroShare allow their users to make 

modeling networks and data publicly available online.  
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Table 4.1: Four generic, active, free, and open source software tools to manage, serve, 

visualize, and publish water resources data and models. 

Component Purpose and use Key strengths and capabilities 

Hydra Platform 

(Knox et al., 

2014; Knox et 

al., 2019) 

Data storage and 

web services to 

manage water 

resources systems 

networks  

● Consistent storage facility for network topology and 

associated datasets 

● A server that exposes all functionality as a web service to 

which applications can connect to access data. 

● Utilities to import and export data from/to Excel, CSV, 

WaterML, and GDX for GAMS  

OpenAgua 

(Rheinheimer et 

al., in review) 

A web-based 

application for 

collaborative water 

systems modeling  

● Uses Hydra Platform for data storage 

● Online collaboration/sharing for modeling and scenario 

analysis 

● Users can view and edit network structure (nodes and links), 

scenarios, and input data; connect with and run model 

engines, and view results through interactive graphs. 

WaMDaM 

(Abdallah and 

Rosenberg, 

2019) 

A relational data 

model for water 

resources systems 

and supporting 

software to load 

data, organize and 

describe systems 

water management 

data 

● Reconciles semantic and syntax differences across datasets 

and models through controlled vocabulary and contextual 

metadata.  

● Supports scenario comparisons in topology, metadata, and 

data values 

● Enables direct access to subsets of data and metadata 

● The WaMDaM Wizard interface to load and export data 

HydroShare 

(Tarboton et al., 

2014) 

 

Online 

collaboration 

environment for 

sharing data, 

models, and code. 

● Cloud-based API services to publish and discover code, 

models, and data  

● Supports social activities among its users to collaborate and 

comment on published data and search authors and their 

products 

● Supports permanent data and model publications through 

DOIs 

 

 

 

4.3.2 Coupling Components 

We show the coupling of software ecosystem components in Figure 4.1. Together, 

the coupled components allow users to reuse components to store, visualize, compare, 

publish, and discover modeling data across many different models. Key connections 

shown by black arrows in Figure 4.1: i) move data from a WEAP model into the 

WaMDaM database, ii) export data from the WaMDaM database and upload data to 

Hydra Platform, iii) exchange data between Hydra Platform and OpenAgua, and iv) 
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import data from Hydra Platform into WaMDaM (the oppostive direction of step ii). 

Final steps include  v) publish data from WaMDaM into HydroShare, and (vi) use 

Jupyter Notebooks to query and analyze published datasets. Below, we describe the 

coupling of each pair of components.  

 

 

 
Figure 4.1: Coupling of independently developed components into a software ecosystem 

(black arrows). The software ecosystem allows users to extract or serve data from/to 

specific models, organize data with metadata and controlled vocabulary, visualize and 

edit networks online, download edited data, serve data to models, and publish model data 

online so it can be discovered.  
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4.3.3 Import model datasets to WaMDaM  

Modelers can already organize and store their water management data in a 

WaMDaM SQLite database using the WaMDaM Wizard. The Wizard supports importing 

modeling datasets from a generic Microsoft Excel importer, WEAP models networks and 

their data using WEAP’s API (Abdallah and Rosenberg, 2019), stream discharge time 

series data from the Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. (CUAHSI) hydrologic information systems web services or U.S. Bureau of 

Reclamation reservoir storage and releases time series data. Modelers can also export 

GAMS data for optimization models into CSV files and then use the generic Excel importer 

to import the data into a WaMDaM database (Abdallah and Rosenberg, 2019). Each model 

dataset that is connected to the WaMDaM database can in turn be connected to the other 

ecosystem components as described in the following sub-sections.  

4.3.4  Export from WaMDaM to Hydra Platform 

 After importing modeling data into WaMDaM, modelers may need to move data to 

other tools such as Hydra Platform to take advantage of dependent online client 

applications such as OpenAgua. WaMDaM and Hydra Platform manage data for the same 

shared domain of water resources systems modeling. However, they have different 

motivating use cases and thus have different designs. WaMDaM organizes data and 

metadata and uses controlled vocabularies to relate terms across many models and datasets, 

whereas Hydra Platform provides generic storage and web-service approach that supports 

client applications (e.g., GUI) for systems models.  
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To couple WaMDaM and Hydra Platform, we first identified and mapped the 

equivalent common tables and contents between WaMDaM and Hydra Platform where 

each of them has different terms to describe the same metadata item (Table 4.2). Hydra 

Platform handles users’ login information and has the concept of a project where users can 

collaborate on one or many networks for the same model. In contrast, WaMDaM uses 

controlled vocabularies to relate synonymous object types, attributes, and instances across 

models and supports the reuse of explicit metadata of sources, methods, organizations, and 

people that describe data. Hydra Platform only allows changing data values among 

scenarios for the same network while WaMDaM allows changing both the network and 

data values as part of scenarios. Thus, two scenarios in WaMDaM with differences in nodes 

and links for the same master network will be stored in Hydra Platform as scenarios in two 

separate networks. 

Finally, we wrote a Python script to export WaMDaM data to Hydra Platform. The 

script is run from the WaMDaM Wizard and i) connects to a WaMDaM SQLite database 

that is previously populated with data for many systems models. Each model may have 

many networks, and each network may have many scenarios. Then ii) under the “Visualize 

and Publish” tab in the Wizard, the user clicks “Hydra Platform/OpenAgua” and fills out 

login credentials to their Hydra Platform account. Users then iii) upload WaMDaM data 

into an existing project in Hydra Platform or add a new project. Next, users iv) choose a 

resource type in the WaMDaM database (e.g., model or dataset name) to visualize its 

network and data. Then users v) choose a network for the model and vi) choose one or 

many scenarios inside the network. Finally, the user clicks “upload.” The Python script 

calls the Hydra Platform web service to add a project, uses a SQL script to query the 



107 
 

 
 

WaMDaM database for the data to populate into each equivalent Hydra Platform table. The 

script then calls the “add_attribute”, “add_template”, and “add_network” methods to add 

new attributes, add a new resource type (i.e., a model, which includes all object types, their 

attributes), and add the network which includes all nodes and links and their scenarios   

  
 

Table 4.2: Mapping common key equivalent metadata elements between WaMDaM and Hydra 

Platform  
WaMDaM  Hydra Platform  Common description 

Resource type Template A container or collection of many types of water system 

components that represent a model (e.g., WEAP) 

Object Type Template Type A system component type (e.g., reservoir, demand site) 

Attribute Attribute A property of a system component that takes data values 

Instance Resource A specific implementation of the system component in 

space (e.g., Hyrum Reservoir) 

Object Typology  Resource Type The type of a system component instance as node or link  

Mappings Resource Attribute A Bridge table that allows attributes of systems 

components types to be associated with many resources or 

instances  

Scenario Scenario Contains and relates all data values within a network for a 

specific socio-economic, operation, physical, or other 

model set up 

Scenario Mapping Resource Scenario A Bridge table that allows one scenario to be associated 

with many values for instances and their attributes  

Master Network Network Contains many scenarios for a network in a study area 

Attribute data type Attribute data type The structure of data as time series, array, numeric, text  

Data Value Dataset A specific data entry with a relation with the above 

metadata  

 

 

 

4.3.5 Export from Hydra Platform to OpenAgua   

Once the modeling data are successfully uploaded into Hydra Platform, they 

automatically become available to Hydra Platform client applications such as OpenAgua 

that communicate with the Hydra Platform API to store, manage and retrieve data. The 

API calls include ‘login_user,’ ‘get_network,’ and ‘update_scenario.’ The OpenAgua web 
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API is written in Python, exposed to end users via a graphical user interface, and includes 

a wide range of functions that extend the core data management capabilities of Hydra 

Platform (Rheinheimer et al., in review). By design, any network, scenario, data value, 

metadata that is created in OpenAgua can also be accessed using Hydra Platform’s web 

service functions. Hydra Platform manages users and login credentials; OpenAgua extends 

this user management capability with a public user whereby projects and networks can be 

publicly visible to any OpenAgua user.  

4.3.6  Connect Hydra Platform to WaMDaM  

Modelers may also want to export data hosted in Hydra Platform to WaMDaM. 

This export would allow further cross-model data queries and analysis that are not possible 

in Hydra Platform or OpenAgua and is the reverse of the connection described in Section 

4.3.4. To export data from Hydra Platform to WaMDaM, open the WaMDaM Wizard and 

under the “Import Data To WaMDaM” tab, click the “Import From Hydra Platform” 

button. The user first provides their Hydra Platform account credentials to connect to the 

Hydra Platform server. Next, the user selects a project name, resource type (i.e., model 

name), a network, scenario, and a directory on the local machine to import the Hydra 

Platform data into a WaMDaM template Excel file. When the user clicks the “Import” 

button, the WaMDaM Wizard script calls in order the four main Hydra Platform web 

service functions:  “get_template,” “get_network,” “get_scenarios”, and 

“get_all_resource_data”. These functions pull i) a list of all the object types and their 

attributes, ii) a list of nodes and links, iii) all the scenarios in the selected network and their 

metadata of start and end dates and time steps, and finally iv) a list of all attributes for the 
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nodes and links and their data values of supported data types: time series, array, numeric, 

seasonal, and descriptors. Each call returns a JavaScript Object Notation (JSON) result 

which is parsed and mapped to the WaMDaM tables and their terminology. Modelers then 

can augment the Excel workbook template with additional metadata that are required by 

WaMDaM and may not be available in Hydra Platform such as source, method, people, 

and organizations for the nodes, links, and data values. If metadata is not known, modelers 

can define and reuse one generic metadata item (e.g., source) to all model data in 

WaMDaM. Modelers also can use controlled vocabularies in the workbook template to 

register native terms of datasets in Hydra Platform which allows the terms to be queried 

using controlled terms (Abdallah, Rosenberg 2019). Users then use the WaMDaM Wizard 

to load the imported Excel workbook into a WaMDaM SQLite database. 

4.3.7 Connect WaMDaM and HydroShare 

Modelers are increasingly required to publish their modeling data with contextual 

metadata that describe its content and coverage in space and time. Additionally, there is 

increasing need to provide programmatic access to read, query, and analyze published data. 

The WaMDaM database can contain modeling data from Hydra Platform, Hydra Platform-

compliant applications like OpenAgua, model data sets such as for a WEAP model, or 

other data sources. To publish WaMDaM SQLite files into HydroShare as a “Composite 

Resource,” we wrote a new Python script. The script is, accessed in the WaMDaM Wizard, 

harvests the Dublin Core Metadata from WaMDaM database, and uploads the SQLite file 

with the model data into HydroShare. More specifically, the script uses the “hs_restclient” 
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Python REST API library that allows programmatic access to publish and query 

HydroShare files and metadata (Black et al. 2019).  

To use the script, a user should open the WaMDaM Wizard and connect to a 

WaMDaM SQLite database that contains the systems models, networks, and their data. 

The Wizard verifies that SQLite file complies with the WaMDaM schema including all 

tables and fields. Next, under the “Visualize and Publish” tab in the Wizard, the user clicks 

“HydroShare.” The user then provides their login credentials to their HydroShare account, 

a title, abstract, and author name(s) for the new dataset publication. Finally, the user clicks 

“Publish”. This button executes a Python script that auto queries the following generic and 

extended metadata from the SQLite file: i) temporal coverage from the modeling 

scenario(s) as the minimum start and maximum end dates, ii) spatial coverage box from 

the minimum and max latitude and longitude for nodes in the network(s), iii) list of 

resources type(s) (i.e., model names), unique object types, and attribute controlled 

vocabularies (if they exist), iv) network and scenario name(s), and v) list of sources, 

methods, people, and organizations metadata. The script adds three keywords to the created 

HydroShare resource: “WaMDaM, “systems models”, and “water management.” These 

keywords allow HydroShare users to discover the published dataset and other prior-

published datasets. Next, the script calls HydroShare’s “createResource” method to upload 

the WaMDaM SQLite file and all the above metadata into a private resource in HydroShare 

where users can edit metadata, share the resource with other HydroShare members, or make 

the resource public. Finally, HydroShare creates a DOI for permanent publication. Once 

the user makes the published resource public, modelers can use Jupyter Notebooks to 
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programmatically access any of the published WaMDaM SQLite databases in HydroShare 

using WaMDaM’s defined schema to query, analyze, and potentially reuse model data.  

4.3.8 Additional coupling and testing 

Coupling WaMDaM, Hydra Platform, and OpenAgua required each developer to 

make minor changes to their software. For example, we added a field named layout 

property in WaMDaM for object types to visualize a shape for each object type (e.g., 

reservoir icon as a triangle). We adopted OpenAgua’s object type layout that encodes the 

icon shape and color in JSON format. We allowed the groupings of nodes and links in 

Hydra Platform to be optional--as opposed to required--to accommodate some WaMDaM 

data with no groupings. We added the source and method metadata fields to Hydra Platform 

and OpenAgua to match WaMDaM.  

We required four scenario properties in WaMDaM so scenarios could be opened in 

OpenAgua: “ScenarioStartDate,” “ScenarioEndDate,” “TimeStep,” and 

“TimeStepUnitCV.” We also added two additional fields, ScenarioParentName and 

ScenarioType, to the Scenarios table in WaMDaM. “ScenarioParentName” explicitly maps 

scenario inheritance among scenarios as supported in Hydra Platform and OpenAgua. 

“ScenarioType” can take one of three potential values in OpenAgua: “Baseline,” 

“Scenario,” and “Results.” 

The “Baseline” type indicates the root (parent) scenario that can have many 

children scenarios. The “Scenario” type indicates a child scenario which can also be a 

parent to other scenarios. Each newly defined child scenario in Hydra Platform and 

OpenAgua references (i.e., reuses) the identical input data of its parent. Users can edit the 
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new scenario’s input data using the “Basic Data Input” editor in OpenAgua. Users can 

enter new values manually in the tabular format. The new values will be unique to the child 

scenario. The “Results” scenario type stores output values for a modeling scenario. This 

scenario type is used in OpenAgua to visualize and compare output datasets in the “Results 

Explorer.” Finally, WaMDaM adopted the list of units used in Hydra Platform as a 

common controlled vocabulary. OpenAgua also adopted Hydra Platform units and added 

a unit conversion utility. These changes allow users to send WaMDaM data to Hydra 

Platform and OpenAgua to examine and edit scenarios online as well as send the data back 

to WaMDaM to run a model or publish the dataset. We anticipate that the coupling is the 

beginning of an update process where each software will continue to update to improve the 

user experience and accommodate more diverse use cases.  

We validated the integrity of the import and export scripts to couple software 

ecosystem components by uploading the Bear River 2017 water allocation WEAP model 

(Abdallah, 2019) from WaMDaM to Hydra Platform and onto OpenAgua and then 

downloading the model dataset back into WaMDaM. We then used the WaMDaM Wizard 

scenario comparison tool to verify that both scenarios, the original in WaMDaM and the 

newly downloaded scenario form OpenAgua, were identical and no changes were 

unintentionally introduced in the upload or download mappings. Thus, modelers now can 

upload WaMDaM modeling data into Hydra Platform and use OpenAgua to visualize and 

edit data online. Users can also import models from OpenAgua into WaMDaM, run the 

model, and publish input or output results into HydroShare to enable data discovery, 

analysis, or to serve data to other models. 
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4.4 Application  

We illustrate the numerous benefits of the software ecosystem with three use cases 

that include tasks to store, visualize, edit, publish, and compare modeling data for two 

models in the Bear River Watershed, USA and a third model for the Monterrey 

metropolitan area, Mexico. The first model is the Watershed Area of Suitable Habitat 

(WASH) optimization model that allocates water to maximize watershed habitat areas for 

the Lower Bear River Watershed (Utah portion) (Alafifi and Rosenberg, 2020). The 

WASH model uses the General Algebraic Modeling System (GAMS) engine which has no 

user interface. The second model is a WEAP simulation model that allocates water by water 

right priority within the Bear River Watershed (Utah and Idaho portions). WEAP has a 

proprietary database and does not support data publication. The third model is a water 

allocation model for the Monterrey metropolitan area, Mexico (Rheinheimer et al., in 

review). Both the WASH and WEAP models were developed from a predecessor 2010 

Utah Division of Water Resources model for the lower Bear River basin that had a plain 

text input file and Fortran computational engine which was never run. The WASH model 

disaggregated irrigation demands within Cache Valley, Utah while the WEAP model 

extended the model domain upstream to Idaho and Bear Lake. The Monterrey model is 

stored in Hydra Platform within OpenAgua with no controlled vocabulary. The use cases 

assume a modeler has used the WaMDaM Wizard and loaded data for the three models 

into a WaMDaM SQLite database (Abdallah and Rosenberg, 2019) and that the user 

already has accounts for HydroShare and OpenAgua (free).  Sharing the model input and 

output in public sites allows stakeholders to better access the modeling process and results. 
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The first use case exported the WEAP and WASH model data for the Bear River 

watershed from WaMDaM to HydraPlatform and onto OpenAgua. Then OpenAgua was 

used to visually compare the similarities and differences in the model networks in an online 

web browser. OpenAgua does not support running WEAP or WASH models online.  

The second use case created new WEAP and WASH model scenarios in OpenAgua 

that increased and decreased annual urban water demand in Cache County, Utah by 25% 

from the base demand then exported the model data to Hydro Platform and on to WaMDaM 

to run the models. The model runs quantified the annual percent change in unmet demand 

at Cache County (WEAP model) and change in the suitable watershed area for aquatic, 

flood plain, and wetlands habitat for native Bonneville cutthroat trout fish, cottonwoods, 

and three indicator migratory bird species with differing needs for shallow, medium, and 

deep water habitat (WASH model). More specifically, scenario data were manually input 

and edited online in OpenAgua (Appendix C, Figure C1).  The WaMDaM Wizard was 

used to download the new scenario data back to WaMDaM. Python scripts in Jupyter 

Notebooks (Abdallah and Rosenberg, 2019) were used to query the WaMDaM database 

for each model, serve the new scenario data into WEAP using its API write the .gms WASH 

input data file, execute both models, and read their results and store them in WaMDaM. 

Next, the WaMDaM Wizard was used to export scenario results for both models from 

WaMDaM to Hydra Platform and on to OpenAgua. Finally, OpenAqua “Results Explorer” 

utility was used to plot and compare the annual unmet demand across the baseline, 

conservation, and growth scenarios. 

The third use case compares the magnitude and seasonality of agriculture water 

demand for the Monterrey metropolitan area, Mexico and the Bear River watershed in Utah 
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then publish the datasets in HydroShare. For this use case, we uploaded each model dataset 

to HydroShare, then used a Python script in the Jupyter Notebooks to access and download 

the published SQLite files, query, and compare the controlled terms “Delivery target” for 

“Logan Irrigation” demand site in Utah and “Delivered flow” for agriculture demand for 

the “DR Bajo Rio San Juan” site in Mexico. Who choose sites in both models to compare 

the seasonality and magnitude of irrigated agriculture in two countries since they have 

comparable demand for irrigation.    

4.5 Results 

 We present use case results to manage, visualize, edit, and publish water resources 

modeling data and results online. 

Use Case 1: How are the networks of the WEAP and WASH models in the Bear River 

Watershed, USA similar and different? 

Comparison of the two model networks (Table 4.3 and Figure 4.2) shows:  

1. The WEAP model for the Bear River supports more water system components 

such as flow requirement, groundwater, and streamflow gage which are not 

explicitly supported in WASH. The common resource types between the 

models that use the same controlled vocabularies are “demand” and “dem”, 

“reservoir” and “v”, and Return Flow and “returnFlowExist” in WEAP and 

WASH respectively. WASH used the general node resource type “j” for any 

other network connection while WEAP is specific about the types such as 

“River Headflow” or “Diversion Outflow.” These results show the similarities 

and differences in the two models’ capabilities and a potential for input data 
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reuse or transfer between them in other watersheds (e.g., populate a new WASH 

model from an existing WEAP model), 

2. The WEAP model has a larger number of object instances and covers a larger 

area upstream into the Idaho. For example, the WEAP model includes 20 

demand sites within the same Lower basin area compared to 11 sites for WASH. 

More specifically, the WEAP model includes three urban demand sites for 

Cache County (“Logan Potable,” “North Cache Potable,” and “South Cache 

Potable”) while WASH represents all of them in one node as “j3” that has a 

controlled term of “Cache County M&I.” The reader can view these sites in 

OpenAgua (Figure 4.2). 

3. The WEAP model also includes specific upstream supply and demand and 

storage especially Bear Lake (top half of the screenshot). In the WASH model, 

this part of the system is aggregated into a river headflow.  

4. The Bear River WEAP model simulates demand reliability across 40 years of 

interannual monthly of dry, wet, and average water years compared to the 

WASH model which focuses on maximizing the watershed area for suitable 

habitat within a single year. Thus, the WEAP model could be useful to quantify 

cooperation scenarios between the Utah and Idaho states where downstream 

users in Utah could store water in Bear Lake in wet years and use it later in dry 

years. 

Results for the use cases can be accessed as follows: Both the Bear River WEAP 

and WASH models are shared published in HydroShare (Abdallah, 2020b) (Appendix C-

Figure C2).  
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Table 4.3: Key comparisons between WEAP and WASH models visualized in OpenAgua 

Comparison element WEAP Model WASH Model 

Water system component types 14 (see the list under “Resources” 

in Figure 4.2 -a) 

6 (see the list under 

“Resources” in Figure 4.2 -b) 

Geographic extent  Bear River (Utah, Idaho) Lower Bear River (Utah) 

Water system components  136 43 

Time step and extent  monthly (1966 - 2006) monthly (2003) 

 

 

 

Use Case 2: What are the differences in WEAP and WASH model’s outputs in the face of 

water conservation and population growth scenarios in the Bear River Watershed?  

Results follow the general expected trend that increased demand increases 

shortages while water conservation reduces shortages (Figure 4.3). There are four years, 

1970, 1976, 1993, 1996, where water conservation completely eliminates shortages while 

shortages persist for the base case and increased demand scenario. In dryer years (e.g., 

1987 to 1992 and 200 to 2004 where there is not enough water to meet site demand p), the 

conservation scenario reduces the magnitude of shortages compared to the baseline 

scenario. These results are also available online in OpenAgua for stakeholders to view and 

discuss without needing to install WEAP or purchase its license.  

For the WASH model, the watershed area for suitable habitat for native vegetation, 

birds and fish in the baseline scenario (2003 hydrologic year) is estimated at 121,526 acres. 

Reducing Cache County urban demand by 25% would increase the WASH area by 144 

acres while a 25% increase in the site’s demand would decrease the WASH area by 142 

acres. 



118 
 

 
 

 
Figure 4.2: OpenAgua visualization of model networks for (a) Bear River WEAP 

simulation model 2017 (Utah and Idaho portion) and (b) Watershed Area for Habitat 

Suitability (WASH) optimization model (Utah portion). The models schematics and input 

data can be viewed and inspected online in OpenAgua under “Public Projects” 

(Rheinheimer, 2020) 

  

a 

b 
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This small increase or decrease in WASH area is because of the small influence of 

Cache County urban site which represents about 18% of the total annual agriculture and 

urban demand in this watershed of 415 million cubic meters (336,446 acre-feet). These 

results show the potential role of targeted urban water conservation and growth in 

improving or degrading suitable habitat areas in the watershed. 

One very interesting comparison between WEAP and WASH models is that 

WEAP estimates 8%, 12%, 17% increase in demand shortage for Cache County urban 

site n 2003 (Figure 4.3, red box) while the WASH model meets completely satisfies 

demands (no shortages) for  all three demand scenarios. If the WASH model could not 

meet the demands (constraints), the model would return an infeasible solution (Alafifi 

and Rosenberg, 2020). This discrepancy between the two models to meet demand at the 

Cache County urban site in 2003 is likely because of the two models different spatial 

extents and how they aggregate and disaggregate demand sites and upstream supplies 

(see Use case #1 results).     

Use Case 3: How do the magnitude and seasonality of agriculture water demand in 

Monterrey metropolitan area, Mexico and Utah compare? 

Results show on average that the monthly demand target for “Logan Irrigation” site 

in Utah is 1.8 cubic meter per second (cms) (black squares) compared to 0.15 cms demand 

(grey circles) for “DR Bajo Rio San Juan” agriculture demand site in Monterrey Mexico 

(Figure 4.4). Agriculture demand (i.e., crop growth) in Utah extends for six months and is 

much shorter than the 11 month irrigation season in Mexico. In Utah, agriculture demand 

begins in April, peaks in July, and ends in October. In Mexico, agriculture demand begins 

in December, peaks in April, and ends in October. It is unclear why the Mexico demand 
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from June to October has two steps of increase and decrease. The two steps may represent 

switching to different crops or harvesting patterns. This comparison between two different 

models and counties was possible because of the software ecosystem interoperability and 

moving data between their systems. The Monterrey, Mexico water allocation model data 

can be accessed in HydroShare (Abdallah, 2020a).   

 

 

Figure 4.3: OpenAgua “Results Explorer” dashboard plot of annual shortage for Cache 

County, Utah as estimated in the WEAP model over the simulation period 1966-2006 for 

three demand scenarios. The red rectangle highlights unmet demands in 2003 that is the 

base year for the WEAP model.  
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All of the above results can be reproduced in Jupyter Notebooks (Abdallah, 2020c). 

While a WEAP software license is still required to run the Bear River model, stakeholders 

can use the OpenAgua tool (with a paid license) to examine the model input data and select 

results. 

 

 

 
Figure 4.4: Comparing demand target for the Logan Irrigation, Utah (black) with “DR 

Bajo Rio San Juan” agriculture demand site in Monterrey, Mexico (grey).  
 

 

 

4.6 Discussion 

Connecting WaMDaM, Hydra Platform, OpenAgua, and HydroShare into a 

software ecosystem allows modelers to store, edit, run scenarios, visualize, and publish 

online water resources systems data. The software ecosystem facilitates the export of model 

data from one component to another to allow users to access data storage, analysis, 

visualization, and publishing features not supported by an individual component.  
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Together, these coupled features allow modelers to compare simulation and optimization 

models for the same modeling domain and different domains. For example, the WEAP 

Bear model supports more specific demand sites within the same area compared to WASH 

and thus WEAP offers more decision support analysis for each demand site. The WEAP 

Bear River model represents specific upstream supply and demand and storage compared 

to aggregated river headflows in WASH. Thus, the WEAP model could be useful to 

quantify cooperation scenarios between Utah and Idaho. The WEAP Bear River model 

includes 40 years of monthly supply data compared to a single year in this WASH model 

and thus the WEAP model would be more useful to simulate water allocations and 

potentially unmet demand under a spectrum of historic hydrologic years from dry to wet 

conditions. Reducing urban demand in Cache County in the Bear River WEAP model by 

25% would reduce unmet demand relative to the base case including in dry years. The same 

software ecosystem tools and steps were used for a different model (WASH) to estimate 

the effect of decreases in Cache County urban demand by 25%. In the third use case, 

comparing Utah and Mexico agricultural demands from two models showed both 

agriculture demand sites from two different models for Utah and Mexico share high 

seasonal variability but have different growth seasons. The identified variability suggests 

the importance of water storage for both sites at different times when demand is low 

(winter) to use water later when demand is high such as Spring in Mexico and summer in 

Utah. 



123 
 

 
 

4.6.1 Advantages of using the software ecosystem tools 

No model or software tool can do all data storage, scenario entry, visualization, 

comparison, stakeholder access, and publishing tasks well. The software ecosystem allows 

modelers to export their data to the software component that is best suited for the data or 

modeling task. Additionally, the software ecosystem allows users to construct workflows 

for tasks that cannot be done in any of the individual software system components. For 

example, the software ecosystem allows users to visualize and compare model data for 

many models and scenarios without being limited to one set of core object types and 

attributes as in WEAP and RiverWare. Users can also define model’s scenarios online in 

OpenAgua then move data to WaMDaM to run the model and publish results. The 

ecosystem tools can help compare networks for the same basin in two different modeling 

software. These comparisons are facilitated by consistent data storage with metadata and 

controlled vocabularies in WaMDaM, Hydra Platform, and consistent visualization in 

OpenAgua. 

The software ecosystem further allows each model and dataset to retain its native 

terms for object types and attributes. This feature allows users to view model data in 

OpenAgua and support broader stakeholder engagement. Stakeholders can inspect 

modeling networks and data using an internet browser without needing a paid license or to 

install software on local machines. This online setup provides users greater access to create 

new scenarios, edit and visualize input data using OpenAgua interface.  

Researchers who develop novel models can use the software ecosystem 

components to manage their data, compare scenarios, and identify differences in networks, 

input, and output data without need to develop their own data management, online 
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visualization, or publication features. Comparing datasets across novel and existing models 

will help researchers undertake benchmarking studies and distinguish similarities and 

differences in input data.  

The automated publishing of water resources systems models and their data will 

make it easier for researchers and stakeholders to discover, use, reproduce, extend, and 

build new models. Sharing and publishing these models and datasets helps researchers 

fulfill data management requirements established by the National Science Foundation 

(https://www.nsf.gov/eng/general/dmp.jsp) and by journals (Rosenberg and Watkins, 

2018; Stagge et al., 2019; Rosenberg et al., 2020). Sharing model datasets can increase the 

potential for their reuse, reduce the time to build models, and increase the value of water 

resources models within and outside the discipline. The use of the software ecosystem 

products by others can be measured by a simple discovery exercise in HydroShare: search 

resources for the keyword “wamdam”. Currently, HydroShare returns six published 

WaMDaM datasets that are part of this work.  

4.6.2 Limitations 

There is a lot of work to do to improve the software ecosystem tools and coupling. 

There are still metadata and software-specific configurations and parameters to support. 

The WaMDaM Wizard is currently implemented on a local machine. Deploying WaMDaM 

in a cloud setting with web services coupling similar to OpenAgua, Hydra Platform, and 

HydroShare would make the WaMDaM Wizard less dependent on local computer 

configurations. Currently, OpenAgua users can only visually search for public models and 

networks, which will become difficult as the number of projects and networks grow with 

https://www.nsf.gov/eng/general/dmp.jsp
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time. Currently, data and model discovery are limited to projects and networks in 

OpenAgua or SQLite databases and their metadata in HydroShare. HydroShare does not 

natively support data analysis on data within multiple SQLite files. It is also not easily 

possible to search with HydroShare for specific network, scenario, node, link, or attribute 

data that are contained within published SQLite files in HydroShare. Reproducing model 

results requires running the models. Running models may be difficult for models that must 

be installed on a desktop machine, require a paid license, and are operating system specific.   

The current scenario parameters in WaMDaM and Hydra Platform use simple time 

steps such as day, month, or year. The software ecosystem might support complex time 

steps, such as leap years, number of days in the month, that are available in WEAP.  

Invariably, it will be difficult for software ecosystem developers to keep up with all the 

modifications and improvements that model developers make. 

4.6.3 Future Work 

Future versions of the software ecosystem should support geo-spatial search for 

individual water management infrastructure, its connectivity, and data. This feature can be 

added by building on the ability to search time-series data (e.g., HydroDesktop, Ames et 

al., 2012) and HydroClient (http://data.cuahsi.org/). WaMDaM support for controlled 

vocabularies would be particularly useful to search across different native terminology 

used in models and by users. This functionality could allow the CUAHSI web services to 

search for reservoir bathymetry curve, seasonal demand data, or network connectivity such 

demand sites supplied by a particular reservoir.   

Both the Hydra Platform and OpenAgua development teams are currently exploring 

ways to integrate alternative database systems to accommodate "big data" that can result 

http://data.cuahsi.org/
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from many scenario analyses for large water networks. Instead of user login credentials to 

the Hydra Platform and HydroShare servers, future software implementations should 

consider using an API key-based approach to establish a reusable connection to the servers.  

To remove user’s needs to install software locally, future implementations of the 

WaMDaM Wizard should build read and write web services to a server-based database as 

an online application. Future work should provide tools to allow users to more easily 

provide metadata and register their native terms with existing controlled vocabularies 

besides the WaMDaM workbook Excel template. Future work should allow instantaneous 

interaction through an API between data storage in WaMDaM, visualization in OpenAgua 

and many simulation or optimization model engines. These needed improvements should 

also be paralleled with work to use the software ecosystem for more applications and 

models and connect additional tools to expand the ecosystem. 

Finally, we note the need for continual alignment of development efforts, to help 

ensure ecosystem components remain inter-compatible over the long term. This continual 

alignment requires regular communications and code transparency between component 

projects even as each ecosystem component is developed independently. Addressing this 

challenge will require version control and strong documentation of respective tools.     

4.6.4 Invitation for community involvement and feedback  

We invite water modelers, analysts, students, faculty, professionals, managers, and 

other members of the water resources systems community to use the software ecosystem, 

provide feedback, and help develop new tools to expand the ecosystem.  The current 

ecosystem is the product of feedback we received from collaborators, colleagues, workshop 
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participants, and audiences since the inception of Hydra Platform, HydroShare, and 

WaMDaM in 2013 and OpenAgua in 2016. You can participate in multiple ways such as: 

1) use the “wamdam” keyword to search and discover water systems datasets and models 

in HydroShare, 2) use the software ecosystem tools for your existing WEAP model, 3) use 

the WaMDaM wizard to link native vocabulary for your data sets(s) and model(s) to 

controlled vocabulary, 4) build exporters and importers to WaMDaM for your own custom 

model or dataset, and 5) build other interoperable software tools that will further your work 

and the work of others. For all of these steps, there will likely be bumps, hiccups, and 

surprises—if needed, contact us. 

4.7 Conclusions  

This paper addressed the problem of using many disconnected and often model-

specific software tools to store, visualize, edit, run, analyze, and publish systems modeling 

data. We contributed a description, prototype, and demonstration of an interoperable set of 

open-source software tools (WaMDaM, Hydra Platform, OpenAgua, and HydroShare) that 

help modelers to i) store and organize data with metadata and controlled vocabularies in 

WaMDaM, ii) visualize, edit and compare model networks and their input and output data 

in an online application, and iii) publish systems modeling data and metadata to support 

data discovery and analysis.  

Three use cases for two models in Utah and one model in Mexico 1) compared the 

networks of a WEAP simulation and WASH optimization models for the Bear River 

Watershed in Utah and Idaho, 2) identified differences in WEAP and WASH model’s 

outputs between new water conservation and growth scenarios in the Bear River 
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Watershed, and 3) compared agriculture demand pattern for two sites in the WEAP model 

in Utah and the OpenAgua model in Mexico.   

The coupled software tools enabled moving data from database to a model, to an 

online user interface, and to an online data repository. The coupled tools also allow 

comparisons between the three models in two different countries. The automated process 

to retrieve, query, compare, and visualize results for two different models in Utah and 

Mexico was possible because both of them are published publicly in HydroShare using the 

WaMDaM consistent schema.  

This prototype of coupled software ecosystem aims to help modelers spend more 

time on modeling and less to develop specific tools for data storage, visualization, and 

publishing. We see the software ecosystem as a complement to existing models such as 

WEAP. WEAP has a unique useful capabilities and large user base and will flourish into 

the future. The software ecosystem offers a collaborative environment and additional tools 

to compare networks for the same basin in two different modeling software, set up and run 

multiple scenarios and models from an online portal, and automate the process to share and 

publish model data. Model datasets published in HydroShare can be discovered with the 

keyword “wamdam”, reproduced, and used in follow-on applications. 

Future work should implement all components of the coupling software online to 

support use cases for instantaneous connection between WaMDaM and Hydra Platform. 

We invite water modelers, analysts, students, faculty, professionals, managers, and other 

members of the water resources systems community to use the software ecosystem, provide 

feedback, and help develop new tools to expand the ecosystem.   
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1 Summary and Conclusions 

This dissertation contributed a novel framework and software tools to generalize 

data management for systems modeling to enable systematic data and modeling 

comparisons across many models and datasets. The contributed framework and software 

tools address the problem in existing tools used to store, query, prepare data to models, 

visualize, and publish them online that are model, location, and dataset specific. The need 

for specific tools arises because data are stored in different formats, described with 

different vocabularies, and require manual, model-specific, and time-intensive 

manipulations to identify, organize, compare, and then populate to models. The design of 

software tools is guided and demonstrated by use cases that represent common tasks done 

by modelers and water managers. The use cases show a fundamental significance to the 

science of water management by enabling readily comparisons that generate insight across 

datasets and models within or across study locations. Ready comparisons are useful to 

water managers to help them benchmark their water systems and learn from others. The 

use cases use over a dozen of different water resources datasets and four models in three 

watersheds, USA and Mexico. This dissertation presented three tools to: (1) identify, 

organize, analyze, and compare data to use in models, ii) prepare and populate data to many 

WEAP models, and iii) visualize networks, plot, and compare input and output for different 

management scenarios and models.  
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The first chapter presented the Water Management Data Model (WaMDaM) 

implemented in a relational database. WaMDaM uses contextual metadata, controlled 

vocabularies, and supporting software tools to organize, store, and compare water 

management data from multiple sources and models and allow users to more easily interact 

with its database. Five use cases use thirteen datasets and models focused in the Bear River 

Watershed, United States to show how a user can identify, compare, and choose from 

multiple types of data, networks, and scenario elements then serve data to models. The 

database design is flexible to accommodate new datasets, models, and associated 

components, attributes, scenarios, and metadata. 

The second chapter presented an open-source Python-based software that 

generalizes and automates the process to prepare and load large input data into the world-

wide used Water Evaluation and Planning system (WEAP) model or extract its network 

and data for many already existing WEAP models and scenarios. The software uses the 

WEAP Application Programing Interface (API) and the generalized Water Management 

Data Model (WaMDaM) to store and organize WEAP data and metadata. The software is 

demonstrated in two use cases using two different existing WEAP models. The first use 

case queries and compares networks and data of the three WEAP models extracted into a 

WaMDaM database. The second use case compares water systems reliability to meet 

demand across four new created scenarios in two models. The scenarios represent changes 

in reservoir capacity, demand, evaporation, and river headflows and how they affect 

demand reliability. The presented framework enables modelers to reuse the software tool 

to quickly setup WEAP models and create comparative scenarios and sensitivity analysis 
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using a single source of data, reduce potential errors in loading data, and allow others to 

reproduce the set up and results, all without coding. 

The third chapter presents an interoperable software ecosystem that integrates 

WaMDaM with other independently-developed, state-of-the-art, generalized tools to store 

water resources systems modeling data with metadata and controlled vocabularies, use 

web-based tools to visualize, compare, edit, publish, discover, and analyze model 

networks’ input and output data. The software tools are Hydra Platform web service, 

OpenAgua online visualization platform, and HydroShare for data publication. Three use 

cases show how modelers can systematically reuse software ecosystem tools and web 

services to visualize and compare three different models in the Bear River Watershed, 

United States and Monterrey, Mexico, set up scenarios, update input data, and compare 

model outputs. The ecosystem is a collaborative environment that allows users of existing 

desktop-based systems models to visualize networks and their data and publish them 

online. The software ecosystem with its online visualization, editing capabilities, and data 

publication supports stakeholder engagement and reproducible data analysis. 

All the presented software tools offer novel approaches to improve data 

management, analysis, and comparisons across many datasets and models compared to 

current approaches that are dataset, model, and location specific. The tools were iteratively 

revised over the course of five years to satisfy the design requirements, use cases, and 

feedback. The changes were in response to feedback from collaborators at the University 

of Manchester, University of California, Davis, University of Massachusetts, Amherst, and 

Utah State University, Logan. We acknowledge the need for larger and more diverse 

community testing and feedback to serve a wider audience of users.  
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5.2 Future Work 

 

This dissertation presented novel software tools that advanced water resources 

systems modeling cyberinfrastructure to enable systematic data analysis, modeling and 

comparisons across models, datasets, and study locations. There are several opportunities 

to further improve these tools and sustain them. Future work includes: 

First, to improve access and security, future WaMDaM implementations should 

build web-server APIs with data query functions that distribute and manage the access to 

many users at the same time and protect the database integrity from unintended changes. 

Future software tools to load data to the database and export it to models should be time-

efficient, more user-friendly, and compatible with Windows, Mac, and Linux. Future work 

also should use WaMDaM and web-services to publish, discover, and visualize models and 

their data and allow multiple users to work with the same datasets. 

Second, future work should support geo-spatial search for individual water 

management infrastructure, its connectivity, and data by extending on the successes for 

searching time-series data using HydroDesktop (Ames et al., 2012) and HydroClient 

(http://data.cuahsi.org/) in a desktop or online application. WaMDaM support for 

controlled vocabularies would be particularly useful to search across different native 

terminology used in models and users. Example data discovery searches that are not 

currently supported in the CUAHSI web services are to search for i) a reservoir bathymetry 

curve or a seasonal demand data at a site, ii) network connectivity such as the links that 

supply water to demand sites from a particular reservoir.   

http://data.cuahsi.org/
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Future work should extend the WaMDaM and its software ecosystem by building 

additional tools to import and export data from other datasets and models. We identified 

three important steps that can help sustain the software tools presented in this dissertation. 

We already worked on the first two and we aspire to achieve the third in future work. The 

first step was in using an open-source license and publishing all source code in a GitHub 

repository under https://github.com/WamdamProject. The second step was in collaborating 

with colleagues that are actively working on the complementary software tools: Hydra 

Platform at the University of Manchester, UK, OpenAgua at the University of 

Massachusetts Amherst, and HydroShare at Utah State University. We expect that coupling 

WaMDaM software tools with the above projects increases the value of all of them to be 

useful as a set of interoperable tools. Other researchers can also learn from and follow this 

software ecosystem approach is couple other software tools. We suggest that the third step 

requires both human and financial resources that can continue to support these tools and 

improve them within one or many organizations that believe in the role of hydroinformatics 

in improving real-world water management. This software ecosystem approach that 

couples both open-source and proprietary software should learn from and build on the 

success of both WEAP and RiverWare among others.  

 

https://github.com/WamdamProject
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Appendix A: Supplemental tables for the paper: “A Data Model to Manage Data for 

Water Resources Systems Modeling” 

 

Table A 1: Summary of reviewed water resources data management systems and models  

# Data management system Name/description 
1 Arc Water Utilities Data Model (Grise et al., 2001) Maintain comprehensive water distribution, sewer, and stormwater records; 

coordinate and plan capital projects; and improve the operation of utility 

networks. 

2 Arc Hydro (Maidment, 2002) Delineates watersheds, groundwater and subsurface geo-processing  tools, 

analyzes hydro geometric networks, manage time series data, and configure and 
export data to numerical models 

3 ODM1 (Horsburgh et al., 2008) A relational model for environmental and water resources data 

4 NFCP (Optimal Solutions Ltd, 2009) Natural Flow Computation Program 

5 HEC-DSS (USACE, 2009) database system designed to efficiently store and retrieve scientific data that is 
typically sequential 

6 Arc Irrigation Data Model (Armstrong, 2010) Provide a generic template data model to the Irrigation District clients 

7 WISKI (Gál, 2010) Enterprise Data Management application for  environmental monitoring data 

8 Hydro-Platform (Harou et al., 2010) Linking water resource network models to an open data management platform 

9 RiverML (Jackson, 2014) Standardizing the Communication of River Model Data 

10 
Hydra (Knox et al., 2014) An open-source software platform for water, energy and/or logistics system data 

management, visualization, model building and model sharing 

11 WaDE 0.2 (Larsen and Young, 2014) Sharing water planning and use data 

12 
Arc River (Kim et al., 2015) A GIS-based relational data model for multi-dimensional representation of river 

hydrodynamics and morphodynamics 

13 
ODM2 (Horsburgh et al., 2016) information model and supporting software ecosystem for feature-based earth 

observations 

 Modeling software  Name/description 
14 MODSIM 8.3.2 (Labadie, 1995) River Basin Management Decision Support System 

15 AQUATOOL (Andreu et al., 1996) AQUATOOL, a generalized decision-support system for water-resources 

planning and operational management 

16 EPANET 2.00.12 (Rossman, 2000) Hydraulic and Water Quality Behavior of Water Distribution Piping Systems 

17 RiverWare 6.5.2 (Zagona et al., 2001) A Generalized Tool for Complex Reservoir System Modeling 

18 Water-Strategy-Man (Manoli et al., 2001) Water demand and supply analysis using a spatial decision support system 

19 WAS 4.0 (Fisher et al., 2002) Water Allocation System. The Middle East Water Project 

20 CALVIN (Jenkins et al., 2004) California Value Integrated Network 

21 TOPNET (Bandaragoda et al., 2004) Networked version of TOPMODEL 

22 WEAP 2016.01 (Yates et al., 2005) Water Evaluation And Planning system 

23 GSSHA 6.1 (Downer and Ogden, 2006) Gridded Surface/ Subsurface Hydrologic Analysis 

24 ResSim 3.1 (USACE,2007) Analyze and improve reservoir operations 

25 OASIS (HydroLogics, 2009) Generalized program for modeling the operations of water resources systems 

26 SWMM 5.1.007 (Rossman, 2010) Storm Water Management Model 

27 IRAS (Matrosov et al., 2011) Interactive River-Aquifer Simulation Program 

28 HOBBES (Lund et al., 2013) Bottom up approach to improve and organize the data for water modeling efforts 

in California 

29 ArcSWAT 2012.10.19 (Winchell et al., 2007)  Predict the effect of management decisions on water, sediment, nutrient and 

pesticide yields with reasonable accuracy on large, ungaged river basins. 

30 Source IMS (Welsh et al., 2013) Source- Integrated Modelling System (IMS) 

31 AdHydro (Lai et al., 2013) Physics-based, high-resolution, distributed water resources model for simulating 

large watersheds  

32 GoldSim 11.1 (GoldSim Technology Group LLC, 

2014) 

Monte Carlo Simulation Software for Decision and Risk Analysis 

33 Basins (US EPA, 2015) Better Assessment Science Integrating point & Non-point Sources 

 OpenAgua (Rheinheimer, 2020) open source, web-based decision support system for water planning 

34 Data standards and initiatives Name/description 
35 OpenMI (Gregersen et al., 2007) Open Modelling Interface 

36 HY-Features (OGC, 2012) Common Hydrologic Feature Model 

37 DCMI (DCMI, 2013) Dublin Core Metadata Initiative 

38 CSDMS (Peckham et al., 2013) Community Surface Dynamics Modeling System 

39 WRC (Elag and Goodall, 2013) Water Resources Component 

40 Prov-dm (Moreau and Missier, 2013) World Wide Web Consortium Provenance Working Group 

41 HydroShare (Morsy et al., 2017) HydroShare metadata framework for environmental models 
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Table A 2: Fourteen common required metadata elements for data values in WaMDaM. Other data types like 

time series, and multi-column attributes have additional specific metadata. 

# Element  Definition  Example  

1 Resource type The name of a collection of object types for a specific model WEAP 

2 Master Network The name of a collection of scenarios in a specific area with 

a spatial reference  

Lower Bear River 

Network 

3 Connections  The relations of how data values are connected through their 

instances with others across system components of a water 

management system  

Blacksmith Fork 

diversion supplies 

Hyrum reservoir  

4 Scenario The name of a specific configuration of instances, their 

metadata, and data values that represent management 

decisions across system components   

Base Case Lower 

Bear River 

5 Object Typology Node, link, network  Node 

6 Object Type A generic type of water system component that can be 

replicated as instances with specific local data  

Reservoir 

7 Instance A system component that represents a node or link instance 

“where” 

Hyrum 

8 Organization  The institution where the person who provided or generated 

the attribute’s data value is affiliated with. “who”   

Utah Water 

Research Lab 

9 Person (people) The individual who provided or generated the attribute’s data 

value. “who”  

David Rosenberg 

10 Source  The origin of the attribute’s data value Lower Bear WEAP 

Model 

11 Method  The procedure used to generate attribute data values. “how”  WEAP Manual  

12 Unit  The unit of measurement of attribute data values  Acre  

13 Attribute The qualitative descriptive characteristic of a data value 

“what”  

Surface area 

14 Attribute Data 

Type 

One of the seven means to store data value(s): time series, 

multi-column arrays, numeric or descriptive parameters, 

seasonal parameters, electronic files 

Numeric value  

15 Data Value The numeric or categorical value(s)   480 

 

 

  



142 
 

 
 

Table A 3: Supported attribute data types, their definitions, and examples in water resources systems models 

(Requirement #5) 

Data type  Definition   Example and use  

Numeric  numeric values Dam elevation is 450 feet.  

Seasonal parameter 
values over 
specified time 
periods 

Water right parameter can have 20 acre-feet in winter and 5 acre-feet in summer 
or a water demand can take 10 cfs at day and 5 cfs at night. Modelers may 
optionally register the season name with a controlled term. For each record of 
season name and value, there is a season order field to preserve the seasons and 
values order as they are entered which can also be used to sort the season values.     

Categorical  Categorical 
values  

Reservoir purpose of “irrigation,” “hydropower generation,” or “flood control”. Or 
True or false values that indicate dual system operational status e.g., “open”, 
“closed” 

Free text any text values Dam release rule stored as block of text, a script, or a description of a system 

Time series  numerical 
values for 
specified 
times/dates 

Stream discharge, evaporation, inflow, demand, supply  

Multi-
attribute 
series  

paired numeric 
values for two 
or more 
attributes (i.e., 
columns) 

Reservoir volume and surface area that change with elevation. Water cost that 
changes with demand month of the year.  

Electronic 
file 

physical file to 
attach to the 
database 

Images, PDF documents, NetCDF and shape-files. They are stored as Binary 
Large OBject (BLOB) in the database.   

 
 

 

Table A 4: Unique and shared network nodes and links, metadata (source and method) and data between two 

the Normal and Dry scenarios in the BRSDM Model in the Upper Bear River Watershed 

Scenario comparison 

element  

Unique to “Bear Normal 

Year Model” scenario 

Count of instances (%) 

Shared 

Count of 

instances (%) 

Unique to “Bear Dry 

Year Model” scenario 

Count of instances (%) 

Network nodes and links 0 79 (100%) 0 

Network metadata 0 240 (100%) 0 

Attributes metadata  0 584 (100) 0 

Data  21 (3.6%) 543 (93.0%) 20 (3.4%) 
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Appendix B: Supplemental tables for the chapter: “Open Source Python Software to 

Manage, Populate, and Compare WEAP Models and Scenarios” 

 

Description of the five steps mention in section 3.2.1: Extract WEAP Areas into 

WaMDaM 

 

i. Connect to WEAP API 

To extract a WEAP model into WaMDaM, in the WaMDaM Wizard window, the 

user chooses i) a “WEAP Area” name among the many models on their machine and ii) 

scenario within the Area. If the WEAP Area is georeferenced, the user iii) has the option 

to keep the coordinate system projection as-is or provide the current WEAP map projection 

using the European Petroleum Survey Group (EPSG) identifier. The EPSG identifier is 

used to project the local system coordinates into the World Geodetic System 1984 

(WGS84). Having the coordinates in the WGS84 would be useful for visualization 

purposes based on Google maps as in OpenAgua (Abdallah, 2019). Next the user iv) 

provides the directory on the user’s machine to save the extracted data as a WaMDaM 

workbook template. When the user clicks “Extract”, a Python script uses the WEAP API 

to activate the selected WEAP Area and Scenario and gets the Area’s specific directory on 

the user’s machine, which will be used to read and write the CSV or text files for time 

series data. Then the script will execute the next functions in order to extract the WEAP 

data structure (attributes and their units), the network (nodes and links), and data values, 

prepare the output, and save it to WaMDaM workbook.   

ii. Get WEAP Data Structure 

The WEAP data structure contains its object types, their attributes, units and data 

types. Although WaMDaM is generic to organize WEAP structures, WEAP allows users 
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to change the unit and data type of an attribute across object instances. For example, 

“Monthly demand” for one demand site may be a constant value measured in acre-feet 

while another site may have “Monthly demand” specified by a time series in cubic feet per 

second. WEAP internally interpolates, extrapolates, and converts units to a common time 

step and unit and this feature gives modelers flexibility. However, WaMDaM requires an 

object attribute to have the same data type and units of measurement across all object 

instances (Abdallah and Rosenberg, 2019) This requirement allows WaMDaM to work for 

many models including WEAP.  

There are many potential ways to resolve the mismatched requirement WEAP and 

WaMDaM have for attribute units and data types. We choose to create new attributes in 

WaMDaM that represent a unique combination of the data type and units (Table 3.2). For 

example, a monthly demand attribute with numeric data type and units of cubic feet per 

second took the new attribute name “Monthly Demand_Nu_C”.  Similarly, a monthly 

demand attribute with seasonal data type and units of acre-feet per seasonal period took the 

new attribute name “Monthly Demand_Se_A.” Each attribute name always references its 

data type abbreviation (i.e., Nu) while the unit abbreviation is only added if the attribute 

has multiple different units. In all cases, the “AttributeName_Abstract” field stores the root 

name of the WEAP variable. This field allows WaMDaM to relate all the derivative 

attributes as well as register them once with controlled vocabulary (“Monthly Demand” in 

Table B-1). This approach to resolve the mismatched requirements for data type and units 

represents a tradeoff between consistency and flexibility and future work may improve the 

method. 
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Table B 1: An example of how WaMDaM handles WEAP attributes that have different 

data types and units across object instances 

Instanced Name AttributeName_Abstract Data Type Unit AttributeName 

Providence Irr Monthly Demand Numeric Cubic Feet Monthly Demand_Nu_C 

Highline Canal Monthly Demand Numeric AF Monthly Demand_Nu_A 

Cub River Irr Monthly Demand Seasonal AF Monthly Demand_Se 

Mendon Canal Monthly Demand Time series AF Monthly Demand_Ts 

Wasatch Front Monthly Demand FreeText  AF Monthly Demand_Fr 

 

 

 

 

iii. Extract WEAP network 

This Python function uses the WEAP API to iterate over the selected WEAP Area’s 

branches (WEAP.Branches) to get the nodes and links with their start and end nodes, their 

object types, and coordinates. Extracting the WEAP network and matching it with 

WaMDaM structure was the most challenging task due to a few unique ways that WEAP 

provides access to its nodes and links.  

Here we explain the logic we developed in accessing nodes and links through the 

different WEAP API data calls. The WEAP API offers “Branch.IsNode” to get the object 

types (Branch.TypeName) and their instances (Branch.Name) with a node typology. The 

coordinates are available as (Branch.x) and (Branch.y). WEAP has two types of nodes, the 

first is nodes that take input data and the second is nodes for connectivity purposes which 

also are points with a calculated output. The main nodes with input data are accessible 

directly in the WEAP API: Catchment, Demand site, Reservoir, Flow Requirement, Stream 
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Gauge, Groundwater, Run of River Hydro, and Wastewater Treatment Plant. Other 

topologic connection WEAP nodes are accessed as part of the links as described next. 

We used two ways to access links and their start and end nodes (“Branch.IsLine”) 

based on how their start and end nodes are available in the WEAP API. The first one is 

straightforward for the links: Transmission Link, Return Flow, Runoff Infiltration, and 

Diversion. The links connectivity of start and end nodes are accessible in the WEAP API 

indirectly through the start and end to links “Branch.NodeAbove.TypeName” and 

“Branch.NodBelow.TypeName”. 

The second way to access nodes is for the River and River Reach links, which is 

complex. WEAP supports Rivers that are automatically segmented to River Reaches based 

on any connectivity nodes that are placed on the river such as diversion outflow, tributary 

confluence, streamflow gauge, and return flow. The River object type behaves as a start 

node at the upstream River segment with headflows and water quality input.  

WEAP does not explicitly define a start and end nodes for object type “River” but 

WaMDaM requires them. Thus, we programmatically created a river start node that has the 

same River Name and a suffix Headflow (i.e., RiverName + 'Headflow'). The river start 

node longitude and latitude coordinate is obtained from the WEAP API call 

“Branch.NodeAbove.x” or “y”. We also give this node an Object Type called “River 

Headflow”. Similarity for the river mouth, the function programmatically creates a river 

end node that has the same River Name and a suffix Mouth (i.e., RiverName + ‘Mouth’) 

with an object type called “River Mouth”. The river end node longitude and latitude 

coordinate are obtained from the WEAP API call “Branch.NodeBelow.x” or “y”. Finally, 

we use the “Pyproj” Python library (Whitaker et al, 2019) to programmatically transform 
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the local geographic latitude and longitude coordinates into the WGS84 system which has 

the code of “EPSG:4326”. 

iv. Get WEAP Parameter Values 

This Python function iterates over all the object types, their attributes, and extracted 

nodes and links to get their values. Each variable has a property called “expression,” which 

encodes the value(s) under the API property “Variable.Expression.” WEAP internally 

interprets each type of values and incorporates them into its calculations and plots. 

Alternatively, we programmatically in Python used the following patterns to interpret and 

map WEAP values into WaMDaM attribute data types (Table-B2)  
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Table B 2: Encoded data type interpretation approach from WEAP into WaMDaM 

Data Type Interpretation conditions from WEAP into WaMDaM 

Time series  If value starts with “ReadFromFile”. WEAP stores and reads times series 

data (daily, monthly, or annual) into external files (.csv or .txt). Each time-

series file is referenced with its local path (location and name on a desktop) 

and structured such as the first column is for the year, the second is for the 

month, the third column is for the value. We excluded any metadata rows 

at the top of the file that start with “#” or “$” 

Seasonal If value starts with “MonthlyValues”, which is an average monthly 

estimate across the modeling time step (e.g., years). WEAP default setting 

stores the seasonal data as a comma separated string where the first value 

is for the three letters of the month name and the second part is the numeric 

seasonal value 

Multi-

column 

If value starts with “VolumeElevation”, which is used in WEAP for the 

reservoir volume elevation curve. Similar to the “MonthlyValues”, WEAP 

stores the “VolumeElevation” data as a comma separated string where the 

first part is for the volume value and the second part is elevation value 

Numeric If value is float or integer 

FreeText If none of the above criteria is met, which is a text value that largely 

includes the “functions” in WEAP where the modeler could create a 

function that calculates an attribute value based on other attributes values 

in other nodes or links.  
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WEAP uses a special branch name that contains “Key Assumptions,” which are 

equivalent to “Network Attributes” in WaMDaM. Those attributes can be reused to apply 

to some or all the WEAP nodes and links. The script parses each branch full name that 

contains “Key” and defines it as a Network Attribute in WaMDaM. The expression values 

for each assumption are interpreted similar to the regular variables described above.  

Finally, the GetWEAPValues Python function parses the values of each data type 

and manipulates them to be ready as input for the WaMDaM workbook. For example, the 

code opens each referenced time series file and combines the year and month columns into 

a date. It also associates each expression (data value) with its object type, attribute name, 

node or link (Table B 3).   

v. Save Extracted Data to Excel 

 After extracting the data structure, network nodes and links, and values, each of 

them is organized in a Python Pandas dataframe to match the required column names and 

orders in each spreadsheet in the WaMDaM workbook. The function that extracts WEAP 

to WaMDaM creates a workbook and writes the output to the following sheets: Attributes, 

ScenarioNetwork, Nodes, Links, Numeric, FreeText, Seasonal, TimeSeries, 

TimeSeriesValues, and MultiAttributeSeries. Then, the user is required to enter the source 

and method names used to generate the input data in the extracted WEAP model data. Users 

can also register the WEAP model node and link instances with controlled vocabularies to 

allow linking them with other synonymous terms and enable their search. Finally, users 

load the workbook content into a WaMDaM SQLite database where they can query, 

compare, and plot data across models and scenarios outside WEAP’s proprietary database.      
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Table B 3: Example data values for each types generated by the WaMDaM wizard as input 

ready for WEAP models 

WEAP pattern to populate values 

BranchTypeName/BranchName/Variable=Value 

 

Seasonal 

Reservoir/Willard Res/Net Evaporation=MonthlyValues(Oct, 42150,  Nov, 3406,  Dec, 0,  Jan, 

0,  Feb, 4258,  Mar, 60884,  Apr, 59181,  May, 61309,  Jun, 46834,  Jul, 50240,  Aug, 43002,  

Sep, 54497 ) 

 

Time series 

Demand Site/Lost Creek/Monthly Demand=ReadFromFile(C:\Users\Adel\Documents\WEAP 

Areas\Bear_River_WEAP_Model_2017_scenarios\Headflow_ScenarioData\TimeSeries_csv_fi

les\Monthly_Demand_Lost_Creek.csv) 

 

Multi column array 

VolumeElevation(0.0, 5450.0, 0.153, 5460.0, 0.894, 5470.0, 3.06, 5480.0, 6.73, 5490.0, 11.83, 

5500.0, 18.48 ,5510.s0, 26.62, 5520.0, 36.1, 5530.0 ,47.2, 5540.0 ,59.88 ,5550.0 , 73.94, 5560.0) 

 

Numeric 

River Reach/Below Tributary to Weber 3 Headflow/ River Flooding Fraction=100 

 

TextFree 

Reservoir/Great Salt Lake/Top of Buffer=Top of Inactive[Thousand AF] 
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Appendix C: Supplemental tables for the chapter: “A Software Ecosystem to Store, Visualize, and Publish Modelling Data 

for Water Resources Systems” 

Table C 1: Example systems water management models architecture (Generalized models) 

# Software/Model 

 

Purpose [# of users/members 

worldwide by Jan 2018] 

Example study A location applied Data 

management  

Model algorithms 

(engine) / 

configuration  

User 

Interface  

 Proprietary and fee-based 

1 RiverWare (Zagona et al., 2001) 

 

Generalized river and reservoir object-oriented modeling tool, 

providing a construction kit for developing and running detailed site-

specific models for planning and operating river systems 

113 Organizations as of 

Sep 2015 

Development and Implementation of an 

Optimization Model for Hydropower and 

Total Dissolved Gas in the Mid-Columbia 

River System (Witt et al., 2017) 

Tennessee 

Authority, 

Colorado, 

Columbia River 

System, USA 

Proprietary bundled + csv files 

3 WEAP (Yates et al., 2005)  WEAP ("Water Evaluation And Planning" system) is a user-friendly 

software tool that takes an integrated approach to water resources 

planning. 

27,345 

 

Integrating water supply constraints into 

irrigated agricultural simulations of 

California (Winter et al., 2017) 

California, USA Proprietary bundled (paradox database + csv files) 

3 eWater Source (Welsh et al., 

2013)  

ecological influences 

Australia's National Hydrological Modelling Platform (NHMP) – is 

designed to simulate all aspects of water resource systems to support 

integrated planning, operations and governance from urban, 

catchment to river basin scales including human and 

3,517 An integrated modelling framework for 

building a daily river system model for the 

Murray–Darling Basin, Australia  (Yang et 

al., 2017) 

Australia Proprietary bundled 

4 GoldSim (GoldSim Technology 

Group LLC, 2014)  

 

GoldSim is the premier Monte Carlo simulation software solution for 

dynamically modeling complex systems in engineering, science and 

business. GoldSim supports decision-making and risk analysis by 

simulating future performance while quantitatively representing the 

uncertainty and risks inherent in all complex systems. 

100s of commercial users 

and  200 academic 

institutions 

Vulnerability Assessment to Support 

Integrated Water Resources Management of 

Metropolitan Water Supply Systems 

(Goharian et al., 2017) 

Utah, USA 

 

Proprietary bundled + csv files 

  

5 HEC-ResSim model reservoir operations at one or more reservoirs for a variety of 

operational goals and constraints. The software simulates reservoir 

operations for flood management, low flow augmentation and water 

supply for planning studies, detailed reservoir regulation plan 

investigations, and real-time decision support 

(NA) U.S. Army Corps of 

Engineers and around the 

world  

Simulating system-wide effects of reducing 

irrigation withdrawals in a disputed river 

basin 

Alabama, Georgia, 

Florida  

Proprietary bundled 

 Open Source and free  

6 SWMM (Rossman, 2010) EPA's Storm Water Management Model (SWMM) is used 

throughout the world for planning, analysis, and design related to 

stormwater runoff, combined and sanitary sewers, and other drainage 

systems in urban areas. 

(#citation to the manual 

Google Scholar 1,175) 

Layout effects and optimization of runoff 

storage and filtration facilities based on 

SWMM simulation in a demonstration area 

 (Xing et al., 2016) 

China ASCII text files Open source bundled and separate 

packages as well 

7 EPANET (Rossman, 2000) EPANET is software that models drinking water distribution piping 

systems. 

#citation to the manual 

Google Scholar 2,502 

Management of a water distribution network 

by coupling GIS and hydraulic modeling: a 

case study of Chetouane in Algeria  

(Abdelbaki et al., 2017) 

Algeria   ASCII text files Open source bundled and separate 

packages as well 

8 REALM (Perera et al., 2005) 

 

The REsource ALlocation Model is a computer program that can 

simulate the operation of water supply systems during droughts as 

well as during periods of normal and high streamflows. 

123 Google Scholar 

citations 

An integrated hydro-economic modelling 

framework to evaluate water allocation 

strategies I: Model development (George et 

al., 2011) 

India, Australia   ASCII text files Open source bundled 

9 HydroPlatform (Harou et al., 

2010) 

Generic open-source software interface and web repository for water 

management models 

14 Google Scholar  

citations 

A computationally efficient open-source 

water resource system simulator – 

Application to London and the Thames 

Basin (Matrosov et al., 2011) 

London, UK 

USA, Utah 

SQLite generic 

database 

Importers and 

exporters  

 

Python 2.7 

open 

source 

 

 

 1
5

1
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Table C 2: Example systems water management models architecture (site specific models) 

# Software/Model 

 

Purpose Availability Places applied  Data 

management  

Model 

algorithms 

(engine) / 

configuratio

n  

User Interface  

1 Bear River Systems Dynamics 

Model  

System Dynamics Modeling of 

Transboundary Systems: The Bear 

River Basin Model (Sehlke and 

Jacobson, 2005) 

author request Wyoming, 

Idaho, USA 

Excel 

Workbooks 

VBA Not available  

2 Statewide Economic-Engineering 

Water Model (CALVEN)  

CALVIN is a hydro-economic 

optimization model of California's 

intertied water system.  It is the only 

model  representing the extensive 

statewide system in terms of supplies, 

demands, and physical and economic 

adaptability. 

Free online California, USA https://github.co

m/ucd-

cws/calvin-

network-data 

 

text files 

HEC-PRM Third party (HOBBES) 

Node.js® is a JavaScript  

View 

https://hobbes.ucdavis.edu/cw

n 

source code 

https://github.com/ucd-

cws/calvin-network-app 

 

 

3 Systems model in Wetlands to 

Allocate water and Manage Plant 

Spread (SWAMPS)  

Systems modeling to improve the 

hydro-ecological performance of 

diked wetlands (Alminagorta et al., 

2016) 

Free (GiHub)  

https://github.com/almi

nagorta/Systems-model-

in-Wetlands-to-

Allocate-water-and-

Manage-Plant-Spread 

 

Utah, USA GDX, Excel GAMS Third party (Matlab) 

 

4 Watershed Area of Suitable Habitat 

model (WASH) (Alafifi and 

Rosenberg, 2020) 

 https://github.com/ayma

n510/WASH 

 

 GDX, Excel GAMS Source code based 

https://github.com/ayman510/

WASH/tree/master/WebMap 

 

View ArcGIS 

http://washmap.usu.edu/ 

 

5 Interactive River-Aquifer 

Simulation (IRAS) 

Interactive River-Aquifer Simulation 

A computationally efficient open-

source water resource system 

simulator – Application to London 

and the Thames Basin (Matrosov et 

al., 2011) 

https://sourceforge.net/p

rojects/iras/ 

 

 

London and the 

Thames Basin 

GDX, Excel GAMS HydroPlatform 

1
5

2
 

https://github.com/ucd-cws/calvin-network-data
https://github.com/ucd-cws/calvin-network-data
https://github.com/ucd-cws/calvin-network-data
https://github.com/ucd-cws/calvin-network-data
https://hobbes.ucdavis.edu/cwn
https://hobbes.ucdavis.edu/cwn
https://github.com/ucd-cws/calvin-network-app
https://github.com/ucd-cws/calvin-network-app
https://github.com/alminagorta/Systems-model-in-Wetlands-to-Allocate-water-and-Manage-Plant-Spread
https://github.com/alminagorta/Systems-model-in-Wetlands-to-Allocate-water-and-Manage-Plant-Spread
https://github.com/alminagorta/Systems-model-in-Wetlands-to-Allocate-water-and-Manage-Plant-Spread
https://github.com/alminagorta/Systems-model-in-Wetlands-to-Allocate-water-and-Manage-Plant-Spread
https://github.com/alminagorta/Systems-model-in-Wetlands-to-Allocate-water-and-Manage-Plant-Spread
https://github.com/ayman510/WASH
https://github.com/ayman510/WASH
https://github.com/ayman510/WASH/tree/master/WebMap
https://github.com/ayman510/WASH/tree/master/WebMap
http://washmap.usu.edu/
https://sourceforge.net/projects/iras/
https://sourceforge.net/projects/iras/
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Figure C1: Open Agua interface (a-top) to add scenarios, (b-bottom) edit demand requirement input data for node 

“j3” which is Cache County urban demand for the Conservation Scenario 
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Figure C2: HydroShare (a-top): spatial coverage of the Bear River Models, USA (b-bottom) search box for 

Monterrey, Mexico model 



155 
 

 
 

References  

 

Andreu, J., Capilla, J., Sanchís, E., 1996. AQUATOOL, a generalized decision-support 

system for water-resources planning and operational management. Journal of 

Hydrology 177(3) 269-291. 

Armstrong, L., 2010. ArcGIS Irrigation Data Model. ESRI Water/Wastewater and Water 

Resources Team, Redlands, Ca. 

Bandaragoda, C., Tarboton, D.G., Woods, R., 2004. Application of TOPNET in the 

distributed model intercomparison project. Journal of Hydrology 298(1–4) 178-

201. 

Downer, C.W., Ogden, F.L., 2006. Gridded Surface Subsurface Hydrologic Analysis 

(GSSHA) User's Manual; Version 1.43 for Watershed Modeling System 6.1. DTIC 

Document. 

Dublin Core Metadata Initiative (DCMI), 2013. Dublin Core Metadata Element Set, 

Version 1.1 ANSI/NISO Z39.85-2012 

National Information Standards Organization (NISO): Baltimore, MD. 

Elag, M., Goodall, J.L., 2013. An ontology for component-based models of water resource 

systems. Water Resources Research 49(8) 5077-5091. 

Fisher, F.M., Arlosoroff, S., Eckstein, Z., Haddadin, M., Hamati, S.G., Huber-Lee, A., 

Jarrar, A., Jayyousi, A., Shamir, U., Wesseling, H., 2002. Optimal water 

management and conflict resolution: The Middle East Water Project. Water 

Resources Research 38(11) 1243. 

Gál, R., 2010. WISKI–A World Wide Used Environmental Monitoring System In: Pavel 

Bella, P.G. (Ed.), International Show Caves Association 6th Congress: Slovakia, 

Liptovský Mikuláš. 

GoldSim Technology Group LLC, 2014. GoldSim User’s Guide Version11.1. 

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: Open modelling interface. 

JOURNAL OF HYDROINFORMATICS 9(3) 175. 

Grise, S., Idolyantes, E., Brinton, E., Booth, B., Zeiler, M., 2001. ArcGIS Data Models: 

Water Utilities. ESRI, Redlands, Ca. 

Harou, J.J., Pinte, D., Tilmant, A., Rosenberg, D.E., Rheinheimer, D.E., Hansen, K., Reed, 

P.M., Reynaud, A., Medellin-Azuara, J., Pulido-Velazquez, M., Matrosov, E., 

Padula, S., Zhu, T., 2010. An open-source model platform for water management 

that links models to a generic user-interface and data-manager In: David A. 

Swayne, W.Y., A. A. Voinov, A. Rizzoli, T. Filatova (Ed.), International Congress 



156 
 

 
 

on Environmental Modelling and Software, Modelling for Environment's Sake ed. 

International Environmental Modelling and Software Society (iEMSs) Ottawa, 

Ontario, Canada. 

Horsburgh, J.S., Aufdenkampe, A.K., Mayorga, E., Lehnert, K.A., Hsu, L., Song, L., Jones, 

A.S., Damiano, S.G., Tarboton, D.G., Valentine, D., Zaslavsky, I., Whitenack, T., 

2016. Observations Data Model 2: A community information model for spatially 

discrete Earth observations. Environmental Modelling & Software 79 55-74. 

Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I., 2008. A relational model 

for environmental and water resources data. Water Resour. Res. 44(5) W05406. 

Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers, 2007. 

Reservoir System Simulation (HEC-ResSim), 3.0a ed. 

HydroLogics, 2009. User Manual for OASIS WITH OCL. 

Jackson, S.R., 2014. RiverML: A Harmonized Transfer Language for River Hydraulic 

Models, Civil, Architectural, and Environmental Engineering. University of Texas 

at Austin. 

Jenkins, M., Lund, J., Howitt, R., Draper, A., Msangi, S., Tanaka, S., Ritzema, R., 

Marques, G., 2004. Optimization of California’s Water Supply System: Results and 

Insights. Journal of Water Resources Planning and Management 130(4) 271-280. 

Kim, D., Muste, M., Merwade, V., 2015. A GIS-based relational data model for multi-

dimensional representation of river hydrodynamics and morphodynamics. 

Environmental Modelling & Software 65 79-93. 

Knox, S., Meier, P., Harou, J., 2014. Web service and plug-in architecture for flexibility 

and openness of environmental data sharing platforms, In: Ames, D.P., Quinn, N., 

Rizzoli, A.E. (Eds.), 7th International Congress on Environmental Modelling and 

Software. San Diego, California, USA. 

Labadie, J., 1995. River basin network model for water rights planning, MODSIM: 

Technical manual. Department of Civil Engineering, Colorado State University, 

Fort Collins, CO. 

Lai, W., Steinke, R.C., Ogden, F.L., Douglas, C., Miller, S.N., Zhang, Y., 2013. ADHydro: 

A Large-scale High-resolution Multi-physics Distributed Water Resources Model 

for Water Resources Simulations in a Parallel Computing Environment, AGU Fall 

Meetings: San Francisco, USA. 

Larsen, S.G., Young, D., 2014. WaDE: An Interoperable Data Exchange Network for 

Sharing Water Planning and Use Data. Journal of Contemporary Water Research 

& Education(153) 33-41. 



157 
 

 
 

Lund, J., Josué Medellín, Samuel Sandoval, Wei Chu, Alvar Escriva, Ashley Vincent, Erik 

Porse, Prudentia, Zhinkalala, Timothy Nelson, Hui, R., 2013. Building Models 

from the Data Up: From Calvin to Hobbes.  

Maidment, D.R., 2002. Arc hydro : GIS for water resources. ESRI Press, Redlands, Calif. 

Manoli, E., Arampatzis, G., Pissias, E., Xenos, D., Assimacopoulos, D., 2001. Water 

demand and supply analysis using a spatial decision support system. Global NEST: 

the international Journal 3(3) 199-209. 

Matrosov, E.S., Harou, J.J., Loucks, D.P., 2011. A computationally efficient open-source 

water resource system simulator – Application to London and the Thames Basin. 

Environmental Modelling & Software 26(12) 1599-1610. 

Moreau, L., Missier, P., 2013. Prov-dm: The prov data model. 

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, 

M.A., Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for 

environmental models with an example hydrologic application in HydroShare. 

Environmental Modelling & Software 93(Supplement C) 13-28. 

Open Geospatial Consortium (OGC), 2012. HY_Features: a Common Hydrologic Feature 

Model Discussion Paper, In: Rob Atkinson, Dornblut, I. (Eds.), OGC 07-041r1. 

Open Geospatial Consortium Inc. 

Optimal Solutions Ltd, 2009. Natural Flow Computation Program User’s Manual: Calgary, 

Alberta. 

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to 

integrated modeling in the geosciences: The design of CSDMS. Computers & 

Geosciences 53(0) 3-12. 

Rheinheimer, D., 2020. OpenAgua: Collaborative water system modeling for a new 

generation. https://openagua.wordpress.com/ 

Rossman, L.A., 2000. EPANET 2: Users Manual. US Environmental Protection Agency: 

Cincinnati, Ohio. 

Rossman, L.A., 2010. Storm water management model user's manual, version 5.0. National 

Risk Management Research Laboratory, Office of Research and Development, US 

Environmental Protection Agency. 

US Army Corps of Engineers Hydrologic Information Center (HEC), 2009. HEC Data 

Storage System, 2.0 ed. US Army Corps of Engineers Institute for Water Resources 

Hydrologic Engineering Center (HEC) Davis, CA. 

https://openagua.wordpress.com/


158 
 

 
 

US EPA, 2015. BASINS 4.1 (Better Assessment Science Integrating point & Non-point 

Sources) Modeling Framework. National Exposure Research Laboratory: RTP, 

North Carolina. 

Welsh, W.D., Vaze, J., Dutta, D., Rassam, D., Rahman, J.M., Jolly, I.D., Wallbrink, P., 

Podger, G.M., Bethune, M., Hardy, M.J., Teng, J., Lerat, J., 2013. An integrated 

modelling framework for regulated river systems. Environmental Modelling & 

Software 39(0) 81-102. 

Winchell, M., Srinivasan, R., Di Luzio, M., Arnold, J., 2007. Arc-SWAT interface for 

SWAT2005-User’s guide. USDA Agricultural Research Service and Texas A&M 

Blackland Research Center, Temple, Texas. 

Yates, D., Sieber, J., Purkey, D., Huber-Lee, A., 2005. WEAP21—A Demand-, Priority-, 

and Preference-Driven Water Planning Model. Water International 30(4) 487-500. 

Zagona, E.A., Fulp, T.J., Shane, R., Magee, T., Goranflo, H.M., 2001. RiverWare: A 

Generalized Tool for Complex Reservoir System Modeling. JAWRA Journal of the 

American Water Resources Association 37(4) 913-929. 

 

 

 

 

 



159 
 

 
 

Curriculum Vitae 

Adel M. Abdallah 

Western States Water Council 

682 East Vine Street, Suite 7 

Murray, UT 84107 

Emails: amabdallah@aggiemail.usu.edu; adelabdallah@wswc.utah.gov    
 

HIGHLIGHTS 

● Co-authored five published peer-reviewed journal articles and preparing two 

manuscripts  

● Manages the Water Data Exchange (WaDE) program at the Western States Water 

Council and lead the design of the WaDE 2.0 Data Model and architecture 

● Designed the Water Management Data Model (WaMDaM): A database standard and 

software tools to manage water resources data for modeling http://wamdam.org/  

● Interned at the Western States Water Council and the USAID Water for Food Program 

● Recipient of the Best Research-Oriented Paper of the Year. “Heterogeneous 

Residential Water and Energy Linkages and Implications for Conservation and 

Management.” Environmental & Water Resources Institute (EWRI) of the American 

Society of Civil Engineers (ASCE), 2015 

● Recipient of the Blue Goes Green Grand: “Measuring Water and Energy Conservation 

of High-Efficient Automatic Faucets.” $3,710. Utah State University Student 

Sustainability Office. 2013-2015   

● Served as the College of Engineering Graduate Students Senator, Graduate Student 

Senate, Utah State University. 2014-2015  

● Peer-reviewed 13 articles for four top tier water resources journals  

 

EDUCATION  

PhD Water Resources Engineering and Hydrology, Utah State University, Logan, UT   

May 2020 

Dissertation “Advancing Water Resources Systems Modeling Cyberinfrastructure to 

Enable Systematic Data Analysis, Modeling, and Comparisons” 

 

M.Sc Civil and Environmental Engineering, Utah State University, Logan, UT     

July 2012 

Thesis: "Heterogeneous Water and Energy End-Uses and Implications for Residential 

Water and Energy Conservation and Management" 

mailto:amabdallah@aggiamail.usu.edu
http://wamdam.org/
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B.Sc Civil Engineering, An-Najah National University, Nablus, Palestine                       May 

2008 

Capstone Project: "Modeling Fate and Transport of Chlorine in Drinking Water 

Distribution Network, Nablus City, Palestine"    

 

PUBLICATIONS 

Peer-Reviewed Publications 

1. Adel M. Abdallah and David Rosenberg, (2019). “A data Model to Manage Data for 

Water Resources Systems Modeling.” Environmental Modeling and Software.  

2. James H. Stagge, David E. Rosenberg, Adel M. Abdallah, Hadia Akbar, Nour A. 

Attallah, Ryan James (2019). Assessing data availability and research reproducibility 

in hydrology and water resources. Nature Scientific Data 

3. Andrea Cominola, Matteo Giuliania, Andrea Castellettia, David Rosenberg, Adel M. 

Abdallah (2018). “Implications of Data Sampling Resolution on Water use Simulation, 

End-Use Disaggregation, and Demand Management.” Environmental Modeling and 

Software.  

4. Jeffery S. Horsburgh, Miguel E. Leonardo, Adel M. Abdallah, David E. Rosenberg 

(2017). “Measuring Water Use, Conservation, and Differences by Gender Using an 

Inexpensive, High-Frequency Metering System.” Environmental Modeling and 

Software. 

5. Adel M. Abdallah and David E. Rosenberg (2014). “Heterogeneous Residential Water 

and Energy Linkages and Implications for Conservation and Management.” ASCE-

Journal of Water Resources Planning and Management.  

Peer-Reviewed Conference papers   

1. Andrea Cominola, Matteo Giuliani, Andrea Castelletti, Adel M. Abdallah, and David 

E. Rosenberg (2016). “Developing a Stochastic Simulation Model for the Generation 

of Residential Water End‐Use Demand Time Series.” Proc., 8th International Congress 

on Environmental Modelling and Software, International Environmental Modelling 

and Software Society (iEMSs), Toulouse, France. 

2. Adel M. Abdallah and David E. Rosenberg (2014). "WaM-DaM: A Data Model to 

Organize and Synthesize Water Management Data." Proc., 7th International Congress 

on Environmental Modelling and Software, International Environmental Modelling 

and Software Society (iEMSs), San Diego, California, USA. 

 

 

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000340
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000340
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1606&context=iemssconference
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1606&context=iemssconference
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1606&context=iemssconference
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1606&context=iemssconference
http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_406.pdf
http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_406.pdf
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Conference Proceeding 

● Marwan Haddad, Numan Mizyed, Adel M. Abdallah (2009) “Performance of 

Hydroponic System as Decentralized Wastewater Treatment and Reuse for Rural 

Communities.” 2nd International Conference on the Palestinian Environment, An-

Najah National University, October 2009. 

Manuscripts in review or preparation 

1. Rheinheimer, D.E., Medellin-Azuara, J., Ramirez, A., Brown, C., Park, D.K., Torres, 

E., Sood, A., Knox, S., Garza-Díaz, L., Abdallah, A.M., in review. OpenAgua: A web-

based decision support platform for collaborative water systems modeling and analysis. 

Environmental Modelling and Software. 

2. Adel M. Abdallah, David Rheinheimer, David Rosenberg, Steve Knox, Julien Harou” 

An Interoperable Software Ecosystem to Store, Visualize, and Publish Water 

Resources Systems Modelling Data” 

3. Adel M. Abdallah and David Rosenberg. “Open Source Python Framework to manage 

many WEAP models and scenarios”  

 

RESEARCH, TRAINING, and WORK EXPERIENCE 

1. July 2019 - present. Water Data Exchange Program Manager. Western States Water 

Council, Salt Lake City, Utah. 

2. Jan-June 2019. Senior Hydroinformatics Specialist. Western States Water Council, 

Salt Lake City, Utah. 

3. June 2017– Dec 2018. Intern, Western States Water Council, Salt Lake City, Utah. 

4. January 2010 – Dec 2018. Graduate Research Assistant, Utah Water Research 

Laboratory, Logan, UT.  

5. Fall 2017. Teaching Assistant, Engineering Economics, Utah State University 

6. July 2014 – Sept 2018. Visiting Graduate Student, University of Utah, Salt Lake City, 

UT 

7. 2014 – 2016. E-intern, the United States Agency for International Development 

(USAID), Program: Securing Water for Food Grand Challenge (three months each 

year). 

8. June 2009 – December 2009. Staff Engineer, Universal Group for Engineering and 

Consulting, Nablus-Palestine. 

http://scholar.najah.edu/sites/default/files/conference-paper/performance-hydroponic-system-decentralized-wastewater-treatment-and-reuse-rural-communities.pdf
http://scholar.najah.edu/sites/default/files/conference-paper/performance-hydroponic-system-decentralized-wastewater-treatment-and-reuse-rural-communities.pdf
http://scholar.najah.edu/sites/default/files/conference-paper/performance-hydroponic-system-decentralized-wastewater-treatment-and-reuse-rural-communities.pdf
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9. June 2008 – June 2009. Research Assistant, An-Najah National University, Nablus-

Palestine. Project: Decentralized Wastewater Treatment in Arid Regions in Palestine, 

a research pilot study. 

AWARDS / HONORS 

1. 2019 Outstanding Reviewer. Journal of Water Resources Planning and Management of 

the American Society of Civil Engineers. 

2. Amazon Web Services Cloud Credits for Research (2019). Hosting a Moderated 

Registry of Controlled Vocabularies for Water Management Data ($800) 

3. Diversity Graduate Scholarship (2018). The American Public Works Association, 

Intermountain Section 

4. Graduate Student Travel Award (2017). Utah State University Office of Research and 

Graduate Studies 

5. Utah Chapter Graduate Scholarship (2016). American Public Works Association 

6. WaterSmart Innovations Scholarship (2015). University Council on Water Resources 

(UCOWR). Nominated by the Director of the Utah Water Research Laboratory to 

receive the scholarship to cover the full expenses of attending the conference, 

September 7, 2015 

7. Best Research-Oriented Paper (2015). “Heterogeneous residential water and energy 

linkages and implications for conservation and management.” Environmental & Water 

Resources Institute (EWRI) of the American Society of Civil Engineers, May 2015 

8. Paper Competition Scholarship (2015) J. Paul Riley AWRA Utah Section: Student 

Water Conference & Paper Competition 

9. President's Award and Scholarship (2015). Utah State University Student Association, 

April 2015 

10. Second Place Best Graduate Poster Award (2015). 6th Annual Intermountain 

Sustainability Summit, Weber State University, Ogden UT, March 2015 

11. Graduate Student Travel Award (2014). Utah State University Office of Research and 

Graduate Studies 

12. Utah Water Users Association Scholarship (2013) 

13. Graduate Enhancement Award (2013). Graduate Student Senate at Utah State 

University 
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14. Graduate Student Travel Award (2013). World Environmental and Water Resources 

Congress, Cincinnati, OH. May 2013 

15. PhD Research Assistantship Scholarship (2012-2018). Utah Water Research 

Laboratory 

16. Paper Competition Scholarship (2012). J. Paul Riley AWRA Utah Section: Student 

Water Conference & Paper Competition 

17. Eva Nieminski Honorary Graduate Category Scholarship (2011). The Intermountain 

Section of the American Water Works Association (AWWA) 

18. Utah Water Conservation Forum Scholarship (2011) 

19. Great Basin Chapter of Air and Waste Management Association Scholarship (2011) 

20. Ivanhoe Fellow, Ivanhoe Foundation Fellowship (2010 and 2011) 

21. MSc. Research Assistantship Scholarship (2010-2012). Utah Water Research 

Laboratory,  

 

FUNDED PROJECTS  

● Adel M. Abdallah. “Measuring Water and Energy Conservation of High-Efficient 

Automatic Faucets.” (2013) Utah State University. Utah State University Student 

Sustainability Office. Blue Goes Green Grant. $3,710. March 2013-October 2015   

 

TEACHING ACTIVITIES 

● Teaching Assistant. Engineering Economics. Undergraduate class Fall 2017 at Utah 

State University, Professor: Dr. David Rosenberg 

● Code Camp Facilitator (2013 and 2014). Facilitated the implementation of a one-day 

code camp for high school students at USU. Toured USU’s high-performance 

computing and data storage center, assisted the students in debugging their Python code 

for a reservoir release functions for Pineview reservoir, Utah that generated 

hydropower, delivered water for irrigation, and protected the city of Ogden from floods. 

● Guest lecture. Water Resources Systems Analysis, Graduate class Fall, 2013 at Utah 

State University. Professors: Dr. Bruce Bishop and Dr. David Rosenberg. Topic: Monte 

Carlo Methods - Water Conservation. Nov. 6, 2013 

● Guest lecture. Hydroinformatics, Graduate class Fall, 2013 at Utah State University. 

Professors: Jeff Horsburgh and Dr. Dan Ames, and Dr. Steven Burian. Topic: Water 

and Energy Conservation though High-Efficiency Automatic Faucets. Nov. 26, 2013 
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LEADERSHIP and PROFESSIONAL ACTIVITIES  

● Peer-reviewer for four journals: ASCE-Journal of Water Resources Planning and 

Management, Journal of Hydrology and Earth Science Systems (HESS), Journal of 

Sustainable Cities and Society, Journal of Environmental Modelling and Software.  

Peer-reviewed nine articles (copies of reviews are available upon request). 2012-

present. 

● College of Engineering Graduate Student Senator. Graduate Student Senate, Utah State 

University. 2014 – 2015. 

● Students Representative Chair and Competition Judge. Spring Runoff Conference, 

Utah State University, Logan, Utah, 2013 – 2016. 

● Member of the Utah State University Interfaith Initiative Committee, 2014 – 2016. 

 

ONLINE OPEN-SCIENCE REPOSITORIES  

● Created code and documentation of the Water Management Data Model (WaMDaM) 

on GitHub https://github.com/WamdamProject 

● Wrote code to streamline disparate water flow data files into a central database for the 

Utah Division of Water Resources 

https://github.com/amabdallah/UDWR_FlowStorageData 

● Contributed to code and documentation of Water Data Exchange Program (WaDE), the 

Western States Water Council https://github.com/WSWCWaterDataExchange 

 

GRADUATE COURSEWORK 

● PhD: Hydroinformatics, Microeconomics, Water Law and Policy, Database 

Implementation, GIS in Water Resources, Advanced Web-based Management 

Information Systems Development, Research Integrity, and College Teaching Seminar, 

the Role of Cognition in Engineering Education (audited). 

● M.Sc: Integrated River Basin/Watershed Planning and Management, Surface Water 

Quality Modeling, Water Resources Systems Analysis, GIS for Civil Engineers, 

Groundwater Engineering, Data Analysis and Experimentation in Environmental 

Science and Engineering, and Physical Hydrology 

 

CERTIFICATIONS 

● Certified Public Manager (CPM) training by the National Certified Public Manager® 

Consortium, 2020. 

https://github.com/WamdamProject
https://github.com/amabdallah/UDWR_FlowStorageData
https://github.com/WSWCWaterDataExchange
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● Utah Division of Risk Management Defensive Driver Training, May 2013-July 2018 

● Utah State University Research Scholars Certificate, 2015 

● Institutional Review Board (IRB) Training Certificate. Social & Behavioral Research 

Investigators and Key Personnel. Collaborative Institutional Training Initiative (CITI), 

July 2010 - December 2016 

● Structured Query Language (SQL) Certificate. ExpertRating.com, April 2013 

 

PROFESSIONAL DEVELOPMENT 

● “Getting Started as a Successful Proposal Writer and Academician," One-day intensive 

Seminar, USU sponsored: Grant Writers' Seminars & Workshops LLC, April 2012 and 

2016 

● “Software Carpentry Boot Camp.” Software Carpentry, two-day intensive workshop, 

Logan Utah, March 23-24, 2013.  

● “Using Python for Weather and Climate Applications” By Johnny Lin, Salt Lake City, 

UT, Mar 8, 2013 

● “Integrated Modeling Workshop” Utah Water Research Laboratory, Logan, UT, 

August 9, 2012. 

● “Great Work Great Career Seminar”:  Eight weeks seminar by the Stephen R. Covey 

group which partnered with the Huntsman School of Business, Utah State University, 

June-July 2011 

● “Water Chemistry in Reverse Osmosis and Nanofiltration,” Four-day intensive course, 

Middle East Desalination Research Center, Amman, Jordan, April 2009 

● “Public Relations Skills,” Continuing Learning Center An-Najah National University, 

August-2008, Nablus, Palestine 

 

KEY COMPUTER SKILLS  

Python, Matlab, ArcGIS, General Algebraic Modeling System (GAMS), Structured Query 

Language (SQL), WEAP, HEC-ResSim, GitHub, Tableau, Relational Database Modeling 

LANGUAGES  

● English: Fluent   

● Arabic: Native speaker   
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PROFESSIONAL AFFILIATIONS AND ACTIVITIES  

● The International Environmental Modelling & Software Society, member (2014-

present) 

● American Geophysical Union (AGU), Member (2011-present) 

● American Water Works Association (AWWA), Member (2011-present) 

● American Society of Civil Engineers (ASCE), Member (2012-present) 

● American Water Resources Association (AWRA), Member (2011-present)  

● Engineers Association - Jerusalem Center, Member (2008-present)  

 

IN THE MEDIA and OUTREACH  

● Co-presented in a short educational movie: “What is a Model?” Educational movie for 

grades 8 and up. October 2013. This movie was part of the outreach program of the 

Cyberinfrastructure (CI)-Water project. The video is available on YouTube at:  

http://www.youtube.com/watch?v=-wWQvBC625E 

● Co-presented a short educational movie “Get Involved with Science Activities” to 

encourage high school students to choose a career in Science Technology Engineering 

and Math (STEM). The video is available on YouTube at: 

http://www.youtube.com/watch?v=TGO-w0ovGkE 

● Blog contribution, Utah and Western Water Blog. “Field Trip to Park City’s Water 

Treatment Plants, Utah” January 2018. 

https://utahandwesternwater.wordpress.com/2018/01/12/field-trip-to-park-citys-

water-treatment-plants-utah/ 

 

CONFERENCE AND PROFESSIONAL MEETING PRESENTATIONS  

● Andrea Cominola**, Matteo Giuliania, Andrea Castellettia, David E. Rosenberg, Adel 

M. Abdallah (2018). “Can Data from Intelligent Water Meters Inform Water Demand 

Modelling and Management Accurately, Feasibly, and Cost-Effectively?.” European 

Geosciences Union General (EGU) Assembly 2018. 

● Jeffery S. Horsburgh**, Miguel E. Leonardo, Adel M. Abdallah, David E. Rosenberg 

(2018). “Inexpensive, High-Resolution Data for Quantifying Water Use, Conservation, 

and Differences by Gender.” European Geosciences Union (EGU) General Assembly 

2018. 

http://www.youtube.com/watch?v=-wWQvBC625E
http://www.youtube.com/watch?v=TGO-w0ovGkE
https://utahandwesternwater.wordpress.com/2018/01/12/field-trip-to-park-citys-water-treatment-plants-utah/
https://utahandwesternwater.wordpress.com/2018/01/12/field-trip-to-park-citys-water-treatment-plants-utah/
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● Adel M. Abdallah** and David E. Rosenberg (2017). “A New Method to Organize, 

Identify, and Compare Water Management Data for Systems Models.” World 

Environmental & Water Resources Congress, Sacramento, CA: May 2125, 2017. 

● Adel M. Abdallah** and David E. Rosenberg (2016) “Applying Best Data Practices 

to Work with Water Management Data (WaM-DaM)”. The 9th Annual UC Davis 

Informal Water Management Workshop, University of California, Davis. Modernizing 

Data Management for System Modeling Discussion. December 13, 2015. 

● Adel M. Abdallah** and David E. Rosenberg (2015) “Let’s Target Collaborative 

Water and Energy Conservation Actions?” WaterSmart Innovations. Las Vegas, 

Nevada. September 7, 2015. 

● Miguel Leonardo**, Adel M. Abdallah**, Jeffery Horsburgh, David E. Rosenberg 

(2015) “Low-Cost Smart Water Meter for Sustainable Water Monitoring and 

Conservation.” 6th Annual Intermountain Sustainability Summit, Weber State 

University, Ogden UT, March 2015. 

● Adel M. Abdallah** and David E. Rosenberg (2015). “A Relational Model to 

Organize and Synthesize Disparate Systems Water Management Data.” 3rd CUAHSI 

Conference on HydroInformatics. Model and Data Interoperability: From Theory to 

Practice July 15-17, 2015, the University of Alabama and the National Water Center, 

Tuscaloosa, AL. 

● Adel M. Abdallah** and David E. Rosenberg (2015). “WaM-DaM: A Data Model to 

Organize and Synthesize Water Management Data.” Utah Water Data Users Group 2nd 

Meeting, Salt Lake City, Utah: Jan. 27, 2015. 

● Adel M. Abdallah** and David E. Rosenberg (2014). "WaM-DaM: A Data Model to 

Organize and Synthesize Water Management Data." 8th International Congress on 

Environmental Modelling and Software (iEMSs)". San Diego, California, USA. June 

15-19, 2014. 

● Adel M. Abdallah and David E. Rosenberg** (2014). "WaM-DaM: A Data Model to 

Organize, Share, and Publish Water Management Data." World Environmental & 

Water Resources Congress - EWRI, ASCE, Portland, Oregon. June 1-5, 2014. 

● Adel M. Abdallah and David E. Rosenberg** (2014). "Targeted and Collaborative 

Household Water and Energy Conservation Programs to Achieve City-Wide Goals.” 

World Environmental & Water Resources Congress - EWRI, ASCE, Portland, Oregon. 

June 1-5, 2014. 

● Adel M. Abdallah** and David E. Rosenberg (2014). "WaM-DaM: A Data Model to 

Organize and Synthesize Water Management Data." American Water Resources 

https://github.com/WamdamProject/WaMDaM_Publications/raw/master/Files/Presentations/09WaMDaM_EWRI_2017_May22.pptx
https://github.com/WamdamProject/WaMDaM_Publications/raw/master/Files/Presentations/09WaMDaM_EWRI_2017_May22.pptx
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Association (AWRA) Spring Specialty Conference". Snowbird, Utah, USA. May 12-

14, 2014. 

● Adel M. Abdallah** and David E. Rosenberg (2013). "A Proposed Water 

Management Data Model (WaM-DaM)." 2013 CUAHSI Conference on 

Hydroinformatics and Modeling. Logan, Utah. July 19-21, 2013.  

● Adel M. Abdallah** (2013) “Design a Database to Manage Water Reservoir Data.” 

CI-WATER Symposium, Salt Lake City, UT, May 10, 2013. 

● Adel M. Abdallah** and David E. Rosenberg (2013). “Identifying Collaborative City-

Wide Residential Water and Energy Conservation Programs.” World Environmental & 

Water Resources Congress - EWRI, ASCE, Cincinnati, Ohio. May 19-23, 2013. 

● Adel M. Abdallah** and David E. Rosenberg (2012). “Water and Energy 

Conservation Modeling and Planning: Stretching Resources to Save Money.” 

Intermountain Section AWWA 2012 Annual Conference, Logan UT, September 12-

14, 2012. 

● Adel M. Abdallah** and David E. Rosenberg (2012). “Heterogeneous Water and 

Energy End-Uses and Implications for Water and Energy Conservation and 

Management.” 7th Annual J. Paul Riley AWRA Utah Section, Student Water 

Conference & Paper Competition, Logan UT, April 10, 2012. 

● Adel M. Abdallah** and David E. Rosenberg (2012). “Simulating Household-City 

Water and Energy Conservation Opportunities Modeling Stochastic Energy and Water 

Consumption to Manage Residential Water Uses.” Spring Runoff Conference, Logan 
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