Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2021

An In-Depth Look at Learning Computer Language Syntax in a
High-Repetition Practice Environment

Stephanie Gonzales
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Cf Part of the Computer Sciences Commons

Recommended Citation

Gonzales, Stephanie, "An In-Depth Look at Learning Computer Language Syntax in a High-Repetition
Practice Environment" (2021). All Graduate Theses and Dissertations. 8011.
https://digitalcommons.usu.edu/etd/8011

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and /[x\

Dissertations by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /'g;m MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8011?utm_source=digitalcommons.usu.edu%2Fetd%2F8011&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AN IN-DEPTH LOOK AT LEARNING COMPUTER LANGUAGE SYNTAX IN A
HIGH-REPETITION PRACTICE ENVIRONMENT
by

Stephanie Gonzales

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Computer Science

Approved:

John Edwards, Ph.D. Hillary Swanson, Ph.D.

Major Professor Committee Member

Vicki Allan, Ph.D. D. Richard Cutler, Ph.D.

Committee Member Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2020

Copyright

(© Stephanie Gonzales 2020

All Rights Reserved

ii

iii

ABSTRACT

An in-depth look at learning computer language syntax in a high-repetition practice

environment

by

Stephanie Gonzales, Master of Science

Utah State University, 2020

Major Professor: John Edwards, Ph.D.
Department: Computer Science

Computer science education experiments and research has determined repetition to be
critical in early learning for computer programming [1]. An instructional tool called Phanon
has been adopted into the curricula for introductory programming CS1 courses at multiple
universities and is designed to help students automate their code production. As students
overcome the difficulties of mastering syntax, their cognitive resources can be utilized for
more demanding thought processes like problem-solving. Observing students while they
complete syntax exercises may provide meaningful insight into their process while engaged

in the procedural practice.

At Utah State University, a qualitative think-aloud study was conducted to explore the
presence of basic patterns that provide insight into students’ learning process when com-
pleting syntax exercises. Students in a CS1 course participated in three think-aloud ses-
sions with the researcher while completing syntax exercises through Phanon. The topics of
observed lessons were conditionals, for-loops, and nested for-loops. The sessions were facil-

itated and recorded through Zoom over one week. The recorded sessions were transcribed

iv
and coded by the researcher into actions and events. This thesis comprises the design and

setup of the study, data collection, and data analysis.

Throughout the study’s analysis, patterns of repetition and discovery were observed and
interpreted. Intrinsic and extraneous load were evaluated through a temporal decomposi-
tion approach, and evidence of intrinsic load was reflected throughout several participants.
The amount of effort a student extends to the syntax exercises appears not to reflect their
course performance. Several students demonstrated a significant improvement in writing
syntactically correct code as they progressed through the lesson. They showed that learn-
ing the syntax can get intricate but allows the student to overcome the syntactic hump
that comes with learning to program. Students generally had a positive attitude toward
the exercises supporting the claim that Phanon provides a closed, stress-free environment

conducive for mastery of syntax.

(83 pages)

PUBLIC ABSTRACT

An in-depth look at learning computer language syntax in a high-repetition practice
environment

Stephanie Gonzales

Students in an introductory computer science course generally have difficulty producing
code that follows the arrangement rules known as syntax. Phanon was created to help
students practice writing correct code that follows the rules of syntax. Previous research
suggests this tool has helped students improve their exam scores and strengthen effectiveness
in the course. A study was conducted to observe students while they complete the syntax

exercises to find meaningful patterns in the steps the students take to complete an exercise.

Evidence to support high intrinsic load was found throughout the study, which is a
measure of difficulty learning a subject. The syntax exercise design’s ineffectiveness, known
as the extraneous cognitive load, was minimal throughout the study. It was also found
that even if students seem to take longer completing the syntax exercises, it does not
reflect a decrease in their performance for the class. This supports a theory that syntax
is a separate process from problem-solving and mastering it can help students focus their

cognitive process on problem-solving.

Finding ordinary moments of comprehension or struggle can provide insight into how
improvements can be made in Phanon and computer science teaching methods. The effec-

tiveness of Phanon can be applied to students with a variety of programming experience.

CONTENTS

ABSTRACT . . .
PUBLIC ABSTRACT o e e e e
LIST OF TABLES o e e e
LIST OF FIGURES e e
1 INTRODUCTION . . .o e e e e e
2 RELATED WORK e e
2.1 Theories of Practice and Representations
2.1.1 Repetition and Discovery

2.1.2 Mental Representations of Computer Programs

2.1.3 Debugging Study

2.1.4 Think-Aloud Studies: Metacognitive Awareness

2.2 Syntax Studies
2.2.1 TYPOS Syntax Exercise Study

2.2.2 Embedded Syntax Tool Study

2.2.3 Phanon Study
METHODOLOGY . . . o o e e e e
3.1 Overviewl
3.2 Phanon Syntax Exercises o
3.3 Pilot . ..o
3.4 Participant Selection
3.5 Exercise Selection
3.5.1 Conditionals I - Lesson 3.2.1

3.5.2 For-LoopsI-Lesson 3.5.2

3.5.3 Nested For-Loops II - Lesson 3.5.4

3.6 Z00m ... e e
3.7 Coding oL e
3.7.1 Conditionals I - Exercise 6

3.7.2 Conditionals I - Exercise 13

3.7.3 Conditionals I - Exercise 16

3.7.4 Conditionals I - Exercise 28

3.7.5 ForloopsI-Exercise 1

3.7.6 For-loopsI- Exercise 12

3.7.7 For-loops I - Exercise 20

3.7.8 For-loops I - Exercise 21

3.7.9 For-loops III - Exercise 8

vi

S

00 00 ~I1 ~1 O T A A

3.7.10 For-loops III - Exercise 10 o o .. 28

3.7.11 For-loops III - Exercise 15 29

4 RESULTS . . . 30
4.1 Lesson 3.2.1 - Exercise 6 e 31
4.1.1 Jack’s Moves 33

4.1.2 Sarah’s Moves 41

4.1.3 Matt’s Moves 43

4.2 Lesson 3.5.4 - Exercise 8 e 44
4.3 Lesson 3.5.4 - Problem 10 46
4.4 Participant Course Performance L. 49

5 DISCUSSION 54
5.1 Duration and Codes e 54
5.2 Intrinsic and Extraneous Load 55
5.2.1 Lesson 3.2.1 Exercise 6.« o v i 516)

5.2.2 Lesson 3.5.4 Exercise 5. o 58

5.3 Precision and Speed L 60
5.4 Referencing Previous Questions L. 63
5.5 Debugging and Gradeso 65
5.6 Overall Affective State 66
5.7 Threats to validity 68

6 CONCLUSION . .. s 70

REFERENCGES . . . 73

Table

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

5.1

viii

LIST OF TABLES

Page
2020 Fall Think Aloud Study Participants 17
Think Aloud Study Code Book 21
Coding Moves i 22
Exercise Duration Statistics L Lo oo o o 31
3.2.1 Exercise 6 Performance Summary 32
3.5.4 Exercise 8 Performance Summary L. 45
3.5.4 Exercise 10 Performance Summary 48
2020 Fall Think Aloud Study Participant Grades 50
3.2.1 Exercise 6 Code References 64

Figure
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4.1
4.2
4.3

4.4

4.5

5.1
5.2
5.3

LIST OF FIGURES

Phanon Graphical User Interface
Phanon Graphical User Interface after Successful Response to an Exercise .
Lesson 3.2.1 Exercise 6
Lesson 3.2.1 Exercise 13
Lesson 3.2.1 Exercise 16 o
Lesson 3.2.1 Exercise 28
Lesson 3.5.2 Exercise 1
Lesson 3.5.2 Exercise 12
Lesson 3.5.2 Exercise 20o
Lesson 3.5.2 Exercise 21 oo
Lesson 3.5.4 Exercise 8 L
Lesson 3.5.4 Exercise 10
Lesson 3.5.4 Exercise 15 o
Exercise Eight Moves Timeline
Exercise Ten Moves. o o

Final Grades (Y Axis) Compared to Duration (Bottom X Axis) and To-
tal Codes (Top X Axis), Pearson correlation between assignment score and
combined time is (r=-0.57, p=0.11), Pearson correlation between assignment
score and total codes is (r=-0.21, p=0.58).

Assignment Scores (Y Axis) Compared to Duration (Bottom X Axis) and
Total Codes (Top X Axis), Pearson correlation of exam score to duration
is (r=0.13, p=0.72), Pearson correlation of exam score and total codes is
(1=0.20, p=0.44).

Exam Scores (Y Axis) Compared to Duration (Bottom X Axis) and Total
Codes (Top X Axis)

Scott Exercise Eight Compared to Exercise Ten
Trevor Exercise Eight Compared to Exercise Ten

Brooke Exercise Eight Compared to Exercise Ten

ix

Page

51

CHAPTER 1
INTRODUCTION

Computer science education research focuses on giving the student more opportunities to
succeed in a computer science major. The high amount of attrition and the low contentment
for novice programmers is a concern for most collegiate computer science departments [2,3].
Although computer science may be considered a complicated subject, most researchers agree
that subject difficulty is not why failure rates are high. It is the way that the lecturer teaches
the subject to novice programmers that causes frustration and confusion in the students.
Luxton-Rielly argues that the inability to teach students is why the field lacks diversity and

has an increased risk of plagiarism [4].

Syntax in computer science is a topic that causes new programmers a lot of frustration.
The intrinsic cognitive load, the effort associated with the subject, is high in syntax. As a
result, students spend a lot of time dealing with syntax problems rather than developing
their problem-solving skills. In some introductory computer science courses, the lecturers
ignore this issue and expect students to learn syntax while problem-solving. This method
causes the extraneous cognitive load, the effort it takes to understand the material, and

how the lecturer presented it.

A tool required for introductory computer programming course CS1 at Utah State Univer-
sity and other universities is called Phanon. The inspiration for Phanon came from a popular
piano exercise book “The virtuoso Pianist” by Charles-Louis Hanon. Hanon designed the
training book to train aspiring pianists to handle everyday difficulties with technical skills,
increasing their speed, precision, and agility. The name Phanon is representative of the

inspiration from Hanon and translates to ” Programming Hanon” [5]. Like Hanon’s exercise

2

book, Phanon provides exercises designed to increase the beginning programmer’s ability

to write precise, syntax error-free code.

Phanon provides sets of syntax exercises for essential introductory coding topics. In the
lessons, the exercises increase slightly in difficulty as the student completes them. Phanon’s
creator designed the questions to be quick and straightforward so that the participant can
complete many questions quickly, engaging procedural memory more than cognition. This
strategy intends to help the participant automate their production of code with repetition
and practice. Lessons in Phanon typically contain around thirty questions and are designed
to take less than fifteen minutes to complete. The exercises are designed to teach and rein-
force skills in writing syntactically correct code. The design complements other pedagogy

that teaches structured problem-solving.

Through several studies, the tool has shown promising results in the decrease of attrition
and the students overall affective state [5]. There have also been positive correlations made
with an increase in project scores and a decrease in plagiarism [1,6]. Phanon has proven to be
a valuable tool that helps students learn to produce code through short repetitive exercises.
The developers created syntax exercises as a way to help students become familiar with
writing code. As the student completes the code snippets from the exercises, they become
better prepared for their studies. This preparation allows them to approach their weekly

programming projects with a problem-solving focus rather than a syntactical focus.

This thesis aims to gain insight into the cognitive processes that a student engages in when
completing Phanon syntax exercises. Data was collected by the researcher and analyzed
from a think-aloud study conducted over the 2020 fall semester. Eleven students from a CS1
course at Utah State University completed three think-aloud sessions with the researcher.
In each session, the researcher instructed the participants to think out loud as they used
Phanon to complete a lesson selected by the researcher. The sessions were recorded through

Zoom and coded by the researcher according to the actions of the participant.

3

Through a qualitative analysis of the study in this thesis, the researcher addresses the

following questions.
e What patterns in student interactions with syntax exercises are observable?

e How do these behaviors affect student performance in learning computer syntax?

Think-aloud studies have been used in many technical subjects because they allow the
researcher to witness the participant’s moment of comprehension when they solve a problem
[7]. Finding patterns or ordinary moments that lead up to understanding can improve
computer science education methods. Researchers can analyze topics or circumstances that
generally confuse students for similarities in disconnect. Observing the students as they
face challenges that Phanon provides has provided insight into thought and discovery. It

has also shown a light on what makes certain coding constructs difficult for some students.

CHAPTER 2
RELATED WORK

High attrition rates in computer science majors is a constant motivating factor in research
regarding learning strategies. Computer science education researchers have developed sev-
eral tools to help students grow their skills through programming, typing, and syntax exer-
cises. Computer science education research has suggested that one way to prepare students
for quality problem solving is by automating their syntactically-correct code production.
Phanon is a syntax exercise tool used in several studies that yielded an improved overall

affective state and decreased attrition [5,6, 8].

2.1 Theories of Practice and Representations

2.1.1 Repetition and Discovery

Trninic et al. suggest that repetition and practice are essential for learning through
explorative practice. The authors discuss that engaging in repetitive practice requires a
consciousness of kinesthetic sensations [9]. They also mention that even though direct
instruction and discovery are thought to be conflicting approaches, but can be interwoven
techniques. The authors explain that procedural moves promote a substantial amount of

insight and perception.

2.1.2 Mental Representations of Computer Programs

Pennington et al. discuss mental representations of a computer program’s structure and
the relationships involving that structure. The authors break down the components that
make up a program and relate it to the necessary knowledge for program comprehension.

One of the subjects that they say is vital for a developer to have is text structure knowledge.

5

Text structure knowledge means that the individual understands the different structures
for control and flows in a program. These will include the ideas of sequence, iteration, and
conditionals [10]. An individual’s understanding of text structure is essential because it

provides a mental representation and organization to some concepts.

The second type of knowledge that Pennington et al. describe as crucial is plan knowledge.
Structures like methods and functions can represent this type of knowledge. Fundamentally
it is the understanding of how components of a program fit together to accomplish a goal.
The plans that the authors refer to can be higher-level plans and lower level plans. Higher-
level plans usually consist of many functions (lower-level plans) that accomplish one goal.

An example of this may include sorting algorithms or a file reader that parses the document.

2.1.3 Debugging Study

Katz et al. [11] conducted a study of the debugging process and methods used when
students are problem-solving. Students with a variety of programming experiences were used
in the study to provide quality results. Some students had little knowledge of coding, and
others had taken a Pascal class previously to the study. The researchers completed several
experiments that involved students in debugging LISP programs. Katz et al. describes the
very general process and stages of troubleshooting, or in this case, debugging, and mentions

that researchers do not fully understand how those stages interact with each other.

The authors make some interesting conclusions about how students interact with the cod-
ing problems they face. One of the conclusions that they came to from the first experiment
was that different coding experience levels correlate with the student’s approach to solving
the problem. They found that after a student gives a correct response, it is improbable to
follow with an error. Another conclusion is that the students usually approached debugging
another person’s code differently than they would for their own. They seemed to have more

successful sessions when the students debugged their code rather than peers.

6

The authors also observed from the third experiment that students would decide on the
code line that they believe the error was located. If they were incorrect, they were likely to
get stuck and not solve the problem [11]. Katz et al. conclude that their observations and

ideas about debugging are relatable to other problem-solving situations.

2.1.4 Think-Aloud Studies: Metacognitive Awareness

Prather et al. [12] highlights the process a student goes through when learning to program
and explains a think-aloud study that allowed them to evaluate moments of difficulty when
a student is engaging in debugging behaviors. In the article, the authors mention the idea
of metacognitive awareness. Metacognitive awareness can describe the state of a student
who understands the problem-solving process and can articulate the steps they plan to take

while solving a problem.

In the study, the researchers used an automated assessment tool to facilitate the sessions.
They explain the learning benefits and disadvantages of using an automated assessment
tool for a think-aloud study. The authors claim that automated assessment tools need
to have enhanced compiler error messages in order for the tools to improve a student’s
metacognitive awareness. They also state that automated assessment tools should guide
the student through the stages of metacognitive awareness. Prather et al. say a tool can

help a student by providing helpful error messages and gradually increasing difficulty.

Prather et al. [13] conducted another study about the metacognitive difficulties students
face when using automatic assessment tools. The researchers focused on how understanding
how a problem can improve a student’s probability of success. This paper’s authors col-
lected code submissions from students in a think-aloud study from a control group and an
experimental group. The students in the experimental group had additional metacognitive
help through a quiz before starting the given problem. The experimental group had less

time to solve the given problem and performed better than those in the control group.

7

The authors also saw an increase in the number of students who completed the prob-
lem in the experimental group. The researchers described the students as having a higher
metacognitive awareness when discussing their problem with the researcher after they com-
pleted the correct code. Even though the experimental group generally performed better,

there were still some students in that group that struggled to solve the problem.

2.2 Syntax Studies

Several studies have looked into different types of syntax practice pedagogies and their

effect on learning outcomes.

2.2.1 TYPOS Syntax Exercise Study

Gaweda et al. discuss a study that focuses on the importance of syntax exercises and their
relation to the growth and development of a student’s lower-level coding skills. The authors
claim that there is a difference between higher level and lower level skill development and
that it is an easy task to improve lower-level skills. They state that by implementing syntax
typing exercises, a student can develop lower-level skills through practice. By mastering
lower-level skills, they will be able to put more cognitive effort into higher-level skills growth

14].

In the study that the researchers conducted, the participants used a TYPOS tool for their
syntax exercises. The program provided around five exercises a week that correlated with
the class learning material for that week. The creators of TYPOS prevented copying and
pasting by providing the code example as an image. The student was required to retype
the code as shown. Once the student submitted their solution, the database would compare

their typed solution with a solution stored in the database and highlight any typos or errors.

The study yielded fascinating results in the student’s graded projects. The researchers

found that students who used TYPOS consistently made fewer mistakes on their graded

8

assignments than those who did not use TYPOS. GitHub integration workflows analyzed
the student’s submitted code. When the students pushed new commits, a workflow in the

repository would analyze for compilation errors.

2.2.2 Embedded Syntax Tool Study

Leinonen et al. theorize that syntax exercises play an essential role in students’ journey
of learning to program. The authors suggest that syntax is not an easy subject for many
students. Languages in programming can differ in syntax rules, and novice students often
have trouble discerning compilation errors associated with syntax [15]. In the study that
the researchers conducted, they developed a tool embedded in the online learning material
for the study. The embedded tool helped students with syntax problems in their code by
highlighting issues as they arise through coding. For example, a misplaced semicolon can
be extremely hard to find. However, the syntax exercise tool would highlight the semicolon

with red, signaling that its placement is incorrect.

Half of the students that participated in the study used the tool for the first two weeks
with in-class projects. The second half of the students that participated did not use the
tool for their projects. Leinonen et al. explain that there were flaws in the research that
may have prevented them from getting valuable data. One aspect that could skew the data
was that not all of the students who had access to the tool used it. The conclusion to this
study was that the authors do not have sufficient evidence to prove that the syntax tool

helped them reduce their time on the problem or real events.

2.2.3 Phanon Study

Edwards et al. discuss a study that focuses on the benefits of syntax exercises through
a tool called Phanon. The authors present a syntax first oriented approach for teaching

proper coding techniques to novice programmers. One significant benefit of Phanon that

9

the authors discuss is the ease of integration into the CS1 course in which they conducted

the study [5].

The researchers conducted the study over two semesters in CS1 courses and separated the
participants into a test and a control group. Participants in the test group were introduced
to syntax exercises three weeks into the course. The test group participants completed
syntax exercises three times per week that were correlated with the course material. The
authors describe many positive results, including decreased attrition, improved exam scores,

and a decrease in plagiarism.

A follow-up study analyzed the effect of syntax exercises on the affective state. Sullivan
et al. [8] discuss the results from a survey received from students about the syntax exercises
in Phanon. The majority of responses were positive and indicated that they felt like Phanon
helped them in their studies. In the survey results, 86% of students said that Phanon was
helpful, 84% said they liked the exercises, and 8% found enjoyment throughout the exercises.
There were some negative responses concerning annoyance or not liking the exercises. 5% of
the students in Sullivan’s survey found the exercises to be annoying, and 5% of the students

said they did not like the exercises.

CHAPTER 3
METHODOLOGY

This study aimed to find reoccurring themes of exploratory practice while students
complete Phanon syntax exercises. This study’s analysis includes qualitative data gathered
from video recordings, audio recordings, and participants’ surveys. The researcher analyzed

the results with a grounded approach [16].

3.1 Overview

The researcher conducted study IRB #11325 in the fall 2020 semester with an intro-
ductory computer science course. In the course, students were taught the fundamentals of
programming in Python. Along with weekly programming assignments, the students had
course requirements to complete syntax exercises through a Phanon. The researcher invited
students to participate in three think-aloud sessions while they completed select syntax ex-
ercises. The students that completed the three selected think-aloud sessions received a gift
card for their participation. Thirteen students consented to participate in the study and
completed the first syntax lesson with the researcher. Two of the students opted to dis-
continue the study and did not complete the second and third think-aloud sessions. Eleven

students in total completed all three think-aloud sessions with the researcher.

The researcher conducted the think-aloud sessions through Zoom, an online videotele-
phony software program. In the sessions, the researcher instructed the participants to share
their screen and declare their thoughts as they completed the chosen set of exercises. If the
participant had long moments of silence, the researcher asked them to reveal their thoughts.
Zoom automatically recorded each of the sessions using Zoom recording features for audio

and video. The data collected from the study includes video of the screen share, video

11

of the participant, audio, transcripts, and survey data about the student’s programming

experience and academic information before the introductory course.

3.2 Phanon Syntax Exercises

The environment that Phanon emulates an IDE (Integrated Development Environment)
by providing comprehensive components for testing excerpts of code. Phanon groups lessons
by coding topics such as string manipulation, Boolean expressions, conditionals, and loops.
Phanon breaks down some of the more complex topics like for-loops into several lessons for
simplicity and scope. Figure 3.1 shows Phanon’s (GUI) Graphical User Interface while a
student is completing an exercise from a lesson on for-loops. Figure 3.2 shows Phanon’s
GUI after a student has completed exercise eleven. Phanon’s GUI has several essential
elements. The first element lists the exercise numbers for the current lesson. Completed
exercises are marked green with a check-mark icon, the current exercise is marked blue with
a bookmark icon, and future exercises are locked and marked with a white lock icon. Users
can reference previous exercises by clicking on the number, but they cannot look ahead at

future exercises.

The exercise instructions element is the white top center box in the GUI. The exercise
instructions give the user precise information about what to modify or create in the code
editor element, which is the box directly below the exercise instructions element. The
code editor looks and behaves similarly to an IDE by showing numbered lines and a code
completion aid built into the environment. If a student declares a syntactically correct
Python for-loop and then presses enter to move to the next line, the editor will automatically
add the proper indentation, similar to other popular IDEs. Directly above the code editor
are buttons that run the code, move to the next question, revert the exercise, and reveal

the answer.

Phanon marks the button to run the code as a play icon, similar to a start button on

popular IDEs. After the user pushes the button to run the code, the output and test results

12

elements will respond according to the code editor’s input’s correctness. Phanon assesses
their ability to write correct code and evaluates the correctness as taught by the instructor.
It adheres to the instructor’s coding standards. If a user enters syntactically incorrect code
into the code editor and then runs the code using the play button, the output element
displays a Python error message. Suppose a user enters syntactically correct code into the
code editor that is not the correct solution. In that case, the output box will display the
program’s output, and the test results element will display an error message about hidden
tests that have failed. Suppose a user enters syntactically correct code that is the correct
solution. In that case, the test results element displays that the tests have passed, the
output element displays the output of the code, and Phanon displays “good job” in the top

right corner of the instructions element.

Phanon looks and behaves similarly to an IDE, but several features make it more helpful
to the novice coder. A student who is actively learning while using the program has more
options available to them when they get stuck. One feature that Phanon implements is the
ability to revert the exercise. If a user tests their code several times, it may be challenging
to remember the code’s original format before modifications. In that situation, the user
may push the mulligan button to revert the code to the original given format. To keep
students from abusing the mulligan button, Phanon only allows a user to use that button
every thirty minutes. The creator designed Phanon exercises to be quick, but the user
may occasionally take longer than expected to complete the exercise. Phanon contains a
button that reveals the user’s answer to keep the exercises from becoming unnecessarily

burdensome and stressful.

13

Put the variable i inthe print() statement to output

Fig. 3.1: Phanon Graphical User Interface

Put the variable i in the print () Statement to output

Good job!

Fig. 3.2: Phanon Graphical User Interface after Successful Response to an Exercise

Phanon contains three different types of exercises within each lesson. The first type
of exercise a user will encounter is a modification exercise. In a modification exercise,
Phanon instructs the user to change the code that Phanon presents in the code editor. The
modification may be concerning a variable or the body of the code. Another type of exercise
is a debugging exercise. In the debugging problems, Phanon will instruct the user to fix a
bug that is strategically located in the code editor’s code. A bug can be a variety of errors
or flaws in the given code. Some common purposeful bugs are a variable that the user has

not declared, missing colon in the code, or incorrect indentation. The last type of exercise

14

that Phanon uses is a creation exercise. In a creation exercise, Phanon instructs the user to
write the code themselves. These types of exercises usually precede modification exercises
that have exposed the user to the code they are creating. Several of these exercises are
prevalent in the lessons because they allow the user to practice creating the code several
times with different variables and arguments. For example, one exercise might ask the user
to create a for-loop that outputs zero through four values. The preceding exercise will then

ask the user to create a for-loop that outputs the values one through eight.

3.3 Pilot

The researcher conducted the pilot study in the 2020 summer semester and the conclusive
study in the 2020 fall semester. The same professor taught both semester’s courses. The
researcher sent out invitations to participate in the study to all students (approximately
70 people). From the 70 students that received invitations to participate, five students
accepted the invitation and completed the think-aloud sessions. The student’s low interest
in the study’s participation can be attributed to the lack of compensation. Even though
the introductory course students still had to complete the syntax exercises regardless of the

study, there was no appeal for letting the researcher observe the exercises.

The researcher intended the pilot study to be conclusive. However, due to time constraints
and the students’ lack of interest, it was determined that the researcher could improve
methods with a 2020 Fall semester study. A method that improved with the conclusive
study compared to the pilot was the selection of exercises. The course used for the pilot
was a shortened seven-week semester course, and once the IRB approved the protocol, most
of the cognitively engaging lessons had already been due. The lessons that the researcher
observed for the pilot were functions I, Operator Overloading, and Lists II. Students have
already experienced some of the more powerful fundamentals for computer science topics

at this stage in the course.

15

3.4 Participant Selection

Although the students’ interest was low in the pilot, it became a valuable learning ex-
perience and provided keys to success in the fall semester study. It was evident that com-
pensation for participation was a necessary method to attract students. The compensation
also provided a way for the researcher and PI to select students based on criteria that may
influence learning. The researcher focused their selection of participants on various gen-
der, programming experience, and academic background. The professor that taught the
introductory computer science course was the same for the 2020 fall semester. The first sec-
tion was taught as a seven-week shortened class and contained approximately 74 students.
The second section was taught as a fourteen-week normal duration class and contained ap-
proximately 94 students. Within the first week of the course, the professor announced the
online course management system, canvas, on both course pages. The professor posted the
announcement as follows:

“This semester, some students will have the opportunity to participate in an
educational study being conducted by Dr. John Edwards. Students will receive
emails inviting them to participate in the study. This study is approved by the
instructor of the course and by the university IRB (#11325). The instructor of
the course will not know who was invited to participate or who is participating
at any stage of the study. To participate in the study you must be at least 18
years of age, have a personal laptop or desktop computer with a webcam, and
have internet access in a private setting. Participation in the study will take
approximately 30 minutes. Participants who complete the study participation
requirements will be compensated with a $60.00 gift card. For information on
the study, you may contact the Principal Investigator (PI) Dr. John Edwards
or Stephanie Gonzales.”

Following the professor’s announcement on the course pages, the researcher commented
on the announcement with a survey link. In the comment, the researcher instructed the
students to complete the survey if they were interested in the study. The survey asked for
contact information, gender identity, academic information, and programming experience.
Academic information and gender identity questions were optional for the participant to

answer with one of the answer options as ‘prefer not to answer’. The number of survey

16

responses between both courses was reasonably even. So the researcher and PI determined
that the selection pool for participants should be limited to the shorter seven-week course

students.

Once the list of interested participants was limited to the shorter course students, the
researcher and PI met to analyze survey results. The researcher preferred an equal number
of female and male students and various programming experience and academic competence.
Initially, fourteen of the applicants, six female, and six male, that expressed interest through
the survey were chosen and contacted by the researcher. The researcher instructed the
chosen participants to complete a consent form and schedule the think-aloud sessions. Of
the initial fourteen individuals that the researcher contacted to participate, two female
participants opted not to pursue the study, and another female never responded or signed
the consent form. In place of the female participants that dropped the study, the researcher
sent more emails to each female left in the survey responses. Three of the female participants
that the researcher invited in the second round signed the consent forms and scheduled the

think-aloud sessions.

Table 3.1 represents the participants in the think-aloud study. The researcher has changed
the names to preserve confidentiality. Each individual on the list participated in all three of
the think-aloud sessions except for Jennifer and Kristy. Jennifer and Kristy both dropped
the course shortly after they participated in the first session. From the 18 students that

were invited to participate in the study, 11 remained for all three sessions.

Participant List

Name GPA ACT Programming | Used Gender
Experience Python

Jennifer High Low Low No F
Sarah High High None No F
Scott Medium | High None No M
Kyle High High High Yes M
Jack High High None No M
Kristy Low High High No F
Sam Medium | Medium | High No M
Trevor Medium | Low None No M
Hailey High N/A None No F
Emily Low High None No F
Brooke Low Medium | None No F
Matt Low Medium | High Yes M
Blake Medium | Low None No M

3.5 Exercise Selection

Table 3.1: 2020 Fall Think Aloud Study Participants

17

Each week, the introductory computer science course had several lessons due: a collection

of exercises. Because the lessons selected by the PI and researcher were all due within the

same week, the researcher conducted all of the think-aloud sessions in one week. The

researcher and PI carefully selected the topics based on the content and fundamentals that

the lessons explored. The lessons that were selected were Conditionals I, For-Loops I, and

For-Loops II.

3.5.1 Conditionals I - Lesson 3.2.1

18

Conditionals are a fundamental subject in computer science that deals with the control
and flow of a program. The structure of a conditional consists of a condition statement that
evaluates to true or false. The program behaves according to the evaluation of the condition
statement. This principle is one of the most common constructs in any programming lan-
guage and essential to development. Observing conditional exercises can show perspective

in the students’ perception of Boolean statements, flow and control, and scope.

3.5.2 For-Loops I - Lesson 3.5.2

For-loops are another critical topic that deals with the control and flow of a program.
The for-loop executes code for a specific number of iterations. Like conditionals, for-loops
are frequently implemented in many computer programs and are fundamental concepts to
understand. For-loops are also common structures that are prone to elusive flaws and in-
correct implementation from developers. Observing for-loop exercises may give perspective

to a student’s perception of boundary conditions and sequences.

3.5.3 Nested For-Loops II - Lesson 3.5.4

Nested for-loops are another form of meaningful control for a program. The nested for-
loop structure consists of a for-loop nested inside of another for-loop. This type of control is
useful for working with multiple dimension containers or permutations. Even more than the
standard for-loop, students are prone to making mistakes when writing nested for loops.
The cyclomatic complexity of a nested for-loop often confuses new programmers when
implementing and reading. Observing the nested for-loop exercises may reveal necessary

procedures that students engage in as they debug these complex structures.

3.6 Zoom

The researcher conducted the study over a semester that fell during the COVID-19 pan-

demic. Due to the pandemic, the course instructor taught the introductory computer science

19

course exclusively online. The researcher conducted the think-aloud sessions over Zoom for
the student and researchers’ safety and compliance with the IRB protocol. Zoom is a video
and communications software program that allows individuals to video conference over an
internet connection. The participants scheduled three sessions in twenty-minute time slots
with the researcher at a time that was convenient for them. This allowed the participants
to control their environment, and the researcher encouraged them to pick a quiet place with
an internet connection. Zoom’s waiting room feature was applied to each session to ensure
confidentiality. Once the participant had clicked on the Zoom link, they were directed to
a wait screen while the researcher admitted them to the session. The students could share
their screen with the researcher and complete the syntax exercises while expressing their
thoughts. Zoom generated video and audio files of the recordings that the researcher later

coded.

3.7 Coding

After the study, the researcher analyzed thirty-five videos and thirty-five audio files with
a grounded approach [16]. The researcher transcribed audio files with Otter Al, a speech to
text language application. After Otter Al analyzed the transcripts, they were then audited
for correctness by the researcher. The researcher used a qualitative data software called
Nvivo to analyze the video recordings. The researcher first recorded the start and end
times of each exercise. Once the start and end times were recorded, the researcher assigned
the exercises to parent nodes. The parent nodes each had children nodes that represented

the moves recorded.

The researcher used a codebook within each child node represented in table 3.2 to analyze
the video and transcript files. The videos were divided into time-spans based on the action
of the participant and then assigned a code. The researcher divided the language from the
transcripts into the exercise that they corresponded with. Due to the large amount of data

gathered from the study, the researcher and PI agreed on a limit of eleven exercises to code.

20

The exercises they selected were: four exercises from the conditionals lesson, four exercises
from the for-loop lesson, and three exercises from the nested for-loop lesson. The exercises
that were analyzed were a variety of modification, bug fix, and creation problem types.
Other factors, such as duration and the participants’ general response, were also considered

when selecting the coding exercises.

The codes used in each exercise were divided into moves in table 3.3 to show the coding
behaviors that the student engaged in during the exercises. The moves were categorized
similarly to a theory-building analysis [17]. Building moves are behaviors that involve
creating code. There is only one testing move for this study, and it is running the code.
Debugging moves consist of modifying code, reverting the exercise, and pressing the mulligan
button. Sense-making moves are actions in which the student senses the environment, such
as reading instructions, hint, or code. Similar to sense-making moves, response sense-making
moves are behaviors in which the student makes sense of the environment after an event
or response from the environment. These moves usually follow a failed run of code and
include looking at the output of test results. Drawing on knowledge resources is an action
that involves using resources outside of the current exercise. These moves are referencing a

previous question or using the web browser to find a solution.

Code Book

Code

Description

Create Code

Hint

Indentation - Auto

Indentation - Remove
Indentation - Space
Indentation - Tab
Instructions

Modify Code

Mulligan

Output
Read Code
Reference Previous

Researcher Question

Revert Exercise

Run Code

Test Failed

Test Results

The user has created code

The user has referenced the hint in the instruc-
tions

The user has hit the enter button and automatic
indentation was applied

The user has removed indentation

The user has added indentation through spaces
The user has added indentation through tabs
The user has referenced the instructions

The user has modified the code

The user has clicked on the button that reveals
the answer

The user has referenced the output

The user has read the code

The user has referenced a previous exercise
The user has asked the researcher a question or
the researcher has asked the user a question
The user has clicked on the button that reverts
the exercise

The user has clicked on the play button that
runs the code

The user has submitted code that failed

The user has referenced the test results

Table 3.2: Think Aloud Study Code Book

21

22

Coding Moves

Move Related Codes

Building Create Code, Indentation - Auto, Indentation -

Remove, Indentation - Space, Indentation - Tab

Testing Run Code
Debugging Modify Code, Revert Exercise, Mulligan
Sense Making Hint, Instructions, Read Code

Response Sense Making || Output, Test Results
Drawing on Knowledge || Reference Previous

Resources

Table 3.3: Coding Moves

3.7.1 Conditionals I - Exercise 6

Exercise six shown in figure 3.3 is a modification problem that asks the student to change
the code on line two so that the code prints Hello if a is equal to seven. The instructions
specify only to change line two. The researcher and PI selected problem six for coding
because of the participants’ general response to this question. This problem is the first and
only time that Phanon represents the lesson’s conditional statement by a Boolean keyword
rather than an expression. Students who have little programming and Python experience

may not be familiar with how the Boolean keyword affects a conditional statement.

23

Change line 2 50 that the code prints rel1oif a is equal to 7. Change only line 2, and make sure it prints Hello enly ifvals is equalto 7.

Fig. 3.3: Lesson 3.2.1 Exercise 6

3.7.2 Conditionals I - Exercise 13

Exercise thirteen shown in figure 3.4 is a bug fix problem that asks the student to fix the
bugs on line two. The instructions clarify that two bugs exist online two. The researcher and
PI selected problem thirteen for coding because of the type of exercise and the fact that the
instructions specify to fix two bugs. The exercises are designed to be quick and progressive,
which can cause students to assume intended behavior without reading the instructions.

This problem may be a good indicator to evaluate the significance of the instructions.

Fix the bugs (there are two bugs) on line 2 so that the code prints Helle.

N

v
v
v v
v
v
v
LE
8 a
8 a

Fig. 3.4: Lesson 3.2.1 Exercise 13

24

3.7.3 Conditionals I - Exercise 16

Exercise sixteen shown in figure 3.5 is a problem that asks the student to write an if
statement that prints Hello if the variable value is less than four. This exercise is the first
create problem of the lesson in which the operator is meant to be the less than operator
rather than the double equal sign operator. The transition should be easy for the student

and provide a way to gain experience with different control statements.

Write an if statement that prints #ellc if vals is less than

Fig. 3.5: Lesson 3.2.1 Exercise 16

3.7.4 Conditionals I - Exercise 28

Exercise twenty-eight shown in figure 3.6 is a create problem that asks the student to
write a program that outputs Hello, Goodbye, and Done. Each word is meant to be on a
different line, and the instructions specify that Hello and Goodbye should be printed only
if a is equal to three. Done should be printed no matter what. This problem is the first

creation problem that involves some understanding of the scope of the conditional.

25

* Write program that outputs the following

Hello
Goodbye
Done

Hello and Goocbye should be printed only if = is equal to 3. one should be printed no matter what. Your code should have three print () statements.

&

v
v
v
v
v
v
v
v
v

bk hklkEkEEEEE

Fig. 3.6: Lesson 3.2.1 Exercise 28

3.7.5 For-loops I - Exercise 1

Exercise one shown in figure 3.7 is a modification problem that asks the student to run
the code first and then change it so that it outputs the numbers zero through three. For

some students this may be their first exposure to for-loops.

Run the code. Change it so that it outputs

Hint: you will change the 3to a 4

PP DD D[N

a
a8
&
&
8
&
a8
)

Fig. 3.7: Lesson 3.5.2 Exercise 1

3.7.6 For-loops I - Exercise 12

26

Exercise twelve shown in figure 3.8 is a creation problem that asks the student to add the
print call to the for-loop statement. Two hints are given in this exercise that remind the
student to indent the print statement and reference a previous exercise if they get stuck.
The indentation part of this problem may give incite to the students perspective on the

scope of a for-loop.

* Add acall 1o print () on line 2 to output

Hint: be sure to indent the line with pri

Hint: see previous exercise if you get stuck.

Fig. 3.8: Lesson 3.5.2 Exercise 12

3.7.7 For-loops I - Exercise 20

Exercise twenty shown in figure 3.9 is a creation problem that asks the student to write a
for-loop that outputs the numbers zero through seven. The instructions specify that for this
problem the student should only give one argument. The problem is preceded by several
creation problems in the lesson and should demonstrate the students ability to relate their

practice to a similar problem.

27

* Write a for loop that outputs

[}

1
3
a

6
7

‘You may use only one argument to range

‘EEEELLLEEE
tEkELEEEILL LB

Fig. 3.9: Lesson 3.5.2 Exercise 20

3.7.8 For-loops I - Exercise 21

Exercise twenty-one shown in figure 3.10 is a creation problem that asks the student to
write a for-loop that outputs the numbers two through four. The problem is preceded by
several creation problems in the lesson and should demonstrate the students ability to relate

their practice to a similar problem.

* Write a for loop that cutputs

£
4

Your call to rang=() will have two arguments

| [
A
T
A P
7 o
7 B
7 7
7 7
LA B
LIK]

Fig. 3.10: Lesson 3.5.2 Exercise 21

28

3.7.9 For-loops III - Exercise 8

Exercise eight shown in figure 3.11 is a creation problem that asks the student to write
the inner for-loop for a nested for-loop. This exercise is the first of the lesson that requires
the student to write the print statement as well as the for-loop statement. The exercise

may be a good indicator of the students understanding of scope for the outer for-loop.

Add an inner loop on lines 3 and 4 to output

Fig. 3.11: Lesson 3.5.4 Exercise 8

3.7.10 For-loops III - Exercise 10

Exercise ten shown in figure 3.12 is a creation problem that asks the student to write the
inner and outer for-loops from scratch. The exercise is the first creation problem that asks
the student to write both loops without any starter code in the code editor except for the
done print statement. This could indicate the students’ understanding of scope for both

loops and demonstrate their progression of creating nested for-loops.

29

Add inner and outer loops to output

Fig. 3.12: Lesson 3.5.4 Exercise 10

3.7.11 For-loops III - Exercise 15

Exercise fifteen shown in figure 3.13 is a bug fix problem that asks the student to fix the
nested for-loop in the code editor so that it outputs the representation given. The exercise

may demonstrate the student’s ability to recognize scope flaws in nested for-loops.

Fix the bug to output

Fig. 3.13: Lesson 3.5.4 Exercise 15

CHAPTER 4
RESULTS

This section contains the results of the study. There are two significant types of analysis
discussed in this section. One is a qualitative analysis of select exercises. The other type
is a quantitative representation of the participant’s performance in the course for those
that agreed to disclose the information. Generally, the syntax exercises took little time
and limited building and debugging moves. The exercises are designed to be quick and
simple solutions, so exercises with an average duration longer than a minute represented
vital debugging exercises. The minimum, maximum, and average duration of the coded
exercises is represented in table 4.1. Some of those exercises were great resources for insight

into the students’ thought process as they engaged in theory coding moves.

31

Exercise Duration
Exercise Min Max Average Standard
Deviation
3.2.1 Exercise 6 0:00:25 0:06:01 0:02:13 0:01:44
3.2.1 Exercise 13 0:00:01 0:00:22 0:00:13 0:00:05
3.2.1 Exercise 16 0:00:21 0:01:19 0:00:32 0:00:14
3.2.1 Exercise 28 0:00:42 0:03:07 0:01:10 0:00:40
3.5.2 Exercise 1 0:00:01 0:00:37 0:00:17 0:00:10
3.5.2 Exercise 12 0:00:10 0:00:24 0:00:16 0:00:04
3.5.2 Exercise 20 0:00:14 0:00:23 0:00:18 0:00:02
3.5.2 Exercise 21 0:00:16 0:00:35 0:00:22 0:00:05
3.5.4 Exercise 8 0:00:34 0:02:24 0:01:04 0:00:33
3.5.4 Exercise 10 0:00:57 0:01:23 0:01:09 0:00:08
3.5.4 Exercise 15 0:00:08 0:00:46 0:00:18 0:00:11

Table 4.1: Exercise Duration Statistics
Standard Deviation for MIN=0:00:17, Standard Deviation for MAX=0:01:39, Standard Deviation
for AVERAGE=0:00:36

4.1 Lesson 3.2.1 - Exercise 6

Exercise six is a simple debug exercise that requires the modification of less than one line
of code. Before the participants had access to exercise six, they had to complete exercises
one through five in lesson 3.2.1. In the lessons, the preceding exercises are meant to prepare
the user for their work. This exercise is the first that places a Boolean keyword in the
conditional, rather than an expression. The instructions for the user read “Change line 2
so that the code prints Hello if a is equal to 7. Change only line 2, and make sure it prints
Hello only if a is equal to 7.” The following code sits inside the code editor at the start of

the exercise.

1

3

32

valA = 7
if False:

print("Hello")

Despite the simplicity of the problem, many of the participants spent a significant amount
of time on this question. Two participants elected to use the button that reveals the answer
for that exercise after grappling with it for some time. Not all participants struggled with

this exercise, which makes it an exciting choice for qualitative analysis.

3.2.1 Exercise 6 Duration
Name Duration (h:mm:ss) Codes
Jennifer 0:05:18 44
Sarah 0:01:02 18
Scott 0:01:18 23
Kyle 0:00:33)
Jack 0:06:01 87
Kristy 0:01:10 10
Sam 0:01:30 4
Trevor 0:02:03 24
Hailey 0:00:49 7
Emily 0:01:51 16
Brooke 0:03:33 33
Matt 0:00:25 3
Blake 0:03:20 48

Table 4.2: 3.2.1 Exercise 6 Performance Summary
M ean4Standard Deviation for Duration =0:02:13+0:01:44, Mean+Standard Deviation for Codes =
24.8+22.9

33

Below are temporal decompositions for three of the participants as they debugged this
exercise. For this study high performing students are students with a high and grade, A- or
better, in the course. Jack’s experience with the exercise is an example of a high performing
student who engaged in many debugging moves. Sarah was chosen for decomposition be-
cause she is also another high performing student who engaged in many debugging moves.
Her duration for completing the exercise was less than Jack’s but longer than others. For
perspective, Matt was selected as a low performing student who did not engage in very
many debugging moves. His duration for completing the exercise was the lowest out of all

of the participants.

4.1.1 Jack’s Moves

Step 1: Sense Making

Jack quietly hovers over the instructions

Step 2: Debugging the Code
Jack then begins modifying the code. Jack replaces the False: on line two with True:

and adds valA == 7.

Jack: “So I have to change that to true. And then I make sure if

valA is equal to seven.”

1 valA =7
2 if True: valA ==

3 print("Hello")

Jack then runs the code and the test fails. The output message says “SyntaxError:

bad input on line 3”. Jack leans closer to the screen and examines the output.

Jack: “I messed that up.”

34
Step 3: Debugging the code

Jack’s mouse drifts over the code in the code editor. He pulls back from the screen.

Jack: “Hmm.”

After reading the code Jack removes the colon after the True keyword on line two.

1 valA =7
2> if True valA ==

3 print("Hello")

Jack runs the code again and the output remains the same “SyntaxError: bad input

on line 3”. He then removes one of the equal signs on line two.

1 valA =7
2 if True valA =7

3 print("Hello")

Jack runs the code again. The output message changes to “SyntaxError: bad input on

line 27.

Step 4: Drawing on Knowledge Resources

Jack leans in close toward the screen and puts his fist up to his mouth.

Jack: “I'm just going to go back and look here to make sure”

He selects the previous exercise, number five, as a reference. Jack then selected another
previous exercise, number three for a few seconds before returning to number five. Jack

returns to exercise six and removes ‘True’ from line two.

35

valA = 7
> if valA =7

print("Hello")

Jack runs the code again and the test fails. The output message remains the same
as before “SyntaxError: bad input on line 2”. He leans in towards the screen and squints

slightly. Jack then selects a previous exercise, problem four and studies it.

Step 5: Drawing on Knowledge Resources

Jack leans in close toward the screen and puts his fist up to his mouth.

Jack: “I'm just going back and checking to see what I'm doing
wrong on this one right here”
He then selects another previous exercise, problem three. Jack selects another previous

exercise, problem two, but then quickly returns to exercise six.

Step 6: Debugging again

Jack: “We're going to restart this and see.”

Jack clicks on the button to reset the exercise and the code goes back to the original

form. He adds ‘valA == 7’ after the False and colon on line two.

Jack: “See if that does anything”

1 valA =7
> if False: val ==

3 print("Hello")

Jack: “That’ll be right now”

36

Jack runs the code and the test fails. He leans in close to the screen briefly before

changing ‘val’ to ‘valA’.

1 valA =7
> if False: valA ==

print("Hello")

Jack runs the code again and the test fails. He leans in close and puts his hand up to

his chin.

Jack: “No?”

Step 7: Sense Making

Jack’s mouse drifts up toward the instructions and he mutters quietly as he reads them.

Jack: “change line two so..”

Step 8: Debugging
Jack removes the ‘False’ from like two and replaces it with ‘True’ then removes ‘valA

== 7’ from line two.

1 valA =7
2> if True:

3 print ("Hello")

Jack runs the code and the test fails. This time the output displays Hello but a hidden
test has failed. Jack examines the output briefly. After ‘True:’ he starts to write ‘valA’ but

pauses and then removes it. He then adds ‘== 7’.

37

1 valA =7
2 if True: ==

print("Hello")

Jack runs the code again and the test still fails. He gives a slight shrug and shakes his

head. He then removes ‘==7".

Step 9: Drawing on Knowledge Resources
Jack references a previous exercise, problem number five, and exhales putting his hand
on his mouth. He selects question four and then jumps immediately to question three. Then

he clicks back to question five and pulls away from the screen.

Jack: “okay..”

Step 10: Debugging

Jack adds ‘valA == 7’ to line two in-between True and the colon.

1 valA =7
2> if True valA ==

3 print("Hello")

He runs the code and the test fails. His mouth sets into a hard line and he leans closer

to the screen. He then removes ‘valA == 7’ and types ‘valA’ after the colon.

1 valA =7
2> if True: valA

print("Hello")

Jack runs the code and the test fails. He removes ‘valA’.

38

Step 11: Drawing on Knowledge Resources

Jack clicks on exercise four and studies the code.

Jack: “More tricky than I thought it was gonna be.”

Step 12: Sense Making
Jack returns to exercise size and follows the code with his mouse. He runs the code

and the output prints ‘Hello’ but the test fails. He leans in close to the screen.

Jack: “Hidden test failed.”

Jack’s mouse moves over to the code in the editor and he puts his hand up to his
mouth as he studies the code. On line one he adds another equal sign to the expression but
immediately removes it. His mouse continues to follow the code in the editor and hovers

over line two after the conditional statement. He types ‘valA == 7’.

1 valA =7
2 if True: valA ==

print("Hello")

Jack runs the code and the test fails. He furls his brow and removes ‘valA == 7’ on

line two.

Step 13: Drawing on Knowledge Resources
Jack clicks on question five, and then on question one briefly. He returns to question
five and hovers over the code in the editor. He returns to question six and types ‘valA ==

7 to the end of line two.

39

1 valA =7
2 if True valA ==

print("Hello")

Jack runs the code and the test fails. The output displays “SyntaxError: bad input on

line 2”

Step 14: Debugging
Jack leans in closely to the screen and exhales as he removes ‘valA == 7:". He mumbles
and his eyes drift up towared the instructions. He removes the word ‘True’ and replaces it

with ‘valA == 7 True’.

1 valA =7
2> if valA == 7 True

3 print("Hello")

He runs the code and the test fails. The output displays the same message “Syntax-
Error: bad input on line 2”. His lips tighten and he removes all of line two and replaces it

with ‘True: valA == 7.

1 valA =7
2> True: valA ==

3 print("Hello")

Jack runs the code and it fails. The output message has changed to “SyntaxError: bad

input on line 3”. He removes ‘valA == 7’ and replaces it with ‘a == 7’.

40

1 valA =7
2> True: a ==

print("Hello")

Jack runs the code and the test fails. The output message stays the same. He removes

‘a == 7’ and lets out a sigh then replaces it with ‘* == 7’.
1 valA =7
2 True: ==

print("Hello")

He runs the code and the test fails. The output message changes to “SyntaxError: bad
input on line 2”. As Jack considers the code he starts to remove the ‘7’ and then puts it

back.

Jack: “Hmm.”

Step 15: Drawing on Knowledge Resources
Jack rests his mouse on line two and then clicks on exercise five. He pulls back quickly

from the screen and returns to exercise six.

Jack: “So..”

Jack replaces ‘True:” with ‘valA’ and then adds a colon after the ‘7.

1 valA =7
2> if valA == T7:

3 print("Hello")

41

Jack runs the code and it passes. He shrugs while laughing and shakes his head.

Jack: “There we go.”

Researcher: “Is having that false there the tricky part?”

Jack: “Yeah, well normally like if it has something new it
has something to do with like, what we're doing at
that time, so I figured that it was like that’s another

way you can command it to do that.”

4.1.2 Sarah’s Moves

Step 1: Sense Making
Sarah follows the instructions with her mouse as she silently mouths the words. She

then follows the code with her mouse.

Sarah: “So now they want me to write it myself”

Step 2: Drawing on Knowledge Resources

Sarah quickly goes back to exercise number five and looks at the code in the editor.

Sarah: “See back here it said value..”

Step 3: Sense Making

Sarah returns to question six and rests her cursor on line two.

Sarah: “see it says false”

Her eyes drift up toward the instructions.

Sarah: “so then change line two so that... equal to seven”

42
Step 4: Debugging

Sarah clicks on line two after ‘False: ’ and types ‘valA’.

Sarah: “Um.. so I know I want value A to only be seven”

Sarah types ‘++’ and then immediately removes it. Her mouse follows the instructions
and rests on ‘Hello only if valA is equal to 7. She adds ¢ == 7’ after valA and then removes

‘False’.

Sarah: “I don’t think the false is supposed to be here”

1 valA =7
2> if : valA ==

3 print("Hello")

Sarah runs the code and the test fails.

Sarah: “Maybe it was, I'll put it back”

She types ‘False’ between the if and the colon on line two.

1 valA =7
> if False: valA ==

3 print("Hello")

Sarah runs the code again and the test fails. The output displays “SyntaxError: bad

input on line 2”. her mouse hovers over the code.

Sarah: “Hmm.”

43
Step 5: Drawing on Knowledge Resources

Sarah clicks on question five and follows the code with her mouse. Then she follows

the instructions with her mouse.

Step 6: Debugging

Sarah moves back to exercise six.

Sarah: “Oh okay yeah. So the false isn’t supposed to be there but

the semi colon needs to be on this side”

She removes ‘False:’ and then places the colon at the end of line two.

Sarah: “or the colon I mean.”

1 valA =7
> if valA == 7:

3 print("Hello")

Sarah runs the code and the test passes.

4.1.3 Matt’s Moves

Step 1: Sense Making
Matt’s mouse hovers over the instructions for a few seconds. His mouse drifts down to

the code and highlights the word ‘False’.

Step 2: Debugging

Matt: “Change line two so that it is equal, or, so that it prints that

it is equal to seven”

Matt removes the word ‘False’ from the code and replaces it with ‘valA == 7.

44

valA = 7
o if valA == T7:

print("Hello")

Matt: “Only line two, okay, so valA equal to seven”

Matt runs the code and the test passes.

4.2 Lesson 3.5.4 - Exercise 8

Exercise eight is a creation problem that asks the student to write the inner for-loop for a
nested for-loop. This exercise is the first of the lesson that requires the student to write the
print statement and the for-loop statement. The following code sits inside the code editor

at the start of the exercise.

1 for i in range(2):

2 print("i = " + str(i))

5 print("done!")

The participants that completed this exercise averaged one minute and four seconds for
duration. The average number of codes recorded for this exercise is 12.45. Brooke took
the longest to complete this exercise at two minutes and nineteen seconds, with twenty-
six codes recorded. Jack took the shortest amount of time to complete the exercise at

thirty-four seconds and seven codes recorded.

45

3.5.4 Exercise 8 Duration
Name Duration (h:mm:ss) Codes
Sarah 0:00:49)
Scott 0:01:42 33
Kyle 0:00:43 9
Jack 0:00:34 7
Sam 0:00:43 5
Trevor 0:01:27 16
Hailey 0:00:41 5
Emily 0:01:05 12
Brooke 0:02:19 26
Matt 0:00:39 4
Blake 0:00:54 15

Table 4.3: 3.5.4 Exercise 8 Performance Summary
M ean4Standard Deviation for Duration =0:01:03+0:00:31, Mean+Standard Deviation for Codes
=12.4549.1

Represented in figure 4.1 compares the timeline and moves that three participants engaged
in as they completed exercise eight—each of the participants engaged in each type of move
at least twice. Multiple debugging and testing moves in their timelines reflect that they
were learning through trial and error. Sensemaking moves and response sensemaking moves
in the timeline reflect their attempts to understand the exercise’s environment. Drawing
on knowledge resources shows that they used resources outside of the code environment to

gain understanding.

46

rELTT 1'61:Z0
E'vOiTT
A 0'00:70
L7180 TZHT0 Eril
o b E£PETT
\I 6'00:80 0'LTT0
9'00:80 0'0E:T0 HI| EVTIT 0'OE:TO0
9'05:40 6'ESL0 EPTl
90LO BEFLD EreTT
9'0E:L0 0'00:T0 6'EELD 0'00:T0 E'7S0T 0'00:T0
9'0Z:40 6'ETLO EF0T
9'0T-£0 BETLO EFEOT
9'00- L0 0'0E00 BEDLO E 0T 0000
9'05:90 6'E5:90 E'$T:0T
9090 6'EV90 £ v0:0T
90E90 0'00:00 G'EE90 0'00:00 E'F5i60 0'00:00
CITTETT uopeIng CHTETT uoleIng CHITENT uoneing
noas J0ABI] axjooug

Testing Mowves Debugging Moves Sense Making Moves

Building Moves

Drawing on Knowledge Resources

Response Sense Making Moves

Fig. 4.1: Exercise Eight Moves Timeline

4.3 Lesson 3.5.4 - Problem 10

47

Exercise ten is a creation problem that asks the student to write the entire nested for-
loop. This exercise is the first in the lesson that requires the student to write a nested
for-loop without an inner or outer loop present in the code editor. The following code sits

inside the code editor at the start of the exercise.

1 print("done!")

The participants that completed this exercise averaged one minute and nine seconds for
duration. The average number of codes recorded for this exercise is 10.63. Emily took the
longest to complete this exercise at one minute and twenty-three seconds with twelve codes
recorded. Jack took the shortest amount of time to complete the exercise at fifty-seven

seconds and nine codes recorded.

3.5.4 Exercise 10 Duration

Name Duration (h:mm:ss) Codes
Sarah 0:01:06 9
Scott 0:01:05 9
Kyle 0:01:07 13
Jack 0:00:57 9
Sam 0:01:15 13
Trevor 0:01:00 9
Hailey 0:01:02 8
Emily 0:01:23 12
Brooke 0:01:14 14
Matt 0:01:02 10
Blake 0:01:18 11

Table 4.4: 3.5.4 Exercise 10 Performance Summary

48

Mean4Standard Deviation for Duration = 0:01:08£0:00:08, Mean+Standard Deviation for Codes

=10.7+/1.9

Represented in figure 4.2 is a comparison of the timeline and moves that three participants

engaged in as they completed exercise ten. The absence of debugging moves in Scott and

Trevor’s timeline means that they submitted the correct code on the first attempt. Brooke

engaged in debugging moves but not as frequently as she did in exercise eight.

49

56091 9°¢T10
60T ¥e0:T0

[i

S 1560 00 To
BE00T 00xTO 6 rTaT 00T
6'E5:60 5'Tt60 6 t0:9T
B'EtE0 S'TIE'60 6 FEET
B EERD 0'0E00 S'TZ-60 0000 [4 .3°7 0'0E-00
6'ET-60 STT'60 B rEaT
6'EL60 5 TR0 6 ¥TiST
6 E0°60 0'00:00 S15:80 0'00:00 6PTST 0°00°00
auljaw| | uaiIng ETIENTY uaEIng EITETTN UBIEINg
1035 TN 2j00.g

Testing Moves Debugging Moves Sense Making Moves

Building Moves

Drawing on Knowledge Resources

Response Sense Making Moves

Fig. 4.2: Exercise Ten Moves

4.4 Participant Course Performance

50

Table 4.5 shows the grades of the participants who completed the study and gave per-

mission to present their grades. A variety of performance in the course is reflected in the

scores.
Participant Grades
Name || Exercise Codes | Assignments | Exercises | Quizzes | Exams Total Letter
Duration

Sarah || 29:10.9 154 100% 100% 98.79% 88.15% 96.32% A
Scott || 37:55.5 179 73% 100% 81.82% 71.11% 74.85% C
Jack 28:53.6 215 100% 100% 100% 85.19% 95.56% A
Sam 35:22.4 142 84.21% 100% 100% 78.52% 84.87% B
Trevor || 39:52.4 167 40.56% 100% 93.94% 74.81% 59.15% D
Hailey || 34:49.9 133 96.83% 100% 97.58% 78.52% 91.57% A-
Emily || 38:39.3 158 100% 100% 100% 84.44% 95.33% A
Brooke|| 47:19.0 208 57% 94% 95.15% 65.19% 65.06% D+
Matt || 24:50.3 122 80% 96.97% 79.39% 41.48% 69.23% C-

Pearson Correlations between grade percentage and combined time is (r=-0.41, p=0.26), Pearson

Correlations between grade percentage and total codes is (r=-0.07, p=0.85).

In figure 4.3 the blue plot represents the correlation between the grade percentage of the

Table 4.5: 2020 Fall Think Aloud Study Participant Grades

participants to the combined time it took the participants to complete all three lessons.

The orange plot represents the correlation between grade percentage and total codes.

ol

Total Codes

@ Codes Linear (Grade Percantags)

00 150 . g
120 1] 50 00 150 200 250

100 e

80 e g

Grade Percentage
=
[]
®

20

0
W00 07120 14240 21360 28480 36000 431120 50:24.0

Total Lesson Duration
@ Lesson Duration seeeeeeee Linear (Grade Percentage]
Fig. 4.3: Final Grades (Y Axis) Compared to Duration (Bottom X Axis) and Total Codes
(Top X Axis), Pearson correlation between assignment score and combined time is (r=-

0.57, p=0.11), Pearson correlation between assignment score and total codes is (r=-0.21,
p=0.58).

In figure 4.4 the blue plot represents the correlation between the assignment score per-
centage of the participants to the combined time it took the participants to complete all
three lessons. The orange plot represents the correlation between the assignment score

percentage and the total codes.

92

Total Codes

@ Codes Linear (Assignments)

0 S0 100 150 200 250

,_..
=]
=S

‘e

L
L]

&0 7 s S ==
60 i
40 & L

20

Assignment Percentage

0
00000 07120 14240 21:36.0 28480 30:00.0 43:112.0 50240

Total Lesson Duration
® [Lesson Duratiom =w=e=eee Limear {Assignments)
Fig. 4.4: Assignment Scores (Y Axis) Compared to Duration (Bottom X Axis) and Total

Codes (Top X Axis), Pearson correlation of exam score to duration is (r=0.13, p=0.72),
Pearson correlation of exam score and total codes is (r=0.29, p=0.44).

In figure 4.5 the blue plot represents the correlation between the exam score percentage of
the participants to the combined time it took the participants to complete all three lessons.
The orange plot represents the correlation between exam score percentage and the total

codes.

100
S0
g0
70
a0
50
40
30
20
10

Exam Percentage

00:00.0

93

Total Codes
® Codes -easeees Linear (Exams)
50 100 150 200 750
L4 L))
- R
N ST “‘ *
i .
¢
07:12.0 14240 21360 28480 36:00.0 43:12.0 50:24 .0

Total Lesson Duration

@® Lesson Duration reeeeeees Linear [Exams)

Fig. 4.5: Exam Scores (Y Axis) Compared to Duration (Bottom X Axis) and Total Codes

(Top X Axis)

CHAPTER 5
DISCUSSION

Several patterns of student interaction with Phanon have emerged throughout the study.
In this section, the interpretation of those patterns and an examination of the results are
discussed. The exercises’ effectiveness, in the context of the intrinsic and extraneous load,

is also investigated in this section.

5.1 Duration and Codes

Duration, i.e., the amount of time it took students to complete the syntax exercises,
was used as a measure of effort in this study, along with the number of codes. Each code
represented an action that the user took while completing the exercises, so the higher the
number of codes, the more effort they put into the exercise. Duration alone is not a valid
indicator of effort because of the different types of problems that Phanon includes. A code
creation problem in the nested for-loop lesson is meant to take a significantly longer time
than a simple modification problem from the conditionals lesson. The minimum, maximum,
and average duration for each exercise were used to determine the exercise’s complication
and was also a good indicator of whether the students generally engaged in debugging

behaviors.

Exercise six in table 4.1 across participants shows a minimum of 0:25, a maximum of
6:01, and an average of 2:13. The average is significantly higher than the minimum, which
indicates that the solution can be quick and straightforward. However, some of the partici-
pants took significantly more time to complete the exercise than others. In contrast, to the
last exercise in the table, lesson 3.5.4 exercise fifteen had a minimum duration of 0:08, a

maximum of 0:46, and an average of 0:18 seconds. From the representation of that problem,

95

an assumption can be made that this problem was generally not difficult for participants.

If there were any debugging moves, they were minimal and most likely outliers.

Determining which exercises most likely presented more debugging moves for most partic-
ipants was crucial in selecting coding exercises. Although some quick and simple exercises
helped find patterns with some interactions, more meaningful patterns would be discovered

in high debugging content problems.

5.2 Intrinsic and Extraneous Load

The study has shown a light on the issue of intrinsic load versus extraneous load. Intrinsic
load is a measure of difficulty in learning a subject. The ineffectiveness of the way that
subject is taught is extraneous load. Although the exercises in Phanon are designed to
be quick and uncomplicated, there are two exercises from the study that were particularly
difficult for most of the students. An evaluation of the two exercises determined that one
was difficult because it represented a concept with a high intrinsic load. The other exercise
was challenging for the students because of how the problem was presented to the user.
This represents the extraneous cognitive load. A determination of which exercises cause

extraneous load can help improve teaching methods by exposing confounding directions.

As described below, lesson 3.2.1 exercise six is the exercise that represented a high intrinsic
cognitive load. The exercise can be tricky for students who do not know Python or have
little experience in programming. High intrinsic load is represented in the exercise because
solving the problem leads to a meaningful discovery about a syntax rule. If the individual is
familiar with syntax in Python or general syntax rules, the solution is much more apparent.
In contrast, Lesson 3.5.4 exercise five was written so that the students put in an unnecessary
amount of cognitive effort for a solution that did not provide a meaningful discovery. This
exercise was not a problem that the researcher coded but one that they evaluated for the

exercise’s effectiveness.

o6

5.2.1 Lesson 3.2.1 Exercise 6

The solution to exercise six, see figure 3.3, is a simple one. The student is given a
conditional with a Boolean in the conditional statement rather than the expression that the
instructions describe. The simplicity is represented in the duration and number of codes in
table 4.2. Some of the participants took very little time and moves to complete the exercise,
and others took a long time and used many moves. Kyle, Sam, Hailey, and Matt took little
time and effort to complete this exercise compared to the rest of the participants. Table 3.1
shows that out of the participants that took little effort and time to complete the exercise,
Hailey is the only one that had not had any programming experience before the course.
Kyle, Sam, and Matt have all had over ten hours of programming experience, and Kyle and
Matt have also used Python. This indicates that the user is generally more proficient with

this exercise if they have had prior experience with syntax.

In contrast, the less proficient participants with duration and number of moves in exercise
six indicate a learning process for this problem. Sullivan et al. explain that a critical
component between intrinsic and extraneous load is removing or limiting cognitive problem
solving [18]. Jack 4.1.1 and Sarah’s 4.1.2 temporal decomposition reveals their learning
process as they discover an essential syntax rule. Within their decomposition, healthy

patterns of intrinsic load are revealed instead of patterns of an extraneous load.

In step two of Jack’s temporal decomposition, he begins coding and confidently announces
what he believes he is supposed to do to answer the question. In his first attempt to solve the
problem, he switches the Boolean keyword from ‘False’ to ‘True’ and adds ‘valA == 7’ after
the colon. Even though this solution is not the correct syntax, Jack’s actions demonstrate

his understanding of the instructions and his understanding of the source of incorrect code.

For most exercise six, Jack tries varieties of his first method in different orders and syntax.
For example in step three he tries ‘if True valA == 7’ and then in step eight he tries ‘if

True: == 7. By trying different variations of his original answer, he demonstrates that

o7

he understands the instructions’ expected outcome. Jack’s cognitive effort to understand
the problem was minimal, but the proper syntax when a Boolean keyword is present is
unknown. Because Jack is unfamiliar with the syntax represented in the code editor, he

keeps the Boolean and adds his expression to the syntax.

At the end of the question, the researcher asked Jack if the false keyword made the
question difficult. Jack responds with an explanation that he expected exercise six to be a
part of a typical pattern in syntax by saying, “I just figured that it was like that’s another
way you can command it to do that”. Jack is referring to the way Phanon introduces
variations of the syntax that have a similar outcome. Learning syntax often involves learning

)

different variations of writing code. For example, ‘for i in range(4):” and ‘for i in range(0,4):’
returns the same values but are written slightly differently. Jack believed that the Boolean
in the expression was an optional addition to the expression similar to the zero in ‘for i in

range(0,4):".

Sarah’s approach to this exercise was very different. Her first three steps were sense-
making and drawing on knowledge resources steps. She starts by following the instructions
with her mouse and confidently says, “So now they want me to write it myself.” She looks at
the code and then quickly navigates to the previous problem and says, “see back here it said
value..”. This is a clue that might indicate that she is looking at the code in the previous
question where the expression ‘valA < 7’ is presented. When reading the instructions,
Sarah’s confidence demonstrates that she understood the problem and supports a minimal
extraneous load. Her quick reference to a previous question after reading the code indicates

that she saw syntax that she was not familiar with and then used her resources for reference.

Sarah’s first action for modifying the code is to remove the False as she says, “I don’t
think the false is supposed to be there”. Her guess was very close to the correct solution,
but she made other syntax mistakes on the first attempt, which caused the test to fail.

She quickly puts the False back, and her next moves display a pattern similar to Jack’s.

o8

She attempts a combination of the Boolean and the desired expression before engaging in
sense-making and drawing on knowledge moves. Sarah displays confidence when she returns
to question six and explains that she was initially correct and that the false should not be
there. Cognitively this exercise was not strenuous for Sarah. Sarah knows bits and pieces of
the correct syntax, and her understanding of relationships between those bits of knowledge

grew once she completed the exercise.

Matt’s temporal decomposition was used to show the perspective of someone experienced
with Python syntax and completed the question on the first attempt. Matt’s ability to
solve the exercise quickly suggests that even though the extraneous load is minimal on this
exercise, there may be a way to reduce it even more for individuals like Jack and Sarah.
Experience with syntax and programming seems to be a common characteristic for those
that solve this problem quickly. Increasing the user’s familiarity with how Boolean keywords
interact with conditional expressions before exercise six may be a valuable way to improve

the conditionals lesson.

Even though the students took more time than expected to complete exercise six, several
indicators demonstrate a low extraneous load. A sign that students are having difficulty
understanding the material represented is their frequency or time spent looking at instruc-
tions. Sarah and Jack spent most of their time solving this exercise, referencing previous
questions. This shows that they understand the inherent concept, but they learn the correct

syntax through trial and error.

5.2.2 Lesson 3.5.4 Exercise 5

The purpose of exercise five is to give students experience with how the two for-loops in
a nested for-loop interact. Asking the student to change parts of the print statement can
expose the fundamentals of nested for-loops. The instructions for this problem are listed

below.

99

Change the code to output

i=0
j: 0
j: 1
j: 2
i=1
j: O
j: 1
j: 2
done!

The code given to the student in the code editor shows the following.

1 for i in range(2):
2 print("i = " + str(i))
for j in range(3):
1 print(" j =" + str(j))

5 print("done!")

The solution to exercise five is to change the equal sign in the second print statement to
a colon and remove one space. The steps to solve this problem are very simple and meant
to be quick, but the average duration for the participants in this exercise was 1:10, with the
maximum duration at 2:46. The participants struggled with this simply because they could
not tell the difference between the code to output and the text editor’s code. Switching the
equal sign in the second print statement to the colon is a small change that the students had
a hard time spotting. This indicates that this exercise’s efficiency is based on the students’
attention to detail and observation skills. This exercise gets presented to the student in a

way that causes unnecessary struggle and demonstrates an extraneous cognitive load.

60

The extraneous cognitive load demonstrated in exercise five is a deviation from the routine
exercise. The rest of the exercises that were observed had minimal if any extraneous cogni-
tive load. This confirms that Phanon is an excellent resource for removing the extraneous

load from learning syntax.

5.3 Precision and Speed

The participant’s ability to create syntactically correct code quickly got better as students
progressed through the lessons. As the students were introduced to new variations and
parameters when writing code, they got more accurate, faster, and better at spotting bugs.
Comparing exercise eight and exercise ten is an excellent example of two creation problems

that show significant improvements in some participants.

Exercise eight, see figure 3.11, asks the student to write the inner for-loop in a nested
for-loop. The outer for-loop is already present in the code editor on lines one and two. The
students have already completed two lessons about for-loops before the lesson on nested
for-loops. The students should be familiar with writing a for-loop, but the complexity of

nested for-loops can cause confusion and errors when creating the code.

Scott, Trevor, and Brooke were the participants that spent the most time and engaged
in the most debugging moves on exercise eight. Figures 5.1, 5.2, and 5.3 show the moves
in time-span form with the transition from exercise eight to exercise ten. Exercise ten,
see figure 3.12, asks the students to write the inner and outer loop of a nested for-loop.
This is double the amount of code to write, and possibly more than double the effort from
exercise eight. Despite the increase in code and effort, Scott, Trevor, and Brooke improved
significantly in duration and debugging moves. One exercise between exercise eight and

exercise ten asks the student to write the outer for-loop of a nested for-loop.

Scott
Y gl 2| e vl v v e e 2| v e~
= =2 -] =2 -] =1 -] = -] S| S|
E & =< nl| < ! o m bt wny | ==
E &8 8| 8 5| 5| 5| 5| 5| 5| &| &8||8
Exercise 8
H = Q (=] -
-?_ E o o =} o~
£ P o a 5
A = g =] = =]
L | | = @ @ @] = -
=gl @ @9 2| | @ = @
g Lo) i 5 Bl e 2
Eg|l 8 8 8 8 8|3l |8
Exercise 10
c
23 s g |2
z 8 g = |z
a 1] o
Building Moves Testing Moves Debugging Moves Sense Making Moves
Response Sense Making Moves Drawing on Knowledge Resources

Fig. 5.1: Scott Exercise Eight Compared to Exercise Ten

61

Trevor
E’m a|l ool o] @ o ®| o] @« o
T B F| R 2 3T " M TR g
E 8|l &8 8§ 5| 5| 5| 5| 5| 5| (8
Exercise 8
& = =
£ B g8 B8 I
2 B =]
fol4 9 2388 &
En 2| o| o m| = o
£ 8 &8 8 8 8 & 2
Exercise 10
T = -
2
5 & g
2]

Building Moves Testing Moves Debugging Moves Sense Making Moves
Response Sense Making Moves Drawing on Knowledge Resources

Fig. 5.2: Trevor Exercise Eight Compared to Exercise Ten

62

63

Brooke
L o] m| m| m| m| m| m| m| m| m| m| m| m| m <
= g 2| | | & 2 2| £ 2 | £ 2 FZ| = "
i el 2| o = =2 & 2| =2 2| 2| =| 9| = =
E 8| 8| 8| 8| 8 8 8| @ 3 3 3 3 44 d
Exercise 8
S a o o a a -
o = = =1 =1 o
% 8 M =1 m a -
= =1 = o ~
Z 8 S =] e =]
2 o o -3 - L] o m o w
s = 2| 2 €| | 2 2| € |g
E 0 n n] T o o o Iy
[- - - - — — — - -
Exercise 10
5§ @ =) = @
s 8 g g]
5 =
=8 g 8]
Building Moves Testing Moves Debugging Moves Sense Making Moves
s
Response Sense Making Moves Drawing on Knowledge Resources

Fig. 5.3: Brooke Exercise Fight Compared to Exercise Ten

The improvements from exercise eight to exercise ten demonstrate the effectiveness of
structured practice in developing procedural memory. As the student continues to practice
writing code, some kinesthetic habits start to form, and they become faster and more
accurate. As seen in figures 5.1 and 5.2 Scott and Trevor engaged in some sense making
moves before creating the code and were successful on the first instance of testing moves.
A pedagogical design of exercises 8, 9, and 10 are to write the same code several times and
then generalize. Since the exercises are repeating the same code, we need to take care of

concluding the effectiveness.

As seen in figure 5.3 Brooke engaged in some debugging moves in exercise ten, but she did
not engage in any sense-making, response sense-making, or drawing on knowledge resource
moves. This indicates that her exercise eight and nine experience helped her improve her

ability to spot the flaws in her code quickly without using other resources.

5.4 Referencing Previous Questions

64

One common practice that the participants engaged in when debugging a syntax exercise
is referencing the previous question. Referencing a previous question was categorized as
a drawing on knowledge resources type of move. A common concern among introductory
computer science courses, like CS1, is how often students use outside resources or previous
code to complete their homework assignments. This pattern of utilizing previous questions
could mean that students reference previous code in their homework assignments more than

previously thought.

Table 5.1 shows the type of codes used with exercise six and how many times all partici-

pants referenced them.

3.2.1 Exercise 6 Code References
Code References
Create Code 13
Instructions 37
Modify Code 56
Mulligan 2
Output 5
Read Code 37
Reference Previous 77
Revert Exercise 6
Run Code 56
Test Failed 43
Test Results 1

Table 5.1: 3.2.1 Exercise 6 Code References

For exercise six, referencing a previous question was the most used code with 77 refer-
ences. Each time a participant clicked on a previous question, the code was recorded, so if

Jack clicked on question five and then question four, that would count as two codes. The

65

high number of referencing previous questions could also indicate that students spent time
looking through the previous questions to find the syntax that could help them answer the

question.

In figure 5.1 and 5.3 the purple sections indicate the time that Scott and Brooke spent
looking at previous questions in exercise eight. In exercise ten, neither of them referenced
previous questions, and Brooke only engaged in a few debugging moves. Considering the
amount of improvement from exercises eight and ten for Scott and Brooke, a theory can
be made that referencing previous questions is not detrimental to progress. The partici-
pant’s ability to access other syntactic code examples most likely helps them get better at

recognizing and using correct code.

5.5 Debugging and Grades

This study has provided evidence that the amount of time a student spends on syntax
exercises does not relate to the grade they receive in the course. Jack, who is referenced in
the temporal decomposition breakdown, was one of the students that struggled the most
with exercise six. Matt is also referenced in the temporal decomposition breakdown for
exercise six and performed the best in that exercise. When it comes to academic performance

in the course, Jack outperformed Matt in each scoring category, reference table 4.5.

Students that engage in debugging moves often while completing Phanon exercises are
not struggling in the course. This could indicate that students who engage in debugging are
often getting more value from Phanon than those who are not. Phanon provides a safe and
comfortable environment that allows the students to debug syntax problems in a modular

way.

Phanon provides the ability for students to master the syntax, which gives them even

footing to be judged based on their ability to solve problems. Once the effort in syntax is

66

removed, the student’s assignments and exams are more of a reflection of their performance

in the course [19].

5.6 Overall Affective State

Throughout the study, there were several verbal and physical indicators that the partic-
ipants enjoyed Phanon syntax exercises. In Jack’s temporal decomposition of exercise six,
he figures out the solution, and he laughs and shakes his head. This behavior indicates that
even if the student struggles while using Phanon, there is some comfort level that allows
them to laugh at their mistakes. The controlled environment that Phanon provides allows
the user to have fun because they are never truly stuck. The mulligan button, hints, and
simplicity of the exercises give them a place to explore the fundamentals of programming
without the stress and complexity present in assignments or projects. Below are some com-
ments made during the think-aloud sessions that may represent the participant’s state of
mind or opinions of Phanon. Some comments were negative, but most of them seem to

reflect a favorable opinion of the program or their circumstances.

Lesson 3.5.2 at 04:34
Hailey: “And I think that’ll work. Yay!”

Lesson 3.2.1 at 05:59
Kristy: “I like these exercises a lot with the readings because they
are so like, they’re the little details. They get so frustrating

when you’re trying to do the program.”

Lesson 3.2.1 at 09:14

Kristy: “I like this because it’s teaching me the vocab. I think I
have a little programming background. Well, I have a bigger
programming background like 10 years ago when I was in
school, and then I never used it. So this is helpful because I

think the biggest thing I struggle with is the vocabulary.”

Lesson 3.5.4 at 08:39

Brooke:“Great. I know, this is so simple. But now that I figured

Sam:

Sam:

Blake:

Blake:

Kyle:

Kyle:

Kyle:

out I'm like, Oh, I'm the smartest person ever.”

Lesson 3.2.1 at 02:06

“I really don’t like these kinds of programming exercises.
Because unless you do the code exactly the way they want
you to do the code. It doesn’t work, right? Even if you even

if you get the desired output.”

Lesson 3.5.4 at 11:17

“So that’s okay, cool.”

Lesson 3.2.1 at 04:26

“There we go. Cool. ”

Lesson 3.5.4 at 06:28

“Nice ”

Lesson 3.5.4 at 07:57
“This is the kind of time where I wish I could just copy paste
because I could just you know write the first for loop, copy

paste it change two numbers”

Lesson 3.5.2 at 08:29
“Sometimes it’s just fun to see if the program will yell at
me for you know being slightly different. It’s half the fun in

actual coding is making your variable silly names.”

Lesson 3.5.4 at 09:19

“This was fun.”

67

68

These comments and the frequency of positive comments to negative comments are very
similar to the responses received by Sullivan et al. [8] in their assessment of student’s
attitudes toward Phanon. In the survey results, 86% of students said that Phanon was
helpful, 84% said they liked the exercises, and 8% found enjoyment throughout the exercises.
Similar to Sam’s comment about the exercises needing the exact format for acceptance, 5%
of the students in Sullivan’s survey found the exercises to be annoying, and 5% of the
students said they did not like the exercises. The survey was a free response questionnaire

so the results are based on the student’s open-ended comments.

5.7 Threats to validity

There are several threats to validity that the reader should consider when discussing these
results. Omne of those is the distribution of students. A variety of gender, programming
experience, and academic abilities was desirable for this study but not a simple task. It was
not easy to get women to participate in the study, even though many showed interest by
completing the initial screen. Once invited to participate, several women told the researcher
that they were no longer interested in participating or dropping the course. Before the study,
all of the women from the course were invited by the researcher to participate. Only four

women remained participants for all three sessions.

Another concern about the participants is that they were selected from the seven-week
introductory computer science course. The results may not be able to be generalized to
students in a regular fourteen-week course. Typically, the students who knowingly register
for the shorter courses understand that there is a more significant amount of work in a
shorter time. As a result, those individuals may be more determined and prepared for the
workload of the course. Another perspective is that the students in the seven-week course
may be disadvantaged since their work is expected to be complete in a shorter time frame.
The lower grades of the participants we evaluated may be due to the inability to keep up

with a demanding shortened course.

69

The semester that the researcher conducted the study may also have been a threat to
our data’s validity. The study was conducted in the 2020 fall semester in the middle of the
COVID-19 pandemic. In think-aloud studies, the researcher generally conducts sessions in
person [7]. However, that was not an option for this study. The study conducted through
Zoom may be a less personal and more uncomfortable situation for the participants or the
researcher. The other side to that is that it may have made the participants and researcher
more comfortable since they could complete the study in a location of their choosing without

the stress of transportation.

Researcher bias toward the encoding of actions should also be considered when reading
the results. Future work of this thesis consists of recruiting other researchers to code the
data. Some of the actions and moves that were coded were based on a judgment call from
the researcher. Determining the validity of those judgment calls is a necessary step in

moving forward with this research.

CHAPTER 6
CONCLUSION

Phanon has been adopted into the introductory computer science course curriculum for
the success observed in several studies. This thesis discusses a qualitative analysis of the
student’s interaction with Phanon and the behaviors observed. The researcher observed
students in the introductory course while they completed three lessons of syntax exercises.
This thesis also discusses the observed patterns of minimal extraneous cognitive load and

discovery through repetition.

Due to limitations with the amount of time it takes to code the exercises, the researcher
and PI selected eleven exercises for analysis. There is a potential for more discovery of
patterns and insight in the exercises that were not analyzed. Analysis of the effect the
syntax exercises have on the student’s performance when completing homework assignments
could validate many of the theories discussed in this thesis. The most significant impact of

mastering syntax is most likely in the student’s ability to apply it to their assignments.

Through a qualitative analysis of the study in this thesis the following research question

is addressed below.

RQ1: What patterns in student interactions with syntax exercises are observable?

Patterns of intrinsic load compared to extraneous load were observed and examined
throughout the study. The researcher determined that extraneous cognitive load is minimal
throughout the exercises providing an ideal learning environment for syntax. In an exercise
where students took more extended amounts of time, a temporal decomposition method was
used to evaluate whether there was an issue with extraneous cognitive load. The exercise
was determined to be high in intrinsic load and low in extraneous load. This comparison

means that there is an acceptable amount of necessary struggle in some exercises.

71

Through a qualitative analysis of the study in this thesis the following research question

is addressed below.

RQ2: How do these behaviors affect student performance in learning computer syntax?

The students reinforce speed and precision they progress through lessons. The observation
of improvement was especially evident in iterations of creation exercises. Throughout the
lesson, several students decreased the amount of time it took them to complete the exercise
and increased their accuracy when creating syntactically correct code. There was also an

increase in the students’ ability to spot flaws in their code or debug exercises quickly.

Previous exercises are a frequently used resource for students when they are doing syntax
exercises. Students looked at previous exercises throughout the study when they were
debugging and as a quick reminder for syntax. This resource is valuable for the students
because it gives them quick exposure to syntactically correct code. Referring to previous

exercises did not appear to have any adverse effect on learning outcomes.

Mastering syntax gives students an even footing in the course to evaluate their ability to
solve problems. Each student demonstrated different patterns of debugging, with some being
more efficient than others. There is evidence to suggest that the amount of time debugging
does not correlate with the student’s performance in the class. Several students that spent
much time debugging syntax exercises were high performing students and received A letter
grades in the course. Their performance in assignments and exams were also high. From
this, it can be determined that debugging in Phanon does not mean that the student is
struggling. Learning syntax is a separate process from problem-solving, and mastering it is

essential and easy to implement.

Further evidence was discovered in the study that suggests the students generally like
Phanon syntax exercises. Confidence and enjoyment are tremendous contributing factors
to students’ success in computer science. Throughout the study, several students mentioned

that they liked the exercises or expressed joy as they solved a problem.

72

Phanon demonstrates an environment ideal for students to debug in modular ways and
master syntax. The students’ practice as they complete the syntax exercises is an essential
step in removing the extraneous load from a difficult subject. By mastering syntax, the
student can use their cognitive resources for essential skills like problem-solving. The evalu-
ations in this study can improve some of the exercises in Phanon while also recognizing the
critical role it plays in the CS1 course. As shown in [5,6,8], Phanon is an effective resource

in helping students learn syntax and, as a result, scaffolding their problem-solving.

1]

[10]

[11]

[12]

[14]

73

REFERENCES

A.7Z. C. B. John Edwards, Arto Leinonen and A. Hellas, “Programming versus natural
language: on the effect of context on typing in cs,” 2020.

J. Bennedsen and M. Caspersen, “Failure rates in introductory programming: 12 years
later,” vol. 10, 2019, pp. 30-36.

T. Jenkins, “On the difficulty of learning to program,” 08 2002, pp. 53-58.
A. Luxton-Reilly, “Learning to program is easy,” 07 2016, pp. 284—289.

J. Edwards, J. Ditton, D. Trninic, H. Swanson, S. Sullivan, and C. Mano, “Syntax
exercises in CS1,” in Proceedings of the 16th Annual Conference on International Com-
puting Education Research, ser. ICER 20, 2020.

J. H. J. V. D. B. John Edwards, Erika Fulton and K. Parker, “Separation of syntax
and problem solving in introductory computer programming.” IEEE, 2018.

K. A. Ericsson and H. A. Simon, “Protocol analysis,” A companion to cognitive science,
vol. 14, pp. 425-432, 1998,

S. B. Sullivan, “An analysis of syntax exercises on the performance of csl students,”
2020.

D. Trninic, “Instruction, repetition, discovery: Restoring the historical educational role
of practice,” Instructional Science, vol. 46, no. 1, pp. 133-153, 2018.

N. Pennington, “Stimulus structures and mental representations in expert comprehen-
sion of computer programs,” Cognitive psychology, vol. 19, no. 3, pp. 295-341, 1987.

I. R. Katz and J. R. Anderson, “Debugging: An analysis of bug-location strategies,”
Human-Computer Interaction, vol. 3, no. 4, pp. 351-399, 1987.

J. Prather, R. Pettit, K. McMurry, A. Peters, J. Homer, and M. Cohen, “Metacognitive
difficulties faced by novice programmers in automated assessment tools,” in Proceedings
of the 2018 ACM Conference on International Computing Education Research, 2018,
pp. 41-50.

J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters, Z. Albrecht, and
K. Masci, “First things first: Providing metacognitive scaffolding for interpreting prob-
lem prompts,” in Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, 2019, pp. 531-537.

A. M. Gaweda, C. F. Lynch, N. Seamon, G. Silva de Oliveira, and A. Deliwa, “Typing
exercises as interactive worked examples for deliberate practice in cs courses,” in
Proceedings of the Twenty-Second Australasian Computing Education Conference, ser.
ACE’20. New York, NY, USA: Association for Computing Machinery, 2020, p.
105-113. [Online]. Available: https://doi.org/10.1145/3373165.3373177

https://doi.org/10.1145/3373165.3373177

[15]

[19]

74

A. Leinonen, H. Nygren, N. Pirttinen, A. Hellas, and J. Leinonen, “Exploring
the applicability of simple syntax writing practice for learning programming,” in
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE "19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 84-90. [Online]. Available: https://doi.org/10.1145/3287324.3287378

K. Charmaz and L. L. Belgrave, “Grounded theory,” The Blackwell encyclopedia of
sociology, 2007.

M. K. . S. B. W. U. Swanson, H., “Characterizing student theory building in the
context of block-based agent-based modeling microworlds.” ser. International Society
of the Learning Sciences, 2020.

J. Edwards, J. Ditton, D. Trninic, H. Swanson, S. Sullivan, and C. Mano,
“Syntax exercises in csl,” in Proceedings of the 2020 ACM Conference on
International Computing FEducation Research, ser. ICER ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 216-226. [Online|. Available:
https://doi.org/10.1145/3372782.3406259

R. Lister, “Computing education research programming, syntax and cognitive load,”
ACM Inroads, vol. 2, no. 2, pp. 21-22, 2011.

https://doi.org/10.1145/3287324.3287378
https://doi.org/10.1145/3372782.3406259

	An In-Depth Look at Learning Computer Language Syntax in a High-Repetition Practice Environment
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK
	Theories of Practice and Representations
	Repetition and Discovery
	Mental Representations of Computer Programs
	Debugging Study
	Think-Aloud Studies: Metacognitive Awareness

	Syntax Studies
	TYPOS Syntax Exercise Study
	Embedded Syntax Tool Study
	Phanon Study

	METHODOLOGY
	Overview
	Phanon Syntax Exercises
	Pilot
	Participant Selection
	Exercise Selection
	Conditionals I - Lesson 3.2.1
	For-Loops I - Lesson 3.5.2
	Nested For-Loops II - Lesson 3.5.4

	Zoom
	Coding
	Conditionals I - Exercise 6
	Conditionals I - Exercise 13
	Conditionals I - Exercise 16
	Conditionals I - Exercise 28
	For-loops I - Exercise 1
	For-loops I - Exercise 12
	For-loops I - Exercise 20
	For-loops I - Exercise 21
	For-loops III - Exercise 8
	For-loops III - Exercise 10
	For-loops III - Exercise 15

	RESULTS
	Lesson 3.2.1 - Exercise 6
	Jack's Moves
	Sarah's Moves
	Matt's Moves

	Lesson 3.5.4 - Exercise 8
	Lesson 3.5.4 - Problem 10
	Participant Course Performance

	DISCUSSION
	Duration and Codes
	Intrinsic and Extraneous Load
	Lesson 3.2.1 Exercise 6
	Lesson 3.5.4 Exercise 5

	Precision and Speed
	Referencing Previous Questions
	Debugging and Grades
	Overall Affective State
	Threats to validity

	CONCLUSION
	REFERENCES

