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ABSTRACT

Deep Learning and Optimization In Visual Target Tracking

by

Mohammadreza Javanmardi, Doctor of Philosophy

Utah State University, 2021

Major Professor: Xiaojun Qi, Ph.D.
Department: Computer Science

Visual tracking is the process of estimating states of a moving object in a dynamic 

frame sequence. It has been considered as one of the most paramount and challenging 

topics in computer vision. Although numerous tracking methods have been introduced, 

developing a robust algorithm that can handle different challenges still remains unsolved. 

In this dissertation, we introduce four different trackers and evaluate their performance in 

terms of tracking accuracy on challenging frame sequences. Each of these trackers aims to 

address the drawbacks of their peers. The first developed method is called a structured 

multi-task multi-view tracking (SMTMVT) method, which exploits the sparse appearance 

model in the particle filter framework to track targets under different challenges. Specifically, 

we extract features of the target candidates from different views and sparsely represent 

them by a linear combination of templates of different views. Unlike the conventional sparse 

trackers, SMTMVT not only jointly considers the relationship between different tasks and 

different views but also retains the structures among different views in a robust multi-task 

multi-view formulation. The second developed method is called a structured group local 

sparse tracker (SGLST), which exploits local patches inside target candidates in the particle 

filter framework. Unlike the conventional local sparse trackers, the proposed optimization 

model in SGLST not only adopts local and spatial information of the target candidates
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but also attains the spatial layout structure among them by employing a group-sparsity

regularization term. To solve the optimization model, we propose an efficient numerical

algorithm consisting of two subproblems with closed-form solutions. The third developed

tracker is called a robust structured tracker using local deep features (STLDF). This tracker

exploits the deep features of local patches inside target candidates and sparsely represents

them by a set of templates in the particle filter framework. The proposed STLDF utilizes

a new optimization model, which employs a group-sparsity regularization term to adopt

local and spatial information of the target candidates and attain the spatial layout structure

among them. To solve the optimization model, we adopt the alternating direction method

of multiplier (ADMM) to design a fast and parallel numerical algorithm by deriving the

augmented Lagrangian of the optimization model into two closed-form solution problems: the

quadratic problem and the Euclidean norm projection onto probability simplex constraints

problem. The fourth developed tracker is called an appearance variation adaptation (AVA)

tracker, which aligns the feature distributions of target regions over time by learning an

adaptation mask in an adversarial network. The proposed adversarial network consists of

a generator and a discriminator network that compete with each other over optimizing a

discriminator loss in a mini-max optimization problem. Specifically, the discriminator network

aims to distinguish recent target regions from earlier ones by minimizing the discriminator

loss, while the generator network aims to produce an adaptation mask to maximize the

discriminator loss. We incorporate a gradient reverse layer in the adversarial network to

solve the aforementioned mini-max optimization in an end-to-end manner. We compare

the performance of the proposed four trackers with the most recent state-of-the-art trackers

by doing extensive experiments on publicly available frame sequences, including OTB50,

OTB100, VOT2016, and VOT2018 tracking benchmarks.

(99 pages)
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CHAPTER 1

INTRODUCTION

Visual tracking aims to estimate states of a moving object or multiple objects in frame

sequences under different conditions. Specifically, given the initial location of a target in a

video (a frame sequence), visual trackers aim to estimate various properties (e.g., position,

appearance, and shape) of the target to identify its location in each frame. Figure 1.1

shows four sample tracking results for three videos containing a person, a car, and a bike,

respectively.

Visual tracking has been considered as one of the most active and challenging computer

vision topics with a large array of applications in autonomous driving, video content analysis

and understanding, surveillance, etc. Although some improvements have been achieved in

several tracking methods [8–13], computer vision researchers still aim to develop more robust

algorithms capable of handling various challenges including occlusion, illumination variations,

in-plane and out-plane rotation, background clutter, deformation, and low resolution. Figure

Fig. 1.1: Illustration of four sample tracking results for three videos containing a person (top
row), a car (middle row), and a bike (bottom row).
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(a) Occlusion (b) Illumination Variation

(c) Rotation (d) Background Clutter

(e) Deformation (f) Low resolution

Fig. 1.2: Visual tracking challenges.

1.2 presents these challenges in different videos. Figure 1.2(a) shows an example of occlusion

where the book blocks the lower part of the person’s face. Figure 1.2(b) shows an example

of illumination variations where the person’s face goes through a transition from in shadow

to out of shadow. Figure 1.2(c) presents a scenario when the cyclist goes through different

in-plane rotations. Figure 1.2(d) shows an example of a cluttered background under different

lighting conditions. Figure 1.2(e) presents a scenario when the diver has a completely different

pose (i.e., deformation) after jumping from the platform to do various stunts. Figure 1.2(f)

shows an example of a low resolution video, where the objects and background are kind of

blurry.

Visual tracking algorithms are classified to two different major categories: 1) hand-crafted

feature based trackers; and 2) deep learning based trackers. For many years, hand-crafted

feature based trackers have demonstrated favorable performance in visual target tracking.
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One of the advantages of hand-crafted feature based trackers is that they do not require any

additional learning steps to model the target regions with respect to background. This makes

them a suitable choice, when a large number of data is not available. On the other hand,

deep learning-based trackers have recently attracted researchers’ attention to automatically

extract target features as the increasing availability of data and computation powers becomes

a reality.

Hand-crafted feature based trackers model the representation of the target using tradi-

tional features such as gray-level intensities, histogram of oriented gradients (HOG), and

local binary pattern (LBP). One category of these trackers is discriminative, which uti-

lizes these features to model the problem as binary classification and formulate a decision

boundary to separate the target from backgrounds. Representative examples include the

ensemble tracker [14], the online boosting [15, 16], the multiple instance learning [17], the

PN-learning [18], and correlation filter-based trackers [19–21]. In contrast, another cat-

egory of these trackers is generative, which adopts a model to represent the target and

cast the tracking as a searching procedure to find the most similar region to the target

model. Representative examples include eigen-tacking [22], mean-shift [23], Frag-Track [24],

incremental learning [25], visual tracking decomposition [26], adaptive color tracking [27]

and sparse-trackers [2, 28, 29].

Recently, convolutional neural network (CNN) based trackers [4, 5, 30–33] have shown

state-of-the-art performance in terms of accuracy and robustness. One category of these

trackers is deep feature trackers and utilizes pre-trained neural networks on a large-scale

classification dataset [34] to extract deep features of target candidates. These features are then

separately can be integrated in correlation filter-based trackers and sparse trackers [30,35,36].

One major advantage of these deep learning based trackers is obtaining generic feature

representation of target regions without requiring an additional training step. However,

due to the difference between tracking and classification tasks, these methods do not fully

exploit the advantages of deep learning. Another category of trackers [4, 5] directly uses

external videos to pretrain CNN models, which classify the target candidates to target
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and background classes. As one of the representative works, Nam and Han [4] introduce

the MDNet tracker, which pretrains a discriminative CNN using auxiliary sequences with

tracking ground truths to obtain a generic object representation. Various trackers have then

been proposed to improve the performance of MDNet by using a tree structure to manage

multiple target appearance models [37], using adversarial learning to identify the mask that

maintains the most robust features of the target objects over a long temporal span [5], and

using reciprocative learning to exploit visual attention for training deep classifiers [31].

In this dissertation, we introduce four trackers, which have been developed during the

course of my Ph.D. journey. Two of these trackers are categorized as hand-crafted feature

based and the other two trackers are considered as deep learning based trackers. Each of the

proposed trackers aim to address the drawback of their peers and improve the performance

of their peers in terms of tracking accuracy.

We name the two proposed hand-crafted feature based tracking methods as a structured

multi-task multi-view tracking (SMTMVT) method [38] and a structured group local sparse

tracker (SGLST) [39]. The SMTMVT extracts features of the target candidates from different

views such as color intensity, color histogram, HOG, LBP and sparsely represents them by a

linear combination of templates of different views. Unlike the conventional sparse trackers,

SMTMVT not only jointly considers the relationship between different tasks and different

views but also retains the structures among different views in a robust multi-task multi-view

formulation. We introduce a numerical algorithm based on the proximal gradient method

to quickly and effectively find the sparsity by dividing the optimization problem into two

subproblems with the closed-form solutions. The SGLST exploits local patches inside a

target candidate and represents them in a novel convex optimization model. The proposed

optimization model not only adopts local and spatial information of the target candidates

but also attains the spatial layout structure among them by employing a group-sparsity

regularization term. To solve the optimization model, we propose a fast and parallel numerical

algorithm based on the alternating direction method of multiplier (ADMM), which consists

of two subproblems with the closed-form solutions.
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We name the two deep learning based trackers as a structured tracker using local deep

features (STLDF) [40] and an appearance variation adaptation (AVA) tracker [41]. The

STLDF tracker exploits the deep features of local patches inside target candidates and

sparsely represents them by a set of templates in the particle filter framework. It utilizes

a new optimization model, which employs a group-sparsity regularization term to adopt

local and spatial information of the target candidates and attain the spatial layout structure

among them. To solve the optimization model, we propose an efficient and fast numerical

algorithm that consists of two subproblems with the closed-form solutions. The AVA tracker

aligns the feature distributions of target regions over time by learning an adaptation mask

in an adversarial network. The proposed adversarial network consists of a generator and a

discriminator network that compete with each other over optimizing a discriminator loss in a

mini-max optimization problem. Specifically, the discriminator network aims to distinguish

recent target regions from earlier ones by minimizing the discriminator loss, while the

generator network aims to produce an adaptation mask to maximize the discriminator loss.

We incorporate a gradient reverse layer in the adversarial network to solve the aforementioned

mini-max optimization in an end-to-end manner.

Throughout this dissertation, we use italic lowercase, bold lowercase, and bold uppercase

letters to denote scalars, vectors, and matrices, respectively. For a column vector x, we use

xi to represent the ith element of x and diag(x) to represent a diagonal matrix formed by

the elements of x. For a matrix X, we use Xi,j to denote the element at the ith row and

jth column. Two sets of numbers {1, 2, . . . , n} and {1, 2, . . . ,K} are respectively denoted

by N and K. Vector 1 is a column vector of all ones of an appropriate dimension. For a

given matrix Y ∈ Rn×m, we denote its Frobenius norm, nuclear norm, L1 norm, and the

`p norm of `q norm of the rows in Y by ‖Y‖F , ‖Y‖∗, ‖Y‖1, and ‖Y‖p,q, respectively. The

soft-thresholding operator is defined as Sρ(Y) =
∑n

i=1

∑m
j=1 sign(Yij)max(|Yij | − ρ, 0). For

a set Y, the indicator function δY(Y) returns +∞ when Y /∈ Y and returns 0 when Y ∈ Y.

The proximal operator is defined as Proxfσ(Y) = argminZ f(Z) + 1
2σ‖Z−Y‖2F , where σ > 0

and f(·) is a given function. In addition, we use tr(·) as the trace operator, X⊗Y as the
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Kronecker product on two matrices X and Y, 1l as a column vector of all ones, and Ik as a

k × k identity matrix. It should be noted there is no relation between the variables in two

trackers even with the same name.

The remainder of this dissertation is organized as follows: Chapters 2, 3, 4, and 5

introduce our proposed trackers, namely, SMTMVT, SGLST, STLDF, and AVA, respectively.

Chapter 6 presents the experimental results of the proposed trackers on tracking benchmarks,

compares their performance with the state-of-the-art trackers using appropriate evaluation

metrics, and demonstrates several use cases of the proposed trackers. Chapter 7 draws a

conclusion.
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CHAPTER 2

Structured Multi-task Multi-view Tracking

2.1 Introduction

Exploiting multi-view information (e.g., intensity, edge, and histogram of target candi-

dates) has been used in visual tracking. Hong et al. [28] propose a tracker that considers

the underlying relationship among different views and particles in terms of the least square

(LS) criteria. To handle the data contaminated by outliers and noise, Mei et al. [29] use the

least absolute deviation (LAD) in their optimization model. Both approaches cannot retain

the underlying layout structure among different views. In other words, different views of a

target candidate may be reconstructed by activating the same templates in the dictionary

set, whose representation coefficients do not resemble the similar combination of activated

templates.

To address these issues, we propose a novel structured multi-task multi-view tracking

(SMTMVT) method to track objects under different challenges. Similar to [28], SMTMVT

exploits multi-view information such as intensity, edge, and histogram of target candidates

and jointly represents them using templates. The proposed SMTMVT aims to address the

aforementioned drawback of Hong’s tracker [28] by proposing a new optimization model

to attain the underlying layout structure among different views and reduce the error cor-

responding to outlier target candidates. The main contributions of the proposed work are

summarized as:

• Designing a novel optimization model to effectively utilize a nuclear norm of the sparsity

for multi-task multi-view sparse trackers.

• Representing a particular view of a target candidate as an individual task and simulta-

neously retaining the underlying layout structure among different views.
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• Incorporating an outlier minimization term in the optimization model to efficiently

reduce the error of outlier target candidates.

• Adopting the proximal gradient (PG) method to quickly and effectively solve the

optimization problem.

In sections 2.2 and 2.3, we introduce the proposed SMTMVT optimization model and

the numerical algorithm to solve the model, respectively.

2.2 SMTMVT Optimization Model

The proposed SMTMVT method utilizes the sparse appearance model to exploit multi-

task multi-view information in a new optimization model, attain the underlying layout

structure among different views, and reduce the error of outlier target candidates. At time

t, we consider n particles with their corresponding image observations (target candidates).

Using the state of the i-th particle, its observation is obtained by cropping the region of

interest around the target. Each observation is considered to have K different views. For

the k-th view, dk dimensional feature vectors of all particles, {xki }i∈N , are combined to form

the matrix Xk = [xk1, . . . ,x
k
n] ∈ Rdk×n and N target templates are used to create its target

dictionary Dk ∈ Rdk×N . Following the same notations in [28], we use the k-th dictionary Dk

to represent the k-th feature matrix Xk and learn the sparsity Ck ∈ RN×n. In addition, We

divide the reconstruction errors of the k-th view into two components as follows:

Xk −DkCk = Gk + Ek (2.1)

The first error componentGk ∈ Rdk×n corresponds to the minor reconstruction errors resulted

from the representation of good target candidates. The second error component Ek ∈ Rdk×n

corresponds to the significant reconstruction errors resulted from the representation of outlier

target candidates. We use the Frobenius norm factor minimization of Gk error to minimize

the square root of the sum of the absolute squares of its elements and adopt the `1 norm
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minimization of Ek error to minimize the maximum column-sum of its elements. This assures

the reconstruction errors for both good and bad target candidates are minimized.

To boost the performance, we maintain the underlying layout structure between K

different views. For the i-th particle, we not only represent all its feature vectors {xki }k∈K by

activating the same subset of target templates in the target dictionaries (i.e., {Dk}k∈K), but

also equalize the representation coefficients of activated templates for all K views. In other

words, we aim to resemble the ith columns of Cks, for k ∈ K, to have a similar representation

structure in terms of the activated templates and similar coefficients in terms of the activated

values. To do so, we concatenate Cks to form C ∈ RN×(nK), which is the sparsity matrix

corresponding to the representation of K views in n observations. We then minimize the

nuclear norm of the matrix Πi,n(C), which is a good surrogate of the rank minimization, to

ensure the columns to be similar or linearly dependent of each other. Here, Πi,n(C) selects a

sub-matrix of columns of C, whose index belongs to the set {(l − 1)n+ i}l∈K. The selected

columns are the simultaneous columns of the i-th target candidate in different views.

We formulate the SMTMVT sparse appearance model as the following optimization

problem by jointly evaluating its K view matrices {Xk
i }k∈K with n different particles (tasks):

minimize
C,E,{Gk}

∑
k∈K

∥∥∥Gk
∥∥∥2
F

+λ
∑
i∈N
‖Πi,n(C)‖∗+γ(‖C‖1+‖E‖1) (2.2a)

subject to Xk = DkCk + Gk + Ek, k ∈ K (2.2b)

C ≥ 0 (2.2c)

where Ek’s are vertically stacked to form the bigger matrix E ∈ R(
∑
k∈K dk)×n, parameter λ

regularizes the nuclear norm of C, and parameter γ controls the sparsity of C and E.
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Due to the equality constraint (2.2b), we eliminate Gk from (2.2a) and equivalently

solve the following problem:

minimize
C,E

∑
k∈K

∥∥∥Xk −DkCk −Ek
∥∥∥2
F

+λ
∑
i∈N
‖Πi,n(C)‖∗

+γ(1>C1 + ‖E‖1) (2.3a)

subject to C ≥ 0 (2.3b)

Finally, we compute the likelihood of the i-th candidate as follows:

pi = exp(−α
∑
k∈K

∥∥∥Dkcki − xki

∥∥∥2) (2.4)

where cki is the sparse coefficients of the i-th candidate corresponding to the target templates

in the k-th view and α is a constant value. We select the candidate with the highest likelihood

value as the tracking result at frame t. Similar to [42], we update the target templates to

handle the appearance changes of the target throughout the frame sequences.

2.3 SMTMVT Numerical Algorithm

Since the convex problem in (2.3) can be split into differentiable and non-differentiable

subproblems, we adopt the proximal gradient method [43] to develop a numerical solution to

the proposed model. To do so, we cast the differentiable subproblem as follows:

L(C,E) =
∑
k∈K

∥∥∥Xk −DkCk −Ek
∥∥∥2
F

+ λ
∑
i∈N
‖Πi,n(C)‖∗

+γ (1>C1)

(2.5)

This equation is sub-differentiable with respect to C and differentiable with respect to

E. Hence, two variables C and E can be updated at time t+ 1 by the following equations:

E(t+1) := ProxfEσ (E(t) − σ∇L(C(t),E(t))), (2.6a)

C(t+1) := ProxfCσ (C(t) − σ∇L(C(t),E(t))), (2.6b)
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where the step-size σ controls the convergence rate, ∇L(·, ·) is the sub-gradient operator,

fE = ‖E‖1, and fC = δC . We adopt the computationally efficient PG algorithm to iteratively

update E and C, which are initially set as 0’s, until they converge to the constant matrices.

Both subproblems (2.6a) and (2.6b) can be easily solved via the existing methods. Specifically,

(2.6a) is a `1-minimization problem with an analytic solution, which can be obtained using

soft thresholding, i.e., S(σγ)(·). Moreover, (2.6b) is an Euclidean norm projection onto the

nonnegative orthant, which enjoys the closed-form solution. It should be emphasized that

the convergence rate of this numerical algorithm can be further improved by the acceleration

techniques presented in [44].
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CHAPTER 3

Structured Group Local Sparse Tracker

3.1 Introduction

To further improve the tracking performance, recent sparse trackers consider both global

and local information of all target candidates in their optimization models. Zhang et al. [12]

represent local patches inside all target candidates along with the global information using

`1,2 norm regularization on the sparse representative matrix. They assume that the same

local patches of all target candidates are similar. However, this assumption does not hold in

practice due to outlier candidates and occlusion in tracking. To address this shortcoming,

Zhang et al. [30] take into account both factors to design an optimal target region searching

method. These recent sparse trackers achieve improved performance. However, considering

the relationship of all target candidates degrades the performance when drifting occurs. In

addition, using `1,2 norm regularization in the optimization model to integrate both local

and global information of target candidates lessens the tracking accuracy in the cases of

heavy occlusions.

We propose a structured group local sparse tracker (SGLST), which exploits local

patches inside a target candidate and represents them in a novel convex optimization model.

The proposed optimization model not only adopts local and spatial information of the

target candidates but also attains the spatial layout structure among them by employing

a group-sparsity regularization term. The main contributions of the proposed work are

summarized as follows:

• Proposing a local sparse tracker, which employs local and spatial information of a

target candidate and attains the spatial structure among different local patches inside

a target candidate.
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• Developing a convex optimization model, which introduces a group-sparsity regulariza-

tion term to motivate the tracker to select the corresponding local patches of the same

small subset of templates to represent the local patches of each target candidate.

• Designing a fast and parallel numerical algorithm based on the alternating direction

method of multiplier (ADMM), which consists of two subproblems with the closed-form

solutions.

In sections 3.2 and 3.3, we introduce the proposed SGLST optimization model and the

numerical algorithm to solve the model, respectively.

3.2 SGLST Optimization Model

Conventional local sparse trackers [1, 2] individually represent local patches without

considering their spatial layout structure. For instance, local patches in [1] are separately

represented by solving the Lasso problem. As a consequence, local patches inside the jth

target candidate may be sparsely represented by the corresponding local patches inside

different dictionary templates, as illustrated in Figure 3.1, where two local patches of the

Current frame

Target candidates

thj candidate

10 Templates

. . .

(a)

Current frame

Target candidates

thj candidate

10 Templates

. . .

(b)

Fig. 3.1: Illustration of the sparse representation of two sample local patches of the jth

target candidate in: (a) Conventional local sparse trackers [1, 2]. One local patch of the jth

target candidate, shown in the red bounding box, is represented by its corresponding patch
in the first and the tenth templates, while another local patch of this candidate, shown in
the blue bounding box, is represented by its corresponding patch in two different templates
(e.g., the second and the ninth templates). (b) The proposed SGLST. Both local patches of
the jth target candidate, shown in red and blue bounding boxes, are represented by their
corresponding patches in the same templates (e.g., the first and the tenth templates).
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jth target candidate, shown in the red and blue bounding boxes, may be represented by the

corresponding local patches in different dictionary templates.

We propose a novel SGLST that adopts both local and spatial information of the target

candidates for tracking. It employs a new optimization model in the particle filter framework

to address aforementioned issues associated with conventional local sparse trackers [1, 2] by

attaining the spatial layout structure among different local patches inside a target candidate.

Specifically, SGLST formulates an optimization problem to impose a structure on the achieved

sparse vectors for different local patches inside each target candidate and attain the spatial

layout structure among the local patches. To solve the proposed model, we develop an efficient

numerical algorithm consisting of two subproblems with closed-form solutions by adopting

the alternating direction method of multiplier (ADMM) within each target candidate in the

optimization function.

To maintain the spatial layout structure among local patches, we jointly represent all the

local patches of a target candidate in a new convex optimization model. In other words, if

the rth local patch of the jth target candidate is best represented by the rth local patch of the

qth template, the sth local patch of the jth target candidate should also be best represented

by the sth local patch of the qth template. As shown in Figure 3.1, we aim to represent both

local patches of the jth target candidate, shown in the red and blue bounding boxes, by

their corresponding patches in the same dictionary templates (e.g., the first and the tenth

templates).

To do so, we first use k target templates and extract l overlapping d dimensional

local patches inside each template to construct the dictionary D. Such a representation

generates the local dictionary matrix D = [D1, . . . ,Dk] ∈ Rd×(lk), where Di ∈ Rd×l. Then,

we construct a matrix X = [X1, . . . ,Xn] ∈ Rd×(ln), which contains the local patches of all

the target candidates, where n is the number of particles. Next, we define the sparse matrix

coefficients C corresponding to the jth target candidate as C ,

[
C1 · · · Ck

]>
∈ R(lk)×l,

where {Cq}kq=1 is a l × l matrix indicating the group sparse representation of l local patches

of the jth target candidate using l local patches of the qth template. Finally, we formulate
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the following convex model:

minimize
C∈R(lk)×l

‖Xj−DC‖2F+λ

∥∥∥∥∥
[
C1(:) . . .Ck(:)

]>∥∥∥∥∥
1,∞

(3.1a)

subject to C ≥ 0, (3.1b)

1>lkC = 1>l , (3.1c)

The first term in (3.1a) represents the similarity measurement between the feature matrix Xj

and its representation using the dictionary D. The second term is a group-sparsity regular-

ization term, which is a penalization term in the objective function to select dictionary words

(templates). This term also establishes the ‖·‖1,∞ minimization on matrix
[
C1(:) . . .Ck(:)

]>
,

which leads to imposing local features inside a target candidate to choose similar few dic-

tionary words (templates). It should be noted that each group (Cq of l × l) is vectorized

via Cq(:) and is represented by a column vector. The sum of the maximum absolute values

per group is minimized by imposing ‖·‖1,∞. Therefore, the l1 norm minimization selects

few dictionary words for representation by imposing the rows of
[
C1(:) . . .Ck(:)

]>
to be

sparse. The l∞ norm minimization on the columns of
[
C1(:) . . .Ck(:)

]>
motivates the group

of local patches to jointly select similar few templates. The parameter λ > 0 is a trade-off

between the first and the second terms. The constraint (3.1b) ensures sparse coefficients to

be non-negative since a tracking target can be represented by target templates dominated by

non-negative coefficients [42]. The constraint (3.1c) ensures that each local feature vector in

Xj is expressed by at least one selected local feature vector of the dictionary D.

For each target candidate, we find the sparse matrix C using the numerical algorithm

presented in subsection 3.3. We then perform an averaging process along with an alignment

pooling strategy [1] to find a representative vector. Finally, we calculate the summation of

this representative vector as the likelihood value. The candidate with the highest likelihood

value is selected as the tracking result. We also update the templates throughout the sequence

using the same strategy as proposed in [1] to handle the appearance variations of the target

region.
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3.3 SGLST Numerical Algorithm

This section presents a numerical algorithm based on the ADMM [45] to efficiently solve

the proposed model (3.1). The idea of the ADMM is to utilize auxiliary variables to convert

a complicated convex problem to smaller sub-problems, where each one is efficiently solvable

via an explicit formula. The ADMM iteratively solves the sub-problems until convergence.

To do so, we first define vector m ∈ Rk such that mi = |Ci(:)| and rewrite (3.1) as:

minimize
C∈R(lk)×l

m∈Rk

‖Xj −DC‖2F + λ1>km (3.2a)

subject to C ≥ 0, (3.2b)

1>(lk)C = 1>l , (3.2c)

m⊗ 1l1>l ≥ C. (3.2d)

It should be noted that constraint (3.2d) is imposed in the above reformulation to ensure the

equivalence between (3.1) and (3.2). This inequality constraint can be transformed into an

equality one by introducing a non-negative slack matrix U ∈ R(lk)×l, which compensates the

difference between m⊗ 1l1>l and C. Using the resultant equality constraint, 1>km can be

equivalently written as 1
l2
1>(lk)(C + U)1l. Moreover, this equality constraint implies that the

columns of C + U are regulated to be identical. Hence, one can simply replace it by a linear

constraint independent of m as presented in (3.3d). Therefore, we rewrite (3.2) independent

of m as:

minimize
C,U∈R(lk)×l

‖Xj −DC‖2F +
λ

l2
1>(lk)(C + U)1l (3.3a)

subject to C ≥ 0, (3.3b)

1>(lk)C = 1>l , (3.3c)

E(C+U) =
Ik ⊗ 1l1>l

l
(C+U), (3.3d)

U ≥ 0, (3.3e)
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where matrix E serves as the right circular shift operator on the rows of C+U. To construct

the ADMM formulation, whose subproblems possess closed-form solutions, we define auxiliary

variables Ĉ, Û ∈ R(lk)×l and reformulate (3.3) as:

minimize
C,Ĉ,U,Û∈R(lk)×l

‖Xj −DC‖2F +
λ

l2
1>(lk)(C + U)1l

+
µ1

2

∥∥∥C− Ĉ
∥∥∥2
F
+
µ2

2

∥∥∥U− Û
∥∥∥2
F

(3.4a)

subject to Ĉ ≥ 0, (3.4b)

1>(lk)Ĉ = 1>l , (3.4c)

E(C+U) =
Ik ⊗ 1l1>l

l
(C+U), (3.4d)

Û ≥ 0, (3.4e)

C = Ĉ, U = Û. (3.4f)

where µ1, µ2 > 0 are the augmented Lagrangian parameters. Without loss of generality, we

assume µ = µ1 = µ2 [45]. The last two terms in the objective function (3.4a) are then vanished

for any feasible solutions, which implies (3.3) and (3.4) are equivalent. We further form the

augmented Lagrangian function to solve (3.4) as follows:

Lµ(C,U, Ĉ, Û,Λ1,Λ2) = ‖Xj −DC‖2F +
λ

l2
1>(lk)(C + U)1l

+
µ

2

∥∥∥∥C− Ĉ +
Λ1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥U− Û +
Λ2

µ

∥∥∥∥2
F

(3.5)

where Λ1,Λ2 ∈ R(lk)×l are the Lagrangian multipliers corresponding to the equations in (3.4f).

Given initialization for Ĉ, Û, Λ1, and Λ2 at time t = 0 (e.g., Ĉ0, Û0,Λ0
1,Λ

0
2), (3.5) is solved

through the ADMM iterations. At the next iteration, C and U are updated by minimizing

(3.5) under the constraint (3.4d). To do so, we first define {zi}lki=1, where zi ∈ R2l is obtained

by stacking the ith rows of C and U. We then divide this minimization problem into lk

equality constrained quadratic programs, where each program has its analytical solution.

Using the updated C and U, we compute Ĉ and Û by minimizing (3.5) with the constraints
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(3.4b), (3.4c), (3.4e). To this end, we split the problem into two separate subproblems with closed-

form solutions over Ĉ and Û, where the first subproblem consists of l independent Euclidean

norm projections onto the probability simplex constraints and the second subproblem consists

of l independent Euclidean norm projections onto the non-negative orthant. Finally, we

update Λ1 and Λ2 by performing l parallel updates over their respective columns. All these

iterative updates can be quickly performed due to the closed-form solutions.
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CHAPTER 4

Structured Tracker Using Local Deep Features

4.1 Introduction

Deep features extracted from convolutional neural networks have been recently utilized

in visual tracking to obtain a generic and semantic representation of target candidates.

We propose a robust structured tracker using local deep features (STLDF). This tracker

exploits the deep features of local patches inside target candidates and sparsely represents

them by a set of templates in the particle filter framework. Unlike the conventional local

sparse trackers [2], the proposed optimization model in STLDF employs a group-sparsity

regularization term to adopt local and spatial information of the target candidates and attain

the spatial layout structure among them. The major contributions of the proposed work are

summarized as follows:

• Proposing a deep features-based structured local sparse tracker, which employs CNN

deep features of the local patches within a target candidate and keeps the relative

spatial structure among the local deep features of a target candidate.

• Developing a convex optimization model, which combines nine local features of each

target candidate with a group-sparsity regularization term to encourage the tracker to

sparsely select appropriate local patches of the same subset of templates.

• Designing a fast and parallel numerical algorithm by deriving the augmented Lagrangian

of the optimization model into two close-form problems: the quadratic problem and the

Euclidean norm projection onto probability simplex constraints problem by adopting

the alternating direction method of multiplier (ADMM).

• Utilizing the accelerated proximal gradient (APG) method to update the CNN deep

feature-based template by casting it as a Lasso problem.
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The preliminary results of this work are presented in SGLST, which is based on hand-

crafted features. We made a number of improvements in the proposed method: (i) STLDF

automatically extracts representative local deep features of target candidates using the pre-

trained CNN. (ii) STLDF efficiently derives the augmented Lagrangian of the optimization

model into two close-form problems: the quadratic problem and the Euclidean norm projection

onto probability simplex constraints problem. (iii) STLDF updates the CNN deep feature-

based template by casting it as a Lasso problem and numerically solving it using the

accelerated proximal gradient (APG) method.

In sections 4.2, 4.3, 4.4 and 4.5, we introduce local deep feature extraction, the opti-

mization model along with its numerical method, template update, and the summary of the

proposed tracker.

4.2 STLDF Local Deep Feature Extraction

Inspired by [39], we select l overlapping local patches in k target templates and extract a

d-dimensional feature vector for each patch. Unlike [39], which utilized hand crafted features

such as color intensity and HOG features, we extract local deep features using a pre-trained

CNN model. To this end, we set the size of each target candidate to 64× 64 pixels to contain

sufficient object-level information with decent resolution. Each target candidate is passed to

the pre-trained VGG19 [34] network on the large-scale ImageNet dataset [46] to automatically

extract their representative features. This network has been proven to achieve better tracking

performance than other CNNs such as AlexNet since its strengthened semantic with deeper

architecture is more insensitive to significant appearance change. Its default input size of

224 × 224 × 3 has also been used in other VGG19-based trackers [47], [30] to achieve good

tracking results. To ensure fair comparison with other VGG19-based trackers, we resize each

target candidate to this default input size before forward propagation. We utilize the output

of the Conv5-4 layer as the feature map of the target candidate since the fifth layer is proven

to be effective in discriminating the targets even with dramatic background changes [47]. The

generated feature map has a size of 7× 7× 512, which is not large enough to provide spatial

information of target candidates. As a result, we use the bilinear interpolation technique
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introduced in [47] to perform a two-layer upsampling operation to increase the feature map

from 7× 7× 512 to 14× 14× 512 then to 28× 28× 512. The final upsampled feature map is of

sufficient spatial resolution to extract overlapping local patches of size 14× 14× 512, which has

been shown to be effective in discriminating the target [47], to provide more detailed local

information. To this end, we employ the concept of shared features [48] to extract l local

deep features inside the upsampled feature map. To do so, we divide the upsampled feature

map into l = 9 overlapping 14× 14× 512 features maps with the stride of 7. The feature map

of each of 9 overlapping patches is vectorized as a feature vector with the size of 1× 100352.

Finally, we apply principal component analysis (PCA) on the feature vector of each patch

to attain the top 1120 principal components for each local feature vector (e.g., d = 1120) to

speed up the process to find the best target candidate by the proposed optimization model.

We choose 1120 principal components since at least 95% of variance is retained.

4.3 STLDF Optimization Model and Numerical Algorithm

The extracted deep features are used to build the dictionary D = [D1, . . . ,Dk] ∈ Rd×(lk),

where Di ∈ Rd×l. Using n number of particles (target candidates), we build a matrix

X = [X1, . . . ,Xn] ∈ Rd×(ln) to include local deep features of target candidates. We denote

the sparse coefficient matrix as C ,

[
C1 · · · Ck

]>
∈ R(lk)×l, where {Cq}kq=1 is a l × l matrix

indicating the group representation of l local deep features of the jth target candidate using l

local features of the qth template. We use the model in (3.1) to represent the Xj, the deep

feature matrix of jth target candidate, using the deep feature dictionary D. Similar to (3.5),

we write the Lagrangian using the Lagrangian multipliers Λ1,Λ2 ∈ R(lk)×l. Given initialization

for Ĉ, Û, Λ1, and Λ2 at time t = 0 (e.g., Ĉ0, Û0,Λ0
1,Λ

0
2), the Lagrangian is solved through the

ADMM iterations described below:

(Ct+1,Ut+1) := arg min
C,U∈R(lk)×l

Lµ(C,U, Ĉt, Ût,Λt
1,Λ

t
2)

subject to (3.4d)

(4.1)
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(Ĉt+1, Ût+1) := arg min
C,U∈R(lk)×l

Lµ(Ct+1,Ut+1, Ĉ, Û,Λt
1,Λ

t
2)

subject to (3.4b), (3.4c), (3.4e).

(4.2)

Λt+1
1 = Λt

1 + µ(C t+1 − Ĉ t+1)

Λt+1
2 = Λt

2 + µ(U t+1 − Û t+1)

(4.3)

By considering the quadratic and linear terms of C and U in (3.5), we first define {zi}lki=1,

where zi ∈ R2l is obtained by stacking the ith rows of C and U. We then divide (4.1) into lk

equality constrained quadratic programs as follows:

minimize
zi∈R2l

1

2
z>i Qzi+z>i qi (4.4a)

subject to Azi = 0 (4.4b)

where Q ∈ Rl×l is a block diagonal positive semi-definite matrix and A is a sparse matrix

constructed based on the constraint (3.4d). Each of the above quadratic programs has its

analytical solution by writing the KKT conditions.

Similarly, we split (4.2) into two separate sub-problems with close-form solutions over Ĉ

and Û as follows:

minimize
zi∈R2l

∥∥∥∥Ĉ− (C +
Λ1

µ
)

∥∥∥∥2
F

(4.5a)

subject to Ĉ ≥ 0, (4.5b)

1>(lk)Ĉ = 1>l (4.5c)

minimize
zi∈R2l

∥∥∥∥Û− (U +
Λ2

µ
)

∥∥∥∥2
F

(4.6a)

subject to Û ≥ 0 (4.6b)



23

where sub-problems (4.5) and (4.6) consist of l independent Euclidean norm projections onto

the probability simplex constraints and the non-negative orthant, respectively. Both sub-

problems have analytical solutions. Finally, we solve the two sub-problems over Λ1 and Λ2 in

(4.3) by performing l parallel updates over their respective columns. The closed form solutions

lead to quick updates in each iteration.

4.4 STLDF Template Update

We adopt the same strategy as used in [1] to update templates. We generate a cumulative

probability sequence and a random number according to uniform distribution on the unit

interval [0, 1]. We then choose the template to be replaced based on the section that the

random number lies in. This ensures that the old templates are slowly updated and the new

ones are quickly updated. As a result, the drifting issues are alleviated.

We replace the selected template by using the information of the tracking result in the

current frame. To do so, we represent the tracking result by a dictionary in a Lasso problem.

This dictionary contains trivial templates (identity matrix) [42] and PCA basis vectors, which

are calculated from the templates D. We numerically solve the Lasso problem using the

accelerated proximal gradient (APG) method. To further improve the computational time,

we consider the structure of the identity matrix in our Lasso numerical solver to quickly

perform the matrix multiplications and find the descend direction faster in each iteration.

4.5 STLDF Summary

The tracking steps of the proposed STLDF for two consecutive frames (i.e., frame #1

and frame #2) are summarized in Figure 4.1. In the first step, local deep features of k

target templates are extracted using the initial target location in the frame #1. Their top

principal components are selected using PCA. The dictionary D consisting of these local deep

features is then constructed. In the second step, local deep features of target candidates are

extracted to construct X in the frame #2. In the third step, local deep features of each target

candidate, Xj, is represented by the dictionary matrix in the optimization model in (3.1).

Finally, the optimization model is iteratively solved to obtain C for each target candidate
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using (4.1), (4.2), and (4.3). The best target candidate with the minimum reconstruction error

is then selected as the target candidate. The tracking continues for the next frame using the

previously estimated target location and templates are updated as explained in 4.4 until all

the frames are processed.
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Fig. 4.1: The overview of the proposed STLDF method.
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CHAPTER 5

Appearance Variation Adaptation TrackerUsing Adversarial Network

5.1 Introduction

Despite the favorable performance of deep feature based trackers such as [30, 39, 47]

against hand crafted feature in obtaining generic feature representations, their effectiveness

in terms of tracking is limited due to the inconsistency between classification and tracking

problems, i.e., predicting object class labels versus locating targets of arbitrary classes. One

major challenge of exploiting CNN is learning a unified representation using large variation

frame sequences. It is mainly because, individual sequences involve different types of targets

whose class labels, moving patterns, and appearances are different, and tracking algorithms

suffer from sequence-specific challenges including occlusion, deformation, lighting condition

change, motion blur, etc. Training CNNs is even more difficult since the same kind of

objects can be considered as a target in a sequence and as a background object in another.

To address these issues, Nam and Han [4] introduced the multi-domain network (MDNet)

tracker, which pretrains a discriminative CNN using auxiliary sequences to learn the shared

representation of targets from multiple video sequence with ground-truth labels. MDNet

has three convolution layers followed by three fully connected layers. The first two fully

connected layers are shared for all frame sequences, while the last fully connected layer is

different for each frame sequence. The last fully connected layer is a binary classification

and shares the common information captured from all sequences in the preceding layers

for generic representation learning. The last fully connected layer for each frame sequence

(domain) in MDNet is trained separately and iteratively while the shared layers are updated

in every iteration. Various trackers have then been proposed to improve the performance of

MDNet by using a tree structure to manage multiple target appearance models [37], using

adversarial learning to identify the mask that maintains the most robust features of the
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target objects over a long temporal span [5], and using reciprocative learning to exploit visual

attention for training deep classifiers [31].

A major drawback of CNN-based trackers is lack of temporal generalization of their model,

which is caused by over-fitting on the overlapped initial target regions. Therefore, CNN-based

trackers such as MDNet [4] fail to maintain the similarities between the discriminative

features of targets over time. To increase the generalization of the classification network,

VITAL tracker [5] utilizes adversarial learning to generate a mask that dropouts convolutional

features of target candidates. In each training iteration, VITAL prepares 9 random masks,

where each mask covers one of 9 locations in the 3× 3 feature map, to learn the optimal mask

in a least square optimization problem. Therefore, this optimal mask is updated to cover

only one part of local features in each iteration. This can lead to the loss of the informative

local features during training.

We propose an appearance variation adaptation (AVA) tracker to not only improve the

model generalization but also maintain the informative local features. The AVA tracker

aligns the feature distributions of target regions over time by learning an adaptation mask in

an adversarial network. This adversarial network works with the classification network to

learn robust discriminative features of targets. The proposed adversarial network consists of

a generator and a discriminator network that compete with each other over optimizing a

discriminator loss in a mini-max optimization problem. Specifically, the discriminator network

aims to distinguish recent target regions from earlier ones by minimizing the discriminator

loss, while the generator network aims to produce an adaptation mask to maximize the

discriminator loss. This leads to alignment of informative features of recent and earlier

target regions during tracking, while maintaining accuracy of the classification network to

distinguish targets and backgrounds. We incorporate a gradient reverse layer [49] in the

adversarial network to solve the aforementioned mini-max optimization in an end-to-end

manner. Unlike the VITAL tracker, the learned mask in AVA incorporates a weighted

combination of multiple parts of target features in each training iteration. The proposed

AVA tracker is evaluated on multiple tracking benchmarks [6, 7, 50] and achieves a favorable
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— CNN-SVM, — MDNet, — VITAL, — AVA

Fig. 5.1: Comparison of the proposed AVA tracker with CNN-SVM [3], MDNet [4], and
VITAL [5] on three OTB100 sequences including Jump (Top), CarScale (Middle), and
Skating1 (Bottom).

performance against state-of-art trackers. Sample qualitative results are shown in Figure 5.1.

The major contributions of the proposed tracker are:

• Employing adversarial learning to improve the model generalization and learn more

robust discriminative features of target regions over a long time span.

• Designing an adversarial network including both generator and discriminator networks

that compete with each other to learn an adaptation mask, which aligns feature

distributions of target regions that may undergo various changes.

• Incorporating a gradient reverse layer in the adversarial network to solve the mini-max

optimization problem in an end-to-end manner.
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• Performing extensive experiments on challenging benchmarks to evaluate the perfor-

mance of the AVA tracker against state-of-the-art trackers.

In sections 5.2, 5.3, and 5.4, we introduce the AVA tracker model, the AVA network

architecture, and online AVA tracking settings, respectively.

5.2 AVA Model

Taking advantage of adversarial learning [51] and domain adaptation [49], we adversarially

learn an adaptation mask to align features of recent and earlier target regions to make the AVA

tracker model more generalized. In domain adaptation using an adversarial network [49], the

training set consists of two domains (subsets) coming from different distributions. Images in

one domain have classification labels, while images in the other domain may belong to different

classes without labels. Existing domain adaptation methods cast the convolutional layers as

a generator network and utilize a discriminator network to adapt the feature distributions

of both domains. The same domain adaptation concept cannot be directly adopted in

visual tracking due to the following reasons: 1) The training set exclusively contains object

candidates and does not include two domains coming from different distributions. 2) The

convolutional layers are expensive to learn during online tracking.

In visual tracking, a target may undergo various changes in a frame sequence due to

in-plane and out-plane rotations, deformation, partial occlusion, and scale variation. However,

its identity remains unchanged even with various appearance changes. To this end, we can

safely assume that recent and earlier target regions in a sequence come from two domains with

different distributions. Therefore, we propose to utilize adversarial learning, which adapts

the feature distributions of recent and earlier target regions to maintain the similarities

between the discriminative features of targets over time. Instead of learning convolutional

layers directly during online tracking, we propose to learn an adaptation mask in a generator

network and apply it to the feature map coming from convolution layers to produce a more

robust feature representation of target candidates over time.
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Here we formulate the proposed AVA tracker mathematically. Suppose that the training

set of target regions up to the current frame is {xj}Nt
j=1, where xj ∈ R1×m is the convolutional

features of the jth target region, Nt is the number of target samples up to the current frame,

and m = w × h× d with w, h, and d respectively being the width, the height, and the depth of

the feature map in the last convolutional layer. Suppose xi is a recent target region with a

distribution of S(x) and xk is an earlier target region with a distribution of O(x). The goal

of the proposed tracker is to align the feature distributions corresponding to xi and xk to

increase the network generalization. The alignment is performed by an adaptation mask that

is adversarially learned in the proposed adversarial network, which consists of a generator

network Gf and a discriminator network Gd. It should be emphasized that the adaptation

mask, which is included in Gf , responds to the input features since the proposed AVA tracker

model seamlessly integrates both Gf and Gd. These two networks (Gf and Gd) compete

with each other over the optimization of the proposed discriminator loss Ld between xi and

xk. Specifically, the discriminator network Gd tries to adjust its parameters wd to minimize

Ld, while the generator network Gf attempts to learn its parameters wf to deceive Gd and

maximize Ld. The aligned feature map pair (x̂i, x̂k) is then fed to the classification network

Gc with its parameters wc to minimize the classification loss Lc. Finally, the proposed AVA

tracker model is formulated as below:

L(wc,wf ,wd) = Lc(·)− λLd(·)

=
∑

l∈{1:N}

Lc(Gc(Gf (zl)), yl)

− λ
∑

j∈{1:Nt}

Ld(Gd(Gf (xj)), vj) (5.1)

where Lc(·) is the cross-entropy classification loss between target and background [4], Ld(·) is

a cross-entropy loss between the feature maps of recent and earlier target regions, and λ is a

hyper-parameter to control the balance between Lc and Ld. In both loss terms, the operator

G(·) generates the output feature map of network G. In Lc, zl is the feature map of a target
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or background candidate, N is the total number of target and background samples up to the

current frame, and yl is the class label (e.g., target and background). In Ld, Nt is the number

of target samples up to the current frame, and vj is the binary label of the jth target region

defined as follows:

vj =


0 xj ∼ S(x)

1 xj ∼ O(x)

(5.2)

The optimal parameters (ŵc, ŵf , ŵd) for the proposed model in equation (5.1) are learned

in the following mini-max optimization problem [49]:

(ŵc, ŵf ) = arg min
wc,wf

L(wc,wf , ŵd) (5.3)

(ŵd) = arg max
wd

L(ŵc, ŵf ,wd) (5.4)

The solution to (5.3) and (5.4) can be found by using the following stochastic updates:

w(i+1)
c = w(i)

c − µ∇Lc(w(i)
c ) (5.5)

w
(i+1)
f = w

(i)
f − µ

(
∇Lc(w(i)

f )− λ∇Ld(w(i)
f )
)

(5.6)

w
(i+1)
d = w

(i)
d − µ∇Ld(w

(i)
d ) (5.7)

where ∇f(x) is the gradient of f with respect to x, µ is the learning rate, and (i) is the

iteration number. The only difference between the update (5.5)-(5.7) and stochastic gradient

descent (SGD) update is the −λ factor in (5.6). Without this factor, SGD aims to make

features of target regions over time dissimilar in order to minimize the discriminator loss.

Therefore, −λ factor is important to adjust the weight of generator network, wf , for producing

similar features for recent and earlier target regions. On the other hand, the weights of the
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Fig. 5.2: The architecture of the proposed AVA tracker. The adversarial network consists of
two networks: Generator and Discriminator. These two networks work hand-in-hand to learn
an adaptation mask in a mini-max optimization problem to align the feature distributions
of recent and earlier target regions up to the current frame. The classification network,
including the feature extractor and three fully connected layers, is the same as the MDNet
tracker. [4].

discriminator network, wd, are adjusted in (5.7) to discriminate between the features of recent

and earlier target regions. This competition results in achieving the solution of the mini-max

optimization problem in (5.3) and (5.4). We incorporate a gradient reverse layer [49] in the

adversarial network to make the updates in (5.5)-(5.7) in align with the updates of the SGD

method and find the solution in an end-to-end manner. In the feed-forward, the gradient

reverse layer is an identity transform, while in the back-propagation, the gradient reverse

layer multiplies the gradient by −λ and passes it to the preceding layer. As shown in Figure

5.2, the gradient reverse layer is inserted between Gf and Gd to make them competing with

each other over optimization of Ld.

5.3 Network Architecture

As mentioned in subsection 5.2, the proposed AVA tracker consists of three networks,

whose architectures are presented in Figure 5.2. In this subsection, we provide detailed

information about the dimension of input and output features of each network layer.
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The classification network, Gc, is the main network used in trackers such as MDNet [4],

DAT [31], and VITAL [5]. This network has a simple architecture that is suitable for visual

tracking and has shown to achieve superior tracking performance in multiple trackers. It has

three convolutional layers as shown in the feature extractor block in Figure 5.2 followed by

three fully connected layers. The input image to the feature extractor block is resized to

the dimension of 107× 107× 3 and the output feature map of this block has the dimension of

3 × 3 × 512. This feature map is vectorized to a 4608-dimensional array and passed to the

fully connected layers. The output of the first, second, and the third fully connected layers is

512, 512, and 2, respectively. The last 2 output values correspond to the background and

target scores. More information can be found in [4].

The generator network, Gf , in the proposed AVA tracker aims to learn an adaptation

mask for feature alignment by maximizing the discriminator loss Ld. This network consists of

two fully connected layers combined with dropout and activation functions. Specifically, after

applying a dropout operation with a dropout rate of 0.5, the first fully connected layer takes

the input feature vector with the dimension of 4608 and outputs a 256-dimensional feature

vector. The resultant feature vector is then activated using the ReLU activation function. A

similar dropout operation is performed before the second fully connected layer to produce

a 3 × 3 adaptation mask, which is activated using the sigmoid activation function. The

dimension of the adaptation mask is the same as the spatial dimension of the output from

the feature extractor block in Gc. This mask is multiplied with the feature map generated

from the feature extractor block to highlight the representation of regions with higher feature

similarity.

The discriminator network, Gd, in the proposed AVA tracker aims to distinguish recent

target regions from earlier target regions by minimizing the discriminator loss Ld. This

network has three fully connected layers combined with dropout and activation functions.

The input for the first fully connected layer is the vectorized aligned features with the

dimension of 4608. The output of the first, second, and third fully connected layers are

512, 512, and 1, respectively. The output of the first and second fully connected layers are
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ReLU activated and the output of the third fully connected layer is sigmoid activated. The

output value from the last fully connected layer is a binary prediction value for recent and

earlier target regions, which is further used to optimize the cross-entropy loss (i.e., Ld) in the

aforementioned mini-max optimization problem.

5.4 Online AVA Tracking Settings

In this subsection, we present detailed information regarding initializing the tracker,

obtaining the tracking result for each frame, updating the model, and setting parameters to

run the AVA tracker on a sequence.

Model Initialization: Following the initial parameters set in the MDNet tracker [4], we

pre-train the classification network Gc on auxiliary frame sequences. At the first frame of

each testing sequence, we load the pre-trained model of Gc, freeze the convolutional layer

parameters, and fine-tune the parameters of the fully connected layers [4]. Particularly, we

randomly draw target and background samples around the initial location of the target region

and re-train the fully connected layers of Gc to be adapted to the current frame sequence.

However, we do not perform any training on the adversarial network for the first frame in

the sequence.

Tracking: We produce ns number of samples around the target identified in the previous

frame. These candidates are passed through the classification network Gc. The candidate

that yields the highest target score is considered as the tracking result in the current frame.

The adversarial network (i.e., Gf and Gd) is disabled in this testing step [5, 52].

Model Update: The model is automatically updated every other 10 frames. In order to

capture the latest appearance variations of targets over time, we update the classification

network Gc, the generator network Gf , and the discriminator network Gd in the adversarial

network in an end-to-end manner. The adversarial network attempts to align feature

distributions of both recent and earlier target regions. When a tracking result has a negative

target score, we update the classification network Gc using the tracking results up to the

current frame. It should be noted that the adversarial network is not updated to avoid error

propagation.
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Parameters Setup: The following parameter settings are used to run the proposed AVA

tracker on each frame sequence. ns target candidates are generated similar to MDNet tracker,

where ns = 256. We use the same parameters for MDNet to pre-train Gc since they have shown

to be effective to achieve good tracking performance. The parameters for the adversarial

network are empirically determined to be optimal to achieve good tracking performance

and fast convergence. They are summarized as follows: The learning rate of Gf is 0.1 and

the learning rate of Gd is 0.0001. These learning rates are empirically determined for fast

convergence. The number of training iterations for the adversarial network is set to be 50.

The momentum and weight decay for all three networks Gc, Gf , and Gd are set to be 0.9 and

0.0005, respectively. The number of target samples in each mini-batch is 64, where 32 of

them are randomly selected from recent target subset and 32 of them are randomly selected

from earlier target subset. The recent target subset is defined as the second half of the target

samples up to the current frame. The earlier target subset is the first half of the target

samples up to the current frame. The number of background samples in each mini-batch is

96. We set λ = 0.01 for the discriminator loss.
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CHAPTER 6

Experimental Results

In this chapter, we first introduce four major datasets in visual target tracking (i.e.,

OTB50 [6], OTB100 [7], VOT2016 [50], and VOT2018 [53]) in subsection 6.1. We then provide

the experimental setup and experimental results of the proposed SMTMVT, SGLST, STLDF,

and AVA trackers in subsections 6.2, 6.3, 6.4, and 6.5, respectively. Each tracker is compared

to its peers and various state-of-the-art trackers. We finally compare the performance of the

proposed trackers and discuss their success and failure cases in subsection 6.6.

6.1 Datasets

Various tracking benchmarks have been introduced in recent years including OTB50 [6],

OTB100 [7], VOT2016 [50], UAV123 [54], and Temple Color [55]. Among these benchmarks,

OTB50, OTB100, and VOT tracking benchmarks are considered as the most popular and

challenging ones and the majority tracking frameworks provide their experimental results on

these three benchmarks. In this subsection, we provide more detailed information on the

OTB and VOT tracking benchmarks, respectively.

OTB Benchmark: This benchmark contains two different datasets: 1) OTB50 [6] and

2) OTB100 [7]. The OTB50 benchmark consists of 50 annotated sequences, where 49

sequences have one annotated target and one sequence (jogging) has two annotated targets.

Each sequence is also labeled with attributes specifying the presence of different challenges

including illumination variation (IV), scale variation (SV), occlusion (OCC), deformation

(DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation

(OPR), out-of-view (OV), background clutter (BC), and low resolution (LR). The sequences

are categorized based on the attributes and 11 challenge subsets are generated. These

subsets are utilized to evaluate the performance of trackers in different challenge categories.

OTB100 [7] extends OTB50 [6] by adding 48 additional annotated sequences. Two sequences,
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jogging and Skating, have two annotated targets. The rest of the sequences have one annotated

target. Each of 100 sequences is also labeled with attributes specifying the presence of the

aforementioned challenges.

For OTB50 and OTB100 datasets, we perform one pass evaluation (OPE) experiments

and display success and precision plots. OPE is conventionally used to evaluate trackers by

initializing them using the ground truth location in the first frame. Success plots display

success rates at different overlap thresholds for the bounding box overlap ratio. Precision

plots display precision rates at different error thresholds for the center location error. It is

worthy of mentioning that the overlap score between the tracked bounding box rt and the

ground truth bounding box rg is defined as S =
|rt∩rg|
|rt∪rg| , where | · | is the number of pixels in

the bounding box, ∩ represents the intersection of the two bounding boxes, and ∪ represents

the union of the two bounding boxes. To rank trackers using success plots, we calculate the

area under curve (AUC) score for each compared tracker on all image sequences. To rank

trackers using precision plots, we calculate the average precision score for each compared

tracker on all image sequences at the location error threshold of 20 pixels [6, 7].

VOT Benchmark: This benchmark consists of two datasets: VOT2016 [50] and VOT2018

[53]. Both datasets contain 60 frame sequences. Out of these sequences, 50 of them are

the same for both datasets. It should be noted that the 10 different frame sequences in

VOT2018 contain more sequences with small objects such as ants. For the VOT benchmark,

we use accuracy, failure rate, and expected average overlap (EAO) to evaluate the tracker’s

performance. Accuracy is the average of overlap ratios between ground-truth and detected

bounding boxes. Failure rate is a robustness measure and computed as the average of the

number of times that trackers fail. EAO measures the expected no-reset overlap of a tracker

run on a short-term sequence and combines the raw values of accuracy and failure per frame

in a principled manner.

6.2 SMTMVT Results

In this section, we evaluate the performance of the proposed SMTMVT method on 15

publicly available frame sequences, OTB50, and OTB100 tracking benchmarks [6, 7].
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To ensure fair comparison, we employ four popular features as used in [28, 29] in the

proposed SMTMVT method. These features are intensity, color histogram, histogram of

oriented gradients (HOGs) [56], and local binary patterns (LBPs) [57]. In addition, we employ

a simple but effective illumination normalization method [58] before feature extraction to

eliminate the effect of illumination and improve the quality and discriminative power of the

features. Following the same settings in [28,29], we set the size of intensity template to be

one third of the size of the initial target or the half size of the initial target when its shorter

length is less than 20 pixels. For all the experiments, we set λ=0.1, γ=0.25, α=30, the number

of particles n=400, and the number of target templates N=10.

6.2.1 Experimental Results on Publicly Available Sequences

We extensively conduct experiments on 15 challenging frame sequences and follow

the same settings as in [28,29] to resize all frames to 320×240. We compare the proposed

SMTMVT method with eight state-of-the-art tracking methods, namely, L1 tracker [42], multi-

task tracking (MTT) [59], Struck [60], tracking with multiple instance learning (MIL) [61],

incremental learning for visual tracking (IVT) [25], visual tracking decomposition (VTD) [26],

multi-task multi-view tracking least square (MTMVTLS) [28], and multi-task multi-view

tracking least absolute deviation (MTMVTLAD) [29]. We use the publicly available source

code or binary code provided by the authors to produce the tracking results. We use the

default parameters for initialization.

Figure 6.1 demonstrates the tracking results of all compared methods on two represen-

tative frames for each of the 15 sequences. In the david1, david2, girl, faceocc2, fleetface, and

jumping sequences, the task is to track human faces under occlusion and scale variations. Let

us take the girl sequence as an example. IVT drifts from the target because of appearance

changes. MIL and VTD are prone to drifts due to scale changes and occlusion, respectively.

Struck successfully tracks the target in most frames. MTMVTLS and MTMVTLAD achieve

better performance than L1T and MTT due to use of different features. SMTMVT achieves

the best performance in handling the occlusion and scale variations because it retains the

structure among different views.
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Fig. 6.1: Tracking results of different methods. The frame index is shown at the upper left
corner of each frame. The frame sequences are

david1, david2, girl, faceOcc2, fleetFace, jumping, basketball, walking, subway, football,
singer2, crossing, doll,dog1, carDark.

(—L1T, —MTT, —Struck, —MIL, —IVT, —VTD, —MTMVTLS, —MTMVTLAD, —SMTMVT)

In the basketball, walking, subway, football, singer2, and crossing sequences in Figure 6.1,

the task is to track multiple human bodies under fast motion, rapid pose changes, and

illumination variations. For instance, in the singer2 sequence, the algorithms aim to track a

target with illumination variation, deformation, and rotations. IVT, L1T, MTT, and Struck

quickly drift from the target mainly because of illumination changes. VTD gradually drifts

from the target and loses it completely after some deformation and rotations. MIL is able

to only track a part of the target without losing it. MTMVTLS and MTMVTLAD achieve

good overall performance. SMTMVT achieves the best performance due to use of different

views and structured representation of them.

In the doll, dog, and carDark sequences in Figure 6.1, the task is to track various objects
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Table 6.1: The average overlap score of the proposed SMTMVT method and eight compared
methods for 15 sequences. Bold number in blue indicates the best performance, while red
indicates the second best.

L1T MTT Struck MIL IVT VTD MTMVTLS MTMVTLAD SMTMVT

basketball 0.31 0.17 0.31 0.22 0.20 0.71 0.61 0.64 0.66
david1 0.54 0.29 0.24 0.42 0.65 0.55 0.70 0.67 0.71
david2 0.79 0.82 0.86 0.47 0.71 0.68 0.69 0.67 0.85
girl 0.70 0.67 0.70 0.39 0.21 0.55 0.72 0.70 0.75
subway 0.16 0.06 0.63 0.63 0.16 0.15 0.62 0.64 0.73
singer2 0.04 0.05 0.04 0.52 0.03 0.42 0.70 0.71 0.76
doll 0.44 0.39 0.54 0.46 0.43 0.64 0.73 0.67 0.71
dog1 0.70 0.68 0.54 0.53 0.74 0.59 0.72 0.69 0.70
faceocc2 0.68 0.74 0.78 0.67 0.71 0.73 0.70 0.71 0.72
fleetface 0.45 0.50 0.60 0.49 0.46 0.62 0.64 0.62 0.68
football 0.55 0.57 0.53 0.58 0.55 0.56 0.35 0.65 0.69
carDark 0.83 0.81 0.89 0.22 0.64 0.53 0.57 0.74 0.78
crossing 0.21 0.25 0.67 0.71 0.29 0.31 0.76 0.73 0.78
jumping 0.15 0.09 0.61 0.52 0.15 0.12 0.71 0.70 0.67
walking 0.76 0.64 0.56 0.54 0.70 0.60 0.58 0.60 0.74

Average 0.48 0.45 0.57 0.49 0.44 0.51 0.65 0.68 0.73

under different challenges. For instance, in the doll sequence, the algorithms aim to track

a doll with various rotations and background clutters. MTT loses the target due to the

background clutter and IVT fails when the target undergoes pose changes. L1T, MIL, and

Struck include much of background in the results. However, they don’t lose the target since

they track a part of the target throughout the frames. VTD, MTMVTLS, and MTMVTLAD

achieve better performance comparing with five other methods due to incorporation of

multiple features. SMTMVT produces more accurate tracking results specially when the

target undergoes in-plane and out-of-plane rotations.

For quantitative comparison, we compute the average overlap score across all frames of

each image sequence for each compared method. Table 6.1 summarizes the average overlap

scores across all frames of each of 15 sequences for the nine compared methods. It is clear

that the proposed SMTMVT method achieves the best overall performance for the tested

sequences. It improves the second best method (i.e., MTMVTLAD) by 7.35% in terms of the

average overlap score for all 15 sequences. It ranks the best on seven sequences (e.g., david1,

girl, subway, singer2, fleetface, football, and crossing) and ranks the second best on four sequences

(e.g., basketball, david2, doll, and walking).
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Success plots of OPE - background clutter (21)
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Success plots of OPE - motion blur (12)
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Success plots of OPE - deformation (19)
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Success plots of OPE - illumination variation (25)
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Success plots of OPE - in-plane rotation (31)
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Success plots of OPE - scale variation (28)

SCM [0.518]

SMTMVT [0.491]

MTMVTLS [0.476]

ASLA [0.452]

MTMVTLAD [0.450]

Struck [0.425]

TLD [0.421]

VTD [0.405]

VTS [0.400]

CXT [0.389]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - occlusion (29)
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Success plots of OPE - out-of-plane rotation (39)
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Success plots of OPE - out of view (6)
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Success plots of OPE - low resolution (4)
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Fig. 6.2: OTB50 overall success plot and the OTB50 success plot of the proposed SMTMVT
and 31 trackers for each of 11 challenge subsets. Top 10 trackers are plotted.

6.2.2 Experimental Results on OTB50

We conduct the experiments on the OTB50 tracking benchmark [6] to evaluate the

performance of SMTMVT under different challenges. For this benchmark dataset, there

are online available tracking results for 29 trackers. In addition, we include the results of

MTMVTLS and MTMVTLAD provided by the authors. Following the protocol in [6], we

use the same parameters for all the sequences to produce the results for SMTMVT. We run
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SMTMVT to obtain the OPE results and compare them with the OPE results of the other

31 trackers. We present the overall OPE success plot and the OPE success plot for each of

11 challenge subsets in Figure 6.2. Here, we include the top 10 of 32 trackers in each plot for

clarity. The values shown in the parenthesis alongside the legends are the AUC scores. The

values shown in the parenthesis alongside the titles for 11 challenge subsets are the number of

video sequences in the respective subset. It is clear that SMTMVT achieves the best overall
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Success plots of OPE - background clutter (31)
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Success plots of OPE - motion blur (29)
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Success plots of OPE - deformation (44)
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Success plots of OPE - illumination variation (38)
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Success plots of OPE - in-plane rotation (51)
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Success plots of OPE - scale variation (64)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - low resolution (9)
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Fig. 6.3: OTB100 overall success plot and the OTB100 success plot of the proposed SMTMVT
and 31 trackers for each of 11 challenge subsets. Top 10 trackers are plotted.
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performance since it has the largest AUC score of 0.507. Also, SMTMVT ranks the best

for four challenge subsets. It achieves the highest AUC score of 0.502 for IV, 0.518 for IPR,

0.518 for OPR, and 0.527 for OV. It achieves the second best for five challenge subsets (e.g.,

FM, MB, DEF, SV, and OCC), and the third best for BC.

6.2.3 Experimental Results on OTB100

We conduct the experiments on the OTB100 tracking benchmark [7] to evaluate the

overall performance of the proposed SMTMVT under different challenges. We evaluate the

proposed SMTMVT against 29 baseline trackers used in [7], PCOM [62], and KCF [35].

MTMVTLS and MTMVTLAD compared in the OTB50 benchmark do not provide their

results on the OTB100 benchmark. Therefore, they are excluded in this experiment. We

present the overall OPE success plot and the OPE success plot for each of 11 challenge

subsets in Figure 6.3. Here, we include the top 10 of 32 trackers in each plot for clarity.

The values shown in the parenthesis alongside the legends are the AUC scores. The values

shown in the parenthesis alongside the titles for 11 challenge subsets are the number of

video sequences in the respective subset. It is clear that SMTMVT achieves the second best

overall performance. Also, SMTMVT ranks the best for five challenge subsets. It achieves

the highest AUC score of 0.400 for DEF, 0.483 for IPR, 0.429 for OCC, 0.473 for OPR, and

0.413 for OV. It achieves the second best AUC scores for three challenge subsets (e.g., BC,

IV, and SV), and the third best AUC score for FM.

6.3 SGLST Results

In this section, we evaluate the performance of the proposed SGLST on 16 publicly

available frame sequences, the OTB50 [6], and the OTB100 [7] tracking benchmarks.

We resize each target region to 32×32 pixels and extract overlapping local patches of 16×16

pixels inside the target region using the step size of 8 pixels. This leads to l = 9 local patches.

For each local patch, we extract two sets of features, namely, gray-level intensity features

and histogram of oriented gradients (HOG) features, to represent its characteristics from two

perspectives. Both features have shown promising tracking results in different trackers and
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HOG features [56] have demonstrated significant improvement in visual tracking [29,30,63].

The proposed SGLST therefore has two variants: SGLST_Color and SGLST_HOG. For the

HOG features, we resize the target candidates to 64× 64 pixels and exploit 196 dimensional

HOG features for each of the 32× 32 local patches to capture relatively high-resolution edge

information. For all the experiments, we set λ = 0.1, µ1 = µ2 = µ = 0.1, the number of particles

n = 400, and the number of target templates k = 10. We adopt the same setting as used in [1]

to update templates.

6.3.1 Experimental Results on Publicly Available Sequences

We conduct extensive experiments on 16 publicly available challenging frame sequences,

which are used to evaluate trackers including IVT [25], VTD [26], L1T [42], and RSST [30].

These sequences contain various challenges such as fast motion, occlusion, deformation, and

scale variation and therefore are commonly used to evaluate the qualitative performance of

different trackers. We compare SGLST_Color and SGLST_HOG with 11 state-of-the-art

trackers, namely, L1T [42], Struck [64], IVT [25], MTT [59], MIL [61], VTD [26], Frag [24],

ASLA [1], KCF [35], MEEM [65], and RSST_HOG [30]. To ensure fair comparison, we

boy faceocc1

faceocc2 girl

surferkitesurf

Fig. 6.4: Comparison of the tracking results of 11 state-of-the-art trackers and the two
variants of the proposed SGLST on boy, faceocc1, faceocc2, girl, kitesurf, and surfer image
sequences. frame index is shown at the upper left corner of each representative frame. Results
are best viewed on high-resolution displays. The tracking results of the top four trackers (i.e.,
SGLST_HOG, RSST_HOG, SLGST_Color, and MEEM) are highlighted by thicker lines.

(—L1T, - - -Struck, —IVT, —MTT, —MIL, —VTD, —Frag, —ASLA, - - -KCF,
—MEEM, —RSST_HOG, —SGLST_Color, —SGLST_HOG)
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jogging1

human5 human7

crossing

dollwalking2

Fig. 6.5: Comparison of the tracking results of 11 state-of-the-art trackers and the two
variants of the proposed SGLST on jogging1, crossing, human5, human7, walking2, and doll
image sequences. The frame index is shown at the upper left corner of each representative
frame. Results are best viewed on high-resolution displays. The tracking results of the top
four trackers (i.e., SGLST_HOG, RSST_HOG, SLGST_Color, and MEEM) are highlighted
by thicker lines.

(—L1T, - - -Struck, —IVT, —MTT, —MIL, —VTD, —Frag, —ASLA, - - -KCF,
—MEEM, —RSST_HOG, —SGLST_Color, —SGLST_HOG)

use the available source code or the binary code together with the optimal parameters

provided by the respective authors to produce the tracking results. Figures 6.4, 6.5, and

6.6 demonstrate the tracking results of the 13 aforementioned compared methods on three

representative frames of each of the 16 sequences. The tracking results of the top four trackers

boxboard

car4 car2

Fig. 6.6: Comparison of the tracking results of 11 state-of-the-art trackers and the two
variants of the proposed SGLST on board, box, car4, and car2 image sequences. The frame
index is shown at the upper left corner of each representative frame. Results are best viewed
on high-resolution displays. The tracking results of the top four trackers (i.e., SGLST_HOG,
RSST_HOG, SLGST_Color, and MEEM) are highlighted by thicker lines.

(—L1T, - - -Struck, —IVT, —MTT, —MIL, —VTD, —Frag, —ASLA, - - -KCF,
—MEEM, —RSST_HOG, —SGLST_Color, —SGLST_HOG)
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(i.e., SGLST_HOG, RSST_HOG, SLGST_Color, and MEEM) are highlighted by thicker

lines.

Here, we briefly analyze the tracking performance of each compared tracker under

different challenging scenarios. The L1T tracker fails when the target undergoes fast motion

and rotation as shown in Kitesurf and surfer sequences, occlusion as shown in the jogging1

sequence, or scale variation as shown in the board sequence. Struck cannot track the target

when occlusion (jogging1 and box) or fast motion (surfer) occurs. IVT drifts from the target in

the frame sequences containing the out-of-view challenge (girl and jogging), fast motion (boy),

or scale variation (human5). MTT loses the target having large motions between consecutive

frames (board and crossing). MIL fails to track the target when scale variation (car4 and car2)

or occlusion (walking2) happens. VTD and Frag lead to the drift of the target under fast

motion and deformation circumstances as shown in crossing and human7 sequences. In addition,

they cannot adequately handle scale variation as shown in the box sequence. ASLA does

not yield good performance in the cases of heavy occlusions (faceocc1, jogging, and walking2).

KCF is incapable of dealing with scale variation (car4 and walking2), occlusion (jogging1), or

out-of-view challenges (box). MEEM achieves good overall performance. However, it drifts

from the target when scale varies (car4) and does not sufficiently address the challenge of

partial occlusion (walking2 and box). RSST_HOG performs well in most sequences, but

it drifts away in the sequences with scale variations (doll, board, and box). SGLST_Color

Seq L1T Struck IVT MTT MIL VTD Frag ASLA KCF MEEM RSST_HOG SGLST_Color SGLST_HOG

boy 0.73 0.76 0.26 0.49 0.49 0.62 0.38 0.36 0.77 0.79 0.76 0.81 0.78
faceocc1 0.74 0.73 0.72 0.70 0.60 0.69 0.82 0.41 0.76 0.75 0.70 0.74 0.78
faceocc2 0.68 0.76 0.72 0.74 0.67 0.71 0.65 0.65 0.74 0.78 0.67 0.75 0.72
girl 0.73 0.74 0.16 0.66 0.39 0.60 0.43 0.72 0.58 0.69 0.75 0.21 0.70
kitesurf 0.25 0.64 0.30 0.35 0.31 0.15 0.19 0.25 0.48 0.67 0.71 0.22 0.47
surfer 0.04 0.41 0.06 0.10 0.25 0.31 0.22 0.41 0.47 0.51 0.61 0.71 0.65
jogging1 0.14 0.17 0.17 0.17 0.18 0.21 0.52 0.22 0.25 0.67 0.71 0.78 0.74
crossing 0.24 0.67 0.29 0.19 0.72 0.31 0.31 0.77 0.71 0.71 0.76 0.72 0.79
human5 0.38 0.35 0.18 0.45 0.21 0.28 0.03 0.68 0.21 0.28 0.51 0.35 0.72
human7 0.51 0.48 0.23 0.28 0.48 0.28 0.27 0.29 0.29 0.48 0.58 0.40 0.83
walking2 0.75 0.51 0.79 0.78 0.29 0.40 0.35 0.37 0.39 0.31 0.76 0.80 0.83
doll 0.46 0.55 0.43 0.39 0.42 0.66 0.61 0.78 0.59 0.60 0.48 0.84 0.75
board 0.13 0.66 0.19 0.19 0.40 0.28 0.52 0.30 0.65 0.68 0.42 0.56 0.75
box 0.55 0.21 0.51 0.21 0.27 0.42 0.46 0.34 0.35 0.31 0.33 0.21 0.62
car4 0.72 0.48 0.82 0.75 0.25 0.36 0.19 0.75 0.48 0.45 0.87 0.82 0.85
car2 0.86 0.68 0.89 0.87 0.16 0.80 0.25 0.85 0.68 0.68 0.91 0.81 0.88
Average 0.49 0.55 0.42 0.46 0.38 0.44 0.39 0.51 0.53 0.59 0.66 0.61 0.74

Table 6.2: Summary of the average overlap scores of 11 state-of-the-art trackers and the two
variants of the proposed SGLST on 16 sequences. The bold numbers in blue indicate the
best performance, while the numbers in red indicate the second best.
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also demonstrates favorable performance in most of the sequences. However, it encounters

problems when illumination changes happen (kitesurf and box). Among all the compared

methods, SGLST_HOG performs well in tracking human faces, human bodies, objects, and

vehicles in the 16 challenging sequences. The favorable performance of the proposed SGLST

reflects the advantages of adopting local patches within the target and keeping the spatial

structure among local patches. In addition, using HOG features in SGLST helps to improve

the tracking performance yielded by using intensity features.

For quantitative comparison, we compute the average overlap score across all frames of

each image sequence for each compared method. Table 6.2 summarizes the average overlap

scores across all frames of each of 16 sequences for compared methods. It is clear that the

two proposed trackers, SGLST_Color and SGLST_HOG, achieve overall favorable tracking

performance for the tested sequences. On average, SGLST_Color drastically improves the

average overlap scores of L1T, IVT, MTT, MIL, VTD, and Frag by 24.49%, 45.24%, 32.61%,

60.53%, 38.64%, and 56.41%, respectively. It also outperforms Struck, ASLA, KCF, and

MEEM by improving their average overlap scores by 10.91%, 19.61%, 15.09%, and 3.39%,

respectively. RSST_HOG is the only tracker that outperforms SGLST_Color by 8.2%

mainly due to the use of HOG features. The proposed SGLST_HOG achieves the best

average overlap score and significantly outperforms SGLST_Color and RSST_HOG by

21.31% and 12.12%, respectively. In summary, the qualitative results shown in Figures 6.4,

6.5, and 6.6 and the quantitative results shown in Table 6.2 demonstrate that SGLST_HOG

achieves the best tracking performance and SGLST_Color achieves the third best tracking

performance, inferior to RSST_HOG that uses HOG features instead of intensity features.

Both variants of the proposed SGLST can successfully track the targets in a majority of

frames in all 16 tested sequences with different challenging conditions such as fast motion,

rotation and scale variations, occlusions, and illumination changes.

6.3.2 Experimental Results on OTB50

We conduct the experiments on the OTB50 tracking benchmark [6] to evaluate the overall

performance of the proposed SGLST_Color and SGLST_HOG under different challenges.
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Fig. 6.7: OTB50 overall OPE success plots and the OPE success plots of top 10 trackers
among 43 trackers on BC, DEF, FM, IPR, and OPR challenge subsets. The value shown in
the title is the number of sequences in the specific subset. The value shown in the legend is
the AUC score.The results of the other trackers can be found in [6].

For this benchmark data set, there are online available tracking results for 29 trackers

[6]. In addition, we include the tracking results of additional 12 recent trackers, namely,
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Fig. 6.8: OTB50 OPE success plots of top 10 trackers among 43 trackers on
IV, LR, MB, OCC, OV, and SV challenge subsets. The value shown in the title is the

number of sequences in the specific subset. The value shown in the legend is the AUC score.
The results of the other trackers can be found in [6].

MTMVTLS [28], MTMVTLAD [29], MSLA-4 [2] (the recent version of ASLA [1]), SST [12],

SMTMVT [38], CNT [66], TGPR [67], DSST [19], PCOM [62], KCF [35], MEEM [65],
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and RSST [30]. Following the protocol proposed in [6], we use the same parameters for

SGLST_Color and SGLST_HOG on all the sequences to obtain the OPE results, which are

conventionally used to evaluate trackers by initializing them using the ground truth location

in the first frame. We present the overall OPE success plot and the OPE success plots for

BC, DEF, FM, IPR, and OPR challenge subsets in Figure 6.7 and the OPE success plots for

IV, LR, MB, OCC, OV, and SV challenge subsets in Figure 6.8. For fair comparison, we

use AUC score of each success plot to rank the trackers. For convenience of the reader, we

only include top 10 of the 43 compared trackers in each plot. The values in the parenthesis

alongside the legends are AUC scores. The values in the parenthesis alongside the titles for

11 challenge subsets are the number of video sequences in the respective subset.

It is clear from the overall success plot in Figure 6.7 that SGLST_HOG (i.e., incorpo-

rating HOG features in SGLST) improves the tracking performance (i.e., the AUC score) of

SGLST_Color (i.e., incorporating intensity features in SGLST) by 6.31% due to the incorpo-

ration of the HOG features instead of the intensity features. The similar improvement trends

are also observed in [30,63]. Among the 29 baseline trackers employed in [6], SCM achieves

the most favorable performance. SGLST_HOG outperforms SCM by 11.42% in terms of the

AUC score. Compared with the 12 additional recent trackers, SGLST_HOG outperforms

MSLA-4, SMTMVT, KCF, TGPR, RSST_HOG, CNT, and DSST by 9.88%, 9.66%, 8.17%,

5.10%, 2.39%, 2.02%, and 0.36%, respectively. It achieves an overall performance that is shy

of 1.80% when comparing with the performance of the best tracker, MEEM. It should be

mentioned that the two variants of SGLST (i.e., SGLST_Color and SGLST_HOG) slightly

outperform the two variants of RSST (i.e., RSST_Color and RSST_HOG) by 0.53% and

2.39%, respectively. These slight improvements indicate that the proposed optimization

model is better than its counterpart in RSST due to its employment of a group-sparsity

regularization term to adopt local and spatial information of the target candidates and attain

the spatial layout structure among them.

The proposed SGLST_HOG performs significantly better than traditional sparse trackers

such as L1APG [68], LRST [69], ASLA [1], MTT [59], and MTMVTLS [28]. It outperforms
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most recent sparse trackers such as MTMVTLAD [29], SST [12], MSLA-4 [2], SMTMVT [38],

and RSST_HOG [30]. SGLST_HOG, which yields the AUC score of 0.556, also achieves

better performance than some correlation filter (CF) based methods such as KCF (AUC

score of 0.514) and DSST (AUC score of 0.554). Moreover, it outperforms some deep

learning-based methods such as CNT (AUC score of 0.545) and GOTURN (AUC score of

0.444) [70]. However, the proposed SGLST_HOG yields lower performance than some deep

learning-based methods such as FCNT [71] (AUC score of 0.599), DLSSVM [72] (AUC score

of 0.589), and RSST_Deep [30] (AUC score of 0.590). We believe that SGLST can be further

improved by incorporating the deep features, as the similar improvement trends are clearly

shown in RSST [30].

We further evaluate the performance of SGLST on 11 challenge subsets. As demonstrated

in Figure 6.7 and Figure 6.8, SGLST_HOG ranks as one of the top three trackers in 5

subsets with DEF, OPR, LR, MB, and SV challenges and SGLST_Color ranks as one of

the top three trackers in 2 subsets with IV and LR challenges. SGLST_HOG achieves the

fourth rank on 2 subsets with IPR and OCC challenges and the fifth rank on 2 subsets with

FM and IV challenges. SGLST_Color achieves the fifth rank on one subset with the SV

challenge. However, SGLST is not in the list of the top 10 trackers for the subset with the

OV challenge. In overall, the proposed SGLST ranks as one of the top 5 trackers on 9 out

of 11 subsets (e.g., 22 out of 50 image sequences) with DEF, OPR, LR, MB, SV, IV, IPR,

OCC, and SV challenges.

6.3.3 Experimental Results on OTB100

We conduct the experiments on the OTB100 tracking benchmark [7] to evaluate the

overall performance of the proposed SGLST_Color and SGLST_HOG under different

challenges. We evaluate the proposed SGLST against 29 baseline trackers used in [7] and six

recent trackers including DSST [19], PCOM [62], KCF [35], MEEM [65], TGPR [67], and

RSST [30]. The other 6 trackers compared in the OTB50 benchmark do not provide their

results on the OTB100 benchmark. Therefore, they are excluded in this experiment.

Figure 6.9 presents the overall OPE success plot and the OPE success plots for BC,
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Fig. 6.9: OTB100 overall OPE success plots and the OPE success plots of top 10 trackers
among 37 trackers on BC, DEF, FM, IPR, and OPR challenge subsets. The value shown in
the title is the number of sequences in the specific subset. The value shown in the legend is
the AUC score. The results of the other trackers can be found in [7].

DEF, FM, IPR, and OPR challenge subsets and Figure 6.10 provides the OPE success plots

for IV, LR, MB, OCC, OV, and SV challenge subsets. Top 10 trackers are included in
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Fig. 6.10: OTB100 OPE success plots of top 10 trackers among 37 trackers on
IV, LR, MB, OCC, OV, and SV challenge subsets. The value shown in the title is the

number of sequences in the specific subset. The value shown in the legend is the AUC score.
The results of the other trackers can be found in [7].

each plot. The overall success plot in Figure 6.9 clearly demonstrates that the best tracker

MEEM, a multi-expert tracker employing an online linear SVM and an explicit feature
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mapping method, has a slightly better AUC score than the second best tracker, the proposed

SGLST_HOG. The difference in terms of the AUC score is only 0.006. SGLST_HOG

improves its variant, SGLST_Color, by 15.67% due to the use of HOG features over intensity

features. It also improves the fourth-ranked tracker RSST_HOG, the most recent sparse

tracker, by 1.95% due to its novel optimization model. Compared to the third-ranked tracker

DSST, a discriminative CF-based tracker, it improves the AUC score of DSST by 1.16%.

Similar to the tracking results obtained on the OTB50 tracking benchmark, the proposed

SGLST_HOG performs significantly better than traditional sparse trackers such as L1APG

[68], LRST [69], ASLA [1], and MTT [59]. It also outperforms RSST_HOG [30], one of the

most recent sparse trackers that provides the results on the OTB100 tracking benchmark.

SGLST_HOG, which yields the AUC score of 0.524, also achieves better performance than

some CF and deep learning based methods such as KCF (AUC score of 0.478), DSST

(AUC score of 0.518), and GOTURN (AUC score of 0.427) [70]. However, it yields lower

performance than some deep learning-based methods such as CNN-SVM (AUC of 0.554), CF2

(AUC of 0.562) [47], and RSST_Deep (AUC of 0.583). We believe that incorporating the

deep features in SGLST can further improve its tracking performance to be more comparable

with the other deep-learning-based trackers.

We further evaluate the performance of SGLST on 11 challenge subsets in the OTB100

benchmark. As demonstrated in Figure 6.9 and Figure 6.10, SGLST_HOG ranks as one

of the top three trackers in all 11 subsets except one subset with the BC challenge and

SGLST_Color ranks as one of the top three trackers in one subset with the LR challenge.

SGLST_HOG achieves the fifth rank on the subset with the BC challenges. It achieves

better performance than the best tracker, MEEM, in three subsets with IV, LR, and SV

challenges. Overall, the proposed SGLST ranks as the top 3 trackers on 10 out of 11 subsets

(e.g., 69 out of 100 image sequences) with DEF, FM, IPR, OPR, IV, SV, LR, MB, OCC,

and OV challenges.

6.4 STLDF Results

In this section, we evaluate the performance of the proposed STLDF and its two variants,
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namely, structured tracker using local color features (STLCF) and structured tracker using

local HOG features (STLHF), on the object tracking benchmark (OTB), which contains

fully annotated videos with substantial variations. We evaluate these three trackers on both

OTB50 [6] and OTB100 [7] benchmarks for fair comparison since not all the trackers provide

the results on both benchmarks.

The two variants are similar to the proposed tracker except that STLCF uses gray-

level intensity features and STLHF uses histogram of oriented gradients (HOG) features to

represent each local patch. We implement these two variants since both gray-level intensity

and HOG features have shown promising tracking results in different trackers [1, 29,30,63].

To extract intensity features, we resize each target region to 32× 32 pixels and extract l = 9

overlapping local patches of 16× 16 pixels inside the target region using the stride of 8 pixels.

As a result, we use d = 256 dimensional gray-level intensity features to represent local patches.

To extract HOG features, we resize the target candidates to 64× 64 pixels to contain sufficient

edge-level information with decent resolution. We then exploit d = 196 dimensional HOG

features [56] for l = 9 overlapping local patches of 32× 32 inside the target region using the

stride of 16 pixels. As a result, we use d = 196 dimensional HOG features to capture relatively

high-resolution edge information to represent local patches.

For all the experiments, we set λ = 0.1, µ = µ1 = µ2 = 0.1, the number of particles n = 400,

and the number of templates k = 10. We initially set the variances of affine parameters

for particle filter resampling as (8,8,0.01,0.001,0.005, 0.0001) and adaptively update the

resampling variances based on the tracking results. We use the maximum of the initial

variance and the variance of the affine parameters of the most recent five tracking results to

update the standard deviation of the affine parameters. We implement the proposed STLDF

in MATLAB with the MatConvNet toolbox [73] on a machine with a 3.60 GHz CPU, 32 GB

RAM, and a 1080Ti 11 GB Nvidia GPU. The GPU is utilized for CNN forward propagation

to extract deep features of 9 local patches for each target candidate.

6.4.1 Experimental Results on OTB50

We evaluate the overall performance of the proposed STLDF and its two variants (i.e.,
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Fig. 6.11: The overall OPE plots of top 20 trackers among the proposed STLDF, its two
variants, and 46 compared trackers for 50 frame sequences in OTB50.

STLCF and STLHF) against 29 baseline trackers in [6] and 17 recent trackers including

MTMVTLS [28], MTMVTLAD [29], MSLA [2] (the recent version of ASLA [1]), SST [12],

SMTMVT [38], CNT [66], two variants of TGPR (i.e., TGPR_Color and TGPR_HOG) [67],

DSST [19], PCOM [62], KCF [35], MEEM [65], SAMF [74], SRDCF [75], STAPLE [76], and

two variants of RSST (i.e., RSST_HOG and RSST_Deep) [30]. We present the overall

OPE success and precision plots in Figure 6.11. We only include top 20 of the 49 compared

trackers in each plot to avoid clutter and increase the readability. The value within the

parenthesis alongside each legend of the success plots is the AUC score for the corresponding

tracker. Similarly, the value within the parenthesis alongside each legend of the precision

plots is the precision score for the corresponding tracker.

It is clear from Figure 6.11 that incorporating deep features improves the tracking

performance as the proposed STLDF achieves better AUC and precision scores than its two

variants, i.e., STLHF and STLCF. The similar improvement trends are also observed in [30],

where RSST_Deep achieves better performance than RSST_HOG. Among the 29 baseline

trackers employed in [6], SCM [77] and Struck [64] achieve the most favorable performance.

STLDF significantly improves both baseline trackers. Specifically, it outperforms SCM and

Struck by 21.04% and 24.73% in terms of the AUC scores, respectively. It outperforms
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Table 6.3: Summary of the tracking performance of the proposed tracker, its two variants,
and nine representative sparse trackers on OTB50. Bold numbers indicate the highest AUC
and precision scores (i.e., the best tracking performance).

Score L1APG ASLA MTT MTMVTLAD MSLA SST RSST Proposed Method
Color HOG Deep STLCF STLHF STLDF

AUC 0.380 0.434 0.376 0.505 0.506 0.484 0.520 0.543 0.590 0.523 0.556 0.604
Precision 0.485 0.532 0.479 0.684 0.631 0.648 0.691 0.726 0.789 0.690 0.747 0.818

SCM and Struck by 26.04% and 24.70% in terms of the precision scores, respectively. When

comparing with the 17 additional recent trackers, STLDF achieves higher AUC scores than

16 of these trackers and a comparable score as SRDCF (the best tracker in comparison).

Specifically, it improves the AUC scores of MTMVTLAD, MSLA, KCF, CNT, DSST, MEEM,

TGPR_HOG, SAMF, RSST_Deep, and STAPLE by 19.60%, 19.37%, 17.51%, 10.83%,

9.03%, 6.71%, 4.68%, 4.32%, 2.37%, and 0.67%, respectively. SRDCF shows slightly better

performance than STLDF (0.626 AUC score for SRDCF vs. 0.604 AUC score for STLDF).

STLDF also achieves higher precision scores than 15 out of 17 additional recent trackers.

Specifically, it outperforms MTMVTLAD, SMTMVT, CNT, DSST, KCF, TGPR_HOG,

SAMF, RSST_Deep, and STAPLE by 19.59%, 17.87%, 13.14%, 10.54%, 10.54%, 5.55%,

4.60%, 3.68%, and 3.15%, respectively. It attains a comparable precision score as MEEM

and SRDCF. All three trackers yields the precision scores above 0.81.

To demonstrate the effectiveness of the proposed optimization model, we compare the

proposed tracker and its two variants (i.e., STLDF, STLHF, and STLCF) with representative

traditional and recent sparse trackers in terms of the two evaluation metrics in Table 6.3.

It is clear that STLDF achieves the highest overall AUC and precision scores among all

the compared sparse trackers. It improves RSST_Deep, one of the most recent sparse

trackers that incorporates the deep features, by 2.37% in the AUC score and 3.68% in the

precision score. Its two variants (STLHF, and STLCF) also outperforms RSST’s counterparts

(RSST_HOG, and RSST_ Color) in terms of two evaluation metrics except that STLCF

achieves the similar precision score as RSST_Color (0.690 vs. 0.691). In addition, STLCF

achieves higher AUC and precision scores than other sparse trackers that utilize intensity

features such as L1APG [68], ASLA [1], MTT [59], MSLA [2], and SST [12]. STLHF also
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achieves higher AUC and precision scores than the sparse trackers that utilize HOG features

such as MTMVTLAD [29] and RSST_HOG [30]. It is worthy of mentioning that the proposed

method attains significant improvements over conventional local sparse trackers (ASLA and

MSLA) by preserving the spatial layout structures among different local patch features inside

a target candidate. The robust tracking performance of the proposed method demonstrate the

effectiveness of the proposed optimization model that employs a group-sparsity regularization

term to adopt local and spatial information of the target candidates and attain the spatial

layout structure among them.

In addition to sparse trackers, the proposed STLDF achieves a better or comparable AUC

score (0.604) than some correlation filter (CF) based trackers including KCF (0.514) [35],

DSST (0.556) [19], LCT (0.612) [20], HDT (0.603) [36], CF2 (0.605) [47], and ACFN

(0.607) [78]. It also achieves a better or comparable precision score (0.818) than the following

CF-based trackers: KCF (0.740), DSST (0.740), LCT (0.848), HDT (0.889), CF2 (0.891),

and ACFN (0.860).

Comparing with deep learning-based trackers, the proposed STLDF outperforms or

achieves a comparable AUC score than CNT (0.545) [66], GOTURN (0.444) [70], CNN-SVM

(0.597) [3], FCNT (0.599) [71], DLSSVM (0.589) [72], and SiamFC (0.608) [79]. Moreover, it

outperforms or achieves comparable precision score than CNT (0.723), GOTURN (0.620),

CNN-SVM (0.852), FCNT (0.856), DLSSVM (0.829), and SiamFC (0.815).

6.4.2 Experimental Results on OTB100

We evaluate the proposed STLDF and its two variants (STLHF and STLCF) against 29

baseline trackers in [7], and 15 recent trackers including DSST, PCOM, KCF, TGPR_HOG,

MEEM, SAMF, SRDCF, LCT, STAPLE, CF2, CNN-SVM, DLSSVM, HDT, and two variants

of RSST (i.e., RSST_HOG and RSST_Deep). Some trackers used in the experiments of

OTB50 are excluded from this experiment since they do not publish their results on OTB100.

Similar to the experiments on OTB50, we follow standard protocols proposed in [6, 7] and

use the same parameters on all sequences to obtain the OPE results. We present the overall

OPE success and precision plots of the top 20 trackers out of 47 compared trackers in Figure
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6.12.

It is clear from Figure 6.12 that the proposed STLDF achieves higher AUC and precision

scores than its two variants for 100 sequences in OTB100 due to its utility of local deep

features. It also achieves higher AUC and precision scores than RSST_Deep due to its novel

optimization model. Similar to the tracking results obtained on OTB50, SCM and Struck are

the top two trackers among the 29 baseline trackers on OTB100. STLDF improves the AUC

scores of SCM and Struck by 31.39% and 26.57% and the precision scores of SCM and Struck

by 39.30% and 24.06%, respectively. Compared to the 15 recent trackers, STLDF achieves

comparable AUC scores as SRDCF (0.586 vs. 0.598) and improves the AUC scores of the

remaining 14 trackers. Specifically, it improves the AUC scores of the top 13 trackers, namely,

KCF, TGPR_HOG, RSST_HOG, DSST, MEEM, DLSSVM, SAMF, CNN-SVM, LCT, CF2,

HDT, RSST_Deep, and STAPLE by 22.59%, 14.90%, 14.01%, 13.13%, 10.57%, 8.72%, 5.97%,

5.59%, 4.27%, 4.27%, 3.72%, ,0.87%, and 0.52%, respectively. It also significantly improves

the precision scores of six of these 15 trackers including SST, TGPR_HOG, KCF, SAMF,

LCT, and DLSSVM by 15.57%, 13.92%, 13.75%, 5.59%, 4.20%, and 4.06%, respectively. In

addition, it achieves a little bit improvement over four trackers including MEEM, STAPLE,

RSST_Deep, and SRDCF. It is inferior to three trackers such as HDT, CF2, and CNN-SVM
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Fig. 6.12: The overall OPE plots blackof top 20 trackers among the proposed STLDF, its
two variants, and 44 compared trackers for 100 frame sequences in OTB100.
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Success plots of OPE - motion blur (29)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - fast motion (17)
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Fig. 6.13: The OPE success plots of top 20 trackers among the proposed STLDF, its two
variants, and 44 compared trackers for LR, OPR, IV, OV, BC, SV, MB, OCC, and FM
subsets in OTB100.

by a small margin.

The proposed STLDF significantly outperforms conventional sparse trackers such as

L1APG [68], LRST [69], ASLA [1], and MTT [59] and improves both AUC and precision

scores of RSST_Deep [30], one of the most recent sparse trackers, by 0.87% and 0.64%,

respectively. STLDF with the achieved AUC score of 0.586 outperforms some CF-based

trackers such as KCF (0.478), DSST (0.518), LCT (0.562), CF2 (0.562), and HDT (0.565)

and some deep learning-based trackers such as GOTURN (0.427), CNN-SVM (0.555), and

DLSSVM (0.539). These OTB100 tracking results follow the similar trends in OTB50
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Precision plots of OPE - low resolution (9)
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Precision plots of OPE - out-of-plane rotation (63)
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Precision plots of OPE - illumination variation (38)
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Precision plots of OPE - out of view (14)
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Precision plots of OPE - background clutter (31)
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Precision plots of OPE - scale variation (64)
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Precision plots of OPE - motion blur (29)
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Precision plots of OPE - occlusion (49)
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Precision plots of OPE - fast motion (39)
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Fig. 6.14: The OPE precision plots of top 20 trackers among the proposed STLDF, its two
variants, and 44 compared trackers for LR, OPR, IV, OV, BC, SV, MB, OCC, and FM
subsets in OTB100.

tracking results and demonstrate the effectiveness of the proposed optimization model and

the integration of local deep features.

We further evaluate the performance of STLDF in terms of AUC and precision scores

on nine challenge subsets including LR, OPR, IV, OV, BC, SV, MB, OCC, and FM. Figures

6.13 and 6.14 show the success and precision plots of top 20 trackers for these 9 challenge

subsets, respectively. The value within the parenthesis on the title line of each plot is the

number of video sequences in the specific subset. The value within the parenthesis alongside

each legend of the success plot is the AUC score for the corresponding tracker and the value
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within the parenthesis alongside each legend of the precision plots is the precision score for

the corresponding tracker. It is clear that STLDF achieves significantly better performance

than its two variants (STLHF and STLCF) due to its integration of local deep features. As it

is shown in Figure 6.13, STLDF ranks the best for two subsets with LR and OPR challenges,

the second for two subsets with IV and OV challenges, the third for three subsets with BC,

SV, and MB challenges, the fourth for the OCC subset, and the top sixth tracker for FM

challenge in terms of ACU score. As it is demonstrated in Figure 6.14, STLDF ranks as one

of the top five trackers for five subsets with LR, IV, OV, SV, and MB, the sixth best trackers

in OPR and BC, and the top eight trackers for two subsets with OCC and FM challenges

in terms of the precision scores. The DEF and IPR challenge subsets are not included in

Figures 6.13 and 6.14 due to lack of space. STLDF obtains the AUC and precision scores of

0.529 (6th rank) and 0.727 (7th rank) for the DEF subset, respectively. STLDF yields the

AUC and precision scores of 0.543 (8th rank) and 0.742 (10th rank) for the IPR challenge

subset, respectively.

6.5 AVA Results

We perform extensive experiments to evaluate the performance of the proposed AVA

tracker in terms of accuracy and robustness (for the source code and datasets see [80]).

We compare the AVA tracker with state-of-the-art trackers on OTB50 [6], OTB100 [7],

VOT2016 [50], and VOT2018 [53] tracking benchmarks. For OTB experiments, we pre-train

the network using 58 VOT2016 sequences, which do not include the common sequences in

the OTB100 dataset. For VOT experiments, we pre-train the network using 89 OTB100

sequences, which do not include the common sequences in the VOT dataset. We implement

the AVA tracker in Python with PyTorch deep learning framework on a machine with a 3.60

GHz CPU, 32 GB RAM, and a 1080Ti 11GB Nvidia GPU. The source of AVA is available

at: https://gitlab.com/mamrez7/ava-tracker.

6.5.1 Experimental Results on OTB50

We compare AVA with 29 baseline trackers in [6], and 25 recent trackers including DSST

https://gitlab.com/mamrez7/ava-tracker
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Fig. 6.15: The overall OPE plots of top 10 trackers among the proposed AVA and 54 compared
trackers for OTB50 benchmark [6].

[19], KCF [35], TGPR [67], MEEM [65], MUSTer [81], LCT [20], RSST [30], SRDCF [75],

DeepSRDCF [82], SiamFC [79], ADNet [83], CFNet [84], SGLST [39],SCT [85], CNN-SVM [3],

CCOT [86], ECO [87], MDNet [4], VITAL [5], CREST [88], TRACA [89], SiamRPN [90],

STAPLE [76], CNT [66], and HDT [36]. Adopting the protocol proposed in [6], we use the

same parameters for all sequences to obtain OPE results.

We present the overall OPE success and precision plots in Figure 6.15. We include the

top 10 of the 55 compared trackers in each plot to avoid clutter and increase the readability.

The value within the parenthesis alongside each legend of success plots is the AUC score for

its corresponding tracker. Similarly, the value within the parenthesis alongside each legend

of precision plots is the precision score for its corresponding tracker. Figure 6.15 clearly

demonstrates that the proposed AVA tracker achieves the best tracking performance with

the highest AUC score of 0.712 and the highest precision score of 0.951 when comparing

with 55 state-of-the-art trackers. Among the 29 baseline trackers employed in [6], SCM [77]

achieves the best performance with an AUC score of 0.499 and a precision score of 0.649.

The proposed AVA tracker significantly outperforms SCM by 42.69% and 46.53% in terms of

AUC and precision scores, respectively. It also improves AUC scores of the top 9 trackers

among the 25 additional recent trackers, namely, MUSTer, TRACA, SiamRPN, ADNet,



63

CCOT, CREST, MDNet, ECO, and VITAL by 11.08%, 9.20%, 8.21%, 8.04%, 5.95%, 5.79%,

0.56%, 0.42%, 0.28%, respectively. It outperforms precision scores of the top 9 trackers

among the 25 additional recent trackers, namely, SiamRPN, HDT, TRACA, CCOT, ADNet,

CREST, ECO, MDNet, and VITAL by 7.58 %, 6.97%, 5.90%, 5.78%, 5.32%, 4.74%, 2.26%,

0.32%, and 0.11%, respectively.

6.5.2 Experimental Results on OTB100

We evaluate the performance of the proposed AVA tracker against the same state-of-

the-arts trackers presented in the OTB50 experiment. The MUSTer and CNT tracker are

excluded from this experiment since they do not have any published results on OTB100.

Similar to the experiments on OTB50, we follow the protocol proposed in [6, 7] and use

the same parameters on all the sequences to obtain OPE results. To avoid clutter and

increase the readability, we present the overall OPE success and precision plots for the top

10 of the 53 compared trackers in Figure 6.16. Each tracker’s AUC and precision scores are

shown inside their corresponding parenthesis in the success and precision plots, respectively.

It clearly shows that the proposed AVA tracker achieves a favorable performance against

state-of-the-art trackers in terms of both AUC and precision scores. Among the 29 baseline
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Fig. 6.16: The overall OPE plots of top 10 trackers among the proposed AVA and 52 compared
trackers for OTB100 benchmark [7].
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Success plots of OPE - in-plane rotation (51)
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - low resolution (9)
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Success plots of OPE - scale variation (64)
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Success plots of OPE - motion blur (29)
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Fig. 6.17: OTB100 OPE success plot of top 10 trackers among the proposed AVA and 53
compared trackers for DEF, IPR, OPR, OCC, LR, SV, MB, and OV challenge subsets.

trackers, Struck [64] is the best tracker yielding an AUC score of 0.463 and a precision score

of 0.640. The proposed AVA tracker outperforms Struck by 48.60% in AUC score and 44.38%

in precision score. When comparing with the 23 additional recent trackers, the proposed

AVA tracker achieves the second highest AUC score of 0.688 and the highest precision score

of 0.924. ECO achieves the best AUC score of 0.691, which improves the AUC score of AVA

by 0.44%. Specifically, AVA improves the AUC scores of TRACA, CREST, DeepSRDCF,

SiamRPN, ADNet, CCOT, MDNet, and VITAL by 14.10%, 10.26%, 8.18%, 7.84%, 6.34%,

2.53%, 1.47%, and 0.88%, respectively. It also outperforms CREST, HDT, DeepSRDCF,

SiamRPN, ADNet, CCOT, MDNet, ECO, and VITAL in terms of precision score by 10.13%,

8.96%, 8.58%, 8.32%, 5.00%, 2.90%, 1.65%, 1.54%, and 0.76%, respectively.
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In Figure 6.17, we present success plots of the top 10 trackers for 8 challenge subsets

containing large appearance changes of target regions. The number of sequences in each

specific subset is shown in the parenthesis at the top of its plot. The AUC scores are shown

in the parenthesis alongside the legend of the tracker. The results of the other trackers can

be found in [7]. It is clear from Figure 6.17 that the proposed AVA tracker successfully

handles significant appearance variations of targets due to deformation, scale variation,

in-plate rotations, out-plane rotations and occlusions. It achieves the best performance

in 5 of these 8 challenge subsets such as DEF, IPR, OPR, LR, and SV and achieves the

third best performance in the remaining 3 challenge subsets. Compared to the base model

MDNet, AVA achieves the best AUC scores for all the aforementioned challenge subsets.

This mainly due to the adaptation mask learned in the generator and discriminator network.

This adaptation mask highlights different variations of target over time. In addition, it aligns

the discriminative features of target candidates to increase their similarities during frame

sequences, while simultaneously maintaining their distinctive properties from the background.

Compared to the improved base model VITAL, AVA tracker achieves better performance in

all challenge subsets except for the OV subset. This is mainly due to the incorporation of a

weighted combination of different parts of target features in each training iteration. Such an

incorporation increases the temporal generalization capability of the model and therefore

avoids the loss of informative local features over a long temporal span.

6.5.3 Experimental Results on VOT2016

We conduct evaluation on 60 frame sequences in VOT2016 [50]. Based on the VOT

challenge protocol, the target is re-initialized using the ground-truth whenever a tracker fails.

A tracker is considered as failed in a frame, when the overlap ratio of the tracking result and

the ground-truth is zero. The re-initialization happens 5 frames after the failure and the

performance is re-evaluated after 10 frames to avoid the bias.

Table 6.4 compares the proposed AVA tracker with the baseline tracker Staple and

the top 4 trackers (ECO, VITAL, MDNet, and CCOT) in OTB100 in terms of accuracy,

failure rate, and EAO. Values in red indicate the best performance and values in blue
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indicate the second best performance. It shows that the proposed AVA tracker obtains a

comparable EAO value (e.g., 0.366) with ECO and stands as the second best tracker in terms

of EAO. It achieves the best robustness performance and yields the lowest failure rate of

0.68 among the compared trackers. It achieves the second best accuracy of 0.53, which is

comparable to the best accuracy of 0.54 tied by ECO, Staple, and VITAL. It is interesting to

observe that trackers (e.g., Staple, MDNet, and VITAL) with a higher failure rate (i.e., more

re-initialization) still attain better accuracy despite the reduction of the re-initialization bias

for accuracy calculation. As a result, the EAO measure, which simultaneously considers

both accuracy and failure rate, is considered as the best evaluation metric for the VOT2016

benchmark. The VOT2016 report [50] states that trackers with the EAO value exceeding

a limit of 0.251 are considered as state-of-the-art. Table 6.4 clearly demonstrates that the

proposed AVA tracker outperforms its peers in terms of its EAO score. It improves the EAO

score of MDNet by 42.41 % and the EAO score of VITAL by 13.66 %. This improvement is

mainly due to integration of the adversarial network and alignment of the discriminative

features of target candidates over time.

CCOT ECO Staple MDNet VITAL AVA
EAO 0.329 0.374 0.294 0.257 0.322 0.366
Failure Rate 0.85 0.72 1.35 1.20 0.98 0.68
Accuracy 0.52 0.54 0.54 0.53 0.54 0.53

Table 6.4: Comparison of the state-of-the-art trackers in terms of EAO, failure rate, and
accuracy on the VOT2016 dataset.

6.5.4 Experimental Results on VOT2018

We conduct evaluation on 60 frame sequences in VOT2018 [53]. Table 6.5 summarizes

the VOT2018 tracking results of AVA, the baseline tracker Staple, and the top 4 trackers

(ECO, VITAL, MDNet, and CCOT). MDNet and VITAL are AVA’s peer trackers and ECO

and CCOT are two top performing trackers for both OTB100 and VOT2016 datasets. We use

red to indicate the best performance and blue to indicate the second best performance. It is
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clear that AVA achieves the second best accuracy score of 0.521, with a slightly less accuracy

than the MDNet. It improves the accuracy of its adversarial peer tracker, VITAL, by a small

margin of 0.7%. It also significantly improves its two peer trackers in both robustness and

EAO measurements. Specifically, it improves the robustness of VITAL and MDNet by 21.24%

and 9.66%, and the EAO score of VITAL and MDNet by 21.39% and 3.65%, respectively.

CCOT achieves a better EAO score and a lower failure rate than our AVA tracker on the

VOT2018 dataset. It is due to its success in maintaining lower failure rate in some frame

sequences such as ants1, ants3, and conduction. However, the proposed AVA tracker maintains

the second best tracking accuracy for both VOT2016 and VOT2018 datasets while ECO,

Staple, and VITAL trackers achieve better accuracy than AVA on the VOT2016 dataset and

worse accuracy than AVA on the VOT2018 dataset. The stable accuracy of AVA on both

datasets is mainly attributed to the integration of the adversarial network and the alignment

of the discriminative features of target candidates over time.

CCOT ECO Staple MDNet VITAL AVA
EAO 0.267 0.277 0.164 0.216 0.187 0.227
Failure Rate 1.315 1.117 2.507 1.718 1.996 1.552
Accuracy 0.491 0.482 0.519 0.530 0.514 0.521

Table 6.5: Comparison of the state-of-the-art trackers in terms of EAO, failure rate, and
accuracy on the VOT2018 dataset.

6.5.5 Comparison and Discussion

We provide comprehensive comparison of the proposed AVA tracker, eight additional

state-of-the-art trackers published in 2018 or 2019, and the top three trackers (ECO, MDNet,

and VITAL) in previous subsections on three tracking benchmarks. The eight additional

trackers include DAT [31], SiamRPN [90], StructSiam [91], TriSiam [92], TADT [93], UDT [94],

LDES [95], and SiamRPN+ [33]. Table 6.6 summarizes the performance of these 12 compared

trackers in terms of the AUC score on OTB50 and OTB100 benchmarks and in terms of

the EAO score on the VOT2016 benchmark. The AUC and EAO scores of the 11 compared
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trackers are directly copied from the researchers’ published work. We also include the

year and the publication venue that each compared tracker was published. To facilitate

comparison, we list the trackers in the chronological order. Table 6.6 clearly demonstrates

that the proposed AVA tracker achieves the best AUC score of 0.712 on OTB50, which

improves the second best tracker VITAL by 0.28% and the third best tracker ECO by 0.42%.

AVA achieves the second best AUC score of 0.688 on OTB100 with a 0.44% decrease when

compared to the best tracker ECO and a 0.88% improvement when compared to the third

best tracker VITAL. AVA achieves the third best EAO score of 0.366 on VOT2016 with a

3.82% decrease when compared to the best tracker SiamRPN+ and a 2.19% decrease when

compared to the second best tracker ECO. It is clear that none of these state-of-the art

trackers consistently performs the best on three tracking benchmarks. AVA and ECO are

the only two trackers that rank as the top 3 trackers on three tracking benchmarks.

We also summarize the performance comparison of the proposed AVA tracker, its model-

based peer tracker MDNet [4], and its adversarial learning-based peer tracker VITAL [5]

on OTB50, OTB100, and VOT2016 challenging tracking benchmarks. For the OTB50

Table 6.6: Comparison of the proposed AVA tracker with 11 state-of-the-art trackers on
OTB50, OTB100, and VOT2016 challenging tracking benchmarks. Numbers in red, blue,
green indicate the best, the second best, and the third best performance, respectively. The
dash line (-) indicates no reported result.

Trackers Year Publisher OTB50
(AUC)

OTB100
(AUC)

VOT2016
(EAO)

MDNet 2017 CVPR 0.708 0.678 0.257
ECO 2017 CVPR 0.709 0.691 0.374
DAT 2018 NIPS 0.704 0.673 0.320
SiamRPN 2018 CVPR - 0.640 0.340
StructSiam 2018 ECCV 0.640 0.620 0.260
TriSiam 2018 ECCV 0.62 0.59 -
VITAL 2018 CVPR 0.710 0.682 0.322
TADT 2019 CVPR 0.680 0.660 0.299
UTD 2019 CVPR - 0.632 0.301
LDES 2019 AAAI 0.677 0.643 -
SiamRPN+ 2019 CVPR 0.670 0.670 0.380
AVA (ours) 2019 JNN 0.712 0.688 0.366
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benchmark (Figure 6.15), AVA outperforms MDNet by 0.56% and VITAL by 0.28% in the

AUC score and outperforms MDNet by 0.32% and VITAL by 0.11% in the precision score.

For the OTB100 benchmark (Figure 6.16), AVA improves the AUC and precision scores of

MDNet by 1.47% and 1.65%, respectively. It improves VITAL by 0.88% in terms of the

AUC score and by 0.76% in terms of the precision score. For the VOT2016 benchmark

(Table 6.4), AVA attains comparable accuracy with both MDNet and VITAL. However, it

drastically improves the failure rate of both MDNet and VITAL. This results in an EAO score

improvement of 42.41% and 13.66% over MDNet and VITAL, respectively. For eight challenge

subsets containing large appearance changes of target regions (Figure 6.17), AVA achieves

better AUC scores than both MDNet and VITAL when a target undergoes deformation,

in-plane rotations, out-plane rotations, occlusions, low resolution, scale variation, and motion

blur. It achieves a better AUC score than MDNet and a comparable AUC score as VITAL

when target is out of view. Overall, the proposed AVA tracker uses the model of MDNet

as a base network. Unlike MDNet, AVA aligns the feature distributions of target regions

over time by learning an adaptation mask adversarially. This adaptation mask increases the

model generalization by highlighting the informative features of target regions over time and

dropping out some non-informative features. Therefore, the more generalized model tends to

attain the similarity between the features distributions of recent and earlier target regions

while maintaining distinctive properties from the background. The VITAL tracker also learns

a mask during tracking. However, it prepares 9 random masks where each mask covers one

of 9 locations in the 3× 3 feature map in each training iteration and learns an optimal mask

in a least square optimization problem. Therefore, this optimal mask is updated to cover

only one part of local features in each iteration, which leads to the loss of the informative

local features during training. Unlike the optimal mask learned in VITAL, the adaptation

mask learned in AVA increases the temporal generalization capability and avoids the loss of

informative local features over time by incorporating a weighted combination of multiple

parts of target features in each training iteration via a gradient reverse layer.

All CNN-based trackers aim to construct a model to classify the candidates in each



70

frame as a target or a background. They update the model during tracking to keep track

of the latest changes of target regions. However, one major shortcoming is that the model

may overfit to the initial target appearances, which leads to the failure to discriminate

the similarity of the current target with its tracked targets in earlier frames when a target

appearance has a drastic change. The proposed AVA tracker aims to address this shortcoming

using adversarial learning. Our extensive experimental results show that the AVA tracker

outperforms most state-of-the-art trackers in various challenges (e.g., occlusion, fast motion,

scale variation, rotations, etc) for OTB and VOT benchmarks. However, like all other

trackers, its performance decreases for the most challenging sequences such as soccer, bird1,

fenando, rabbit where a target suffers from heavy occlusion, skiing, trans, motorRolling, matrix

where a target’s scale changes with a fast rate, and matrix, iroman, gymnastics where a target’s

motion rate is high. To the best of our knowledge, none of the existing trackers is able to

handle all the severe challenges that lead to significant appearance changes of the tracked

targets. Designing a tracker that is able to produce a model to discriminate target regions

from background in all frames of challenging sequences is still an active and open computer

vision task.

6.6 Discussion

As discussed in this dissertation, SMTMVT and SGLST are categorized as hand-crafted

feature-based trackers and STLDF and AVA are considered as deep learning-based trackers.

Each of the proposed trackers aims to address the drawbacks of their peers and improve

the performance of their peers in terms of AUC scores and other evaluation measures (e.g.,

EAO scores and failure rates) if applicable. Despite improvements over their compared

methods, the four proposed trackers have different applicability and performance under

certain conditions. In this section, we thoroughly compare our trackers (i.e., SMTMVT,

SGLST, STLDF, and AVA) in terms of their applications, performance, and shortcomings.

Table 6.7 presents the overall AUC scores of our proposed trackers, namely, SMTMVT,

two variants of SGLST (i.e., SGLST_Color and SGLST_HOG), STLDF, and AVA, on the

OTB50 and OTB100 tracking benchmarks. The AVA tracker achieves the highest AUC scores
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Table 6.7: Comparison of the proposed trackers in terms of AUC scores on OTB50 and
OTB100 tracking benchmarks

SMTMVT SGLST_Color SGLST_HOG STLDF AVA
OTB50 (AUC) 0.507 0.523 0.556 0.604 0.712
OTB100 (AUC) 0.452 0.453 0.524 0.586 0.688

on both benchmarks. Specifically, it significantly outperforms SMTMVT, SGLST_Color,

SGLST_HOG, and STLDF by 40.43%, 36.14%, 28.06%, and 17.88% on OTB50 benchmark,

respectively. It improves the AUC scores of SMTMVT, SGLST_Color, SGLST_HOG,

and STLDF by 52.21%, 51.88%, 31.30%, and 17.41% on OTB100 benchmark, respectively.

Incorporating deep features to represent each candidate improves the tracking performance

as STLDF achieves better AUC scores than the other hand-crafted feature-based sparse

trackers (e.g., SMTMVT, SGLST_Color, and SGLST_HOG) on OTB50 and OTB100

tracking benchmarks.

To provide more insight on the performance of proposed trackers on tracking challenges,

we present the OPE success plots on 6 challenges (OCC, SV, DEF, FM, IPR, and MB) of the

OTB100 benchmark in Figure 6.18. It shows that AVA outperforms all the trackers in these

challenge subsets due to its full utilization of the power of deep learning. Moreover, incorpo-

rating deep features in STLDF results in better performance in tracking challenges compared

to other hand-crafted feature-based sparse trackers including SMTMVT, SGLST_Color, and

SGLST_HOG.

To visually show the success and failure cases of the proposed trackers, we select eight

frame sequences titled bird1, bolt1, dragonBaby, jump, coupon, carScale, blurOwl, and human8. The

sequences are selected since they contain variety of full and partial occlusion, fast motion,

deformation, scale variation, motion blur, and low resolution. Figure 6.19 demonstrates

the tracking results of our proposed trackers on four selected frames of the four sequences,

where the proposed AVA obtains better tracking results than the other three trackers. Figure

6.20 demonstrates the tracking results of our proposed trackers on four selected frames of

another four sequences, where at least one of the other trackers achieves comparable or better

performance than AVA.
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Fig. 6.18: OTB100 OPE success plot of our trackers for OCC, SV, DEF, FM, IPR, and MB
challenge subsets.

We first discuss the tracking results of four proposed trackers on the four sequences

shown in Figure 6.19. For the bird1 sequence (top row), the bird undergoes a full occlusion.

Once the occlusion happens, the trackers try to expand the search area to find the bird. Since
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Fig. 6.19: Comparison of the tracking results of our proposed trackers on bird1, bolt1, blurOwl,
and jump frame sequences. Results are best viewed on high-resolution displays.

(—AVA, —STLDF, —SGLST_HOG, —SMTMVT)

the occlusion continues for a long time, the dictionaries used in the proposed SMTMVT,

SGLST_HOG, and STLDF trackers include wrong target templates, which lead to their

failure to find the bird when it appears again. In contrast, AVA successfully finds the bird

after occlusion. For the bolt1 sequence (second row), hand-crafted feature-based trackers

(SMTMVT and SGLST_HOG) fail to track Usain Bolt from the beginning of sequence.

STLDF mistakenly considers another runner as Bolt in the middle of sequence. It is mainly

because Bolt moves very fast between two consecutive frames and STLDF tries to generate

tracking candidates around the location of Bolt in the previous frame. AVA successfully

keeps track of Bolt throughout the entire sequence. For the blurOwl sequence (third row), the

camera moves drastically in various directions, which results in blurred frames. SMTMVT

and SGLST_HOG cannot locate the owl due to the use of hand-crafted features. In contrast,

STLDF and AVA track the owl in this frame sequence prosperously. For the jump sequence

(bottom row), the sparse trackers (i.e., SMTMVT, SGLST_HOG and STLDF) fail. AVA

successfully tracks the jumper. However, it cannot fully handle jumper’s scale variations. All
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Fig. 6.20: Comparison of the tracking results of our proposed trackers on coupon, carScale,
dragonBaby, and human8 frame sequences. Results are best viewed on high-resolution
displays.

(—AVA, —STLDF, —SGLST_HOG, —SMTMVT)

the successful tracking results obtained by AVA are attributed to its utilization of adversarial

learning to minimize the gap between target distributions over time.

We then discuss the tracking results of four proposed trackers on the four sequences

shown in Figure 6.20. For the coupon sequence (top row), AVA fails to track the coupon

due to the similarities between the two coupons in the frames while STLDF, SGLST_HOG,

and SMTMVT successfully track the coupon. For the carScale sequence (second row), the

car scale varies throughout the frame sequence and the car gets occluded by a tree near

the road in the middle of sequence. When occlusion occurs, SGLST_HOG fails and the

other three trackers can follow the car until the end of the sequence. However, they cannot

handle the scale of the car nicely with AVA attaining more accurate tracking results than

STLDF and SMTMVT. For the dragonBaby sequence (third row), the baby moves and rotates

rapidly. Towards the end of the sequence, the baby appears significantly bigger in size since

the camera zooms in quickly. All four trackers can successfully handle various rotations in
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this sequence. However, the motion blur makes SMTMVT and SGLST_HOG fail to locate

the baby due to their use of lower-level features. When the camera zooms in quickly, all four

trackers try to locate the baby in a similar size around his location in the previous frame

and therefore fail to find the baby whose size enlarges immensely. For the human8 sequence

(bottom row), all the frames have low resolutions. SMTMVT fails to track the person. All

the other three trackers can track the person. However, SLGST_HOG can handle the scale

variation more accurately than STLDF and AVA.

We evaluate the average tracking times of AVA, STLDF, SGLST, and SMTMVT on the

OBT100 dataset to compare their tracking speed in terms of average frame per second (fps).

Average tracking times are 1.2 fps for AVA, 0.45 fps for STLDF, 0.55 fps for SGLST, and

0.52 fps for SMTMVT. AVA achieves the best performance in terms of not only AUC scores

(as discussed) but also tracking speed. SGLST, STLDF and SMTMVT are slower to track

the object. It is mainly due to the involvement of solving optimization model in each frame.

In general, SMTMVT and SGLST trackers utilize hand-crafted features such as intensity,

HOG, LBP, and histogram and they do not require any additional learning step. In contrast,

STLDF and AVA trackers require a pre-trained model before tracking to automatically extract

deep features. As a result, SMTMVT and SGLST are more applicable for the situations when

loading a pre-trained model is not possible due to costs and low-memory sensors and devices.

SMTMVT, SGLST, and STLDF are sparse trackers, which are computational expensive.

Since these sparse trackers have to solve an optimization model in each frame to find the

target among a number of candidates. This limits their utility in real-time applications when

compared to AVA.
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CHAPTER 7

Conclusions

In this dissertation, we introduced 4 different trackers and compared their performance

with the most recent trackers on challenging tracking benchmarks. Each of the proposed

trackers aims to address some of the drawbacks of their peers. Specifically, we summarize

the strategy and performance of each tracker as follows:

• We propose a robust SMTMVT method that uses sparse representation in the particle

filter framework to track objects in frame sequences. By introducing the nuclear

norm regularization, we represent all views of a target candidate using the same

subset of templates in the target dictionaries. We further equalize the representation

coefficients of activated templates for all views. The proposed model is efficiently

solved by a numerical algorithm based on the PG method. The results on 15 publicly

frame sequences and OTB50 and OTB100 tracking benchmarks demonstrate that the

SMTMVT method outperforms various state-of-the-art trackers.

• We propose a novel tracker, called structured group local sparse tracker (SGLST),

which exploits local patches within target candidates in the particle filter framework.

Unlike conventional local sparse trackers, SGLST employs a new convex optimization

model to preserve spatial layout structure among the local patches. To solve the

proposed optimization model, we develop an efficient numerical algorithm consisting of

two subproblems with closed-form solutions based on ADMM. We test the performance

of the proposed tracker with two types of features including gray-level intensity features

and HOG features. The qualitative and quantitative results on 16 publicly available

frame sequences demonstrate that SGLST_HOG outperforms all compared state-of-

the-art trackers in terms of the overlap score. The experimental results on OTB50

and OTB100 tracking benchmarks demonstrate that SGLST_HOG outperforms all
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compared state-of-the-art trackers except the MEEM tracker in terms of the average

AUC score.

• We propose a structured tracker using local deep features (STLDF), which exploits

CNN deep features of local patches within target candidates and represents them in a

novel optimization problem. The proposed optimization model combines the CNN deep

features of local patches of each target candidate with a group-sparsity regularization

term to encourage the tracker to sparsely select appropriate local patches of the same

subset of templates. We design a fast and parallel numerical algorithm by deriving

the augmented Lagrangian of the optimization model into two close-form problems:

the quadratic problem and the Euclidean norm projection onto probability simplex

constraints problem. STLDF outperforms existing sparse trackers by incorporating

local deep features of target candidates and maintaining the spatial relation between

them. The extensive experimental results on OTB50 and OTB100 demonstrate that

STLDF outperforms various state-of-the-art methods including its two variant trackers,

representative conventional and recent sparse trackers, correlation filter-based trackers,

and convolutional neural network based trackers in terms of AUC and precision scores.

• We propose an appearance variation adaptation (AVA) tracker that is capable of

handling the significant appearance variations of targets. Specifically, we align feature

distributions of target regions over a long time span by adversarially learning an

adaptation mask. This adaptation mask is applied on the discriminative features of

target regions to increase the generalization of the classification network. We design an

adversarial network, which consists of a generator network and a discriminator network

competing with each other over optimization of a discriminator loss between recent

and earlier target regions. The discriminator network aims to distinguish recent target

regions from earlier ones by minimizing the discriminator loss, while the generator

network aims to produce an adaptation mask to maximize the discriminator loss. We

incorporate the adversarial network with the classification network to align informative

features of recent and earlier target regions during tracking, while maintaining the
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network classification accuracy to distinguish targets and backgrounds. We add a

gradient reverse layer to solve the aforementioned mini-max optimization in an end-to-

end manner. Our extensive experiments on OTB and VOT challenge benchmarks show

that the proposed AVA tracker achieves favorable performance against state-of-the-arts

trackers.
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