
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2021 

Application of Computational Fluid Dynamics to Determine Gas Application of Computational Fluid Dynamics to Determine Gas 

Expansion Factors of Differential Pressure Flow Meters Expansion Factors of Differential Pressure Flow Meters 

Patrick L. Campana 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Campana, Patrick L., "Application of Computational Fluid Dynamics to Determine Gas Expansion Factors 
of Differential Pressure Flow Meters" (2021). All Graduate Theses and Dissertations. 8074. 
https://digitalcommons.usu.edu/etd/8074 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fetd%2F8074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8074?utm_source=digitalcommons.usu.edu%2Fetd%2F8074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


i 

 

 

 

APPLICATION OF COMPUTATIONAL FLUID DYNAMICS TO DETERMINE GAS 

EXPANSION FACTORS OF DIFFERENTIAL PRESSURE FLOW METERS 

by 

Patrick L. Campana 

A thesis submitted in partial fulfillment 

of the requirements for the degree 

 

of 

 

MASTER OF SCIENCE 

 

in 

 

Civil and Environmental Engineering 

 

 

Approved: 

 

 

____________________ ____________________ 

Zachary B. Sharp, Ph. D., P.E. Michael C. Johnson, Ph.D., P.E.  

Major Professor Committee Member 

 

 

____________________ ____________________ 

Som Dutta, Ph. D. D. Richard Cutler, Ph.D. 

Committee Member Interim Vice Provost 

 of Graduate Studies 

 

 

UTAH STATE UNIVERSITY 

Logan, Utah 
 

2021 

 

 

 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Patrick L. Campana 2021 

 

All Rights Reserved 

 

  



iii 

 

 

 

ABSTRACT 

 

 

Application of Computation Fluid Dynamics to determine gas expansion factors of  

 

differential Pressure Flow Meters 

 

by 

 

Patrick L. Campana, Master of Science 

 

Utah State University, 2021 

 

 

 

Major Professor: Dr. Zachary B. Sharp 

Department: Civil and Environmental Engineering 

 

The purpose of this research was to investigate if computational fluid dynamics 

could be used to predict differential pressure flow meter gas expansion factor values with 

sufficient accuracy to use the values for the regression of accurate empirical gas 

expansion equations for a variety of differential pressure flow meter geometries. 

Simulations of incompressible and compressible flows through Classical Venturis, Stand 

Concentric orifice plates, and wedge meters were conducted to characterize the 

performance of these flow meters over a variety of flow rates and pressure differentials. 

Incompressible flows were modeled using the fluid properties of water. Compressible 

flows were modeled using the assumption of a perfect gas with the fluid properties of dry 

air. Compressible effects were modeled using the ideal gas law.  

Classical Venturi and Standard Concentric orifice plate gas expansion factors 

produced from computational fluid dynamics simulations matched their respective 

International Organization for Standardization endorsed theoretical or empirical gas 
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expansion factor values with remarkable accuracy. This indicates computational fluid 

dynamics is an appropriate tool for determining differential pressure flow meter gas 

expansion factor values. In addition, wedge meter gas expansion factor values were 

determined using the same modeling approach. The wedge meter gas expansion factors 

produced using computational fluid dynamics were reasonable for a variety of bore sizes 

and pressure differentials.  

(93 pages) 
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PUBLIC ABSTRACT  

 

 

 

Application of Computation Fluid Dynamics to determine gas expansion factors of  

 

differential Pressure Flow Meters 

 

Patrick L. Campana  

 

 

The purpose of this research was to investigate if computer simulations could be used to 

accurately predict gas expansion in differential pressure flow meters. Differential 

pressure flow meters are used to measure the flow rate of pressurized liquids and gases 

through pipes. Computer simulations of liquid and gas flows were conducted for three 

distinct differential pressure flow meter geometries: Classical Venturis, Stand Concentric 

orifice plates, and wedge meters.  

Gas flows were modeled as dry air using the assumption of a perfect gas. Expansion 

effects were modeled using the ideal gas law. Computer simulations of Classical Venturi 

and Standard Concentric orifice plates predicted gas expansion that matched existing 

laboratory data with remarkable accuracy. This indicates the computer simulation 

method, known as computational fluid dynamics, is an appropriate tool for determining 

gas expansion in differential pressure flow meters. Computer simulations of wedge 

meters were then conducted using the same modeling approach and produced reasonable 

gas expansion factor values.  
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CHAPTER I  

 

INTRODUCTION 

 

The natural gas supply industry routinely uses differential pressure flow meters (DPFM) 

to measure the flow rate of natural gas (Kiš, Malcho, Janovcová, 2014). Accurate 

compressible flow measurement is essential to the proper operation and fiscal success of 

this industry. For example, assuming all the natural gas suppliers in the U.S. exclusively 

use DPFMs to measure flow rate a uniform -0.05% error in the measurement of natural 

gas delivery to industrial consumers would of resulted in a profit loss of approximately 

20 million dollars for natural gas suppliers (EIA, 2019). Therefore, minimizing 

compressible flow measurement error is very lucrative for natural gas suppliers.  

DPFMs are calibrated to measure the flow rate of incompressible fluids. The gas 

expansion factor (ε) is used to correct for the errors compressible fluids produce in these 

DPFM’s flow rate measurements.  However, equations that predict ε are not available for 

all DPFM designs.  

Depending on DPFM geometry, either theoretical or empirical equations are used predict 

ε for a given pressure differential. The laboratory experiments required to produce 

empirical ε equations are expensive to conduct and restricted in their application to 

specific DPFM geometries. Consequentially, ε equations currently exist for a small set of 

DPFM geometries. These DPFM geometries are restricted to Venturis, orifice plates, and 

cone meters (Miller, 1996; Stewart et al., 2001). 
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Therefore, the objective of this study is to investigate if computational fluid dynamics 

(CFD) can be used to predict ε values sufficiently accurate for use in the regression of 

accurate empirical ε equations for a variety of DPFM geometries. The existence of 

accurate empirical ε equations for DPFMs geometries currently without them would 

facilitate using these DPFMs for compressible flow metering, and, potentially, result in 

massive profits for the corresponding DPFMs’ manufacture.  
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CHAPTER II 

 

 THEORETICAL BACKGROUND 

 

DPFMs are fundamentally a constriction in the flow area of a closed conduit. The 

constriction in flow area produces flow acceleration which results in a local drop in line 

pressure. Flow rate can be calculated from these flow meters if the fluid density, the 

cross-sectional area available for flow upstream of the constriction, the cross-sectional 

area of the constriction, and the pressure differential produced by the flow meter are 

known (Miller, 1996). Mass flow rate (𝑚̇) is calculated using Equation 1.  

𝑚̇ =  𝜀𝐶𝑑
𝜋

4
𝑑2√

2𝑔𝑐Δ𝑃𝜌1
1 − 𝛽4

 (1) 

Where 𝐶𝑑 is the discharge coefficient, 𝑑 is the diameter of the downstream plane, 𝑔𝑐 is a 

dimensional conversion constant =1 (𝑘𝑔 ∙ 𝑚)/(𝑁 ∙ 𝑠2), Δ𝑃 is the pressure differential 

between the upstream and downstream planes, 𝜌1is the density measured at the upstream 

plane, and 𝛽 is the ratio between the downstream and upstream planes’ diameters.  

Equation 1 can be used to calculate incompressible or compressible 𝑚̇. The theoretical 𝑚̇ 

equation can be derived by applying Bernoulli’s energy equation and mass flow 

continuity between an upstream (A1) and a downstream (A2) plane within a control 

volume as shown in Figure 1 (Equations 2-3) (Miller, 1996).  
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Figure 1. Control Volume. 

 

 

𝑃

𝜌
+

𝑉̅

2𝑔𝑐
+
𝑔𝑙
𝑔𝑐
𝐻𝐸𝐿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2) 

Where 𝑃 is pressure, 𝑉̅ is the mean velocity, 𝑔𝑙 is the local gravitational constant, 𝐻𝐸𝐿 is 

the elevation above the energy datum.  

𝑚̇ = 𝜌1𝐴1𝑉̅1 = 𝜌2𝐴2𝑉̅2 (3) 

Assuming constant density, uniform, steady, inviscid flow, and no elevation change 

between planes, and then substituting Equation 3 into Equation 2 yields Equation 4. In 

Equation 4, if A1 and A2 are circular, the ratio of their areas raised to the second power 

reduces to β raised to the fourth power. The 𝑉̅ at the downstream plane in Equation 4 is 

rewritten in terms of 𝑚̇ using Equation 3. Equation 4 is then solved for 𝑚̇, yielding the 

theoretical mass flow rate (𝑚̇𝑡ℎ𝑒𝑜) equation for an incompressible fluid (Equation 5). 

𝑃1 − 𝑃2
𝜌

=
[1 − (

𝐴2
𝐴1
)
2

] 𝑉̅2
2

2𝑔𝑐
 (4)

 

𝑚̇ 
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𝑚̇𝑡ℎ𝑒𝑜 = 
𝜋

4
𝑑2√

2𝑔𝑐Δ𝑃𝜌

1 − 𝛽4
 (5) 

The Cd is introduced to Equation 5 to account for A2  not being measured at the vena 

contracta, A2 and downstream pressure (P2) being measured at different planes, and for 

energy loss due to turbulence (Miller, 1996). The result is an equation which can be used 

to calculate the actual mass flow rate (𝑚̇𝑎𝑐𝑡𝑢𝑎𝑙) of an incompressible fluid through a 

DPFM (Equation 6). Cd for a given 𝑚̇ is the ratio of 𝑚̇𝑎𝑐𝑡𝑢𝑎𝑙 to 𝑚̇𝑡ℎ𝑒𝑜  (Equation 7).  

𝑚̇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑
𝜋

4
𝑑2√

2𝑔𝑐Δ𝑃𝜌

1 − 𝛽4
 (6) 

𝐶𝑑 = 
𝑚̇𝑎𝑐𝑡𝑢𝑎𝑙

𝑚̇𝑡ℎ𝑒𝑜
 < 1 (7) 

Regarding flow of a compressible fluid in a pressurized conduit, the contraction in flow 

area causes an increase in fluid velocity which results in a drop in pressure. Upon 

entering the zone of lower pressure, the fluid expands. Therefore, ε is incorporated into 

Equation 6 to correct for the expansion of the fluid (Miller, 1996). The adiabatic gas 

expansion factor (Y) can be derived from the thermodynamic steady flow energy equation 

(Equation 7). Through intensive algebraic manipulation, integration, and by assuming 

adiabatic expansion, isentropic flow, and no elevation difference between the upstream 

and downstream planes, Equation 8 reduces to Equation 9 where Y1 is defined in Equation 

10 (Miller 1996).  
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𝑄 −𝑊 = 𝐽(𝑢2 − 𝑢1) +
𝑃2
𝜌2
−
𝑃1
𝜌1
+
𝑉2
2̅̅̅̅ − 𝑉1

2̅̅̅̅

2𝑔𝑐
+
𝑔𝑙
𝑔𝑐
(𝐻𝐸𝐿2 − 𝐻𝐸𝐿1) (8) 

Where 𝑄 is the net heat transferred into a system, 𝑊 is work, 𝐽 a quantity of heat, and 𝑢1 

and 𝑢2 are the internal energy at the upstream and downstream planes, respectively.  

𝑚̇𝑡ℎ𝑒𝑜 = 𝑌1
𝜋

4
𝑑2√

2𝑔𝑐Δ𝑃𝜌1
1 − 𝛽4

 (9) 

Where 𝑌1 is the theoretical adiabatic ε calculated from density measured at the upstream 

plane. 

𝑌1 =

{
 
 

 
 [1 − 𝛽4] [

𝜅
𝜅 − 1] (

𝑃2
𝑃1
)

2
𝜅
[1 − (

𝑃2
𝑃1
)

𝜅−1
𝜅
]

[1 − 𝛽4 (
𝑃2
𝑃1
)

2
𝜅
] (1 −

𝑃2
𝑃1
)

}
 
 

 
 

1
2

 (10) 

Where 𝜅 is the isentropic exponent of the working fluid. 

In practice, compressible flows approach adiabatic expansion only in contoured DPFMs, 

such as the Classical Venturi, where expansion in the lower pressure zone is primarily 

axial (Miller, 1996). For DPFMs where flow expansion is both axial and radial, ε must be 

calculated using empirical methods. In general, ε is a function of the hydraulic shape of 

the flow meter, β, and κ. ε is also a function of the Δ𝑃 produced by the DPFM at a given 

Reynolds Number (Re) (Halmi, 1972). ε is defined as the ratio of the compressible 

discharge coefficient (Cd_CMP) to the incompressible discharge coefficient (Cd_INC) 
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(Equation 11). Incorporation of ε into Equation 6 yields Equation 1. ε is equal to one for 

incompressible flows (Miller, 1996). 

𝜀 =  
𝜀𝐶𝑑

𝐶𝑑
= 

𝐶𝑑_𝐶𝑀𝑃

𝐶𝑑_𝐼𝑁𝐶
 ≤ 1 (11)  
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CHAPTER III 

 

 LITERATURE REVIEW 

 

There has been extensive work regarding the determination of empirical ε values for 

DPFMs, specifically standard concentric (SC) orifice plates. Buckingham (1932) 

produced the first empirical ε equation for SC orifice plates (Equation 13). Buckingham’s 

equation is based on data from experiments conducted in 1929 at the Los Angles Gas and 

Electric Company. These experiments used natural gas as the working fluid. Equation 13 

was adopted by both the American Gas Association (AGA Report No. 3) and the 

International Organization for Standardization (ISO 1567) and used for over 60 years 

(Morrow, 2004).  

𝜀𝐵 = 1 − (0.41 + 0.35𝛽4)(1 −
𝑃2
𝑃1
)
1

𝜅
 (13) 

Where 𝜀𝐵 is the ε value calculated using Buckingham’s equation.  

Murdock and Foltz (1956) conducted orifice gas expansion experiments, using steam as 

the working fluid, and found the ε values predicted by Equation 13 to be an acceptable 

match with their results. However, during a review of SC orifice plate ε data from the 

European Economic Community (EEC) orifice coefficient program, Kinghorn (1986) 

noticed ε values calculated using Equation 13 were low by as much as 0.5%. In response 

Kinghorn recommend the development of a new SC orifice plate ε equation from existing 

and new experimental data. At the Colorado Engineering Experiment Station (CEESI), 
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Seidl (1995) conducted SC orifice plate ε experiments using air as the working fluid. 

Seidl also noticed that Equation 13 underpredicted ε values. 

Reader-Harris (1998) derived a new empirical SC orifice plate ε equation from the EEC 

orifice coefficient program and CEESI data (Equation 14). In 2003, ISO adopted 

Equation 14 in ISO 5167-2:2003. Equation 14 is currently ISO’s and the ASME’s 

recommend SC orifice plate ε equation (ASME, 2007). However, the validity of Equation 

14 was initially questioned because of the relative sparseness of data used to produce it. 

Therefore, Morrow (2004) conducted additional SC orifice plate ε experiments at the 

South West Meter Institute’s Meter Research Station. Data from Morrow’s experiments 

fell within the specified 95% confidence intervals of both Equation 13 and 14. Morrow 

also noticed that the ε values predicted by Equation 14 fall almost exactly on the upper 

uncertainty limit of Eq 13.  

𝜀𝑅𝐻 = 1 − (0.351 + 0.256𝛽4 + 0.93𝛽8) [1 − (
𝑃2
𝑃1
)

1
𝜅
] (14) 

Where 𝜀𝑅𝐻 is the ε value calculated using the Reader-Harris equation. 

There are also several CFD related publications that are related to this studies research 

objectives. Specifically, these publications are concerned with CFD’s ability to predict 

DPFMs’ Cd and ε values. Hollingshead et al. conducted a CFD study, using the 

commercial code FLUENT, on the Cd_INC performance of Venturi, SC orifice plate, cone 

meter, and wedge flow meters (2011). The Re values of the DPFM simulations ranged 

from 1 to 107. Upon comparison with laboratory data, the simulation results adequately 
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characterized each meter’s Cd_INC performance trend as a function of Re. However, the 

predicted Cd_INC values were not an exact match with laboratory Cd_INC data, and routinely 

exhibited magnitudes of error unacceptable in industrial and municipal flow metering 

applications.   

Sharp (2016) conducted a CFD study, using the commercial code STAR CCM+, to 

address several Venturi meter design problems. The study’s CFD simulations were 

calibrated and validated using laboratory data from experiments conducted at the Utah 

State Water Research Lab. Sharp also found CFD can be appropriately used to determine 

performance trends or relative differences associated with changes in meter design.  

However, Sharp also acknowledges “…CFD is not a replacement for laboratory 

calibration” (2016).  

Prasanna et al. (2016), in two separate studies, showed the commercial CFD code 

ANSYS FLUENT-14 can be used to adequately predict ε values for Classical Venturi and 

SC orifice plate meters. The DPFMs were modeled using 2D axisymmetric simulations. 

Simulation Re values were kept constant and β values and line pressure were varied to 

produce a variety of ε values. Comparison of Prasanna et al.’s six CFD Venturi ε values 

to the ε predicted by Equation 10 shows a minimum percent difference of 0.12%, an 

average percent difference of 0.58%, and a maximum percent difference of 1.2%. 

Comparison of Prasanna et al.’s five CFD SC orifice plate ε values to ε values predicted 

by Equation 14 shows a minimum percent difference of 0.09%, an average percent 

difference of 1.15%, and a maximum percent difference of 2.4%. Percent difference for 

parameter of interest (ϕ) is calculated throughout this paper as shown in Equation 15. 
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(𝜙𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝜙𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)

𝜙𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
×  100%  (15) 
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CHAPTER IV 

 

 RESEARCH OBJECTIVES  

 

There are no existing publications regarding the use of CFD to predict ε values for wedge 

meters. In addition, an experimentally derived ε equation for wedge meters does not exist 

(ISO, 2019). ISO-6:2019 recommends using (Equation 10) to estimate wedge meter ε 

values. Therefore, this study has been conducted with the following research objectives: 

1. Model incompressible and compressible flows through Classical Venturi and SC 

orifice plate geometries, with β values of 0.4, 0.5, and 0.6, using the commercial 

CFD code STAR CCM+.  

2. Corroborate incompressible and compressible flow simulation methods for 

Classical Venturi and SC orifice plate geometries based on the comparison of 

CFD Cd_INC  and ε values to the Cd_INC  and ε values predicted by ASME or ISO 

endorsed equations. 

3. Using the same modeling approach employed to model incompressible and 

compressible flows through Classical Venturi and SC orifice plates, model 

incompressible and compressible flows through wedge meter geometries with 1 

mm (0.03937 in.) filleted wedge apexes and β values of approximately 0.3789, 

0.5019, and 0.6107. 

4. Corroborate incompressible flow simulations for wedge meters based on the 

comparison of CFD Cd_INC values to the Cd_INC values predicted by an ISO 

endorsed equation. 

5. Use wedge meter CFD simulation results to calculate wedge meter ε values. 
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CHAPTER V 

  

SIMULATION SETUP 

 

The following sections describes the setup of this study’s simulations. First, the 

established method to determine DPFMs’ compressible flow discharge coefficients is 

reviewed. Then a list of the physics models used to simulate incompressible and 

compressible flows are presented. Next the methods used to determine the ranges and 

values of simulation flow properties, material properties, and boundary conditions are 

described. Then the dimensions and meshing methods for each DPFM geometry and β 

values are presented. In addition, the parameters extracted from CFD simulations and the 

methods used to calculate Cd, ε, and Re_actual are described. Finally, the criteria used to 

establish mesh independence and adequate convergence for all CFD simulations are 

explained. 

Established Method to Determine Compressible Flow Discharge Coefficients in a 

Laboratory Setting 

 

The ideal gas law (Equation 16) is an appropriate model of real gas behavior for gases at 

high temperatures and low pressures relative to the gas’ critical temperature and pressure 

(LeTran, 2020). During the 1929, Los Angles Gas and Electric Company ε experiments 

Buckingham restricted experimental testing conditions such that the flow of natural gas, 

the working fluid, could be reasonably modeled as an isentropic flow of an ideal gas 

(1932). Absolute line pressure was kept below 263.52 kPa (38.22 psia), and flow Re was 

held above 200,000 so that flow at the vena contracta was nearly isentropic 

(Buckingham, 1932).   
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𝜌𝑓 =
𝑀𝑤𝑃𝑓

𝑅𝑜𝑇𝑓
  (16) 

Where 𝑀𝑤 is molecular weight, 𝑅𝑜 is the universal gas constant, 𝑇𝑓 is the absolute 

temperature at flowing conditions, 𝜌𝑓 is the density at flowing conditions, and 𝑃𝑓 is the 

pressure at flowing conditions. 

Buckingham also stated that an SC orifice plate’s Cd_INC was sensibly independent of the 

rate of flow at Re higher than 200,000. Consequentially, Buckingham treated the variation 

in Cd_CMP with Re > 200,000 as a function of compressibility alone (Buckingham, 1932). 

However, for Re > 200,000, the variation of SC orifice plates’ Cd_INC is significant in the 

calculation of accurate ε values (Morrow, 2004).  

The current established method for obtaining a range of Cd_CMP values to be used in the 

calculation of ε values is to hold Re constant and adjust line pressure and 𝑚̇ to obtain 

different Cd_CMP values. Flow conditions the ideal gas law can be reasonably applied to 

are maintained throughout this process. This ensures the change in Cd_CMP, and the 

resulting value of ε, are solely dependent on the compressibility of the working fluid 

(Morrow, 2004).  

Physics Models 

 

The physics models used for incompressible and compressible flow simulations are 

shown in Table 1. There is an exception to the models shown in Table 1 for Classical 

Venturi simulations. These meters were modeled primarily using a combination of 
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axisymmetric and three-dimensional space with both methods agreeing well with each 

other. It is also important to note air was modeled as a perfect gas even though the 

equation of state selected was the ideal gas law. An ideal gas’ specific heat is a function 

of temperature. A perfect gas’ specific heat is held constant (Miller, 1996). For detailed 

explanation of the physics models in Table 1 refer to Simcenter STAR-CCM+ 

documentation (Siemens, 2020). 

Table 1. STAR-CCM+ Physics Models.  

  Model Category Incompressible Flow Compressible Flow   

  Space Three Dimensional Three Dimensional   

  Time Steady State Steady State   

  Material Liquid (water) Gas (dry air)   

  Equation of State Constant Density Ideal Gas (perfect gas)   

  Flow Solver Segregated Segregated   

  Pressure Solver SIMPLE SIMPLE   

  Energy None  Segregated Fluid Temperature   

  Viscous Regime Turbulent Turbulent   

  RANS Turbulence 

Realizable K-Epsilon 

Two-Layer 

Realizable K-Epsilon Two-

Layer   

  Wall Distance Wall Distance Wall Distance   

  Gradient Metrics Gradients Gradients   

  Wall Treatment 

Two-Layer All y+ Wall 

Treatment 

Two-Layer All y+ Wall 

Treatment   

 

 

Determination of Simulation Parameters and Flow Conditions 

  

 

The selection of simulation parameters and flow conditions differed for incompressible 

and compressible flow models with one exception. Flow in incompressible and 

compressible simulations was restricted to subsonic velocities (i.e Mach number 

 (M) ≤ 0.75). M was calculated locally at each cell in the simulations computational 

mesh. using Equation 17. The computational mesh is the discretized geometry created 
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from the mathematically defined computer aided drafting (CAD) DPFM surface.  During 

discretization the CAD surface and the volume it contains are broken into a multitude of 

cells which collectively form the computational mesh.   

𝑀 = 
𝑉

𝑐
 (17) 

Where V is a point velocity equivalent to the average velocity across a cell and c is the 

celerity of the working fluid.  

Incompressible Flow. The material properties of water applicable to this study’s 

simulations are 𝜌 and 𝜇. 𝜌 and 𝜇 were varied to maintain lower flow velocities at high Re 

values. Lower flow velocities tended to result in better simulation convergence. To 

simulate water with a temperature of 299.82 K (80 ⁰F), 𝜌 was set as 996.60 kg/m3 (62.22 

lbm/ft3) and 𝜇 as 8.58 × 10−4 Pa-s (8.46 × 10−9 atm-s). To simulate water with a 

temperature of 366.48 K (200 ⁰F), water 𝜌 was set as 969.78 kg/m3 (60.54 lbm/ft3) and 𝜇 

as 3.03 × 10−4 Pa-s (2.99107e-9 atm-s).  

Compressible Flow. To ensure isentropic flow at the vena contracta, simulation inlet 

boundary Re values ranged from 230,000 to 1,150,000. To ensure the working fluid, dry 

air, could be reasonably modeled as a perfect gas, pressure was set low relative to dry 

air’s critical pressure of 3.77 MPa (546.65 psi) and temperature was set high relative to 

dry air’s critical temperature of 132.7 K (-220.8 ⁰F) (Miller, 1996). Absolute static 

pressure ranged from to approximately 172.37 kPa (25 psia) to 262 kPa (38 psia) and 

static temperature was set as 299.82 K (80 ⁰F) for all simulations.  
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The material properties applicable to this study’s air simulations are Mw, turbulent 

Prandtl number, specific heat, thermal conductivity, 𝜇, and κ. All of these properties, 

except Mw, change within the dynamic conditions that occur in flow through DPFMs. 

Therefore, material properties of air, except Mw, must either be calculated for each 

iteration of the simulation or approximated as constant. Dry air’s material properties were 

set as constant for each iteration of the simulation. For all simulations Mw was set as 

28.9664 g/gmol and Turbulent Prandtl number was set to a value of 0.9. Depending on 

the static pressure boundary conditions specific heat was linearly interpolated between 

1.0061 kJ/(kg-K) at 101.35 kPa (14.7 psia) and 1.0162 kJ/(kg-K) at 709.47 kPa (102.9 

psia), and thermal conductivity was linearly interpolated between the two values of 26.37 

mW/(m-K) at 99.97 kPa (14.5 psia) and 27.01 mW/(m-K) at 2.0 MPa (290 psia). 𝜇 for a 

given static pressure was determined by linearly interpolating between to two equations 

produced from curve fits of 𝜇 data taken at constant pressure and varying temperature 

(Figure 2). κ was assumed to have a constant value of 1.4. 
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Figure 2. Absolute Viscosity of Air at Different Static Pressures (Miller 1996). 

 

 

Calculation or Selection of Simulation Boundary Values  

 

Appropriate selection of a CFD simulation’s boundary conditions is crucial for obtaining 

results that are representative of the fluid phenomena of interest. Every simulation 

conducted in this study had the same three boundary types: velocity inlet, pressure outlet, 

and walls.   

Velocity Inlet Boundary. The velocity inlet boundary’s turbulent dissipation rate, 

turbulent kinetic energy, velocity vectors, and, for compressible flows, static temperature 

values were specified using a fully developed flow profile (FDFP) table for each mesh 

cell constituting the velocity inlet boundary. Unique FDFP tables were created from 
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FDFP simulations for each DPFM simulation’s targeted Re and 𝑚̇. 𝑚̇ was calculated 

using Equation 18. 

𝑚̇ =  
𝜋

4
𝜇𝐷𝑅𝑒 (18) 

FDFP simulation geometry consisted of a 30.48 cm (12 in.) diameter cylinder that was 

91.44 cm (36 in.) to 121.92 cm (48in.) long. One end of the cylinder was set as a mass 

flow inlet boundary and the other end as a pressure outlet boundary. The inlet’s 𝑚̇ was 

set equal to the respective target value calculated using Equation 18. A periodic, fully 

developed, mass flow interface was created between the mass flow inlet and the pressure 

outlet. This periodic interface essentially creates an infinite pipe in which a FDFP can 

develop. Upon solution convergence, a FDFP table was created by extracting the desired 

scalar values and their positions in model space from each mesh cell constituting the 

mass flow inlet interface. 

Pressure Outlet Boundaries. For all incompressible flow simulations, pressure outlet 

boundary pressure was arbitrarily set at 1.38 MPa (200 psi). For all compressible flow 

simulations, pressure outlet boundary pressure was set to the pressure used to calculate 

air’s 𝜌 in Equation 16. 

Wall Boundaries. Wall boundaries were modeled as smooth, nonslip surfaces.  
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DPFM Dimensions and Mesh Generation 

 

All DPFM geometries were drafted in STAR CCM+’s 3D CAD environment. Pressure 

tap geometry was not included in any of the DPFMs geometries. However, the locations 

where static pressure values were extracted was consistent with ASME or ISO meter 

standards and are presented in the following sections. A 30.48 cm (12 in.) diameter 

cylinder was used for all DPFMs’ upstream and downstream straight pipe geometry. All 

meshes were generated from CAD geometry using STAR CCM+ meshing operations.  

Slight geometric distortion is an unavoidable consequence of creating a finite volume or 

area computational mesh from a mathematically defined CAD surface. This process is 

known as discretization. Therefore, the dimensions of the DPFMs presented in the 

following sections closely approximate post mesh geometry and are the dimensions of the 

mesh’s source CAD geometry. Due to the use of a FDFP table at each simulation’s 

velocity inlet, the upstream straight pipe of each DPFM geometry can be considered as 

sufficient in length for a FDFP to develop. For more information on meshing refer to 

Simcenter STAR-CCM+ documentation (Siemens, 2020). 

Classical Venturi Meter Dimensions. Classical Venturi geometries with β values equal 

to 0.4, 0.5, and 0.6 were drafted in accordance with ASME MFC-3Ma-2007 specifications 

(2007). The transitions of the entrance cylinder to the convergent and the convergent to 

the throat were modeled as sharp. A side view of a Classical Venturi is shown in Figure 

3. Table 2 contains the dimensions for each Classical Venturi geometry per β value. For 

all Classical Venturi β values, upstream straight pipe length was 304.8 cm (120 in.) and 
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downstream straight pipe length was 121.92 cm (48 in.). Pressure was extracted at the 

standard pressure tap locations of 1D upstream from the start of the convergent section 

and at the midpoint of the throat (d/2). 

 

 
Figure 3. Classical Venturi with Sharp Transitions.  

 

 

Table 2. Classical Venturi Dimensions (units in cm or degrees). 

 

 

 

 

 

 

Classical Venturi Meshing. Flows through Classical Venturis were primarily modeled 

as axisymmetric. Therefore, Classical Venturi meshes were two-dimensional, 

longitudinal profiles of half of the Classical Venturi’s CAD geometry as shown in Figure 

4. The mesh consisted of two cell types as shown in Figure 5. The core mesh consisted of 

polyhedral shaped cells. Prism layer cells were used near wall boundaries. Prism layer 

cells are right rectangular prism shaped volume mesh cells. Cell base size was typically 

0.635 cm (0.25 in.). Prism layer 1st cell thickness was adjusted for the High Ywall+ 

β 0.4 0.5 0.6 

D 30.48  30.48  30.48  

d 12.19  15.24  18.29  

θc 21⁰ 21⁰ 21⁰ 

θd 15⁰ 15⁰ 15⁰ 
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model such that the Ywall+ values were between 30 and 160. Typical mesh cell count 

was approximately 20,000 cells. 

 

 
Figure 4. Classical Venturi 0.4 β Half Profile 

 

 

 
Figure 5. Classical Venturi Mesh. 

 

 

Standard Concentric Orifice Plate Meter Dimensions. SC orifice plate geometries 

with β values equal to 0.4, 0.5, and 0.6 were drafted in accordance with ASME MFC-

3Ma-2007 specifications (2007). Figure 6 shows a SC orifice plate geometry profile 

annotated with ASME MFC-3Ma-2007 symbology. Table 3 contains the dimensions for 

each standard concentric orifice plate geometry per β value. Pressure was extracted at 

ISO standard pressure tap locations of D and D/2, flange taps, and corner taps (2003). 
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Figure 6. Standard Concentric Orifice Plate Profile. 

 

 

Table 3. Standard Concentric Orifice Plate Dimensions (units in cm or degrees). 

β 0.4 0.5 0.6 

D 30.48  30.48  30.48  

d 12.19 15.24  18.29  

E 1.27 1.27 1.27 

e 0.125 0.125 0.125 

α 45⁰ 45⁰ 45⁰ 

 

Standard Concentric Orifice Plate Meter Meshing. Three-dimensional meshes were 

generated from each SC orifice plate CAD geometry. The meshes consisted of two cell 

types. The core mesh consisted of trimmer cells. Trimmer cells are cube shaped volume 

mesh cells.  Prism layer cells were used near wall boundaries. The cell base size was 

typically 1.27 cm (0.5 in). Volumetric controls were used to refine the mesh locally at the 

orifice edge tip as shown in Figure 7. A volumetric control is a CAD surface which is 

strategically placed to encompass a region of the computational mesh which requires 

additional refinement. The mesh generation algorithm refines mesh cells located within 

the volumetric control according to user specifications.  Prism layer 1st cell thickness was 

adjusted for the High Ywall+ model such that the Ywall+ values were between 30 and 
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160 for the vast majority of the mesh cells constituting wall boundaries. A mesh 

consisting of elongated trimmer and prism cells was generated at the inlet and outlet of 

the simulation domain to extrude the mesh generated from CAD geometry to obtain a 

minimum 2D of straight pipe upstream of the inlet and 6D downstream of the outlet. 

Higher Re number simulations had longer outlet mesh extrusions to capture the 

corresponding increased length of the high velocity jet and recirculation zone 

downstream of the orifice. Typical mesh cell count was approximately 2 to 3 million 

cells.  

 

 
Figure 7. Cross Sectional View of a Standard Concentric Orifice Plate’s Tip Mesh. 

 

 

Wedge Meter Dimensions. Wedge geometries with β values approximately equal to 

0.3789, 0.5019, and 0.6107 were drafted in accordance with ISO 5167-6:2019 

specifications (2019). Figure 8 shows a wedge meter profile annotated with ISO 5167-

6:2019 symbology. For all wedge meter geometries, the wedge apex was filleted with a 

radius of curvature (Rw) equal to 1 mm (0.03937 in.). Table 4 contains the dimensions of 
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each wedge meter geometry per β value prior to meshing. Pressure was extracted at ISO 

standard pressure tap locations of 1D upstream from the start of wedge and 1D 

downstream from the end of the wedge (2019). 

 

 
Figure 8. Wedge Meter Side View. 

 

 

Table 4. Wedge Meter Dimensions (units in cm or degrees). 

β 0.3789 0.5019 0.6107 

D 30.48 30.48 30.48 

H 6.1317 9.1342 12.1776 

Rw 0.01 0.01 0.01 

θc 90⁰ 90⁰ 90⁰ 

θ1 = θ2 135⁰ 135⁰ 135⁰ 

 

Wedge Meter Meshing. Three-dimensional meshes were generated from each wedge 

meter 3D CAD geometry. The meshes consisted of two cell types. The core mesh 

consisted of polyhedral cells and prism layers were used near wall boundaries. Cell base 

size was typically 1.7961 cm (0.70711 in.). Volumetric controls were used to refine the 

core and prism layer mesh cells near the wedge apex, as shown in Figure 9. Prism layer 

1st cell thickness was adjusted for the Low Ywall+ model such that the Ywall+ values 

were between 0.05 and 5, with a target value of 1, for the vast majority of the mesh 
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surface. An extruder mesh consisting of elongated polyhedral and prism cells was 

generated at the outlet of the simulation domain to obtain a minimum of 6D downstream 

of the outlet, as partially shown in Figure 10. Typical mesh cell count was approximately 

1.5 million cells.  

 

 
Figure 9. Cross Section of Wedge Meter Wedge Apex Mesh 

 

 

 
Figure 10. Cross section of 0.3789 β Wedge Meter Mesh 

 

 

Simulation Parameters of Interest and Calculation of βactual, Re_actual, Cd, and ε 

 

Flow property parameters, such as velocity or pressure, are spatially defined and stored at 

each mesh cell’s centroid and faces (Siemens, 2020). Therefore, to extract the magnitude 

of ϕ at a specific location, a derived part point or surface was defined such that it 

intersected the DPFM mesh at the point or plane of interest. A derived point or part is a 

CAD surface which intersects the computational mesh at a user specified location. The 
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derived part has no impact on the structure of the computational mesh and can be used to 

extract the value of ϕ at a specific point or extract a range of ϕ values across a plane.  

The flow property parameters extracted from all DPFM simulations were 𝑚̇, P, and 𝜌. 

 𝑚̇ was extracted at velocity inlet boundaries. P was extracted using derived points placed 

at the respective DPFM’s standard pressure tap locations. 𝜌 was extracted from the 

derived point placed at the standard upstream pressure tap location. In addition, derived 

parts or simulation boundaries were used to extract the cross-sectional area of a given 

DPFM’s computational mesh geometry. The cross-sectional area of the upstream pipe 

(A1) was extracted at the velocity inlet boundary. The cross-sectional area (A2) was 

extracted from a derived plane located at the DPFM geometry’s minimum cross-sectional 

area. 

βactual, Re_actual, Cd_INC, Cd_CMP, and ε were calculated in a spreadsheet using the extracted 

values. βactual was calculated using Equation 19. Re_actual was calculated using Equation 18. 

Cd_INC and Cd_CMP were calculated using equation 7. The calculation of ε was not as 

straight forward.  

𝛽𝑎𝑐𝑡𝑢𝑎𝑙 = (
𝐴2
𝐴1
)

1
2
 (19) 

Empirical ε equations are a function of  ∆𝑃 𝑃1⁄  or 𝑃2 𝑃1⁄  as well as β values and κ. In 

practice, calculation of ε using empirical equations is conservatively restricted to a range 

of  𝑃2 𝑃1⁄ ≥ 0.8 or 0.75 (ASME, 2007; ISO 2003). Therefore, ε values over a similar 

𝑃2 𝑃1⁄  range were desired for this study. However, the desired range of 𝑃2 𝑃1⁄  could not 
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be acquired by holding Re constant and only varying line pressure and 𝑚̇, as specified by 

Morrow (2004). Simulation solutions tended to diverge when absolute pressure was less 

than approximately 172.37 kPa (25 psia). In addition, exact matches of the Re values of 

the incompressible and compressible flow simulations could not be obtained. Therefore, a 

method was designed to ensure that the change in Cd_CMP when compared to Cd_INC, was 

restricted as much as possible to compressibility alone.  

Gas Expansion Factor Calculation Method. The steps of method are as follows: 

1. The performance trend in Cd_INC versus Re was sufficiently resolved such that 

Cd_INC could be reasonably interpolated for any Re value within the range of 

2.3 × 105 ≤ 𝑅𝑒 ≤ 1.5 × 106. 

2. Incompressible flow simulations’ meshes were adjusted and refined until the 

performance trend of the CFD Cd_INC and the Cd_INC  predicted by ASME and ISO 

endorsed equations were similar adequately close in value. 

3. Trendlines were fit to Cd_INC versus Re scatter plots.  

4. Compressible flows’ 𝑚̇ and pressure were systematically varied until Cd_CMP 

values were obtained over a range of absolute pressure ratios.  

5. Using an equation representative of the trendline generated in step 3, Cd_INC values 

were interpolated at the exact Re_actual values Cd_CMP were computed at.   

6. An ε value was then calculated from the Cd_CMP and Cd_INC values using Equation 

11.  

7. For Classical Venturi and SC orifice plate simulations, compressible flow 

simulation meshes were adjusted and refined until the value of ε predicted by 
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CFD and the value of ε predicted by ASME and ISO endorsed equations were 

acceptably close. 

Mesh Independence and Acceptable Convergence Criteria 

 

 

To ensure the mesh independence of a given simulation’s solution, Grid Convergence 

Index (GCI) studies were performed for incompressible and compressible flow 

simulations for each DPFM geometry and β value according to the method described in 

“Procedure for estimation and reporting of uncertainty due to discretization in CFD 

applications” (ASME 2008). Acceptable GCIfine was specified as less than 3%. The 

majority of GCIfine values were less than 0.1%. All GCI study results are presented in the 

appendix. 

Acceptable simulation solution convergence was achieved when the normalized residuals 

of turbulent kinetic energy, turbulent dissipation rate, continuity, momentum, and energy 

were reduced to at least the order of 10-3. This was defined as the minimum acceptable 

normalized residual convergence. Normalized residuals typically reduced at least to the 

order of 10-5.  

Acceptable simulation solution convergence was also determined by monitoring the flow 

parameter values of 𝑚̇, P, 𝜌, and maximum and average V. At each iteration, these values 

were extracted the same derived parts and boundaries used to calculate βactual, Re_actual, Cd, 

ε. When the values of 𝑚̇, P, 𝜌, and maximum and average V remained constant for over 

1000 iterations the solution was considered converged.  
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CHAPTER VI  

 

RESULTS AND DISCUSSION 

 

The following sections present and discuss simulation results for each DPFM geometry. 

All 𝑃2 𝑃1⁄  ratios in tabulated data and plots are calculated using absolute pressures. Cd_INC 

or ε values predicted using ASME or ISO endorsed equations are referred to as 

theoretical values.   

Classical Venturi Meter 

 

In this section, Classical Venturi Meter simulation’s Cd_INC  and ε values for β values of 

0.4, 0.5, and 0.6 are presented. Computed Cd_INC  values are compared to the theoretical 

Cd_INC  value of 0.995. The Cd_INC  value of 0.995 is from the ASME Cd_INC  equation for 

a Venturi Tube with a machined convergent section (Equation 20). The relative 

uncertainty of Equation 20 is 1%, expressed at a 95% confidence interval (ASME 2007). 

The ASME Venturi Tube is analogous to a Classical Venturi (ASME 2007). CFD ε 

values are compared against theoretical ε values predicted using Equation 10.  

𝐶𝑑𝐼𝑁𝐶 = 0.995 (20) 

10.16 𝑐𝑚 ≤ 𝐷 ≤ 121.92 𝑐𝑚  

0.3 ≤  𝛽 ≤ 0.75 

2 × 105  ≤  𝑅𝑒 ≤ 6 × 106 

To determine ε’s sensitivity to the type of turbulence model used, several 0.4 β Classical 

Venturi simulations are repeated using turbulence models other than the Realizable K-
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Epsilon Two-Layer turbulence model. These turbulence models are Standard Spalart-

Allmaras, SST(Menter) K-Omega, and Reynolds Stress Turbulence with Elliptic 

Blending. Refer to Simcenter STAR-CCM+ documentation for more information on 

these turbulence models (Siemens, 2020).  

Classical Venturi Incompressible Flow Simulations. Classical Venturi Cd_INC  values 

for β values of 0.4, 0.5, and 0.6 simulations are presented in this section (Tables 5-10, 

Figures 11-13).  

 

Table 5. Incompressible Flow Discharge Coefficient Values for 0.4 β Classical Venturi 

Determined Using Realizable K-Epsilon Two-Layer Turbulence Model.  

Re Cd_INC 

Cd_INC  

(Eq. 19) % Dif 

229952 0.9860 0.995 -0.906% 

415021 0.9860 0.995 -0.900% 

599835 0.9861 0.995 -0.898% 

649980 0.9862 0.995 -0.888% 

 

 

Table 6 Incompressible Flow Discharge Coefficient Values for 0.4 β Classical Venturi 

Determined Using Standard Spalart-Allmaras Turbulence Model.  

Re Cd_INC 

Cd_INC  

(Eq. 19) % Dif 

415021 0.9943 0.995 -0.067% 

599835 0.9946 0.995 -0.040% 

650200 0.9941 0.995 -0.090% 
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Table 7. Incompressible Flow Discharge Coefficient Values for 0.4 β Classical Venturi 

Determined Using SST(Menter) K-Omega Turbulence Model.  

Re Cd_INC 

Cd_INC  

(Eq. 19) % Dif 

415022 0.9866 0.995 -0.846% 

599835 0.9857 0.995 -0.932% 

650200 0.9858 0.995 -0.930% 

 

Table 8. Incompressible Flow Discharge Coefficient Values for 0.4 β Classical Venturi 

Determined Using Reynolds Stress Turbulence with Elliptic Blending Turbulence Model.  

Re Cd_INC 

Cd_INC  

(Eq. 19) % Dif 

415021 0.9878 0.995 -0.727% 

599835 0.9864 0.995 -0.865% 

650200 0.9864 0.995 -0.869% 

 

 

Table 9. Incompressible Flow Discharge Coefficient Values for 0.5 β Classical Venturi. 

Re Cd_INC 

Cd_INC 

(Eq. 19) % Dif 

230023 0.9827 0.995 -1.239% 

299308 0.9839 0.995 -1.113% 

415021 0.9855 0.995 -0.957% 

749967 0.9860 0.995 -0.908% 

1050619 0.9864 0.995 -0.864% 

1500192 0.9871 0.995 -0.797% 

1600284 0.9871 0.995 -0.789% 

 

 

Table 10. Incompressible Flow Discharge Coefficient Values for 0.6 β Classical Venturi. 

Re Cd_INC 

Cd_INC_ 

(Eq. 19) % Dif 

229772 0.9850 0.995 -1.006% 

599973 0.9855 0.995 -0.950% 

1498284 0.9870 0.995 -0.807% 

1597971 0.9878 0.995 -0.721% 
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Figure 11. Incompressible Flow Discharge Coefficient Values and Trendline Equations 

for 0.4 β Classical Venturi. 

 

Classical Venturi incompressible flow simulations for all β’s, regardless of the selected 

turbulence model, consistently predict Cd_INC  values less than the theoretical Cd_INC. A 

similar trend is observable for high Re (𝑅𝑒 ≥ 100,000), Venturi Cd_INC  values predicted 

in Hollingshead et al.’s study. Hollingshead et al.’s study also used the Realizable K-

Epsilon Two-Layer Turbulence Model (2011). This demonstrates commercially available 

turbulence models’ tendency to overpredict the energy loss in an incompressible flow 

passing through a Classical Venturi. Interestingly, inspection of tables 5, 9, and 10 

reveals when using the Realizable K-Epsilon Two-Layer Turbulence Model, the 
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agreement between computed Cd_INC  values and theoretical Cd_INC values increases with 

increasing Re. 

 
Figure 12. Incompressible Flow Discharge Coefficient Values and Trendline Equation for 

0.5 β Classical Venturi. 

 

 

 
Figure 13. Incompressible Flow Discharge Coefficient Values and Trendline Equation for 

0.5 β Classical Venturi. 
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Remarkably, the Cd_INC  values computed using the Standard Spalart-Allmaras turbulence 

model had less than a 0.1% difference with the theoretical Cd_INC. This supports 

Prassanna et al.’s finding of the Spalart-Allmaras turbulence model outperforming a 

variety of other turbulence models (K-omega standard, K-omega-SST and K-ε-standard)  

in the computation of accurate Venturi Cd_INC  values (2016). Prassanna et al. also used 

the agreement of computed Cd_INC  values with Cd_INC  = 0.995 as an indicator of accuracy. 

However, Prassanna et. al reliably computed Cd_INC  values with roughly a 1.0% 

difference with the theoretical Cd_INC  (2016). This is comparable to the magnitudes of 

differences calculated in this study using the Realizable K-Epsilon Two-Layer, 

SST(Menter) K-Omega, and Reynolds Stress Turbulence with Elliptic Blending 

turbulence models. Interestingly, CFD ε values are relative to Cd_INC  values insensitive to 

the selected turbulence model. This claim is substantiated and reiterated in the following 

sections.  

Classical Venturi Compressible Flow Simulations. Cd_CMP values for 0.4, 0.5, and 0.6 

β Classical Venturi simulation are presented in this section (Tables 11-16, Figures 14-17). 

The relative uncertainty of ε was calculated using Equation 21 (ASME 2007).  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐸𝑞. 10 =  ±(4 + 100𝛽8) (1 −
𝑃2
𝑃1
) (21) 
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Table 11. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using 

Realizable K-Epsilon Two-Layer Turbulence Model.  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif 

229727 0.9801 0.9731 0.9941 0.9938 0.0345% 

416704 0.9650 0.9097 0.9788 0.9788 0.0019% 

606174 0.9401 0.8027 0.9535 0.9528 0.0722% 

 

 

Table 12. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using Standard 

Spalart-Allmaras Turbulence Model.  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif 

415672 0.9736 0.9110 0.9788 0.9792 -0.0371% 

602741 0.9491 0.8051 0.9542 0.9538 0.0412% 

 

 

Table 13. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using 

SST(Menter) K-Omega Turbulence Model.  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif 

417481 0.9655 0.9100 0.9787 0.9789 -0.0183% 

608475 0.9399 0.8038 0.9535 0.9528 0.0688% 

 

 

Table 14. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using Reynolds 

Stress Turbulence with Elliptic Blending Turbulence Model.  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif 

416949 0.9661 0.9100 0.9781 0.9789 -0.0761% 

606697 0.9411 0.8035 0.9540 0.9529 0.1154% 

 

 

Table 15. Gas Expansion Factors for 0.5 β Classical Venturi. 

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif  

229824 0.9801 0.9894 0.9974 0.9974 0.0032% 

602226 0.9680 0.9259 0.9818 0.9818 -0.0024% 

1514766 0.9350 0.8544 0.9472 0.9465 0.0755% 
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Table 16. Gas Expansion Factors for 0.6 β Classical Venturi. 

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 10) % Dif  

230486  0.9830 0.9952 0.9980 0.9987 0.0666% 

600952  0.9770 0.9673 0.9913 0.9912 -0.0015% 

1505564  0.9634 0.9385 0.9761 0.9756 -0.0214% 

 

 

 
Figure 14. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using Various 

Turbulence Models. 

 

Classical Venturi compressible flow simulations for all β’s, regardless of the selected 

turbulence model (Figure 14), consistently predicted ε values with roughly a 0.1% 

maximum difference with theoretical ε values. This demonstrates the relative insensitivity 

of ε, when compared to Cd_INC, to the selected turbulence model. Other than supporting 

this study’s modeling approach, this is an important finding for two reasons. 

First, it agrees with Buckingham’s observation that values of ε “… are much less 

sensitive to changes of tap location or roughness of the pipe than the value of K” (1932). 
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The variable K is equivalent to Cd_INC in this study.  If ε is relatively insensitive to 

turbulence producing processes, such as roughness, it makes sense that computed ε values 

would be relatively insensitive to the effects of turbulence predicted by a given 

turbulence model. The relative insensitivity of ε values to different Standard Concentric 

orifice plate tap locations described in the following sections.  

 

 
Figure 15. Gas Expansion Factors for 0.4 β Classical Venturi Determined Using 

Realizable K-Epsilon Two-Layer Turbulence Model 

 

Second, the inability of commercially available CFD software to accurately predict 

turbulence using relatively computationally efficient, semi-empirical turbulence models 

is commonly attributed as a source of error in expert modeling efforts (Versteeg and 

Malalasekera 2011). Given that the predicted ε values are relatively insensitive to the 

turbulence model used in their computation this indicates CFD ε values may be 

appropriate for applications requiring high accuracy flow measurements. However, ε 
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equations produced from CFD data should not be implied as having the same accuracy 

and degree of certainty as ε equations produced from high quality laboratory data.  

 
Figure 16. Gas Expansion Factors for 0.5 β Classical Venturi 

 

 

 
Figure 17. Gas Expansion Factors for 0.6 β Classical Venturi 
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Buckingham (1932). Therefore, although ε typically plots as a linear function of P2/P1, it 

is important to remember this trend is not universal to all DPRM and β values.  

Standard Concentric Orifice Plate 

 

In this section SC orifice plate simulation’s Cd_INC  and ε values for β values of 0.4, 0.5, 

and 0.6 are presented. CFD Cd_INC  values calculated from simulation results were 

compared to theoretical Cd_INC  values predicted by the Reader-Harris/Gallagher 

(Equation 22) (ISO 2003). The relative uncertainty of Equation 22 for  0.2 ≤ 𝛽 ≤ 0.6  is 

0.5%, expressed at a 95% confidence interval. CFD ε values were compared against 

theoretical ε values predicted using Equations 13 and 14. The relative uncertainty, in 

percent, of ε is calculated using Equation 23 and 24 for Equations 13 and 14 respectively, 

expressed at a 95% confidence interval (ASME, 1985; ISO, 2003).  

𝐶𝑑𝐼𝑁𝐶 = 0.5961 +  0.0261𝛽2  −  0.216𝛽8  +  0.000521 (
106𝛽

𝑅𝑒
)

0.7

    

+  (0.0188 +  0.0063 𝐴)𝛽3.5  (
106

𝑅𝑒
)

0.3

+ (0.043 +  0.08𝑒−10𝐿1 −  0.123𝑒−7𝐿1)(1 −  0.11𝐴)
𝛽4

1 − 𝛽4
 

−  0.031(𝑀́2  −  0.8𝑀́2
1.1)𝛽1.3  

𝐿1 = 𝑙1/𝐷 

𝐿́2 = 𝑙2/𝐷 

 (22) 
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𝑀́2 = 
2𝐿́2
1 − 𝛽

 

𝐴 = (
19000𝛽

𝑅𝑒
)
0.8

 

Where 𝑙1 is distance of the upstream tap from the upstream face of the orifice plate  

(𝑙1 = D for D and D/2 taps, 𝑙1 = 25.4 mm for flange taps, and , 𝑙1= 0 for corner taps), and  

𝑙2 the distance of the downstream tap from the downstream face of the orifice plate (𝑙2 = 

D/2 for D and D/2 taps and 𝑙2 = 𝑙1 for flange and corner taps). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐸𝑞. 13 (𝐵𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 𝐸𝑞. ) = 4 (1 −
𝑃2
𝑃1
)  % (23) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐸𝑞 14 (𝑅𝑒𝑎𝑑𝑒𝑟𝐻𝑎𝑟𝑟𝑖𝑠 𝐸𝑞. ) =
3.5

𝜅
(1 −

𝑃2
𝑃1
)% (24) 

Standard Concentric Orifice Plate Incompressible Flow Simulations. Cd_INC  SC 

orifice plate simulations are presented in this section (Tables 17-19, Figures 18-20). 

Table 17. Incompressible Flow Discharge Coefficients for 0.4 β Standard Concentric 

Orifice Plate  

 D and D/2 Taps  

 

Flange Taps 

 

Corner Taps 

Re Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif 

229269 0.6032 0.6009 0.391% 0.6025 0.6016 0.148% 0.6025 0.6021 0.057% 

331119 0.6027 0.6006 0.361% 0.6020 0.6013 0.117% 0.6020 0.6018 0.023% 

428483 0.6024 0.6004 0.342% 0.6017 0.6011 0.091% 0.6016 0.6016 -0.003% 

601797 0.6018 0.6002 0.277% 0.6010 0.6009 0.008% 0.6009 0.6014 -0.083% 

699923 0.6016 0.6001 0.247% 0.6007 0.6008 -0.017% 0.6007 0.6013 -0.108% 

876364 0.6014 0.6000 0.234% 0.6005 0.6007 -0.038% 0.6005 0.6012 -0.129% 
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For all SC orifice plate β values the predicted Cd_INC  values vary in accuracy depending 

on the tap set used. Cd_INC  values computed from D and D/2 taps differ the most from the 

theoretical Cd_INC  values. Computed flange and corner tap Cd_INC  values are practically 

the same, and plot virtually on top of each other (Figures 18-20). This is reasonable 

because both tap sets fall within the stagnation zones upstream and downstream of the 

orifice plate. Therefore, velocity and pressure gradients between the flange and corner 

taps are negligible (Figures 21-22).  

Table 18. Incompressible Flow Discharge Coefficients for 0.5 β Standard Concentric 

Orifice Plate 

 D and D/2 Taps  

 

Flange Taps 

 

Corner Taps 

Re Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif 

229264 0.6083 0.6047 0.583% 0.6064 0.6048 0.262% 0.6063 0.6054 0.153% 

331112 0.6075 0.6042 0.544% 0.6056 0.6043 0.224% 0.6056 0.6049 0.120% 

499812 0.6068 0.6038 0.493% 0.6046 0.6038 0.133% 0.6046 0.6044 0.026% 

701510 0.6061 0.6035 0.433% 0.6036 0.6035 0.021% 0.6036 0.6041 -0.078% 

801261 0.6058 0.6034 0.396% 0.6034 0.6034 -0.003% 0.6034 0.6040 -0.102% 

1149642 0.6053 0.6031 0.363% 0.6029 0.6031 -0.036% 0.6029 0.6037 -0.139% 

 

 

Table 19. Incompressible Flow Discharge Coefficients for 0.6 β Standard Concentric 

Orifice Plate 

 D and D/2 Taps  

 

Flange Taps 

 

Corner Taps 

Re Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif Cd_INC 

Cd_INC 

(Eq. 20) % Dif 

229,269 0.6138 0.6095 0.699% 0.6096 0.6075 0.350% 0.6095 0.6079 0.252% 

500,071 0.6116 0.6080 0.584% 0.6066 0.6060 0.095% 0.6065 0.6064 0.014% 

801,745 0.6102 0.6073 0.473% 0.6050 0.6053 -0.047% 0.6050 0.6057 -0.122% 

1,149,644 0.6095 0.6069 0.437% 0.6042 0.6048 -0.102% 0.6042 0.6052 -0.179% 

 

Interestingly, in a trend that is directly opposite to the one observed with the Classical 

Venturi, when considering D and D/2 tap data, the computed Cd_INC  values are greater 
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than theoretical Cd_INC  values. Therefore, if only considering D and D/2 data, it could be 

inferred CFD routinely under predicts the energy loss and overpredicts the flow rate of an 

incompressible flow at given Re passing through a SC orifice plate. However, when 

considering flange and corner tap data it can be inferred CFD tends to under predict the 

energy loss and over predict flow rate at lower values of Re until a Re of approximately 

600,000. 

 
Figure 18. Incompressible Flow Discharge Coefficient Values for 0.4 β Standard 

Concentric Orifice Plate. 

 

Past Re ≈ 600,000 the trend reverses and energy loss is overpredicted and flow rate 

underpredicted. Considering the discrepancies in first the accuracy of Cd_INC determined 
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from the different tap sets, and second the over or underprediction of energy loss and 

flow rate, it is surprising that the tap location in SC orifice plate has relatively little 

impact on the ε value calculated using the different tap sets’ data.  

 
Figure 19. Incompressible Flow Discharge Coefficient Values for 0.5 β Standard 

Concentric Orifice Plate. 
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Figure 20. Incompressible Flow Discharge Coefficient Values for 0.6 β Standard 

Concentric Orifice Plate. 

 

 

 
Figure 21. Standard Concentric Orifice Plate Velocity Scene Showing Pressure Taps 

y = 5.02173E-15x2 - 1.15112E-08x + 6.16122E-01

R² = 9.99158E-01

y = -6.88274E-21x3 + 2.13852E-14x2 - 2.41247E-08x + 6.14135E-01

R² = 1.00000E+00

y = -6.67987E-21x3 + 2.06412E-14x2 - 2.33037E-08x + 6.13816E-01

R² = 1.00000E+00

0.603

0.605

0.607

0.609

0.611

0.613

0.615

200,000 400,000 600,000 800,000 1,000,000 1,200,000

C
d
_
IN

C

Re

CFD D and D/2 Eq. 22 D and D/2

Eq. 22 D and D/2 Uncertainty Interval CFD Flange

Eq. 22 Flange CFD Corner

Eq. 22 Corner Poly. (CFD Flange)

Poly. (CFD Corner)



46 

 

 

 

 
Figure 22. Standard Concentric Orifice Plate Pressure Scene Showing Pressure Taps 

 

Standard Concentric Orifice Plate Compressible Flow Simulations. SC orifice plate 

simulations predicted ε values are presented in this section (Tables 20-22, Figures 23-25). 

It is important to note the in Figures 23-25 the theoretical ε values calculated using 

Equation 13 and 14 and the Equation 14 uncertainty intervals are only representative of D 

and D/2 taps. Therefore, the agreement of computed flange and corner ε values with the 

respective theoretical ε values calculated using Equation 14 is better than what might be 

assumed upon inspection of Figures 23-25.  

For 0.4 β SC orifice plate simulations, marginally better agreement of computed ε values 

and 𝜀𝑅𝐻 values was obtained using D and D/2 taps when compared to corner and flange 

taps. This is somewhat unexpected because for 0.5 and 0.6 β’s the differences between 

computed ε values and 𝜀𝑅𝐻 values were similar regardless of the taps used. It is also 

interesting to note flange and corner taps consistently predicted higher ε values and, 

therefore, expansion effects than D and D/2 taps at Re ≈ 230000. Finally, all SC orifice 

plate compressible flow simulation’s predicted ε values which agreed better with 𝜀𝑅𝐻 
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values than ε values predicted using Equation 13, thereby supporting the widely accepted 

use of Equation 14 to predict ε values. 

Table 20. Gas Expansion Factors for 0.4 β Standard Concentric Orifice Plate 

D and D/2 Taps  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 13) 

ε  

(Eq. 14) 

%Dif  

(Eq. 13) 

%Dif 

(Eq. 14) 

234685 0.6000 0.9791 0.9948 0.9937 0.9946 0.105% 0.015% 

545335 0.5858 0.8971 0.9730 0.9692 0.9733 0.391% -0.028% 

855405 0.5661 0.7824 0.9413 0.9349 0.9424 0.685% -0.120% 

Flange Taps  

234685 0.5993 0.9790 0.9936 0.9937 0.9946 -0.015% -0.105% 

545335 0.5849 0.8969 0.9716 0.9691 0.9732 0.252% -0.167% 

855405 0.5652 0.7820 0.9398 0.9347 0.9423 0.538% -0.267% 

Corner Taps 

234685 0.5993 0.9790 0.9935 0.9937 0.9946 -0.020% -0.110% 

545335 0.5849 0.8969 0.9715 0.9691 0.9732 0.249% -0.171% 

855405 0.5652 0.7820 0.9397 0.9347 0.9423 0.536% -0.269% 

 

 

Table 21. Gas Expansion Factors for 0.5 β Standard Concentric Orifice Plate 

D and D/2 Taps  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 13) 

ε  

(Eq. 14) 

%Dif  

(Eq. 13) 

%Dif 

(Eq. 14) 

230894 0.6069 0.9920 0.9978 0.9975 0.9979 0.027% -0.008% 

744159 0.5929 0.9218 0.9785 0.9759 0.9791 0.268% -0.058% 

1143814 0.5769 0.8317 0.9531 0.9481 0.9543 0.529% -0.125% 

Flange Taps  

230894 0.6050 0.9920 0.9977 0.9975 0.9979 0.019% -0.016% 

744159 0.5906 0.9213 0.9785 0.9757 0.9789 0.287% -0.040% 

1143814 0.5745 0.8307 0.9528 0.9478 0.9540 0.536% -0.121% 

Corner Taps 

230894 0.6048 0.9920 0.9976 0.9975 0.9979 0.011% -0.024% 

744159 0.5905 0.9213 0.9785 0.9757 0.9789 0.287% -0.041% 

1143814 0.5744 0.8307 0.9528 0.9478 0.9540 0.535% -0.122% 
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Table 22. Gas Expansion Factors for 0.6 β Standard Concentric Orifice Plate 

D and D/2 Taps  

Re Cd_CMP P2/P1 ε CFD 

ε  

(Eq. 13) 

ε  

(Eq. 14) 

%Dif  

(Eq. 13) 

%Dif 

(Eq. 14) 

229,527 0.6129 0.9965 0.9987 0.9989 0.9990 -0.020% -0.034% 

716,600 0.6046 0.9664 0.9904 0.9891 0.9903 0.135% 0.005% 

1,047,901 0.5973 0.9297 0.9798 0.9771 0.9797 0.275% 0.011% 

Flange Taps  

229,527 0.6087 0.9965 0.9984 0.9988 0.9990 -0.042% -0.056% 

716,600 0.5994 0.9658 0.9903 0.9889 0.9902 0.142% 0.010% 

1,047,901 0.5921 0.9287 0.9796 0.9768 0.9794 0.284% 0.017% 

Corner Taps 

229,527 0.6084 0.9965 0.9983 0.9988 0.9990 -0.057% -0.071% 

716,600 0.5993 0.9658 0.9902 0.9889 0.9902 0.136% 0.004% 

1,047,901 0.5920 0.9287 0.9795 0.9768 0.9794 0.277% 0.010% 

 

Regardless of the trends in ε values predicted using different tap configurations, the 

differences between computed ε values and 𝜀𝑅𝐻 values are minute. Therefore, the 

capability of CFD to predict ε values with remarkable accuracy has been demonstrated 

for both Classical Venturi and SC orifice plate DPFM geometries. This provides 

additional support of this study’s modeling approach, and, generally indicates CFD is an 

appropriate tool for determining ε values for DPFM geometries for which ε equations 

currently do not exist, such as wedge meters. 
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Figure 23. Gas Expansion Factors for 0.4 β Standard Concentric Orifice Plate 
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Figure 24. Gas Expansion Factors for 0.5 β Standard Concentric Orifice Plate 
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Figure 25. Gas Expansion Factors for 0.6 β Standard Concentric Orifice Plate 
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using Equation 10. ISO standard 1567:6-2019 recommends the use of Equation 10 as an 

estimate for wedge meter ε values (2019).   

𝐶𝑑𝐼𝑁𝐶 = 0.77 − 0.09𝛽 (25) 

Wedge Meter Incompressible Flow Simulations. Cd_INC   values from wedge meter 

simulations are presented in this section (Tables 23-25 and Figures 26-28).  

Table 23. Incompressible Flow Discharge Coefficient Values for 0.3789 β Wedge Meter 

Re Cd_INC 

Cd_INC 

(Eq. 25) % Dif 

230204 0.7422 0.7359 0.856% 

250554 0.7424 0.7359 0.896% 

330339 0.7438 0.7359 1.082% 

430405 0.7443 0.7359 1.146% 

500382 0.7455 0.7359 1.311% 

701628 0.7465 0.7358 1.450% 

1103076 0.7476 0.7358 1.604% 

 

 

Table 24. Incompressible Flow Discharge Coefficient Values for 0.5019 β Wedge Meter 

Re Cd_INC 

Cd_INC 

(Eq. 25) % Dif 

229775 0.7305 0.7248 0.779% 

330885 0.7308 0.7248 0.824% 

500263 0.7318 0.7248 0.963% 

1102927 0.7326 0.7247 1.078% 

 

Overall, wedge meter predicted Cd_INC  values were surprisingly close to theoretical 

Cd_INC  values for all β values. Considering Equation 25 has a relative uncertainty of 4% 

at a 95% confidence interval, the difference between computed and theoretical Cd_INC 

values is less useful as an indication of simulation accuracy when compared to Venturi 
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and SC orifice plate theoretical equations. In addition, “ISO 1567:2019” does not specify 

if Equation 25 was regressed from empirical data of single or various wedge tip 

geometries. Equation 25 is only defined as being limited in application to 𝑅𝑤 ≤ 1 𝑚𝑚. 

Rw significantly impacts Cd_INC values (Banchhor 2004). Therefore, the difference 

between predicted and theoretical Cd_INC values may be at least partially due to all wedge 

geometries having a Rw of 1 mm.   

Table 25. Incompressible Flow Discharge Coefficient Values for 0.6107 β Wedge Meter 

Re Cd_INC 

Cd_INC 

(Eq. 25) % Dif 

230165 0.71500 0.71497 0.004% 

330968 0.71519 0.71497 0.030% 

500304 0.71522 0.71497 0.035% 

1102890 0.71589 0.71495 0.131% 

1499745 0.71894 0.71502 0.549% 

 

 

 
Figure 26. Incompressible Flow Discharge Coefficient Values for 0.3789 β Wedge Meter 
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Figure 27. Incompressible Flow Discharge Coefficient Values for 0.5019 β Wedge Meter 

 

 

 
Figure 28. Incompressible Flow Discharge Coefficient Values for 0.6107 β Wedge Meter 
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with β values of 0.5019 predicted Cd_INC  values which agree better with theoretical Cd_INC 

values than the 0.3789 β simulations.  

Considering predicted wedge Cd_INC values for β values of 0.3789 and 0.5019 are 

relatively constant at high Re values, it is surprising predicted Cd_INC  values vary the most 

in 0.6107 β simulations at high Re values. This indicates the 0.6107 β simulation for  

𝑅𝑒 ≥  1.1 × 10
6

 is relatively flawed, when compared to lower Re simulations, despite the 

acceptable GCI value mesh refinements of the simulation produced. Ultimately, 

simulation results can be considered as sufficiently accurate due to ε’s relative 

insensitivity to small errors in Cd_INC values.  

Wedge Meter Compressible Flow Simulations. ε values from wedge meter simulations 

are presented in this section (Tables 26-29, Figures 29-31).  

Table 26. Gas Expansion Factors for 0.3789 β Wedge Meter 

Re Cd_CMP P2/P1 ε CFD 

ε 

(Eq. 10) % Dif 

233632 0.738 0.983 0.994 0.990 0.34% 

339505 0.732 0.964 0.984 0.980 0.43% 

453268 0.727 0.938 0.976 0.965 1.09% 

538689 0.723 0.915 0.970 0.952 1.87% 

824872 0.694 0.818 0.929 0.895 3.75% 

 

 

Table 27. Gas Expansion Factors for 0.5019 β Wedge Meter 

Re Cd_CMP P2/P1 ε CFD 

ε 

(Eq. 10) % Dif 

231167 0.731 0.995 1.000 0.997 0.36% 

510159 0.725 0.974 0.990 0.985 0.60% 

724599 0.718 0.948 0.981 0.969 1.21% 

958779 0.710 0.911 0.968 0.947 2.23% 
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Table 28. Gas Expansion Factors for 0.6107 β Wedge Meter 

Re Cd_CMP P2/P1 ε CFD 

ε 

(Eq. 10) % Dif 

331400 0.714 0.995 0.998 0.997 0.14% 

920014 0.704 0.962 0.984 0.975 0.91% 

1265047 0.697 0.930 0.973 0.954 1.93% 

1486816 0.691 0.904 0.961 0.937 2.54% 

 

The modeling approach used to predict wedge ε equations has been shown to be 

appropriate based on Classical Venturi, and SC orifice plate simulation results. Therefore, 

it is reasonable to assume the wedge meter CFD ε values produced in this study are more 

accurate than those predicted by Equation 10. This is especially true at high pressure 

differentials. One way to assess the validity of this study’s wedge ε values, for certain β 

and P2/P1 values, is by plotting the wedge ε values alongside ε values predicted by 

existing ε equations for Classical Venturis, SC orifice plates, and cone meters (Figure 

32). The cone meter ε values were calculated using Equation 26 (Stewart et. al 2001). 

𝜀 =  1 − (0.649 + 0.696𝛽4) (1 −
𝑃2
𝑃1
)
1

𝜅
 (26) 

 

Wedge meter ε values plot between cone and SC orifice plate ε values. This makes sense 

considering cone meters have a Cd_INC  approximately equal to 0.8, wedge meters have a 

Cd_INC  approximately equal to 0.72, and SC orifice plates have a Cd_INC  approximately 

equal to 0.61. Therefore, the efficiency with which a given DPFM passes incompressible 

flows can be used to predict the relative magnitudes of its ε values in comparison to 

DPFMs with know ε values.  
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Figure 29. Gas Expansion Factors for 0.3789 β Wedge Meter 

 

 

 
Figure 30. Gas Expansion Factors for 0.5019 β Wedge Meter 
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Figure 31. Gas Expansion Factors for 0.6107 β Wedge Meter 
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Figure 32. Gas Expansion Factors for A Variety of Differential Pressure Meters with β 

Values of 0.3789 
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experiences the largest reduction in density and, therefore, the largest expansion. This is 

expected considering the magnitude of the pressure differential across each DPFM. 

Interestingly, although flow through the Classical Venturi expands the least, for a given 

P2/P1 value, the Classical Venturi has the lowest ε value and, therefore, experiences the 

largest reduction, relatively, in efficiency due to expansion when compared to SC orifice 

plates and wedge meters.  

 

 
Figure 33. Classical Venturi Pressure Scene 

 

 

 
Figure 34. Classical Venturi Velocity Scene.  
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Figure 35 Classical Venturi Density Scene 

 

 

 
Figure 36. Standard Concentric Orifice Plate Pressure Scene 

 



62 

 

 

 

 
Figure 37. Standard Concentric Orifice Plate Velocity Scene 

 

 

 
Figure 38. Standard Concentric Orifice Plate Density Scene 
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Figure 39. Wedge Meter Pressure Scene 

 

 

 
Figure 40. Wedge Meter Velocity Scene 

 

 

 
Figure 41. Wedge Meter Density Scene 
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Gas Expansion Factor to Mach Number Relationship 

 

The compressible flows simulated in this study were all restricted to subsonic velocities 

𝑀 ≤ 0.7. In the range 0.3 < 𝑀 < 0.7 the compressibility of the flow becomes more 

pronounced. Flows with 𝑀 < 0.3 are typically devoid of compressible behavior 

(Finnemore and Franzini 2002). Therefore, ε and M values were plotted for every DPFM 

and β value to better understand the relationship of ε and M of compressible flows in 

DPFMs (Figure 42). The M presented in this plot is the maximum M value occurring in 

an individual cell within a simulation’s computation mesh. Interestingly, regardless of the 

DPFM geometry the relationship is approximately linear. This indicates plotting 

simulated ε values and M is a reasonable way to visually assess the validity of simulation 

results for DPFM geometries for which no laboratory ε data exists.  
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Figure 42. Gas Expansion Factor Mach Number Relationship 
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CHAPTER VII 

 

CONCLUSION 

 

 

There are many DPFM geometries for which empirical ε equations do not exist. 

Laboratory studies to determine ε values over a range of pressure differentials are 

extremely expensive to conduct. Therefore, the goal of this study was to investigate if 

relatively inexpensive CFD simulations can be used to predict ε values with sufficient 

accuracy for use in the regression of accurate empirical ε equations for a variety of 

DPFM geometries. More affordable generation of accurate empirical ε equations using 

CFD derived data would facilitate the application of new DPFM geometries for 

compressible flow metering, and potentially result in significant profits for the 

corresponding DPFMs’ manufacture. 

Simulations of incompressible and compressible flows through Classical Venturis, SC 

orifice plates, and wedge meters were conducted. Compressible flows were modeled 

using the assumption of a perfect gas with the fluid properties of dry air. Compressible 

effects were modeled using the ideal gas law equation of state. Classical Venturi and SC 

orifice plate CFD ε values matched their respective theoretical ε values with remarkable 

accuracy indicating CFD is an appropriate tool for determining ε values for DPFMs. 

Wedge meter simulations were then conducted using the same modeling approach and 

reasonable ε values were predicted. Therefore, in conclusion this study’s modeling 

approach can be used to determine reasonably accurate ε values for DPFM geometries as 

long as the assumption of perfect gas behavior is appropriate for compressible flow 

through the DPFM. 
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In addition, this study produced the following findings: 

• ε is relatively insensitive to the selected turbulence model.  

• Comparing computed ε values against ε values calculated using Equations 10, 14, 

and 26 is a reasonable way to generally assess the validity of CFD derived ε data 

for which no laboratory ε data exists.   

• The relationship between ε and M is approximately linear. Therefore, comparing 

CFD ε and M values is a reasonable way to estimate the validity of CFD derived ε 

data for which no laboratory ε data exists.   

Future Research  

 

Based on the findings of this study, the following research topics should be investigated 

in future research: 

• The impact of the working fluid (natural gas, nitrogen, steam) and, therefore, the 

isentropic exponent on CFD’s ability to accurately predict ε values.  

• The impact of pressure tap placement on the ε values of nonconcentric DPFMs.  

• Using equations of state that better represent real gas behavior to model 

compressible flows, especially compressible flows with low temperatures and 

high pressures relative to the working fluids’ critical temperature and pressure. 

• A more comprehensive investigation of the impact turbulence model selection has 

on ε values for a variety of DPFM geometries.  
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• Modeling flows through other DPFM geometries to generate ε data that could be 

used to derive new empirical ε equations.  
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Grid Convergence Index Results  

 

“Procedure for estimation and reporting of uncertainty due to discretization in CFD 

applications” recommends reporting the GCI study values of 𝑝, 𝑒𝑎
21, 𝑒𝑒𝑥𝑡

21 , 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  as well 

as the occurrence of negative 𝑆 values which are indicative of oscillatory convergence. 

These GCI study results are present in tabulated form for each DPFM geometry and 

incompressible or compressible flow (Tables A1-A6). Note in the following tables: 

• 𝑅𝑒𝑎𝑣𝑔  is the average 𝑅𝑒 values of the three simulations used determine one set of 

GCI values (i.e. one row in each table).  

• Cd is the incompressible or compressible discharge coefficient depending on the 

fluid type. 

• S values of -1 indicate oscillatory convergence.  

• The column “Model Space” is included for the Classical Venturi GCI table 

because both axisymmetric and three-dimensional simulations were conducted for 

this DPFM geometry



 

 

 

Table A1. Classical Venturi GCI Study Results  

𝛽 Fluid 

Model  

Space 𝑅𝑒𝑎𝑣𝑔  𝐶𝑑1  𝐶𝑑2  𝐶𝑑3  𝑝 𝑒𝑎
21 𝑒𝑒𝑥𝑡

21  𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  𝑆 

0.4 Water Axis 616827 0.98680 0.98606 0.98585 3.64 0.0751% 0.0296% 0.0371% 1 

0.4 Air Axis 606231 0.94054 0.94024 0.94007 1.48 0.0313% 0.0465% 0.0582% 1 

0.5 Water Axis 599434 0.98546 0.98528 0.98496 1.57 0.0185% 0.0257% 0.0321% 1 

0.5 Air Axis 601926 0.96804 0.96808 0.96809 6.59 0.0047% 0.0005% 0.0007% 1 

0.5 Water 3D 600669 0.98618 0.98563 0.98554 5.26 0.0560% 0.0108% 0.0135% 1 

0.5 Air 3D 602634 0.96789 0.96786 0.96784 0.43 0.0028% 0.0173% 0.0216% 1 

0.6 Water Axis 1497187 0.98763 0.98748 0.98697 3.35 0.0160% 0.0073% 0.0091% 1 

0.6 Air Axis 1504367 0.96423 0.96399 0.96341 2.53 0.0251% 0.0179% 0.0224% 1 

 

 

Table A2. Standard Concentric Orifice Plate GCI Study Results 

𝛽 Fluid 𝑅𝑒𝑎𝑣𝑔  𝐶𝑑1  𝐶𝑑2  𝐶𝑑3  𝑝 𝑒𝑎
21 𝑒𝑒𝑥𝑡

21  𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  𝑆 

0.4 Water 701504 0.60087 0.60159 0.60255 0.83 0.1199% 0.3595% 0.4478% 1 

0.4 Air 855233 0.56540 0.56609 0.56549 0.38 0.1219% 0.8659% 1.0731% -1 

0.5 Water 1151362 0.60446 0.60528 0.60481 1.60 0.1370% 0.1858% 0.2318% -1 

0.5 Air 1140392 0.57615 0.57688 0.57722 2.28 0.1276% 0.1063% 0.1328% 1 

0.6 Water 1151620 0.60942 0.60951 0.60929 2.09 0.0141% 0.0043% 0.0054% -1 

0.6 Air 1044844 0.59761 0.59801 0.59811 4.35 0.0684% 0.0194% 0.0243% 1 
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Table A3. Wedge GCI Study Results  

𝛽 Fluid 𝑅𝑒𝑎𝑣𝑔  𝐶𝑑1  𝐶𝑑2  𝐶𝑑3  𝑝 𝑒𝑎
21 𝑒𝑒𝑥𝑡

21  𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  𝑆 

0.3789 Water 1102109 0.74206 0.74177 0.74764 8.66 0.0394% 0.0394% 0.0026% -1 

0.3789 Air 339483 0.73146 0.73203 0.73967 7.50 0.0777% 0.0062% 0.0078% 1 

0.5019 Water 1102106 0.72947 0.73055 0.73256 1.80 0.1476% 0.1705% 0.2128% 1 

0.5019 Air 959087 0.70653 0.70718 0.70951 3.72 0.0910% 0.0345% 0.0432% 1 

0.6107 Water 1499918 0.71790 0.71790 0.71790 3.27 0.1446% 0.0687% 0.0858% 1 

0.6107 Air 921144 0.70414 0.70485 0.70643 2.30 0.1011% 0.0831% 0.0831% 1 
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