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ABSTRACT

Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate

by

Blake W. Lance, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

Simulations are becoming increasingly popular in science and engineering. One type of simulation is

Computation Fluid Dynamics (CFD) that is used when closed forms solutions are impractical. The field

of Verification & Validation emerged from the need to assess simulation accuracy as they often contain

approximations and calibrations.

Validation involves the comparison of experimental data with simulation outputs and is the focus of this

work. Errors in simulation predictions may be assessed in this way. Validation requires highly-detailed data

and description to accompany these data, and uncertainties are very important.

The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD

simulations. This aim is fundamentally different from the typical discovery experiments common in research.

The measurement of these physics was not necessarily original but performed with modern, high-fidelity

methods. Data were tabulated through an online database for direct use in Reynolds-Averaged Navier-Stokes

simulations. Detailed instrumentation and documentation were used to make the data more useful for valida-

tion. This work fills the validation data gap for steady and transient mixed convection.

The physics in this study included mixed convection on a vertical flat plate. Mixed convection is a condi-

tion where both forced and natural convection influence fluid momentum and heat transfer phenomena. Flow

was forced over a vertical flat plate in a facility built for validation experiments. Thermal and velocity data

were acquired for steady and transient flow conditions. The steady case included both buoyancy-aided and

buoyancy-opposed mixed convection while the transient case was for buoyancy-opposed flow. The transient

was a ramp-down flow transient, and results were ensemble-averaged for improved statistics. Uncertainty

quantification was performed on all results with bias and random sources.
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An independent method of measuring heat flux was devised to assess the accuracy of commercial heat

flux sensors used in the heated wall. It measured the convective heat flux by the temperature gradient in air

very near the plate surface. Its accuracy was assessed by error estimations and uncertainty quantification.

(127 pages)
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PUBLIC ABSTRACT

Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate

by

Blake W. Lance, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

In this computer age, simulations are becoming common in science and engineering. One category of

simulation, Computational Fluid Dynamics (CFD), begins with physical equations but adds approximations

and calibrations in order to complete solutions. Translating these equations into computer languages may

cause unintended errors. If simulation results are to be used for decision making, their accuracy needs to be

assessed. This accuracy assessment is the theory behind the field of Verification & Validation.

Verification involves confirming the translation of physical equations to computer language was per-

formed correctly. It also features methods to detect many types of code errors. Validation is quite different in

that it involves the comparison of experimental data with simulation outputs. This way, errors in simulation

predictions may be assessed. Validation requires highly-detailed data and description to accompany these

data, and uncertainties in these data are very important. Ideally, the validation experiment measures all infor-

mation required for simulation inputs. Matching inputs ensures that any possible differences in the outputs

are only due to the model.

The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD

simulations. The physics were mixed convection. Convection is a heat transfer mode where heat is carried by

a moving fluid. Mixed convection occurs where natural convection and forced convection forces are similar,

such as in low-speed flows. A vertical flat plate is heated and used for a convection boundary condition.

A wind tunnel that was built specifically for validation experiments was used. Air is the working fluid

whose velocity is measured using a modern optical technique called Particle Image Velocimetry. Many

thermocouples were used to measure the temperature of all four walls and the inlet air. Commercial heat flux

sensors (HFSs) were used in the heated wall.
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The two cases were steady and transient mixed convection. Steady mixed convection was studied in

two orientations. First with buoyancy in the same direction of the flow and second with buoyancy in the

opposite direction. The transient data were for a ramp-down flow transient. This unsteady flow was repeated

many times for ensemble-averaging of the results. In both cases, uncertainty was estimated in all of the

results. Additionally, the transient case was simulated with CFD, matching inputs, and a validation study was

performed.

An additional study was conducted to assess the accuracy of the commercial HFSs as they were believed

to be in error. The air temperature was measured very close to the wall surface. The temperature gradient is

proportional to heat flux, the rate of heat energy transfer over an area. Potential errors of this method were

estimated and a thorough uncertainty study was performed. Additionally, a study was performed to identify

the error source of the HFSs.
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CHAPTER 1

INTRODUCTION

The motivation for studying transient mixed convection in detail came from a possible accident scenario

of a new nuclear power plant design. Computational Fluid Dynamics (CFD) is a means to numerically

model complex flows with heat transfer and is a major tool for accessing nuclear reactor safety. With the

approximations of CFD come the necessity to validate results. This is done by comparing with experimental

data to assess whether the model accuracy is sufficient for the intended use. Experiments were conducted to

provide detailed measurements of steady and transient mixed convection. This work is in multi-paper format

with three unique chapters that are independent of each other for publication. Because of this, some sections

are repeated for completeness.

1.1 The Very High Temperature Reactor

The Very High Temperature Reactor (VHTR) concept is a prominent Next Generation Nuclear Plant

design under consideration whose reactor core is shown in Fig. 1.1. There are several advantages to this de-

sign including improved efficiency from increased temperatures between 900-950◦C, passive safety features,

potential for process heat or hydrogen production at co-located plants, and an increase from a 40 to 60 year

license cycle. The VHTR uses helium gas as the coolant so high temperatures can be realized and efficiency

increased. The main core design is either a prismatic core where most of the reactor core is graphite with

coolant and fuel passages or a pebble bed core with fuel elements the size of tennis balls. In either design,

normal operation has helium forced downward through the core [1, 2]. In the event of a Loss of Forced Con-

vection (LOFC) that may result from a problem with the blower, viscous and buoyant forces initially decrease

flow rate. As the blower and helium inertia decreases, buoyancy effects reverse the flow in a chaotic event.

Ultimately steady natural convection upward is the final state. Natural convection is the primary mode of

heat removal from the core in a Pressured Conduction Cooldown event such as this. This phenomenon has

been identified as one of high importance and low knowledge by the U.S. Nuclear Regulatory Commission

(NRC) [3].

1.2 Computational Fluid Dynamics Validation

Computational methods have been used for many decades to assess reactor design safety in accident



2

Fig. 1.1: Very High Temperature Reactor core, [4]

scenarios. Modern computational methods began in the 1960s with the programmable computer. Since that

time, computational power has increased rapidly. At least over the last twenty years, the speed of the fastest

supercomputer has increased by a factor of ten every four years [5]. With computational power increas-

ing rapidly, more researchers and scientists are making use of Modeling & Simulation (M&S). Modeling

and Simulation can be used to predict physical phenomena in fields of fluid dynamics, heat transfer, solid

mechanics, genetics, finance, and many others where analytic solutions are impractical or impossible. Many

M&S results are being used to make decisions, and some of them for high-consequence systems where public

safety is of concern. The use of M&S was adopted early in the nuclear power industry for thermal-hydraulics

safety codes to predict flow and heat transfer processes in accident scenarios as evidenced by the common

use of system codes such as RELAP5.
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With the increased use of M&S should also come improved means to assess simulation accuracy, espe-

cially for high-consequence systems. From this need, a discipline called Verification & Validation (V&V)

emerged. The first of these, Verification, covers two main methods to determine software correctness, Code

Verification and Solution Verification. There are several definitions of these terms that have been identified

by different professional organizations to meet their individual needs. One of these is the American Society

of Mechanical Engineers that defined these terms as [6]:

Verification: the process of determining that a computational model accurately represents the

underlying mathematical model and its solution.

Validation: the process of determining the degree to which a model is an accurate representation

of the real world from the perspective of the intended uses of the model.

The purpose of Code Verification is to assure software correctly implements the numerical algorithm and

is free of programming errors or “bugs.” Solution Verification is the process of determining the accuracy of the

simulation inputs, the accuracy of the solution, and that of the output. Validation is the means to determine

how well the simulation predicts real-world behavior by comparing simulation results with experimental

data [5]. Stating the definitions another way, verification is checking the math and has nothing to do with

physics while validation only has to do with physics. Blottner stated these definitions in memorable terms as

“Verification is solving the equations right” and “Validation is solving the right equations” [8]. The attitude

in V&V is naturally skeptical and places higher demand on simulations than is common in practice [7].

Verification is solely the responsibility of those that develop models or modelers. Validation is a shared

responsibility of modelers and experimentalists where the latter provide data that represent physical phenom-

ena. The current work focuses on providing experimental data for validation activities.

The planning and execution of validation studies should include both modelers and experimentalists

through all phases. In considering the design of validation systems, it is desirable to measure System Re-

sponse Quantities (SRQs)—system outputs that are used for validation—from a wide range and high levels

of difficulty as shown in Fig. 1.2. Comparing M&S results with experimental data from a wide range on

the spectrum increases validation confidence. For example, integral quantities, such as fluid mass flow rate,

generally have low experimental noise and random errors. Derivative quantities like fluid shear are more sen-

sitive to non-ideal conditions. If a model and data are in good agreement at a high level, then it is likely that

good agreement will be observed in lower levels. But, agreement at lower levels does not imply agreement at

higher levels [5].
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Fig. 1.2: Difficulty Spectrum of SRQs, after [5]. The variables y and x here are arbitrary.

There are several tiers or levels of validation studies as shown in Fig. 1.3. The levels range from the

Complete System to Unit Problems. The Complete System is the highest tier and includes all relevant physics

and geometry but for which measurements are coarse. Unit Problems have basic geometry and non-coupled

physics with complete measurements but are far removed from the system. Different Complete Systems

will appear very different from each other but often share many of the same phenomena of lower tiers, so

lower-tiered validation studies may be useful for many systems [5].

Complete System

Subsystem Cases

Benchmark Cases

Unit Problems

• Actual System Hardware

• Complete Flow Physics

• All Relevant Flow Features

• Limited Experimental Data

• Most Initial and Boundary 

    Conditions Unknown

{
• Subsystem Hardware

• Moderately Complex Flow Physics

• Multiple Relevant Flow Features

• Large Experimental Uncertainty

• Some Initial and Boundary 

    Conditions Measured

{
• Special Hardware Fabricated

• Two Elements of Complex Flow Physics

• Two Relevant Flow Features

• Moderate Experimental Uncertainty

• Most Initial and Boundary 

    Conditions Measured

{
• Simple Hardware Fabricated

• One Element of Complex Flow Physics

• One Relevant Flow Feature

• Low Experimental Uncertainty

• All Initial and Boundary 

    Conditions Measured

{
Fig. 1.3: Validation Hierarchy, after [9]
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The Benchmark Tier, also called Separate Effects Testing, requires that most model inputs and many

model outputs are measured and experimental uncertainty is included. This tier has specialized hardware,

simplified geometry, and only some physics coupling [5]. The proposed work has coupled physics in fluid

momentum and heat transfer as well as three-dimensional velocity development that keep it from being a Unit

Problem. This Benchmark Case has simplified geometry and high detail of measurements and associated

uncertainties make it useful for many systems.

There are several terms in common use that need to be defined in the context of validation. The domain

of interest is the region in space and/or time where the physical phenomena being modeled occurs. This

domain may have boundary conditions (BCs) where the external physical conditions are applied. It may also

have initial conditions (ICs) which are a form of BC that exists at the initial time, but these conditions also

extend into the domain of interest. Generally, experimental data are provided to the modeler in the form of

BCs and/or ICs. The model output is called the system response quantity of interest, herein referred to as

system response quantity or SRQ, and often there are several. The SRQ is either found within the domain of

interest or at a boundary whose conditions are an output. It provides data to be used as a validation metric

when assessing the accuracy of a model [5].

Generally, older experimental data from discovery experiments are not sufficiently described to be used

for validation. Discovery experiments are common in research where new physical phenomena are measured,

presented, and discussed. Validation experiments do not necessarily measure unique phenomena but the

measurement process and description are more complete [10].

Several databases are available online for the purpose of CFD validation. An updated list of these is

found at www.cfd-online.com/Links/refs.html. Data from many other sources are no longer available

online as programs and technologies expire. The description associated with these databases is very light

and rarely includes a complete set of necessary model inputs. Validation data should be highly described and

regularly maintained by organizations that last longer than research programs to ensure the data are useful for

as long as possible.

1.3 Mixed Convection

Mixed convection is a coupled fluid momentum and heat transfer phenomenon where both forced and

natural convection contribute to the behavior. With forced convection, buoyant forces are negligible and

flow is driven by a pressure gradient. Conversely, buoyant forces drive high density fluid above low density

fluid [11].

www.cfd-online.com/Links/refs.html
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There are generally three types of mixed convection that depend on the relative directions of buoyant and

pressure forces. The first is buoyancy-aided where buoyant forces and forced flow have the same direction,

the second buoyancy-opposed where these forces have opposite direction, and the third transverse where

these forces are perpendicular [12].

Specifically mixed convection conditions are determined by the local Richardson number as

Rix = Grx/Re2
x (1.1)

where

Rex = ubulkx/ν (1.2)

and

Grx = gβ (Ts−T∞)x3/ν
2. (1.3)

In these, g is acceleration due to gravity, β is fluid thermal coefficient of expansion, Ts and T∞ are surface

and fluid temperatures, respectively, x is local streamwise location, ν is fluid kinematic viscosity, and ubulk is

time mean bulk velocity. Mixed convection is observed for buoyancy aided flow when 0.3 < Rix < 16 and

for 0.3 < Rix for opposed flow [11].

There have been many mixed convection studies on vertical plates and in vertical tubes. Several mixed

convection experiments for vertical tubes are cited in a review article by Jackson et al. [13]. They surveyed

literature and presented results for both laminar and turbulent flows, both theoretical and experimental studies.

Results were compared and heat transfer correlations presented. They noted that heat transfer in buoyancy-

aided turbulent flow is suppressed for moderate buoyancy levels while, on the other hand, it is augmented in

buoyancy-opposed flows. This work provides heat transfer correlations for pipe flow that could be useful for

comparison with the current work. They further recommend the use of Low Re models for mixed convection

simulations.

Chen et al. [14] present correlations for laminar mixed convection on vertical, inclined, and horizontal

plates and compare them to experiments performed by Ramachandran et al. [15]. Experiments of the latter

provided point velocity and temperature measurements via a hot-wire anemometer. The data agreed very well

with predictions and were sufficient for comparison to correlations with, but are not reported in sufficient

detail for validation.

Kim et al. [16] summarize simulations that predict mixed convection in a vertical tube and compare

the models to experimental data. The in-house code used published two-equation models and was written
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to model developing mixed convection flow with variable properties. Consistent with previous works, lam-

inarization of the turbulent flow was reported in the buoyancy-aided case and increased turbulent levels in

the opposed case. None of the models investigated showed good agreement over the entire range of flow,

suggesting further model development, or perhaps model calibration, could increase prediction capability for

these flows.

Wang et al. [17] discuss both an experimental and a numerical study of a vertical plate under turbulent

mixed convection. Two-component Laser Doppler Anemometry (LDA) was used to measure boundary layer

velocity. Some temperature measurements were also made of the flow using a thermocouple (TC) rake. They

reported moderate agreement between experimental data and simulation results, but noted that predictions for

the buoyancy-opposed case were less accurate. Although this study provides valuable insight into this flow

with plate geometry, the reported information lacks boundary conditions necessary for validation studies.

Mixed convection literature is abundant. However, all the papers found were performed as discovery

experiments, not for the purpose of providing validation data. Most are for pipe flow, boundary and initial

conditions are lacking, uncertainties are rarely presented, flow geometry description is simplified, and fluid

properties are seldom given. Further, the techniques used were often intrusive, leading to unknown uncertain-

ties, and often provided only point measurements. Modern measurement systems can provide higher fidelity

data while disrupting the flow less.

1.4 Transient Convection

Transient convection is of consequence in a LOFC accident of the VHTR as the flow starts with forced

convection downward and changes to natural convection upward in a ramp-type flow transient. Some studies

of non-periodic transient flow have been performed, but as He & Jackson [18] note, it has only been some-

what recently that technology has allowed for comprehensive measurements of ensemble-averaged transient

experiments. Most of the first experiments measured either temperature of tube walls or velocity, not both. A

common observation was that accelerating flow suppresses turbulence while decelerating flow augments it.

The first work by Koshkin et al. was published in 1970 for turbulent air flow and reported measurements

when changing electrical power and different flow transients, measuring and reporting temperature measure-

ments [19]. Two similar studies were published in the 1970s and used electrochemical techniques with probes

to measure velocity profiles inside a tube from a step change in flow rate [20, 21].

A study performed by Rouai where heat transfer experiments on ramp-up and ramp-down transients as

well as periodic pulsating flow with a non-zero time mean were performed. Water was heated by passing
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an alternating electrical current through a stainless steel tube. Temperature measurements were made by

24 thermocouples welded to this tube. Flow transients were prescribed by using a constant head tank and

varying the flow through the test section by a valve. Wall heat flux remained constant and changes in wall

temperature were measured. The observed Nusselt number departed more from the pseudo-steady values for

faster transients and for decelerating flows, likely from the augmentation of turbulence [22].

Two researchers, He & Jackson, performed experiments in water using two-component LDA measure-

ments in a clear, unheated tube. This non-intrusive velocity measurement was one of the first known for

non-periodic flows. Ensemble-averaged results were used for mean and turbulent quantities. The turbulent

results were original for this type of flow and were shown to deviate from pseudo-steady results for short

transients. Several non-dimensional parameters were recommended for ramp-type transients [18].

In the previous studies, no coupling of velocity and thermal measurements was found for transients

and buoyancy effects were negligible. Also, as these were discovery experiments, boundary conditions were

not measured and provided as tabulated data, making the results of limited use for validation. The facility

description is very basic and flow geometries simplified. The current study contributes high fidelity measure-

ments of a ramp-down transient suitable for validation studies with simultaneous, non-intrusive velocity and

thermal measurements to provide validation data on simplified geometry for three-dimensional simulations.

1.5 Wall Heat Flux

As will be discussed later in this work, the experimental facility test section was highly instrumented.

Three thin-film heat flux sensors (HFSs) were purchased and potted in the heated wall for heat flux measure-

ments. Being commercial sensors from RdF Corp., they came with factory-calibrated sensitivities. Prelim-

inary experiments have shown that the measured heat flux does not match fundamental trends as shown in

Fig. 1.4, specifically decreasing heat flux with boundary layer development with increasing x. Two correla-

tions are shown. The Kays trend is the heat flux from

St =
Nux

RexPr
=

0.0287Re−0.2
x

0.169Re−0.1
x (13.2Pr−9.25)+0.85

(1.4)

where St is the Stanton number, Nux is the local Nusselt number, and Pr is the Prandtl number [11]. The

Incropera trend is based on the correlation for convection over an isothermal flat plate [12] and is

Nux = 0.0296Re4/5
x Pr1/3. (1.5)
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Once the Nusselt number is computed, heat flux is calculated as q′′ = Nuxk(Ts−T∞)/x where q′′ is heat flux

and k is fluid thermal conductivity. Note that the correlation trends are not smooth, a result of the measured

center-line plate temperature, which has small gradients.

0 0.5 1 1.5
0

1,000

2,000

3,000

4,000

x [m]

q′
′[ W

/m
2
]

Experiment Kays Incropera

Fig. 1.4: Wall heat flux comparing measurements with two correlations

The difference in these trends was concerning and it was possible that the sensor sensitivities were

mixed-up, had an installation error, or other manufacturer-supplied parameters were incorrect. As heat flux

was a critical SRQ, developing a means to assess sensor accuracy was desired. Since the sensors were

permanently potted, removing them for calibration was not an option. In situ heat flux measurements were

made via an independent method. This method should not change heat transfer conditions in the area.

Installation error was possible if heat transfer conditions are different between calibration and use. The

RdF sensors were calibrated to a reference sensor that was calibrated at 70◦F in radiation using a blackbody

source [23]. The heat transfer mode of the sensors in the heated wall was conduction. The different heat

transfer modes, the elevated operation temperature, and the possibility of non-uniform thermal resistance in

the sensor area have been identified as possible error sources [24].

There are several methods for heat flux calibration. The National Institute of Standards and Technology

is an excellent source for heat flux sensor calibration services. They use a variable-temperature blackbody

thermal radiation source with symmetric conditions for simultaneous measurements with a reference optical

pyrometer and a user-supplied HFS [25]. This method was impractical for the current situation as the sensors

could not be removed.
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One common HFS design measured the temperature difference across a substrate of known thermal

conductivity using a thermopile (array of thermocouples in series for increased output) [26]. Fourier’s Law

for conduction was the theory of this measurement and is [12]

q′′ =−k
dT
dy
≈−k

∆T
∆y

(1.6)

where k is substrate thermal conductivity, T is temperature, and y is the direction of heat flux. This method

was used in the purchased RdF thin-film sensors potted in the plate. Adding a reference HFS of this type

would disrupt local convection conditions. The calorimeter method uses heat storage over time to measure

flux [26], but this would change local conditions for the proposed experiment. The facility geometry and

thermal resistance must remain constant in space.

An independent heat flux measurement technique was possible. The potted HFSs measured heat flux

near the surface of the heated wall. The convective heat flux from the wall to the air should be equivalent,

especially very near the wall and removed from the side walls. Very near the heated wall, within the viscous

sublayer, the temperature profile is linear [11]. If the temperature profile can be measured within this region

and the thermal conductivity of air k can be estimated by the measured temperature and reference data found

in [27], it is possible to measure convective heat flux from a surface.

Others have made near-wall temperature measurements. An early study by Warner and Arpaci described

the use of a butt-welded TC probe of 12.7 µm diameter oriented parallel to a vertical flat plate and perpendic-

ular to the flow direction. It was traversed with a motor-driven carriage near the heated wall under turbulent

natural convection. The position was accurate to 5.08 µm within the first 25.4 mm and to 15.2 µm farther

from the wall. They were able to measure temperature profiles and subsequently heat flux [28]. In another

study of a turbulent boundary layer under forced convection, temperature profiles were measured by a TC

probe of 76.2 µm diameter and about 12.7 mm long suspended by 22-gauge hypodermic needles oriented

parallel to the plate and perpendicular to the flow direction. This probe was also traversed with a traversing

mechanism accurate to 25.4 µm. These results, along with velocity measurements, were used to present many

heat flux, shear, and turbulent Prandtl number results for this fundamental flow [29].
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CHAPTER 2

EXPERIMENTAL VALIDATION DATA FOR CFD OF STEADY MIXED CONVECTION ON A

VERTICAL FLAT PLATE1

Abstract

Model validation for Computational Fluid Dynamics (CFD), where experimental data and model out-

puts are compared, is a key tool for assessing model uncertainty. In this work, mixed convection was studied

experimentally for the purpose of providing validation data for CFD models with a high level of complete-

ness. Experiments were performed in a facility built specifically for validation with a vertical, flat, heated

wall. Data were acquired for both buoyancy-aided and buoyancy-opposed flows. Measured boundary con-

ditions include as-built geometry, inflow mean and fluctuating velocity profiles, and inflow and wall temper-

atures. Additionally, room air temperature, pressure, and relative humidity were measured to provide fluid

properties. Measured system responses inside the flow domain include mean and fluctuating velocity pro-

files, temperature profiles, wall heat flux, and wall shear stress. All of these data are described in detail and

provided in tabulated format.

2.1 Introduction

The purpose of this work is to provide validation data for three-dimensional Computational Fluid Dy-

namics (CFD) models. Model validation will be discussed as well as the physical phenomenon of steady

mixed convection. The following sections describe the experimental facility, the associated instrumentation,

the boundary conditions (BCs), the fluid and material properties, the test conditions, and the System Response

Quantities (SRQs). This content follows the Validation Experiment Completeness table of Oberkampf and

Smith [1] to guide description of validation experiments. This guidance ensures important details are in-

cluded with a high level of completeness. The work contained herein is a continuation of that by Harris et

al. [2] which covered forced convection using similar methods and facilities.

This work presents the data in table format for direct use in validating models. The provided data in-

clude the BCs and SRQs shown in Table 2.1. The included BCs in this work should provide modelers with

all required information, avoiding assumptions on model inputs and reducing model form uncertainty [3].

1Authors: Blake W. Lance, Jeff R. Harris, and Barton L. Smith
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The SRQ data are provided to modelers for direct comparison with model outputs. The experimental un-

certainties of all provided data from bias and random sources are also provided and quantified at the 95%

confidence level. Validation errors can be calculated with the nominal data and validation uncertainty from

the uncertainty of the nominal data [4].

Table 2.1: The tabulated boundary conditions and system response quantities provided in this work

BCs SRQs
As-built geometry Mean velocity profiles

Wall & inflow temps. Fluctuating velocity profiles
Inflow mean velocity Mean temperature profiles1

Inflow fluctuating velocity Wall heat flux
Atmospheric conditions Wall shear stress

These files are accessible in an online database in the Digital Commons of Utah State University’s

Library. The page dedicated to the data in this work is found at digitalcommons.usu.edu/all datasets/8/. Links

to specific files are included in this work with descriptive file names with the experimental case (buoyancy-

aided or buoyancy-opposed), data type (BC or SRQ), and measured quantity included. All data files may be

downloaded in the zipped file Data. Generally, data are in table format as csv files.

2.1.1 Computational Fluid Dynamics Validation

To understand the need for experiments expressly aimed at providing validation data, one must first

understand the different aims of validation and discovery experiments. Discovery experiments are common

in research where new physical phenomena are measured, presented, and discussed. Validation experiments

do not necessarily measure unique phenomena, but the measurement process and description are more com-

plete [5]. In general, older experimental data from discovery experiments are not sufficiently described for

use in validation. Unobtrusive measurement techniques are important in validation experiments since probes

introduce unknown uncertainties to the data. These uncertainties can only be mitigated by including the probe

in the CFD model.

The purpose of validation experiments is to provide the information required to quantify the uncertainty

of a mathematical model. This uncertainty helps decision makers quantify model credibility. The ASME

V&V 20 Standard [4] outlines an approach to estimate the validation comparison error and the validation

1The SRQ mean temperature profiles are provided for the buoyancy-opposed case only.

http://digitalcommons.usu.edu/all_datasets/8/
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=0&article=1007&context=all_datasets&type=additional
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uncertainty. The validation error E is the difference between the simulation result S and the validation exper-

iment result D as

E = S−D. (2.1)

Calculating the validation uncertainty estimates the confidence interval of the error by considering both nu-

merical and experimental uncertainty. Validation uncertainty is calculated as

Uval =
√

U2
num +U2

input +U2
D, (2.2)

where Unum is the numerical uncertainty, Uinput is the model input uncertainty, and UD is the experimental data

uncertainty. The numerical uncertainty is estimated from solution verification with sources such as iterative

and discretization uncertainty. The latter two uncertainties come from the validation data. The uncertainty in

the measured BCs that are used for model inputs is Uinput. The uncertainty of SRQs—experimental data used

to compare system outputs—is UD. If |E|>>Uval, one can conclude model error remains. But if |E| ≤Uval

and Uval is acceptably small for the intended use of the model, the validation error may be satisfactory. These

general equations show validation data and their uncertainties are required to assess model accuracy via model

validation.

There are several tiers of detail in validation experiments [6], often four as shown in Fig. 2.1. This

work is considered a Benchmark Case that is second in simplicity to Unit Problems. The Benchmark Case,

also called Separate Effects Testing, requires that all model inputs and most model outputs are measured

and that experimental uncertainty is included. In this tier there is generally some level of multi-physics

interaction, such as coupled fluid momentum and heat transfer, that prevents this work from being considered

a Unit Problem. On the other hand, the non-prototypical geometry used in this work keeps it from being a

Subsystem Case.

The planning and execution of validation studies should include both modelers and experimentalists

through all phases. In considering the design of validation systems, SRQs should be measured from a wide

range and high difficulty in the difficulty spectrum as shown in Fig. 2.2. Comparing simulation results

with experimental data from a wide range on the spectrum increases validation confidence. For example,

integral quantities, such as fluid mass flow rate, generally have low experimental noise and random errors.

Derivative quantities like fluid shear are more sensitive to non-ideal conditions. If a model and data are in

good agreement at a high level, then it is likely that good agreement will be observed in lower levels. But,

agreement at lower levels does not imply agreement at higher levels [3].
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Fig. 2.1: The Validation Hierarchy, after [6]
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Fig. 2.2: System Response Quantity Difficulty Spectrum, after [3]. The variables y and x are arbitrary.

2.1.2 Mixed Convection

Mixed convection is a coupled fluid momentum and heat transfer phenomenon where both forced and

natural convection contribute to behavior. With forced convection, buoyant forces are negligible and flow is

driven by a pressure gradient. Conversely, buoyant forces drive natural convection in the direction opposite

to gravity as low density fluid rises over higher density fluid [7].

There are generally three types of mixed convection that depend on the relative direction of buoyant and

pressure forces. The first is buoyancy-aided, where buoyant forces and forced flow have the same direction.
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The second is buoyancy-opposed, where these forces have opposite directions. Finally the third is transverse,

where these forces are perpendicular [8].

The mixed convection regime is defined by the local Richardson number as

Rix = Grx/Re2
x (2.3)

where

Rex = ubulkx/ν (2.4)

and

Grx = gβ (Ts−T∞)x3/ν
2. (2.5)

In these equations, g is acceleration due to gravity, β is fluid thermal coefficient of expansion, Ts and T∞ are

surface and fluid temperatures respectively, x is local streamwise location, ν is fluid kinematic viscosity, and

ubulk is bulk time mean velocity. Mixed convection is commonly thought to occur for buoyancy-aided flow

when 0.3 < Rix < 16 and for buoyancy-opposed flow when 0.3 < Rix [7].

Some flow parameters in this study are given in Table 2.2. Note that external coordinates are used

because the flow was not fully developed in the test section as it would be for pipe flow. The flow at x1

was not in the mixed convection regime; but, as will be shown, buoyancy effects are still observable. The

temperature of the heated wall was near the safety limit of the materials, and the air velocity was near the

low side of the turbulent regime (large turbulent trips were installed upstream of the test section to enforce

boundary layer turbulence at these lower Reynolds numbers).

Table 2.2: Rex, Grx, and Rix at the three locations in x at the spanwise center where SRQ data were acquired.
The bulk velocity ubulk was 2.44 m/s. These apply for both cases presented.

x [m] Rex Grx Rix

x1 0.16 13,000 1.55 × 107 0.09
x2 0.78 63,000 1.73 × 109 0.43
x3 1.39 110,000 9.93 × 109 0.77

There have been many mixed convection studies on vertical plates and in vertical tubes. Some will

be described now. Several mixed convection experiments for vertical tubes are cited in a review article by

Jackson et al. [9]. They surveyed literature and presented results for both laminar and turbulent flows, both

theoretical and experimental studies. Results were compared and heat transfer correlations presented. They
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noted that heat transfer in buoyancy-aided turbulent flow is suppressed for moderate buoyancy levels while,

on the other hand, it is augmented in buoyancy-opposed flows. This work provides heat transfer correlations

for pipe flow that could be useful for comparison with the current work. They further recommend the use of

Low Re models for mixed convection simulations.

Chen et al. [10] present correlations for laminar mixed convection on vertical, inclined, and horizontal

plates and compare them to experiments performed by Ramachandran et al. [11]. Experiments of the latter

provided point velocity and temperature measurements via a hot-wire anemometer. The data agreed very well

with predictions and were sufficient for comparison to correlations with, but are not reported in sufficient

detail for validation.

Kim et al. [12] summarize simulations that predict mixed convection in a vertical tube and compare

the models to experimental data. The in-house code used published two-equation models and was written

to model developing mixed convection flow with variable properties. Consistent with previous works, lam-

inarization of the turbulent flow was reported in the buoyancy-aided case and increased turbulent levels in

the opposed case. None of the models investigated showed good agreement over the entire range of flow,

suggesting further model development, or perhaps model calibration, could increase prediction capability for

these flows.

Wang et al. [13] discuss both an experimental and a numerical study of a vertical plate under turbulent

mixed convection. Two-component Laser Doppler Anemometry (LDA) was used to measure boundary layer

velocity. Some temperature measurements were also made of the flow using a thermocouple (TC) rake. They

reported moderate agreement between experimental data and simulation results, but noted that predictions for

the buoyancy-opposed case were less accurate. Although this study provides valuable insight into this flow

with plate geometry, the reported information lacks boundary conditions and inflow parameters necessary for

validation studies.

Mixed convection literature is abundant. However, all the papers found were performed as discovery

experiments, not for the purpose of providing validation data. Most are for pipe flow, boundary and initial

conditions are lacking, uncertainties are rarely presented, flow geometry description is simplified, and fluid

properties are seldom given. Further, the techniques used were often intrusive, leading to unknown uncertain-

ties, and often provided only point measurements. Modern measurement systems can provide higher fidelity

data while disrupting the flow less.
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2.2 Experimental Facility

All experiments were performed in the Rotatable Buoyancy Tunnel (RoBuT), which will be described

in detail. Benchmark-level validation data were acquired with simple geometry and some multi-physics

interaction. The square test section allowed easy characterization using optical velocity measurements. The

simple geometry is easy to represent numerically and helps isolate model errors.

2.2.1 Rotatable Buoyancy Tunnel

The RoBuT was an open-circuit air tunnel with a large 4.81-m diameter ‘Ferris wheel’ design that

allowed rotation, thus changing the relative direction of forced flow and buoyant forces without changing the

facility. Many important tunnel components are shown in Fig. 2.3, which is in the buoyancy-aided orientation.

Note the coordinate system with the origin on the heated wall at the inlet and the spanwise center. The

streamwise distance is x, wall-normal distance is y, and spanwise distance is z with zero along the centerline.

The laser and camera were part of a Particle Image Velocimetry (PIV) system that will be described in

Sec. 2.3.2.

The test section had a 0.305×0.305 m square cross section and was 2 m long. It had three clear walls for

optical access and a heated wall for a thermal BC. More details of the test section are provided in Sec. 2.2.2.

The contraction and outlet were made of fiberglass-reinforced plastic with a glass-smooth, black gel-coat.

The contraction had an area ratio of 6.25:1 and was 0.914 m long. The contraction bell at the leading

edge had a 102 mm radius. Between the contraction and bell were four modular sections that contained—

in order of flow direction—a single row, aluminum fin/copper tube, chilled water heat exchanger (Super

Radiator Coils Model 30x30-01R-0.625/048); a settling length section; a precision aluminum honeycomb

flow straightener; and two high porosity screens. Square turbulence trips 3.175 mm wide were installed

along all four walls and located about 0.12 m upstream of the test section inlet.

The outlet expanded the flow downstream of the test section, had a total included angle of 8.2◦, and

was 0.686 m long. The blower drew air through the test section and rejected it into the room. It included an

inline centrifugal fan assembly, TCF/Aerovent model 14-CBD-3767-5. It was belt driven by a 5 HP, TEFC,

230-460 VAC induction motor, Toshiba model B0052FLF2AMH03. The motor was powered by a Toshiba

variable frequency drive, model VFS11-2037PM-WN.

Two Laskin Nozzles [14] were used to atomize olive oil tracer particles. These were measured to have

a mean diameter of about 1µm with a TSI Aerodynamic Particle Size Spectrometer at the outlet. These

particles were mixed with air and injected into a PVC pipe distribution system upstream of the contraction
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Fig. 2.3: RoBuT flow components in the buoyancy-aided orientation

assembly. A peg board was placed between this system and the beginning of the contraction to help mix

particles throughout the flow. It had holes 6.35 mm in diameter and were spaced 25.4 mm apart in a square

pattern.

2.2.2 Test Section

The test section had four walls, an inlet, and an outlet that will be described in detail. The heated wall

was custom designed with many layers to provide a heated surface for convection and featured embedded

instrumentation. Its cross section is shown in Fig. 2.4. This wall was heated to approximately 138◦C for this

study. It was made of several layers of aluminum, had six silicon rubber heaters arranged in the streamwise

direction, and contained thermal insulation to drive most of the heat inward. A list of materials and thick-

nesses is available in Table 2.3. The surface was nickel plated to reduce thermal radiation which resulted
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in a predicted and measured emissivity around 0.03 [2]. Aluminum 2024, though more expensive than the

common alloy 6061, was used because its thermal conductivity is well known [15]. The heated portion was

279 mm wide and 1.89 m long. The left and right sides were thermally insulated by 17.5-mm thick Teflon R©

that extended into grooves in the side walls. Two additional 12.7-mm thick Teflon R© insulators were placed

upstream and downstream of the heated wall. There were six heaters, each spanning the width of the heated

wall and one sixth of the length. Three HP 6439B power supplies were connected to two heaters each and

were used to control the temperature of the wall via a closed-loop PI controller. Three controllers, one for

each power supply, allowed the heated wall to be heated in independent sections in the streamwise direction

to increase temperature uniformity.
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Fig. 2.4: Heated wall cross section with component names as in Table 2.3. The relative thicknesses are to
scale.

The other three walls were clear Lexan R© polycarbonate for optical access and were 12.7 mm thick. From

the perspective of standing on the heated wall at the inlet, they are termed left (z=-152 mm), top (y=305 mm),

and right (z=152 mm) walls. The top wall had a removable center portion for cleaning and maintenance. This

wall also had three 25.4-mm ports for probe insertion that were used for the TC probe described in Sec. 2.3.3.

The as-built geometry was measured to compensate for differences between the as-designed and as-built
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Table 2.3: Heated wall components and thicknesses with names from Fig. 2.4

Name Material t [mm]
Nickel Coating Bright Nickel ∼0.05

Al. Surface Plate Al. 2024-T3 3.18
Thermal Epoxy Dow Corning 3-6751 1.02

Kapton R© Kapton R© HN Film 0.254
Al. Main Plate Al. 6061-T651 6.35

Heater Tempco Silicone Rubber 1.59
Insulation Mineral Wool 25.4

Al. Back Plate Al. 6061-T651 6.35

test section geometry. The differences were small, but the measurements are presented for completeness.

An internal micrometer was used to measure the internal dimensions of the fully assembled test section.

Height measurements were performed at the left, center, and right as well as width measurements at the

top, middle, and bottom. This was done at seven locations in x and performed three times for a measure

of random uncertainty. Modelers may use these dimensions when constructing the simulation domain to

ensure greater similarity. A sketch of the measurement locations may be accessed from the online database

by the link All-BC-AsBuiltSketch in the digital version of this work. The nominal values are in All-BC-

AsBuiltMeasurements and uncertainties in All-BC-AsBuiltMeasurementUncertainties. A Parasolid model

created from the as-built measurements is available in All-BC-AsBuiltGeometry.

A warm-up procedure was followed each time the RoBuT was used for experiments. Ideally, the HVAC

system would be kept active at all times for stable room conditions. The heated wall was first heated to the

setpoint temperature. Once this was reached, the blower was set to the desired speed for the experiment

and the heater controllers would accordingly increase power. Once the temperature was again stable for at

least five minutes, the facility was ready for data acquisition. If the blower setpoint speed was changed, the

controller would stabilize temperature and a waiting period was repeated for at least five minutes.

Between data acquisition for the different cases, such as between the aided and opposed cases, the entire

test section was cleaned with Ethyl Alcohol and delicate task wipes to ensure optical quality. The cover on

the top wall was removed for inside cleaning. High-vacuum grease was used on test section joints to reduce

air leakage and was removed and reapplied each time a panel of the test section was adjusted.

2.3 Analog Instrumentation and Signal Processing

Validation experiments require high fidelity instrumentation. Thermocouples were used to measure

boundary temperatures, heat flux sensors (HFSs) for heat flux through the heated wall, and PIV for inflow

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=17&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=15&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=15&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=16&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=14&article=1007&context=all_datasets&type=additional
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and boundary layer air velocity. Other sensors measured room air conditions. These systems will now be

described in detail.

2.3.1 Thermal Instrumentation

A total of 307 TCs were used to measure boundary temperatures. All test section TCs were 30 gauge

Type K from Omega Engineering with Special Limits of Error. They were each welded to length with an

Argon-shielded welder. Each TC was calibrated with an Isotherm FASTCAL-M with an accuracy of 0.3◦C

over a range of 25-190◦C with data at every 5◦C. Because every TC calibration was very similar and made

from the same spool, an average calibration curve was applied. An array of 3×5 TCs, three in y and five in

z, was suspended on the downstream side of the honeycomb for inlet air temperature measurements. Each of

the three clear walls had 21 TCs with seven rows spaced in x and three across in y for the left and right walls

or in z for the top wall. The bulk of the heated wall had 5×32 TCs with five in z and 32 in x. The Teflon R©

edges each had embedded TCs with five across the leading edge in z and 32 along the sides in x. All TCs were

embedded to within 3.18 mm of the inside surface using thermal epoxy with enhanced thermal conductivity.

Three HFSs were embedded into the heated wall along the spanwise center at the x-locations found in

Table 2.2. They were model 20457-3 from RdF Corporation and were a thin-film type with a thermopile

around a Kapton R© substrate. The manufacturer supplied unique calibration coefficients for each sensor. The

manufacturer-specified uncertainty was 5% of reading. An embedded Type T TC was used to measure sensor

temperature and correct readings with the supplied multiplication factor curve to compensate for changes

in thermal conductivity of the substrate. The HFSs were placed adjacent to the Kapton R© layer of similar

thermal resistance to reduce measurement errors. A thermal resistance network analysis showed only a 2.4%

difference in heat flux between HFS and non-HFS conduction paths.

The TC and HFS output voltages were small, so special data acquisition (DAQ) devices were selected.

National Instruments (NI) products were used as they interfaced well with the LabVIEW software that was

used for system control and thermal data recording. Twenty one NI-9213 TC modules were housed in five

NI-cDAQ-9188 chassis. The narrow voltage range of ±78 mV, 24-bit ADC, and open channel detection

made them well suited for these measurements. The built-in CJC was used for TCs. The total uncertainty

of the calibrated TCs with these DAQs was 1◦C, largely attributable to the CJC uncertainty of 0.8◦C. Data

from thermal instrumentation was recorded on-demand. Twelve sets of instantaneous measurements were

recorded, one to accompany every set of PIV data for each case.
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2.3.2 Particle Image Velocimetry

The PIV system allowed for non-intrusive, full-field velocity measurements at several locations. The

system consisted of a laser, camera, and timing unit. The laser was a New Wave Research Solo PIV III. It

was a dual cavity, frequency-doubled Nd:Yag model with about 22 mJ/pulse and a wavelength of 532 nm.

Two LaVision camera designs were used as equipment was upgraded: an Imager Intense CCD camera for

buoyancy-aided data and an Imager sCMOS for buoyancy-opposed data. The former had a 12-bit CCD sensor

with 1376×1040 pixels and a pixel size of 6.45µm. The latter had a 16-bit sCMOS sensor with 2560×2160

pixels and a pixel size of 6.5µm. An internal, LaVision standard version PTU 9 timing unit provided accurate

timing of the system and had a resolution of 10 ns and jitter of <1 ns. Two Nikon lenses were used: one AF

Nikkor 28 mm f/2.8 D for the large field of view inflow and one AF Micro-Nikkor 105 mm f/2.8 D for high

resolution SRQ data near the heated wall.

Images were acquired with LaVision DaVis 8.1 software and processed with DaVis 8.2. The optical

configuration of the system is shown in Fig. 2.3 with the laser sheet normal to the heated wall and camera

viewing angle parallel with it. The equipment was moved manually in the x direction. The inflow was mea-

sured in the same configuration with Velmex BiSLide R© traverses to move the laser and camera consistently

in the z direction. In this way, nine planes were measured to map the inflow.

PIV calibration was performed in two ways. The inflow used a conventional two-component ‘ruler’

calibration over a span of about 280 mm since the laser sheet and camera were normal to each other. The

SRQ data near the heated wall was calibrated with a single-plane calibration target and the pinhole model

as the camera was angled into the wall by 3-5◦. This angle was required to avoid image diffraction by the

large temperature gradient very near the wall. Because this flow had very little through-plane motion, errors

in v velocity from through-plane motion appearing as in-plane motion are expected to be small (they are a

function of the sine of the angle). The pinhole model was applicable since refraction between the Lexan R©

and air was also small.

Prior to acquisition, the quality of the particle images was checked to ensure proper particle density,

diameter, and displacement as well as laser beam overlap and image focus quality. Many of these data pa-

rameters and others from the acquired images are found in Table 2.4. The diameter, density, and displacement

are spatial averages over the entire image. Both particle diameter and density were determined by methods

found in [16] with the local maximum method for density estimation.

The processing of particle images was performed with the window deformation method in DaVis. A

mask was carefully defined to remove the influence of walls on the correlation. Round interrogation windows
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Table 2.4: PIV data parameters. Aided refers to buoyancy-aided case while Opposed refers to buoyancy-
opposed case.

Parameter Aided-Inlet Opposed-Inlet
N image pairs 500 1000

sample frequency [Hz] 4 10
dt [µs] 1000 750

lens 28 mm 28 mm
extension [mm] – –

calibration [mm/pixel] 0.223 0.124
f # 5.6 11

diameter [pixels] 1.45 1.39
density [#/32×32] 70.8 19.3

displacement [pixels] 11.4 15.7
Parameter Aided-SRQ Opposed-SRQ

N image pairs 1000 1000
sample frequency [Hz] 4 10

dt [µs] 76 62–65
lens 105 mm 105 mm

extension [mm] 39.5 39.5
calibration [mm/pixel] 0.0116 0.0103

f # 5.6 11
diameter [pixels] 3.98–4.89 3.07–3.16

density [#/32×32] 6.36–8.99 4.76–8.47
displacement [pixels] 13.8 12.2

were used for reduced noise. The first two passes were at 64×64 pixels and 75% overlap and the final four

passes were at 32×32 pixels and 75% overlap. Vector post-processing was performed where vectors were

removed if the peak ratio was less than two. Then a two-pass median filter of ‘strongly remove & iteratively

replace’ corrected spurious vectors. Vectors were removed if their difference from average was more than

one standard deviation of neighbors and subsequently replaced if the difference from average was less than

two standard deviations of neighbors.

Particle images had a sliding background removed where the background is the average of nine images

symmetrically taken around the image of interest. The pixel range was sometimes narrowed in the flow

direction to reduce disk space while keeping at least 512 pixels in this direction. Examples of particle images

with background subtracted for both orientations acquired with two cameras are shown in Fig. 2.5. Note

that the heated wall is on opposite sides since the tunnel orientation was changed between cases. Also,

the buoyancy-aided case used the Imager Intense camera with fewer pixels than the sCMOS used in the

buoyancy-opposed case.
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(a) Buoyancy-aided with heated wall at left (b) Buoyancy-opposed with heated wall at right

Fig. 2.5: Particle images at x2

2.3.3 TC Probe

In order to provide an additional SRQ, it was necessary to measure the fluid temperature in the boundary

layer. Since the RoBuT is an open-loop air tunnel with a large volume flow rate, optical measurement tech-

niques requiring specialized particles are not practical. Thus, a TC probe was designed similar to that used

in [17] with care taken to reduce the size and subsequent disruption of the flow. As this probe was intrusive

and changed the flow, it was used after acquiring all other types of data so that its influence is only seen on

the measured temperature profiles.

The junction of the probe was formed by type K wires of diameter DTC = 0.051 mm from Omega

Engineering. The two lead wires are aligned parallel to the wall with a length of 15.3 mm (∼ 300DTC) to

reduce conduction losses as shown in Fig. 2.6. The junction was formed by spot welding the overlapped

wires. After welding, the wire was pulled taut and epoxied in place. The fine wire was welded to thicker

0.511-mm wire that spanned the pivot and was connected to the DAQ. The brace shown in Fig. 2.6 was

rigid enough to keep the wire tight. To correct for small misalignments that could cause measurement errors,

a pivot was designed into the probe so it could be aligned with the wall before each measurement. This

was done by moving the probe into the wall until both ends of the brace were pressed firmly and any angle

corrected, then pulling the probe away from the wall. This probe was measured with the same NI-9213 TC

modules described in Sec. 2.3.1 and was used in the spanwise center of the tunnel.

The probe may be subject to conduction losses that could lead to measurement error. This error was

estimated using a 1-D fin equation. The measured temperature and velocity profiles were used to estimate

fluid properties and heat transfer coefficients. Heat conduction was considered from the TC junction to the

leads and then convecting to the lower temperature air. The largest error was estimated at 0.03◦C at the wall
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TC JunctionTC Junction

BraceBrace

PivotPivot

Fig. 2.6: TC probe with its reflection in the heated wall on the right

at x1.

This TC probe assembly was supported by a stainless steel tube with 3.76-mm outside diameter that

spanned the test section. This tube contained the TC wires and was connected to a Velmex Inc. UniSlide R©

traverse model B4015Q2J. This traverse was used for small, incremental movements. The distance from

the wall was estimated by fitting a line to the temperature profile very near the wall to the wall temperature

measured by embedded TCs. The largest uncertainty in position resulted from the stepper motor resolution.

With 200 steps/rev. and an assumed 1/2 step resolution, the uncertainty was 2.5 µm. The pitch uncertainty

was much smaller at 0.04 mm/25.4 cm or 0.0315 µm for a 200 µm step.

2.3.4 Atmospheric Instrumentation

Air temperature, relative humidity, and atmospheric pressure in the RoBuT room were measured to

determine air properties. Both temperature and humidity were measured with an Omega HX93A probe.

Pressure was measured with an Apogee Instruments BPS 1006 sensor. The output voltage of these sensors

was measured by a NI USB-9215A 4-channel ±10 V analog input DAQ. The uncertainty of temperature was

0.6◦C, humidity was 2.5% for readings 20-80% and 3.1% otherwise, and pressure was 3% of reading. These

data were sampled at 1 Hz, then averaged and recorded once per minute.

2.3.5 Uncertainty Quantification

Thermal and atmospheric data uncertainty quantification (UQ) is described here following methods

of Coleman and Steele [18]. UQ for PIV was considered by other methods and is described later. Bias

uncertainty parameters were obtained from sensor documentation at the 95% confidence level. The random
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uncertainty of a general mean quantity x was calculated by

Sx = t95
Sx√
N

(2.6)

where t95 is the confidence level coefficient (taken as 1.96 for 95% confidence and number of samples N > 30)

and Sx is the sample standard deviation. Bias and random sources are combined as

Ux =
√

B2
x +S2

x (2.7)

where Bx is the expanded bias uncertainty. The data provided with this paper generally specifies the unique

bias, random, and total uncertainty numbers with the mean results.

Uncertainty of the PIV results was calculated from the Uncertainty Surface Method that estimates in-

stantaneous bias and random uncertainties due to the effects of particle displacement, particle image density,

particle image size, and shear. This method was originally described in [19] and improved on with meth-

ods from [16]. The uncertainties of the velocity statistics propagated from the instantaneous uncertainties

were calculated by methods of Wilson & Smith [20]. Total uncertainty was calculated as in Eqn. 2.7. The

confidence level on all UQ results in this work is 95%.

2.4 Boundary Conditions

This section contains a description of all expected requisite BCs for CFD model inputs. The types of

BCs were shown in Table 2.1. The as-built geometry is a BC, but was discussed previously in Sec. 2.2.2.

2.4.1 BC Description

The measured BC temperatures are mapped onto the test section geometry in Fig. 2.7. Note the high

measurement resolution on the heated wall and the development of the thermal boundary layer on the right

wall as air travels from the inlet to the right of the figure.

As mentioned previously, the inflow was measured in nine planes spaced in z with points concentrated

near the side walls. The time-mean streamwise velocity u at the inlet is shown in Fig. 2.8 for the buoyancy-

opposed case. Gray lines indicate PIV measurement locations that span across y. Data are highly-resolved

in y but not in z. Data may be interpolated from the information given. Another approach is to use the high-

resolution data near the unheated top wall (y=305 mm) boundary layer to the left and right walls which are

also unheated.
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Fig. 2.7: Measured temperatures on the test section boundaries
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Fig. 2.8: Measured streamwise velocity u at the inlet for the buoyancy-opposed case

The atmospheric conditions include atmospheric pressure, relative humidity, and room temperature and

were recorded at the time of data acquisition.

Data acquisition procedures were followed to control test conditions. The following list describes the

steps followed for acquisition of both BC and SRQ data:

1. Begin heating of the heated wall

2. Upon reaching setpoint temperature, start blower

3. Align traverses, laser, and camera with test section at measurement location
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4. Align laser sheets

5. Focus camera on particle images

6. Align calibration plane with laser sheet and calibrate camera

7. Determine optimal dt for particle displacement, proper seeding density, and proper laser intensity

8. Record measurement location and other PIV parameters

9. Confirm stability of wall temperature and room conditions

10. Record PIV data, atmospheric and thermal conditions

This process was repeated for PIV measurement locations for the nine inflow and the three SRQ data sets.

Inflow data were acquired in a single day, so only the last three steps were repeated after the first set. Data

for PIV were recorded at twelve locations (nine at the inlet and three along the heated wall). Atmospheric

conditions and thermal measurements were recorded with each PIV data set.

Since the velocity at the inlet is partially developed, some external flow parameters are included. The

momentum thickness was measured from PIV data at the spanwise center (z = 0) location using the integral

δ2 =
∫

∞

0

u
u∞

(
1− u

u∞

)
dy (2.8)

where u∞ is the free-stream velocity and constant density has been assumed [7]. The boundary layers on

both walls were considered from y = 0−0.305 m and the result divided by two. Constant density is a good

approximation at the inlet but not for downstream locations where the near-wall air was heated.

The concept of a virtual origin may also help predict the equivalent length of a flat plate extending

upstream of the inlet. This allows for the impact of the contraction to be assessed. Assuming the flow was

always turbulent, others have determined the relationship [7]

δ2

x
=

0.036ν0.2

u0.2
∞ x0.2 = 0.036Re−0.2

x . (2.9)

The left two portions can be arranged to isolate x as in

ξ =
δ 1.25

2 u0.25
∞

0.0157ν0.25 (2.10)
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where ξ has been substituted for x and is the distance upstream to a virtual origin given δ2 defined earlier.

The results from these analyses are given in Table 2.5. It is reasonable to add these virtual origin distances to

the x values in Table 2.2 when comparing to more canonical flows. Also Rex and subsequently Rix numbers

may also be adjusted. As will be presented, it is reasonable that the buoyancy-opposed case had a larger

boundary layer at the inlet in this low speed flow as this case showed larger layers downstream.

Table 2.5: Boundary layer analysis results

Parameter Aided Opposed
δ2 [mm] 1.61 1.81
ξ [mm] 417 485

2.4.2 BC Data

These data are available for both the buoyancy-aided and opposed cases on the inflow and all four walls

of the test section. There is one file for the measured temperature of each surface that can be found in

Table 2.6. The files may be opened by the links in the digital version. The format for all BC files works

directly with Star-CCM+ and is easily adaptable to other CFD codes. The columns X, Y, and Z are used

throughout this work; adhere to the global coordinates; and are presented in meters. The column ‘T[K]’ is

the mean temperature in Kelvin, ‘B T[K]’ is the bias uncertainty, ‘S T[K]’ is the random uncertainty, and

‘U T[K]’ is the total uncertainty.

Table 2.6: Links to temperature boundary files for both cases

Aided Opposed

Aid-BC-InletTemp Opp-BC-InletTemp

Aid-BC-HeatedWallTemp Opp-BC-HeatedWallTemp

Aid-BC-LeftWallTemp Opp-BC-LeftWallTemp

Aid-BC-TopWallTemp Opp-BC-TopWallTemp

Aid-BC-RightWallTemp Opp-BC-RightWallTemp

The data for the inflow mean and fluctuating velocities are found in the files Aid-BC-Inlet-Vel and Opp-

BC-Inlet-Vel. The columns ‘u’, ‘v’, and ‘w’ are mean velocities in the x, y, and z directions respectively. The

columns ‘u′u′’, ‘v′v′’, ‘w′w′’, and ‘u′v′’ are specific Reynolds stresses. Uncertainties of u, v, and w compose

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=4&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=20&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=3&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=19&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=6&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=22&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=8&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=24&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=7&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=23&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=5&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=21&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=21&article=1007&context=all_datasets&type=additional
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the remaining columns. Reynolds stresses have unique upper and lower uncertainties with ‘Uuup’ being the

plus uncertainty of u′u′ and so on. The units of velocity and velocity uncertainty are [m/s] while those of

Reynolds stresses and their uncertainty are [m2/s2].

Note that inflow out-of-plane velocities w and w′w′ were assumed to be the same as v and v′v′ respec-

tively. This assumption was proved valid in previous work in this facility by measuring the inflow in both

directions with two-component PIV and comparing data where measurement planes intersect [2]. Buoyancy-

aided inflow data for the plane nearest the right wall was questionable and replaced with data nearest the left

wall. As the geometry and thermal conditions are symmetric about z = 0, this was considered justified.

The atmospheric measurements, together with their uncertainties, are found in the files Aid-BC-AtmCond

and Opp-BC-AtmCond.

2.5 Fluid and Material Properties

As air is the working fluid, measurements of temperature, pressure, and relative humidity discussed in

Sec. 2.4.2 are satisfactory to define all fluid properties. It is important to note that the working pressure is

different from that at sea level as the experiment was conducted in Logan, Utah, which is 1460 meters above

sea level.

Material properties of the test section can easily be obtained from the information provided in Sec. 2.2.2

about the construction of the test section. It is not necessary to model the heated wall since temperature

measurements were made very near the surface, but the information is provided for completeness.

2.6 Test Conditions

The RoBuT room was configured with modern HVAC systems and thermal insulation for stable con-

ditions. Controls were independent of other systems in the building. The refrigerated air conditioning had

a ∼ 0.56◦C (1◦F) deadband. The maximum measured temperature spread for both cases near the inflow lo-

cation during data acquisition is 0.7◦C (∼ 1.3◦F). To reduce the rate of temperature change from the on/off

behavior of this system, outside air was mixed with refrigerated air before being injected into the room. Heat-

ing was performed with a steam heat exchanger with attached fan. The original fan and control system were

replaced with a variable speed, tuned, PI-controlled system implemented with the main LabVIEW program,

giving the heating system tight control of the room temperature.

2.7 System Response Quantities

The SRQs are the experimental results used to compare with simulation outputs and were listed in

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=2&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=18&article=1007&context=all_datasets&type=additional
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Table 2.1. Since they are similar, the mean velocity profiles and fluctuating velocity profiles in the form

of Reynolds stresses are presented together. Temperature profiles from the TC probe are presented for the

opposed case. Additionally, scalars of wall heat flux and wall shear stress are also provided.

2.7.1 SRQ Description

Normalized streamwise velocity and Reynolds stress for the buoyancy-aided and buoyancy-opposed

cases are shown in Fig. 2.9 for three measurement locations in x. The bulk velocity ubulk = 2.44 m/s measured

across the inlet is used for normalization. The profile locations correspond to the vertical center of the camera

sensor for reduced perspective error. Uncertainty bands are provided on both profiles that are unique for each

data point. In other words, the uncertainty of u/ubulk and u′u′/(ubulk)
2 varies over y.

The influence of buoyancy is apparent in several regards. The boundary layer velocity and Reynolds

stress is nearly constant for all x in the buoyancy-aided case, indicating little growth in the boundary layer

thickness. The buoyancy-opposed case, however, shows rapid boundary layer growth. Also apparent is

evidence of laminarization in the aided case and the augmentation of Reynolds stresses for the buoyancy-

opposed case typical of mixed convection flows as described in previous works [9, 12].

y [mm]

0 5 10

u
/u

b
u
lk

0

0.2

0.4

0.6

0.8

1

x1

x2

x3

0

0.01

0.02

0.03

0.04

u ′u ′/
(u

b
u
lk )

2

u/ubulk

u′u′/ (ubulk)
2

(a) Buoyancy-aided

y [mm]

0 5 10

u
/u

b
u
lk

0

0.2

0.4

0.6

0.8

1

x1

x2

x3
0

0.01

0.02

0.03

0.04

u ′u ′/
(u

b
u
lk )

2

u/ubulk

u′u′/ (ubulk)
2

(b) Buoyancy-opposed

Fig. 2.9: Normalized streamwise mean velocity u and Reynolds normal stress u′u′ at three locations in x for
both cases

The difference in the two cases reveals the influence of buoyancy on streamwise velocity and streamwise

Reynolds normal stress. This is shown in Fig. 2.10. In these plots, the difference is labeled Diff and is the

buoyancy-aided (Aid) minus the buoyancy-opposed (Opp) results. Buoyancy effects accelerate the boundary
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layer velocity, but this influence is localized near the heated wall. As in the findings of other researchers

in mixed convection, turbulence levels as quantified by u′u′ are increased for the opposed case. Here the

difference is about a factor of two. There is a subtle two-peak nature to u′u′ that is most apparent in their

difference at x1. This may be caused by the 3.175-mm-wide turbulence trips that are upstream of the test

section, especially considering that this profile feature dies out farther downstream.
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Fig. 2.10: Measured streamwise mean velocity u and streamwise Reynolds normal stress u′u′ with buoyancy-
aided (Aid), buoyancy-opposed (Opp), and their difference (Diff) at three locations in x

The measured temperature profile from the TC probe for the buoyancy-opposed case is shown in Fig. 2.11a.

The development of the thermal boundary layer is observable in x. The temperature in the near-wall region

and line fit are shown in Fig. 2.11b. Errors in distance from the wall are corrected by fitting the line through

the measured wall temperature. The first point is not considered as it is likely to have position error. Only

data within y+ ≤ 6.6 are used in the fit as they should be contained in the inner portion of the viscous or

laminar sublayer where linear temperatures are expected. Temperature fluctuations are not included as the

mass of the TC wire rendered it insensitive to the higher frequencies in this flow. These frequencies were

determined with a 50.8−µm diameter tungsten hot-film probe with much less thermal mass.

The intrusive nature of the probe caused an increase in wall heat flux observable in the HFS data acquired

at the time. The largest error of wall heat flux occurred when the probe was touching the heated wall and

steadily decreased as the probe was retracted from the wall. Maximum errors of 18.7%, 10.4%, and 7.93%

were measured at locations x1, x2, and x3, respectively. This effect will only bias the temperature data
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Fig. 2.11: Measured temperature profiles for all three x locations for the opposed case

provided as all other BC and SRQ data were acquired at other times. Intrusive probes should be avoided

in validation experiments as the effect of their presence is often difficult to quantify. As such, the use of

these temperature data is recommended for qualitative analysis but may not be appropriate for quantitative

assessment as an SRQ.

Wall heat flux, as measured by the HFSs, is shown in Fig. 2.12. In laminar flows, buoyancy-aided

mixed convection produces higher heat flux values than for buoyancy-opposed [7]. The current experiments

show the opposite, suggesting turbulence levels are a major contributor to the flux. These observations are

consistent with turbulent mixed convection. As there are no known heat transfer correlations for mixed

convection in developing channel flow, the correlation for fully developed flow in vertical tubes was used as

Eqn. 6 in the work of Jackson et al. [9]. These are consistent with the observed heat flux as the buoyancy

opposed case generated higher heat flux. The correlation values have been adjusted to consider an unheated

starting length with distances from the virtual origin analysis described earlier. The local Nusselt number was

adjusted by

Nux =
Nux|ξ=0[

1− (ξ/x)9/10
]1/9 (2.11)

where the local Nusselt number Nux and Nux|ξ=0 was measured from the leading edge of the unheated starting

length [8].

The measured trends in the streamwise direction x are inconsistent with expected results. The HFS at x2

gives a smaller reading than that at x3 for both cases. It is possible that this trend is caused by an installation
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error of the potted sensors in the heated wall. Even though the cause is unknown, the likelihood of this error

existing is supported by the monotonic decrease in the temperature gradient near the wall with streamwise

distance x as observed in Fig. 2.11b. This decrease suggests a decrease in wall heat flux with x, consistent

with theory.
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Fig. 2.12: Measured wall heat flux plotted along streamwise direction x with correlations for mixed con-
vection for the buoyancy-aided (Aid), buoyancy-opposed (Opp), and their difference (Aid-Opp). Heat Flux
Sensor results are labeled as HFS and correlation results as Corr.

Previous methods to quantify wall shear have fit experimental turbulent velocity data with empirical

models such as Spalding or Musker profiles with high accuracy [21]. This method works well for fully

turbulent boundary layer data where the models are an accurate representation of velocity, but not for the data

in this study due to significant buoyancy effects. Therefore, wall shear stress was estimated directly from

PIV data as τs = µ
∂u
∂y

∣∣
y=0 where τs is wall shear stress and µ is dynamic viscosity. High-resolution PIV data

were used to fit a line to velocity data where y+ = yuτ/ν ≤ 3 to find ∂u
∂y

∣∣
y=0, where uτ =

√
τs/ρ and ρ is

the fluid density [7]. Initially 10 points were included in the fit and a stable iterative method was used to

calculate τs and the number of data points to fit within y+ ≤ 3. The wall was located by the particle images

with a mask carefully defined. The linear fit was performed using linear regression with more weight given

to velocity data with lower uncertainty [22]. The high-resolution PIV data and associated linear fit are shown

in Fig. 2.13. The dynamic viscosity was evaluated using Sutherland’s Law at the wall temperature. The fit

uncertainty was combined with the viscosity uncertainty using the Taylor Series Method [18].
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Fig. 2.13: Streamwise mean velocity u near the heated wall with linear fit for shear stress measurement of the
buoyancy-opposed case

Data acquisition was repeated several times for each case to determine the level of repeatability. There

are generally two versions of the same data with the exception of the buoyancy-aided case at x1, which

has three. Data were acquired between one to ten months apart and, in the buoyancy-opposed case, with a

different camera. The acquisitions were also performed by two different users. The test section was disas-

sembled, repaired, and reassembled between the second (R2) and third (R3) series for the buoyancy-aided

case. The PIV equipment was removed, replaced, and recalibrated between series. The tabulated data in-

cluded in this work are from the series R1 in both cases. The results for the mean streamwise velocity are

shown in Figs. 2.14a & 2.14b for the buoyancy-aided and opposed cases respectively. They show only small

differences that are more apparent in the buoyancy-opposed case.

Repeatability plots for mean streamwise Reynolds stress u′u′ are shown in Figs. 2.15a & 2.15b for the

two cases. The Reynolds stresses are less repeatable than the mean velocity, but only by a moderate amount.

The results at x1 have the largest difference, which may be due to differences in the inflow that become less

important with streamwise development.

As mentioned previously, there is a large difference in turbulence levels between the buoyancy-aided

and opposed cases. Another method for representing the differences is the scatter plot of u′v′. There is

little scatter in the buoyancy-aided case (Fig. 2.16a) compared to the buoyancy-opposed case (Fig. 2.16b),

suggesting laminarization is occurring in the buoyancy-aided case. These results are consistent with the

findings of other works in turbulent mixed convection. The results show the typical predominance of events
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Fig. 2.14: Mean streamwise velocity u with several repeats at three locations in x for both cases
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Fig. 2.15: Measured mean streamwise Reynolds stress u′u′ with several repeats at three locations in x for both
cases

in quadrants 2 and 4, which are related to turbulent ejections and sweeps respectively.

2.7.2 SRQ Data

These data are generally found in one file for each x location with unique files for each orientation. For

all SRQ files, the same global coordinate system is used and units are included in column headers. Links to
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Fig. 2.16: Scatter of instantaneous u′ and v′ at the y-location of largest u′u′ for both cases at x2

the velocity results are found in Table 2.7. Velocities and Reynolds stresses in both measured directions are

given as well as Reynolds shear stress. Uncertainties are provided for all provided quantities as before.

Table 2.7: Links to velocity SRQ files for both cases

Aided Opposed

Aid-SRQ-Vel x1 Opp-SRQ-Vel x1

Aid-SRQ-Vel x2 Opp-SRQ-Vel x2

Aid-SRQ-Vel x3 Opp-SRQ-Vel x3

Temperature profile data are available for the buoyancy-opposed case at all three x locations in files Opp-

SRQ-T x1, Opp-SRQ-T x2, and Opp-SRQ-T x3. Tabulated results for the scalar wall heat flux are compiled

into the files Aid-SRQ-HeatFlux and Opp-SRQ-HeatFlux. Shear results are similarly compiled into files

Aid-SRQ-Shear and Opp-SRQ-Shear.

2.8 Conclusions

This work has presented a highly detailed study on turbulent mixed convection along a vertical, flat plate

using high fidelity instrumentation. The data and description are believed to be sufficient for a CFD validation

study of these physics to determine validation error (Eqn. 2.1) and validation uncertainty (Eqn. 2.2). The

effects of buoyancy were investigated in two orientations, buoyancy-aided and buoyancy-opposed. Buoyancy

was found to have a laminarizing effect on the boundary layer flow in the buoyancy-aided case that suppressed

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=11&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=35&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=12&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=36&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=13&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=37&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=27&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=27&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=28&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=29&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=9&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=25&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=10&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=26&article=1007&context=all_datasets&type=additional
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heat transfer. The buoyancy-opposed case had increased turbulence levels and higher heat flux. All requisite

BCs were measured and provided with their uncertainties. A variety of SRQs were reported for comparison

with simulation outputs. Tabulated data were provided by digital links for direct use. This method of data

description and dissemination can greatly enhance the ability of modelers to assess simulation accuracy.

Furthermore, the inclusion of this information in published works increases their availability.
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CHAPTER 3

EXPERIMENTAL VALIDATION DATA FOR CFD OF TRANSIENT MIXED CONVECTION ON A

VERTICAL FLAT PLATE

Abstract

Transient convection was investigated experimentally for the purpose of providing Computational Fluid

Dynamics (CFD) validation data. A specialized facility for validation experiments called the Rotatable Buoy-

ancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated

plate. The initial condition was forced convection downward with subsequent transition to mixed convection,

ending with natural convection upward after a flow reversal. Data acquisition through the transient was

repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the

benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temper-

ature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet

velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response

Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat

flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data.

Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs

are made available through this paper. The latter two are available for download and the other details are

included in this work.

3.1 Introduction

The purpose of this work is to provide validation data for three-dimensional Computational Fluid Dy-

namics (CFD) models. Model validation will be discussed as well as the physical phenomenon of mixed

convection. The following sections describe the experimental facility, the associated instrumentation, the

boundary conditions (BCs), the fluid and material properties, the test conditions, and the System Response

Quantities (SRQs). This content follows the Validation Experiment Completeness table of Oberkampf and

Smith [1] to guide description of validation experiments. This guidance ensures important details are in-

cluded with a high level of completeness. The work contained herein is a continuation of that by Harris et

al. [2] which covered forced convection using similar methods and facilities.
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This work presents the data in table format for direct use in validating models. The provided data in-

clude the BCs and SRQs shown in Table 3.1. The included BCs in this work should provide modelers with

all required information, avoiding assumptions on model inputs and reducing model form uncertainty [3].

The SRQ data are provided to modelers for direct comparison with model outputs. The experimental un-

certainties of all provided data from bias and random sources are also provided and quantified at the 95%

confidence level. Validation errors can be calculated with the nominal data and validation uncertainty from

the uncertainty of the nominal data [4].

Table 3.1: The available experimental data presented in this work separated into BC and SRQ types

BCs SRQs

As-Built Geometry Velocity Profiles

Wall Temperatures Reynolds Stress Profiles

Inlet Temperature Wall Heat Flux

Inlet Velocity Wall Shear

Atmospheric Conditions

These files are accessible in an online database in the Digital Commons of Utah State University’s

Library. The page dedicated to the data in this work is found at digitalcommons.usu.edu/all datasets/8/.

Links to specific files are included in this work with descriptive file names with the experimental case (Trans),

data type (BC or SRQ), and measured quantity. All data files may be downloaded in the zipped file Data.

Generally, data are in table format as csv files.

3.1.1 Computational Fluid Dynamics Validation

To understand the need for experiments expressly aimed at providing validation data, one must first

understand the different aims of validation and discovery experiments. Discovery experiments are common

in research where new physical phenomena are measured, presented, and discussed. Validation experiments

do not necessarily measure unique phenomena, but the measurement process and description are more com-

plete [5]. In general, older experimental data from discovery experiments are not sufficiently described for

use in validation. Unobtrusive measurement techniques are important in validation experiments since probes

introduce unknown uncertainties to the data. These uncertainties can only be mitigated by including the probe

in the CFD model.

The purpose of validation experiments is to provide the information required to quantify the uncertainty

http://digitalcommons.usu.edu/all_datasets/8/
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=0&article=1007&context=all_datasets&type=additional
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of a mathematical model. This uncertainty helps decision makers quantify model credibility. The ASME

V&V 20 Standard [4] outlines an approach to estimate the validation comparison error and the validation

uncertainty. The validation error E is the difference between the simulation result S and the validation exper-

iment result D as

E = S−D. (3.1)

Calculating the validation uncertainty estimates the confidence interval of the error by considering both nu-

merical and experimental uncertainty. Validation uncertainty is calculated as

Uval =
√

U2
num +U2

input +U2
D, (3.2)

where Unum is the numerical uncertainty, Uinput is the model input uncertainty, and UD is the experimental data

uncertainty. The numerical uncertainty is estimated from solution verification with sources such as iterative

and discretization uncertainty. The latter two uncertainties come from the validation data. The uncertainty in

the measured BCs that are used for model inputs is Uinput. The uncertainty of SRQs—experimental data used

to compare system outputs—is UD. If |E|>>Uval, one can conclude model error remains. But if |E| ≤Uval

and Uval is acceptably small for the intended use of the model, the validation error may be satisfactory. These

general equations show validation data and their uncertainties are required to assess model accuracy via model

validation.

There are several tiers of detail in validation experiments [6], often four as shown in Fig. 3.1. This

work is considered a Benchmark Case that is second in simplicity to Unit Problems. The Benchmark Case,

also called Separate Effects Testing, requires that all model inputs and most model outputs are measured

and that experimental uncertainty is included. In this tier there is generally some level of multi-physics

interaction, such as coupled fluid momentum and heat transfer, that prevents this work from being considered

a Unit Problem. On the other hand, the non-prototypical geometry used in this work keeps it from being a

Subsystem Case.

The planning and execution of validation studies should include both modelers and experimentalists

through all phases. In considering the design of validation systems, SRQs should be measured from a wide

range and high difficulty in the difficulty spectrum as shown in Fig. 3.2. Comparing simulation results

with experimental data from a wide range on the spectrum increases validation confidence. For example,

integral quantities, such as fluid mass flow rate, generally have low experimental noise and random errors.

Derivative quantities like fluid shear are more sensitive to non-ideal conditions. If a model and data are in
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Fig. 3.1: The Validation Hierarchy, after [6]

good agreement at a high level, then it is likely that good agreement will be observed in lower levels. But,

agreement at lower levels does not imply agreement at higher levels [3].

D
if
fi
cu
lty

d�y/dx�

dy/dx

y

∫ y dx

∫∫ y dx�

Fig. 3.2: System Response Quantity Difficulty Spectrum, after [3]. The variables y and x are arbitrary.

3.1.2 Transient Flows

Some studies of non-periodic transient flow have been performed, but as He & Jackson note, only

recently has technology allowed for comprehensive measurements of ensemble averaged transient experi-

ments [7]. This review covers adiabatic and convective ramp-type flow transients. Most of the first experi-
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ments measured either temperature of tube walls or velocity, but not both. A common observation was that

accelerating flow suppresses turbulence while decelerating flow augments it.

The first known work by Koshkin et al. was published in 1970 for turbulent air flow. This study reported

measurements during a change in electrical power and different flow transients, measuring and reporting

temperature [8]. Two similar studies were published in the 1970s and used electrochemical techniques with

probes to measure velocity profiles inside a tube from a step change in flow rate [9, 10].

Rouai [11] performed heat transfer experiments on ramp-up and ramp-down transients as well as peri-

odic pulsating flow with a non-zero time mean. Water was heated by passing an alternating electrical current

through a stainless steel tube. Temperature measurements were made by 24 thermocouples (TCs) welded to

this tube. Flow transients were prescribed by using a constant head tank and varying the flow through the test

section by a valve. Wall heat flux remained constant and changes in wall temperature were measured. The ob-

served Nusselt number departed more from the pseudo-steady values for faster transients and for decelerating

flows, likely from the augmentation of turbulence.

Jackson et al. performed a study on non-periodic ramping transients in a water tube [12]. It was similar

to that by Rouai but measured local fluid temperature with a TC probe and improved computer control and

data logging for greater repeatability and ensemble averaging. The TC probe was small enough to capture

turbulent fluctuations. They also found a suppression of turbulence and consequently wall heat transfer for

accelerating ramps and augmentation during decelerating ramps. They also observed a peak in temperature

fluctuations soon after the start of the ramps.

He & Jackson performed experiments in water using two-component LDA measurements in a clear,

unheated tube. This non-intrusive velocity measurement was one of the first known to the authors for non-

periodic flows. Ensemble averaged results were used for mean and turbulent quantities. The turbulent results

were shown to deviate from pseudo-steady results for short transients. Several nondimensional parameters

were recommended for ramp-type transients [7].

Barker and Williams [13] reported high speed measurements of an unsteady flow with heat transfer in

air. They used a hot wire anemometer, a cold wire temperature probe, and a surface heat flux sensor to

measure heat transfer coefficients for fully-developed turbulent pipe flow. Most results were for periodic

flows, but some were presented for ramp-type transients with negligible buoyancy effects. The measurements

were basic and provided data for conceptual model development.

In the previous studies, little coupling of velocity and thermal measurements was found for flow tran-

sients and buoyancy effects were negligible. Also, as these were discovery experiments, boundary conditions
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were not measured and provided as tabulated data, making the results of limited use for validation. The

facility description is very basic and flow geometries simplified. The current study contributes high fidelity

measurements of a ramp-down transient suitable for validation studies with simultaneous, non-intrusive ve-

locity and thermal measurements to provide validation data on simplified geometry for three-dimensional

simulations.

3.1.3 Mixed Convection

The physics in this study include a flow transient with buoyancy effects, phenomena that have not been

studied together in the known literature. Convective flows with notable buoyancy effects are considered

mixed or combined convection [14]. The Richardson number Ri is a measure of the relative magnitudes of

buoyant and inertial forces and is defined by

Rix = Grx/Re2
x (3.3)

where

Grx = gβ (Ts−T∞)x3/ν
2 (3.4)

and

Rex = ubulkx/ν . (3.5)

In these, g is acceleration due to gravity, β is fluid thermal coefficient of expansion, Ts = 130◦ and T∞ = 20

are surface and fluid temperatures, respectively, x is local streamwise location, ν is fluid kinematic viscosity,

and ubulk is bulk mean velocity. Mixed convection is observed for buoyancy-aided flow when 0.3 < Rix < 16

and for 0.3 < Rix for opposed flow [14].

Table 3.2 shows the streamwise locations x where data were acquired at the spanwise center with the

associated Grx, as well as Rex and Rix at the initial condition. External coordinates were used as the boundary

layers generally do not meet as in fully-developed pipe flow. Fluid properties were evaluated at the film

temperature. Initially buoyancy effects were small but became dominant at later phases of the transient.

3.2 Experimental Facility

All experiments were performed in the Rotatable Buoyancy Tunnel (RoBuT), which will be described

in detail. Benchmark-level validation data were acquired with simple geometry and some multi-physics

interaction. The square test section allowed easy characterization using optical velocity measurements. The
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Table 3.2: Grx as well as Rex and Rix at the initial condition at the three locations in x at the spanwise center
where data were acquired

x [m] Grx Rex (t=0) Rix (t=0)

x1 0.16 1.46 × 107 23,300 0.027

x2 0.78 1.62 × 109 112,000 0.129

x3 1.39 9.32 × 109 201,000 0.231

simple geometry is easy to represent numerically and helps isolate model errors.

3.2.1 Rotatable Buoyancy Tunnel

The RoBuT was an open-circuit air tunnel with a large 4.81-m diameter ‘Ferris wheel’ design that

allowed rotation, thus changing the relative direction of forced flow and buoyant forces without changing

the facility. Many important tunnel components are shown in Fig. 3.3, which is in the buoyancy-opposed

orientation. Note the coordinate system with the origin on the heated wall at the inlet and the spanwise

center. The streamwise distance is x, wall-normal distance is y, and spanwise distance is z with zero along

the centerline. The laser and cameras were part of a Particle Image Velocimetry (PIV) system that will be

described in Sec. 3.3.2.

The test section had a 0.305×0.305 m square cross section and was 2 m long. It had three clear walls for

optical access and a heated wall for a thermal BC. More details of the test section are provided in Sec. 3.2.2.

The contraction and outlet were made of fiberglass-reinforced plastic with a glass-smooth, black gel-coat.

The contraction had an area ratio of 6.25:1 and was 0.914 m long. The contraction bell at the leading

edge had a 102 mm radius. Between the contraction and bell were four modular sections that contained—

in order of flow direction—a single row, aluminum fin/copper tube, chilled water heat exchanger (Super

Radiator Coils Model 30x30-01R-0.625/048); a settling length section; a precision aluminum honeycomb

flow straightener; and two high porosity screens. Square turbulence trips 3.175 mm wide were installed

along all four walls and located about 0.12 m upstream of the test section inlet.

The outlet expanded the flow downstream of the test section, had a total included angle of 8.2◦, and

was 0.686 m long. The blower drew air through the test section and rejected it into the room. It included an

inline centrifugal fan assembly, TCF/Aerovent model 14-CBD-3767-5. It was belt driven by a 5 HP, TEFC,

230-460 VAC induction motor, Toshiba model B0052FLF2AMH03. The motor was powered by a Toshiba

variable frequency drive, model VFS11-2037PM-WN.

Two Laskin Nozzles [15] were used to atomize olive oil tracer particles. These were measured to have
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Fig. 3.3: RoBuT flow components as configured for transient data acquisition

a mean diameter of about 1µm with a TSI Aerodynamic Particle Size Spectrometer at the outlet. These

particles were mixed with air and injected into a PVC pipe distribution system upstream of the contraction

assembly. A peg board was placed between this system and the beginning of the contraction to help mix

particles throughout the flow. It had holes 6.35 mm in diameter and were spaced 25.4 mm apart in a square

pattern.

3.2.2 Test Section

The test section had four walls, an inlet, and an outlet that will be described in detail. The heated wall

was custom designed with many layers to provide a heated surface for convection and featured embedded

instrumentation. Its cross section is shown in Fig. 3.4. This wall was heated to approximately 130◦C for this

study. It was made of several layers of aluminum, had six silicon rubber heaters arranged in the streamwise

direction, and contained thermal insulation to drive most of the heat inward. A list of materials and thick-
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nesses is available in Table 3.3. The surface was nickel plated to reduce thermal radiation which resulted

in a predicted and measured emissivity around 0.03 [2]. Aluminum 2024, though more expensive than the

common alloy 6061, was used because its thermal conductivity is well known [16]. The heated portion was

279 mm wide and 1.89 m long. The left and right sides were thermally insulated by 17.5-mm thick Teflon R©

that extended into grooves in the side walls. Two additional 12.7-mm thick Teflon R© insulators were placed

upstream and downstream of the heated wall. There were six heaters, each spanning the width of the heated

wall and one sixth of the length. Three HP 6439B power supplies were connected to two heaters each and

were used to control the temperature of the wall via a closed-loop PI controller. Three controllers, one for

each power supply, allowed the heated wall to be heated in independent sections in the streamwise direction

to increase temperature uniformity.
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Fig. 3.4: Heated wall cross section with component names as in Table 3.3. The relative thicknesses are to
scale.

The other three walls were clear Lexan R© polycarbonate for optical access and were 12.7 mm thick. From

the perspective of standing on the heated wall at the inlet, they are termed left (z=-152 mm), top (y=305 mm),

and right (z=152 mm) walls. The top wall had a removable center portion for cleaning and maintenance. This

wall also had three 25.4-mm ports for probe insertion.
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Table 3.3: Heated wall components and thicknesses with names from Fig. 3.4

Name Material t [mm]

Nickel Coating Bright Nickel ∼0.05

Al. Surface Plate Al. 2024-T3 3.18

Thermal Epoxy Dow Corning 3-6751 1.02

Kapton R© Kapton R© HN 0.254

Al. Main Plate Al. 6061-T651 6.35

Heater Tempco Silicone Rubber 1.59

Insulation Mineral Wool 25.4

Al. Back Plate Al. 6061-T651 6.35

The as-built geometry was measured to compensate for differences between the as-designed and as-built

test section geometry. The differences were small, but the measurements are presented for completeness.

An internal micrometer was used to measure the internal dimensions of the fully assembled test section.

Height measurements were performed at the left, center, and right as well as width measurements at the

top, middle, and bottom. This was done at seven locations in x and performed three times for a measure

of random uncertainty. Modelers may use these dimensions when constructing the simulation domain to

ensure greater similarity. A sketch of the measurement locations may be accessed from the online database

by the link All-BC-AsBuiltSketch in the digital version of this work. The nominal values are in All-BC-

AsBuiltMeasurements and uncertainties in All-BC-AsBuiltMeasurementUncertainties. A Parasolid model

created from the as-built measurements is available in All-BC-AsBuiltGeometry.

A warm-up procedure was followed each time the RoBuT was used for experiments. Ideally, the HVAC

system would be kept active at all times for stable room conditions. The heated wall was first heated to the

setpoint temperature. Once this was reached, the blower was set to the desired speed for the experiment

and the heater controllers would accordingly increase power. Once the temperature was again stable for at

least five minutes, the facility was ready for data acquisition. If the blower setpoint speed was changed, the

controller would stabilize temperature and a waiting period was repeated for at least five minutes.

Between acquiring different series of data, the entire test section was cleaned with Ethyl Alcohol and

delicate task wipes to ensure optical quality. The cover on the top wall was removed for inside cleaning.

High-vacuum grease was used on test section joints to eliminate air leakage and was removed and reapplied

each time a panel of the test section was adjusted.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=17&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=15&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=15&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=16&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=14&article=1007&context=all_datasets&type=additional
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3.3 Analog Instrumentation and Signal Processing

Validation experiments require high fidelity instrumentation. Thermocouples were used to measure

boundary temperatures, heat flux sensors (HFSs) for heat flux through the heated wall, and PIV for inflow

and boundary layer air velocity. Other sensors measured room air conditions. These systems will now be

described in detail.

3.3.1 Thermal Instrumentation

A total of 307 TCs were used to measure boundary temperatures. All test section TCs were 30 gauge

Type K from Omega Engineering with Special Limits of Error. They were each welded to length with an

Argon-shielded welder. Each TC was calibrated with an Isotherm FASTCAL-M with an accuracy of 0.3◦C

over a range of 25-190◦C with data at every 5◦C. Because every TC calibration was very similar and made

from the same spool, an average calibration curve was applied. An array of 3×5 TCs, three in y and five in

z, was suspended on the downstream side of the honeycomb for inlet air temperature measurements. Each of

the three clear walls had 21 TCs with seven rows spaced in x and three across in y for the left and right walls

or in z for the top wall. The bulk of the heated wall had 5×32 TCs with five in z and 32 in x. The Teflon R©

edges each had embedded TCs with five across the leading edge in z and 32 along the sides in x. All TCs were

embedded to within 3.18 mm of the inside surface using thermal epoxy with enhanced thermal conductivity.

Three HFSs were embedded into the heated wall along the spanwise center at the x-locations found in

Table 3.2. They were model 20457-3 from RdF Corporation and were a thin-film type with a thermopile

around a Kapton R© substrate. The manufacturer supplied unique calibration coefficients for each sensor. The

manufacturer-specified uncertainty was 5% of reading. An embedded Type T TC was used to measure sensor

temperature and correct readings with the supplied multiplication factor curve to compensate for changes

in thermal conductivity of the substrate. The HFSs were placed adjacent to the Kapton R© layer of similar

thermal resistance to reduce measurement errors. A thermal resistance network analysis showed only a 2.4%

difference in heat flux between HFS and non-HFS conduction paths.

The TC and HFS output voltages were small, so special data acquisition (DAQ) devices were selected.

National Instruments (NI) products were used as they interfaced well with the LabVIEW software that was

used for system control and thermal data recording. Twenty one NI-9213 TC modules were housed in five

NI-cDAQ-9188 chassis. The narrow voltage range of±78 mV, 24-bit ADC, and open channel detection made

them well suited for these measurements. The built-in CJC was used for TCs. The total uncertainty of the

calibrated TCs with these DAQs was 1◦C, largely attributable to the CJC uncertainty of 0.8◦C. Data from
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thermal instrumentation were recorded throughout each transient run.

Data from thermal instrumentation was recorded through 2400 runs of the transient. These data were

ensemble-averaged and the bias, random, and total uncertainty were quantified.

3.3.2 Particle Image Velocimetry

The PIV system allowed for non-intrusive, full-field velocity measurements at several locations. The

system consisted of a laser, camera, and timing unit. The laser was a New Wave Research Solo PIV III. It

was a dual cavity, frequency-doubled Nd:Yag model with about 22 mJ/pulse and a wavelength of 532 nm.

The cameras were model Imager sCMOS that featured a 16-bit sCMOS sensor with 2560×2160 pixels with a

pixel size of 6.5µm. An internal, standard version timing unit was used for the stringent timing requirements

of PIV an had a resolution of 10 ns and jitter of <1 ns. Two Nikon lenses were used. The first was an AF

Nikkor 28 mm f/2.8 D used for the large field of view (FOV) inflow and the large FOV SRQ data that spanned

the 0.305-m test section. The second was an AF Micro-Nikkor 105 mm f/2.8 D for high resolution (small

FOV) SRQ data near the heated wall.

DaVis 8.2 software was used to acquire and process images. The optical configuration of Fig. 3.3 was

used with the laser sheet normal to the heated wall and cameras viewing angles nearly parallel with it. The

equipment was moved manually in the x direction. The inflow was measured in the same orientation but

Velmex BiSlide R© traverses were used to move the laser and camera consistently in the z direction. In this

way five planes were measured to map the inflow.

PIV calibration was performed in two ways. The inflow used a conventional two-component ‘ruler’

calibration over a span of about 280 mm since the laser sheet and camera were normal to each other. The

SRQ data were acquired with two independent two-component cameras, one that spans the entire test section

and one that provides high resolution data near the heated wall. The SRQ data that spanned the test section

used a custom two-plane calibration target that filled the image. The SRQ data near the heated wall was

calibrated with a single-plane calibration target. Both SRQ sets used the pinhole model as the cameras were

angled generally less than 5◦. The pinhole model was applicable as refraction between the Lexan R© and air

was small. The near-wall SRQ camera angle was required to avoid image diffraction by the large temperature

gradient very near the wall. Because this flow had very little through-plane motion, errors in v velocity from

through-plane motion appearing as in-plane motion are expected to be small (they are a function of the sine

of the angle).

Prior to acquisition, the quality of the particle images was checked to ensure proper particle density,
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diameter, and displacement as well as laser beam overlap and image focus quality. Many of these data pa-

rameters and others from the acquired images are found in Table 3.4. The diameter, density, and displacement

are spatial averages over the entire image. The maximum displacement was set between 8–32 pixels for all

phases of the transient. To optimize dynamic range, two values of dt were used for each PIV data set. These

are represented with a i/ j in the table with the former being used for early phases and the latter for later

phases. Since the reported values are spatially averaged, some may appear different from ideal simply due to

their non-uniformity in space and in time. These data were taken from a phase near the middle of the tran-

sient. Both particle diameter and density were determined by methods found in [17] with the local maximum

method for density estimation.

Table 3.4: PIV data parameters

Parameter Inlet SRQ-Large FOV SRQ-Small FOV

N image pairs 100/200 100 100

Sample frequency [Hz] 5 5 5

dt [µs] 860/3150 385/1541 96/385

lens 28 mm 28 mm 105 mm

extension [mm] – – 39.5

Calibration [mm/pixel] 0.123 0.121 0.0137

f # 4 4 8

diameter [pixels] 1.98 1.98–2.55 2.68–3.00

density [#/32×32] 86.7 57.3–88.1 8.04–11.8

displacement [pixels] 5.35–31.9 1.34–30.3 2.71–29.8

A MATLAB code was written to reorganize images. During acquisition, a set was recorded over all

phases of the transient. The code would copy images from all runs for a given phase and create a new set.

This process was repeated for all runs so data within each phase could be ensemble-averaged and fluctuations

quantified.

The processing of particle images was performed using the window deformation method in DaVis. A

mask was carefully defined to remove the influence of walls on the correlation. Round interrogation windows

were used for reduced noise. The first two passes were at 128×128 pixels, the next two at 64×64 pixels, and

the final four passes were at 32×32 pixels. The overlap on every pass was 75%. Vector post-processing was

performed where vectors were removed if the peak ratio was less than two. Then a two-pass median filter of

‘strongly remove & iteratively replace’ corrected spurious vectors. Vectors were removed if their difference
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from average was more than one standard deviation of neighbors and subsequently replaced if the difference

from average was less than two standard deviations of neighbors.

Particle images have a sliding background removed where the background is the average of the set.

The pixel range was narrowed in the flow direction to reduce disk space and processing time and was 340

pixels for the inflow images and 512 pixels for the SRQ images. Examples of dewarped particle images with

background subtracted are shown in Fig. 3.5. The heated wall is on right of both images.

(a) SRQ-Small FOV with heated wall at right

(b) SRQ-Large FOV with heated wall at right and top wall at left

Fig. 3.5: Dewarped SRQ particle image at x2 with mean background removed. Note the image scales are
about a factor of nine different.

3.3.3 Atmospheric Instrumentation

Air temperature, relative humidity, and atmospheric pressure in the RoBuT room were measured to

determine air properties. Both temperature and humidity were measured with an Omega HX93A probe.

Pressure was measured with an Apogee Instruments BPS 1006 sensor. The output voltage of these sensors

was measured by a NI USB-9215A 4-channel ±10 V analog input DAQ. The uncertainty of temperature was

0.6◦C, humidity was 2.5% for readings 20-80% and 3.1% otherwise, and pressure was 3% of reading. These

data were sampled at 1 Hz, then averaged and recorded once per minute.
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3.3.4 Uncertainty Quantification

Thermal and atmospheric data uncertainty quantification (UQ) is described here following methods

of Coleman and Steele [18]. UQ for PIV was considered by other methods and is described later. Bias

uncertainty parameters were obtained from sensor documentation at the 95% confidence level. The random

uncertainty of a general mean quantity x was calculated by

Sx = t95
Sx√
N

(3.6)

where t95 is the confidence level coefficient (taken as 1.96 for 95% confidence and number of samples N > 30)

and Sx is the sample standard deviation. Bias and random sources are combined as

Ux =
√

B2
x +S2

x (3.7)

where Bx is the expanded bias uncertainty. The data provided with this paper generally specifies the unique

bias, random, and total uncertainty numbers with the mean results.

Uncertainty of the PIV results was calculated from the Uncertainty Surface Method that estimates in-

stantaneous bias and random uncertainties due to the effects of particle displacement, particle image density,

particle image size, and shear. This method was originally described in [19] and improved on with meth-

ods from [17]. The uncertainties of the velocity statistics propagated from the instantaneous uncertainties

were calculated by methods of Wilson & Smith [20]. Total uncertainty was calculated as in Eqn. 3.7. The

confidence level on all UQ results in this work is 95%.

3.4 Boundary Conditions

This section contains a description of all expected requisite BCs for CFD model inputs. The types of

BCs are shown in Table 3.1. The as-built geometry is a BC, but was discussed previously in Sec. 3.2.2.

3.4.1 BC Description

The measured BC temperatures are mapped onto the test section geometry in Fig. 3.6. Note the high

measurement resolution on the heated wall and the development of the thermal boundary layer on the right

wall as air travels from the inlet to the right of the figure.

As mentioned previously, the inflow was measured in five planes spaced in z with locations concentrated

near the side walls. The time mean streamwise velocity u at the inlet is shown in Fig. 3.7 at the initial
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Fig. 3.6: Measured temperatures on the test section boundaries

condition. Gray lines indicate PIV measurement locations that span across y (two are at the left and right

edges). Data are highly-resolved in y but not in z. Data may be interpolated from the information given.

Another approach is to use the high-resolution data near the unheated top wall (y=305 mm) boundary layer

to the left and right walls which are also unheated.
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Fig. 3.7: Measured streamwise velocity u at the inlet and the initial condition

The atmospheric conditions include atmospheric pressure, relative humidity, and room temperature and

were recorded at the time of data acquisition.

Data acquisition procedures were followed to control test conditions. The following list describes the

steps followed for acquisition of both BC and SRQ data:
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1. Begin heating of the heated wall

2. Upon reaching setpoint temperature, start blower

3. Align traverses, laser, and camera with test section at measurement location

4. Align laser sheets

5. Focus camera on particle images

6. Align calibration plane with laser sheet and calibrate camera(s)

7. Determine optimal dt for particle displacement, proper seeding density, and proper laser intensity

8. Record measurement location and other PIV parameters

9. Confirm stability of wall temperature and room conditions

10. Record PIV data, atmospheric and thermal conditions

This process was repeated for PIV measurement locations for the five inflow and the three SRQ data sets.

The acquisitions were automated by a LabVIEW program which controlled the conditions, determined when

they were stable, initiated the transient and data acquisition (both thermal and PIV), and repeated.

3.4.2 BC Data

These data are available for all phases of the transient on the inflow and all four walls of the test section.

There is one file for each surface that can be found through the following links: Trans-BC-InletTemp, Trans-

BC-HeatedWallTemp, Trans-BC-LeftWallTemp, Trans-BC-RightWallTemp, and Trans-BC-TopWallTemp.

The format for all BC files works directly with Star-CCM+ and is easily adaptable to other CFD codes.

The columns X, Y, and Z are used throughout this work; adhere to the global coordinates; and are presented

in meters. The column ‘T(K)’ is the mean temperature in Kelvin, ‘B T(K)’ is the bias uncertainty, ‘S T(K)’

is the random uncertainty, and ‘U T(K)’ is the total uncertainty. Additionally the time stamps are included

for each column header as in ‘T(K)[t=0s]’, ‘T(K)[t=0.2s]’ and so forth.

The data file for the inflow mean and fluctuating velocities is found in Trans-BC-Inlet-Vel. Here X, Y,

and Z are again used as before and are presented in meters. The columns ‘u’, ‘v’, and ‘w’ are mean velocities

in the x, y, and z directions, respectively. The columns ‘u′u′’, ‘v′v′’, ‘w′w′’, and ‘u′v′’ are specific Reynolds

stresses. Uncertainties compose the remaining columns with the uncertainty of u, v, and w. Reynolds stresses

have unique plus and minus uncertainties with ‘Uuup’ being the plus uncertainty of u′u′ and so on. The

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=32&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=31&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=31&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=38&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=39&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=34&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=33&article=1007&context=all_datasets&type=additional
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units of velocity and velocity uncertainty are [m/s] while those of Reynolds stresses and their uncertainty are

[m2/s2]. Again, time stamps are included in column headers.

Note that inflow out-of-plane velocities w and w′w′ were assumed to be the same as v and v′v′ respec-

tively. This assumption was proved valid in previous work in this facility by measuring the inflow in both

directions with two-component PIV and comparing data where measurement planes intersect [2]. The atmo-

spheric measurements, together with their uncertainties, are found in the file Trans-BC-AtmCond.

3.5 Fluid and Material Properties

As air is the working fluid, measurements of temperature, pressure, and relative humidity discussed in

Sec. 3.4.2 are satisfactory to define all fluid properties. It is important to note that the working pressure is

different from that at sea level as the experiment was conducted in Logan, Utah, which is 1460 meters above

sea level.

Material properties of the test section can easily be obtained from the information provided in Sec. 3.2.2

about the construction of the test section. It is not necessary to model the heated wall since temperature

measurements were made very near the surface, but the information is provided for completeness.

3.6 Test Conditions

For improved statistics, the data were ensemble-averaged over repeated runs. A total of 2400 runs

were used, with 100-200 for each PIV acquisition location and dt. Steady thermal conditions triggered data

acquisitions and simultaneously cut power to the blower, initiating transient conditions. Heater power was

fixed through each run.

LabView was used to control the conditions and to acquire thermal data via a National Instruments

data acquisition system. This system created the master TTL clock and also triggered the PIV system for

synchronized thermal and velocity data acquisition. Data were acquired at 5 Hz for a period of 20.2 s. The

initial condition was forced convection downward with the heated wall at 130◦C. Blower power was removed

and the drum-type blower was allowed to coast to a stop, which took about 10 s. This resulted in ramp-down

bulk velocity and subsequent flow reversal by natural convection. The bulk velocity at the test section inlet

at the centerline plane is shown in Fig. 3.8. The bulk velocity approaches zero at the end since there is both

natural convection upward near the heated wall and recirculating flow downward far from the wall. There was

measurable delay in the blower drive system, so t = 0 was prescribed as the last phase where the bulk velocity

matched the initial condition. Thus, the useful transient time spans 0 ≤ t ≤ 18.2 s and data are presented in

this range.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=30&article=1007&context=all_datasets&type=additional
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Fig. 3.8: Bulk velocity across the inlet at the spanwise center (z = 0) through time

The RoBuT room was configured with modern HVAC systems and thermal insulation for stable condi-

tions. Controls were independent of other systems in the building. The refrigerated air conditioning had a

∼ 0.56◦C (1◦F) deadband. The maximum measured temperature spread during data acquisition was 0.9◦C

(∼ 1.6◦F). To reduce the rate of temperature change from the on/off behavior of this system, outside air was

mixed with refrigerated air before being injected into the room. Heating was performed with a steam heat

exchanger with attached fan. The original fan and control system were replaced with a variable speed, tuned,

PI-controlled system implemented with the main LabVIEW program, giving the heating system tight control

of the room temperature.

3.7 System Response Quantities

The SRQs are the experimental results used to compare with simulation outputs and were listed in

Table 3.1. They are included for all phases of the transient and include uncertainty on all results. Since

they are similar, the ensemble-average and fluctuating velocity profiles in the form of Reynolds stresses are

presented together. Additionally scalars of wall heat flux and wall shear stress are also included.

3.7.1 SRQ Description

Profiles of streamwise velocity u and Reynolds normal stress u′u′ are shown in Fig. 3.9 at three locations

in x for the top (x1), middle (x2), and bottom (x3). The boundary layer thickness increases in the streamwise

direction x as evidenced in both the u and u′u′ profiles at the initial condition as expected. The velocity

profile shape generally remains similar but is reduced in magnitude during the first four seconds. At t = 8 s,

the contribution from natural convection begins affecting the profiles near the heated wall (y = 0). At t = 12 s

the profiles show a strong influence from natural convection. The changes from t = 12− 16 s are subtle as
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steady natural convection is asymptotically reached. The results for Reynolds normal stress u′u′ show larger

uncertainty, but this is expected as fluctuations are more challenging to quantify than averages. Initially u′u′

is elevated near both walls as expected. The influence of natural convection increases u′u′ near the heated

wall initially. The area of elevated u′u′ moves away from the wall over time. The phase of t = 12 s has the

highest levels, likely from a chaotic flow reversal. The final measured state has reduced stresses and may still

be decreasing.

Uncertainty of the PIV results was calculated from the Uncertainty Surface Method which estimates

instantaneous bias and random uncertainties due to the effects of particle displacement, particle image density,

particle image size, and shear originally described in [19] and improved upon with methods from [17]. The

uncertainties of the velocity statistics propagated from the instantaneous uncertainties were calculated by

methods of Wilson & Smith [20]. Total uncertainty was calculated as in Eqn. 3.7. The confidence level on all

UQ results in this work is 95%.

Previous methods to quantify wall shear have fit experimental velocity data with empirical correlations

such as Spalding or Musker profiles with high accuracy [21]. This method works well for steady boundary

layer data where the profiles are an accurate representation of velocity, but not for the transient conditions in

the current study. Therefore wall shear stress was estimated directly from PIV data as τs = µ
∂u
∂y

∣∣
y=0 where

τs is wall shear stress and µ is dynamic viscosity. High-resolution PIV data were used to fit a line to velocity

data where y+ = yuτ/ν ≤ 5 for ∂u
∂y

∣∣
y=0, where uτ =

√
τs/ρ and ρ is the fluid density [14]. Initially 10 points

were included in the fit and a stable iterative method was used to calculate τs and the number of data points

to fit within y+ ≤ 5. The wall was located by the particle images with a mask carefully defined. The linear fit

was performed using linear regression with more weight given to velocity data with lower uncertainty [22].

The high-resolution PIV data at x2 and associated linear fit are shown in Fig. 3.10 for five phases of the

transient. The fit was not forced to the wall as wall location errors would be compounded and not easily

quantifiable in the uncertainty estimation. The dynamic viscosity was evaluated using Sutherland’s Law at

the wall temperature. The fit uncertainty was combined with the viscosity uncertainty using the Taylor Series

Method [18].

Results for the scalars of wall heat flux and wall shear stress are shown in Fig. 3.11 at the same three

x locations through time with their associated uncertainty bands. The experimental heat flux came from the

Heat Flux Sensors (HFSs) using the manufacturer-calibrated sensitivity. The uncertainty included 5% bias

while the random values were measured. The experimental results from the HFSs show a low sensitivity to

convection due to the thermal capacitance of the heated wall in which they were embedded. The wall shear
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Fig. 3.9: The streamwise velocity u and Reynolds normal stress u′u′ at three locations in x and five phases of
the transient

results are somewhat noisy at high levels of shear, likely from the decreased accuracy of PIV data near walls

with large velocity gradients and the relatively lower number of points in the fit. When the shear decreases,

more points can be used in the fit for smoother results with decreased uncertainty. The shear smoothly

changes sign as the near-wall flow reverses.
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Fig. 3.10: High-resolution PIV data near the heated wall with linear fit

3.7.2 SRQ Data

Like the BC data, the SRQ data and their uncertainties are tabulated for use in validation studies. They

are contained in comma separated files with the *.csv extension and can be opened in a spreadsheet program

or a simple text editor. All resulting PIV data are made available from both cameras with headers similar

to the BC PIV data presented earlier. They contain data at all three x locations as specified in the files. As

with the BC data, the full uncertainties at 95% confidence are provided with unique positive and negative

uncertainties for Reynolds stresses. The small FOV data are found in the file Trans-SRQ-Vel-SmallFOV and

the large FOV in Trans-SRQ-Vel-LargeFOV.

Wall heat flux results are given for all three sensors along x with specified bias, random, and total uncer-

tainty and found in the file Trans-SRQ-HeatFlux. Wall shear is similarly formatted, has the total uncertainty,

and is found in the file Trans-SRQ-Shear.

3.8 Conclusions

This paper presented the study of a ramp-down flow transient with heat transfer and buoyancy effects

in simplified geometry to provide CFD validation data. Repeated runs provide high resolution data for

ensemble-averaging and turbulent statistics of high resolution data. The provided BCs and SRQs, listed

in Table 3.1 for the conditions in Table 3.2, are tabulated and available for download. Uncertainty is also

included for all presented data. The data contain rich and comprehensive coverage of this flow. They enable

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=43&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=42&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=40&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=41&article=1007&context=all_datasets&type=additional
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Fig. 3.11: The heated wall heat flux and wall shear stress plotted over time

validation studies to assess model accuracy and are necessary to calculate simulation uncertainty.
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CHAPTER 4

WALL HEAT FLUX MEASUREMENTS IN A CONVECTING BOUNDARY LAYER

Abstract

Wall heat flux measurements were made by measuring the temperature gradient in air very near a heated

plate under convection conditions. Air thermal conductivity was predicted using the locally-measured tem-

perature and reference data. A fine-wire thermocouple probe was designed, built, and used for these mea-

surements and has the ability to self-align to the surface. Commercial sensors that were potted inside the

plate were compared with this first-principles method for accuracy assessment.

4.1 Introduction

Heat flux is one desirable measurement for computational fluid dynamics (CFD) validation experiments

performed with the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Model Validation is done

by matching inputs and comparing outputs of experiments and simulations. Simulation accuracy can be

assessed by this comparison. Validation is more rigorous with derivative quantities such as heat flux as they

are more susceptible to experimental noise and numerical errors compared to integral quantities [1].

Validation experiments are the main purpose of the RoBuT, whose major flow components are shown in

Fig. 4.1. The components shown were mounted in a rotating ‘Ferris wheel’ structure to change the relative

direction of natural convection and forced convection. The test section had three clear walls for optical access

and one heated wall for a convection boundary condition. The cross section was 0.305 m square and the test

section 2 m long. Three thin-film heat flux sensors (HFSs) from RdF Corporation were potted inside the

heated wall in the streamwise (x) direction at the spanwise center. These sensors were based on the spatial

temperature gradient method and are shown, along with the many layers of the heated wall, in Fig. 4.2.

The sensors were model 20457-3 and had a thermopile around a Kapton R© substrate. The manufacturer

supplied unique calibration coefficients for each sensor. The manufacturer-specified uncertainty was 5% of

reading. An embedded Type T thermocouple (TC) was used to measure sensor temperature. This temperature

was used to correct readings for changes in thermal conductivity of the substrate with a multiplication factor

curve. The HFSs were placed adjacent to the Kapton R© layer of similar thermal resistance to reduce measure-

ment errors by non-uniform conduction paths. An initial thermal resistance network analysis between HFS
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Fig. 4.1: Important flow components of the Rotatable Buoyancy Tunnel

and non-HFS conduction paths showed only a 2.4% difference in heat flux.

Preliminary experiments have shown that the measured heat flux does not match fundamental trends

as shown in Fig. 4.3, specifically decreasing heat flux with boundary layer development with increasing x.

Two correlations are shown with the experimental results [2, 3]. The correlation trends are not smooth, a

result of the measured center-line wall temperature, which has small gradients. The trend was concerning

and it was possible that the sensor sensitivities were mixed-up, the sensors had an installation error, or other

manufacturer-supplied parameters were incorrect. As heat flux was important to this experiment, developing

a means to assess sensor accuracy and possibly quantify errors was desired. Since they were potted inside the

heated wall, only in-situ methods were possible without damaging the heated wall.

Installation error is possible if heat transfer conditions were different between calibration and use. The

RdF sensors were calibrated to a reference sensor that was calibrated at 70◦F in radiation using a blackbody
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Fig. 4.2: Heated wall cross section with relative thicknesses to scale. The HFS label is near the top.

source [4]. Since the sensors were potted in the heated wall, the heat transfer mode was conduction. The

different heat transfer modes, the elevated operation temperature, and the possibility of non-uniform thermal

resistance in the sensor area have been identified as possible error sources [5].

4.2 Theory

Heat flux measurements can be challenging due to the complex thermal environments involved and

multi-mode heat transfer which is often present. All known sensors are intrusive and are likely to disrupt

thermal conditions where they are placed. Several commercial sensor options are available, but care must be

taken to maintain uniform thermal resistance around the sensors [6].

The three main methods for measuring heat flux are based on: 1) spatial temperature gradients, 2)

temperature change with time, and 3) surface heating [6]. The spatial temperature gradient method is used

in the purchased RdF thin-film sensors. Adding a reference HFS of this type to the surface would disrupt

local convection conditions. The calorimeter method uses heat storage over time to measure flux, but this

assumes the temperature throughout the body is uniform. The heated wall was likely to have temperature
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gradients through the thickness, especially in the epoxy where the thermal conductivity was about 1/100 of

that of the adjacent aluminum. Temperature gradients were also likely in both spanwise directions. Surface

heating methods were not well developed nor described and were not a good option.

Sensors based on spatial temperature gradients are common and will be described in greater detail.

Fourier’s law is essential to their operation and is

q′′ =−k
dT
dy
≈−k

∆T
∆y

(4.1)

where q′′ is heat flux, k is the substrate thermal conductivity, T is temperature, and y is the direction of heat

flux [3]. The temperature gradient is often estimated by a differential temperature measurement (∆T ) across a

thermopile (array of differential TCs) across a substrate, such as in the RdF sensors. Generally, the substrate

thickness (∆y) and thermal conductivity are not known accurately enough for the overall desired accuracy, so

sensor calibration is commonly performed.

An independent heat flux measurement technique was desirable to assess the accuracy of the potted

HFSs. The HFSs measured heat flux near the surface of the heated wall. The convective heat flux from the

wall to the air should be equivalent, especially very near the wall and departed from the side walls. Radiation

heat transfer was minimized by the nickel plating on the heated wall meant to reduce thermal radiation. The

predicted and measured emissivity was around 0.03 [7]. Very near the wall, within the inner portion of the

viscous sublayer, the temperature profile should be linear [2]. If the temperature profile can be measured

within this region and the thermal conductivity of air k can be estimated by the measured temperature and
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reference data [8], convective heat flux measurements from a surface are possible.

Others have made near-wall temperature measurements. An early study by Warner and Arpaci used a

butt-welded TC probe of 12.7 µm diameter oriented parallel to a vertical flat plate and perpendicular to the

flow direction. It was traversed with a motor-driven carriage near the heated wall under turbulent natural

convection. The position was accurate to 5.08 µm within the first 25.4 mm and to 15.2 µm farther from the

wall. They were able to measure temperature profiles and subsequently heat flux [9]. In another study of

a turbulent boundary layer under forced convection, temperature profiles were measured by a TC probe of

76.2 µm diameter and about 12.7 mm long suspended by 22-gauge hypodermic needles oriented parallel to

the plate and perpendicular to the flow direction. This probe was also traversed with a mechanism that was

accurate to 25.4 µm. These results, along with velocity measurements, were used to present many heat flux,

shear, and turbulent Prandtl number results for this canonical flow [10].

4.3 Method

An independent heat flux measurement was conceived to assess the accuracy of the HFSs inside the

heated wall. After several iterations of design and testing, the final sensor was able to measure heat flux

with an uncertainty of less than 10% while disrupting the actual heat flux only moderately. The design was

based on the spatial temperature gradient like the thin-film sensors, but measured heat flux in air very near the

heated wall. The heat transfer inside the wall was by conduction. At the surface, heat transfer was mainly due

to convection. As mentioned previously, thermal radiation from the heated wall was minimized by a nickel

coating.

The sensor design was similar to that used by Blackwell et al. [10] and was a TC oriented parallel to the

wall and perpendicular to the flow direction. The new design is shown in Fig. 4.4 with the pivot, brace, and

TC junction identified. The junction of the probe was formed by type K wires of diameter DTC = 0.051 mm

from Omega Engineering. The two lead wires were aligned parallel to the wall with a length of 15.3 mm

(∼ 300DTC) to reduce conduction losses. The junction was formed by spot welding overlapping wires. After

welding, the wire was pulled tight and epoxied in place. The fine wire was welded to thicker 0.511-mm wire

that spanned the pivot and was connected to the data acquisition system (DAQ). The brace was rigid enough

to keep the wire tight and made of plastic for small conduction losses.

The pivot allowed the probe to self-align to the wall prior to each acquisition, reducing measurement

errors. Alignment was done by moving the probe into the wall until both ends of the brace were pressed

firmly and any angle corrected, then pulling the probe away from the wall. The alignment process is shown
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Fig. 4.5: Self-alignment process of the TC Probe with the heated wall

The pictured head of the TC probe was supported by a stainless steel tube with 3.76-mm outside diame-

ter that spanned the test section and exited the wall opposite the heated wall. This tube contained the TC wires

and was connected to a Velmex Inc. UniSlide R© traverse model B4015Q2J. This traverse was used for small,

incremental movements such as 200 µm. The distance from the wall was estimated by fitting a line to the mea-

sured temperature profile very near the wall to the temperature of the wall measured by embedded TCs. The

largest uncertainty in position resulted from the stepper motor resolution. With 200 steps/rev. and assuming

1/2 step resolution, the uncertainty was 2.5 µm. The pitch uncertainty was much smaller at 0.04 mm/25.4 cm

or 0.0315 µm for a 200 µm step. Traverse backlash should not be a problem since traversing was done in one

direction only and the first point was ignored.

The probe was used in the spanwise center of the test section, directly over the three potted HFSs. Three

25.4 mm access ports were drilled into the wall opposite the heated wall at the x locations of the HFSs. Once
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inserted, a collar was used to support the probe tube and fill the port gap. The x locations of the HFSs and

the ports were x1 = 16.2 cm, x2 = 77.8 cm, and x3 = 139 cm from the inlet to the test section. These three

positions were used for analysis throughout this work.

The output voltages of the TCs and HFSs were small, so specialized DAQ devices were selected. Na-

tional Instruments (NI) products were used as they interfaced well with the LabVIEW software that was used

for system control and thermal data recording. All TCs and HFSs were measured with NI-9213 TC modules.

The narrow voltage range of ±78 mV, 24-bit ADC, and open channel detection capability made them well

suited for these measurements. The built-in CJC was used for TCs.

The TC probe was not calibrated, so the standard bias uncertainty of 2.2◦C for type K TCs was used.

The bias uncertainty of the DAQ was 0.8◦C, resulting in overall bias uncertainty as

BT =
√

B2
TC +B2

DAQ = 2.34◦C. (4.2)

The random uncertainty was calculated from the data as

ST = t95
ST√

N
(4.3)

where t95 is the confidence level coefficient (taken as 1.96 for 95% confidence and number of samples N > 30)

and ST is the sample standard deviation. Bias and random sources were combined as

UT =
√

B2
T
+S2

T
. (4.4)

The probe may be subject to conduction losses that could lead to measurement error. Accordingly, this

error was estimated using a 1-D fin equation with non-uniform ambient temperature. Velocity profiles were

measured at the three x locations by Particle Image Velocimetry (PIV) under the same conditions but with

the probe removed. The measured temperature and velocity profiles were used to estimate fluid properties

and heat transfer coefficients. Heat conduction was considered from the TC junction through the wires that

were parallel with the heated wall. Then combined conduction and convection were considered in the wires

departing from the wall to the lower temperature air. The epoxy in this area would have an insulating effect

on the potted wires, reducing errors, but this effect was conservatively neglected. The largest predicted error

from losses was estimated at 0.03◦C at the wall at x1.

Two convection conditions were measured, forced and mixed. In forced convection, buoyancy forces



74

were small compared to pressure forces and the effects of natural convection were practically negligible.

Mixed convection, however, had natural convection forces similar in magnitude to pressure forces. The

forced flow was downward, creating buoyancy-opposed mixed convection where forces of natural and forced

convection are in opposite directions [3]. The wall temperature was about 140◦C for both cases. The bulk

velocities were 4.31 and 2.44 m/s for forced and mixed convection respectively. The flow was only partially-

developed in the test section, so the physics were more like external than internal flow.

In addition to forced and mixed convection tests at the three x locations, tests were performed to iso-

late the error source of the HFS readings. Factorial experiments from Design of Experiments (DOE) were

implemented [11]. Data were acquired and errors quantified at the farthest downstream location at x3 with

the TC probe. Three parameters were changed during the tests: air velocity, axial conduction in the heated

wall, and temperature magnitude of the heated wall. The values used for these parameters are shown in Ta-

ble 4.1 for the ten cases. Axial conduction was prescribed by independently controlling the temperature in

three heating zones in the streamwise direction. The variation of these parameters is depicted in Fig. 4.6 with

two levels of temperature and velocity and three for axial conduction. Extending the parameters to twelve

cases was desirable but not feasible. The two velocity levels correspond to forced and mixed convection. The

cases numbered 1–10 represent unique combinations of the three parameters with relative magnitudes prop-

erly shown on the three axes. The order of these tests was randomized for measurement independence and

repeated three times to determine the level of repeatability. Results were averaged over the three repetitions.

Table 4.1: Parameters for the Design of Experiment study

Case ubulk [m/s] ∂T/∂x [◦C/m] Tmax [◦C]

1 4.31 0 120

2 2.44 0 120

3 2.44 0 80

4 4.31 0 80

5 4.31 32.5 120

6 2.44 32.5 120

7 2.44 32.5 80

8 4.31 32.5 80

9 4.31 64.9 120

10 2.44 64.9 120
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4.4 Results

The measured temperature profiles from the TC probe for both forced and mixed convection are shown

in Fig. 4.7. The spatial resolution of the first eight points was 200µm. Subsequent spacing increases with

increasing distance from the heated wall and the last several points measured the free-stream temperature.

The development of the thermal boundary layer is observable in x in both cases and the larger boundary layer

is seen for the mixed case (lower velocity) as expected. Each location is the time mean of 250 points acquired

at 15 hz. The traverse started the probe head at the heated wall and pulled it away, allowing several seconds

for each move and for the probe to come into thermal equilibrium.
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Fig. 4.7: Measured temperature profiles for both cases and all three x locations
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The same temperature data in the near-wall region and line fit are shown in Fig. 4.8. For the line

fit, initially eight points were included in the fit and a stable iterative method was used to calculate the

temperature gradient and the number of data points to fit within y+ ≤ 6.6, half the critical y+ value for air.

This ensured the fitted data were within the inner portion of the viscous sublayer where linear temperatures

were expected. The first point was not considered as it is likely to have position error. Errors in wall position

were corrected by taking the temperature gradient to the measured wall temperature. The linear fit was

performed using linear regression with more weight given to data with lower uncertainty [12]. This method

also provided a measure of the fit uncertainty.
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Fig. 4.8: Measured temperature profiles near the heated wall with line fit for both cases for all three x loca-
tions. Note the unique wall temperature values Ts as the wall is nearly isothermal. Ts at x1 is several degrees
cooler than at x2 and x3.

Nondimensional profiles are shown and compared with the thermal law of the wall [2] in Fig. 4.9. The

agreement is excellent for y+ ≤∼ 6. The results in the buffer layer and fully turbulent region are about five

below the expected values, likely due to the partially-developed nature of the measurement region. Tempera-

ture fluctuations are not presented as the mass of the TC wire rendered it insensitive to the higher frequencies

in this flow. These frequencies were determined to be about 300–600 Hz with a 50.8−µm diameter tungsten

hot-film probe with much less thermal mass.

The intrusive nature of the probe caused an increase in wall heat flux observable in the HFS data acquired

at the time. The largest error of wall heat flux occurred when the probe was touching the heated wall and

steadily decreased as the probe was retracted from the wall. Maximum errors of 9.84%, 9.90%, and 8.61%
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Fig. 4.9: Measured nondimensional temperature profiles with the thermal law of the wall for air for both
cases and all three x locations

for the forced case and of 18.7%, 10.4%, and 7.93% for the mixed case were measured at locations x1, x2,

and x3 respectively. The likely cause of the heat flux increase is an increase in local turbulence levels caused

by the probe. The forced convection case had very consistent errors and was fully turbulent as measured with

PIV at a separate time in these conditions. The mixed convection case had a large range of error levels and

was likely intermittently turbulent. In this case, the presence of the probe likely increased turbulence levels

such as by a turbulence trip.

Published correlations for heat transfer can be used for comparison with both the HFS and TC probe

results. First is turbulent forced convection over a flat plate. The local Stanton number correlation is

St =
Nux

RexPr
=

0.0287Re−0.2
x

0.169Re−0.1
x (13.2Pr−9.25)+0.85

(4.5)

where Nux is the local Nusselt number, Rex is the local Reynolds number, and Pr is the Prandtl number [2].

Once the Nusselt number is solved from this correlation, heat flux was calculated as q′′ = Nuxk(Ts−T∞)/x

where q′′ is heat flux, k is fluid thermal conductivity, Ts and T∞ are surface and free-stream temperatures

respectively, and x is the streamwise distance from the leading edge.

As there are no known heat transfer correlations for mixed convection in developing channel flow, the

correlation for fully developed turbulent flow in vertical tubes was used from the work of Jackson et al. [13]
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as in
Nu
NuF

=

∣∣∣∣1±
104Gr

Re2.7Pr0.5

∣∣∣∣
0.46

(4.6)

where NuF is the forced convection Nusselt number as calculated by Eqn. 4.5 and Gr is the Grashof number.

The plus sign is used for buoyancy-opposed flows such as that investigated in this work while a minus sign

applies to buoyancy-aided flows. Local values for Nux, NuF,x, Grx, and Rex were used in place of the fully-

developed variables.

As the boundary layers are partially developed at the inlet where x = 0, considering an unheated starting

length was thought to improve agreement between measured values and correlations. This process required

three calculations: 1) the momentum thickness at the inlet, 2) the distance upstream to a virtual origin, and 3)

adjusting heat transfer correlations using the virtual origin as an unheated starting length. First the momentum

thickness was calculated from PIV data at the spanwise center (z = 0) location at the inlet (x = 0) using the

integral

δ2 =
∫

∞

0

u
u∞

(
1− u

u∞

)
dy (4.7)

where δ2 is the momentum thickness, u is the time mean velocity across y, and u∞ is the time mean free-

stream velocity [2]. Constant density has been assumed. This is a good approximation at the inlet which is

upstream of the heated wall but would be inappropriate downstream where the near-wall air was heated. The

boundary layers on both walls were considered and the result divided by two.

The calculation of a virtual origin was the second step and predicts the equivalent length of a flat plate

extending upstream of the inlet. This allows for the impact of the contraction to be assessed simply, even

though the geometry is very complex. Assuming the flow was always turbulent, the relationship has been

derived as
δ2

x
=

0.036ν0.2

u0.2
∞ x0.2 = 0.036Re−0.2

x (4.8)

where ν is kinematic viscosity [2]. The left two portions can be arranged to isolate x as in

ξ =
δ 1.25

2 u0.25
∞

0.0157ν0.25 (4.9)

where ξ has been substituted for x and is the distance upstream to a virtual origin given δ2 defined earlier.

The results from the first two analyses are given in Table 4.2 for both cases. As expected, the momentum

thickness is larger for mixed convection. It is reasonable to add these virtual origin distances to the x values

in this work when comparing to more canonical flows. Also Rex may be adjusted.
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Table 4.2: Boundary layer analysis results from velocity data at the inlet

Parameter Forced Mixed

δ2 [mm] 1.18 1.73

ξ [mm] 327 458

The third calculation was to adjust the correlation results for an unheated starting length with distances

from the virtual origin analysis. The local Nusselt number was augmented by

Nux =
Nux|ξ=0[

1− (ξ/x)9/10
]1/9 (4.10)

where the local Nusselt number Nux and Nux|ξ=0 was measured from the leading edge of the unheated starting

length [3]. The adjusted flux values were slightly higher than the original, also an expected result.

Wall heat flux as measured by the HFSs and TC probe is shown in Fig. 4.10 with published correlations.

The measured HFS trends in the streamwise direction x are inconsistent with expected results. The HFS at

x2 gives a smaller reading than that at x3 for both cases. The likelihood that this error is real is supported

by the monotonic decrease in the temperature gradient near the wall with streamwise distance x as observed

in the TC probe results of Fig. 4.8. This decrease suggests a decrease in wall heat flux with x, consistent

with theory. The TC probe results follow an expected trend and measured higher fluxes in both cases. The

correlation prediction of heat flux uses the equations presented previously and the measured temperatures

along the heated wall centerline. The first point very near x = 0 is low, attributable to the relatively cooler,

insulated leading edge. The bump near x = 0.5 m in both cases is due to a temperature peak in the heated

wall.

Heat flux results from the HFSs and TC probe are presented in numeric format in Table 4.3 for both cases

and at all three x locations investigated. Taking the TC probe as the reference, HFS errors were quantified.

Uncertainty at the 95% confidence level was calculated for all quantities, including the error. The errors are

all negative as the HFS results are consistently low. The errors are moderately high, with the best agreement

at x3. These results are consistent with the notion that measurements of derivative quantities are challenging

and moderate errors can be expected.

The results of the DOE study were the flux errors of the HFSs relative to the TC probe. This study was

performed at x3, where the errors were the smallest and the boundary layer the largest. The resulting errors

are shown on the factorial sketch for cases 1–10 as shown in Fig. 4.11. The resulting errors show surprising
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Fig. 4.10: Measured and predicted heat flux plotted in the streamwise direction

consistency around 20%. There is no apparent trend, suggesting that the error is relatively insensitive to the

three parameters tested.
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Fig. 4.11: Factorial sketch of the DOE study with errors

The consistency of these results suggests a constant bias to the error. Further investigation revealed that

there may be non-uniform thermal resistance in the heated wall. After checking the thermal conductivity

of Kapton R© used adjacent to the HFSs, an error was found. The most likely thermal conductivity was 42%

higher than the design value. Using a 1-D thermal circuit, the predicted error of the heat flux measurement due

to spatial non-uniformity was -17.5% instead of 2.4% originally predicted. The results presented previously



81

Table 4.3: Heat flux results for both cases from the HFSs and the TC Probe results at all three x locations

x [cm] 16.2 77.8 139

Fo
rc

ed

HFS
q′′ [W/m2] 2010 1280 1500

Uq′′ [%] 5.02 5.01 5.02

TC Probe
q′′ [W/m2] 2650 2037 1730

Uq′′ [%] 8.56 7.09 8.12

Error
ε [%] -24.1 -37.2 -13.6

Uε [%] 7.53 5.45 8.25
M

ix
ed

HFS
q′′ [W/m2] 1230 960 1101

Uq′′ [%] 5.01 5.01 5.01

TC Probe
q′′ [W/m2] 1900 1400 1180

Uq′′ [%] 8.65 9.18 8.24

Error
ε [%] -35.1 -31.3 -7.06

Uε [%] 6.49 7.19 8.96

were not corrected from this information as there was a lack of confidence in either thermal conductivity

specification.

4.5 Conclusions

The purpose of this work was to assess the accuracy of the commercial HFSs used in a validation

experiment. These sensors were believed to be in error from an unknown source. An independent method

of measuring heat flux in air near a heated wall under convection was developed and tested. The intrusive

nature of the probe caused moderate errors in heat flux. The TC probe results, while possessing moderate

uncertainties and flow disruptions, provide expected trends. A HFS error from non-uniform thermal resistance

in the heated wall was identified. The probe results have known uncertainties and errors, while the HFSs have

at least one unknown error remaining as evidenced by the illogical trends in the streamwise direction. The

measured flux from the probe should be used for validation data while considering the limitations mentioned.
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CHAPTER 5

CONCLUSIONS

This work has described the theory behind model validation, provided an example of a validation exper-

iment, and provided links to a validation database. Steady and transient mixed convection have been studied

experimentally with high-fidelity instrumentation. Steady mixed convection has been presented in previous

works, but never in a validation experiment. This is the first presentation of transient mixed convection in

known publications. The coupled fluid momentum and heat transfer, together with measurements of de-

pendent variables and their spatial derivatives, make this a robust benchmark for thorough CFD validation

studies. The data were provided in tabular format with adequate significant figures to make approximations

unnecessary. Boundary conditions may be implemented directly in CFD models ensuring consistent inputs

between experiment and simulations. System response quantities were in table format for direct comparison

with model outputs and can be plotted in any program. Additionally, uncertainties of all results were provided

to aid in quantifying simulation uncertainty through validation studies.

Model development and application are certain to continue as an integral part of science and engineering.

The procedures and reporting in this validation experiment were good examples for others to follow for

future work, though the physics and geometry will be different in each case. There is danger in performing

simulations alone because the natural tendency is to trust a prediction when there is nothing with which to

compare. Every research program that develops models or seeks to apply existing models to new problems

needs to allot time and resources to validation. And if the physics have not been measured, the large expense

of conducting experiments should be put forth. The attitude of validation is skeptical, but an appropriate level

of skepticism will avoid at least some costly setbacks that often accompany incorrect predictions in science

and engineering.
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Appendix A

Unsteady Computational Fluid Dynamics Simulations

A.1 Introduction

Since the purpose of this work was to provide validation data for computational fluid dynamics (CFD),

simulations were always being performed in parallel with experiments. Initially a senior engineer at the

Idaho National Laboratory (INL) performed blind studies, meaning that the knowledge was limited to the

information provided in reports and the data associated with them. This approach was meant to decrease the

level of bias of the modeler towards the experimental results. Modelers and experimentalists at Utah State

University (USU) also ran simulations to guide the experiments as to what information was needed for model

inputs, where output data should be measured, and what System Response Quantities (SRQs) would be useful

for comparison. Many steady cases were run, such as for the steady mixed convection case described in this

work. Furthermore, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations were performed by

the experimentalist as the previous modelers at the INL and USU were not available. This section describes

the modeling approach and compares results with experimental data for the transient mixed convection case.

A.2 Methods

The URANS simulations were performed using Star-CCM+ 9.06 [1] with the experimental boundary

conditions (BCs). The BCs were the as-built geometry, the temperature on all four walls and the inflow,

the inflow ensemble-averaged velocity profiles, the inflow turbulence kinetic energy k profiles, and the air

properties. The inflow turbulence dissipation rate profiles were determined by an empirical correlation using

k [2]. The implicit unsteady model was used in combination with the Low-Re ν2− f , k− ε model [3]. This

model was found to perform well with buoyant flows in vertical channels [4]. Air was modeled as an ideal gas

with properties as functions of temperature. Thus, buoyancy is modeled directly. Coupled momentum and

coupled energy were also used to capture natural convection. Solvers were second-order accurate in space

and in time. The as-built geometry was used for the fluid domain.

All normalized residuals were driven to below 1 × 10−6 at every time step. The time step was chosen

for a particle to displace no more than one cell length in the streamwise direction. Converged solutions were

obtained for three meshes of 15.625k, 125k, and 1M cells with equivalent cell counts in each direction of 25,
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50, and 100, respectively. Cells were concentrated near the walls. The configuration for the finest mesh is

shown in Fig. A.1 with the global coordinates specified. The cell size in each direction and the time step were

reduced by a factor of two with each refinement. The maximum wall y+ values were 1.5, 0.76, and 0.36,

respectively. Three meshes allowed for the Grid Convergence Index method first proposed by Roache and

improved upon by others to quantify numerical uncertainty [5, 6]. The safety factor was allowed to increase

to compensate for results with less consistency. These results are at the 95% confidence level and are used as

uncertainty bands for CFD outputs in Figs. A.2 and A.3.

Fig. A.1: The structured rectangular mesh with 1M cells

The unsteady nature of the simulations and strict requirements placed on iterative convergence motivated

the use of a computing cluster. The Division of Research Computing cluster Navier at USU was used for the

medium and fine meshes while the coarsest mesh was solved on a local workstation. Simulations were setup

on a local workstation and submitted as a batch job to the cluster. The workstation had 16 cores. Each node

of Navier had 64 cores between four CPUs. The medium-mesh simulation used one node for 22 hours while

the fine-mesh simulation used three nodes for 89 hours.

A.3 Results

Both experimental and CFD predicted profiles of ensemble-averaged streamwise velocity u and turbulent

kinetic energy k are shown in Fig. A.2 at three locations in x for the top (x1), middle (x2), and bottom (x3).
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The definition k = 1
2

(
u′u′+ v′v′+w′w′

)
was used, assuming w′w′= v′v′ since the third component of velocity

was not measured. Since the CFD model used modified two-equation RANS, the Reynolds stresses are not

available and k was the logical choice for an SRQ.
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Fig. A.2: The streamwise velocity u and turbulent kinetic energy k for both PIV and CFD results

The streamwise velocity u profiles from PIV and CFD show acceptable consistency through the transient.

The boundary layer thickness increases in the streamwise direction x at the initial condition as expected.
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There is a small difference in the bulk velocity in PIV and CFD results at this initial condition, perhaps due to

a discrepancy in the inflow velocity mapping in the direction not measured. Any errors here are not inherent

in the experimental BCs as inflow mapping is left to the modeler. The velocity profile shape generally remains

similar but is reduced in magnitude during the first four seconds. At t = 8 s, the contribution from natural

convection begins affecting the profiles near the heated wall (y = 0). At t = 12 s the profiles show a strong

influence from natural convection. The large uncertainty bands for x3 and large y are from the flow reversal

phenomena not being mesh converged locally in the CFD. The changes from t = 12−16 s are subtle as steady

natural convection is reached. The uncertainty bands are generally small on both PIV and CFD results and

do not overlap, suggesting remaining model form uncertainty which is not represented nor easily quantified.

The results for turbulent kinetic energy k are similar but have greater spatial variability and uncertainty.

Initially k is elevated near both walls as expected. The influence of natural convection increases k near the

heated wall initially. The area of elevated k moves away from this wall over time. The phase of t = 12 s has

the highest levels, likely from the chaotic flow reversal. The final measured state has reduced kinetic energy

and may still be decreasing. Similar to streamwise velocity, the uncertainty bands generally do not overlap

suggesting remaining model form uncertainty.

The uncertainty bands on CFD data are from the grid convergence study and are presented at the 95%

confidence level. Particle Image Velocimetry (PIV) uncertainties are from the Uncertainty Surface Method

and consider bias uncertainty from particle displacement, particle image density, particle image size, and

shear originally described in [7] and improved upon with methods from [8]. Precision uncertainty was calcu-

lated by methods of Wilson & Smith [9]. Total uncertainty was calculated by the root-sum-square of the bias

and precision uncertainties at the 95% confidence level.

Results for the scalars of wall heat flux and wall shear stress are shown in Fig. A.3 at the same three x

locations, through time, with their associated uncertainty bands. The experimental heat flux came from the

Heat Flux Sensors (HFSs) using the manufacturer-calibrated sensitivity. The uncertainty included 5% bias

while the random values were measured. The heat flux results of the experiment and CFD are not in good

agreement. The experimental results from the HFSs show a low sensitivity to convection due to the thermal

capacitance of the heated wall, but the CFD had no capacitance modeled. Also, the CFD mesh was not well

refined when considering heat flux as noted by large uncertainty bands during some phases of the transient

and some physical locations. Further efforts should be made in CFD to model capacitance and refine the

mesh. Wall shear has better agreement between PIV and CFD results. The experimental measurements are

somewhat noisy at high levels of shear, likely from the decreased accuracy of PIV data near walls and the
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relatively fewer points included in the fit. When the shear decreases, more points can be used in the fit for

smoother results. The uncertainty bands on the CFD results suggest that the mesh was well resolved for shear,

but again not as well in regions in space and time of flow reversal near the heated wall.
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Fig. A.3: The heated wall heat flux and wall shear stress plotted over time

A.4 Conclusions

Simulations were run by the experimenter using the measured BCs. These activities confirmed the BCs

were complete and formatted properly. The simulation used commercial software Star-CCM+ that ran the
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URANS simulations in three-dimensions. Convergence criteria were strict. A grid convergence study was

performed to estimate numerical uncertainty. Experimental results and simulation outputs were plotted on

the same axes with uncertainty bands on each. This comparison can help identify simulation errors. With

further work, simulation uncertainty could be quantified with the data in this study. On the other hand, the

complicated nature of the data make this process challenging as the data cover two dimensions in space and

one in time.
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Appendix B

Processing and Post-processing Codes

B.1 Introduction

The purpose of this work was to provide validation data for computational fluid dynamics simulations.

Therefore, meaningful data, their correct treatment, and proper reduction were crucial. Some have said that

all raw data should be available for validation studies. In some instances this is the best approach. But

there is danger in presenting raw data acquired with modern experimental techniques as the data become 1)

overwhelmingly large and 2) very complicated quickly.

To address the first issue, overwhelmingly large data, it is easy to understand with examples from this

work. The main measurement technique was Particle Image Velocimetry (PIV) which measured velocity

fields in planes. Each plane often has at least 10,000 vectors, each with two components in the case of

two-component PIV as used in this work. The uncertainty of each vector component was also quantified,

doubling the data stored. A single acquisition is insufficient for averaging in time, so often 1000 acquisitions

were performed for each data set. Each case included about ten sets, and there were several repeats of the

data. Furthermore, the transient case had 101 phases measured. So it’s easy to see how the number of data

points can easily reach into the billions. These, with the many PIV images acquired, comprise several TB of

space. Backing up and sharing these data becomes difficult very quickly.

With modern techniques, misinterpreting the meaning of the data is a real possibility that could have

significant consequences. For instance, in nuclear reactor thermal-hydraulics, simulations are often used to

assess the safety of designs in transient accident scenarios. If, in the validation of these codes, experimental

data were misinterpreted, code predictions may be trusted when they shouldn’t. The PIV data in this study

were saved in a proprietary format that was difficult to analyze without commercial software. If a researcher

were to attempt to fill the knowledge gaps, mistakes are very plausible. Data post-processing techniques are

another form of complexity that may make the data misinterpreted.

In conclusion, the sharing of data is crucial to CFD validation. The data should be carefully reduced

to a meaningful form and be presented in a concise way. This reduces the burden of both large data and

the complexities associated with modern measurement techniques. Data averages, fluctuations, and the un-

certainty in both (with confidence level used) should be included whenever possible. A global coordinate
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system should be defined and included with all BC and SRQ data. Units should always be included. Any

codes and/or procedures for data processing and post-processing should always be included for future ref-

erence. As such, the MATLAB codes used in this work are described and available for download through

digitalcommons.usu.edu/all datasets/8/. All of the codes may be downloaded in a single zipped file Codes.

If any of these codes are used for future work, a proper citation is required.

B.2 Particle Image Velocity Uncertainty

The methods and code to calculate PIV uncertainty used throughout this work were developed by oth-

ers [7–9]. They were customized only slightly to plot data parameters such as particle image diameter,

density, and shear relative to the range in the look-up table in the Uncertainty Surface Method. The pro-

cess of quantifying the uncertainty began with creating synthetic images with known image parameters

with SIG parallel New 4x32x32 75% Round 2.m that contains the parameters used in this work. These

images were processed in DaVis with the same steps as the data of interest. Then an uncertainty surface

generator was used to read the synthetic image parameters, the velocity results from DaVis, and create an

uncertainty surface with DaVisSurfaceGeneratorFo.m. The uncertainty surface used in this work was Un-

certainty 4x32x32 75% Round PostProc 2 Used.mat associated with the DaVis PIV processing settings in

Uncertainty 4x32x32 75% Round PostProc 2.xml. The code surfaceViewer.m was written to view the un-

certainty surface. The uncertainty code was PIVuncertaintyCode.m with associated PIVuncertaintyGUI.m

and PIVuncertaintyGUI.fig. Some dependent functions of these codes were DiaDen2.m and PIV Stats.m, the

latter of which had plotting capabilities added. In the steady work, the GUI was used to configure uncertainty

calculation jobs and call the appropriate functions. Because the transient data had very many sets to be an-

alyzed, this manual setup was impractical. The code PIVuncertainty TransientDriver2.m was written to call

the uncertainty code in a batch mode with much less time required by the user, at least when the file paths

follow the pattern within this work. One *Stats.m file for each data set would be created that included data

for the ensemble-average, Reynolds stresses, and the associated uncertainties of each. One code that will plot

the nominal data and uncertainties of a given *Stats.m file was called Plot Uncertainties.m.

Since the time of this work, commercial PIV codes have included uncertainty calculations that are much

easier to use and are often more accurate [10–12]. Another set of codes independent from the first was

written by others to calculate only the particle image diameter and density. This set remains useful for these

parameters as they are not available in known commercial software. They are in DiaDen2.m, PIVdiaden.m

with the associated PIVdiadenGUI.m and PIVdiadenGUI.fig.

http://digitalcommons.usu.edu/all_datasets/8/
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=1&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=65&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=49&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=85&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=85&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=84&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=71&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=61&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=63&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=62&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=50&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=56&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=60&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=64&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=50&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=57&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=59&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=58&article=1007&context=all_datasets&type=additional
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B.3 Inlet Analysis

As mentioned in this work, the inflow was measured with PIV in several planes. Several codes were

written to map these velocities in space appropriately by taking single rows of data and matching them with

global coordinates. The formatting is compatible as an input to commercial CFD code Star-CCM+. The code

for the steady work was InletAnalysisAndProfilesFromStats6 1.m and for the transient work was InletAnal-

ysisAndProfilesFromStats Transient 6 4.m. Another code was written to visualize the output of this code as

a filled contour plot with superimposed lines to depict where data were acquired in PlotVelocityInletCon-

tour 2.m.

B.4 Boundary Condition Statistics

In addition to the inflow BC data, boundary temperatures were included in several sets of files. These

sets of files could be analyzed for time means and uncertainties with BC Stats2 2.m for the steady work and

ensemble-averaging and uncertainties with BC Stats Transient L.m for the transient work. These codes also

performed these calculations on the HFS heat flux results as they were recorded at the same time. Outlier

detection and rejection was performed with the transient version.

B.5 Interpolation Codes for Boundary Conditions

The inflow velocity data could be interpolated or ‘mapped’ onto a fine grid for use in CFD by ToStar-

Interpolator4 4.m and ToStarInterpolator Transient 5 3.m. Also the heated wall temperatures could be inter-

polated by TemptoStar.m.

B.6 Virtual Origin

The virtual origin analysis was performed for the steady case using velocity data at the inlet in InletVir-

tualOrigin.m.

B.7 System Response Quantity Analysis

The averaged SRQs were analyzed with SteadySRQ Plots 2 8.m and TransientSRQ Plots 2 8.m as well

as SteadySRQ Plots HeatFlux 2 3.m. These codes called the functions PIV dudy.m and LineFitFunc.m to

estimate wall shear from velocity data. The code InstantVelAnalysis.m made histograms and scatter plots

from instantaneous PIV data.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=87&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=86&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=86&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=88&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=88&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=45&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=44&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=77&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=77&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=76&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=73&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=51&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=51&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=67&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=81&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=68&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=55&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=54&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=52&article=1007&context=all_datasets&type=additional
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B.8 Transient Image Organization

The transient PIV data had a series of image pairs recorded for each run. For a given set of parameters,

101 image pairs were recorded and this was repeated for 100 or 200 runs. For proper ensemble-averaging,

these data needed to be organized in 101 folders with 100 or 200 image pairs in each. The code Transien-

tImageOrganization 2 3.m was used for this purpose. Acquisition of PIV data had inconsistent start times

caused by variable delay in the PIV timing system. This delay was recorded by the master LabVIEW pro-

gram and used in the organization code to properly align the data in phase. Also, outlier detection was

performed on spatial averaged streamwise velocities to compensate for timing jitter with the code Tran-

sient OutlierDetetion.m and data for subsequent runs were removed from further analysis.

B.9 Transient Computational Fluid Dynamics Grid Convergence Index

Unsteady RANS models were performed to accompany the transient work. These simulations were

performed on three grids for a grid convergence study using Roache’s modified method [5,6]. The four SRQ

outputs from the CFD were exported at each time step associated with data acquisition in the experiment.

The code TransientCFD GCI.m read the data from the CFD simulations on all three meshes, performed the

analysis, and saved the CFD SRQ data in an output file with uncertainties at the 95% confidence level.

B.10 TC Probe Analysis

The work involving the TC probe had unique codes used to analyze these results. The analysis used to

estimate measurement errors from conduction losses within the probe was performed in ConductionAnaly-

sis2.m. The measured temperature profiles were analyzed and line fitted in

TempProfileAnalysis y0 yPlusMax loop 2 3.m. The heat flux results from HFSs and the TC probe, with

predicted flux from correlations, were in SteadySRQ Plots HeatFlux TC Probe.m.

B.11 Custom Functions

Several custom functions were used with many being written by others. Occasionally these were modi-

fied for more desired results. These included columnlegend2.m, csvwrite with headers.m,

line fewer markers.m, sort nat.m, subtightplot.m, tightfig.m, tightfig2 1.m, TrimToMask.m, and

uigetfile n dir.m.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=80&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=80&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=78&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=78&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=79&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=47&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=47&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=72&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=69&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=46&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=48&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=53&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=66&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=70&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=74&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=75&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=82&article=1007&context=all_datasets&type=additional
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=83&article=1007&context=all_datasets&type=additional
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Appendix C

Mixed Convection Parameters

Several nondimensional numbers for mixed convection are included in the following MathCAD docu-

ment. Also heat transfer correlations were used for estimates. All parameters are local for the given value of

x defined near the top.



 Properties

Tinf 20 273.15( )K Tplate 130 273.15( )K Tf
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2
348.15K
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Fluid Properties at 75 deg C from Fluid Mechanics, Cengel and Cimbala
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Appendix D

Heated Wall Conduction Analysis

The one-dimensional conduction analysis by thermal resistance network is provided in the following

MathCAD document. It was used to determine the thermal resistance by conduction path going through HFSs

and non-HFSs paths. The error by non-uniform resistance was estimated. The error was originally 2.4%, but

with an updated thermal conductivity of Cirlex R© (laminated Kapton R©), was estimated to be -17.5%.



Thermal Circuit to determine heat flux difference inside Heated
Plate from different conduction paths

Assume Base temperature of Tbase 413.15K (140 C)

and Surface temperature of Ts 410.15K (137 C)

Define Thicknesses and Thermal Conductivities

Surface plate, Aluminum 2024 tsurface 0.125in ksurface 141
W

m K


Total thickness of adhesive in
combination with HFS or Cirlex
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mK
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

Thermal Circuit Analysis
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Consider two parallel paths and compare thermal resistance and heat flux
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q''HFS

q''Cirlex
0.825

Error on k_Cirlex with a Measured Error From the Design of
Experiments Analysis

The average error is about 18% E 1.18
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Solving for k_Cirlex
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The thermal conductivity k of the original Cirlex would have to be off by 35% to have an 18%
error.  This seems unlikely.

The updated k_Cirlex could be off by 4.5%, which suggests that its value is pretty close.
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Appendix E

Permission Letter for Steady Mixed Convection Work



 

 

 
 

 Utah State University 

Old Main Hill 

Logan, UT 84322 
Phone: 435-797-1000 

 

Jeff Harris 

PO Box 30 
State College, PA 16801 

Phone: 814-863-3025 

 

To whom it may concern: 

The paper Experimental Validation Data for CFD of Mixed Convection on a Vertical Flat Plate written by Blake Lance, 

Barton Smith, and myself may be used to fulfil the dissertation and graduation requirements of the first author. 

Respectfully, 

Jeff Harris 

Research Associate 

The Pennsylvania State University 

8/6/2015 
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