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ABSTRACT 

An Eulerian Perspective on Spring Migration in Mule Deer 

by 

Tatum Del Bosco, Master of Science 

Utah State University, 2021 
 
 

Major Professor: Dr. Tal Avgar 
Department: Wildland Resources 

Many ungulate populations follow seasonal migration patterns, residing in low-

elevation regions during winter and travelling to high-elevation locations in the summer. 

Plant phenology also follows elevation gradients, with vegetation at lower elevations 

undergoing spring green-up earlier in the season. Previous research has demonstrated 

that, at the individual level, ungulate migration often coincides with this vegetation 

green-up, a behavior that is hypothesized to allow animals to increase energy uptake by 

following peak forage quality across the landscape. However, it is still unknown whether 

these individual level patterns scale up to the population level, and the relative effects of 

biomass quantity versus quality are still unclear. I utilized novel methods to obtain finely 

resolved estimates of mule deer (Odocoileus hemionus) densities across space and time 

using camera traps placed across a wide elevation gradient in central Utah. I then used 

these estimates to test the hypothesis that population-level migration is driven by spring 

vegetation green up, measured using remotely-sensed indices of biomass availability. My 

results indicate that deer spring migration in my study area is driven by both forage 

quantity and quality, and that the wave of vegetation regrowth advancing from low to 
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high elevation during the spring is closely tracked by a traveling wave of peak deer 

densities. My study thus provides not only a novel technique to quantify wildlife density 

dynamics at high spatiotemporal resolution, but also the first demonstration of 

population-level green-wave surfing. 

(57 pages) 
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PUBLIC ABSTRACT 

An Eulerian Perspective on Spring Migration in Mule Deer 

Tatum Del Bosco 

Many herbivores travel between low-elevation winter ranges and high-elevation 

summer sites. These seasonal movements allow them to avoid deep snow cover, ensure 

access to favorable habitat, and maximize food intake throughout the year. During the 

spring season, plants at lower elevations green up earlier at lower elevations than at 

higher elevations. It has been shown that individual animals will track this vegetation 

growth during their spring migration, which allows them to maximize forage intake 

coming out of the nutrient scarce winter. This phenomena has previously been studied by 

monitoring individual movement trajectories, but it is unknown how this pattern scales up 

to the population level. I used trail cameras placed along migration paths to monitor a 

population of mule deer (Odocoileus hemionus) in Central Utah during the spring 2019 

season. We quantified fine-scale changes in plant phenology through space and time 

using remotely-sensed indices of vegetation growth and availability. In my study system, 

mule deer density was positive correlated with vegetation green-up, providing the first 

demonstration of this phenomena at the population level.  
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INTRODUCTION 

Many ungulate populations follow distinct altitudinal migration patterns, moving 

from low elevation winter ranges to high elevation summer sites. Although seasonal 

migration movement can be energetically costly, it provides essential services to 

individuals (Avgar et al. 2014, Robbins and Hanley 2016). At the most basic level, 

travelling to lower elevation winter ranges allows ungulates to avoid deep snow cover 

that inhibits movement, limits access to bedding and foraging resources, and conducts 

body heat away from individuals (Monteith et al. 2011). Travelling to summer grounds is 

also of high importance to pregnant females – spring migration typically coincides with 

the onset of fawning season in the third trimester, when maternal energy requirements are 

at their highest (Long et al. 2009, Pettorelli et al. 2005). More generally, travelling 

between elevation ranges allows ungulates to ensure availability of nutritional resources 

throughout the year. In the spring months, populations are coming out of a 

physiologically stressful season during which they have been subjected to metabolically 

intense temperatures and scarce nutritional resources, and therefore require immense 

amounts of forage to replenish their depleted body condition (Albon and Langvatn 1992, 

Fryxell and Sinclair 1988). In summary, seasonal altitudinal migration patterns are an 

essential adaptation of ungulate populations that exist in harsh climates and landscapes 

characterised by predictable spatiotemporal variation in resource availability. By 

travelling between distinct seasonal ranges, individuals are able to increase fitness, with 

obvious consequences to population viability (Fryxell and Sinclair 1988). Understanding 

the drivers and associated costs and benefits of seasonal migration is thus crucial for 

effective management and conservation of migratory populations.    
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The forage maturation hypothesis states that peak nutritional quality occurs at an 

intermediate stage of vegetation growth (Fryxell and Sinclair 1988). Early in the growing 

season, nutritional gains are limited by biomass availability, but as plants mature they 

become more woody (hence, less digestible) and develop secondary compounds that can 

increase costs of digesting plant matter (Fryxell and Sinclair 1988). Therefore, foraging 

on plants at an intermediate growth stage allows herbivores to maximize nutritional 

uptake by striking a balance between biomass quantity and nutritional quality. In 

temperate regions, seasonal changes in plant phenology follow an altitudinal pattern 

(Hebblewhite et al. 2008). Vegetation at lower elevations emerge and experience peak 

rates of growth earlier in the season than vegetation at higher elevations due to 

differences in temperature, snow melt, and precipitation. Previous research has 

demonstrated that ungulate migration often coincides with this vegetation green-up across 

elevation gradients (Aikens et al. 2020, Bischof et al. 2012, Hebblewhite et al. 2008, 

Merkle et al. 2016a).  

The ‘green-wave surfing’ hypothesis (GWSH; an offshoot of the more general 

forage maturation hypothesis), postulates that large herbivores track resource phenology 

through space, and has been investigated in several study systems and species, including 

mule deer (Odocoileus hemionus), roe deer (Capreolus capreolus), red deer/elk (Cervus 

elaphus), moose (Alces alces), bighorn sheep (Ovis Canadensis), and bison (Bison bison) 

(Aikens et al. 2017, Bischof et al. 2012, Merkle et al. 2016b, Middleton et al. 2018). 

These studies tested the GWSH using individual-level trajectories (from GPS 

transmitters) with metrics of forage biomass availability and growth rate derived from 

remotely-sensed products. Overall, these studies concluded that animals often follow an 
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emergent wave of green vegetation across the landscape, maximizing energy uptake and 

allowing them to replenish depleted reserves from the metabolically taxing winter season 

(Bischof et al. 2012, Merkle et al. 2016b). In turn, this behavior increases individual body 

fat levels, a crucial factor in determining reproductive capacity (Couturier et al. 2009, 

Middleton et al. 2018). However, there has been some variability in the findings of these 

studies. Herbivores in some systems have been found to ‘jump’ the green wave, 

travelling ahead of peak forage growth and quickly advancing to their summer range, and 

others have been found to track biomass availability rather than maximal rate of growth 

(Bischof et al. 2012, Merkle et al. 2016b). ‘Jumping’ the green wave can ensure that 

animals reach fawning grounds and have access to peak vegetation growth, while 

tracking biomass provides a greater short-term nutritional benefit. NDVI has been found 

to have a positive effect on animal condition, evidenced by body-fat studies and fecal 

nitrogen surveys (Lendrum et al. 2014, Middleton et al. 2018). 

Despite extensive research of the GWSH at the individual level, such studies are 

often limited in sample size (as they rely on capturing and collaring individual animals), 

and it is yet unknown whether this pattern scales up to the population level. Additionally, 

taking an individual-level approach can make studies susceptible to errors sourced from 

spatial variability (Martin et al. 2005). The ramifications are that much uncertainty 

remains regarding the functional role of spring migration in temperate large herbivores, 

as well as the potential impacts movement barriers and climatically driven phenological 

shifts may have on this functionality. 

One solution to this problem may come from examining migration from a 

different perspective. Examinations of animal movement patterns can take different 
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approaches related to physical theories in observing fluid motion patterns (Phillips et al. 

2019, Turchin 2015). The Lagrangian perspective refers to how individual particles flow 

through space and time. In our context, this is akin to observing a single animal’s 

movement trajectory (i.e., using telemetry/GPS data). By contrast, an Eulerian 

perspective focuses on the entire flow field at a specific location – it is place-based rather 

than individual based. Linking these two complementary perspectives is arguably a 

critical aspect of understanding and predicting animal movement patterns, yet the 

Eulerian perspective is rarely used by wildlife movement ecologists (Phillips et al. 2019, 

Turchin 2015). Lack of wildlife research using the Eulerian perspective likely stems from 

technical challenges in collecting Eulerian data at fine spatiotemporal scales (Phillips et 

al. 2019, Turchin 2015). By contrast, it is much simpler to take a Lagrangian (individual-

level) perspective and closely examine the movements of individual animals. The 

Lagrangian perspective offers greater resolution and can encompass a greater 

geographical range (such as the entire annual range of an individual), but may not be 

representative of population-level redistribution patterns (Phillips et al 2019). My 

research is aimed at building upon existing Lagrangian understanding of ungulate 

migration while providing an Eulerian perspective that investigates the flow of animal 

density through space and time. 

Eulerian data could be obtained using wildlife camera traps. In recent years, non-

invasive wildlife monitoring devices, including camera traps, have risen in popularity for 

investigating a variety of ecological processes (Burton et al. 2015). These technologies 

provide an alternative to individual-level tracking and traditional survey techniques, and 

also allow for larger samples sizes due to their relatively low cost (Kays et al. 2020, 
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Rovero et al. 2013). Traditionally, camera trapping research has focused on questions 

related to species occupancy, or, if animals are individually identifiable, abundance (e.g., 

mark-resight studies) (Burton et al. 2015, Meek et al. 2014). However, recent research 

has demonstrated that camera trap data can be used to derive estimates of animal density 

for unmarked animals (Garland et al. 2020, Nakashima et al. 2018). Using encounter 

rates (i.e., how often an animal is observed) and residence times (i.e., amount of time 

animals spend in the camera’s field of view), it is possible to produce unbiased estimates 

of animal density specific to the cameras’ location and operating time (Garland et al. 

2020, Nakashima et al. 2018, Rowcliffe et al. 2008). Here, I used camera trapping to 

examine daily population redistribution patterns through space and time. Specifically, I 

used over a hundred cameras that were spread across a 50,000-hectare study area in 

central Utah, encompassing summer and winter mule deer ranges, from early spring to 

mid summer.  

Mule deer are an abundant ungulate species native to the intermountain west. In 

mountainous habitats, like those found in our study system, they often display seasonal 

migration patterns (Nicholson et al. 1997, Sawyer et al. 2005). The current study provides 

a novel investigation of mule deer spatial redistribution dynamics as they travel from 

winter to summer ranges, specifically focusing on how availability of limited foraging 

resources affects migration at the population-level. I utilized photos collected by motion-

triggered cameras to track population redistribution dynamics during the spring migration 

season by quantifying how local mule deer density changed across space and time. These 

data were then coupled with spatially and temporally dynamic remote-sensed products 
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used to quantify vegetation availability and growth, to evaluate how the travelling wave 

of deer density advanced up an elevation gradient, relative to the green wave of forage.  
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RESEARCH OBJECTIVES 

This research evaluates alternative drivers of deer redistribution patterns during 

the spring migratory season, and has two main objectives. First, I aim to evaluate whether 

mule deer spring migration in my study area is driven by plant phenology tracking 

(green-wave surfing), and, if so, the relative importance of forage biomass availability 

versus growth. Second, I aim to demonstrate a novel approach to mapping animal 

distributions at fine spatiotemporal scales using camera traps, an approach that could 

potentially enable a much-needed Eulerian perspective on a variety of questions in 

wildlife spatial ecology.  

I hypothesize that access to high quality forage is the main driver behind spring 

migration in my study system, as mule deer come out of the metabolically intensive, 

nutritionally scarce winter season. Under this hypothesis, I expect mule deer migration to 

track the progression of herbaceous vegetation green up (i.e., forage quality rather than 

quantity). It is thus predicted that, at the population level, waves of deer density will 

generally track peak rates of green-up across space and time. A plausible alternative 

hypothesis is that deer migration is driven purely by forage biomass availability (i.e., 

quantity rather than quality), under which I predict that deer density will track the local 

abundance of green herbaceous vegetation rather than its temporal derivative – the 

growth rate.  
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FIELD METHODS 

Study Area 

I conducted this study in Spanish Fork Canyon in Central Utah, in the Uinta 

National Forest. The area is home to a large mule deer population, which local wildlife 

managers estimate to be about 5,000 individuals, as well as several other large herbivore 

species, including elk and moose populations. Local predator species include cougars 

(Puma concolor), black bears (Ursus americanus), and coyotes (Canis latrans). The 

region is home to multiple USDA Forest Service grazing allotments, which are occupied 

by cattle and sheep herds in summer months. The area is frequented by recreationists, 

including hunters, hikers, and campers.  

The study region is composed of mountainous terrain, with elevation gradients 

ranging from ~1,000 m at the canyon floor to peaks of over 3,000 m, that provide clear 

elevational gradients and distinct summer/winter ranges for mule deer (Fig. 1). The 

climate is semi-arid, experiencing hot summers and significant snowfall at high 

elevations in the winter months. The 50,000-hectare study region is dominated by 

sagebrush steppe habitat. Commonly occurring vegetation species includes basin 

sagebrush (Artemisia tridentate), scrub oak (Quercys gambelii), juniper (Juniperus 

scopulorum), and aspen (Populus tremuloides), while higher elevation sites are often 

characterized by coniferous species. 
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FIG 1. (Left) Elevational map of study area. (Right) Percent grass/forb cover across the 
study area (based on RAP data; see below for more details). In both maps, site locations 
are represented by black dots. 
 
 

General study area selection was informed using mule deer GPS collar data 

collected by the Utah Division of Wildlife in previous years 

(https://wildlifemigration.utah.gov/land-animals/tracking/). Within the 50,000 hectare 

study region however, exact camera locations were randomly placed. In early 2019, I 

established 106 field sites across an elevation gradient of 1,300 m to 2,600 m in order to 

encompass both summer and winter mule deer ranges, and to fully sample environmental 

variability throughout the study area (Fig. 1). I equipped each field site with a trail 

camera (either Cuddeback H-1453 or Reconyx HP2X) programmed to take photos 

continuously when motion was detected in its field of view. A uniform 21-m2 sampling 
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area was delineated in front of each camera using three metal conduits, placed upright in 

the ground 9 m from the camera and along a 30-degree arc (Fig. 2).  

 

 

FIG 2. (Left) Illustration of camera setup at a field site and overhead diagram of a field 
site (right). Note locations of conduit markers and shaded effective sampling area. 
 
 

Cameras were deployed on a rolling basis throughout the winter and spring 

months (March – May) in an effort to fully capture spring migration movements, and 

were spaced a minimum of 1000 m apart to ensure they each occupied unique MODIS 

NDVI pixels (one of our predictors – see below). For complete deployment protocols, see 

Appendix B. Sites were revisited in late summer 2019 to collect photos from cameras and 

to conduct site-level vegetation surveys to assess cover and frequency of forage types. 

Over 500,000 photos were captured during the 2019 spring migration season, 8% of 
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which contained images of animal subjects (92% false positives, primarily due to 

vegetation shifting in the wind).  

 
Extracting data from camera photos 

Photos were imported from individual SD cards, and then underwent preliminary 

processing. They were each assigned a unique file name that included a string specifying 

the field site they were collected, the SD card they originated from, and when they were 

collected. Additionally, the photos themselves all contained a band at the bottom of the 

picture that denoted the site, date, and time they were collected as an additional layer of 

quality control. All files were backed up to a cloud storage system (Google Drive) as well 

as a local hard drive.   

Once uploaded, photos were sorted and classified by one of four trained 

technicians. Technicians were initially given a set of 300 training photos to classify, 

which were then compared to the true classifications identified by the project lead. Before 

training, technicians had an average misclassification rate of under 10%; classification 

errors most frequently occurred in close-up photos where the entire animal body was not 

visible. Technicians repeated the training set until they could correctly identify all photos, 

and were then allowed to work on the dataset, using the software Wild.ID version 0.9.31 

(Nandigam and Fegraus 2018) to view and annotate photos. This interface provided a 

simple, consistent method for multiple technicians to work with simultaneously, and also 

automatically extracted metadata from the photo files (date, time, flash, temperature, and 

site number). I checked datasheets periodically to conduct quality control and investigate 

outliers. Photos were sorted into broad categories first – ‘blank’ (no animal), ‘misfire’ (a 

defective/faulty camera), ‘setup’ (photos taken of personnel during camera maintenance), 
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or ‘animal’. All animals that were captured in photos were counted and identified to the 

species level, and were classified based on whether they were between or outside of the 

metal conduits in the photos. For animals that did not clearly appear in in or outside the 

conduit markers, a 50% rule was used (if more than half of the animal body was inside 

the markers, it was counted as such). For the analysis described here, data include only 

photos with mule deer present between the conduit markers and the camera. When 

describing livestock presence throughout the spring season, we included cattle and sheep 

presence both inside and outside the markers, as we were interested in the effect of 

livestock presence and not concerned about calculating density for these species (see 

below). See Fig. 3, below, for examples of common scenarios encountered in camera trap 

photos and how they were classified. 
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FIG 3. Examples of typical scenarios encountered in camera trap photos. Top left shows 
a deer within conduit markers (sampling area). Top right shows multiple deer outside the 
markers. Bottom left illustrates cattle inside and outside markers, bottom right is ‘blank’ 
and contains no animals (likely triggered by moving vegetation). 
 
 

Managing such an extensive field study came with a few data management issues. 

One of the camera models, the Cuddeback H-1453 units, were prone to malfunctioning in 

two different ways. Firstly, a subset of the Cuddeback cameras were found to be 

defective in that once activated, they would take continuous photos - regardless of how 

they were programmed - until either the camera batteries or SD card storage were 

depleted. Photos collected from these defective cameras overwhelmingly consisted of 

‘blank’ images with no animals. I tagged all of these photos in the method described 
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above, however, data from these sites was temporally limited, as the cameras typically 

stopped working within a few hours of deployment.  

A second camera data issue was a little more complex. During cold weather 

events, some of the cameras would turn off, presumably because their batteries froze. 

When the ambient temperature increased, the cameras would power back on, but would 

retain the timestamp of when they turned off. I had no way of knowing how long the 

cameras were powered off for, and consequently, did not know the actual time/date that 

photos were taken after these freezing periods. I identified these events by manually 

sifting through all photos taken at sites and checking whether the time stamps seemed 

appropriate – after a freeze event, the cameras would display a ‘night’ time (after sunset) 

on photos that were clearly taken in broad daylight. The date of these malfunctions was 

noted for afflicted cameras, and all data from photos taken after these dates was 

discarded.  

 
Quantifying vegetation availability 

As my focus here is on the temporally dynamic process of migration, I 

characterised daily vegetation quantity and quality at each site using remotely sensed 

NDVI (Normalized Difference Vegetation Index) from MOD09QI surface reflectance 

data, obtained at an 8-day, 250 m resolution. These data were processed using standard 

method for quantifying landscape-scale phonological patterns in green wave surfing 

studies (Merkle et al. 2016b). Briefly, I fit a double logistic curve to the times series of 

NDVI values for each MODIS pixel in my study area, and used interpolated NDVI from 

this curve to represent forage quantity in my analysis. I calculated the first derivative of 

this curve to obtain the instantaneous rate of green-up (IRG), which I used as our measure 
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of vegetation quality, as was done in several previous studies (Aikens et al. 2020, Bischof 

et al. 2012, Merkle et al. 2016b). I used the MODIS ‘snow flag’ to characterize snow 

presence/absence at each field site. Sites were flagged as ‘snow’ on any given day if both 

the current and previous 8-day window were flagged as ‘snow’ in the MODIS data. If the 

current 8-day window was not flagged as ‘snow’, but the previous one was, the first four 

days were flagged as ‘snow’ (a linear interpolation).     

Site-level vegetation composition was obtained using BLM/NRCS Rangeland 

Analysis Platform (RAP) data (Boswell et al. 2017). This resource provided percent 

cover of annual forbs and grasses, perennial forbs and grasses, shrubs, trees, and bare 

ground at a 30m spatial resolution (Fig. 1). I tested the correlation between my site-level 

vegetation surveys and these remote-sensed values, and found that the two were 

positively and linearly correlated (Appendix C). Elevational data for the study area was 

derived from USGS ‘The National Map’ resource (USGS 2020).  
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ANALYTICAL METHODS 

The main quantity of interest in this analysis is deer density (deer/area). 

Individual deer identity was not considered – the same deer may or may not have been 

observed in multiple photos on the same day. The random encounter and staying time 

(REST) model, proposed by Nakashima et al. (2018), suggests that animal density can be 

estimated based on trapping rates and residence times observed from camera trap 

surveys. When implementing this model, our variable of interest is the amount of time 

animals spend in the camera’s field of view – for example, one animal spending an hour 

in a sampling area is equivalent to 60 animals spending one minute in the sampling area 

while for the other 59 minuets the area is unoccupied - both would result in the same 

estimate of density. In our case, density at each site for a given time period can be 

calculated as: 

𝜌𝜌𝑖𝑖,𝑡𝑡 = 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙
𝜏𝜏𝑖𝑖

𝑇𝑇𝑖𝑖,𝑡𝑡 ∙ 𝐴𝐴𝑖𝑖
 

Here, 𝜌𝜌𝑖𝑖,𝑡𝑡 is deer density (in deer/area) in site i on day t. 𝑁𝑁𝑖𝑖,𝑡𝑡 is a latent random 

variable representing the detection-corrected number of deer captured within our 

sampling area Ai at camera i on day t (Ai = 21 m2 for all sites on all days). 𝜏𝜏𝑖𝑖 is camera 

recovery time, which is the amount of time from when a photo is taken to when the 

camera is ready to take another photo if triggered. Through field testing, 𝜏𝜏𝑖𝑖 was measured 

to be 2 seconds for both camera models used in this study. Finally, 𝑇𝑇𝑖𝑖,𝑡𝑡 is the total time (in 

seconds) that the camera was active and able to take photos if triggered on day t 

(24*60*60 = 86,400 seconds). 
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I statistically estimated 𝑁𝑁𝑖𝑖,𝑡𝑡 using a Bayesian hierarchical model. 𝑁𝑁𝑖𝑖,𝑡𝑡 was 

modeled as a Poisson random variable with intensity 𝜆𝜆𝑖𝑖,𝑡𝑡, which was composed of three 

processes: an occupancy process to model whether a site is used by deer on a given day 

(𝑧𝑧𝑖𝑖,𝑡𝑡), a count process to model the expected number of deer captured in photos given 

that the site was occupied and assuming perfect detectability (𝑤𝑤𝑖𝑖,𝑡𝑡), and a spatiotemporal 

autocorrelation process �𝑥𝑥𝑖𝑖,𝑡𝑡� with reltive importance governed by a linear operator, 𝑟𝑟 (∈

[0, 1]). Finally, a binomial detection process gave rise to the observed data (𝑦𝑦𝑖𝑖,𝑡𝑡), 

conditioned on 𝑁𝑁𝑖𝑖,𝑡𝑡. Thus, the model can be written as: 

𝑁𝑁𝑖𝑖,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜆𝜆𝑖𝑖,𝑡𝑡�, 

𝜆𝜆𝑖𝑖,𝑡𝑡 = [1 − 𝑟𝑟] ∙ 𝑧𝑧𝑖𝑖,𝑡𝑡 ∙ 𝑤𝑤𝑖𝑖,𝑡𝑡 + 𝑟𝑟 ∙ 𝑥𝑥𝑖𝑖,𝑡𝑡, 

𝑦𝑦𝑖𝑖,𝑡𝑡 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑝𝑝𝑖𝑖,𝑡𝑡�. 

The occupancy model captures the effect of spatial and temporal predictors on the 

probability, 𝜓𝜓𝑖𝑖,𝑡𝑡, that a given site is used by deer on a given day. It takes the form of a 

mixed-effects logit model, with site ID as a random effect on the intercept (hence 

accommodating site-level variations around the baseline probability of occupancy). The 

model included, in addition to the intercept, seven predictors (fixed effects; see Table 1). 

To accommodate the null hypothesis that migration is simply driven by a change in 

preferred elevation through time, the model included elevation, elevation squared, and 

their interactions with Julian day. To accommodate the hypotheses that occupancy 

patterns also change through space and time based on local site attributes, I have also 

included snow presence/absence (obtained from MODIS snow flags at 8-day resolution) 

as deer are often thought to prefer snow-free sites, livestock presence/absence (obtained 
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from camera trap images) as deer are often thought to avoid livestock, and RAP- derived 

precent tree cover (deer are often thought to avoid densely treed areas). Hence, my 

occupancy model was designed to capture the effects of all major drivers of deer 

spatiotemporal distribution, excluding dynamical vegetation patterns. The occupancy 

process can be written as: 

𝑧𝑧𝑖𝑖,𝑡𝑡 ~ 𝐵𝐵𝐵𝐵𝑟𝑟𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃�𝜓𝜓𝑖𝑖,𝑡𝑡�, 

𝐵𝐵𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙�𝜓𝜓𝑖𝑖,𝑡𝑡� = 𝑿𝑿𝜓𝜓𝚪𝚪 + η𝑖𝑖
𝜓𝜓, 

𝜂𝜂𝑖𝑖
𝜓𝜓 ~ 𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵�0,𝜎𝜎𝜓𝜓�, 

where 𝑿𝑿𝜓𝜓 is the matrix of predictor variables, 𝚪𝚪 is the vector of regression coefficients, 

and 𝜂𝜂𝑖𝑖
𝜓𝜓 is the site-level random effect with standard deviation 𝜎𝜎𝜓𝜓. 

The abundance model included covariates that could potentially affect deer 

density in a given site on a given day, conditional on that site being occupied by deer on 

that day. These included, in addition to an intercept (the baseline log density across all 

occupied sites in the study area), Julian day and Julian day squared (to accommodate 

non-linear, and potentially non-monotonic, temporal shifts in the overall number of deer 

within the study area), and the percent cover of forage vegetation (RAP-based grasses 

and forbs) in each site. To evaluate my hypotheses, I have additionally included NDVI 

and IRG values for each site on each day, as well as their interactions with grass and forb 

cover. These interactions reflect the notion that ‘greenness’ (as measured by NDVI) does 

not necessarily equate to forage quantity or quality – during the spring and early summer 

deer rely primarily on grasses and forbs and are thus expected to be responsive to the 
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greenness of those vegetation types. See table 2 for a full description of all parameters. 

The expected number of deer photos, given the site is occupied, can be written as: 

log�𝑤𝑤𝑖𝑖,𝑡𝑡� = 𝑿𝑿𝑤𝑤𝚩𝚩, 

where 𝑿𝑿𝑤𝑤 is the matrix of predictors and 𝚩𝚩 is the vector of regression coefficients. 

To accommodate both spatial and temporal autocorrelation, I estimated the 

distance-weighted effects of the previous day’s density estimates on today’s density 

estimate, based on a Gaussian spatial decay function (governed by a single free 

parameter, 𝜎𝜎𝑥𝑥 – its standard deviation), and a temporal linear operator (𝑟𝑟, a free 

parameter between 0 and 1 defining the relative importance of the previous day’s 

spatially integrated densities). I normalized the spatial decay so that the weight of site i 

was 1. That is, a site 0 distance away would have a weight of 1, and the weights would 

decay from there. I then multiplied each weight by the model-estimated number of photos 

at each site on the previous day (Nakashima et al. 2018). The spatiotemporal 

autocorrelation process can be written as: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = �𝑁𝑁𝑗𝑗,𝑡𝑡−1 ∙ exp�−
|𝑃𝑃 − 𝑗𝑗|2

2 ∙ 𝜎𝜎𝑥𝑥2
�

Ω

𝑗𝑗=1

, 

where Ω is the total number of sites, 𝑁𝑁𝑗𝑗,𝑡𝑡−1 is the model-estimated number of deer photos 

at site 𝑗𝑗 at time 𝑙𝑙 − 1, and |𝑃𝑃 − 𝑗𝑗| is the Euclidean distance between sites 𝑃𝑃 and 𝑗𝑗. 

Lastly, the probability that a deer present within a camera’s detection zone was 

captured in a photo was modeled as a logit function of an intercept, 𝛼𝛼𝑝𝑝 (baseline 

detectability), and site-level random effects around this intercept, η𝑖𝑖
𝑝𝑝, with standard 

deviation 𝜎𝜎𝑝𝑝: 
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𝐵𝐵𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙�𝑝𝑝𝑖𝑖,𝑡𝑡� = 𝛼𝛼𝑝𝑝 + η𝑖𝑖
𝑝𝑝, 

𝜂𝜂𝑖𝑖
𝑝𝑝 ~ 𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵�0,𝜎𝜎𝑝𝑝�. 

The observed number of deer photos at site i at time t �𝑦𝑦𝑖𝑖,𝑡𝑡� is thus a binomial random 

variable, with 𝑁𝑁𝑖𝑖,𝑡𝑡 trials and 𝑝𝑝𝑖𝑖,𝑡𝑡 probability of success: 

𝑦𝑦𝑖𝑖,𝑡𝑡 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵�𝑁𝑁𝑖𝑖,𝑡𝑡,𝑝𝑝𝑖𝑖,𝑡𝑡�. 

All variables were scaled and centred before model fitting. Models were fitted 

using an MCMC fitting procedure with weakly informative priors in R NIMBLE (de 

Valpine et al. 2017). Posterior estimates were obtained by running three independent 

chains for 70,000 iterations, and retaining the last 65,000 iterations as samples from the 

posterior (see Table 4 for resulting Gelman–Rubin convergence diagnostic). Models were 

fitted using R version 4.0.2 and NIMBLE version 0.10.1 (de Valpine et al. 2017). See 

Table 3 for all model parameters and prior specifications. 
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RESULTS 

After removing questionable data resulting from the camera malfunctions 

described above, I retained 4,196 unique camera days between 15 March and 1 July, 

2019. Cameras were active for mean = 62.6 days, SD = 30.2 days (Fig. 4). The 67 sites 

incorporated in this analysis ranged in elevation from 1,613 m to 2,559 m. Across 

455,185 photos, I captured 12,792 deer observations. Other animals captured included 

cattle (Bos taurus), sheep (Ovis aries), elk (Cervus canadensis), moose (Alces alces), 

cougars (Puma concolor), black bears (Ursus americanus), coyotes (Canis latrans), red 

foxes (Vulpes vulpes), and turkeys (meleagris gallopavo). 

 

 

FIG 4. Number of active camera days across the entire study area by elevation. This 
distribution reflects the relative availability of elevation within the study area. 
 
 

Probability of site occupancy across the entire study area decreased with Julian 

day (Table 1, 𝛾𝛾6), and Julian day2 (𝛾𝛾7). In combination with a negative effect of the 

interaction between elevation and Julian date (𝛾𝛾4), and a positive effect of the interaction 
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between elevation and Julian day2 (𝛾𝛾5), these results are consistent with the expectation 

that probability of occupancy increases at higher elevations as the season progresses 

(Table 1, Figs. 5, 6). Additionally, my results indicate negative associations between deer 

occupancy and livestock presence (𝛾𝛾2), snow presence (𝛾𝛾3), and tree cover (𝛾𝛾8). Lastly, 

probability of occupancy also varies substantially between sites, as indicated by the 

magnitude of the random effect (Fig. 9).  

 
Table 1. Predictors for occupancy process �𝑧𝑧𝑖𝑖,𝑡𝑡� of the deer density model. Colons, e.g. 
as in ‘Elevation:Julian’, indicate an interaction between two predictor variables.  
Coefficient Predictor Units (before scaling 

and centering) 
Posterior 

mean 
90% CI 

𝛾𝛾1 Intercept unitless -1.16 -1.55 ↔ -
0.810 

𝛾𝛾2 Livestock presence Present = 1; Absent 
= 0 

-1.27 -2.20 ↔ -
0.420 

𝛾𝛾3 Snow presence (MODIS) Present = 1; Absent 
= 0 

-0.642 -1.02 ↔ -
0.257 

𝛾𝛾4 Elevation:Julian m*days -5.03 -6.41↔ -3.69 

𝛾𝛾5 Elevation:(Julian)2 m*days2 9.25 7.32 ↔ 11.2 

𝛾𝛾6 Julian days -4.25 -5.06 ↔ -3.44 

𝛾𝛾7 Julian2 days2 -1.33 -1.62 ↔ -1.04 

𝛾𝛾8 Tree cover (RAP) % -0.272 -0.464 ↔ -
0.076 
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FIG 5. Posterior means for predictors in occupancy process. Bars denote 90% credible 
intervals. 
 
 

 

FIG 6. (Left) Predicted occupancy by date, sorted into elevation bins. Solid lines denote 
model-based relationship between date and site occupancy. Shaded region depict the 
corresponding 90% credible intervals. (Right) Predicted occupancy by date, sorted by 
disturbance levels (livestock, snow, or neither – snow and livestock were never observed 
on the same date). Solid lines denote model-based relationship between date and 
predicted occupancy, Shaded region depict the corresponding 90% credible intervals.  
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In the conditional abundance process (number of deer given that the site is 

occupied and detectability is 100%), I found negative effects of both Julian day (𝛽𝛽2) and 

Julian day2 (𝛽𝛽3), indicating that, all other variables kept at their mean value, conditional 

deer density across the study area declines as the season progresses (amplifying the same 

trend in occupancy). Percent cover by grasses and forbs (𝛽𝛽4) had a positive effect on deer 

conditional density, as well as live green vegetation (NDVI, 𝛽𝛽5). IRG alone (𝛽𝛽6) had no 

significant effect on abundance, however, when interacting with percent cover by grasses 

and forbs (𝛽𝛽8), IRG had a positive effect. By contrast, the interaction between NDVI and 

percent cover by grasses and forbs (𝛽𝛽7) had a negative effect. Combined, these results 

suggest that where herbaceous vegetation is scarce, deer selected for biomass availability 

(quantity), but in areas of abundant herbaceous vegetation (which deer generally 

preferred), selection shifts to focus on high growth rates (Table 2, Figs. 7, 8). 

 
Table 2. Predictors for the count process �𝑤𝑤𝑖𝑖,𝑡𝑡�𝑧𝑧𝑖𝑖,𝑡𝑡 = 1� of the deer density model. This 
process is conditioned on the site being occupied. A colon, e.g., NDVI:(Grass+Forb), 
indicates an interaction between two predictor variables. NDVI = Normalized Difference 
Vegetation Index; IRG = Instantaneous Rate of Green-up. 
Coefficient Predictor Units (before 

scaling and 
centering) 

Posterior 
mean 

90% CI 

𝛽𝛽1 Intercept unitless 3.54 3.36 ↔ 3.74 
𝛽𝛽2 Julian days -0.223 -0.347 ↔ -

0.121 
𝛽𝛽3 Julian2 days2 -0.220 -0.290 ↔ -

0.168 
𝛽𝛽4 Grass + Forb Cover 

(RAP) 
% 0.861 0.655 ↔ 1.07 

𝛽𝛽5 NDVI (MODIS) unitless 0.551 0.406 ↔ 0.727 
𝛽𝛽6 IRG (MODIS) unitless -0.077 -0.205 ↔ -

0.080 
𝛽𝛽7 NDVI:(Grass+Forb) % -0.623 -0.793 ↔ -

0.451 
𝛽𝛽8 IRG:(Grass+Forb) % 0.208 0.131 ↔ 0.282 
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FIG 7. Posterior means for predictors in count process. Bars denote 90% credible 
intervals. 
 

 

FIG 8. (Left) Predicted abundance given occupancy by date, sorted into bins based on 
percent cover by herbaceous vegetation (grass and forb species).  Shaded region depict 
90% credible intervals. (Right) Predicted density given occupancy by IRG, sorted into 
bins based on NDVI values. Shaded region depicts 90% credible intervals.  
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My results indicate that, on average, cameras captured approximately 25% of deer 

presence events within the field of view, but that detectability varied considerably across 

sites (Fig. 9). Spatiotemporal autocorrelation parameters indicate some support for 

contributions from surrounding area within several kilometres of the focal site, but 

negligible importance of these contributions in determining current deer densities, and 

hence, overall, weak spatiotemporal autocorrelations (Fig. 9).      

 

 

FIG 9. Posterior means for detection, autocorrelation, and random effects on detection 
and occupancy. Bars denote 90% credible intervals. 
 
 

Integrating all of these various effects, I was able to generate predictive maps of 

deer densities across my entire study area and for any given day during the spring 2019 

migration season (Fig. 10). Focusing on a specific date, the expected posterior deer 

densities in each site (𝜌𝜌𝑖𝑖,𝑡𝑡) were used to create an interpolated surface of deer densities 
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across the study area. Interpolations were achieved by ‘Co-Kriging’ (Krigging with 

covariates; using R package gstat) these posterior expected values while accounting for 

elevation and herbaceous vegetation cover. Below, I provide examples of these maps side 

by side with the concurrent NDVI and IRG raster. 

 

 

FIG 10. Maps of IRG and NDVI for three dates (early, mid, late spring season 2019) and 
corresponding predictive maps of deer density across the study area. Note the slight 
increase and then decrease of average deer density in the study area during the migratory 
season. 
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DISCUSSION 

In this study, I was able to demonstrate, using novel field and statistical 

methodologies, support for population-level green-wave surfing in mule deer. This is the 

first demonstration of this phenomena at the population level, and confirms the 

hypothesis that vegetation growth is a driving force behind spring migration in our study 

system. I also found support for the hypothesis that forage quantity drives seasonal 

migration in my system, as deer density was positively correlated with biomass 

availability. Combined, these reinforce previous finding suggesting that ‘green-wave 

surfing’ may manifest as a compromise between maximising access to standing forage 

biomass (as captured by NDVI) and maximising access to forage growth (as captured by 

IRG; (Bischof et al. 2012, Merkle et al. 2016b). My findings thus support the notion that, 

not only is migration a means through which deer travel between seasonal ranges, it 

serves a functional role is replenishing nutritional resources after a metabolically intense 

winter season.  

This demonstration of green-weave surfing from a Eulerian (population) 

perspective is of importance for ungulate species because it confirms patterns observed at 

the individual level in similar systems. Due to technological, financial, or logistical 

constrains, wildlife ecologists are often forced to make inferences about entire animal 

populations based on a small sample of individuals. For example, local biologists 

estimate that approximately 5,000 mule deer inhabit our study area, but we currently have 

location data for under 40 animals (which were all captured in the same, small area). 

Here, we were able to confirm that green wave surfing behavior is scalable to the 
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population level – a critical demonstration, because management and conservation targets 

often focus on population size, distribution, and health.  

I was also able to investigate factors affecting deer occupancy at a fine 

spatiotemporal grain. Livestock presence had a negative effect on occupancy, suggesting 

interspecies competition for foraging resources (although I cannot rule out other negative 

interactions, such as competition for shade, increased vulnerability to predators, or 

increased exposure to parasites or micropredators). Snow also had a negative effect, 

likely a result of limited access for forage and impaired movement ability. I found that 

probability of occupancy at higher elevations increased with Julian date, above and 

beyond the effects of snow and forage, suggesting up-slope migration is driven by 

additional factors. Lastly, I found that deer in our study system were avoiding treed 

habitats, consistent with previous research demonstrating that coniferous cover (the 

dominant canopy cover in our study area) provides little nutritional benefit to deer 

(Serrouya and D’Eon 2008).  

I was able to demonstrate the ability to create maps of projected deer distributions 

using empirical data. Because I characterized sampling sites using resources that can be 

projected across my entire study area, I was able to interpolate deer distributions across 

my entire study area (Fig. 10). Not only do these maps provide insight into ecological 

processes occurring in my system, they could be of significant utility in a management 

setting. Projected distributions could inform managers as to which habitat areas to 

prioritize, especially during critical life history periods (such as migration season). These 

predictive maps can provide insight into seasonal deer distribution patterns under 

different scenarios of vegetation growth. It has been demonstrated that global rates of 
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vegetation green-up are accelerating in pace and timing under the effects of 

anthropogenic climate change (Peng et al. 2017). In my system, this will lead to a 

narrower window of peak vegetation quality for migrating ungulates, with the possibility 

of phenological mismatch - both of which could have deleterious consequences on 

individual and herd health. In many systems, the effects of this acceleration could 

manifest as changes in the timing, duration, and location of migration routes of migratory 

deer. Using my model, biologists could use projected changes in vegetation growth to 

predict patterns of animal movement in coming years, and plan their management actions 

accordingly. Furthermore, I provide a transferable modeling framework that could be 

adapted to other study systems with animals that display similar migratory behavior, 

providing insight into animal distributions in herds that aren’t currently monitored at the 

individual or population level. 

Lastly, these projections provide mechanistically based, spatially integrated 

estimate of population density and its dynamics. Here, density was estimated to fluctuate 

from 0.03 deer/hectare in April, to 0.05 deer/hectare in May, down to 0.04 deer/ha in 

June. When I take the maximum obtained density throughout our study period and 

multiply that value by the size of our camera grid, we obtain a deer population of 

approximately 5,000 individuals – consistent with population size estimates by state 

wildlife biologists. As far as I know, this is the first demonstration that animal abundance 

could be reliably estimated by integrating over number of phots across extensive space 

and time.  

The observed spatiotemporal fluctuation in density estimates makes sense when 

considering the geography of my study area. At the Northern and Southern ends of my 
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study area, cameras were situated primarily on summer (high-elevation) and winter (low-

elevation) deer ranges (respectively). Most of my study areas however, and hence most 

cameras, were situated somewhere between these seasonal ranges, and hence capture the 

dynamics of deer density as the population undertakes its spring migration. As a result, 

deer density is observed to peak in mid season (when most deer have left their winter 

ranges, but have not yet completed their migration).  

There were several caveats with using camera traps in this study. As mentioned 

earlier, our model estimated a low detection rate, and suggested that we were only 

capturing approximately 25% of deer presence events in front of our cameras. We 

conducted a series of controlled experiments and found that this estimate is realistic given 

the limitations of our trail cameras – across multiple trials, we found an average detection 

rate of 21% (see Appendix D for full details). We urge future studies to consider the 

specifications of their equipment in the context of study design, and to conduct adequate 

quality control and testing before deploying cameras in the field. Further, whereas the 

field methods used in this research allowed me to monitor wildlife densities at fine spatial 

and temporal grains and over large spatial and temporal extents., I have collected an 

extremely large dataset over the course of this study, and was actually unable to 

incorporate most of the data in the analysis presented here. Between the winter 2019 and 

fall 2020, I collected approximately 2,500,000 photos from 107 field sites. Whereas I had 

technicians manually tag the spring 2019 portion of this dataset (approximately 500,000 

photos), I would urge future studies to investigate machine-learning methods to extract 

data from photos as a means to reduce the cost of conducting this type of research. A 

benefit of this rich dataset are the many opportunities for future research using this 
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dataset. I have documented the occurrence of many species (elk, moose, cougars, bears, 

and coyotes, among others) in the system, as well as potentially valuable information 

about vegetation and environmental conditions.  

Building on these findings, it is still unknown whether the population-level 

patterns I have observed and quantified are consistent with individual movements in this 

system. As stated in the Introduction, simultaneous Lagrangian and Eulerian perspectives 

of the same processes are rare, and when available are not always in agreement due to 

variability in spatial and temporal sampling scales (Phillips et al. 2019). In future work I 

will investigate drivers of spring migration using individual-level telemetry data from 

deer in this study region, which will provide the first comparison of Eulerian and 

Lagrangian perspectives on spring migration in the same system. 

 In summary, in this study I was able to use emerging techniques in monitoring 

wildlife populations to observe Eulerian green-wave surfing behavior in migratory mule 

deer. I found support for the hypotheses that mule deer track vegetation growth and 

availability during the spring migration season, while gaining insight into other factors 

that affect habitat use. By utilizing the empirical results of my study, I was able to create 

spatially and temporally explicit maps of predicted deer density across a vast area, thus 

setting the stage for future advancements in Eulerian wildlife movement ecology.   
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APPENDIX A. SUPPLEMENTARY TABLES 

Table 3. All parameters and priors for the deer density model. Note that all Normal 
distributions are parameterized by (mean, SD). 𝑇𝑇(0, ) indicates that the probability 
distribution was left truncated at 0. 

Parameter Description Prior 
𝑟𝑟 Strength of autocorrelation 𝐵𝐵𝐵𝐵𝑙𝑙𝐵𝐵(1, 1) 
𝜎𝜎𝑥𝑥 Decay of spatial autocorrelation 

weights 
𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(10 000, 10 000) 𝑇𝑇(0, ) 

𝛾𝛾1:8 Regression coefficients for 
occupancy process �𝑧𝑧𝑖𝑖,𝑡𝑡� 

𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(0, 10) 

𝛽𝛽1:8 Regression coefficients for count 
process given occupancy 
�𝑤𝑤𝑖𝑖,𝑡𝑡|𝑧𝑧𝑖𝑖,𝑡𝑡 = 1� 

𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(0, 10) 

𝛼𝛼1 Intercept of detection process �𝑝𝑝𝑖𝑖,𝑡𝑡� 𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(0, 1) 
𝜎𝜎𝜓𝜓 Standard deviation of random effect 

for the occupancy process �𝑧𝑧𝑖𝑖,𝑡𝑡� 
𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(1, 1) 𝑇𝑇(0, ) 

𝜎𝜎𝑝𝑝 Standard deviation of random effect 
for the detection process �𝑝𝑝𝑖𝑖,𝑡𝑡� 

𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵(1, 1) 𝑇𝑇(0, ) 
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Table 4. Gelman-Rubin convergence diagnostic. MPSRF = 9.01. 
Coefficient Predictor/Description PSRF point est. Upper CI 

𝛽𝛽1 Intercept 6.07 11.61 
𝛽𝛽2 Julian 3.09 5.66 
𝛽𝛽3 Julian2 3.47 6.36 
𝛽𝛽4 Grass + Forb Cover 

(RAP) 
1.57 2.41 

𝛽𝛽5 NDVI (MODIS) 1.09 1.27 
𝛽𝛽6 IRG (MODIS) 1.69 2.68 
𝛽𝛽7 NDVI:(Grass+Forb) 1.26 1.72 
𝛽𝛽8 IRG:(Grass+Forb) 1.14 1.41 
𝛾𝛾1 Intercept 1.74 2.78 
𝛾𝛾2 Livestock presence 1.44 2.14 
𝛾𝛾3 Snow presence 

(MODIS) 
1.26 1.70 

𝛾𝛾4 Elevation:Julian 1.14 1.43 
𝛾𝛾5 Elevation:(Julian)2 1.20 1.57 
𝛾𝛾6 Julian 1.39 2.01 
𝛾𝛾7 Julian2 1.11 1.32 
𝛾𝛾8 Tree cover (RAP) 1.07 1.23 
𝑟𝑟 Strength of 

autocorrelation 
1.00 1.01 

𝜎𝜎𝑥𝑥 Decay of spatial 
autocorrelation weights 

1.34 2.46 

𝛼𝛼1 Intercept of detection 
process �𝑝𝑝𝑖𝑖,𝑡𝑡� 

1.21 1.58 

𝜎𝜎𝜓𝜓 Standard deviation of 
random effect for the 
occupancy process 
�𝑧𝑧𝑖𝑖,𝑡𝑡� 

1.45 2.15 

𝜎𝜎𝑝𝑝 Standard deviation of 
random effect for the 
detection process �𝑝𝑝𝑖𝑖,𝑡𝑡� 

1.83 2.98 
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APPENDIX B. FULL CAMERA DEPLOYMENT PROTOCOLS 

We used Cuddeback H-1453 and Reconyx HP2X cameras to capture images of 

large terrestrial wildlife at our field sites. Exact camera settings varied with camera 

model, but in all cases, they were programmed to take continuous photos as long as 

motion was detected in their field of view. Sensitivity settings were set to the highest 

possible option, with no daily ‘quiet’ or dormant periods. Cameras and SD cards were all 

assigned unique numerical IDs and labelled appropriately.  

Although our camera placements were random, potential field sites had to meet 

several qualifications. Sites needed to be fairly level (to allow for adequate camera view), 

set back from obvious roads and trails to prevent human tampering/theft, and needed to 

be accessible in variable seasonal weather conditions (for example, not across rivers that 

would flood in the spring time). The sites needed to have an immediate area that was 

clear of dense trees/shrubs that could obstruct the camera’s field of view, although they 

typically had fence posts/trees that the camera units themselves were mounted on (at a 

couple sites, cameras were mounted on rebar that we staked into the ground). After a 

suitable mounting object was identified, vegetation/branches were cleared from the 

immediate vicinity of the camera to prevent false-positive images generated by 

vegetation moving in the wind. Generally, we avoided placing cameras facing directly 

East or West to avoid sun glare in photos taken around sunrise or sunset. Cameras were 

screwed into trees/fence posts at a height of 1 m from ground to the base of the camera 

lens using a combination of wood screws, metal plumber’s tape, and manufacturer-

provided camera mounts. In snowy conditions, a snow measurement probe was used to 

confirm mounting height. 
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Once cameras were mounted, we delineated our sampling area using sections of 

pre-cut metal conduit staked into the ground. These markers were 13mm in diameter, 

1.5m, and driven 0.2m into the ground at 3 designated locations. One of the markers was 

placed 20 ft in front of the camera, at the center of the camera’s field of view. Two 

additional markers were then placed 20 ft from the camera, but at an angle of 15 degrees 

from the center line – one 15 degrees east, the other 20 degrees west (see Fig. 11).  

After cameras and conduits were deployed, we confirmed the camera’s field on 

view via two methods. First, we used the built-in ‘walk test’ function on the cameras, 

designed to flash a light if they detect motion in the field of view, and had technicians 

walk a series of transects in front of the conduit markers to be sure the cameras were 

registering motion in our delineated study area. Next, we triggered the cameras to take a 

site photos, then used an adapter to view the captured picture on a smartphone. This 

enabled us to verify that the conduit markers would be visible in naturally-triggered 

photos.  

Cameras were re-visited in late summer 2019, when we collected photos taken 

during the spring 2019 migration season. At this time, we also conducted a site-level 

vegetation survey, as described in Appendix C.   
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APPENDIX C. GROUND TRUTHING RAP VEGETATION COVER DATA 

Field surveys were conducted at each camera site in early summer to characterise 

vegetation type and structure. These vegetation protocols were developed in 

consideration of the Utah Division of Wildlife’s range trend survey protocols, which are 

used to evaluate habitat suitability for big game species throughout the state. Survey data 

provide temporally static, detailed information on local forage composition at the 

camera’s immediate vicinity. A 33 m measuring tape was placed perpendicular to the 

camera field of view, 9 m away from the camera, centered at the middle conduit marker. 

A secondary 33 m measuring tape was placed directly in the camera field of view, 

beginning at the camera itself and extending away from the camera. A line intercept 

survey was conducted along both transects, where the observer traveled along the tapes 

and recorded (in centimeters) each vegetation and cover class directly intersecting the 

transects. Cover classes recorded included graminoids, forbs, litter, cryptograms, bare 

ground, rock, unknown shrubs, juniper, sagebrush, scrub oak, cactus, maple, aspen, 

unknown trees, and water. If a cover class intercepted the line for less than 15 cm, it was 

not counted. Percent cover was then calculated by dividing the length of each cover class 

observed by the total line intercept distance surveyed at each site.  
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FIG 11. Diagram of vegetation survey transects conducted at field sites. Line intercept 
surveys were conducted along short – and long-dashed lines.  
 
 

Survey information was compared to the NRCS/BLM’s Rangeland Analysis 

Platform (RAP 2) dataset, which was used to characterize vegetation composition at sites 

in this analysis (Boswell et al. 2017). RAP data provided annual percent cover estimates 

using a composite of BLM Assessment, Inventory, and Monitoring (AIM) surveys, 

NRCS National Resources Inventory (NRI) surveys, and LANDSAT satellite imagery 

(Boswell et al. 2017). Importantly, while RAP data has only a 30 m, annual 

spatiotemporal resolution, it can be derived for any location in Western US and for any 

year since 1984. Consequently, reliance on RAP data instead of on our ground surveys 

allows both interpolation of our results within our study area, and extrapolation outside of 

the study area and period. 

RAP cover classes are more coarsely aggregated than those that we classified in 

site surveys (annual and perennial grasses and forbs, trees, shrubs, bare ground, and 

litter). In order to compare our two sources of site vegetation composition, we collapsed 
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RAP data into 3 categories – bare ground and litter, trees and shrubs, and grasses and 

forbs. Similarly, we collapsed our surveys classes into a graminoid/forbs class 

(graminoids, forbs, and cactus combined), a tree/shrub class (unknown trees, unknown 

shrubs, aspens, maples, scrub oaks, sagebrush, and juniper), and a bare ground class 

(rock, bare ground, cryptogram, litter, and water). Scatterplots below illustrate the 

relationship between RAP and site survey data for each of the collapsed cover classes, 

with each point representing a unique site. Boxplots demonstrate site composition 

according to RAP and survey data. 

As shown in Fig. 12, we found that RAP percent cover data is positively and 

linearly correlated with our site-level ground survey data. Unsurprisingly, our finer scale 

observations are more variable (notably for grass and forbs), but the two data sets are in 

agreement as to the relative abundance of different cover classes across our study area 

(Fig. 13). Overall, we found that this comparison indicated that RAP data provides an 

adequate characterization of vegetation cover in our study area, while allowing us to 

interpolate outside our study sites and sampling period. 
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FIG 12. Scatterplot comparisons of percent cover collected from RAP and site-level 
vegetation surveys, by cover class category. 
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FIG 13. Comparison of RAP vs site survey percent cover data across entire study area. 
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APPENDIX D. DETECTION RATE TESTING 

In order to better understand the limitations of our camera setups, we conducted a 

series of trials designed to evaluate camera detection rates in a controlled setting. We 

tested both models of camera used in our study (Cuddeback H-1453 and Reconyx HP2X 

units) by walking 30 m wide transects located at distances of 3, 6, 9, 12, 15, and 18 m 

from the camera units. We were also interested in how captures rates would vary with 

animal movement speed, so we walked our transects at two different speeds (‘fast’ 

‘slow’, which equated to ~7.5 km/hr and 3.75 km/hr, respectively). Cameras were 

mounted and programmed in the same fashion as in the field, at a height of 1 m from the 

ground on a tree, and transects were centered and perpendicular to the cameras. 

 Each transect was walked 3 times at each speed, meaning 72 total walking trials 

were conducted (2 camera models, 2 speeds, 6 transect distances, 3 walking trials each). 

We recorded the amount of time the technician spent walking each transect, and the 

number of photos captured on each transect walk. Each photo was taken to represent 2 

seconds of ‘detection’, as this was the camera recovery rate, and we then divided the 

number of detection seconds by the total amount of time spent walking each transect. 

Overall, our cameras were abysmal at capturing photos. Across all transect distances, 

camera models, and walking speeds, our average ‘detection rate’ was 20.8%. This varied 

by camera model (with Reconyx units performing better), distance (with peak ‘detection’ 

occurring at an intermediate distance), and walking rate (with slower speeds lending 

towards higher detection), but overall we found that our modeled detection rate of ~25% 

to be consistent with the results in this small, controlled experiment (Fig. 14). 
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FIG 14. Comparison of camera detection rates in a controlled environment, sorted by 
camera type, travel speed and distance of movement from camera. 
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