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ABSTRACT 

 

A Geoarchaeological Site Formation Model  

at Alm Shelter, Wyoming 

by 

Cayla Kennedy, Master of Science 

Utah State University, 2021 

 

Major Professor: Dr. Judson Byrd Finley 

Department: Sociology, Social Work, and Anthropology 

 

 Understanding the environmental context of archaeological sites plays an important part 

in interpretation of human behavior and informs the scale and timing of regional climatic shifts. 

Alm Shelter is a rockshelter located on the western margin of the Bighorn Mountains in 

Wyoming and contains one of the most complete late Pleistocene and Holocene rockshelter 

stratigraphic sequences in context with archaeological data. Geoarchaeological investigations at 

this site address the timing and nature of significant environmental events, as well as comparing 

these to other regional studies. This study presents new stratigraphic analysis, sedimentology, 

luminescence ages, and an OxCal age-depth model as a proxy for local and regional 

environmental change. The new environmental data are compared to other regional climate 

studies to test whether periods of eolian sedimentation at Alm Shelter reflect larger patterns 

across the western United States. Results indicate a refined chronology using radiocarbon ages 

and additional grain-size analysis is necessary, but loose connections to major trends in regional 
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aridity during the late Pleistocene and early Holocene can be made across the Bighorn Basin, 

Wyoming, the eastern Great Basin, and northern Great Plains. These connections can be used to 

inform human decisions and behavior during periods of drastic environmental change.  

(95 pages) 
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PUBLIC ABSTRACT 

 

A Geoarchaeological Site Formation Model  

at Alm Shelter, Wyoming 

Cayla Kennedy 

 

Alm Shelter, located in north-central Wyoming, is an archaeological site with a long 

history of human occupation. This study addresses new contextual information in the form of 

dated sediment deposits, analysis of sediment types, and a computer model to assist with 

identifying climate conditions that may have led to periods of significant change. Using the 

model, it is possible to estimate the timing of environmental shift as well as other events that 

may not be directly dateable. This information is then compared to other sites containing climate 

records to determine if conditions at Alm Shelter are connected with other locations in a larger 

pattern. The results indicate that this model is not ideal for precise connections with other sites 

but does demonstrate two clusters of possible dry conditions that are loosely connected with 

other locations, including other archaeological sites in the Bighorn Basin and geological and 

climate studies at sites in Wyoming, the eastern Great Basin, and the northern Great Plains. This 

information is important for understanding patterns of human movement and decision-making 

when conditions become very dry.  
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Regional climate reconstructions in the western United States often face issues 

reconciling variable climate in topographically diverse environments (Nicholson et al. 2019). 

Comparison of individual sites against other multi-proxy reconstructions is necessary in order to 

determine local versus regional signals of climate change. When examining human-environment 

interactions, this distinction between local and regional signals is essential to understanding 

environmental pressure on human populations, as local-only signals may not reflect larger 

patterns in paleodemographics (Wright 2011). Stratified deposits at archaeological sites provide 

an important bridge between human activity and biogeomorphic conditions. Rockshelters 

provide protection from the elements and thus provide an excellent source for stratified deposits 

(Woodward and Goldberg 2001).  

The Bighorn Basin presents an excellent study area because it is a topographically 

diverse landscape and exhibits strong regional biogeomorphic reactions when precipitation shifts 

(Lyford et al. 2002). Hundreds of rockshelters are in the western margin of the Bighorn 

Mountain Range. Many contain evidence of human activity, and few contain long sequences of 

undisturbed stratified deposits (Finley 2008; Kornfeld et al. 2010). This study presents a 

geoarchaeological analysis of site formation processes at Alm Shelter, Wyoming as a proxy for 

Holocene paleoenvironmental conditions to compare against regional climate studies. 

Alm Shelter, located along Paintrock Creek near Hyattville, Wyoming (Figure 1), is a 

limestone rockshelter with a nearly complete late Pleistocene through Holocene sedimentary 

sequence (Finley 2008). Because it is one of the more complete regional sequences, Alm Shelter 

can serve as a key point of comparison with similar sites. It also provides an important 

independent test for local and regional paleoenvironmental reconstructions (Kelly et al. 2013; 

Nicholson et al. 2019; Shuman et al. 2010). Eolian deposits can indicate periods of aridity, 
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Figure 1. Location of Alm Shelter site. 

 

and rockshelters like Alm Shelter present conditions conducive to trapping sediment and 

protecting them from erosional forces (Busacca et al. 2003; Surovell et al. 2009). This paper 

addresses three primary objectives: first, establishing the site geoarchaeological context through 

field and laboratory descriptions using stratigraphic profiles, grain-size analysis, and 

luminescence analysis; second, creation of a Bayesian age-depth model for age constraints on 

eolian units and key stratigraphic transitions; and third, comparison of the Alm Shelter record to 

regional eolian records to evaluate the extent and timing of drought signals in patterns of 
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Holocene environmental variability. Following Finley (2008, 2016), this study tests the 

hypothesis that the Bighorn Basin rockshelter record preserves centennial-scale aridity events via 

eolian sedimentation, and that these events correspond to regional patterns of increased aridity. It 

begins with a review of the Bighorn Basin rockshelter record and provides contextual 

information used in the interpretation of the stratigraphic record of Alm Shelter. Next, this paper 

describes the methods used in the reconstruction of the biophysical context of the Alm Shelter 

deposit and age-depth model, followed by the results of the stratigraphic, sedimentological, and 

geochronological analysis. Finally, it examines the age-depth model as a method for constraining 

the age of eolian deposition and the results of comparison to other eolian records as a test for 

local signals of regional environmental change. 

The results signal a general agreement with both the luminescence ages and the 

stratigraphic relationships of the model, as well as some correlation between the local model and 

several regional climate reconstructions. At Alm Shelter, a transition from alluvial to colluvial 

sedimentation occurred in the late Pleistocene, followed by fluctuating periods of eolian 

deposition through the early Holocene. In addition to the construction of a site depositional 

history and a contextual chronological model for human occupation at Alm Shelter, this 

information also aids future studies in understanding the consequences of regional drought on 

population dynamics as well as the regional movement patterns of humans during periods of 

drastic climatic shifts. This will inform future implications of drought on demographics in the 

rapidly approaching climate crisis (Warner et al. 2010). 
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Project Setting 

 

 

The Bighorn Basin and adjacent Bighorn Mountains are part of the Central Rocky 

Mountain physiographic province located in northwestern Wyoming (Fenneman 1931). The 

basin is bounded by the Pryor Mountains to the north, the Absaroka Range and Yellowstone 

Plateau to the west, the Bighorn Mountains to the east, and the Owl Creek Range to the south. 

Elevations in the region range from 1100 m (3600 ft) at the lowest point of the Bighorn Basin to 

greater than 4000 m (13,100 ft) at Cloud Peak in the Bighorn Mountains. Major drainages 

include the Bighorn River, as well its two principal tributaries, the Greybull and Shoshone 

Rivers. Many smaller tributaries occur in the Bighorn and Absaroka ranges and converge in the 

basin.  

Due to the high mountain ranges on the boundaries of the Bighorn Basin, it and the 

western slope of the Bighorn Mountains lie within a double rain shadow, emphasizing the effects 

of fluctuating effective moisture (Martner 1986; Mitchell 1976). Pacific moisture travels inland 

in the winter, though much of the precipitation occurs in the Yellowstone Plateau west of the 

basin. Gulf of Mexico moisture travels northwest in the summer but dissolves over the eastern 

side of the Bighorn Mountains. Winter temperatures in the basin range from -16.5 to 0.5 degrees 

Celsius (2.2 to 33.0 degrees F), whereas summer temperatures range from 33.1 to 13.3 degrees 

Celsius (91.6 to 56.0 degrees F), (WRCC 2021). On the western slope of the Bighorn Mountains, 

winter temperatures range from -14.4 to 0.2 degrees Celsius (32.4 to 6.1 degrees F), and summer 

temperatures range from 32.1 to 12.4 degrees Celsius (54.3 to 89.7 degrees F). Average annual 
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precipitation is 6.48 inches in the basin, while the western margin averages 25.5 cm (WRCC 

2021). 

Vegetation consists of drought-tolerant species similar to that of the Great Basin, 

including currant, Utah juniper, greasewood, mountain big sagebrush, Great Basin wildrye, 

rabbitbrush, prickly pear cactus, yucca, and mountain mahogany (Knight 1994). Due to this 

unique placement between high-elevation mountains, the Bighorn Basin contains primarily 

sparse desert vegetation with pockets of riparian environments near perennial streams, 

particularly in the canyons of the western slope of the Bighorn Mountains (Knight 2014). 

Because of this, declines in effective moisture are likely to have a marked effect on vegetation 

change and thus erosion and sediment transportation.  

During the Eocene Epoch approximately 50 million years ago, the Laramide orogeny 

uplifted and formed the Central Rocky Mountains via continental crustal compression (Brown 

1993). Major Paleozoic sedimentary formations exposed in the Bighorn Mountains during major 

downcutting of Bighorn River tributaries include Madison (Mississippian) limestone, Amsden 

(Mississippian-Pennsylvanian) limestone and sandstone, and Tensleep (Pennsylvanian-Permian) 

sandstone (Boyd 1993). The Bighorn Basin sedimentary formations include Mesozoic 

Chugwater and Morrison sandstone formations, as well as other siltstones and shales along the 

basin-foothills margin (Picard 1993; Steidtmann 1993). Central Bighorn Basin deposits are 

primarily Eocene Willwood Formation fine-grained sedimentary deposits (Pierce 1997). Alluvial 

transportation of fine-grained sediment like the Willwood Formation are a vital source of 

material for eolian deposits, particularly right as arid conditions begin to increase (Knox 1972). 

The sedimentary structures in the western slope create rockshelters in three geomorphic 

settings: Madison paleokarst, Pleistocene active karst, and fluvial erosion of sandstone (Finley 
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2008). The Madison paleokarst pockets were excavated via the retreat of the Mississippian Sea 

and filled with limestone roof fall, sand, silt, and shale during the Pennsylvanian period (Sando 

1974; Sando 1978). Rockshelters in the paleokarst are frequently located on high-angle slopes 

and cliffs, and fill sediments erode out easily due to poor cementation (Finley 2008). Active karst 

formed in the early Pleistocene (around 600 ka) and followed the path of water downslope from 

the upper reaches of the Bighorn Mountains (Sutherland 1976). Tensleep sandstone rockshelters 

form primarily through autogenic granular disintegration. Tensleep sandstone itself is 

particularly susceptible to weathering due to mature, rounded quartz grains cemented by 

anhydrite or dolomite (Boyd 1993). Sedimentation in Bighorn Basin rockshelters can be 

separated into two primary methods: allogenic and autogenic (Woodward and Goldberg 2001). 

Allogenic sedimentation refers to external sources of sedimentation, including eolian, fluvial, 

and colluvial transportation. Allogenic sedimentation frequently occurs with well-rounded and 

smooth sediment grains due to increased friction while the grain is in motion (Tate et al. 2007) 

Autogenic sedimentation denotes grains from inside the rockshelter itself, separated from the 

bedrock through weathering processes. 

 

 

Archaeology of the Central Rocky Mountains 

 

 

The archaeological record of the Northwest Plains and Middle Rocky Mountains is 

generally divided into three broad categories: Paleoindian, Archaic, and late Prehistoric 

(Kornfeld et al. 2010). Paleoindian archaeology is generally defined as a series of cultural 
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complexes dominated by large game hunting with limited evidence of plant processing, although 

it is reasonable to assume that plants and small game were an important part of Paleoindian diets 

(Byers and Ugan 2005). Individual Paleoindian cultural complexes are primarily identified 

through stone tool technologies like the fluted and stemmed lanceolate projectile point (Kornfeld 

et al. 2010). The timeline for the Paleoindian period is continually being updated by older sites 

but is currently understood to be 16,000-10,000 cal yr BP in western North America (Davis et al. 

2019). Archaic technology, though heavily variable by region, is defined by the trend toward the 

incorporation of smaller game and plants in diets, as well as smaller notched and stemmed 

projectile points. The Archaic period in the Northwest Plains and Central Rocky Mountains 

lasted from approximately 8,500-1,500 cal yr BP and is divided into three phases (i.e., Early 

Archaic ca. 8,000-5,500 cal yr BP, Middle Archaic 5,500-3,500 cal y BP, and Late Archaic 

3,500-1,500 cal yr BP) each with distinct diagnostic projectile point styles and regional 

settlement strategies (Kornfeld et al. 2010). The Late Prehistoric transition is generally marked 

by the appearance of bow-and-arrow technology, and later, earthenware pottery (Finley et al. 

2017; Kornfeld et al. 2010). The addition of the Protohistoric period in the western United States 

is also variable depending on the time European-Americans made contact regionally in the last 

decades of the 18th century and the first decades of the 19th century. 

 

Bighorn Basin Archaeology 

 

While early Paleoindian occupations are known in the Bighorn Basin (Finley et al. 2005; 

Frison and Bradley 1980; Frison and Todd 1986; Todd et al. 1987; Kornfeld et al. 2010), the 

Paleoindian record is dominated by the Foothill-Mountain Paleoindian complex, an early shift 
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towards broad spectrum foraging and reduced mobility (Frison 2007). Archaic technology in the 

Bighorn Basin is well-preserved, particularly in rockshelters due to their relative protection from 

erosion and weathering. Rockshelters and caves may have served as refuge from harsh weather 

conditions, including periodic droughts (Albanese and Frison 1995; Anderson 2007). Plains and 

Western Macrotradition stone tools, stone-filled fire pits, evidence of residential structures, food 

remains, wood, and fiber objects comprise some of the recovered Archaic artifacts in the Bighorn 

Basin (Frison 2007; Frison and Walker 2007; Husted 1995; Kornfeld 2007). Late Prehistoric and 

Protohistoric components are also evident in many of the archaeologically significant 

rockshelters, including stone tools and ceramics attributed to the ancestral Crow (Frison and 

Walker 2007). 

Archaeological investigations in the Bighorn Basin, particularly in regional rockshelters, 

began in 1938 and continues through today (Kornfeld 2007; Husted 1964; Frison 1962; Frison 

1968; Frison 1973; Frison 2007; Frison and Walker 2007; Finley 2008). Dinwoody Cave, 

excavated in 1938 and 1939 by the Works Project Administration (WPA), produced over 600 

artifacts, though these were returned to the Wind River Reservation and reinterred due to the 

site’s spiritual significance (Kornfeld 2007; Francis and Loendorf 2002). Birdshead Cave (Bliss 

1950), excavated in 1947 under a salvage archaeological project for Boysen Reservoir, contained 

seven occupation levels, demonstrating an early understanding of long-term continued 

occupation in the Bighorn Basin and surrounding region. Other archaeological investigations 

occurred during 1960s salvage work in Bighorn Canyon, uncovering artifacts at several 

rockshelters, including Sorenson, Bottleneck, and Mangus Caves, and confirmed the mid-

Holocene presence of humans in this region (Husted 1964). These sites produced many Middle 

and Late Archaic perishables, as well as other materials through the late Prehistoric and post-
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European contact periods. Rockshelter research in the Bighorn Basin is most well-known from 

Frison’s legacy of research, beginning in the early 1960s and including sites like Daugherty 

Cave, Spring Creek Cave, Leigh Cave, and Medicine Lodge Creek, (Frison 1965; Frison 1968; 

Frison and Huseas 1968; Frison and Walker 2007). Many of these sites exhibit Paleoindian 

occupation, indicating a late Pleistocene to early Holocene use of the Bighorn Basin and Bighorn 

Mountains. Medicine Lodge Creek remains among the most important regional sites because it 

contains the most refined chronology of occupation due to over five meters of relatively intact 

alluvial stratigraphy (Frison and Walker 2007). These sites were essential in refining not only the 

Bighorn Basin cultural chronology, but the prehistoric occupation sequence for the Central 

Rocky Mountains and Northwest Plains (Kornfeld et al. 2010). 

Surovell et al. (2009) use over 800 published and unpublished radiocarbon ages from 

around the Bighorn Basin in order to create and test a model of taphonomic bias, defined as 

increased presence of younger sites due to cumulative, destructive effects of erosion on older 

sites. They postulate that open-air sites in the Bighorn Basin are disproportionally affected by 

taphonomic bias because they are unlikely to be buried and preserved, whereas closed sites act 

like sediment traps and lead to burial and preservation of archeological data. Using their model 

to correct for taphonomic bias, Surovell et al. (2009) demonstrate that open-air site and 

rockshelter use was nearly identical except for the periods between 9,500-7,000 cal yr BP and 

4,000-2,000 cal yr BP, where rockshelter use exceeds open-air sites and indicates that the 

foothills locations where rockshelters occur were more intensively occupied during drought 

cycles. 

Bighorn Basin rockshelters provide important geological tests of human response to 

environmental change because the stratigraphic deposits are local records of biogeomorphic 
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response to climate change (Finley 2008, 2016). Alm Shelter is one of the best examples as it 

contains a nearly complete stratigraphic record spanning the late Pleistocene and Holocene. With 

proper analysis and chronological control, the Alm Shelter stratigraphic record can be exported 

to other rockshelters as a key to understanding the chronology of geomorphic events and cultural 

occupations that is a complimentary record to Medicine Lodge Creek (Frison 2007; Ostahowski 

and Kelly 2014). Previous archaeological work includes test excavations in the early 2000s by 

the University of Wyoming, as well as several recent seasons of excavations in the main unit. 

Excavation revealed nearly two meters of deposits with significant amounts of cultural materials 

(Craib et al. 2019). During more than 10 years of excavations, radiocarbon and luminescence 

samples have produced a robust archaeological and geoarchaeological chronology. This paper 

presents initial findings from luminescence samples, grain-size analysis, and stratigraphic 

analysis to create a local model of rockshelter site formation for comparison against other 

regional proxies of environmental change. These records collectively reveal the timing and 

spatial extent of Holocene droughts spanning the eastern Great Basin, Central Rockies, and into 

the western High Plains. 

 

 

Holocene Eolian Record and Environmental Change in the Interior Western US 

 

 

Understanding shifting effective moisture conditions in the past is key to understanding 

potential patterns in the present and future. Information such as changing species of pollen, 

amounts of certain minerals, and evidence of deposition regime changes assist researchers in 
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identifying paleoclimate patterns and can assist in developing new models for understanding the 

future. Periods of eolian sedimentation generally reflect increased aridity (Busacca et al. 2003; 

Dean et al. 1996; Clarke and Rendell 1998). In eolian sedimentation, sediment supply is highest 

at the beginning of droughts, as alluvial processes deposit sand when the carrying capacity of the 

flowing water decreases (Knox 1972). Eolian sedimentation is primarily driven by sediment 

availability and supply, transport capacity of water, vegetation cover, and moisture conditions, as 

well as consistent wind to entrain and move fine-grained sediment (Ahlbrandt et al. 1983; 

Busacca et al. 2003; Kocurek and Lancaster 1999). While eolian activity is often connected to 

greater aridity, some studies suggest that more frequent precipitation events may lead to 

increased fluvial deposition of well-sorted sediments, adding to sediment supply in overbank 

depositional environments (Bullard and Livingstone 2002; Clarke and Rendell 1998). Eolian 

activity declines during periods of increased effective moisture when vegetation cover increases 

anchoring of otherwise mobile sediments. During drier conditions, an inverse relationship 

between decreased vegetation cover and increased sediment mobility is present (Hugenholtz and 

Wolfe 2005; Knox 1972). Using a local model from information found at Alm Shelter, this 

information regarding aridity can be exported and tested to determine whether arid conditions 

persisted around the western interior of the continent. 

 

Paleoclimate Records of the Western United States 

 

Continuous and discontinuous paleoenvironmental data, taken from lake and wet 

meadow cores as well as dune records across the western United States, provide vital context for  
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Figure 2. Regional paleoclimate study sites. 

 

the Alm Shelter record (Figure 2). These selected studies reflect major periods of decreased 

effective moisture, with goals of determining regional and continental patterns of aridity. All 

ages in this study are presented in calibrated years before present (cal yr BP) beginning at AD 

1950, including the luminescence ages presented from Alm Shelter (Wolff 2007). Some 

comparative studies cited here initially presented ages in uncalibrated radiocarbon years before 

1950 (14C yr BP) while others present ages in kiloannum (ka) measures. Results originally 

presented in 14C yr BP were calibrated using the CALIB software (Stuiver et al. 2021), and 

results presented in ka were corrected by subtracting the difference between year of publication 

and 1950 to match outputs from the age-depth model (Bronk Ramsey 2008; Bronk Ramsey and 

Lee 2013). The following comparative studies here contain various error margins, as older 

samples are compared against newer samples subject to advancements in technology that led to 

increased precision in both radiocarbon and luminescence dating methods. 
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The interior western US has many well-known eolian landscapes that provide strong 

evidence for shifting Holocene environmental conditions, as these landscapes require consistent 

or intense periods of aridity to demonstrate activation in their sedimentation record (Knight et al. 

2004). Sand dune records, while temporally discontinuous, hold a vital place in understanding 

timing of drought cycles with enough intensity to initiate dune activation. The following studies 

use luminescence to bracket spans of dune activation and contextual radiocarbon ages to bracket 

spans of soil formation (Ahlbrandt et al. 1983; Forman et al. 2005; Halfen et al. 2010; Loope et 

al. 1995; Mayer and Mahan 2004; Miao et al. 2007; Stokes and Gaylord 1993; Stokes and 

Swinehart 1997). Lake records discussed here are another important and continuous contribution 

to understanding climate records in the western United States (National Research Council 2006). 

Lake records can include sediment cores that contain pollen, mollusks, diatoms, and minerals 

that track fluctuations in effective moisture and temperature (Grimm et al. 2011; Louderback and 

Rhode 2009; Mensing et al. 2013; Shuman et al. 2010; Shuman 2012; Shuman and Marsicek 

2016). 

Dune Records. Dune fields in the basins of the Central Rocky Mountains and interior 

western United States provide important evidence for the timing and regional extent of Holocene 

environmental change and provide increased regional context for sites in Wyoming like Alm 

Shelter (Alhbrandt et al. 1983; Halfen et al. 2010; Mayer and Mahan 2004; Stokes and Gaylord 

1993). These records are defined as discontinuous because they track discrete events like dune 

stabilization and activation, rather than a continuously resolved deposit like varved lake cores. 

Important Wyoming localities include the Killpecker Dunes, Ferris Dunes, and Casper Dunes 

(Figure 2). Geochronological methods provide complementary views of eolian conditions where 

radiocarbon dating of soils are evidence for dune stabilization and soil formation requiring more 
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mesic conditions, while luminescence dating reconstructs dune mobilization and decreased 

effective moisture (Alhbrandt et al. 1983; Halfen et al. 2010; Mayer and Mahan 2004; Stokes 

and Gaylord 1993). The Killpecker Dunes and the Casper Dunes have been studied by geologists 

to understand timing of activation and stabilization, and this is reflected in the use of both 

radiocarbon and luminescence dating methods (Ahlbrandt et al. 1983; Halfen et al. 2010; Mayer 

and Mahan 2004). The Ferris Dunes and its associated stratigraphic record have been primarily 

documented using radiocarbon dating methods (Stokes and Gaylord 1993). 

Documentation of aridity from the St. Anthony Dunes in eastern Idaho are included to 

provide context west of the study site, and the luminescence ages track dune activations around 

the core of the dune field (Rich et al. 2015). However, western United States dune records 

outside of Wyoming primarily come from the western Great Plains, including the Nebraska Sand 

Hills (Figure 2). These records are important to compare against Alm Shelter to confirm periods 

of widespread arid conditions (Ahlbrandt et al. 1983; Forman et al. 2005; Loope et al. 1995; 

Miao et al. 2007; Stokes and Swinehart 1997). These records are again established with both 

luminescence and 14C ages, sampled from eolian dune activity and interdunal soil formation 

respectively. 

Moisture and Temperature Records. Bighorn Basin climate reconstructions, using pollen 

and lake level records from Lake of the Woods, Buckbean Fen, and Sherd Lake, found that 

prolonged periods of aridity and higher temperatures occurred throughout the Holocene (Shuman 

et al. 2010; Shuman 2012). The Lake of the Woods record tracks changes in effective moisture 

using sediment cores and ground penetrating radar measurement of shoreline elevations changes 

over time, based on the assumption that silt and mud accumulate continuously in deep water 

while sand accumulates in shallow water (Shuman et al. 2010). Shuman (2012) presents 
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reconstructed data from Buckbean Fen and Sherd Lake using comparisons between fossil pollen 

and favored temperature conditions of seven groups of modern pollen analogs. These three site 

records are discontinuous and may represent local patterns. 

Three climate proxies from the western United States provide important continuous 

temperature and moisture records outside of the Central Rocky Mountains that may be affected 

by widespread environmental trends (Figure 2). Estimated periods of aridity in Blue Lake, 

Nevada were tracked using an age-depth model of 14C ages from plant macrofossils, peat, and 

organic carbon from bulk mud samples, as well as accumulation rates of different pollen types in 

the sediment cores (Louderback and Rhode 2009). Like Blue Lake, Stonehouse Meadow, 

Nevada, uses sediment cores to demonstrate periods of increased Holocene aridity but also 

includes sediment analysis, identification of terrestrial pollen and mollusks with specific 

moisture requirements, identification of diatom flora, and 14C ages taken from bulk charcoal-rich 

sediment, mollusks, and seeds (Mensing et al. 2013). The Kettle Lake, North Dakota varve 

records are based on sediment cores, 14C ages taken from plant macrofossils, pollen 

identification, and comparison of calcite and aragonite dominance in sections of the cores 

demonstrating differences in groundwater flow (Grimm et al. 2011). 

At Alm Shelter, periods of aridity were determined using grain-size analysis and 

luminescence dating. The grain-size analysis is key to determining whether sandy strata 

represent wind-blown sediment and luminescence dating to providing age control of these 

depositional packages (Tate et al. 2007). 
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Methods 

 

 

Geoarchaeology 

 

 Research at Alm Shelter began in 2005 with excavation of a single 1-x-1-m test unit, 

designated as the TP 1 test unit (Figure 3). Two additional test units were excavated in 2009, 

which were designated TP 2 and TP 3. Both units were excavated closer to the shelter interior 

(Figure 3). Excavations were expanded between 2014 and 2018 to create a block connecting the 

TP 1, 2, and 3 test units. The main stratigraphic profiles come from the south wall of TP 1, the 

south wall of the TP 2 test, and the west wall of the main block. Profiles were drawn using 

reference to the master excavation grid at the site with elevations recorded in depths below the 

site datum using an arbitrary elevation of 100.00 m. Field profiles mapped a representative 

sample of boulders larger than 10 cm as critical reference points for future investigations. 

Boulder concentrations are also useful markers of stratigraphic contacts in rockshelter deposits. 

Sediment descriptions follow USDA Soil Survey nomenclature (Soil Survey Staff 1999). 

 Bulk sediment samples were collected for grain-size analysis. Sediment samples from the 

west wall of the excavation block were analyzed in the USU Geoarchaeology Lab and the USU 

Geochemistry Lab. Sediment samples were split and weighed to create a base sample weight. 

Using two nested screens and a solid pan, the samples were manually sieved to separate cobbles 

and pebbles (> 2 mm), granules (1-2 mm), and coarse to fine sand (<1 mm). Each size 

classification was weighed to determine percentage of cobbles, pebbles and sand based on the  
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Figure 3. Planview map of Alm Shelter indicating main excavation unit and test pits. Modified 

from Ostahowski and Kelly (2014). 

 

Wentworth (1922) classification scheme. Grain-size distributions were measured using a 

Malvern Mastersizer 2000 with Hydro 2000 MU attachment. This equipment uses laser 

diffraction in order to determine size distribution down to 0.02 microns. Laser diffraction uses 

predictable patterns of scattered light from the laser striking various particle sizes to translate 

into grain-size measurements (Malvern Instruments 2007). Sediment analysis used the following 

protocol. The pump was set to 3,000 revolutions per minute, and a program of three 
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measurements for 30 seconds was selected in order to establish accurate and precise 

measurements for each sample. Once the computer program and instrument were prepared, a 

small, representative amount of sediment was added into the beaker of DI water until the laser 

obscuration level on the Malvern reached 7-10%. One minute of sonication assisted in breaking 

apart clumps of material before the material analysis took place. Results from the Malvern as 

well as the manual sieve of the samples were entered into a spreadsheet in order to determine 

percentages of each grain-size classification. 

 

Luminescence Dating 

 

Many archaeological studies use luminescence dating to supplement or replace 

radiocarbon chronologies (Clarkson et al. 2017; Douka et al. 2014; Ferbrache 2019; Gliganic et 

al. 2012; Huckleberry and Rittenour 2014; Rittenour et al. 2015; Robbins et al. 2012). 

Luminescence provides ages on sediment deposition to inform paleoclimate reconstructions and 

site occupation chronologies. Eolian deposits are ideal for luminescence dating as the method 

requires fine-grained quartz and feldspar to produce ages (Stevens et al. 2006). When this fine-

grained sediment is buried, trace radioactive elements in the surrounding matrix give off ionizing 

radiation, called the environmental dose rate (DR), that collects in the electron traps of individual 

quartz and feldspar grains (Aitken 1998). The DR is adjusted for the percentage of water present 

in the sample, as it attenuates the effect of radioactivity collecting in the electron traps (Guérin et 

al. 2011). The amount of absorbed radiation collected in these traps since burial from the sun is 

called the equivalent dose (DE). When these sediments are stimulated by light or heat, the stored 

electrons are released from the trap in the form of photons. UV receptors capture the amount of 



19 

 

 

light released, and samples are then re-dosed with radioactivity and re-stimulated in increasing 

amounts to recreate the amount of radiation needed to produce the original light emission 

(Wintle and Murray 2006). Optically stimulated luminescence (OSL) measurements were 

performed on quartz grains stimulated with blue-green light (Huntley et al. 1985; Wintle and 

Murray 2006). Infra-red stimulated luminescence (IRSL) used infra-red stimulation on feldspar 

grains, with additional corrections for signal fading during the re-dose and re-stimulation phases 

(Auclair et al. 2003; Huntley and Lamothe 2001; Wallinga et al. 2000). DR was calculated by 

measuring concentrations of radioactive elements such as potassium, uranium, thorium, and 

rubidium, as well as an estimate of contributed cosmic radiation.  DR is presented as Grays per 

thousand years, or Gy/kyr. Luminescence testing produces error margins of approximately 10% 

of the sample’s age due to combined uncertainties of calculating DR and DE (Murray and Olley 

2002). 

Field collection of luminescence samples included both aluminum tube and film canister 

methods, under cloak of darkness, in order to accommodate thin lenses of targeted sediments. 

Three luminescence samples were collected from the base of the western wall (i.e., the west wall 

of the TP 3 test unit; Figure 3) in order to constrain the timing of the shift from the dominantly 

alluvial deposition of Paintrock Creek to colluvial and eolian sedimentation that characterizes 

most of the deposit. These three samples were collected by pounding 1.5 x 6” aluminum tubes 

into the base of the eastern wall. The tubes were packed with tissue and wrapped in light-proof 

tape at each end to prevent light contamination of the sediment inside. A quart-sized bag of 

sediment was collected from an approximately 30 cm diameter area around the sample to 

measure the dose rate. A film canister of sediment was collected for calculation of sediment 

moisture. Six additional luminescence samples were collected from the south wall of TP 2 
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(Figure 3), taken from distinct fine-grained deposits ideal for luminescence dating. These 

samples were collected under cloak of darkness by scraping a minimum of 5 mm of sediment 

from the selected deposits to prevent light contamination. A sediment sample was then collected 

into a light-proof film canister. Dose rate samples included a quart-size bag of sediment, and 

sediment water content samples were collected in film canisters. 

Two additional luminescence samples, USU-3039 and USU-3040, were collected from 

TP 4 underneath a roof fall event outside the rockshelter dripline (Figure 3). The purpose of 

these samples was to determine the age of a major roof fall collapse of the shelter and further 

constrain the timing of the transition from the dominantly alluvial depositional regime to a 

subsequent regime of hillslope and eolian sedimentation. Both samples were collected under 

cloak of darkness, one with a film canister used for the luminescence, and the other with an 

aluminum tube. The film canister was used due to the presence of many larger cobbles directly 

underneath the boulder, while sediment lower in the stratigraphy allowed for a larger sample to 

be removed. 

Lab Processing and Analysis. Eleven OSL samples were processed at the Utah State 

University Luminescence Lab in Logan, Utah under dim amber (590 nm) darkroom lighting to 

prevent potential bleaching of the luminescence signal. Each sample was wet sieved between 93-

250 µm, with variations depending on the amount of initial material present. Isolation of the 

quartz and feldspar occurred by using 10% HCl and 3% H2O2 to remove carbonates and organic 

material. Two densities of sodium polytungstate were used in a double flotation process to 

isolate quartz (2.72 g/cm3) and feldspar (2.58 g/cm3) grains (Wallinga et al. 2000; Wintle and 

Murray 2000). The quartz samples underwent an additional process consisting of three 30-

minute treatments of HF acid to remove any contaminating feldspars and etch the quartz, with a 
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final treatment of concentrated HCl to remove fluorite precipitates. DR was calculated by 

inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) and using conversion factors of Guérin and colleagues (2011). 

In-situ water content was calculated by weighing the moisture samples, drying overnight in a 50º 

C oven, then weighing again to determine the percentage of water present in the sample. 

Samples were tested for DE using the single-aliquot regenerative-dose (SAR) method 

(Wallinga et al. 2000; Wintle and Murray 2006). OSL measurements of the fine quartz sand were 

conducted on a Risø TL/OSL DA-20 reader, using LEDs at 470±30 nm to stimulate 1-mm 

aliquots of quartz and a 7.5 mm UV filter for measurement of emitted light (Bøtter-Jensen et al. 

2000). IRSL measurements were also made on the Risø TL/OSL DA-20 reader using 1-mm 

aliquots of feldspar grains and stimulated instead using 870 nm LEDs (Auclair et al. 2003). The 

IRSL samples were corrected for fading according to guidelines established by Huntley and 

Lamothe (2001). The Central Age Model (CAM) was used to calculate DE of each sample 

(Galbraith and Roberts 2012). 

 

OxCal Model 

 

Modeling chronological and stratigraphic information in a Bayesian age-depth model is 

vital to interpolate ages of undated events in the sedimentary and archaeological records like 

stratigraphic boundaries and grain-size samples (Bronk Ramsey 2008). This interpolation is 

important for refining models of site formation and creating constraints for periods of major 

climatic shifts that cannot be directly dated. Age-depth models also help constrain comparisons 

with major regional shifts in this local record (Douka et al. 2014). OxCal incorporates Markov-
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chain Monte Carlo (MCMC) simulations to aid in creating formal interpolation between ages in 

the stratigraphic sequence via the computation of a Bayesian probabilistic age-depth model, 

though this may come with additional imprecision (Bronk Ramsey 2008; Haslett and Parnell 

2008; Parnell et al. 2011). In this study, the age-depth model was created using the Poisson 

sequence, or P_sequence, which allows for variation in the rate of accumulated sediments in the 

stratigraphic column. The stratigraphic information z and length of deposition k function as the 

prior information, while the ages inform the MCMC process in the likelihood (Bronk Ramsey 

2008). The posterior information that results from the model are probability estimations about 

the selected ages; the start, end, and median ages of depositional sequences; and any additional 

non-dated material like grain-size samples or individual stratigraphic contacts, entered here as 

Boundary functions in order to produce a modeled age range. 

Stratigraphic profile sketches drawn during excavation and sedimentological analyses 

informed insertion of the luminescence ages to reflect stratigraphic order into OxCal. Prior OSL 

ages were organized into depositional groups based on stratigraphic and grain-size evidence, 

inserted into the P_sequence using the Date() function, and run through the MCMC sequence. 

The k parameter was set to 100, using a variable k function rather than a fixed deposition rate to 

reflect variable sediment size and deposition rate throughout the several meters of sedimentary 

sequence (Bronk Ramsey and Lee 2013). The variability of k, inserted here as D, was set 

between 10-2 and 102, allowing the model to average the likely deposition rate between 1 and 

10,000 depositional events per meter (Bronk Ramsey 2008; Bronk Ramsey and Lee 2013). The 

model uses an interpolation value of 0 because it incorporates modeling specific events using the 

Boundary function based on depositional history. The first iteration of the model uses Boundary 

to model ages of peak eolian events identified in the grain-size analysis, while the second 
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iteration models major depositional shifts identified in previous stratigraphic descriptions (Bronk 

Ramsey 2008; Finley 2008). Major climatic events identified in the regional climate models 

detailed above are compared to the posterior information from the age-depth model to determine 

whether Alm Shelter is reflecting local or regional climatic patterns. 

 

 

Results 

 

Stratigraphic Analysis 

 

 Stratigraphic analysis performed on TP 1 revealed a well-stratified deposit. Stratum 1 

consists of compacted cow feces, while Strata 2 and 3 are fine-grained and stained with ash. 

Three primary depositional packages are identified between Strata 4 and 21: Strata 4-11 are 

fairly coarse with two fine-grained components, Strata 12-19 demonstrates an increase in fine-

grain sediments with two gravel-dominated strata and two anthropogenic horizons, and Strata 20 

and 21 both are massively bedded deposits, though Stratum 20 is gravel dominant while Stratum 

21 is characterized by fine-grain sediments (Finley 2008). Stratigraphic descriptions are provided 

in Table 1 (Soil Survey Staff 1999). In order to maintain continuity of this analysis between the 

2005 through 2018 excavations, both TP 2 and 3 as well as the western wall of the expanded 

excavation block follow the Finley (2008) stratum numbering (Figure 4). A one-meter block was 

skipped between the south walls of TP 1 and TP 2 (Figure 3). Strata from the south wall of TP 1 

can be traced to the south wall of TP 2 (Figure 4), indicating lateral continuity east-west across 

the sedimentary deposits, with fine-grained deposits pinching out to the west and coarse grain 
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Figure 4. Stratigraphic profiles of TP 1, TP 3, TP 2, and the main excavation trench at Alm Shelter.
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Table 1. Stratigraphic Descriptions from Alm Shelter TP 1 South Profile (Finley 2008). 

Stratum Description 

1 Cow dung 

2 Burnt limestone clasts and cow dung; 2.5Y8/1 (white) 

3 Burnt cow dung; 2.5Y2.5/1 (black) 

4 Gravelly silty clay loam; 10YR5/4 (yellowish brown); ~15% angular gravel; massive; loose (dry); 

slightly sticky, slightly plastic (wet); strongly effervescent; disseminated carbonates; clear, wavy 

boundary 

5 Extremely gravelly sandy clay loam; 10YR4/3 (brown); ~15% angular to rounded gravel; single grain; 

loose (dry); sticky, slightly plastic (wet); violently effervescent; disseminated carbonates; abrupt, wavy 

boundary 

6 Gravelly sandy clay loam; 10YR6/6 (brownish yellow); ~15% angular gravel; massive; soft (dry); 

sticky, plastic (wet); violently effervescent; disseminated carbonates; abrupt, smooth boundary 

7 Sandy clay loam; 10YR6/4 (light yellowish brown); massive; soft (dry); sticky, plastic (wet); violently 

effervescent; disseminated carbonates; clear, wavy boundary 

8 Silty clay loam; 10YR7/4 (very pale brown); massive; soft (dry); very sticky, plastic (wet); strongly 

effervescent; disseminated carbonates; abrupt, smooth boundary 

9 Very gravelly sandy clay loam; 10YR5/4 (yellowish brown); ~30% angular gravel; single grain; loose 

(dry); slightly sticky, slightly plastic (wet); violently effervescent; disseminated carbonates; clear, 

smooth boundary 

10a Gravelly clay loam; 7.5YR3/2 (dark brown); ~20% angular gravel; massive; slightly hard (dry); slightly 

sticky, slightly plastic (wet); violently effervescent; disseminated carbonates; clear, smooth boundary 

10b Gravelly clay loam; 7.5YR4/4 (brown); ~20% angular gravel; massive; soft (dry); slightly sticky, 

nonplastic (wet); violently effervescent; disseminated carbonates; clear, smooth boundary 

10c Gravelly clay loam; 7.5YR4/6 (dark yellowish brown); ~20% angular gravel; single grain; soft (dry); 

slightly sticky, slightly plastic (wet); strongly effervescent; disseminated carbonates; clear, smooth 

boundary 

11 Gravelly sandy loam; 10YR5/2 (grayish brown); ~20% angular gravel; single grain; loose (dry); 

nonsticky, nonplastic (wet); violently effervescent; disseminated carbonates; common, medium, oblong, 

white, noneffervescent salt; clear, wavy boundary 

12 Clay loam; 10YR6/4 (light yellowish brown); massive, soft (dry); slightly sticky, slightly plastic (wet); 

violently effervescent; disseminated carbonates; common, medium, oblong, white, noneffervescent salt 

concentrated (many) on 1cm layer ~2cm above lower contact; clear, smooth boundary 

13 Gravelly sandy loam; 10YR6/4 (light yellowish brown); ~20% angular gravel; massive; very friable 

(moist); slightly sticky, nonplastic (wet); strongly effervescent; disseminated carbonates; few, fine, 

oblong, white, noneffervescent salt; clear, smooth boundary 
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14 Clay loam; 10YR5/4 (yellowish brown); massive; very friable (moist); sticky, plastic (wet); violently 

effervescent; disseminated carbonates; clear, wavy boundary 

15 Gravelly sandy loam; 10YR5/2 (grayish brown); ~20% angular gravel; massive; very friable (moist); 

slightly sticky, slightly plastic (wet); violently effervescent; disseminated carbonates; clear, smooth 

boundary 

16 Sandy loam; 10YR6/6 (brownish yellow); massive, very friable (moist); slightly sticky, slightly plastic 

(wet); strongly effervescent; disseminated carbonates; clear, smooth boundary 

17 Sandy loam; 10YR4/4 (dark yellowish brown); massive; very friable (moist); nonsticky, nonplastic 

(wet); violently effervescent; disseminated carbonates; common, fine to medium; oblong, white, non-

effervescent salt; clear, wavy boundary 

18 Silty clay loam; 7.5YR6/6 (reddish yellow); massive, friable (moist); slightly sticky, slightly plastic 

(wet); strongly effervescent; disseminated carbonates; few, fine, rounded, white, non-effervescent salt; 

clear, wavy boundary 

19 Silty clay loam; 7.5YR5/6 (strong brown); massive, friable (moist); sticky, plastic (wet); violently 

effervescent; disseminated carbonates; clear, wavy boundary 

20 Gravelly loam; 10YR5/4 (yellowish brown); >20% angular gravels and cobbles; massive; very friable 

(moist); slightly sticky, slightly plastic (wet); violently effervescent; disseminated carbonates; clear, 

wavy boundary 

21 Loam; 10YR5/4 (yellowish brown); massive, very friable (moist); nonsticky, nonplastic (wet); violently 

effervescent; disseminated carbonates; no lower boundary 

 

 

deposits pinching out to the east. Greater subdivisions of fine-grained sediments are more 

apparent on the south side of TP 2, particularly around Strata 16 and 18. Between Strata 19 and 

20, there appears to be some additional subdivisions alternating between fine-grained and coarse-

grained deposits. These thin lenses of fine-grained sediment were selected for luminescence 

testing. 

The western wall of the main excavation block (Figure 4) demonstrates some continuity 

of the sedimentation patterns identified in TP 1 and TP 2. Toward the center of the excavation 

block and proceeding north toward TP 3, the distinction between stratigraphic layers becomes 

less clear, which may be related to the effects of cultural occupation. This section contains more 
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evidence of potentially cultural organic material mats and trampling of the somewhat finer-

grained sediments may have blurred stratigraphic contacts. At the far north end, the western wall 

of the main excavation trench intersects TP 3. This unit was excavated an additional meter in 

depth revealing roof fall dominated deposits as a continuation of Stratum 21, a fine-grained 

deposit labeled here as Stratum 22, and a layer of well-rounded cobbles at the base of the 

excavation labeled as Stratum 23. This test was specifically designed to capture the pre-cultural 

geological depositional processes of the site, thus forming the basis for the site’s formation 

history. 

 

Grain-Size Analysis 

 

 Sedimentological samples were collected from the western wall of the main excavation 

trench, primarily from the western wall of TP 3 and the central portion of the main block (Figure 

4). Samples from the western wall of TP 3 were taken from every stratum, while the samples 

from the western wall of the main excavation unit were taken from thin, fine-grained deposits 

suspected to be eolian events. From the 23 samples collected across the western wall, 15 contain 

greater than 50% fine-grain sediments. Four peaks of fine-grained sediments were identified 

throughout the stratigraphic column on the western wall (Figure 5). The strongest peak occurs at 

1.32 meters below the datum (mbd) of excavation, with additional peaks at 1.55, 1.75, and 2.40 

mbd. These peaks point to major changes in depositional regime, which correlate to the higher 

presence of fine-grained sediments in Strata 12-19. This two-prong approach appears to be a 

reliable indicator of increased transport of fine-grained sediment. 
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Figure 5. Grain-size analysis results with four peaks of eolian sedimentation highlighted. 

 

 

OSL and IRSL 

 

Results for the eleven luminescence samples are presented in Table 3. Luminescence 

samples were collected from three locations across the site. Two samples, USU-3039 and USU-
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3040, were taken from an external test pit approximately 20 meters east of the main excavation 

block (Figure 3). Three samples were collected from the western wall of TP 3, while the 

remaining six samples were collected from the south wall of TP 2 (Figure 4). Two samples, 

USU-3044 and USU-3049, required IRSL analysis as there were few quartz grains remaining 

after the cleaning and mineral isolation process. Final ages were calculated using the Central Age 

Model, as no samples displayed signs of partial bleaching (Galbraith and Roberts 2012). 

Additionally, single-grain analysis was deemed unnecessary because the samples appeared to be 

well-bleached (Nelson et al. 2015). The ages are clustered in two main groups, with some 

overlap due to decreased precision: one in the terminal Pleistocene and the other in the early 

Holocene. The three samples from the eastern wall of TP 3 below Stratum 21 date to the late 

Pleistocene, between 18,250 ± 2,310 cal yr BP and 13,880 ± 1,880 cal yr BP, and were selected 

from culturally sterile deposits to constrain the pre-cultural formation of the site. Six samples 

from the south wall of TP 2, taken from fine-grained deposits between Strata 20 and 16, date to 

the terminal Pleistocene/early Holocene and range from 12,940 ± 1,400 to 7,160 ± 860 cal yr BP. 

The final two ages come from an external test unit underneath a roof fall event and date to 3,460 

± 730 directly underneath the boulder and 12,660 ± 1,870 cal yr BP about 80 cm below the 

boulder. 
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Table 2. Luminescence Age Information. 

Location USU num. 
Depth 

(mbd) 

Num. of 

aliquotsa 

Dose rate 

(Gy/kyr) 
Equivalent Doseb 

± 2σ (Gy) 
Age ± 2σ (ka) Methodc Age ± 2σ (cal yr BP) 

TP 4 USU-3039 2.8 15 (32) 2.64 ± 0.10 33.66 ± 4.13 12.73 ± 1.87 OSL 12,660 ± 4,130 

 USU-3040 2 16 (25) 2.26 ± 0.09 7.98 ± 1.51 3.53 ± 0.73 OSL 3,460 ± 730 

TP 3 USU-3043 2.75 20 (30) 2.46 ± 0.10 34.37 ± 3.73 13.95 ± 1.88 OSL 13,880 ± 1,880 

 USU-3041 3.2 18 (30) 2.44 ± 0.10 35.66 ± 4.29 14.59 ± 2.11 OSL 14,520 ± 2,110 

 USU-3042 3.45 20 (22) 2.04 ± 0.08 37.35 ± 3.63 18.32 ± 2.31 OSL 18,250 ± 2,310 

TP 2 USU-3049 1.37 18 (19) 3.23 ± 0.13 18.64 ± 1.63 7.23 ± 0.86 IRSL 7,160 ± 860 

 USU-3048 1.57 15 (16) 1.79 ± 0.07 17.20 ± 1.16 9.63 ± 1.00 OSL 9,560 ± 1,160 

 USU-3047 1.68 22 (26) 1.92 ± 0.07 17.75 ± 1.34 9.25 ± 1.01 OSL 9,180 ± 1,010 

 USU-3046 1.82 15 (16) 1.91 ± 0.07 20.36 ± 1.22 10.69 ± 1.06 OSL 10,620 ± 1,060 

 USU-3045 1.90 14 (16) 1.95 ± 0.07 20.32 ± 1.34 10.40 ± 1.07 OSL 10,330 ± 1,070 

 USU-3044 1.98 17 (22) 2.89 ± 0.11 24.61 ± 1.77 13.01 ± 1.40 IRSL 12,940 ± 1,400 

a Number of aliquots used in age calculation and total number of aliquots analyzed in parentheses. 
b Equivalent dose (DE) calculated using the Central Age Model (CAM) of Galbraith and Roberts (2012). 
c Optically stimulated luminescence (OSL) age analysis using the single-aliquot regenerative-dose procedure of Murray and Wintle (2000) on 1-mm small-aliquots of quartz sand. Infrared stimulated 

luminescence (IRSL) age analysis using the single-aliquot regenerative-dose procedure of Wallinga et al. (2000) on 1-mm small-aliquots of feldspar sand at 50°C IRSL and corrected for fading 

following the method by Auclair et al. (2003) and correction model of Huntley and Lamothe (2001). 
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Age-Depth Model 

 

General agreement between the stratigraphy and luminescence ages from Alm Shelter 

indicate no major age reversals that would present issues in the OxCal program. However, the 

large error terms of the luminescence samples result in a model that is relatively imprecise in 

terms of its ability to tightly constrain specific depositional events, as demonstrated by 

significant age overlap between samples. In order to refine the timing of depositional events, real 

and modeled luminescence ages were compared to other depositional indicators, and modeled 

ages were interpolated based on stratigraphic depth. Parameters for these models were set based 

on recommendations for age-depth models with multiple meters of deposition and flexible 

deposition rates, insertion of luminescence ages, and with the intent of using the Boundary 

function to model specific events (Bronk Ramsey 2008; Bronk Ramsey 2009; Bronk Ramsey 

and Lee 2013). 

Sensitivity analyses were performed using various k and p parameters, but all 

convergence and agreement indices remained above acceptable limits of 95 and 60 respectively 

(Bronk Ramsey 2009). Figure 6a demonstrates the actual and modeled luminescence ages with 

the modeled ages from distinct fine-grained strata boundaries from the south wall of TP 1. Figure 

6b uses the luminescence information with modeled ages from the four major eolian events 

identified in the grain-size analysis. Span and median ages for these modeled events are 

presented in Tables 3 and 4 and provide additional data to compare against regional climate 

studies. Generally, the modeled ages track specific time periods at which these eolian events took 

place, but error margins remain large due to the uncertainty of the luminescence ages used in the 

modeling process. 
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Figure 6. OxCal age-depth models from Alm Shelter. 

 

Table 3. Modeled Ages of TP 1 Stratigraphic Contacts. 

Depth (mbd) 
Stratum 

Number 

Median Modeled 

Age (cal yr BP) 

Confidence Interval 

(95.4%) 

Convergence 

Factor 

1.45 14/15 8,310 1,600 99.2 

1.6 16/17 9,320 1,300 99.2 

1.75 17/18 10,160 1,350 99.1 

1.87 18/19 11,580 1,640 98.8 

2.45 20/21 13,320 2,620 98.3 

Note: Amodel 102.1, Aoverall 107.2 
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Table 4. Modeled Ages of Grain-Size Analysis Eolian Peaks. 

Depth (mbd) Name 
Median Modeled 

Age (cal yr BP) 

Confidence Interval 

(95.4%) 

Convergence 

Factor 

1.32 Eolian 1 7,080 1,900 99.2 

1.55 Eolian 2 9,020 1,440 99.3 

1.75 Eolian 3 10,440 1,310 99.4 

2.6 Eolian 4 13,280 2,760 98.5 

Note: Amodel 108.9, Aoverall 114.7 

 

 

Discussion 

 

 

The purpose of this study is to examine the environmental context for the formation of 

Alm Shelter and compare it with other regional studies to determine the timing and scale of 

major periods of Holocene aridity across the interior western United States. Stratigraphic 

analysis, grain-size, luminescence ages, and an age-depth model confirm the presence and 

coarse-grained temporal distribution of eolian deposition at the study site that serves as a proxy 

for fluctuating moisture conditions. However, the comparison to the regional paleoclimate 

context is key in tracking regional events and determining whether Alm Shelter preserves 

isolated local events or major, widespread climatic phenomena. The results of this study present 

a comprehensive view of the site formation processes as revealed by the stratigraphy, 

sedimentology, and luminescence dating constrained within the OxCal age-depth model. 
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Site Formation History 

 

The Alm Shelter sequence begins with deposition of a major package of Paintrock Creek 

alluvium following the Last Glacial Maximum (LGM) and at a time when the stream was at a 

higher base level and positioned against the cliff face. The basal deposits include a clast-

supported matrix of well-rounded boulders associated with the bedload of Paintrock Creek 

(Strata 24: Figure 4). This latest Pleistocene depositional regime shifted to a phase of massively 

bedded sandy alluvium that is constrained by the lowest OSL age of 18,250 ± 2,310 cal yr BP 

(USU-3042; Figure 4), likely connected to the movement of Paintrock Creek from the western 

edge of the canyon toward the valley axis. Deposition of fine-grained alluvium continued for 

nearly 4,000 years, until 13,880 ± 1,880 cal yr BP (USU-3043: Figure 4) as indicated by the 

upper OSL age of Stratum 23. Strata 22 through 24 are only represented in the western section of 

TP 3 where the excavation continued an additional meter below the other units, although they 

likely occur across the site. 

The second major phase of deposition at Alm Shelter began at 13,320 ± 2,620 cal yr BP 

(Strata 20/21: Table 3). This period is marked by the onset of roof fall accumulation and the 

development of debris fans from hillslope sediments above the rockshelter into the shelter 

interior on the north and south margins of the site (Figure 3). The debris fan on the southern edge 

of the site, best illustrated in the south walls of the TP 1 test and the TP 2 test, has considerable 

influence on the architecture and geometry of inset fine-grained sediment deposition. Where 

Stratum 20 in the south wall of the TP 1 test unit is one large continuous deposit, discrete lenses 

of fine-grained sediments are preserved closer to the debris fan in the TP 2 test that most likely 

pinch out in the meter between the two units. Additional subdivisions in the strata occur in the 
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south wall of TP 2 and continue approximately halfway through the western wall of the main 

excavation trench (Figure 4). Fine-grained sediment deposits during these periods were likely 

allogenic, though these appear to be preserved differently based on proximity to the debris fans 

(Finley 2008). These discrete lenses of fine-grained sediment most likely represent either pulses 

of eolian sedimentation, fluctuations in the intensity of coarse-grained sedimentation from the 

debris fan, or a combination of both processes. This is supported by the first of the fine-grained 

peaks identified in the grain-size analysis, between USU-3043 and USU-3044 (Figure 5; Table 

3). 

Luminescence ages of fine-grained sediments from Strata 20 through 16 in the south wall 

of the TP 2 test indicate regular eolian deposition between 12,940 ± 1,400 and 7,160 ± 860 cal yr 

BP (Table 3). Stratum 20 is marked by significant subdivision of sediment facies between TP 1 

and TP 2, likely due to influence from the southern debris fan, and is constrained by 

luminescence ages between 12,940 ± 1,400 and 10,330 ± 1,070 cal yr BP.  Like Stratum 20, 

Stratum 19 in the TP 2 test also has further facies subdivisions and is constrained by the 

luminescence age of 10,620 ± 1,060 cal yr BP and a modeled age from the upper stratigraphic 

boundary (Stratum 18/19 contact) of 11,580 ± 1,640 cal yr BP (Table 3). This reversal remains 

within error margins for the luminescence age but demonstrates the low precision of the age-

depth model. 

Stratum 18 appears to be subdivided with an additional coarse-grained deposit from the 

southern debris fan in the meter between TP 1 and TP 2. This stratum also contains two 

luminescence ages (USU-3047 and USU-3048), a modeled eolian peak (Eolian 3, Table 4), and a 

modeled stratum boundary (Stratum 17/18, Table 3), all between 10,500-9,100 cal yr BP. The 

lower margin of Stratum 16 marks the beginning of another pulse of fine-grained deposition, 
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with a modeled age of 9,320 ± 1,300 cal yr BP (Stratum 16/17: Table 3) and a luminescence age 

of 7,160 ± 860 cal yr BP as well as three subdivisions (Figure 4). Again, this reversal falls within 

the large error margins for the model. The modeled age from the Stratum 14/15 contact, a 

colluvial to eolian depositional regime change, occurs at 8,310 ± 1,600 cal yr BP (Table 3). The 

last modeled age for this phase is Eolian 1 peak at 7,080 ± 1,900 cal yr BP (Table 4). 

The third depositional phase begins at Stratum 11 and is primarily marked by coarse-

grained sediments, likely originating from the southern debris fan, interfingered with Strata 6 and 

7, two very thin lenses of eolian sedimentation on the south wall of TP 1 (Finley 2008). These 

thin, fine-grained lenses pinch out toward TP 2 and the western wall of the main excavation unit 

(Figure 4). Strata 11 is constrained by three radiocarbon ages spanning 1,180 ± 40 to 4,770 ± 70 

cal yr BP, dating this section of the deposit to the late Holocene. The upper strata in the western 

wall are largely flat, relatively level, and contain several layers of grass mats likely linked to 

anthropogenic activity. The increased cultural occupation from the early and middle Holocene at 

Alm Shelter likely caused some blurring of fine-grained deposit boundaries along the interior of 

the rockshelter behind the dripline. Strata 2 and 3 are charcoal-rich, fine-grained deposits with 

occasional small boulders from roof fall events. Stratum 1 is comprised of a large amount of 

compacted cow dung from historic settlement (Finley 2008). 

Age constraints from the exterior test unit demonstrate the eastern downward slope as a 

result of the downcutting of Paintrock Creek. The presence of a 9,000-year gap in the 

luminescence ages on the hillslope well outside of the shelter apron indicates either an 

unconformity or an area of slower deposition, likely due to the test pit’s position outside the 

dripline and subsequent reduced protection from erosional forces like the creek itself. 
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Paleoenvironmental Interpretation 

 

The stratigraphy of Alm Shelter preserves a record of late Quaternary environmental 

change, including increased temperatures after the LGM. The earliest phase of site formation can 

be directly linked to deglaciation of the Bighorn Mountains. While direct evidence for the local 

timing of deglaciation is limited, Shuman and Serravezza (2017) report the earliest age of 

sediment deposition in Duncan Lake, a glacial lake at high elevation near Burgess Junction, as 

early as 17,000 cal yr BP. Licciardi and Pierce (2008) suggested retreat of alpine glaciers in the 

Beartooth Plateau on the western edge of the Bighorn Basin began by roughly 18,000 cal yr BP. 

Stable isotopes extracted from a stratified record of paleofecal materials at Last Canyon Cave at 

the base of the Pryor Mountains along the northern margin of the Bighorn Basin show increasing 

temperatures following the LGM with two temperature peaks at 14,400 cal yr BP and 13,5000 

cal yr BP (Minckley et al. 2021), the latter of which appears to be reflected in the Alm Shelter 

record. Eolian sedimentation during the late Pleistocene is also recorded in the stratigraphy of 

Prospects Cave in the Little Mountain reach of the Bighorn Mountains between 18,000-10,000 

cal yr BP (Finley 2008). Local temperatures decreased with the onset of the Younger Dryas 

around 12,800 cal yr BP (Minckley et al. 2021; Shuman and Serravezza 2017). 

One response of alluvial geomorphic systems during the transition towards drier 

conditions is that sediment load is deposited faster due to decreased discharge and fine-grained 

sediment has a higher chance of wind-borne transportation (Knox 1972). This coupled process of 

decreased discharge and increased sediment availability is likely the source of fine-grained 

allogenic sediment in the Alm Shelter deposit. The stratigraphy of the Medicine Lodge Creek 

site, located a few km north of Alm Shelter and a tributary of Paintrock Creek, indicates a local 



38 

 

 

geomorphic context where sediment load vastly outpaced discharge, leading to deposition of 

massively bedded alluvial deposits dating to the late Pleistocene and early Holocene ca. 11,000-

8,000 cal yr BP (Finley 2007). Medicine Lodge Creek alluvium is a probable source of fine-

grained sediments transported into Alm Shelter through an eolian mechanism. This interpretation 

is somewhat at odds with Schuman and Serravezza’s (2017) reconstruction of local lakes levels, 

which suggest increased moisture during the early Holocene between 11,000 — 8,000 years ago 

when regional lake levels rose. High sedimentation rates correspondent with increased regional 

moisture may reflect the availability of sediments following deglaciation and increased discharge 

resulting in greater overbank sedimentation in places like Medicine Lodge Creek. Lake levels 

fell again between 8,000—5,500 cal yr BP (Schuman and Serravezza 2017), indicating a local 

return to arid conditions, which is supported by fluxes of fine-grained eolian sedimentation in 

Alm Shelter and other local rockshelters like Paintrock V, Eagle Shelter, and BA Cave (Finley 

2008). The onset of moister late Holocene conditions following 5,500 cal yr BP (Schuman and 

Serrevezza 2017) is consistent with the prominence of coarse-grained sediments originating from 

the south debris fan. 

 

Regional Comparisons 

 

Because of the lack of precision and major overlap of luminescence ages, modeled ages 

of stratigraphic contacts, and modeled ages of grain-size analysis trends, it is difficult to 

precisely connect the Alm Shelter deposit to broader regional climatic patterns. However, 

distinct fine-grained sedimentation occurs at Alm Shelter in well-stratified deposits dating to the 

early Holocene, around 11,000-8,000 cal yr BP. This tracks well with analyses conducted at 
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other sites in the western Bighorn Mountains, including Medicine Lodge Creek, Laddie Creek, 

Paint Rock V, and other rockshelters in the surrounding canyons (Finley 2008; Frison and 

Walker 2007; Reider and Karlstrom 1987). Further away in the Bighorn Basin, sites like Dead 

Indian Creek seem to have increased aridity later in the Holocene, around 7,500-5,000 cal yr BP 

(Reider et al. 1988), which is consistent with the fall in regional lake levels during the middle 

Holocene from 8,000-5,000 years ago (Schuman and Serrevezza 2017). 

This study also compares paleoenvironmental records from around the western United 

States (Figure 2), though the precision of these methods varies widely. Figure 7 demonstrates 

periods of marked aridity using lake cores, wet meadow cores, and dune records compared 

against Alm Shelters luminescence ages and modeled ages of fine-grained deposits based on the 

grain-size analysis. Wyoming sites, outlined in the center, demonstrate some overlap between 

aridity identified at other sites and fine-grained deposits at Alm Shelter. Dune activation at the 

Killpecker Dunes in the Green River Basin to the south of the Bighorn Basin occurred at the 

transition from the Pleistocene into the early Holocene, around 11,000 cal yr BP, corresponding 

with increased eolian sedimentation at Alm Shelter (Ahlbrandt et al. 1983; Mayer and Mahan 

2004). Lake of the Woods also demonstrates decreases in effective moisture during the 

Pleistocene-Holocene transition (Shuman et al. 2010). The Ferris and Casper Dunes were both 

active in the early Holocene, around 8,500 cal yr BP (Halfen et al. 2010; Stokes and Gaylord 

1993). A second drop in effective moisture at Lake of the Woods occurred at 7,590 ± 1,450 cal 

yr BP, around the same time that Buckbean Fen and Sherd Lake experienced increased 

temperatures (Shuman 2012). Killpecker Dunes, Ferris Dunes, Casper Dunes, and Lake of the 

Woods experienced additional periods of aridity into the middle and late Holocene. 



 

 

 

 
4
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Figure 7. Comparison of eolian events with documented aridity events in the western United States. 
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Outside of Wyoming, decreased effective moisture occurred in the late Pleistocene at the 

Nebraska Sand Hills and Kettle Lake around 13,000-12,000 cal yr BP, overlapping with fine-

grained deposits at Alm Shelter (Ahlbrant et al. 1983; Grimm et al. 2011; Loope et al. 1995; 

Miao et al. 2007; Stokes and Swinehart 1997). The Nebraska Sand Hills activated a number of 

times throughout the Holocene, notably at 8,000 cal yr BP and again at 6,000 cal yr BP, 

overlapping with eolian sedimentation at Alm Shelter. In addition to this, Kettle Lake 

experienced drops in effective moisture at 10,700 cal yr BP, 9,250 cal yr BP, and 6,250 cal yr 

BP, which correspond to multiple pulses of eolian sediments from Alm Shelter, and at 4,440 cal 

yr BP (Grimm et al. 2011). Other sites appear to have aridity events during the early to middle 

Holocene, like Blue Lake, Stonehouse Meadow, and the St. Anthony Dunes to the west of Alm 

Shelter (Louderback and Rhode 2009; Mensing et al. 2013; Rich et al. 2015). The earliest ages 

from these sites, between 8,000-6,000 cal yr BP, overlap with eolian deposits at Alm Shelter. As 

the luminescence record only extends to the early Holocene, later periods of aridity and 

increased temperature at other locations cannot be compared in this study. Because these other 

records track specific markers for aridity as well as temperature increases, the correlations 

indicated here demonstrate that some of the fine-grained deposits at Alm Shelter are likely due 

eolian sedimentation during periods of increased aridity. 

 

Analytical Limitations 

 

Interpretation of the Alm Shelter stratigraphy is limited by imprecision of age constraints 

using the selected luminescence dating methods, which have error terms (2-sigma) in excess of 

1,000 years. This inherent lack of precision is translated into the OxCal age-depth model, which 
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shows a further dissolution of precision that ultimately limits the interpretive power of Alm 

Shelter in a local and regional environmental context. Another limitation of the methods used 

here is the presentation of luminescence with OxCal. Luminescence ages are traditionally 

presented in ka to prevent confusion related to BP values. However, OxCal is a program 

designed for radiocarbon ages, and therefore no option exists to present data in ka. 

To trace regional climatic events accurately and precisely, it is necessary to develop a 

refined model with additional ages and increased precision. Additional luminescence ages from 

upper strata may not be effective, as human occupation during the middle and late Holocene may 

have affected the integrity of these deposits, evidenced by decreased definition of stratigraphic 

boundaries. Refining the model requires additional geochronological methods, including AMS 

ages spanning the Holocene deposits, and further incorporation of both the grain-size of Finley 

(2008) and this study, as well as potentially running grain-size analysis on the luminescence ages 

themselves. Other ways of constraining the large error margins of the luminescence ages 

includes using an age model, rather than an age-depth model, and incorporation of high-precision 

radiocarbon ages. With this additional level of precision, using the age-depth model to create 

modeled ages for individual grain-size samples becomes possible, as the grain-size samples span 

the entire deposit through the late Holocene. This will present a refined climatic chronology of 

Alm Shelter through the connection of modeled ages to specific depths and sediment textures, 

providing more precise information to compare to regional climate studies. Though the 

occupational history of Alm Shelter is not discussed here, this study also has implications for 

informing future studies of subsistence and settlement patterns of Bighorn Basin cultural groups 

during periods of variable climate and xeric conditions, as well as the potential for addressing 

larger questions of human movement and paleodemographics during widespread drought. 
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Conclusions 

 

 

 Alm Shelter is one of the most important rockshelters in the Bighorn Basin because of its 

relatively complete sequence of late Pleistocene and Holocene geoarchaeological deposits. 

Although rockshelters are notoriously singular in the style and span of depositional events that 

contain archaeological records (Woodward and Goldberg 2001), often preserving only pieces of 

the complete geoarchaeological sequence, Alm Shelter is an essential comparative key for the 

Bighorn Basin because of its relatively complete record. It is also important because it adds to 

the body of regional rockshelters that demonstrate the presence of viable stratigraphic deposits 

during the earliest occupations of North America beginning 13,600 cal yr BP, a vital piece of 

baseline information when discussing larger patterns of paleodemographics (Finley 2008; 

Holliday 2015; Wright 2011). Abrupt climate events can disrupt populations dramatically, 

forcing populations to adapt or redistribute across the landscape, and forthcoming studies address 

paleodemography and site use at Alm Shelter (Kelly et al. 2013). The long late Pleistocene and 

Holocene depositional sequence is an important archive of geomorphic linkages to 

environmental change. The stratigraphic analysis, luminescence ages, and an age-depth model 

from Alm Shelter indicates a shifting late Pleistocene and Holocene climate, marked by 

significant sediment availability during the deglaciation of the Bighorn Mountains in the late 

Pleistocene, followed by fluctuations of colluvial and eolian sedimentation through the 

Holocene. The history of site formation at Alm Shelter agrees broadly with local and regional 
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environmental changes that point to fluctuating moisture conditions through the early and middle 

Holocene, although this record based on OSL ages alone is limited in its precision. This 

environmental data compared to other regional climate studies demonstrates some correlations 

with increased aridity and temperatures at other sites across the western United States, indicating 

that some of the fine-grained deposits at Alm Shelter are likely related to periods of increased 

aridity that may be sub-continental in scale. Addressing the hypothesized presence of centennial-

scale aridity events, this model fails to provide high precision information to constrain these 

events to a single century. Although promising, the low precision of the reconstruction indicates 

the need for a more refined chronology using radiocarbon ages as research at Alm Shelter moves 

forward toward a master site formation and use model. 
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Appendix A: Granulometry 

 

 

Table 5. Grain Size Results from Malvern Mastersizer 2000 Analysis. 

Profile 

Sample 

Median 

Depth 
d (0.1) d (0.5) d (0.9) % clay %vfsilt %fsilt %msilt %csilt % vcsilt %vfsand %fsand %msand %csand 

%> 

1mm 

10207 96.6 10.043 164.7968 522.9923 2.284138 2.468108 3.573409 4.384699 5.829727 9.642344 13.75756 20.3747 25.05626 12.62905 8.7 

10208 96.72 4.165222 42.98478 223.6688 4.446127 4.725381 7.541753 10.54483 13.8828 18.21453 18.17733 13.63161 7.67044 1.165199 6.8 

10209 96.95 3.090667 24.47889 68.02656 6.123726 6.09039 9.536145 13.53738 23.00387 28.12391 11.83981 0.91147 0.740556 0.092746 20.6 

10210 97.15 2.963667 20.415 61.89744 6.391258 6.26186 9.78454 16.89768 26.51235 23.56671 8.35501 0.683885 0.721244 0.82547 18.1 

10211 97.4 2.630778 21.66189 85.08189 7.198787 7.066181 11.07495 15.29407 19.05077 21.67261 14.09962 3.339075 0.691416 0.512519 26.9 

10212 97.55 2.744556 21.66978 83.55711 6.960843 6.590019 10.2138 15.46912 22.08824 22.22372 10.41848 2.15686 1.826642 2.052282 43 

10213 97.75 5.085889 56.13511 629.8016 4.045627 3.726162 5.969392 8.784451 13.06251 16.0453 12.5122 8.076104 10.98723 16.79103 72.7 

10214 98.25 3.568333 29.95656 201.3636 5.58404 4.98489 7.831292 12.72671 19.13426 21.30029 13.93066 5.682906 4.411228 4.413718 51.2 

10215 98.55 5.509444 37.48033 443.585 3.598878 3.401109 6.473127 11.51833 18.27788 20.99334 13.71769 6.151603 6.771052 9.09698 52.7 

10216 98.67 6.491333 36.60467 353.7213 3.270762 2.717843 5.707487 11.90501 19.94754 22.43468 14.54728 6.509944 5.857024 7.102437 37.3 

10217 98.72 4.760444 19.827 60.11056 5.182087 3.289664 7.031738 21.48034 33.56271 19.68061 4.528511 1.919587 1.565852 1.758901 14.8 

10218 98.9 7.131444 31.41444 403.4972 3.186019 1.976932 5.672162 15.63657 22.34407 18.10468 11.4316 6.883002 6.63483 8.130128 46.5 

10219 99.15 5.690111 38.30156 326.9909 3.788838 3.257751 5.723605 10.34277 18.65973 23.77062 15.70559 6.469657 5.659022 6.622413 65.4 

10220 99.47 8.753667 47.39678 435.604 2.490014 2.04082 4.172199 8.659948 17.40572 23.16389 17.01104 8.612604 7.642017 8.801746 76.8 

10222 99.67 6.398667 45.77322 385.0219 3.400411 2.978311 5.138009 9.090308 16.50109 21.41302 16.88192 9.422437 7.735648 7.438851 77.2 

10223 97.9 2.452111 16.62433 70.89744 7.97722 6.889794 11.81445 19.95718 25.13568 16.40824 5.33303 2.465474 2.192535 1.8264 55.7 
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10224 98.07 3.941778 30.382 199.3159 5.165443 4.342278 7.285131 11.93816 19.67804 22.25422 13.27094 5.525719 4.751557 5.788516 43.1 

10225 98.2 4.299222 27.05033 108.4193 4.99587 3.989952 7.338969 14.08985 23.83752 24.3026 12.63452 4.184567 2.69686 1.92929 34.2 

10226 98.27 3.492556 25.44344 167.277 5.792054 4.978662 8.340879 14.78038 21.79928 19.96623 11.66128 5.065829 3.593539 4.021868 41.3 

10227 98.3 4.208 35.60656 430.7346 4.931941 4.235025 6.833625 10.79642 18.02801 20.8752 12.85745 6.018885 6.664975 8.758473 41.8 

10228 98.7 3.107 19.405 57.04911 6.546447 5.359349 9.449803 18.73653 29.33995 21.62495 5.440207 1.189335 1.15732 1.156117 12.1 

10230 98.93 5.840889 45.00011 392.8897 3.733895 3.322654 5.11396 8.305804 16.17608 23.3701 17.65485 8.132056 6.24163 7.948967 53.2 

10231 98.47 4.709778 40.99811 409.443 4.211855 4.006472 6.777405 10.46884 15.89562 19.69105 14.84477 8.170467 7.81115 8.122368 30.1 
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Appendix B: Luminescence 

 

 

Table 6. Dose Rate Information. 

USU num. 
In-situ         

H2O (%)a 

Grain 

size (µm) 

DR 

Sampleb 

K                  

(%)c 

Rb 

(ppm)c 

Th 

(ppm)c 

U 

(ppm)c 

Cosmicd 

(Gy/kyr) 

USU-3039 1.3 63-150 F (100%) 1.53±0.04 51.6±2.1 8.5±0.8 1.7±0.1 0.21±0.02 

USU-3040 1.8 63-250 F (30%) 

M (10%) 

C (30%) 

B (30%) 

1.70±0.04 

0.14±0.01 

0.05±0.01 

0.09±0.01 

70.2±2.8 

5.3±0.2 

1.9±0.1 

1.5±0.6 

8.4±0.8 

0.7±0.1 

0.2±0.01 

0.1±0.01 

2.1±0.2 

1.0±0.1 

1.0±0.1 

1.1±0.1 

0.22±0.02 

USU-3041 9.5 90-180 F (100%) 1.57±0.04 50.3±2.0 9.6±0.9 1.5±0.1 0.10 ± 0.01 

USU-3042 13.9 75-150 F (45%) 

M (10%) 

C (45%) 

1.51±0.04 

0.68±0.02 

0.09±0.002 

52.2±2.1 

22.4±0.9 

2.8±0.1 

9.3±0.8 

2.3±0.2 

0.3±0.03 

1.8±0.1 

1.7±0.1 

0.8±0.1 

0.10 ± 0.01 

USU-3043 5.0 90-150 F (100%) 1.46±0.04 49.4±2.0 8.2±0.7 1.8±0.1 0.10 ± 0.01 

USU-3044 3.2 63-250 F (55%) 

M (25%) 

C (20%) 

1.60±0.04 

0.27±0.01 

0.14±0.004 

40.8±1.6 

5.3±0.2 

2.8±0.1 

4.2±0.4 

0.6±0.1 

0.3±0.02 

1.5±0.1 

0.8±0.1 

0.7±0.1 

0.11 ± 0.01 

USU-3045 4.1 63-250 F (60%) 

M (30%) 

C (10%) 

1.51±0.04 

0.31±0.01 

0.19±0.005 

38.5±1.5 

4.8±0.2 

4.0±0.2 

3.7±0.3 

0.5±0.05 

0.4±0.03 

1.5±0.1 

1.0±0.1 

0.8±0.1 

0.11±0.01 
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USU num. 
In-situ         

H2O (%)a 

Grain 

size (µm) 

DR 

Sampleb 

K                  

(%)c 

Rb 

(ppm)c 

Th 

(ppm)c 

U 

(ppm)c 

Cosmicd 

(Gy/kyr) 

USU-3046 2.6 63-250 F (50%)e 1.22±0.03 30.0±1.2 2.9±0.3 1.2±0.1 0.11±0.01 

USU-3047 4.0 63-250 F (100%) 1.39±0.03 32.3±1.3 3.0±0.3 1.2±0.1 0.12±0.01 

USU-3048 4.1 63-250 F (100%) 1.26±0.03 33.7±1.3 3.1±0.3 1.2±0.1 0.12±0.01 

USU-3049 2.2 63-250 F (70%) 

M (20%) 

C (10%) 

1.74±0.04 

0.45±0.01 

0.12±0.003 

47.6±1.9 

10.5±0.4 

2.4±0.1 

4.5±0.4 

1.3±0.1 

0.3±0.02 

1.5±0.1 

1.0±0.1 

0.7±0.1 

0.12±0.01 

a For USU-3039:-3040 and USU-3043:-3048 5.0±2.0% used as moisture content over burial history. USU-3041 and USU-3042 uses 10.0±3.0%. 
b Dose rate subsamples differentiated by grain size: <1.7 mm (fine, F), 1.7-16 mm (medium, M), 16-256 mm (coarse, C), and >256 mm (boulder, 

B). If more than 1 fraction is reported, the gamma dose rate is the weighted average of chemical concentrations based on mass for each fraction. 
Beta dose rate uses chemistry from fine fraction only.  

c Radioelemental concentrations determined using ICP-MS and ICP-AES techniques; dose rate is derived from concentrations by conversion 

factors from Guérin et al. (2011). 
d Cosmic DR reduced by 50% due to rock wall for USU-3041:USU-3049. 
e Remaining 50% of contribution includes dose rate chemistry from USU-3045 F (45%) and M+C (5%).  

 

 

Figure 8. Equivalent dose distributions, with probability density function, radial and 

overdispersion (OD) plots. 
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3. 48BH3457-2018-1, USU-3041 OSL 

  
 

 

4. 48BH3457-2018-2, USU-3042 OSL 

  
 

5. 48BH3457-2018-3, USU-3043 OSL 
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6. 48BH3457-2018-4, USU-3044 IRSL 

  
 

 

 

7. 48BH3457-2018-5, USU-3045 OSL 
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9. 48BH3457-2018-7, USU-3047 OSL 

  
 

 

 

10. 48BH3457-2018-8, USU-3048 
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11. 48BH3457-2018-9, USU-3049 IRSL 
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Appendix C: OxCal Age-Depth Model 

 

 

Age-Depth Model with TP 1 Strata Code 

 

Plot() 

 { 

  P_Sequence("Alm OSL",100,0,U(-2,2)) 

  { 

   timescale="OSL"; 

   Boundary("Start Alm"); 

   Date("USU-3042",N(calBP(18320),2310)) 

   { 

    z=3.45; 

   }; 

   Date("USU-3041",N(calBP(14590),2110)) 

   { 

    z=3.2; 

   }; 

   Date("USU-3043",N(calBP(13950),1880)) 

   { 

    z=2.75; 

   }; 

   Boundary("Stratum 20/21") 

   { 

    z=2.45; 

   }; 

   Date("USU-3044",N(calBP(13010),1400)) 

   { 

    z=1.98; 

   }; 

   Boundary("Stratum 18/19") 

   { 

    z=1.95; 

   }; 

   Date("USU-3045",N(calBP(10400),1070)) 

   { 

    z=1.9; 

   }; 

   Date("USU-3046",N(calBP(10690),1060)) 

   { 

    z=1.82; 

   }; 
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   Boundary("Stratum 17/18") 

   { 

    z=1.75; 

   }; 

   Date("USU-3047",N(calBP(9250),1010)) 

   { 

    z=1.68; 

   }; 

   Boundary("Stratum 16/17") 

   { 

    z=1.60; 

   }; 

   Date("USU-3048",N(calBP(9630),1000)) 

   { 

    z=1.57; 

   }; 

   Boundary("Stratum 14/15") 

   { 

    z=1.45; 

   }; 

   Date("USU-3049",N(calBP(7230),860)) 

   { 

    z=1.37; 

   }; 

   Boundary("End Alm"); 

  }; 

 }; 

Age-Depth Model with Eolian Peaks Code 

Plot() 

 { 

  P_Sequence("Alm OSL",100,0,U(-2,2)) 

  { 

   timescale="OSL"; 

   Boundary("Start Alm"); 

   Date("USU-3042",N(calBP(18320),2310)) 

   { 

    z=3.45; 

   }; 

   Date("USU-3041",N(calBP(14590),2110)) 

   { 

    z=3.2; 

   }; 

   Date("USU-3043",N(calBP(13950),1880)) 

   { 

    z=2.75; 

   }; 
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   Boundary("Eolian 4") 

   { 

    z=2.60; 

   }; 

   Date("USU-3044",N(calBP(13010),1400)) 

   { 

    z=1.98; 

   }; 

   Date("USU-3045",N(calBP(10400),1070)) 

   { 

    z=1.9; 

   }; 

   Date("USU-3046",N(calBP(10690),1060)) 

   { 

    z=1.82; 

   }; 

   Boundary("Eolian 3") 

   { 

    z=1.75; 

   }; 

   Date("USU-3047",N(calBP(9250),1010)) 

   { 

    z=1.68; 

   }; 

   Date("USU-3048",N(calBP(9630),1000)) 

   { 

    z=1.57; 

   }; 

   Boundary("Eolian 2") 

   { 

    z=1.55; 

   }; 

   Date("USU-3049",N(calBP(7230),860)) 

   { 

    z=1.37; 

   }; 

   Boundary("Eolian 1") 

   { 

    z=1.32; 

   }; 

   Boundary("End Alm"); 

  }; 

 }; 
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Figure 9. Alm Shelter with TP 1 strata boundaries (Figure 6a). 

 

Figure 10. Alm Shelter with grain-size peaks output table (Figure 6b). 
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Appendix D: Climate Proxies 

 

 

Climate Comparison Scatterplot R Code 

library(tidyverse) 

 

proxy <- readr::read_csv("C:\\Users\\Cayla\\Documents\\Grad 

School\\Thesis\\Alm Shelter\\Post-Defense Final 

Drafts\\ClimateProxies_Data.csv") 

  

#proxy graph ---- 

ggplot() + 

 

#make the background boxes manually 

  geom_rect(data=NULL, 

            aes(xmin=12700, 

                xmax=13200, 

                ymin=-Inf, 

                ymax=Inf), 

            fill="gray80")+ 

  geom_rect(data=NULL, 

            aes(xmin=8700, 

                xmax=10700, 

                ymin=-Inf, 

                ymax=Inf), 

            fill="gray80")+ 

  geom_rect(data=NULL, 

            aes(xmin=6800, 

                xmax=7400, 
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                ymin=-Inf, 

                ymax=Inf), 

            fill="gray80")+ 

 

#make the datapoints   

  geom_point( 

    data = ClimateProxies_Data %>%  

      dplyr::filter( !is.na(`Location`)),  

    aes(y = rowname,  

        color = factor(Index.Type), # note that point colors 

match error bar colors 

        x = midDate, #middate point for visualization 

        shape = factor(Index.Type)),  

    size = 5) + #change point size 

    scale_shape_manual( 

      values = c(18, 18, 15, 16, 17)) + # unique point shapes 

that are distinguishable   

    scale_color_manual(values= c( "gray30", "black", 

"darkorange", "dodgerblue4", "deeppink") 

    ) + 

   

#make the horizontal errorbars 

  geom_errorbarh( 

    data = ClimateProxies_Data %>%  

      dplyr::filter( !is.na(`Location`)), 

    aes(y = rowname, 

        color = factor(Index.Type), #unique colors by location 

        xmax = `Start.Date`, 

        xmin = `End.Date`, 

        height = 0.7), #error bar tail height 
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    size = 1 ) + #thickness of line 

 

#create the site labels 

  geom_rect(data=NULL, #Create Blue Lake label   

            aes(xmin=5000, 

                xmax=15000, 

                ymin=26.5, 

                ymax=27.5), 

            fill= NA, 

            color = "black")+ 

    annotate(geom = "label", x=14000, y=27, label="Blue Lake", 

label.size = NA, size = 3.5)+   

  geom_rect(data=NULL, #Create Stonehouse Meadow label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=25.5, 

                ymax=26.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=26, label="Stonehouse 

Meadow", label.size = NA, size = 3.5)+  

  geom_rect(data=NULL, #Create St. Anthony Dune Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=24.5, 

                ymax=25.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=25, label="St. Anthony 

Dunes", label.size = NA, size = 3.5)+  
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  geom_rect(data=NULL, #Create Lake of the Woods Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=21.5, 

                ymax=24.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=23, label="Lake of the 

Woods", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Killpecker Dunes Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=18.5, 

                ymax=21.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=20, label="Killpecker 

Dunes", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Buckbean Fen and Sherd Lake Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=17.5, 

                ymax=18.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=18, label="Buckbean Fen 

and Sherd Lake", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Ferris Dunes Label 

            aes(xmin=5000, 

                xmax=15000, 
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                ymin=16.5, 

                ymax=17.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=17, label="Ferris Dunes", 

label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Casper Dunes Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=15.5, 

                ymax=16.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=16, label="Casper Dunes", 

label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Kettle Lake Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=11.5, 

                ymax=15.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=13.5, label="Kettle 

Lake", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Nebraska Sand Hills Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=6.5, 

                ymax=11.5), 

            fill= NA, 
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            color = "black")+ 

   annotate(geom = "label", x=14000, y=9, label="Nebraska Sand 

Hills", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Alm Shelter Grain Size Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=2.5, 

                ymax=6.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=4.5, label="Alm Shelter 

Grain Size", label.size = NA, size = 3.5)+ 

  geom_rect(data=NULL, #Create Alm Shelter Luminescence Label 

            aes(xmin=5000, 

                xmax=15000, 

                ymin=-3.5, 

                ymax=2.5), 

            fill= NA, 

            color = "black")+ 

   annotate(geom = "label", x=14000, y=-0.5, label="Alm Shelter 

Luminescence", label.size = NA, size = 3.5)+ 

 

#vertical lines for the panel grid 

  geom_vline(xintercept = seq(4500, 15500, 500), 

             linetype = "dotted", 

             color = "gray30") + 

  

#flip for BP visibility 

  scale_x_reverse(breaks = seq(4500, 15500, 500)) +  
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#label 

  labs(x = "Year Before 1950") +  

   

#title 

  ggtitle("Regional Climate Records")+ 

   

#basic theme to minimize visual noise 

  theme_minimal() +  

  theme( 

    plot.title = element_text (size = 25, hjust = 0.5), #title 

    legend.position = "top",  

    legend.text = element_text(size = 12), 

    axis.title.y = element_blank(), #removes the y label 

    axis.text.y = element_blank(), #remove y tick labels 

    axis.title.x = element_text(size = 16), 

    axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1, 

size = 12),  

    legend.title = element_blank(), #removes legend title 

    panel.grid = element_blank() #removes the background grid 

pattern 

  )
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Table 7. ClimateProxies_Data. 

 

Row 

name Location Source DateType BP Dates 

Start 

Date 

End 

Date Index Type midDate 

31 27 Blue Lake Louderback and Rhode 2009 cal yr BP 8300-6500 8300 6500 Moisture 7400 

30 26 Stonehouse Meadow Mensing et al. 2013 cal yr BP 7500-5000 7500 5000 Moisture 6250 

29 25 St. Anthony Dunes Rich et al. 2015 ka 6525 6525 6525 Dune 6525 

28 24 Lake of the Woods Shuman et al. 2010 ka 6140-4640 6140 4640 Moisture 5390 

27 23 Lake of the Woods Shuman et al. 2010 ka 9040-6140 9040 6140 Moisture 7590 

26 22 Lake of the Woods Shuman et al. 2010 ka 11240 11240 11240 Moisture 11240 

25 21 Killpecker Dunes Mayer and Mahan 2004 cal yr BP 8800-8100* 8800 8800 Dune 8800 

24 20 Killpecker Dunes Mayer and Mahan 2004 cal yr BP 11500-10200 11500 10200 Dune 10850 

23 19 Killpecker Dunes Ahlbrandt et al. 1983 RCYBP 11690-9910 11690 9910 Dune 10800 

22 18 

Buckbean Fen 

and Sherd Lake Shuman 2012 cal yr BP 9000-6000 9000 6000 Temp 7500 

21 17 Ferris Dunes Stokes and Gaylord 1993 ka 8757-8057 8757 8057 Dune 8407 

20 16 Casper Dunes Halfen et al. 2010 ka 9940-6140 9940 6140 Dune 8040 

19 15 Kettle Lake Grimm et al. 2011 cal yr BP 6250 6250 6250 Moisture 6250 

18 14 Kettle Lake Grimm et al. 2011 cal yr BP 9250 9250 9250 Moisture 9250 

17 13 Kettle Lake Grimm et al. 2011 cal yr BP 10730 10730 10730 Moisture 10730 

16 12 Kettle Lake Grimm et al. 2011 cal yr BP 12750 12750 12750 Moisture 12750 



 

 

 

 
8
4
 

15 11 Nebraska Sand Hills Loope et al. 1995 RCYBP 7480-330 7480 5000 Dune 5000 

14 10 Nebraska Sand Hills Ahlbrandt et al. 1983 RCYBP 8540-7330 8540 7330 Dune 7935 

13 9 Nebraska Sand Hills Miao et al. 2007 ka 9543-6443 9543 6443 Dune 7993 

12 8 Nebraska Sand Hills Ahlbrandt et al. 1983 RCYBP 13070-11280 13070 11280 Dune 12175 

11 7 Nebraska Sand Hills Loope et al. 1995 RCYBP 13290-12750 13290 12750 Dune 13020 

10 6 Alm Shelter Grain Size na cal yr BP 8950-4970 8950 4970 Alm Shelter Grain Size 6960 

9 5 Alm Shelter Grain Size na cal yr BP 10280-7450 10280 7450 Alm Shelter Grain Size 8865 

8 4 Alm Shelter Grain Size na cal yr BP 11460-8600 11460 8600 Alm Shelter Grain Size 10030 

7 3 Alm Shelter Grain Size na cal yr BP 14180-10360 14180 10360 Alm Shelter Grain Size 12270 

6 2 Alm Shelter Lumin. na NA 8020-6300 8020 6300 Alm Shelter Luminescence 7160 

5 1 Alm Shelter Lumin. na NA 10190-8170 10190 8170 Alm Shelter Luminescence 9180 

4 0 Alm Shelter Lumin. na NA 10560-8560 10560 8560 Alm Shelter Luminescence 9560 

3 -1 Alm Shelter Lumin. na NA 11400-9260 11400 9260 Alm Shelter Luminescence 10330 

2 -2 Alm Shelter Lumin. na NA 11680-9560 11680 9560 Alm Shelter Luminescence 10620 

1 -3 Alm Shelter Lumin. na NA 14340-11540 14340 11540 Alm Shelter Luminescence 12940 
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