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ABSTRACT 

 

 

Exploring Analytical Issues Associated with Oxidation Kinetics in Drinking Water 

 

by 

 

 

Shadi Haji Eghrari, Doctor of Philosophy 

 

Utah State University, 2021 

 

 

Major Professor: Dr. Craig Adams 

Department: Civil and Environmental Engineering 

 

 

This dissertation consists of two different sections. The first section is an analytical 

method validation for haloamines in seawater and second evaluates cyanotoxin oxidation 

kinetics based on ELISA analysis. 

Section One (Haloamines): Disinfection of marine aquaria results in the formation 

of free chlorine species. Both ozone and chlorine addition can lead to the rapid formation 

of free bromine species. Free chlorine and free bromine both react with ammonia to form 

haloamines. Key parameters affecting haloamine speciation include pH, chlorine-to-

ammonia ratio and bromide concentration. 

The purpose of this research was to examine the occurrence of chloramines and 

bromamines during the chlorination of waters. In this study, a suite of analytical methods 

was used including a colorimetric method, UV spectrophotometry, and head-space gas 

chromatography. The effect of bromide concentration was observed to exert a significant 

effect on the kinetics and stability of Haloamines, and with no bromide present, the half-

life for chloramines was on the order of two to six hours. At bromide concentration of 50 

mg/L as NaBr, however, the half-life of chloramines drops to just a few minutes. 

Section Two (Cyanotoxins): Microcystins (MCs) are the most commonly detected 

cyanotoxins of major health concern in surface and drinking water. Utilities commonly use 

enzyme-linked immunosorbent assays (ELISA) to monitor concentration of cyanotoxins 

within their plants due to the cost effectiveness of ELISA versus liquid chromatography 



 iv 

tandem mass spectrometry (LC-MS/MS). ELISA often produces higher indicated 

concentrations as compared to LC-MS/MS because ELISA measures mixture of MC 

variants in a water sample. 

The objective of this work is to assess the difference in apparent removal rates for 

MCs based on ELISA analysis versus based on LC-MS/MS analysis. The data 

demonstrates that ELISA readings averaged greater than LC-MS/MS concentrations for 

the split samples. This work provides an estimate of the 95%-percent confidence interval 

for the difference in oxidation rates predicted with based on ELISA readings versus specific 

variants by LC-MS/MS. 

 

(157 pages) 
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PUBLIC ABSTRACT 

 

Exploring Analytical Issues Associated with Oxidation Kinetics in Drinking Water 

Shadi Haji Eghrari 

 

This dissertation contains two different section that pertain to two different 

subjects.  

Section One (Haloamines): Disinfection with ozone and chlorine is critical in 

protecting the public and animals from pathogens in pools. Disinfection results in in the 

formation of haloamines from the unintended reactions of human and animal inputs and 

bromide/chloride with oxidants and disinfectants which cause health problems. 

The purpose of this research was to examine the occurrence of haloamines during 

the chlorination of saltwaters. In this study, the effect of bromide concentration was 

observed to exert a significant effect on the stability of Haloamines, and with no bromide 

present, the half-life for Haloamines was on the order of two to six hours.  

Section Two (Cyanotoxins): There is an alarming increase in the frequency and 

magnitude of cyanobacterial blooms worldwide. Cyanobacteria produce a variety of toxins 

including microcystins and cylindrospermopsin. Microcystins are the most commonly 

detected cyanotoxins of major health concern in surface and drinking water. 

Utilities commonly use enzyme-linked immunosorbent assays (ELISA) to monitor 

concentration of cyanotoxins within their plants due to the cost effectiveness of ELISA 

versus LC-MS/MS. ELISA often produces higher indicated concentrations as compared to 

LC-MS/MS because ELISA measures mixture of microcystins variants in a water sample. 

However, regulatory authorities need to be convinced that the ELISA results are reliable, 

even when it disagrees with LC-MS/MS result.  

The objective of this work is to assess the difference in apparent removal rates for 

microcystins based on ELISA analysis versus based on LC-MS/MS analysis. The data 

demonstartes that ELISA readings averaged greater than LC-MS/MS concentrations for 

the split samples.  
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CHAPTER 1 

INTRODUCTION 

 

 

This dissertation consists of two sections.  The first section is an analytical method 

validation for haloamines in natural and artificial seawater, and second section is about 

development of oxidation kinetics based on ELISA analysis for cyanotoxins. This 

dissertation is divided into two sections comprising a total of nine chapters, including this 

Introduction (Chapter 1). 

 In Section One (“Haloamines”), a literature review for secondary oxidant and 

disinfection byproduct occurrence resulting from ozone or chlorine application in natural 

and artificial seawater (NAS) aquaria and pools will be presented in Chapter 2. Developing 

practical options for monitoring haloamines in NAS water will be discussed in Chapter 3. 

This is followed by a discussion of the formation of haloamines and related disinfection 

byproducts during chlorination and ozonation of marine aquaria in Chapter 4. A number of 

conclusions and indications of future work for formation of secondary oxidant during 

chlorination and ozonation of NAS water is presented in Chapter 5. 

In Section Two (“Cyanotoxins”), a literature review for cyanotoxins and the 

removal of cyanotoxins from drinking water is presented in Chapter 6. Differences in 

apparent oxidation kinetics for microcystins analyzed by on ELISA versus LC-MS/MS 

analytical methods will be discussed in Chapter 7. A number of conclusions and indications 

of future work for analysis of cyanotoxins are offered in Chapter 8.  
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Appendices for Sections One and Part Two follow in Chapter 9. The two main 

chapters—Chapters 4 (Haloamines) and 7 (Cyanotoxins)—are based on articles that will 

be submitted to peer-reviewed journals in the near future. 

Chapter 4 (Haloamines) describes how a suite of analytical methods was used to 

study the formation of haloamines in seawater/salt water systems. The analytical methods 

included are: standard method 4500 Cl. G (APHA, AWWA, and WEF, 2005), UV 

spectrophotometry, and gas chromatography. These methods were used to examine the 

concentration of haloamines under a wide range of water quality parameters in laboratory 

systems. Furthermore, Chapter 4 describes the results of studies focusing on the formation, 

stability, and occurrence of chloramines and bromamines during the chlorination of waters 

with varied total dissolved solids, bromide concentration and pH. 

The purpose of Chapter 7 (Cyanotoxins) will be to assess the difference in apparent 

removal rates for microcystins from natural harmful algal blooms based on ELISA analysis 

as compared to LC-MS/MS analyses. The ELISA analysis measures the mixture of 

microcystin variants (with varied cross-reactivity), while the LC-MS/MS method 

nominally measures only six MC variants, albeit with great accuracy. The goal of the work 

was to establish estimates of confidence intervals around microcystin-LR removal that 

represent expected removals of an ELISA-based concentration measurement method with 

natural waters. 
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CHAPTER 2 

LITERATURE REVIEW AND OBJECTIVES - HALOAMINES 

 

 

2.1    Marine Aquaria and Pools  

Disinfection is critical in protecting the public from pathogens in natural and 

artificial seawater (NAS) aquaria and pools (Geldreich, 1989). In NAS aquaria and pools 

are disinfected continuously because it is important to have a healthy environment in a 

swimming pool for both people and animals (e.g., dolphins in aquatic parks).  

Generally, water purification steps involve oxidation, coagulation, settling, 

disinfection, and filtration. Coagulation-flocculation is not normally used in swimming 

pool water treatments in the US, though in Germany, for example, it is a requirement to 

apply water treatments in swimming pool (Zwiener et al., 2007). Filters are essential in 

preserving water clarity and decreasing disinfectant demands by removing the suspended 

materials from pools. Sand filters, ultrafine filters and cartridge filters are the most 

commonly used filters in pools industries across the United States (Hagen, 2003; Glauner 

et al., 2005). 

Water disinfection is the process of deactivation or the killing of undesirable 

microorganisms, which results in the termination of their growth and reproduction. There 

are different disinfection methods used in water treatments, including oxidation using free 

chlorine (hypochlorous acid (HOCl), and hypochlorite (OCl-)), chlorine dioxide (ClO2), 

monochloramine (NH2Cl), ozone (O3), permanganate (MnO4
-); by photolysis (UV 

irradiation); or by use of other chemical disinfectants (AWWA, 1990). 
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Chlorine is the most commonly used form of disinfectant in NAS aquaria and pools. 

Chlorine is relatively inexpensive, and it can easily be applied and controlled. (Griffiths, 

2003; Anipsitakis et al., 2008; AWWA, 2005). Regardless of the form of application (gas, 

liquid, or solid), chlorine, when added to water, forms hypochlorous acid (HOCl) and 

hypochlorite ions (OClˉ). Hypochlorous acid and hypochlorite ions constitute free chlorine 

(FC). The hypochlorite ions react with H+ depending on the pH, establishing the 

equilibrium with hypochlorous acid (Deborade and Gunten, 2008; White, 1999): 

 

OClˉ + H+ ↔ HOCl                       (2.1) 

 

Equation 2.1 demonstrated that the gas form of elemental chlorine tends to decrease pH 

levels. For maintaining disinfection efficiency in the operation of swimming pools it is 

important to adjust pH in pools. An acidic pH conditioner is necessary when hypochlorite 

salts are used in pools, while a basic pH conditioner is needed when chlorine is used in 

gaseous form. The pKa of hypochlorous acid (pKa=7.54) dictates the proportionality of 

hypochlorous acid and hypochlorite ions which impacts its disinfection efficiency. 

Hypochlorous acid is nominally one hundred times more effective than hypochlorite ions. 

(Deborade and Gunten, 2008; White, 1999). In swimming pools, disinfectant residual 

levels vary around the world ranging from as low as 0.3 mg/L to as high as 5 mg/L as FC. 

(Pool Operation Management, 2009). 

 

2.2    Chlorine, Ozone, and Haloamines Chemistry 
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FC may be present in seawater and salt water pools either from direct dosing or 

they can be formed from the reaction of added ozone with chloride ion. Ozone is not only 

used to control bacteria and other microorganisms but can also provide clarity of water 

through microflocculation and color reduction by oxidation. Ozone is the most powerful 

oxidant among the commonly used water disinfectants with an oxidizing potential of 2.07 

eV. 

When ozone is added to NAS aquaria and pools, the high chloride and bromide 

levels cause a rapid conversion of the ozone to FC and free bromine (HOBr/OBr-) (FB) 

(Reed and Adams, 2002; Qiang et al., 2013; Qiang et al., 2015; Adams et al., 2013). In a 

competing reaction, ozone also reacts with FB to form bromate (BrO3
-) (Naumov and von 

Sonntag, 2008). Low-bromide artificial salt waters may contain bromide levels near or 

below 1 mg/L bromide such that both FC and FB are formed. The relative amount of ozone 

reacting with chloride and bromide is governed by their relative reaction rates, as 

demonstrated below (Haag and Hoigne, 1983; Hoigné et al., 1985): 

 

O3 + Cl-→ O2 + OCl-                      (2.2) 

O3 + Br-→ O2 + OBr-                                (2.3) 

Br- + OCl-→ OBr- + Cl-                           (2.4) 

 

Higher bromide seawater and salt water may often contain bromide on the order of 65 mg/L 

or greater (Flury and Papritz, 1993), thus driving most ozone to FB rather than FC species. 

Further, FC can itself react with bromide to form FB (Grguric et al., 1994; Bousher et al., 

1986): 
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OClˉ +Brˉ + H2O → Clˉ + HOBr + OHˉ    (2.5) 

 

Chloramines are formed by the reaction of FC and ammonia/ammonium (NH3/NH4
+), 

(Ammonia is present due to the excretions from the animals in the basins), which are shown 

non-stoichiometrically as follows (Hailin et al., 1990; Bryant et al. 1992): 

 

HOCl/OCl- + NH3/NH4
+ → NClH2        (2.6) 

HOCl/OCl- + NClH2→NCl2H            (2.7) 

HOCl/OCl- + NCl2H→ NCl3              (2.8) 

 

When bromide is not present, the key haloamines formed are the chloramines 

including trichloramine (TCA, NCl3), dichloramine (DCA, NCl2H) and monochloramine 

(MCA, NClH2) (Shah et al., 2015). TCA reacts further with FC to convert to molecular 

nitrogen (N2). The formation and subsequent removal of chloramines and molecular 

nitrogen are controlled by parameters including pH, temperature, chlorine to ammonia 

ratio, presence of natural organic matter (NOM) etc. These reactions are classically referred 

to as breakpoint chlorination with a maximum of MCA forming at nominally 5:1 mg 

Cl2/mg NH3 dose ratio, DCA and TCA forming thereafter until they reach the breakpoint 

(complete conversion to N2) at nominally a 7:1 mg Cl2/mg NH3 dose ratio (Kumar et 

al.,1987; Desiderio and Nibbering, 2010; Pressley et al., 1972). 

Total dissolved solids (TDS) in high quality drinking water may range from 10 to 

250 mg/L. In contrast, poor quality brackish water sources may spike to 10,000 mg/L TDS, 
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while aquaria waters with natural or artificial seawater may contain as high as 50,000 mg/L 

TDS. Seawater has approximately 65 mg/L of natural bromide (Flury and Papritz, 1993). 

Artificial seawater also has bromide present from impurities in NaCl although the exact 

amount is unspecified. 

When sufficient bromide is present bromamines are formed by the reaction of 

ammonia with FB. Similar to chlorination reactions, bromination reactions that take place 

result in a mixture of chlorinated, brominated, and bromochlorinated species of disinfection 

byproducts. The bromine substitution reaction is more rapid than chlorine with organic 

compounds (Westerhoff et al., 2004). 

The chemistry associated with chlorination and the ozonation of seawater (natural) 

and salt water (artificial) is complex due to high concentrations of inorganics (e.g., chloride 

and bromide ions) and organics (e.g., natural organics, animal fecal matter, and urea). 

Modeling work by Reed and Adams (2003) has shown that bromide concentrations play 

an important role in the chemical speciation within aquaria water. Due to a much greater 

concentration of bromide in natural seawater (as well as in organic species) than in typical 

artificial seawater (saltwater), very different and complex chemistries may occur in the two 

systems. Previous research has found that if salt water contains even 1 mg/L of bromide, 

ozonation leads to a greater formation of FB than FC (Reed and Adams, 2002).  

 

2.3    Disinfection By-Products in NAS Aquaria and Pools 

Disinfection by-products (DBPs) are formed from the unintended reactions of 

NOM, human inputs (e.g., constituents of sweat and urine, skin particles, hair, cosmetics, 

and other personal care products) and bromide/iodide with oxidants and disinfectants 
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(Weisel et al.,2009). It is important to minimize the concentration of DBPs by improving 

the design and operation systems of treatment systems (Richardson et al., 2007). Several 

factors affect the types and concentrations of DBPs such as the type and dose of the 

disinfectant used, temperature of the swimming pool, and makeup compositions of aquaria 

and swimming pool water (Richardson et al., 2010; Chowdury et al, 2014). To maintain a 

healthy environment, swimming pools use relatively higher doses of FC to ensure free 

residuals in water. Higher FC, temperature, NOM loads, and water recirculation can ease 

DBPs formation in swimming pools so that high levels of DBPs in water and air can be 

seen in swimming pools (Richardson et al., 2007; Kim et al., 2002; LaKind et al., 2010).  

Trihalomethanes (THMs) was discovered in drinking water in the early 1970s, and 

as a consequence, most research has focused on improving our understanding of DBPs. 

More than 600 DBPs have been identified in disinfection treated waters, and many of them 

are mutagenic or carcinogenic. These DBPs represent less than 40% of organic halogens 

and more than 60% of organic halogens are still unknown (Richardson et al., 2010; Kim et 

al., 2002). Until now, DBPs identified in swimming pools contain THMs, haloacetic acids 

(HAAs), haloacids, halodiacids, iodo-THMs, haloaldehydes, halonitriles, haloketones, 

halonitromethanes, bromate, haloamides, haloalcohols, nitrosamines, combined available 

chlorine, etc. The most common DBPs in swimming pool are chloramines, THMs and 

HAAs (Richardson et al., 2010). 

Unfortunately, the presence of DBPs in swimming pools is unsafe and cause health 

problems. DBPs can be ingested accidentally, inhaled or absorbed through the skin. The 

studies showed that about 50 mL/hour of water could be ingested by a child and around 25 

mL/hour by an adult swimmer in a swimming event (Kim, 1997; ACC, 2002; Dufour et 
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al., 2006). Past studies which have reported DBPs levels in human blood have shown that 

DBPs concentrations are higher in blood after swimming, showering and bathing than 

ingesting drinking water (Aggazzotti et al., 1998; Caro and Gallego, 2007). Several studies 

have demonstrated a correlation between health issues and swimming pools. There is 

evidence that irritant chemicals (i.e. TCA) from swimming pool air may contribute to the 

incidence of asthma in children and adults (Zock et al., 2007; Richardson et al., 2010). 

Key classes of regulated DBPs in drinking water include THMs (including 

chloroform (CHCl3), bromoform (CHBr3), chlorodibromomethane (CHClBr2), 

bromodichloromethane (CHCl2Br)), and HAAs (including monochloroacetic acid 

(CH2ClCOOH), dichloroacetic acid (CHCl2COOH), trichloroacetic acid (CCl3COOH), 

monobromoacetic acid (CH2BrCOOH), and dibromoacetic acid (CHBr2COOH)), bromate 

(BrO3), and chlorite (ClO2
-) are DBPs currently regulated by the United States 

Environmental Protection Agency (U.S. EPA). The maximum contaminant level for HAA5 

(the sum of five HAAs) is 60 μg/L, for THM4 (the sum of four THMs) it is 80 μg/L, for 

bromate it is 10 μg/L, and for chlorite it is 1000 μg/L (EPA, 2008). Iodoacetic acids and 

halonitromethanes (HNMs) are the unregulated emerging DBPs that have recently been 

found in disinfected drinking water and are much more toxic than regulated DBPs 

(Richardson et al., 2003).  

Swimming pool literature suggests that chloramines are a primary eye irritant, TCA 

being the strongest irritant followed by DCA. MCA, and FC may have a very minor 

contribution to any eye irritation. Eye irritation may occur when the sum of chloramine 

concentrations is greater than 0.2 mg/L (Bernard et al., 2003; Jacobs et al., 2007; King et 
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al., 2006). However, no literature thus far reported what individual concentrations of DCA, 

or TCA can cause with respect to eye irritation.  

TCA is more volatile than MCA and DCA is the most odiferous of the chloramines. 

TCA is also known to be an irritant gas (eyes, pulmonary, etc.) in the gas phase coming off 

swimming pools. In a case of an actual swimming pool, TCA was observed in water 

samples at roughly 100 μg/L as Cl2 (Li and Blatchley Iii, 2007). Also, in the indoor air of 

chlorinated and brominated swimming pools, concentrations of TCA have been reported 

as high as 170-430 and 70-100 µg/m3, respectively (Richardson et al., 2010). TCA is also 

commonly considered to be present and a significant secondary oxidant during the 

disinfection of seawater and salt water aquaria. This assumption may be a result, in part, 

by a lack of consideration of the effects of bromide on the chemistry, and the difficulty in 

measuring bromamines and FB directly in the water matrix. 

 

 

2.4    Problem Statement 

The drinking water field is only in its early stages of understanding the chemistry 

and toxicology of emerging disinfection byproducts (DBP). Compared with DBPs in 

drinking water, very little is known about NAS aquaria and pools water DBPs, due to the 

complexity of the systems, difficulties in chemical analysis in a high salt matrix, and to the 

lack of literature and studies in this field (Richardson et al., 2011).  

The high toxicity of emerging DBPs deserves routine monitoring and further 

research. Reliable and rapid analytical methods are needed in order to study these emerging 

DBPs in NAS aquaria water and swimming pool water. The water chemistry in NAS 

aquaria and pools is much more complicated than the drinking water and any other fresh 
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water. In addition to the high salt and high bromide, the water is also enriched with animal 

feed, skin, and bodily excretions such as sweat, urine, fecal matter, pathogens, and algae. 

Marine park aquaria water is more complex than swimming pool water and these waters 

may contain thousands of chemicals (Chowdhury et al., 2014). Disinfection treatments of 

marine aquaria waters used to prevent the pathogens and algae growing are generally 

chlorination and ozonation and are typically at higher dosages than those contained in 

drinking water. Our understanding of the formation and control of DBPs in NAS aquaria 

and swimming pools, therefore, has an important impact on public health, especially when 

one considers the widespread usage of swimming pools and NAS aquaria in the US. 

Information on DBPs chemical species and their concentrations in marine park waters is 

minimal. Similarly, little data exists on eye/skin irritation in marine park aquaria water. 

Because conventional analytical methods generally do not work well for the complex 

matrix water samples, DBP research in marine aquaria water is more challenging than in 

drinking water or even wastewater systems (Richardson, 2009). 

It is of critical importance to understand the speciation and stability of haloamines 

as a function of water quality parameters during the chlorination of seawater and saltwater. 

Key parameters affecting chloramine speciation and stability (in low bromide waters) 

include pH and chlorine to ammonia ratio. The bromide concentration impacts the 

formation of free bromine (from both ozone and free chlorine) as well as the direct 

conversion of chloramines to bromamines. Ionic strength (as related to TDS) can also have 

a significant impact on the reaction kinetics with a relative impact on specific reactions 

dictated in large part by the reaction order. 
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 2.5    Purpose and Objective of Section 1 

The main objective of this research was to improve our understanding of the 

occurrence and formation of haloamines under NAS conditions. The purpose of this study 

is to examine the formation, stability, and occurrence of chloramines and bromamines 

during the chlorination of waters with varied total dissolved solids, bromide concentration, 

pH, and oxidant dosing conditions. The specific objectives of this work include: 

1. Evaluating the suitability of standard method 4500 Cl. G. DPD Colorimetric 

Method (APHA, AWWA, and WEF, 2005) for measuring and differentiating TCA, 

DCA, MCA, and FC in NAS water. 

2. Developing and evaluating a head-space gas chromatography-mass 

spectrophotometry method for chloramines and bromamines in NAS water. 

3. Studying the formation, stability, and decay of FC and FB, in addition to 

chloramines and bromamines as a function of water quality parameters. 
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CHAPTER 3 

DEVELOPING PRACTICAL OPTIONS FOR MONITORING HALOAMINES IN 

NATURAL AND ARTIFICIAL SALT WATER  

 

 

3.1    Introduction 

While the focus in NAS aquaria and pools and related studies has often been on 

TCA as an irritant factor in NAS pools, the role of tribromamine (TBA) has been 

investigated to a lesser degree. The chemical structure of TCA, DCA, MCA are NCl3, 

NCl2H, and NClH2, respectively. The corresponding bromamines include tribromamine 

(TBA), dibromamine (DBA), and monobromamine (MBA) with the formula NBr3, NBr2H, 

and NBrH2, respectively. Mixed chloramines and bromamines also exist including the 

trihalogenated NClBr2 and NCl2Br; and the dihalogenated NClBrH. In general, brominated 

DBPs are considered more toxic than their chlorinated counterparts (Plewa et al., 2004). 

The relative amounts of bromide in NAS water have been shown to dictate the degree to 

which compounds move toward chlorinated or brominated species. Bromamines are likely 

to be as important as chloramines when leading to eye and skin irritations. This depends, 

however, on bromide levels and treatment approaches.  

The wet chemical standard method 4500Cl-G titled DPD Colorimetric Method 

(SM4500Cl-G) is currently the best wet chemical method available for measuring and 

differentiating TCA, DCA, MCA, and FC in drinking waters. In fact, this method is used 

to calibrate TCA standards prepared in low TDS (low salt) water (Kosaka et al., 2010; 

Hosoda et al. 2009).  
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In this method, the chlorine residual is determined using a spectrophotometer or 

filter photometer. N, N-diethyl-p-phenylenediamine (DPD) is used as the indicator. The 

DPD is oxidized by chlorine to two oxidation products. At a near neutral pH, the Würster 

dye which is relatively stable semi-quinoid cationic compound accounts for the magenta 

color in the DPD colorimetric test is the principal oxidation product. DPD amine can be 

further oxidized to a relatively unstable, colorless imine compound is favored resulting in 

an apparent “fading” of the colored solution (Figure 3.1) (Harp, 2002). 

 

 

 

Figure 3.1. DPD-Chlorine Reaction Products (Harp, 2002). 

 

The DPD Würster dye color has been measured photometrically at a wavelength of 

515 nm. The intensity of the color is measured against known values from a standard curve. 
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Because of the difficulty in getting accurate chlorine standards, potassium permanganate 

is used as the standard for establishing the standard curve (Standard Methods, 1995).  

The purpose of this study is evaluating and developing SM4500Cl-G and head-

space gas chromatography- mass spectrometry (GC-MS) method for chloramines and 

bromoamines in NAS water. In this work, the formation of chloramines under varying 

types and concentrations of dissolved inorganic salt common to NAS water was studied. 

While these interferences do cause significant accuracy and/or precision issues with 

SM4500Cl-G, these interferences have not been thoroughly assessed. The specific purpose 

of this work is to characterize these interferences quantitatively, such that accurate 

estimates for TCA, DCA, and MCA can be determined. Key to this development is the use 

of GC to be able to most accurately determine the concentration of TCA, DCA, and MCA 

in complex NAS matrices. With the use of the GC method, it is possible accurately 

determine correlations between the true measurements for TCA, DCA, and MCA and the 

predicted measurement via SM4500Cl-G.  

The head-space GC-MS method, which is the most accurate and robust analysis for 

chloramines, is developed. Because the direct injection of water to GC-MS was not 

recommended, head-space GC-MS method is a potential alternative method for analysis of 

chloramines and bromoamines that can be efficiently partitioned into the headspace-gas 

volume from the complex NAS matrices. In particular, head-space GC-MS method allows 

differentiation of each species including TCA which was provide highly valuable insight 

in the causes and control of secondary oxidants. 

 

3.2 Materials and Methods 
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3.2.1    Standard Solutions  

MCA standard solution – The MCA standard solution was prepared daily by 

mixing a free chlorine (NaOCl) solution with a slight excess of an ammonium chloride 

(NH4Cl) solution at a chlorine-to-ammonia molar ratio of 1.00:1.03. Both solutions were 

adjusted to a pH level of 10 with sodium hydroxide (NaOH) before mixing them together, 

based on work by Kosaka et al., (2010) and Shang and Blatchley III (1999).  

DCA standard solution – The DCA standard solution was prepared daily by slowly 

pouring NaOCl solution over NH4Cl solution at a chlorine-to-ammonia molar ratio of 

1.80:1.00 over a 2-minute period with rapid stirring. Both solutions were adjusted to pH 5 

with 1 M acetic acid before mixing (Kosaka et al., (2010); Shang and Blatchley III, 1999).  

TCA standard solution – The TCA standard solution was prepared daily by pouring a 

NaOCl solution over NH4Cl solution at a chlorine-to-ammonia molar ratio of 3.15:1.00 

with rapid stirring at pH 6 with a 5 mM phosphate buffer (Kosaka et al., 2010; Shang and 

Blatchley III, 1999). 

MBA standard solution – The MBA standard solution was prepared by adding a 

drop wise 90.1 ml of a saturated solution of aqueous Br2 (0.058M) to 45 ml of concentrated 

ammonia hydroxide, contained in ice water, cooled and equipped with a stir bar at the rate 

of about one milliliter per second (Heasley et al., 2013). 

DBA standard solution – The DBA standard was prepared by mixing two grams of 

anhydrous magnesium sulfate to the MBA standard solution in water, and extracting with 

an ether a portion of 10 ml to 2 ml MBA standard solution in water to ether (Heasley et al., 

2013). 
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3.2.2    Standard DPD Colorimetric Method (SM4500Cl-G) 

In this method, the chlorine residual is determined colorimetrically with DPD and 

is used as an indicator for differentiation of chloramines. In the presence of chlorine and 

chloramines, the DPD indicator solution has a red color proportional to the chlorine and 

chloramines present. The approximate minimum detectable concentration is 10 μg/L as Cl2 

(Appendix HA-1). Potassium permanganate solution was used to calibrate the Hach 

spectrophotometer (Model DR 3900) based on standard method (APHA, AWWA, and 

WEF, 2005). For this purpose, a series of potassium permanganate standard solutions 

covering the chlorine, with an equivalent range of 0.05 to 4 mg/L, was prepared. The color 

absorption was developed by SM4500Cl-G, which was measured in absorbance at 515 nm 

(HA-2). 

 

3.2.3   Determination of Haloamines by Headspace Gas Chromatography-Mass 

Spectrometry (Headspace GC-MS) 

To determine haloamines using the head-space GC-MS method, haloamines 

standard solution was prepared daily. The main standard solution was diluted with 

ultrapure 0, 4000 and 40,000 mg/L NaCl to the standard solutions with a nominal 

concentration ranging from 0.2 to 3 mg-Cl2/L. Next, 10 ml of each standard solution was 

transferred to 20-mL screw cap head-space vials. Hexafluorobenzene (HFB) solution was 

added as an internal standard at a final concentration of 2 mg/L, and the vials were capped 

and analyzed by head-space GC-MS. 

Head-space GC-MS analysis was conducted using a modification of a head-space 

method for TCA (Kasaka et al. 2010). An Agilent 7890A GC equipped with an Agilent 
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HP-1MS capillary column (15 m × 0.25 mm) was used and combined with an Agilent 

5975CV mass spectrometer. The injecting temperature and flow rates were 40°C and 1 

mL/min, with helium as the carrier gas. Pulsed split mode was used for injection with a 

split ratio of 1:2. The temperature profile was 30°C for 1.5 minutes, rising to 60°C at 

30°C/min, and 60°C for 0.5 minutes.  

The MS was operated in selected in an ion monitoring (SIM) mode with 

quantitation and confirmation ion pairs of 186/117 m/z for HFB, 84/(86, 119, 121) m/z for 

TCA, 85/(51, 49, 87) m/z for DCA, and 51/53 m/z for MCA. The auxiliary, quadrupole 

and ion source temperatures were 150°C, 110°C and 150°C. HFB was selected as an 

internal standard because an addition of HFB will have no effect on chloramines 

concentrations in the samples (Kasaka et al., 2010). Table 3.1 shows the detailed analytical 

condition of head-space GC/MS analysis used in this study. 

 

3.3 Results and Discussion 

 

3.3.1    Evaluation of Standard Method 4500 Cl. G. DPD Colorimetric Method for 

NAS Water 

Based on SM4500Cl-G, potassium permanganate was used as the standard for 

establishing the standard curve. The standard curve concentration range was 0 - 4.0 mg/L 

Cl2. and exhibited a non-linear response above 1.0 mg/L equivalent chlorine. Several other 

studies have also reported the non-linearity of the SM4500Cl-G procedure using either FC 

standards or secondary standards (Harp, 2002; Kosaka et al., 2010; Hosoda et al. 2009).  
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Table 3.1. Analytical condition of head-space GC-MS used in this study. 

GC  

 Equipment Agilent 7890A (Agilent Technologies) 

 Column HP – 1MS (15 m×0.25 mm, 0.25mm, Agilent Technologies) 

 Temperature program 300C (1.5min) →300C/min→600C (3min) 

 Carrier gas Helium 

 Flow rate 1.0 mL/min 

 Injection mode Pulsed split (15 psi (0.2 min), 2:1) 

 Injection temperature 400C 

MS  

 Equipment Agilent 5975C (Agilent Technologies) 

 Ion source Electron ionization 

 Ion voltage  70 V 

 Aux temperature 1100C 

 Quadrupole temperature 1500C 

 Ion source temperature 1100C 

 Analytical mode SIM 

m/z MCA 51(quantification) 53 (identification) 

 DCA 85(quantification) 51,49,87 (identification) 

 TCA 84(quantification) 86,119,121 (identification) 

MBA 95(quantification) 97 (identification) 

DBA 175(quantification) 173,177 (identification) 

 HFB 186(quantification) 117 (identification) 
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The non-linearity of the SM4500Cl-G calibration may attribute to the increased 

formation of the colorless imine product at higher oxidant concentrations or the instability 

of the liquid DPD reagent. The availability of active DPD free amine is low with ageing 

the DPD indicator solution. This would lead, furthermore, to increasing nonlinearity at the 

higher oxidant levels (Harp, 2002). 

The SM4500Cl-G is one of the only analytical methods for purportedly 

differentiating TCA from other chlorinated oxidants, and provides individual 

concentrations for FC, MCA, DCA, and TCA. There is little evidence to suggest that the 

TCA can be quantified when using iodide with DPD. And our results show that 

interferences were varied with changing NAS water quality and control is problematic due 

to complexity of NAS waters. NAS aquaria and pools may contain natural levels of 

bromide ions of up to 65 mg/L. The addition of chlorine to waters containing bromide 

produce FB and bromamines. Bromamines will react with iodide reagent analogously to 

the chloramine reaction, indicating the total oxidizing capacity of the sample and a positive 

interference in the total chlorine test (Harp, 2002). 

 

3.3.2    Development and Evaluation of a Head-Space GC-MS Method for 

Chloramines and Bromamines 

In the present study, a head-space GC-MS method for chloramines species was 

developed. Appendix HA-3 shows the SIM chromatogram of TCA, DCA, and MCA in 

their standard solutions determined by head-space GC-MS at a pH of 7.8 and 

concentrations of 30 μg/l. The mass spectrums of TCA, DCA, MCA obtained in this study 

were the same as that reported by Shang et al. (1999). Thus, the peaks shown in Appendix 
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HA-3 were confirmed to be that of TCA, DCA, and MCA. This method has a relatively 

higher response and allows for an accurate differentiation between chloramines species in 

NAS water. However, calibration of head-space GC-MS is not possible due to the 

limitations of the SM4500Cl-G, and unfortunately the accurate estimates for TCA, DCA, 

and MCA in NAS water were not possible. 

 

3.4    Conclusion 

The SM4500Cl-G states that it is one of the only wet chemical methods for 

differentiating TCA from other chlorinated oxidants and works very well in fresh waters 

with low bromide levels. However, that organic matter and/or high concentrations of 

inorganics do cause significant interference of SM4500Cl-G in seawater and saltwater 

applications. Positive (overestimation) and negative (underestimation) interferences result 

in inaccurate measurement of TCA and other compounds. Additionally, interferences due 

to the complexity of NAS matrix and reactivity of bromamines (e.g., TBA) in NAS water 

which reacts with iodide reagent and indicates a positive interference in the chloramine test 

causes the calibration of head-space GC-MS for chloramines impossible. Therefore, 

accurate estimates for TCA, DCA, and MCA in complex seawater and saltwater matrices 

cannot be determined. Currently, no “ideal” method exists for quantifying FC and 

chloramines species in NAS water. All the accepted methods for chlorine display a certain 

lack of specificity and are inadequately selective to be totally free of interferences from 

other oxidizing agents.  
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CHAPTER 4 

FORMATION OF HALOAMINES AND RELATED DISINFECTION BYPRODUCTS 

DURING CHLORINATION AND OZONATION OF MARINE AQUARIA 

 

 

4.1    Introduction 

Chlorine and ozone are added to natural and artificial seawater (NAS) aquaria and 

pools to meet a variety of disinfection and oxidation objectives. When ozone is added to 

marine aquaria, the high chloride and bromide levels cause a rapid conversion of the ozone 

to free chlorine (HOCl/OCl-) (FC) and free bromine (HOBr/OBr-) (FB) (Reed and Adams, 

2002; Qiang et al., 2013; Qiang et al., 2015; Adams et al., 2013). In a competing reaction, 

ozone also reacts with bromide to form bromate (Naumov and von Sonntag, 2008). The 

relative amount of ozone reacting with chloride and bromide is governed by their relative 

reaction rates (Haag and Hoigne, 1983; Hoigné et al., 1985): 

 

O3 + Cl- → O2 + OCl-              k1C = 0.003 M-1s-1              (4.1) 

and 

O3 + Br- → O2 + OBr-               k1B = 160 M-1s-1               (4.2) 

 

Higher bromide seawater and saltwater may often contain bromide on the order of 

65 mg/L or greater, thus driving most ozone to the FB rather than the FC species. Further, 

FC can react with bromide to form FB (Grguric et al., 1994; Bousher et al., 1986): 
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Br- + OCl- → OBr-
 + Cl-               k = 6.77(103) M-1s-1          (4.3) 

 

FC and FB react with organic matter to form a variety of organic disinfection byproducts 

(DBP) and with ammonia to form haloamines. Key organic DBPs include trihalomethanes 

(THM) and haloacetic acids (HAA) as well as other emerging DBPs (Shi et al., 2013; 

Zhang et al., 2015). THMs and HAAs are regulated in drinking water at 80 and 60 µg/L. 

Previous research has documented the presence of different organic DBPs in marine 

aquaria and demonstrated the effect of bromide concentration on speciation. For example, 

work by Shi and Adams (2012) showed that for THMs, chloroform (trichloromethane) 

dominated in low-bromide (e.g., mg/L as Br) pools in a marine park while bromoform 

(tribromomethane) dominated in much higher bromide natural seawater. Similarly, 

chlorinated HAAs were shown by Shi et al. (2013) to dominate in low-bromide pools, 

while brominated HAAs dominated in high-bromide artificial and nature seawater.  

DBPs and secondary oxidants in swimming pools and NAS aquaria may cause 

irritations and other health problems for animals (Nemery et al., 2002; Jacobs et al., 2007; 

Li and Blatchley, 2007). Literature on swimming pools suggests that chloramines are a 

primary eye irritant, with trichloramine (TCA, NCl3) being a strongest irritant followed by 

dichloramine (DCA, NCl2H) (Bernard et al., 2003; King et al., 2006). Monochloramine 

(MCA, NClH2) and FC may be a minor factor with respect to eye irritations.  

Chloramines are formed by the reaction of FC and ammonia/ammonium 

(NH3/NH4
+), which are shown non-stoichiometrically, as follows (Qiang and Adams, 

2004): 
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HOCl/OCl- + NH3/NH4
+ → NClH2              (4.4) 

HOCl/OCl- + NClH2→NCl2H                      (4.5) 

HOCl/OCl- + NCl2H→ NCl3                        (4.6) 

 

Ammonia presence also results in the formation of bromamines by the reaction of 

ammonia with FB (and conversion of chloramines directly to bromamines). Natural 

seawater has approximately 65 mg/L of natural bromide (Flury and Papritz, 1993) while 

artificial seawater has varied levels of bromide present from impurities in NaCl and may 

contain bromide levels near or below 1 mg/L bromide such that both FC and FB are formed. 

Previous research has found that if saltwater contains even 1 mg/L of bromide, ozonation 

leads to a greater formation of FB than FC (Reed and Adams, 2002). Bromo-DBPs are 

more toxic than their chlorinated analogs. Due to the high toxicity of bromo-DBPs, 

increased total bromide concentrations leading to higher bromo-DBPs during water 

treatment may cause higher health risks (Richardson et al., 2007; Richardson et al., 2010). 

Due to the health and irritation effects of haloamines on organisms within 

disinfected waters (e.g., fish, and mammal), it is of critical importance to understand the 

speciation of haloamines as a function of water quality parameters during the chlorination 

of seawater and saltwater. Key parameters affecting chloramine speciation (in low bromide 

waters) include pH and chlorine-to-ammonia ratios. The bromide concentration impacts 

the formation of FB (from both ozone and FC) as well as the direct conversion of 

chloramines to bromamines. Ionic strength can also have a significant impact on the 

reaction kinetics with the relative impact on specific reactions dictated in large part by the 

reaction order (Shah et al., 2015). Due primarily to insufficient analytical methods for 
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haloamine species in saltwater (other than possibly MCA), little study has been made of 

the relative concentrations and stability of the chloro- and bromo-amines in marine aquaria 

subject to chlorine and ozone disinfection. 

The purpose of this study has been to examine the formation, stability, and 

occurrence of chloramines and bromamines during the chlorination of waters with varied 

total dissolved solids, bromide concentration, and pH. In this study, UV spectral scans were 

used in combination with head-space GC-MS methods to study the formation and stability 

of haloamines as a function of pH, chloride concentration, and bromide concentration.  

 

4.2    Material and Methods 

 

4.2.1    Materials  

Reagent water was prepared using a Millipore Elix Reverse Osmosis system 

followed by a Millipore A10 system (Millipore, Bedford, MA). Ammonium chloride, 

hydrochloric acid, monobasic and dibasic potassium phosphate, sodium hydroxide, sodium 

chloride, sodium bromide, and laboratory grade sodium hypochlorite solution were 

purchased from Fisher Scientific (Houston, TX, USA). Hexafluorobenzene was purchased 

from Acros Organics (Geel, Belgium). Hach Accuvac vials for free chlorine were 

purchased from Hach Company (Loveland, CO, USA). 

 

4.2.2    Instrumentation 
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Solution pH values were measured with Fisher Scientific Accumet Excel XL20 pH 

meter. Sodium hypochlorite stock solutions were quantified using both Hach Method 

8021––Free Chlorine and based on its molar absorptivity at 292 nm of 350 cm-1 (Galal-

Gorchev and Morris, 1965) measured using a Hach DR900 spectrophotometer.  

Scanning spectrophotometric measurements were made using a Shimadzu Model 

UV-1700 spectrophotometer (Jiangsu, China) in medium-scan speed (ca. 3 nm/sec) over 

the wavelength range of 200 to 400 nm. Spectral scans were analyzed based on molar 

absorptivities and absorption maxima from Galal-Gorchev and Morris (1965) and Hensley 

et al. (2003) (Table 4.1). 

A head-space gas chromatography/mass spectrometry (GC/MS) method by Kosaka 

et al. (2010) was used to analyze selected haloamine species using an Agilent 7890A gas 

chromatograph (Agilent Technologies) equipped with an HP-1MS capillary column with 

dimensions of 15 m×0.25 mm (Agilent Technologies). The injection temperature was 

40°C, whereas the helium flow rate was 1.0 mL/min. Pulsed split mode was used for 

injection, with a split ratio of 1:2. The temperature program was as follows: 30°C (1.5 min); 

ramp to 60°C at 30°C/min; and hold at 60°C for 0.5 min. An Agilent 5975C mass 

spectrometer (Agilent Technologies) was operated in selected ion monitoring (SIM) mode.  

The m/z values of hexafluorobenzene (HFB) as internal standard were 186 

(quantification) and 117 (confirmation), and those of TCA were 84 (quantification) 86, 

119, and 121 (confirmation), for DCA were 85 (quantification) 51, 49, and 87 

(identification), and for MCA the values were 51 (quantification) and 53 (confirmation). 

Auxiliary, quadrapole, and ion source temperatures were 150°C, 110°C, and 150 °C. 
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4.2.3    Standard Solutions 

To determine the UV-absorption spectra of TCA as a function of pH and time, TCA 

was prepared daily by mixing hypochlorite solution (NaOCl) and ammonium chloride 

(NH4Cl) solution at a chlorine-to-ammonia molar ratio of 3.15:1.00 while rapid stirring 

was provided at pH 6 with 5 mM phosphate buffer (Kosaka et al., 2010; Shang and 

Blatchley Iii, 1999). The pH of standard solution was adjusted with 1M NaOH or 1M HCl, 

and then the required amount of concentrated NaCl solution was added to the solution to 

form a final concentration of solution of 0, 4000 and 40,000 mg/L as NaCl, which was 

placed in a quartz cuvette. This process occurred in less than one minute to reduce reaction 

and changes in concentration. The blank solution was prepared in ultrapure water which 

contains the same amount of NaCl concentration of standard solution in each measurement. 

To determine the TCA by using the head-space GC-MS method, TCA standard 

solution was prepared daily by mixing NaOCl solution and NH4Cl solution at a chlorine-

to-ammonia molar ratio of 3.15:1.00 at a pH of 6 in a 5 mM phosphate buffer (Kosaka et 

al., 2010; Shang and Blatchley Iii, 1999). The main standard solution was diluted with 

ultrapure 0, 4000, and 40,000 mg/L NaCl to the standard solutions with a nominal 

concentration of TCA ranging from 0.2 to 3 mg-Cl2/L. After which, 10 mL of each standard 

solution were transferred to 20 mL screw cap head-space vials. An HFB solution was added 

as an internal standard at a final concentration of 2 mg/L––the vials capped and analyzed 

by GC-MS. 

In the kinetic experiments, TCA was prepared by mixing NaOCl solution and 

NH4Cl solution at a chlorine-to-ammonia mass ratio of 12:1 (mg:mg) at a pH of 6 with 5 

mM phosphate buffer (Bogatu, 2010). A pH of 7.8 of the standard solution was adjusted 
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with 1 M NaOH. The required amount of concentrated NaCl and NaBr solution was added 

to the solution to achieve a final concentration of 0, 4000 and 40,000 mg/L as Cl and 0, 1, 

10 and 50 mg/L as Br. The solution was then placed in a quartz cuvette. The blank solution 

was prepared in ultrapure water containing the same amount of NaCl and NaBr 

concentration of standard solution in each measurement. Preliminary experiments were 

conducted and confirmed all the solutions of ammonium chloride, monobasic and dibasic 

potassium phosphate, sodium hydroxide, sodium chloride, sodium bromide had negligible 

absorbance at the required detection wavelengths, and as such had no spectral interference 

with the absorbance measurement of TCA (Galal-Gorchev and Morris, 1965; Heasley et 

al., 2013). 

 

4.3    Results 

 

4.3.1    Effect of pH and TDS on TCA Formation 

UV spectra as a function of pH (from 5.7 to 8.4) for the TCA standard solution 

were developed for purified water (TDS 0 mg/l as NaCl) (Figure 4.1A).  

The results indicated only one peak at 340 nm in the TCA standard solution from a 

pH level of approximately 5.7 to 7.5, which denoted TCA. The maximum absorbency at 

340 decreased slightly with an increased pH, most likely due to an enhanced TCA decay 

at higher pH values (Bogatu et al., 2010). At pH 7.5 and above, a peak emerged at 292 nm 

indicating the presence of hypochlorite, OCl-, consistent with previous studies of the 

formation and decomposition of TCA in sodium hydroxide solutions at low pH levels 
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(Bogatu et al., 2010). Specifically, the relevant reactions for the decomposition of TCA at 

high pH are (Kumar et al., 1987): 

 

NCl3 + OH- → NHCl2 + OCl-                                      (4.7) 

NCl3 + NHCl2 + 5OH- → N2 + 2OCl-+ 3Cl- + 3H2O   (4.8) 

 

It is hypothesized that the DCA peak was obscured by the OCl- spectra due to their adjacent 

maximum absorbance and noting that OCl- has a higher molar absorptivity than DCA 

(Table 4.1).  

While no DCA peak was observed in the UV spectra (Figure 4.1), head-space GC/MS 

results indicated the presence of DCA in the solution. These results make clear that free 

chlorine, DCA, and TCA are in dynamic equilibrium. As expected, and confirmed 

experimentally, in higher pH water, the concentration of TCA decreases. 

A decrease in the amount of TCA (at 340 nm) can be seen in aqueous solutions at 

increased concentrations of NaCl (Figure 4.1). In general, TCA would be more favored in 

drinking water than brackish water or seawater. Additionally, the TCA peak disappeared 

completely above pH 7.8, the nominal pH of seawater, suggesting TCA may not be 

favored. Head-space GC-MS analysis conducted in these experiments, however, did show 

a considerable amount of TCA at this pH. It is hypothesized that the effect of higher ionic 

strength helped salt out the TCA from TCA standard solution thereby shifting equilibrium 

toward the gas phase in the head-space analysis (Table 4.2). 
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Fig. 4.1. UV spectra as a function of pH for TCA standard solution: (A) NaCl 0 mg/l; (B) 

NaCl 4,000 mg/l; (C) NaCl 40,000 mg/l. Experimental conditions: chlorine to 

ammonia molar ratio of 3.15:1.00, 5mM phosphate buffer, temperature 25±2. 

 

 

Table 4.1 Molar absorptivity and absorption max wavelength for free and combined 

chlorines and bromines. Mixed chloro/bromo species data were not available. 

 
 

Absorption 

max (nm) 

 

Molar  

absorptivity (cm-1) 

MCA 245 455 

DCA 206, 295 300, 300 

TCA 220, 340 8100, 260 

MBA 278 390 (438) 

DBA 232 (Unstable) 1900 (Unstable) 

TBA 258 4600 

HOCl (pK=7.6) 233 100 

OCl- 292 350 

Br2 236, 394 175, 153 

HOBr (pK=8.7) 261 (263) 93 

OBr- 329 343 

All in water unless noted otherwise. 
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Kinetic experiments were conducted on TCA in seawater, that is, 40,000 mg/L as 

NaCl at two pH levels. One experiment was conducted at a pH of 6 where TCA formation 

is more favored, and the other at a pH of 7.8, which is typical pH level in seawater. In these 

experiments, the TCA spectra was tracked at 220 nm over a 4-hour period. As the molar 

absorbance is relatively high (8100 L mol-1 cm-1), TCA produces a strong peak at 220 nm. 

The results indicate that TCA decreased roughly 30% after 4 hours at both a pH of 6 and 

7.8 in TDS 40,000 mg/l as NaCl (Figure 4.2). As a result, it can be concluded that TCA is 

relatively stable after formation with no bromide present. 

 

 

Table 4.2. Analysis of TCA standard solution by using the head-space GC-MS method. 

Experimental conditions: chlorine to ammonia molar ratio of 3.15:1.00, 5mM 

phosphate buffer, temperature 25±2. 

 

1Internal standard  

 

 

4.3.2    Effect of Bromide Concentration on TCA Formation  

pH 6 DCA/IS TCA/IS DCA/IS TCA/IS DCA/IS TCA/IS

0.2 0.01 0.25 0.01 0.25 0 0.07

0.5 0.01 1.12 0.01 1.17 0.01 0.34

1 0.02 3.27 0.02 2.63 0.01 0.92

2 0.04 7.81 0.03 5.65 0.03 4.52

0.2 0 0.14 0.01 0.33 0 0.05

0.5 0.01 0.55 0.01 1.35 0.01 0.28

1 0.01 2.07 0.02 2.47 0.01 0.97

2 0.02 5.06 0.04 6.13 0.02 3.38

pH 7.8

TDS (mg/L as NaCl) 0 4,000 40,000

Theoretical Concentration of TCA (ug/L) Ratio of peak Area Ratio of peak Area Ratio of peak Area
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To study the effect of bromide concentration on the relative formation of TCA and 

TBA, it was required to deconvolute their spectra. It was hypothesized that TCA and TBA 

absorption spectra convolute in a manner that can be interpreted semi-quantitatively. First, 

TBA was tracked in this work at its maximum absorption wavelength of 258 nm (and a 

molar absorptivity of 4600 L mol-1·cm-1) (Galal-Gorchev and Morris, 1965), while TCA 

was tracked at 220 nm as discussed above. Experiments were conducted once more at a pH 

of 6 and a pH of 7.8, over TDS concentrations of 0, 4000, and 40000 mg/L NaCl. In each 

of the six permutations of pH and TDS, the bromide concentration was varied and a UV 

spectra was immediately obtained for analysis. 

 

 

 

Fig. 4.2. Absorbance at 220 nm as a function of time for TCA standard solution at pH 6 

and pH 7.8. Experimental conditions: chlorine to ammonia mass ratio 12:1 

(mg/L: mg/L), 5mM phosphate buffer, NaCl 40,000 mg/l, temperature 25±2. 
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For pH 6 and 0 mg/L NaCl, the results clearly showed a strong TCA peak at 0 and 

1 mg/L Br-, disappearing mostly and then completely at around 10 to 12.5 mg/L Br-. 

Concurrently, a strong TBA peak was observed forming at a concentration of 50 mg/L Br- 

(Appendix HA-4A). Similar results were observed at 4,000 mg/L as NaCl (Appendix HA-

4B). At 40,000 mg/L as NaCl TDS, however, no distinct TBA peak was observed. 

Analogous results were also observed at the more relevant pH for seawater of 7.8. 

With 0 and 1 mg/L of NaCl, the TCA peak dominated the UV spectra (though at a lower 

intensity than at a pH of 6) and with no TBA observed. However, as the bromide 

concentrations were increased to 50 mg/L and above, the TBA peak was observed 

(Appendix HA-5A). Similar results were observed at the higher TDS levels of 4000 and 

40,000 mg/L as NaCl. 

These results show that in NAS water, TBA will normally dominate over TCA in 

all but the lowest bromide waters. These results are consistent with the formation of 

bromoform over chlorinated THMs as observed by Shi and Adams (2012) during the direct 

chlorination and the ozonation of seawater (through the conversion of ozone to FC and FB 

species). Similarly, Shi et al. (2013) observed the dominance of brominated HAAs in NAS 

water versus more chlorinated species.  

In order to quantitatively determine the effect of bromide on TCA decompositions, 

the kinetics of the process were studied. Specifically, pseudo-first-order rate constants (k’) 

were determined using a linear regression of t versus ln A with the following equation: 

 

ln A = ln A0 - k’·t                               (4.9) 
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where k’ is rate constant (s-1), t is the reaction time (s), A0 is the initial absorbance, and A 

indicates the absorbance at time, t. To estimate the absorbance of TCA for the regression 

analysis, the absorbance reading at the mid-point of a tangent line across the absorbance 

peak (λ mid-point) (Table 4.3) was determined. The TCA concentration is related to 

absorbance by Beer's law which states: 

 

A = ɛ·L·C                                            (4.10) 

 

where A is the absorbance, ɛ is the molar absorptivity (L mol-1 cm-1), L is the path length 

of the cuvette in which the sample is contained (cm), and C is the concentration of the 

compound in solution (mol L-1). The half-life (t1/2) corresponding to the first order rate 

constant was computed using the following relation: 

 

t1/2 = 
 𝑙𝑛 2 

𝑘’
                                            (4.11) 

 

where t1/2 is half-life (s), and k’ is pseudo-first-order rate constant (s-1). The rate constant 

and half-life were calculated for TCA decay as a function of bromide concentration at pH 

6, 7.8 and with a chlorine-to-ammonia mass ratio of 12:1 (mg/L: mg/L) (Table 4.3).  

Regression coefficients (R2) ranged from 0.87 to 0.99. Experiments at both a pH of 

6 and 7.8 and in water from 0 to 40,000 mg/L TDS were conducted to examine the effect 

of bromide on TCA decay. The results showed that the effect of bromide concentration was 

dramatic on the decay of TCA. Specifically, the results showed that in the absence of 
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bromide, the pseudo-first order rate constant for TCA decay ranged from 2(10-5) to 8(10-5) 

s-1 corresponding to a half-life of approximately 2.4 to 6.6 hours (Figure 4.3).  

On the other hand, the half-life of TCA dropped rapidly with increasing bromide 

concentration to the typical bromide concentration in seawater (and many artificial salt 

waters) of 50 mg/L. Additionally, a pseudo-first order rate constant for TCA decay of 

4.7(10-3) s-1 was observed corresponding to a half-life of just 2.5 minutes. Thus, bromide 

is a key controlling factor in the occurrence of TCA with the effect of pH and TDS being 

much less significant as noted above. (Note, of course, that with respect to ozone chemistry, 

the high chloride associated with high TDS is required to invoke a rapid conversion of 

ozone to free chlorine species.) 

 

 

 

Fig. 4.3. Effect of bromide concentration on the average half-life of TCA of waters with 

0, 4000, and 40000 mg/L TDS, for pH 6 and 7.8. 
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4.4    Conclusion 

In NAS water with typical high bromide concentrations, TCA would not be 

expected to be nearly as significant of an irritant as in very low bromide waters. While the 

focus on fresh water in swimming pools has often rightly been on TCA as a key eye and 

skin irritant, TCA may play a significantly less important role in NAS water due to higher 

bromide levels. Furthermore, the role of TBA has been investigated to a lesser degree in 

general due to the fresh water’s lesser significance and due to the large amount of analytical 

issues.  
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HAPTER 5 

CONCLUSION AND FUTURE WORK (HALOAMINES) 

 

 

5.1    Conclusion 

In most marine mammal pools, microbiological control has historically been 

performed using an addition of chlorine and/or ozone. Both oxidants lead to the formation 

of disinfection byproducts including chloramines and bromoamines due to a relatively high 

concentration of bromide in brackish and saline water. Because the residual oxidant is 

important with respect to the balance of how effective the disinfection process is versus 

control over disinfection byproducts, it is critical to be sure that the residue remains within 

a specified range. Too little chlorine will not provide adequate disinfection and too much 

can result in excessive disinfection byproducts. The presence and concentration of these 

combined chlorine forms depend on the pH levels, temperature, initial chlorine-to-nitrogen 

ratio, chlorine demand, and reaction time. 

While the focus in swimming pools and related studies have often been on TCA as 

a key secondary oxidant, the role of TBA has been investigated to a lesser degree. Relative 

amounts of bromide in seawater or saltwater have been shown to dictate the degree to 

which compounds move toward chlorinated or brominated species. No work, however, has 

been reported on this topic. Bromamines are likely to be as large or part of a larger factor 

such as chloramines which may lead to eye and skin irritations, depending on bromide 

levels and treatment approaches.  
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The wet chemical Standard Method 4500Cl-G titled DPD Colorimetric Method is 

the only analytical methods that can differentiate TCA from other chlorinated oxidants in 

low total dissolved solids, but our results demonstrate that due to the complexity of NAS, 

water control of interferences is problematic and impractical. Generally, there is no “ideal” 

method for analysis of chlorine species that is not subject to potential interferences in the 

NAS water. 

In this study, the head-space GC-MS method was developed for chloramines, which 

had relatively high responses and allowed for an accurate differentiation between 

chloramines species. Unfortunately, calibration of head-space GC-MS was not possible 

due to limitations of the standard method 4500Cl-G in NAS water. So, further study by 

using this method for a better understanding of the effects of chlorination (and indirectly 

ozonation) on the occurrence of chloramines and bromamines in seawater/salt water 

systems were not achieved. 

In this study, spectrophotometric techniques were supported by head-space GC-MS 

methods to study the formation and decay of TCA and TBA in aqueous solutions. This 

analytical method along with the laboratory experiments provides better understanding of 

the effects of chlorination (and indirectly ozonation) on the occurrence of chloramines and 

bromamines in seawater and salt water systems. Based on this study, the effect of bromide 

concentration was observed to exert an effect on the kinetics and stability of TCA and 

TBA; much more so than the effects of pH or TDS. With no bromide present, the half-life 

for TCA is two to six hours. In a typical bromide concentration in NAS water of 50 mg/L 

as NaBr, however, the half-life of TCA drops to just a few minutes. The significance of 

this work includes the demonstration that while TCA may be dominant in fresh water pools 
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as an irritant, it may also mistakenly be assumed as a primary irritant generated in NAS 

water aquaria and pools. 

 

5.2    Future Work  

It would be useful to consider how the use of low bromide salts in saltwater animal 

systems is used in fish systems. Higher bromide concentrations likely lead to higher 

brominated disinfection byproducts (DBP) (e.g., TBA). Because brominated DBP are 

generally more toxic than chlorinated DBPs, it is hypothesized that it may also cause 

greater eye irritation. 

In seawater systems, use of low bromide salt is not an option because natural 

seawater is used and contains approximately 65 mg/L of natural bromide. It is 

recommended that the biological treatment processes be utilized in new treatment systems. 

Biological treatment should significantly reduce the concentrations of organic materials as 

well as the potential for ammonia. This will reduce the formation of chloramines as well 

as other potential eye irritants.  

Further studies on alternative recycling and treatment processes in NAS swimming 

pools is required such as filtration media. Moreover, improvement of filtration via 

coagulation is an important issue as it reduces the amount of human inputs (e.g. skin, hair, 

microorganisms, personal care, and cosmetics products) in NAS swimming pools. 
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CHAPTER 6 

LITERATURE REVIEW AND OBJECTIVES (CYANOTOXINS) 

 

 

6.1    Cyanobacteria  

Cyanobacteria, also referred to as blue-green algae, are photosynthetic bacteria that 

are important primary producers in aquatic ecosystems with simple structures at the 

subcellular level (Mur et al., 1999). Cyanobacteria lack a nucleus, a characteristic feature 

defining them, along with bacteria, as prokaryotes. Cyanobacteria cell sizes are as small as 

0.5 μm in diameter and filamentous species with cell diameters as large as 60 μm. Most of 

cyanobacteria have small gas vacuoles that allow them to regulate their buoyancy. 

Buoyancy enables them to migrate up and down to maintain a favorable position in the 

water column to utilize light and nutrients (Chorus and Bartman, 1999). 

Cyanobacteria can form dense water blooms in mesotrophic (i.e., moderate 

nutrients and productivity), eutrophic (i.e., nutrient rich, high productivity), and 

hypertrophic (i.e., excessively enriched with nutrients) water. A stable water column, warm 

temperature, nitrogen, phosphorus, high pH and ample sunlight are critical factors that are 

required for cyanobacterial growth (Antoniou Maria et al., 2005; Chorus and Bartman, 

1999). Cyanobacteria blooms are more likely to occur in warm weather where the water 

body is shallow, eutrophied, or slow moving (Chorus and Bartman, 1999). 

 

6.2    Harmful Algal Blooms 
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Cyanobacteria blooms generally are symptoms of eutrophication and are evidence 

of the deterioration of water resources which cause ecological and public health concerns. 

Increased nitrogen and phosphorus loading can contribute to an increased occurrence of 

cyanobacteria blooms in water. Generally, waters containing total phosphorus 

concentrations between 10 and 25 μg/L are considered to have a moderate risk of 

cyanobacteria growth, with waters in excess of 25 μg/L providing high growth potential. 

Conversely, water with total phosphorus concentrations below 10 μg/L can be considered 

to have a low risk of cyanobacterial growth (Mur et al., 1999).  

Cyanobacteria blooms that produce toxins are one subset of blooms generally called 

harmful algal blooms (HABs). The toxicity of cyanobacteria is related to the biosynthesis 

of harmful metabolites called cyanotoxins. Cyanotoxins are produced only by the 

cyanobacteria strains having the appropriate genes and have the capability to turn certain 

genes on or off depending upon environmental conditions (Kurmayer and Christiansen, 

2009). However, the HAB terminology can be misleading because cyanobacteria do not 

always actively produce toxins.  

Some cyanobacteria that produce cyanotoxins may also produce taste and odor 

causing compounds, so presence of taste and odor compounds alone, therefore, is not a 

clear indication that cyanotoxins are present. However, the presence of taste and odor 

compounds are indicators that potentially cyanotoxin-producing strains could also be 

present. Different cyanobacteria strains can be present in a single bloom, and some 

cyanobacteria strains can produce multiple types and variants of cyanotoxins (Kurmayer 

and Christiansen, 2009).  
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Some rapid and simple methods, such as algae cell counts or microscopic 

examination, may be sufficient for a preliminary assessment of whether a bloom may be 

of concern based on cell type and density. However, a more thorough assessment is 

required to confirm the presence and type of cyanotoxins (Merel et al., 2013). 

 

6.3    Cyanotoxins 

The word cyanotoxin refers to a large and diverse group of chemical compounds 

that differ in molecular structure and toxicological properties. They are generally grouped 

into three major classes according to their toxicological targets: hepatotoxins (induce liver 

damage); neurotoxins (alter the neuromuscular transmission); and dermatotoxins (induce 

skin irritation) (Table 6.1). 

 

 

Table 6.1. Cyanotoxins toxicological effects, and known producers (Merel, et al., 2013). 

Toxin Organ Genera 

Microcystin Liver (possible carcinogen) Microcystis, Anabaena, Planktothrix, 

Anabaenopsis 

Nodularin Liver (possible carcinogen) Nodularia spumigena 

Cylindrospermopsin Liver (possible kidney, 

genotoxic and carcinogen) 

Cylindrospermopsis, Aphanizomenon 

Anatoxin-a Neurotoxin (nerve synapse) Anabaena, Planktothrix, Aphanizomenon, 

Cylindrospermopsis 

Saxitoxin Neurotoxin (sodium channel 

blocker) 

Anabaena, Aphanizomenon, 

Cylindrospermopsis, Planktothrix 
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A single bloom may contain multiple types of cyanotoxins because some 

cyanobacteria can produce several toxins simultaneously. In general, cyanotoxins naturally 

reside within cyanobacterial cells (i.e., intracellular). Leaking or lysing of cell walls of 

cyanobacteria causes the release of intracellular toxin into the water, and they become 

extracellular toxins.  

Human exposure to cyanobacteria and their toxins could be by dermal contact and 

accidental inhalation/ingestion during recreational activities in waters subjected to a toxic 

bloom or by the ingestion of drinking water produced from a contaminated resource. This 

could consequently affect a relatively large number of people (Byth, 1980; Griffiths and 

Saker, 2003).  

 

6.3.1    Microcystins 

Microcystins (MCs) are the most commonly found cyanobacterial toxins in surface 

water sources, and thus MCs are the most commonly studied of the cyanotoxins. The 

chemical structure of MCs includes a group of cyclic heptapeptide characterized by a 

unique amino acid ADDA (3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-

dienoic acid). The unusual ADDA amino acid is often associated with the toxicity of the 

molecule because of its conjugated diene which is present in more than 80% of known 

toxin variants (Antoniou Maria et al., 2005; Carmichael, 1992; Dawson, 1998). Variation 

of amino acids (Fig.6.1) at positions 2 and 4 (X and Z) provides the basis for MCs variant 

differentiation and nomenclature. 

Over 100 structural MC variants have been determined in the molecular weight 

range from 800 to 1100 Daltons (Codd et al., 2005; Dietrich and Hoeger, 2005; Song et 
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al., 2005; Tsuji et al., 1995). Each variant is identified by the initials X and Z. For example, 

the common MC which has leucine (initial L) and arginine (initial R) should be identified 

as MC-LR (Table 6.2).  

 

 

Fig. 6.1. Structure of Microcystins, with X and Z representing two amino acid variants 

(Merel et al., 2013). 

 

 

Table 6.2. Microcystin variants with their amino acid in position X and Z, and molecular 

weight (EPA, 2009). 

Name 
 

X-position Amino Acid 
 

 

Z-position Amino Acid 
 

Molecular 

Weight 

(g/mol) 

Microcystin-LR Leucine (L) Arginine (R) 995.17 

Microcystin-LA Leucine (L) Alanine (A) 910.06 

Microcystin-RR Arginine (R) Arginine (R) 1038.2 

Microcystin-YR Tyrosine (Y) Arginine (R) 1045.19 

Microcystin-LY Leucine (L) Tyrosine (Y) 1002.176 

Microcystin-LF Leucine (L) Phenylalanine (F) 986.2 
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All structural variants of MCs are thought to likely act as hepatotoxins, that is, as 

inhibitors of the serine/threonine protein phosphatases type 1 (PP1) and 2A (PP2A) 

(MacKintosh et al., 1990). The metabolism of a cell relies on the function of numerous 

enzymes and proteins. These enzymes/proteins are normally in a resting state. Usually, 

phosphorylation is required to convert the enzyme/proteins from their resting state to their 

active state. Phosphorylation of protein and enzymes are achieved by protein kinases at the 

expense of adenosine triphosphate. After the enzyme has performed its necessary 

functions, the phosphate radical is removed by protein phosphatase type 1 or 2 in order to 

return the active enzyme to its original resting state. If the phosphate radical is not removed, 

the enzyme will remain active and the cell will enter a hyperactive state. The covalent 

binding of microcystin to phosphatases inhibit the dephosphorylation reaction. 

Consequently, microcystins can cause hyper phosphorylation of proteins, and the 

destruction of liver cells, which can lead to blood accumulation in the liver. This can 

eventually be fatal for humans and animals (Codd et al., 2005; Carmichael, 1992). 

MCs are very persistent in the environment and difficult to degrade or remove since 

they are non-volatile and relatively stable compounds due to their cyclic structure (Campas 

et al., 2007). Known process and pathways result in MCs detoxification and fate in nature 

when they are released into surrounding waters (Harada et al., 1999). Thermal 

decomposition does not significantly contribute to the decay of MCs in natural aqueous 

environments (Harada et al., 1999). MCs are known to be resistant to temperatures of up 

to 300oC and pH extremes (pH <1 or >9) (Watanabe et al., 1989; Harada et al., 1997). The 

photolysis of MCs by sunlight alone was very slow (Tsuji et al., 1995; Watanabe et al., 

1989). To achieve 90% degradation of MC-LR, at least 30 days are needed for indirect 



 52 

photolysis in lake water (Lahti et al., 1997). The studies confirm that biological degradation 

has been a possible way to eliminate MCs (Watanabe et al., 1989). There is strong evidence 

that indicates MCs adsorption on particulate materials such as soils, sediments, and clay 

particles in natural environments (Morris et al., 2000).  

MCs are the most prevalent cyanotoxins and are responsible for numerous cases of 

human and animal poisonings, with their presence reported throughout the world (Merel, 

et al. 2013). A recent study found that 82% of 181 samples of Canadian and U.S. utility 

waters tested were positive for the presence of MCs (AWWARF, 2001).  

MC-LR is the most widely distributed MC worldwide and HAB incidents 

associated with MC-LR are frequent. Therefore, MC-LR was the first to be identified 

chemically and is still most commonly studied (Antoniou Maria et al., 2005; Carmichael, 

1992). MC-LR is an extremely acute toxin. The lethal dose 50 (LD50) of MC-LR after 

intraperitoneal injection in mice ranges from 25 to 150 μg/kg. This value may differ 

according to the MC variant, though MC-LR is usually used as a reference (Merel et al., 

2013). However, the -LA, -RR and -YR variants of MCs have similar toxicological effects 

(Kuiper-Goodman et al., 1999; Merel et al., 2013). 

 

6.3.2    Nodularins 

Nodularins are cyclic pentapeptides structurally similar to MCs including the 

ADDA moiety, but only one variable amino acid Z (Merel, et al., 2013) (Figure 6.2). As 

of now, nine variants of nodularin have been reported, all of which are water soluble and 

stable toxins (Codd et al., 2005).  
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Like MCs, nodularins are hepatotoxins because of ADDA, which is responsible for 

the inhibition of protein phosphatase. According to the variant, the LD50 of nodularins in 

mice after intraperitoneal injection ranges from 30 to 70 μg/kg (van Apeldoorn et al., 2007). 

Nodularin-R with Arginine as variable amino acid is the most common between other 

variants (Merel, et al. 2013). No incidents of human intoxication have been reported as of 

yet, and due to the lack of toxicological data, there are no guidelines proposed for drinking 

water so far (Merel, et al. 2013). 

 

 

Fig. 6.2. General structure of nodularins with Z variant amino acid (Merel, et al., 2013). 

 

6.3.3    Cylindrospermopsin 

Cylindrospermopsin (CYN) is a polyketide-alkaloid having a tricyclic guanidine 

moiety and sulfate groups with molecular weight of 415 Da (Figure 6.3) (Banker et al., 

2001). The LD50 of CYN in mice 24 hours after intraperitoneal injection is a 2100 μg/kg 

(van Apeldoorn et al., 2007). Like MCs and nodularins, CYN is also hepatotoxins and the 
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uracil moiety is potentially responsible for the toxicity (Merel, et al. 2013). The first main 

human intoxication by CYN reported in 1979 in Australia with the usage of an algaecide 

to eliminate a bloom of algal in the drinking water source resulting in the release of CYN. 

Over 100 children were reported to have suffered gastroenteritis due to consumption of 

contaminated drinking water (Bourke et al., 1983; Griffiths and Saker, 2003). 

 

Fig. 6.3. Structure of cylindrospermopsin with a different OH orientation (Banker et al.,   

2000). 

 

6.3.4    Anatoxin-a 

Anatoxin-a is a potent neurotoxin with molecular weight of 165 Da bicyclic amine 

alkaloid with a variant called homoanatoxin-a (Figure 6.4) (van Apeldoorn et al., 2007). 

Anatoxin-a is highly water-soluble. However, anatoxin-a is unstable at pH >10 and 

transformed into a non-toxic form by sunlight exposure (Merel, et al. 2013). The LD50 of 

anatoxin-a in mice 24 hour after intraperitoneal injection is a 375 μg/kg (van Apeldoorn et 

al., 2007). Anatoxin-a has been responsible for various animal poisonings around the 

world, although it is a potent neurotoxin and no human poisonings have been reported yet 

(Gugger et al., 2005; Wood et al., 2007). 



 55 

6.4    Regulation of Cyanotoxins 

Recent occurrences of HAB due to nutrient pollution of water bodies and frequent 

detection of cyanotoxins in surface water have increased concern over the health risks 

posed by cyanobacteria. As a result, in response to a detection of cyanotoxins in drinking 

water supplies, regulatory agencies worldwide are developing drinking water standards to 

protect public health.  

 

 

 

Fig. 6.4. Structure of anatoxin-a (van Apeldoorn et al., 2007). 

 

The first guideline for cyanotoxins in drinking water were introduced in 1998 by 

the World Health Organization (WHO). At that time, the only sufficient information 

available was for MC-LR only. Consequently, the WHO considered that the MC-LR had 

no observable adverse effect at levels of 40 μg/kg/d after 13 weeks oral exposure in mice 

(Fawell et al., 1999) and derived a guideline of 1 μg/L as a maximum acceptable 

concentration value for MC-LR in drinking water (WHO, 1998). Most of the drinking 

water guidelines have adopted the WHO provisional guidelines directly for drinking waters 

of 1.0 μg/L MC-LR (WHO, 1998). Some countries have adopted the same animal studies 

as the WHO and have modified it based upon their local requirements. For example, 
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Canada and Australia have maximum acceptable concentration value of 1.5 and 1.3 μg/L 

respectively for MC-LR in the drinking water. 

No federal drinking water regulations for cyanobacteria or their toxins in drinking 

water or recreational waters exist at this time in the U.S., however, the United States 

Environmental Protection Agency (U.S. EPA) issued non-enforceable Health Advisories 

Levels (HALs) for public drinking water supplies for the cyanobacterial toxins MCs and 

CYN (Table 6.3).  

 

 

 

Table 6.3. Specific drinking water advisory thresholds for microcystin and other 

cyanotoxins. 

State/Agency Threshold 

Microcystin-LR 

(μg/l) 

Threshold 

Anatoxin-a 

(μg/l) 

Threshold 

Cylindrospermopsin 

 

(μg/l) 

Threshold 

Saxitoxins 

(μg/l) 

U.S. EPA  

Children < 6 years old 

0.3 None 0.7 None 

U.S. EPA  

All other age groups 

1.6 None 3.0 None 

Ohio 1 20 1 0.2 

Oregon 1 3 1 3 

Minnesota 0.04a None None None 

Quebec 1.5 3.7 None None 

Health Canada 1.5 None None None 

Health Australia 1.3 None None None 

World Health  

Organization (WHO) 

1 None None None 

a To protect short-term exposure for bottle-fed infants. 

 

 

 

There are currently three states (Ohio, Oregon and Minnesota) that have established 

cyanotoxin monitoring guidelines and cyanotoxin threshold levels for Public Water 

Systems (PWSs). In 2015, the U.S. EPA established health advisories for MCs and CYN 

of 0.3 and 0.7 μg/L limits for children less than six years (as measured by ELISA) (EPA, 
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2015). Utilities are responsible for following those guidelines/thresholds and for 

undertaking any follow-up action required by their state. 

 

6.5    Analysis of Cyanotoxins 

Blooms of cyanobacteria are of increasing concern in the surface water sources in 

the USA, as well as other parts of the world. So, the monitoring of drinking water safety is 

a global demand and there is clear research needed to prove an effective and efficient 

method for the detection of cyanotoxins, especially MCs, because most of the worldwide 

incidents are associated with MCs’ frequent occurrence. MCs and other cyanotoxins can 

be analyzed by multiple methods, either qualitatively or qualitatively. At the same time, 

samples often need specific preparation before an analysis based on the method employed 

and the kind of results expected.  

After field sampling, samples should be stored at 4°C and analyzed as soon as 

possible in order to prevent any alterations with toxin distribution 

(intracellular/extracellular). In most cases, the cyanobacterial toxins naturally remain in the 

cytoplasm (intracellular toxins) and when the cell dies or the cell membrane ruptures, the 

toxins are released into the water (extracellular toxins). When detection of extracellular 

toxins is required, direct filtration of samples is needed. For separate detection of 

intracellular toxins, an additional step of inducing the lysis of cyanobacteria retained on 

the filter needed. Moreover, for the simultaneous detection of both extracellular and 

intracellular toxins, cell lysis is required before filtration. Freezing-thawing cyanobacteria 

or adding methanol in the sample (or onto the filter) are methods which directly damage 

cell membranes and release intracellular toxins (Harada et al., 1999). 
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Cyanotoxins can be detected and quantified through a biological approach such as 

in vivo assays, immunological assays, and biochemical assays or a physico-chemical 

approach which often relies on two steps, the separation of compounds presents in the 

sample by chromatography followed by their quantification with specific detectors.  

Immunological assays – Cyanotoxins can be detected through the recognition and 

binding to specific antibodies. For example, various Enzyme-linked immunosorbent assay 

(ELISA) kits are commercially available for the detection of MCs in water (Carmichael 

and An, 1999; Lindner et al., 2004; Rapala et al., 2002). ELISA is a technique that involves 

antibodies and enzymes for the detection of MCs in a sample. Most commonly used 

techniques are based on two principles: 1) direct competitive ELISA and 2) indirect 

competitive ELISA.  

Direct competitive ELISA is based on the principle that MC in the sample compete 

with MC-peroxidase for the limited number of binding sites of anti-MCs antibody attached 

to the microtiter plate. Adding chromogenic substrate to this enzyme changes its color upon 

reaction. The strength of the color development is inversely proportional to the 

concentration of MCs.  

In an indirect competitive ELISA, MCs present in a sample and a monoclonal 

antibody against MC compete for the binding sites on a MC-Bovine Serum Albumin (BSA) 

coated plate. A secondary antibody conjugate (HRP conjugated goat anti-mouse IgG) is 

added and produces color with the addition of substrate. The color reaction is stopped after 

a specified time and the color is evaluated using an ELISA reader. The results by 

immunoassays are compared to a standard curve with known concentrations. MC-LR is 
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used as a calibrating agent and the concentration of MCs can be reported as MCs-LR 

equivalents (Abraxis, 2009).  

Biochemical assays – MCs and nodularins can be detected using a protein 

phosphatase inhibition assay known as PPIA because these toxins are protein phosphatase 

inhibitors (Almeida et al., 2006; Heresztyn and Nicholson, 2001; Rapala et al., 2002). This 

method is based on using a protein phosphatase 2A (PP2A) enzyme and a substrate (p-

nitrophenyl phosphate) in a colorimetric phosphatase inhibition assay. Sample is incubated 

with PP2A enzymes. MCs and nodularins present in the sample binds to the PP2A 

enzymes. Dephosphorylation of substrate by PP2A enzymes to p-nitrophenol at high pH 

produces a yellow color which is measured with spectrophotometer. The strength of 

absorbance at 405 nm wavelength is inversely proportional to the concentration of MCs 

and nodularins present in the sample (Carmichael and An, 1999; MacKintosh et al., 1990). 

Results are often expressed as equivalent MC-LR/L due to PPIA being unable to 

distinguish co-occurring variants of MCs and MCs from nodularins (Merel et al., 2013). 

Chromatographic separation followed by quantification with specific detectors –  

 Chromatographic methods are commonly employed as separation techniques for 

cyanotoxins since they allow for the discrimination of several co-occurring toxins within a 

single analysis. Liquid chromatography (LC) usually with a reversed phase C18 or a HILIC 

(Hydrophilic Interaction Liquid Chromatography) column and methanol/water or 

water/acetonitrile as a mobile phase. LC is the most common separation method for the 

quantification of cyanotoxins since it is adaptable rapidly to a wide range of detectors 

including Ultraviolet (UV) absorbance or mass spectrometry (MS) (Merel, et al. 2013).  
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Cyanotoxins are mostly detected by LC-MS or LC-MS/MS, allowing for a 

simultaneous detection of a larger amount of toxins with a simpler sample preparation 

procedure (Kaushik and Balasubramanian, 2012). LC-MS/MS is one of the U.S.EPA 

approved methods for the quantitative analysis of MCs. EPA Methods 544 and 545, 6 MC 

variants (MC-LR, -RR, -YR, -LA, -LY and –LF), CYN and anatoxin-a, are determined 

quantitatively by multi-point calibration. This method enables simultaneous separation, 

identification, and quantification of 6 MC variants, anatoxin-a and CYN in a mixture (Li 

et al., 2006; Merel et al., 2009). LC-MS/MS cannot measure all 100 MC variants that might 

be present in the water primarily due to a lack of availability of standards (Cheng et al, 

2001).  

Each method has its advantages and disadvantages, and the selection of the method 

depends on the purpose of the testing. For example, techniques such as ELISA and PPIA 

are typically easy to learn and use and relatively cost effective when used as a screening 

tool or for toxicity assessment when appropriate. However, cross-reactivity can lead to a 

lack of specificity for the target analyte(s), and accurate data interpretation can be 

problematic. PPIA measures the bioactivity or toxicity of MCs but not the structural 

component such as ELISA does. All toxic variants of MCs are detectable by PPIA. PPIA 

is not specific to MCs, and other non-MCs protein phosphatase inhibitors are detectable as 

well (Metcalf et al., 2001). Moreover, ELISA measures total MCs and often produces 

higher positive results than LC-MS/MS. In the chromatographic techniques, individual 

MCs can be separated and quantitated based on their retention time and response versus 

standards. However, the cost is greater per sample in comparison to bioassays and 

standards for relative few variants are available (Bruno et al., 2006; Fischer et al., 2000; Li 
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et al., 2006). Researchers are utilizing multi-toxin LC-MS/MS methods more frequently 

because of their ability to distinguish a larger variety of individual toxins more readily and 

to avoid the derivatization that would be required for any GC-based technique (Li et al., 

2006). 

 

6.6    Comparison of ELISA and LC-MS/MS Analysis Results 

 

In view of the global demand for the monitoring of drinking water safety, there is 

a need for research to prove an effective and efficient method for the detection of 

cyanotoxins, especially MCs due to the frequent occurrence of MCs in drinking water 

sources. ELISA and LC-MS/MS are the only methods which are approved for the detection 

of MCs in drinking water samples by U.S.EPA. The literature, which is summarized in 

Table 6.4, has shown two dominant groups; first group in which ELISA overestimates MCs 

and second group where ELISA detects accurately.  

The reason for overestimates could be the presence of more MCs variants which 

LC-MS/MS method cannot detect due to limited standards. The literature that detects MCs 

accurately could represent a study sample that contains mainly those MC variants which 

are detectable by LC-MS/MS. Thus, a literature review leads to a clear conclusion that 

sensitivity of ELISA is equal to or greater than LC-MS/MS for the detection of total MC 

concentration. 

 

6.7    Managing Harmful Cyanobacteria Blooms 

Cyanobacteria blooms can develop quickly, over a period of just days. 

Consequently, the management of HAB in drinking water supplies is a complex task and 
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can be considered in three steps which includes the prevention of bloom occurrence, bloom 

monitoring, and drinking water treatment.  

Decreasing the inputs of nutrients (i.e. C, N and P) in surface water is one of the 

long-term strategies to prevent the occurrence of HAB across the world. A watershed 

protection program can help reduce the nutrient load on the watershed area.  

 

 

 

Table 6.4. Literature review summary in terms of comparing ELISA and LC-MS/MS 

methods results for analyzing microcystins. 

Estimation of 

microcystins by ELISA 

versus LC-MS/MS 

 

Author (year) 

Overestimates 

5 references 

Rivasseau et al. (1999); Tsutsumi et al. (2000); Conti et al. 

(2005); Mountfort et al. (2005); Tillmans et al. (2007) 

Detects accurately 

6 references 

Lawrence and James (2001); Mountfort et al. (2005); 

Hawkins et al. (2005); Mathys and Surholt (2004); Rapala et al. 

(2002); McDermott et al. (1995) 

Underestimate 

1 reference 

Bruno et al. (2006) 
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Predicting cyanobacteria blooms before they occur can be challenging, or in some 

cases, not possible. Well-designed monitoring of raw water with special consideration to 

distribution of cyanobacteria in the study reservoir and water columns can provide effective 

early warning that cyanobacteria blooms are occurring (Merel et al., 2013). Identifying 

which cyanobacteria and cyanotoxins are present helps utilities know they are using the 

appropriate treatment processes. Some treatment options are effective for some 

cyanotoxins, but not for others. The treatment system operators must act to remove or 

inactivate intracellular cyanotoxins in appropriate ways. Applying the wrong treatment 

process at a specific stage in treatment could damage cells and result in the release rather 

than removal of cyanotoxins (Lopez et al., 2008). The efficiency of various water treatment 

processes for the removal of cyanobacterial cells (intracellular toxins) and cyanotoxins 

(extracellular toxins) is discussed in the following sections. 

 

6.8    Pre-treatment 

Coarse filtration and pre-oxidation steps are often referred to as pre-treatments. 

Coarse filtration at the intake is often used to remove macro-contaminants (i.e. leaves, 

plastic bottles…) that might damage treatment facilities and disturb treatment processes. 

However, coarse filtration cannot appreciably affect microcontaminants such as 

cyanobacteria and cyanotoxins. Pre-treatment oxidation, such as chlorine, permanganate 

and ozone at the intake, are not recommended because oxidant addition when 

cyanobacterial cells are present can cause cells to lyse or become leaky, thereby releasing 

additional cyanotoxins (Westrick et al., 2010). 
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In recent decades, the practice of optional pre-oxidation became less prevalent due 

to the production of harmful disinfection by product concerns associated with many of 

these chemicals. Pre-oxidation should also be avoided when a bloom occurs in drinking 

water resources, and it is recommended that pre-oxidation processes be delayed until most 

of the intact cyanobacteria cells are removed via conventional treatment or an advanced 

filtration process to avoid cell lysis and the release of their intracellular toxins (Merel et 

al., 2013). 

 

6.9    Coagulation/Flocculation/Sedimentation 

Conventional water treatments (e.g., coagulation, flocculation and sedimentation) 

are aimed at removing colloidal material from raw water, and cyanobacteria have negative 

surface charges and thus can be considered as colloids for the purposes of coagulation, 

flocculation, and sedimentation (Merel, et al., 2013). Numerous studies have been reported 

that an almost complete removal of cyanobacterial cells (intracellular cyanotoxins) is 

achievable (Lawton and Robertson, 1999; Himberg et al., 1989; Drikas, et al., 2001; 

Rositano and Nicholson, 1994). However, certain species of cyanobacteria containing gas 

vacuoles may disturb sedimentation by preventing flocs to settle (Pieterse and Cloot, 1997). 

As a result, some studies show that dissolved air flotation may efficiently remove 

cyanobacteria rather than sedimentation (Teixeira and Rosa, 2006; Teixeira et al., 2010).  

The key to success of conventional treatment is the elimination of cyanobacteria 

without damage to cell membrane or toxin release can occur. So, any processes that are the 

source of potential cell damage during conventional drinking water treatment should be 

avoided or minimized to promote intact cell removal including the use of oxidants prior to 
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filtration and rapid mixing. Studies shows that accumulating sludge for long periods of 

time result in 90% of the cyanobacteria releasing their toxins into the treated water within 

24 hours (Drikas et al., 2001; Merel, et al., 2013). 

Contrarily, these common drinking water treatments are not effective in removing 

any extracellular cyanotoxins since they are designed to remove particles. This theory was 

confirmed by studies showing no difference in the concentration of extracellular 

cyanotoxins after treatment by using coagulation, flocculation, and sedimentation or 

dissolved air flotation (Merel, et al., 2013). 

 

6.10    Filtration 

Studies shows that slow sand filtration are more effective in removing algal cells 

(remove 99% of the cells) than direct rapid sand filtration. Further, because of slow sand 

filtration lower loading rate, a biofilm on the top of the filter develops resulting in 

biodegradation of cyanotoxins on or inside the filter bed. However, clogging of the filter 

and toxin release from the lysed cyanobacterial cells into filter beds are significant 

problems (Hrudey, et al. 1999; Merel, et al., 2013).  

The pressure-driven membrane filtration which is most commonly used in drinking 

water treatment is a physical separation process and covers various processes characterized 

by the pore size of the associated membrane including microfiltration (MF), ultrafiltration 

(UF), nanofiltration (NF), and reverse osmosis (RO). 

Low-pressure membranes such as MF and UF are alternative methods of 

conventional filtration. MF and UF membranes are primarily used for the removal of 

turbidity, pathogens, and particles from fresh waters. Cyanobacteria, including single cells, 
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filaments and colonies are generally expected to be 1 μm in size or larger. Thus, MF and 

UF membranes with pore sizes smaller than 1 μm have been found to be highly effective 

at removing intact cyanobacteria cells as well as intracellular and particulate toxins with 

up to 98 percent cell removals achieved (Chow, et al., 1997; Newcombe, et al., 2010). 

Although concentration of cells at the membrane surface may result in clogging and cell 

lysis and toxin release which are primary concerns. Therefore, frequent backwashing is 

recommended to reduce the risk of intracellular toxins being release into the water. 

High-pressure membranes such NF and RO are used to remove aqueous salts and 

metal ions, synthetic organic contaminants (e.g., pesticides), and disinfection by-product 

precursors. Theoretically, cyanobacteria should be efficiently removed by NF and RO due 

to lower pore size compared to MF and UF, but cells are not supposed to reach these 

processes. In fact, cyanobacteria are eliminated by previous treatments in order to avoid 

immediate clogging of these membranes and only extracellular toxins would be expected 

to challenge these membranes. However, existing evidence shows that both NF and RO 

are effective in the removal of extracellular toxins and more than 95% removal could be 

observed for MC-LR, CYN, nodularins and anatoxin-a (Teixeira and Rosa, 2006; Dixon et 

al., 2011; Vuori et al., 1997). Although NF and RO seem to be a promising option to 

remove both cyanobacteria and cyanotoxins during drinking water treatment, they are 

complex as well as expensive methods, so they are unaffordable methods for drinking 

water treatments. 

 

6.11    Activated Carbon Adsorption 
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Activated carbon is carbon produced from carbonaceous source materials such as 

wood, coal, peat, and coconut shell. Activated carbon has a large surface area due to its 

high porosity and, typically ranges from 600 to 1200 m2/g, which enables activated carbon 

to have the strongest physical adsorption forces. Activated carbon consists of pores of 

varying sizes, which are classified according to their diameter including micropores (< 2 

nm), mesopores (2-50 nm), and macropores (> 50 nm). In drinking water treatment, 

activated carbon is employed in two forms of powdered (PAC) or granulated (GAC) to 

absorb contaminants from water. While activated carbon does not have any impact on 

cyanobacteria and intracellular toxins, it can be an effective means to remove extracellular 

cyanotoxins in both form of PAC and GAC.  

Pore size distribution was the most important physical property of activated carbon 

when considering adsorption performance (Huang et al., 2007; Newcombe and Nicholson, 

2004). Studies suggests that activated carbons with high mesopore capacity can be used for 

the treatment of MCs since molecular size of MCs is around 2 nm, it is too large to enter 

micropores and can easily adsorb in mesopores (Donati et al., 1994). In addition, of various 

activated carbon types, wood-based carbons have been demonstrated to be the most 

effective in removing MCs due to a higher fraction of mesopores. Although, activated 

carbon removal efficiency has been reported to vary between MC variants (MC-LA > MC-

LR > MC-YR > MC-RR), fortunately, the most toxic variant, MC-LR, is one of the most 

readily adsorbed (Newcombe, et al., 2010). Since saxitoxins and anatoxin-a are smaller 

than MCs, activated carbons with a large fraction of micropores was shown that has the 

greatest saxitoxins and anatoxin-a adsorptive capacity (Newcombe and Nicholson, 2004; 

Ho et al., 2011). 
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There is strong evidence indicates that water quality parameters especially the 

concentration and makeup of the natural organic matter (NOM) have a strong influence on 

the removal of cyanotoxins by activated carbon, and can drop efficiency rates from 90% to 

49−63%, since NOM will always be present in higher concentration than the cyanotoxins 

and can compete with cyanotoxins and limit their adsorption (Donati et al., 1994; Huang 

et al., 2007). Even though activated carbon absorption can effectively remove cyanotoxins, 

high dose of activated carbon (20 mg/L and higher), extended contact times and increased 

regeneration frequencies of filters are required to meet the WHO guidelines (Cook and 

Newcombe, 2003).  

 

6.12    Oxidation and Disinfection 

Chemical inactivation including Ultraviolet (UV), disinfectants and oxidants (e.g. 

ozone, chlorine, monochloramine, chlorine dioxide and permanganate) can be used to 

control cyanotoxins. However, their effectiveness is highly dependent on the oxidant dose, 

contact time, cyanotoxin combination and the organic content of the water. Moreover, it is 

important to be noted that chemical treatment when cyanobacterial cells are present can 

cause damage to the cyanobacterial cells and result in an additional release of the toxin. 

Consequently, pretreatment oxidation should be avoided as much as possible. The 

effectiveness of oxidants to reduce extracellular cyanotoxin concentrations at the drinking 

water treatment plant are highly variable, as summarized in Table 6.5.  
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6.13    The Hazen-Adams CyanoTOX Model  

A spreadsheet tool entitled the Hazen-Adams Cyanotoxin Tool for OXidation 

kinetics (CyanoTOX) Model estimates the oxidation of extracellular 6 MCs (MC-LR, -RR, 

-YR, -LA, -LY and –LF), anatoxin-a and CYN as specific compounds that are measured 

as individual variants using LC-MS/MS methods and does not address issues related to 

intracellular toxins. The model is valid in its current form from 10 °C to 30 °C and pH 6 to 

9 since for many oxidant/cyanotoxin combinations, pH played a significant role in the 

value of k” and includes oxidation kinetics for chlorine, ozone, chlorine dioxide, 

monochloramine, and PM (as either sodium or potassium salt).  

CyanoTOX was designed as an assessment tool that provides water utilities with a 

means to evaluate how changes in their existing oxidative treatment (e.g., pH, oxidant dose, 

contact time) will influence the degradation of specific cyanotoxins or groups of 

cyanotoxins. The kinetics and underlying equations and rate constants are based upon the 

best available peer-reviewed literatures and accepted kinetic modeling principles. The 

kinetic models used in CyanoTOX are second-order kinetics and based on plug flow 

contact with baffle factors used to account for non-ideal flow within a water treatment 

plant. 

 

 

6.14    Problem Statement 

The presence of cyanobacteria in surface water is of increasing concern in the 

United States as well as other parts of the world (Chorus and Bartman, 1999). Climate 

change and high nutrient loading cause blooms of cyanobacteria to have occurred more 
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frequently worldwide and cyanotoxins are known to be one of the major health concerns 

in drinking water (Carmichael, 1992; Codd et al., 2005; Dietrich and Hoeger, 2005). New 

U.S. EPA and other health advisories emphasize the use of ELISA as the primary analytical 

tool for measuring cyanotoxins including MCs and CYN. Both cyanotoxins have variants 

that are likely reactive with their respective ELISA test kits including approximately 100 

variants for MC.  

The sensitivity of the ELISA test kit is known to vary for different variants by 

known and unknown amounts, depending on the variants. Moreover, a separate issue is 

that the rates of reaction of chemicals with oxidants such as FC and PM can be strongly 

affected by relatively minor structural changes within a chemical. The different amino acid 

groups are responsible for differences in the chemical structural between the MC variants, 

impacting the effectiveness of various treatment processes used for their removal 

(Newcombe, et al. 2010). Thus, one mix of variants of MC, for example, may have a very 

different rate of removal than a different mix of variants, though each mix may initially 

indicate the same ELISA concentration. 

 It is unknown how the apparent rate of removal for an ELISA reading will compare 

with individual MC variants such as MC-LR or –RR, for example. Depending on the 

mixture of MCs present, the removal of an ELISA reading could be an order of magnitude 

faster or slower than that of an individual MC variant (e.g., MC-LR). It is vital for drinking 

water utilities to be able to assess and predict the removal of MCs and CYN (as well as 

other cyanotoxins) for development of HAB response procedures, for reacting during HAB 

events, and for treatment plant design (e.g., dosing capability).  
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The removal of cyanotoxin species that included in CyanoTOX would be based on 

LC-MS/MS readings for individual species. Utilities, however, will usually be using 

ELISA to monitor concentration of cyanotoxins within their plants. As the removal 

predicted and achieved within a full scale plant for MC-LR, for example, may be accurately 

predicted by CyanoTOX Ver. 1.0, the MC ELISA reading may decrease much more slowly 

(or possibly more quickly) than the concentrations of the known species measured by 

LC/MS/MS and predicted by CyanoTOX. If the average rate of removal of a mixture of 

MCs is slower than for MC-LR, the final concentration for a given oxidant exposure will 

be greater, or the required exposure for a required removal will be less than predicted based 

on known chemical kinetics. Therefore, it will be more problematic for a water utility 

attempting to meet a health advisory target. There is, therefore, a critical need to provide 

guidance to utilities (and regulators) regarding oxidation kinetics for cyanotoxins based on 

ELISA readings.  

 

6.15    Purpose and Objective of Section 2 

The purpose of this study is to assess quantitatively the difference in apparent 

oxidative removal rates for MCs and CYN based on group measurements by ELISA versus 

measurement via LC-MS/MS (that is, for a single species such as MC-LR). The work 

focused on FC, PM, and ozone as the three most important oxidants used to control 

cyanotoxins. The results of this study were used to establish statistical estimates of 

confidence intervals for removal of MCs and CYN via oxidation that represent expected 

removals of an ELISA-based concentration with natural waters. The specific objectives of 

this work are: 
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1. Conduct kinetic experiments with FC, PM, and ozone on MC mixtures including: 

• Laboratory waters spiked with known variants and measured using both ELISA 

and LC-MS/MS 

• Natural water selected as containing widely varying water quality and mixtures 

of variants within 9 HABs 

2. Conduct similar but more limited kinetic experiments with FC, PM, and ozone on   

CYN containing waters including: 

• Laboratory waters spiked with CYN using both ELISA and LC-MS/MS 

• Natural water selected as containing widely varying water quality within  HABs 
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CHAPTER 7 

 
DIFFERENCES IN APPARENT OXIDATION KINETICS FOR MICROCYSTINS 

ANALYZED BY ON ELISA VERSUS LC/MS/MS ANALYTICAL METHODS 

 

 

 

7.1    Introduction 

Cyanobacteria blooms that produce cyanotoxins are commonly called harmful algal 

blooms (HABs). Cyanotoxins comprise of diverse group of chemical compounds that differ 

in molecular structure and toxicological properties (Frank, 2002; Chorus and Bartman, 

1999). The major cyanotoxins include microcystins (MC), cylindrospermopsin (CYN), and 

saxitoxins. With over 100 variants reported, MCs are the most commonly found 

cyanobacterial toxins in drinking and surface water (Codd et al., 2005; Dietrich and 

Hoeger, 2005; Song et al., 2005; Tsuji et al., 1995). Among the numerous MC variants, 

many of the worldwide incidents are associated with MC-LR’s frequent occurrence 

(Antoniou Maria et al., 2005; Carmichael, 1992).  

The guideline concentration for MC-LR in drinking water was introduced in 1998 

by the World Health Organization (WHO) for drinking water at 1.0 μg/L MC-LR. While 

no enforceable federal drinking water regulations exist for cyanobacteria or their toxins in 

drinking water or recreational waters at this time in the U.S., health advisories for MCs and 

CYN were promulgated in 2015 by the US Environmental Protection Agency (USEPA) of 

0.3 µg/L and 0.7 µg/L for MCs and CYN for young children, respectively (USEPA, 2015). 

MCs consist of over 100 variants with the ADDA moiety (3-amino-9-methoxy-2, 

6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid) responsible for MCs’ hepatotoxicity 
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resources (Carmichael, 1992; Codd et al., 2005; Dietrich and Hoeger, 2005). These variants 

are important as different variants may dominate in any given natural water (Graham et al., 

2010). Each of these variants may exert different (and currently unknown) levels of 

toxicity, and have varying properties (including rates of oxidation by common drinking 

water oxidants). Relatively few of the variants have been studied with respect to sampling, 

analysis, fate, treatment, and toxicity. Nonetheless, it is clear that depending on the mix of 

variants present, the mixture would be expected to have vastly different properties related 

to analysis, control, and health impacts. 

The kinetics of oxidation of MC-LR (and a few other variants) by free chlorine 

(FC), ozone, and permanganate (PM) are well understood. There are pH effects due to 

speciation in some cases. This kinetics, furthermore, are modeled in the Hazen-Adams 

CyanoTOX computational tool, freely downloadable from the American Water Works 

Association (AWWA) website. The kinetics and underlying equations and rate constants 

are based upon the best available peer-reviewed literatures and accepted kinetic modeling 

principles. The kinetic models used in CyanoTOX are second-order kinetics and based on 

plug flow contact with baffle factors used to account for non-ideal flow within a water 

treatment plant. With a known chemical exposure (concentration • time, or “CT”), the 

removal of six MC variants (including MC-LR) can either be predicted as a mixture or as 

individual variants. Parameters used in the calculations include cyanotoxin type (MC 

variant, CYN, or anatoxin a), oxidant (FC, ozone, PM, monochloramine, chlorine dioxide), 

temperature (from 10°C to 30°C), and pH (from pH 6 to 10). Removals are calculated based 

on known CT or a CT values, estimated by the program based on oxidant dose, oxidant 

demand, and contact time.  
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While it is known that some MC variants have faster rates of oxidation by chlorine 

than MC-LR (e.g., MC-RR and MC-LY) and some have slower rates of oxidation (e.g., 

MC-LA and MC-LF), the oxidation rates of MC variants other than MC-LR are largely 

unknown for common oxidants. It is the fundamental hypothesis of this project that 

mixtures of MCs will typically have an apparent slower rate oxidation when analyzed by 

enzyme linked immunoassay (ELISA) versus when analyzed by LC-MS/MS methods. The 

basis of this hypothesis is twofold. First, the ADDA-ELISA method is sensitive to all MCs 

still containing the ADDA moiety. Thus, while an individual or mix of MCs as analyzed 

by LC-MS/MS (typically six variants with EPA Method 544) will have a specific rate of 

removal with an oxidant, ELISA should also include oxidation byproducts that are formed 

during oxidation (albeit potentially at different sensitivities). The concentration of the pool 

of “total” MCs including the parent and known and unknown ADDA-containing 

byproducts, could retain much of or even the full molar concentration of the parent during 

oxidation even with the parent oxidized to below the method detection limit (MDL). This 

pool of MCs, as measured by ELISA, would then be hypothesized to degrade more slowly 

than a parent compound or compounds alone. 

Secondly, a mixture of MCs may contain variants with slower, similar, or faster 

overall rates of oxidation than MC-LR itself (commonly the calibration standard for 

ELISA) (Figure 7.1). For example, a MC mixture from a given HAB may have most 

variants with a similar second-order rate constant as MC-LR. In this case, all the MC 

variants should be removed at similar rates, and ELISA should theoretically track the 

concentration decreased accurately based on known MC-LR kinetics. This scenario is 

consistent with the rationale for the overall hypothesis, as discussed in the previous 
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paragraph. On the other hand, a different mixture of MC variants could have a faster 

average rate of oxidation than MC-LR due to variants with faster second-order rate 

constants with the oxidant. In this case, removals based on ELISA could be predicated 

faster than by MC-LR kinetics, while still offsetting to some degree by the formation of 

ADDA-containing byproducts. This scenario could lead to less oxidant exposure required 

to achieve the target concentration (e.g., the health advisory of 0.3 µg/L). However, if the 

average rate of removal of a mixture of MCs is slower than for MC-LR, the overall rate of 

decrease for an ELISA reading would likely be lower than for the MC-LR. This would in 

turn lead to the final concentration for a given oxidant exposure to be greater, or the 

required exposure for a required removal to be greater, than predicted based on known 

chemical kinetics. This scenario is most problematic for a water utility attempting to meet 

a health advisory target. 

 

 

Fig. 7.1. Representation of various mixes of hypothetical MC variants that have second 

order rate constants faster (red), similar (green) or slower (blue) rates than 

MC-LR. 
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The purpose of this study was to assess the difference in apparent removal rates for 

MCs from natural HABs based on an ELISA analysis versus based on an LC-MS/MS 

analyses. The ELISA analysis measures the mixture of ADDA-containing MCs (with 

varied cross reactivity), while the LC/MS/MS method nominally measures only six MC 

variants, albeit with high accuracy. The goal of the work was to establish estimates of 

confidence intervals around MC-LR removal that represent expected removals based on 

ELISA derived concentration measurements in natural waters. 

 

7.2    Material and Methods 

 
7.2.1    Materials 

Milli-Q (MQ) was prepared using a Millipore Elix Reverse Osmosis and Millipore 

A10 system (Millipore, Bedford, MA). The six MCs standard were purchased from ENZO 

Life Science (MC-YR, -LF, -LY) (Farmingdale, NY USA) or Cayman Chemical (MC-LR-

RR, -LA) (Ann Arbor, MI USA) as powders. Stock solutions were prepared with methanol. 

Working solutions were further diluted to concentrations in the range 1 to 100 µg/L for use 

immediately prior to using ultrapure MQ water. 

FC stock solutions were prepared at 25 mg/L as Cl2 and verified using the Hach 

DPD Method 8167. PM stock solutions were prepared at 50 mg/L as MnO4 and verified 

using the Hach AccuVac DPD method 8021.   

Ozone stock solutions were prepared by passing ozone through a glass diffuser 

immersed in a magnetically stirred flask containing MQ water. Ozone was generated from 

pure oxygen using an ozone generator. After allowing the stock solution to come to an 

equilibrium, the ozone concentration in the stock solution was determined 
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spectrophotometrically at 254 nm using a Shimadzu spectrophotometer (Model UV-1700) 

and an extinction coefficient for ozone of 3000 L•mol-1•s-1 (Meunier et al., 2006). 

 

7.2.2    Water Sample Characterization 

Raw water samples were stored at 5(±1)°C in a refrigerator until use, normally with 

five days of receipt. The total organic carbon of the raw water samples was determined 

using a Teledyne Tekmar Apollo 9000 TOC combustion analyzer (Mason, OH) by 

Standard Method 5310. During oxidation experiments, the temperature and pH of samples 

were determined using a Fisher Scientific Accument Excel XL 20 pH meter with 

temperature probe. Water samples were filtered prior to use through a Whatman glass 

microfiber GFF filters (pore size 0.7-µm, 25 mm diameter), in polypropylene housing. 

 

7.2.3    LC-MS/MS Method  

Six MC variants were measured in this study using LC/MS/MS. Briefly, an Agilent 

Infinity 1290 LC interfaced was used with an Agilent 6490 triple quadrupole MS/MS 

system, with a JetStream Electrospray ion source. A 10-μL injection was used with a 

Thermo Scientific Synchronis C8, 2.1 mm ID, 100 mm length, 1.7 um particle size column 

at a flow rate of 0.4 mL/min. The mobile phases were 20% mM ammonium formate and 

100% acetonitrile. For the LC/MS/MS analysis, 1 mL of sample was placed into ASM 

amber vials with Teflon lined caps, and stored at 5(±1)°C until analysis (normally within 

48 hours). LC-MS/MS analysis for six MCs used (modified) EPA Method 544. Mass 

spectrophotometric parameters are presented in Table 7.1. 
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Table 7.1. LC-MS/MS parameters used in analysis of MC variants. 

Variant 
Precursor 

Ion 

Product 

Ion 

CE  

(V) 

Cell Acc 

(V) 

Ret time 

(min) 
Polarity 

MC-LA 910.5 134.9 68 4 8.07 Positive 

MC-LF 987.0 134.9 60 4 9.50 Positive 

MC-LR 995.5 134.9 68 4 7.28 Positive 

MC-LY 1002.5 134.9 76 4 8.47 Positive 

MC-RR 519.9 134.9 52 4 7.16 Positive 

MC-YR 523.3 134.9 40 4 7.23 Positive 

 

 

Analytes were separated and identified by comparing the acquired mass spectra and 

retention times to reference spectra and retention times for calibration standards acquired 

under identical LC/MS/MS conditions. The concentration of each analyte was determined 

by external standard calibration. The concentration range was up to 12 µg/L for each 

variant. The method detection limits (MDL) for MC-LR, -RR, -LA, -YR, -LY, -LF were 

0.02, 0.06, 0.01, 0.03, 0.01 and 0.08 µg/L, respectively, based on ten replicate injections 

near the MDL (e.g., 0.10 µg/L). 

Continuous calibration verification (CCV), laboratory reagent blank (LRB), and 

quality control standard (QCS) samples were used at the beginning of each analysis batch, 

after every ten field samples. They were also used at the end of the analysis batch. The 

precision of the method was evaluated by determining the relative standard deviation 

(RSD) of replicate samples. 

 

7.2.4    ELISA Method 

An ELISA analysis was conducted using the automated Abraxis Cyanotoxin 

Automated Assay System (CAAS). The CAAS system was fully automated and used 96-
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well microtiter plates for conducting the MC and CYN analyses (Abraxis, 2016). The MC 

method used was based on indirect competitive ELISA, specifically, Abraxis’ MCs-ADDA 

ELISA kit (Product number 520011OH). 

In an indirect competitive ELISA, MCs present in a sample and a monoclonal 

antibody against MC, compete for the binding sites on a MC-Bovine Serum Albumin 

(BSA) coated plate. A secondary antibody conjugate (HRP conjugated goat anti-mouse 

IgG) is added and produces color with the addition of substrate. The color reaction is 

stopped after a specified time and the color is evaluated using an ELISA reader. The 

strength of the color development is inversely proportional to the concentration of MCs. 

The results by immunoassays are compared to a standard curve with known concentrations. 

MC-LR is used as a calibrating agent and the amount of MCs can be reported as MC-LR 

equivalents (Abraxis, 2009). 

 

7.3    Experimental Approach 

The purpose of these experiments was to test the hypothesis that ELISA-based 

concentrations would diminish more slowly during oxidation than LC-MS/MS-based 

concentrations. Specifically, the purpose was to assess quantitatively the differences in 

oxidative removal rates for MCs for ELISA-based concentrations versus LC-MS/MS-

based concentration measurements. In this regard, it was desired to calculate the ratio of 

ELISA-based concentration measurements versus both. This would include 1) MC-LR 

alone and; 2) the sum of the six variants measured in the LC/MS/MS method described 

above. These ratios consist of k”ELISA / k”MC-LR and k”ELISA / k”ƩMC, respectively. 
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One valid kinetic approach for this work would be to determine individual second-

order rate constants for both ELISA-based concentrations and LC-MS/MS-based 

concentrations and then to develop the ratio of kinetic constants. This would require an 

accurate knowledge of the actual oxidant exposure (concentration × time, or “CT”). Due 

to the considerable complexity and associated errors in determining an accurate CT, k”ELISA 

/ k”MC-LR and k”ELISA / k”ƩMSs, ratios would also reflect the combination of these errors. A 

more accurate means to determine these ratios (and the approach used) was to eliminate 

the CT from the calculations as follows. Consider the rate equation:  

 

ln(A/A0) = -k’·T = -k”·CT                         (7.1) 

 

where T is in seconds, CT is the oxidant exposure, k’ is the pseudo-first order rate constant 

(s-1) and k” is the second-order rate constant (L·mol-1·s-1). Developing the ratio of this 

equation based on ELISA-based and LC-MS/MS-based MC-LR concentrations provides 

the following: 

 

{ln(A/A0)}ELISA / {ln(A/A0)}LC-MS/MS for MC-LR = {-k”·CT} ELISA / {-k”·CT} LC-MS/MS 

for MC-LR = k”ELISA / k”LC-MS/MS for MC-LR                           (7.2)  

 

By corollary, developing the ratio-based ELISA-based and LC-MS/MS-based sum of six 

MC variants concentration provides: 
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 {ln(A/A0)}ELISA / {ln(A/A0)}LC-MS/MS for ƩMC = k”ELISA / k” LC-MS/MS for ƩMC   (7.3) 

 

For a C/C0 value to be included the statistical analysis of results, the criteria that need to 

be met include: 1) both the ELISA and LC-MS/MS concentration needed to be within the 

range of the method and above the method detection limit; 2) the C/C0 need to be between 

0.2 to 0.9 (that is between 10 and 80% removal). 

In Phase 1 of this work, the oxidation of nine natural waters from reservoirs in 

different states undergoing HAB events were studied with respect to the removal of 

oxidative MCs. These waters from various sources were anticipated to contain varying 

mixtures of MCs, where water quality varied (natural organic matter (NOM), pH, etc.). In 

Phase 2, a bicarbonate-buffered laboratory water was spiked with either a mixture of six 

MCs, MC-LR or MC-LA and studied with respect to oxidative MC removal.  

Oxidation of naturally-occurring MC mixes - In these experiments, natural waters 

containing cyanotoxins were obtained from various water utilities in the United States. 

Water samples were shipped frozen and were immediately placed in a freezer upon delivery 

at the Utah Water Research Laboratory. Lysing of cyanobacterial cells was not a concern 

as freezer-induced lysing would simply release intracellular toxins and add to the 

extracellular pool of toxins.  

Prior to the oxidation experiments, water samples were filtered through a 0.45-µm 

glass fiber syringe filter into glass vials. Exactly 4 mL of samples were then transferred 

into 4-mL amber glass vials for oxidation. For chlorine oxidation, an appropriate quantity 

of sodium hypochlorite stock solution was spiked into these vials and immediately capped 

and mixed at time zero to initiate an experiment. Doses of chlorine spiked were nominally, 



 84 

0.06, 0.25 and 1.25 mg/L as Cl2. After ten minutes, ascorbic acid was spiked into each vial 

in slight excess to stop the reaction. Exposures (CT) were chosen to be “low” (L) or “high” 

(H) (with sometimes a “medium” (M) and/or “very high” (VH) exposure) to attempt to 

achieve removals (A/A0) in the range of 0.2 to 0.9 (that is, 10% to 80% removal). Lesser 

or greater removals would enhance analytical error and were to be avoided. 

For PM dosing, the oxidation kinetics were conducted in a similar manner using a 

50 mg/L as MnO4
- PM stock solution to achieve dosages ranging from nominally 0.025, 

0.125 and 0.625 mg/L as MnO4
-. For ozone dosing, the ozone stock solution concentration 

was determined immediately prior to dosing, and the spike volumes adjusted accordingly 

to achieve the desired ozone spike doses. The ozone spike doses were nominally 0.02, 0.1 

and 0.25 mg/L as O3. As the decay rate for ozone in these natural waters was rapid, no 

quenchant was used. A sufficient amount of time for all oxidants to be consumed was 

instead allowed. 

Samples were first analyzed by LC-MS/MS (with a nominally 0 to 12 µg/L 

dynamic range for each variant) to determine whether they were on the more limited ELISA 

dynamic range of from 0 to 5 µg/L for MCs. Samples in the 4-mL ELISA vials were then 

diluted into new ELISA vials if necessary, to attempt to achieve ELISA results that were 

within the 0 to 5 µg/L range. Samples were then split for ELISA and LC-MS/MS analysis 

by transferring 1 mL of sample from the ELISA vial into a 1.5-mL LC-MS/MS vial for 

analysis of identical samples by the two methods. In every comparison, identically diluted 

samples were analyzed by the two methods. 

After the relevant analysis, concentrations were reviewed. If the unoxidized 

(highest) sample concentration was off scale for the ELISA reading, then the entire series 
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was diluted, and all samples rerun by both ELISA and LC-MS/MS. This was done to 

eliminate the possibility of non-linear reductions in apparent concentrations by one method 

versus the other due to differing effects of dilution on interferences such as NOM within 

the samples. While theoretically, one could determine the required dilution based solely on 

the LC-MS/MS readings, several factors prevented this, including that readings for ELISA 

tend to be higher than LC-MS/MS readings in general. More variants than the six measured 

by LC-MS/MS could also be present. 

Oxidation of spiked MCs in laboratory water - In these experiments, ultrapure MQ 

water was spiked with either a mixture of six MC variants (i.e., MC-LR, -RR, -LA, -YR, -

LY, and –LF), MC-LR only, or MC-LA only. Chemical oxidation with chlorine, 

permanganate and ozone, and subsequent sample splitting and analysis by ELISA and LC-

MS/MS was conducted in an identical manner, as described for the nine natural waters 

above. 

 

7.4    Results and Discussion  

 

7.4.1    Precision of ELISA and LC-MS/MS Replicate Injections and Samples 

For MCs by ELISA, the average relative standard deviation (RSD) of duplicate 

injections of the same sample on the automated CAAS system, was 13.1% (for samples 

greater than 0.3 µg/L). For MCs by LC-MS/MS, the average RSD of duplicate injections 

of the same sample (for samples greater than 0.3 µg/L), was 8.0%, 4.7%, 4.6%, and 3.3% 

for MC-LR, -RR, -LA, and -YR, respectively (and not determined for MC-LY and –LF, 

due to very low concentrations).  
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True duplicate samples were included in the study for approximately 20% of the 

raw and oxidized MC samples. For raw MC samples, the RSD averaged 14% and 11% for 

LC-MS/MS and ELISA, respectively. For oxidized MC samples, the RSD averaged 12% 

and 18% for LC-MS/MS and ELISA respectively.  

 

 

Table 7.2. Water quality characteristics of the raw waters included in this study. 

Sample ID 

TOC 

(mg/L as C) UV254 

Total MC 

(μg/L) pH 

16913 14 0.11 1 8.4 

16915 4043 0.88(diluted 1 to 20) 280* 6.5 

16916 413 1.6 265 7.1 

16920 17 0.10 0.7 7.9 

16926 20 0.11 0.6 8.2 

16930 74 0.85 313 7.4 

16931 674 1.64 (diluted 1 to 10) 1.6 7.7 

16939 16 0.06 2 7.8 

16940 25 0.20 150 7.7 

Average 588 0.62 112.7 7.6 

Median 25 0.20 2.0 7.7 
* 16915 was about 28000 μg/L before dilution. Diluted by factor of 100 for all experiments.  

 

 

7.4.2    Natural Water Characterization 

HAB samples from nine water sources were used in this kinetic study. Many other 

water samples were received and subsequently rejected due to very low levels of MC 

concentrations. The TOC, UV254, pH, and estimated initial MC concentrations, ranged 

from 14 to 4043 mg/L as C, 0.06 to 1.64, 6.5 to 8.4, and 1 to 313 μg/l, respectively (Table 

7.2).  
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For the raw water samples, the dominant MC species as measured by LC-MS/MS 

were MC-LR, -RR, -LA and -YR in nominally 33%, 22%, 33% and 11% of the raw waters, 

respectively (Table 7.3). 

 

 

Table 7.3. Percentage of sum of the six MC variants measured by LC-MS/MS in raw 

waters. (Dominant species in bold.) 

Water 

ID  

% of ƩMCs in Raw Waters 

MC-

LR 

MC-

RR 

MC-

LA 

MC-

YR 

MC-

LY 

MC-

LF 

16913 0 0 0 100 0 0 

16915 31 62 0 7 0 0 

16916 63 37 0 0 0 0 

16920 44 54 0 0 2 0 

16926 24 12 64 0 0 0 

16930 28 27 45 0 0 0 

16931 49 0 51 0 0 0 

16939 89 11 0 0 0 0 

16940 64 36 0 0 0 0 

% Time dominant 33 22 33 11 0 0 

% Of waters 

containing  89 78 33 22 11 0 

 

 

7.4.3    Ratio of ELISA to MC-LR and ƩMC Concentrations 

The key objective of this work has been to assess the ratio of second-order rate 

constants (L/mol·s) for the removal of unoxidized and oxidized mixtures of MC variants. 

This, of course, was analyzed by ELISA and LC-MS/MS. ELISA readings were compared 

to LC/MS/MS concentrations for both MQ (laboratory) waters and natural waters. ELISA 
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readings correlated with LC-MS/MS readings (α=0.05) for both lab (MQ) and natural 

waters (Figures 7.2 and 7.3 respectively) (Appendices CY-1, CY-2, CY-3 and CY-4).  

 

 

Fig. 7.2. Concentrations from spiked lab (MQ) waters as measured in split samples by 

ELISA and sum of six MCs by LC-MS/MS for raw (unoxidized) water, and 

for free chlorine- (FC), ozone- (O3) and permanganate- (PM) oxidized 

waters. Dashed line represents perfect correlation. 

 

 

MQ laboratory water - The MQ laboratory waters were spiked with MC-LR, MC-

LA or a mix of six MCs to initial concentrations of nominally 1.5 µg/L. The samples were 

unoxidized or oxidized with FC, O3, or PM to achieve a partial removal of the MCs. The 

results have shown that for lab-spiked waters containing only MC-LR, the ELISA readings 
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for the unoxidized samples averaged 13% greater than the LC-MS/MS value (Table 7.4). 

Including oxidation samples, however, ELISA readings averaged 36% greater than the sum 

of the six MCs overall (only MC-LR in this case) and were 5% to 82% greater for the 

oxidized samples (Table 7.4).  

For lab-spiked waters containing only MC-LA, the ELISA readings for the 

unoxidized samples were 44% greater than the LC/MS/MS value (Table 7.4). Including 

oxidation samples, however, the ELISA readings averaged 35% greater than MC-LA by 

LC-MS/MS and were 22% to 48% greater for the oxidized samples (Table 7.4). 

 

 

Fig. 7.3. Concentrations from natural waters as measured in split samples by ELISA and 

sum of six MCs by LC-MS/MS for raw (unoxidized) water, and for free 

chlorine- (FC), ozone- (O3) and permanganate- (PM) oxidized waters. Dashed 

line represents perfect correlation. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

S
u

m
 o

f 
si

x
 M

C
s 

b
y
 L

C
-M

S
/M

S
 (

µ
g

/L
)

ELISA (µg/L)

Raw

FC

O3

PM

line of perfect correlation



 90 

Table 7.4. Concentration (not rate) ratio of ELISA to sum of six MC variants for natural 

and MC-spiked lab water for unoxidized and oxidized samples.  (Natural 

HAB waters exclude two waters with LC-MS/MS concentration at or below 

MDL.) 

      ELISA/ΣMC      

  Overall Raw FC O3 PM 

12 Natural HAB waters           

Count 80 20 21 20 19 

Mean (µg/L) 1.36 1.34 1.29 1.37 1.46 

Median (µg/L) 1.30 1.34 1.18 1.26 1.41 

Max (µg/L) 2.44 2.13 2.44 2.40 2.39 

Min (µg/L) 0.08 0.09 0.08 0.85 0.84 

RSD(%) 36% 42% 43% 31% 29% 

Six MC-spiked Lab Water           

Count 14 2 4 4 4 

Mean (µg/L) 1.73 1.54 1.88 1.39 2.02 

Median (µg/L) 1.61 1.54 1.88 1.41 2.02 

Max (µg/L) 2.34 1.58 2.22 1.53 2.34 

Min (µg/L) 1.24 1.50 1.53 1.24 1.71 

RSD(%) 20% 4% 18% 9% 13% 

MC-LR-spiked Lab Water           

Count 23 3 6 6 8 

Mean (µg/L) 1.36 1.13 1.05 1.82 1.32 

Median (µg/L) 1.05 1.23 0.83 1.44 1.21 

Max (µg/L) 4.61 1.53 2.01 4.61 2.51 

Min (µg/L) 0.46 0.63 0.57 0.49 0.46 

RSD(%) 72% 40% 56% 85% 61% 

MC-LA-spiked Lab Water           

Count 12 2 3 4 3 

Mean (µg/L) 1.35 1.44 1.89 1.22 1.35 

Median (µg/L) 1.42 1.44 1.90 1.28 1.43 

Max (µg/L) 1.59 1.45 1.97 1.37 1.49 

Min (µg/L) 0.96 1.42 1.80 0.96 1.14 

RSD(%) 13% 1% 5% 15% 14% 

 

 

For lab-spiked waters containing the mix of six MCs, the ELISA readings for the 

unoxidized samples were 54% greater than the LC-MS/MS value (Table 7.4). Including 
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oxidation samples, however, the ELISA readings averaged 73% greater than the sum of the 

six MCs overall and were 39% to 102% greater for the oxidized samples (Table 7.4). 

Natural waters - For the natural water samples from national HABs, samples 

analyzed were again unoxidized or oxidized with FC, O3, or PM to achieve a partial 

removal of the MCs. Including oxidation samples, the natural water sample ELISA 

readings averaged 36% greater than the sum of the six MCs and were 29% to 46% greater 

for the oxidized samples (Table 7.4). 

 

7.4.4    Ratio of ELISA to MC-LR Second Order Rate Constants  

The key goal of this work has been to statistically analyze the distribution of 

second-order rate constants determined using ELISA-based concentrations versus using 

LC-MS/MS-based concentrations. The following formula is representative of this:  

 

 k”ELISA / k” LC-MS/MS for ƩMC or k”ELISA / k” LC-MS/MS for MC-LR    (7.4) 

 

The LC-MS/MS concentration was the sum of six analyzed MCs or just MC-LR (for which 

ELISA was calibrated), respectively. For each set of paired ELISA and LC-MS/MS 

concentration ratios, (i.e., (A/A0)}ELISA and (A/A0)}LC-MS/MS for MC-LR or ƩMC), the apparent 

second-order rate constant ratios were calculated, as described above.  

Based on the frequency of the rate constant ratios, furthermore, the hypothesis that 

oxidation kinetics based on ELISA concentrations would be slower than based on 

LC/MS/MS concentrations was supported (on average) for PM, but not for FC or O3 (for 

both MC-LR ande ΣMC bases). For the ratios of ELISA-based constants to LC-MS/MS-
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based constants using the sum of six MC variants in natural waters, the rate constant ratios 

were distributed between k”ELISA / k” LC-MS/MS for ƩMC and were well above to well below 

unity for each oxidant. For free chlorine, the ratios ranged from 0.26 to 4.44, with a mean 

of 1.53 and a median of 1.59 (Table 7.5). Similarly, for ozone, ratios ranged from 0.40 to 

2.09 with a mean of 1.33 and a median of 1.40 (Table 7.5). For permanganate the ratios 

ranged from 0.17 to 3.46, with a mean of 1.33 and a median of 1.40 (Table 7.5). Overall, 

this data demonstrates that kinetic rates constants for ELISA concentration values ranged 

from just 17% to 444% of the LC-MS/MS concentration values. 

For the ratios of ELISA-based constants to LC-MS/MS-based constants using the 

MC-LR concentrations in natural water, similar results were achieved. This data 

demonstrates that the kinetic rates constants for ELISA concentration values ranged from 

just 18% to 478% of the LC-MS/MS concentration values, again effectively a factor of 

plus or minus four to five times. Overall, the average MC-LR-based ratios were from 10% 

to 20% higher than for the sum for MCs-based ratios (Table 7.5). 

The 95%-confidence intervals were calculated for the six k”ELISA / k” LC/MS/MS ratios 

(i.e., three oxidants, and MC-LR or sum of MCs basis). The confidence intervals in natural 

waters ranged from 15.1% to 38.4% and averaged 30% overall (Table 7.5). 

For experiments conducted in spiked MQ laboratory waters, data for ELISA and 

LC-MS/MS were greatly limited. Despite this, data was within an acceptable quantitation 

for this analysis. This data demonstrates that generally the k”ELISA/k”ƩMC ratio calculated 

were near or less than unity, that is, based on the frequency of the rate constant ratios (9 

less than one, 2 near, and 2 greater than unity). Thus, the hypothesis that oxidation kinetics 
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based on ELISA concentrations would be slower than based on LC-MS/MS concentrations 

was generally supported by the limited data set. 

 

 

Table 7.5. Statistical analysis of oxidative removal of MCs via ELISA-based analysis 

versus using sum of six MC variants (via LC-MS/MS).  

 

 

7.5    Oxidation of Cylindrospermopsin  

With respect to differing reactivity between ELISA and LC-MS/MS for CYN, the 

study plan was to include comparison of the apparent oxidation kinetics of natural waters 

containing (or spiked with) CYN. Oxidation of CYN in natural water samples was 

attempted as described for the MCs samples above. However, due to lack of precision of 

CYN analysis by the automated CAAS system, these studies were terminated (Appendices 

CY-5 and CY-6).  

k"ELISA / k"ƩMC k"ELISA / k"MC-LR

Parameter FC O3 PM Mean FC O3 PM Mean

Average 1.53 1.31 1.06 1.30 1.84 1.45 1.25 1.51

RSD(%) 76% 34% 77% 74% 40% 92%

Median 1.59 1.39 0.83 1.27 1.40 1.31 0.82 1.18

Minimum 0.26 0.40 0.17 0.22 0.37 0.18

Maximum 4.44 2.09 3.46 4.78 2.66 4.64

Count 13 16 17 12 15 16

ELISA faster 8 12 5 10 12 7

ELISA slower 5 4 12 2 3 9

Percent with ELISA faster 62% 75% 29% 83% 80% 44%

t (1 tail, α=0.05) 1.79 1.75 1.75 1.80 1.76 1.75

95% CI (+/-) 0.57 0.20 0.35 0.71 0.26 0.50

95% CI (+/-) (%) 37.5% 15.1% 32.8% 38.4% 18.2% 40.1%

Average 95% CI (+/-) (%) = 28.5% 32.3%

Average overall 95% CI (+/-) (%) = 30%
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7.6    Discussion and Conclusions 

For any type of water, the mix of MCs may react faster or slower than MC-LR, 

depending on the specific variants’ in kinetics, the oxidant, and other factors. Furthermore, 

this study confirmed the hypothesis that analysis by ELISA can provide different removal 

rates than with analysis by LC/MS/MS due to a variety of factors. Utilities must be able to 

estimate the removal of MCs with key oxidants (i.e., FC, ozone, and PM). Current tools 

(e.g., Hazen-Adams CyanoTOX (Version 2)) utilize best available kinetics for known MC 

variants. As was hypothesized and observed experimentally in this work, the removal of 

MC measured by ELISA would be expected to have a range of rates around that for MC-

LR (or other known variants).  

This work provides an estimate of the 95% confidence interval for the difference in 

oxidation rates predicted, based on ELISA readings versus specific variants by LC-

MS/MS. These confidence intervals on relative rate constants allow for estimating the 

range of removal anticipated if one is using ELISA for the analysis. This is further based 

on known kinetics for MC-LR.  

As an application example, the predicted removal for a mix MCs was calculated 

based on MC-LR kinetics, and calculated and presented in Figure 7.4, with the average 

95% confidence interval shown graphically. For this example, the predicted CT required 

ranges from approximately 40 to 72 mg·min/L to achieve a final concentration of 0.3 µg/L 

for MCs, versus approximately 51 mg·min/L as predicted based on MC-LR alone.  

As a result of this study, 95% confidence intervals of ±30% have been incorporated 

in the Hazen-Adams CyanoTOX tool (Version 2.0) as a guide for utilities in estimating the 
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range of removals operators may expect in their treatment plants using ELISA-based 

concentrations. 

 

 

 

Fig. 7.4. 95%-confidence intervals of ±30% based on uncertainty in removal 

kinetics based on ELISA- versus LC-MS/MS-based concentrations using predicted MC-

LR oxidative removal by free chlorine as an example generated using CyanoTOX (Ver. 

2.0). 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK (CYANOTOXINS) 

 

8.1    Conclusion 

Due to climate change and high nutrient loading hazardous algal blooms are 

increasing in frequency and magnitude worldwide. Cyanobacteria produce a variety of 

toxins with MCs the most commonly detected cyanotoxins of major health concern in 

surface and drinking water. 

The recent U.S. EPA health advisories for MCs are based on the use of ELISA as 

the primary analytical tool for measuring both Microcystins (MCs) and 

Cylindrospermopsin(CYN). MCs have many variants that are reactive with the ELISA test 

kit. The sensitivity of the ELISA test kit is known to vary for different variants by known 

and unknown amounts, depending on the variant. Further, interferences such as by natural 

organic matter or oxidation byproducts may have significant and unpredictable impacts on 

ELISA readings. These differing sensitivities and interferences cause significant 

overestimation (typically) or underestimation (less frequently) of the ELISA reading 

relative to the concentration of known species by LC-MS/MS. Regulatory authorities need 

to be convinced that the ELISA results are reliable, even when they disagrees with LC-

MS/MS result. There is, therefore, a critical need to provide guidance to utilities (and 

regulators) regarding oxidation kinetics for cyanotoxins based on ELISA readings. 

This work provides estimates of the 95%-percent confidence interval for the 

difference in oxidation rates predicted with based on ELISA readings versus specific 

variants by LC-MS/MS. These confidence intervals on relative rate constants allow 



 97 

estimation of a range of removal to be anticipated if using ELISA for the analysis, based 

on known kinetics for MC-LR.  

ELISA readings averaged greater than LC-MS/MS concentrations for the split 

samples. Possible reasons for this include greater interference effects (e.g., with NOM) for 

ELISA than LC-MS/MS, the fact that ELISA is typically calibrated on the MC-LR variant 

and some variants have different sensitivities, and the fact that ELISA is sensitive at some 

level to many or all of the 100(+) ADDA-moiety containing MC variants and oxidation 

byproducts whereas the LC-MS/MS method was set for only six variants. 

 

8.2    Future Work  

The alarming increase in the frequency and magnitude of cyanobacterial bloom 

worldwide impose a demand to find faster, reliable and economical methods for monitoring 

MCs. The traditional LC-MS/MS method is unable to meet this rising demand due to its 

cost, limited variety of available reference standard and cumbersome procedure. Most of 

the water utilities prefer to use ELISA because ELISA is relatively cost effective, fast and 

easy to use in compare to LC-MS/MS. Although ELISA reports total MCs, it does not 

provide toxicity information. So, it is important to consider toxicological approach of MCs 

as well by using other assays like as PPIA. 

An advantage of protein phosphatase inhibition assay (PPIA) over ELISA is its 

ability to detect bioactivity of MCs, rather than limited recognition of a structural 

component. At similar concentrations, toxicity due to other variants or mixtures of variants 

may be different. Additionally, oxidation of MCs, specifically chlorination of MCs leads 

to the formation of numerous by-products through chlorine substitution on the initial toxin, 
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including on the ADDA moiety may increase in toxicity of the mixture after chlorination. 

As a result, it would be useful to consider the use of both PPIA and ELISA by water 

utilities. The use of ELISA and PPIA together can provide enough information to protect 

the public from microcystins toxicity and more meaningful regulations for drinking water 

can be established based on these two assays. 
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Appendix HA-1 

 

 

SOP FOR CHLORAMINE ANALYSIS (v. 5.0) 
(Original prepared by Drs. Zhimin (George) Qiang and Craig Adams on 2/28/2006. 

Modified by Craig Adams August 2014) 

 

 This method is based on and modified from 4500-Cl G. DPD Colorimetric Method, 

Standard Methods for the Examination of Water and Wastewater. 

 

 

 

1. Reaction Mechanism 

 In the absence of iodide ion, free chlorine reacts instantly with DPD indicator to 

produce a red color. Subsequent addition of a small amount of iodide ion acts catalytically 

to cause monochloramine to produce color. Addition of iodide ion to excess evokes a rapid 

response from dichloramine. In the presence of iodide ion, part of the nitrogen chloride 

(NCl3) is included with dichloramine and part with free chlorine. A supplementary 

procedure based on adding iodide ion before DPD permits estimating proportion of NCl3 

appearing with free chlorine.  

 

 

2. General Discussion 

a Principal: Free and combined chlorines react with DPD to show a red color. The 

color is measured with a spectrophotometer at a wavelength of 515 nm and with a 

≥ 1-cm light path photocell.  

b Interference: Compensate for color and turbidity by using sample to zero 

photometer. Minimize chromate interference by using the thioacetamide blank 

correction. (Maximum total chromium conc. = 0.58 mg/L in Orlando pools.)  

c Minimum detectable concentration: approximately 10 g/L as Cl2.  

d Glassware: Use separate glassware and separate photocells for free and combined 

chlorine (dichloramine) measurements, to avoid iodide contamination in free 

chlorine measurement.  

 

 

3. Reagents: 

a Phosphate buffer solution: Dissolve 24 g anhydrous Na2HPO4 and 46 g 

anhydrous KH2PO4 in distilled water. Combine with 100 mL distilled water in 

which 800 mg disodium ethylenediamine tetraacetate dehydrate (EDTA) have 

been dissolved. Dilute to 1 L with distilled water and optionally add either 20 
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mg HgCl2 or 2 drops toluene to prevent mold growth. Interference from trace 

amounts of iodide in the reagents can be negated by optional addition of 20 mg 

HgCl2 to the solution.  

 

• .(Fisher S374500 Sodium Phosphate Dibasic Anhydrous, Granular or 

Powder, Certified ACS ≥ 99 %, Monohydrogen Sodium Phosphate, 

Disodium Hydrogen Phosphate, Na2HPO4) 

• (Fisher P284-500 Potassium Phosphate Monobasic, Granular, Laboratory, 

KH2PO4  

• Disodium ethylenediamine tetraacetate dehydrate (EDTA) 

(Ethylenediamine Tetraacetic Acid, Disodium Salt Dihydrate Crystallin 

Powder, Fisher Sci, BP120500) 

• HgCl2 (Mercuric Chloride (Crystalline or Powder/Certified ACS), Fisher 

Chemical, M155I-100) 

• Toluene (Fisher) 

b N,N-Diethyl-p-phenylenediamine (DPD) indicator solution: Dissolve 1 g DPD 

oxalate chlorine-free ultrapure water containing 8 mL “1+ 3 H2SO4“ (i.e., 1 mL 

water plus 3 mL concentrated H2SO4) and 200 mg disodium EDTA. Make up to 1 

L, store in a brown glass-stoppered bottle in the dark, and discard when discolored. 

Periodically check solution blank for absorbance and discard when absorbance at 

515 nm exceeds 0.002/cm.  

• (Fisher NC9638873 Hach Chemical DPD OXALATE ANAL 25G) 

• Disodium ethylenediamine tetraacetate dehydrate (EDTA) 

(Ethylenediamine Tetraacetic Acid, Disodium Salt Dihydrate Crystallin 

Powder, Fisher Sci, BP120500) 

• H2SO4 (Fisher ) 

c Potassium iodide, KI, crystal. 

• (Fisher P410-100 Potassium Iodide Granular, 100 g, Free Flowing Certified 

ACS ≥99 %) 

d Potassium iodide (KI) solution A (more dilute): Dissolve 100 mg KI and dilute to 

200 mL, using ultrapure (e.g., 18 MΩ Milli-Q) lab water. Store in a brown glass-

stoppered bottle, preferably in a refrigerator. Discard when solution becomes 

yellow.  (Note: Final conc = 500 mg/L KI; 4 drops ~ 200 µL = 0.1 mg) 

e Potassium iodide (KI) solution B (more concentrated): Dissolve 5000 mg KI and 

dilute to 25 mL, using ultrapure (e.g., 18 MΩ Milli-Q) lab). Store in a brown glass-

stoppered bottle, preferably in a refrigerator. Discard when solution becomes 

yellow. (Note: Final conc = 200,000 mg/L KI; 10 drops ~ 500 µL = 0.1 g (100 mg)) 

 

 

http://www.fishersci.com/ecomm/servlet/itemdetail?storeId=10652&langId=-1&catalogId=29104&productId=2515633&distype=0&highlightProductsItemsFlag=Y&fromSearch=1&searchType=PROD&hasPromo=1
http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_765240__-1_0
http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=BP120500&storeId=10652
http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=BP120500&storeId=10652
http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_778431__-1_0
http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_778431__-1_0
http://www.fishersci.com/ecomm/servlet/itemdetail?itemdetail=%27item%27&storeId=10652&productId=2124164&catalogId=29104&matchedCatNo=NC9638873&fromSearch=1&searchKey=DPD+oxalate&highlightProductsItemsFlag=Y&endecaSearchQuery=%23store%3DRE_SC%23nav%3D0%23rpp%3D25%23offSet%3D0%23keyWord%3DDPD%2Boxalate%23searchType%3DPROD%23SWKeyList%3D%5B%5D&xrefPartType=From&savings=0.0&xrefEvent=1397002061597_0&searchType=PROD&hasPromo=0
http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=BP120500&storeId=10652
http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=BP120500&storeId=10652
http://www.fishersci.com/ecomm/servlet/itemdetail?storeId=10652&langId=-1&catalogId=29104&productId=3391327&distype=0&highlightProductsItemsFlag=Y&fromSearch=1&searchType=PROD&hasPromo=1
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4. Procedure: 

a Calibration 

•  Of spectrophotometer: Hach spectrophotometer should already be 

calibrated. Calibration standards are available from Hach as a set of four 

(Hach DR/Check Absorbance Standard Kit 2763900 $ 166.00) to check (not 

adjust) calibration.  

• Of method:  

i. Prepare a stock solution containing 891 mg/L KMnO2. Dilute 1 mL 

of this stock solution into 1.000 L. This solution has the same 

oxidizing power as 1 .00 mg/L Cl2 and can be run in the free chlorine 

portion of the method below to calibrate.   

ii. This calibration factor was determined in our lab to be: Conc=(Abs-

0.0575)/0.4281. This is built into the SOP spreadsheet, but can be 

redetermined at any time by analyzing equivalent concentration the 

permanganate solution at 0, 0.5, 1 and 2 mg/L as Cl2 and plotting 

against the A measure (Free chlorine below) 

b Calibration of results:  

c Volume of sample: This procedure is based on using 10-mL volumes; adjust reagent 

quantities proportionately for other sample volumes. Dilute sample with MQ water 

when total chlorine exceeds 4 mg/L. 

d Free chlorine: Place 0.5 mL each of buffer reagent and DPD indicator reagent in a 

test tube or photocell. Add 10 mL sample to mix. Read color immediately (Reading 

A → free chlorine). 

e Monochloramine: Continue by adding 200 µL (or 4 drops) (about 0.1 mg) “KI 

Solution A (500 mg/L)” and mix. (Reading B→DCA). (If DCA is high, more KI is 

needed.) 

f Dichloramine: Continue by adding 500 µL (or 10 drops) (about 0.1 g) “KI Solution 

B (200 g/L)” and mix to dissolve. Let stand about 2 min and read color (Reading 

C).  

g Nitrogen chloride (Trichloramine): Place 200 µL (or 4 drops) (about 0.1 mg) “KI 

Solution A (500 mg/L)” in a clean test tube or photocell. Add 10 mL sample and 

mix. To a second tube or photocell add 0.5 mL each of buffer and DPD indicator 

reagents; mix. Add contents to first tube or photocell and mix. Read color 

immediately (Reading N).  

 

 

4. Calculation 
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Reading NCl3 Absent NCl3 Present 

A Free Cl Free Cl 

B-A NH2Cl NH2Cl 

C-B NHCl2 NHCl2 + 1/2NCl3 

N  − Free Cl + 1/2NCl3 

2(N-A)  − NCl3 

C-N  − NHCl2 

 In the event that monochloramine is present with NCl3, it will be included in 

Reading N, in which case obtain NCl3 from 2(N-B). 

Spreadsheet “SOP CHLORAMINE v 5” provides automatic calculations upon entering A, 

B, C, and N values. 
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Appendix HA-2 

 

 

 

HA-2. Calibration curve based on standard method 4500-Cl G using potassium 

permanganate in absorbance at 515 nm. 
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Appendix HA-3 
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HA-3. SIM chromatogram of TCA, DCA, and MCA in their standard solutions 

determined by head-space GC-MS at a pH level of 7.8 and theoretical 

concentrations of 30 μg/l. 
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Appendix HA-4 
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HA-4. UV spectra as a function of bromide concentration for TCA standard: (A) NaCl 0 mg/l and 

[Br-] 0-125 mg/l; (B) NaCl 4,000 mg/l and [Br-] 0-50 mg/l; (C) NaCl 40,000 mg/l 

and [Br-] 0-50 mg/l. Experimental conditions: chlorine to ammonia mass ratio 12:1 

(mg/L: mg/L), 5mM phosphate buffer, pH 6, temperature 25±2. 
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Appendix HA-5 
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HA-5. UV spectra as a function of bromide concentration for TCA standard: (A) NaCl 0 

mg/l and [Br-] 0-625 mg/l; (B) NaCl 4,000 mg/l and [Br-] 0-50 mg/l; (C) 

NaCl 40,000 mg/l and [Br-] 0-50 mg/l. Experimental conditions: chlorine to 

ammonia mass ratio 12:1 (mg/L: mg/L), 5mM phosphate buffer, pH 7.8, 

temperature 25±2. 
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Appendix CY-3 
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Appendix CY-4 
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Appendix CY-5 

 

 

 

 

 

CY-5. Results of ELISA analysis for oxidation of cylindrospermopsin in natural water 

samples. 

 

 

 

 

Name/ID Treatment

First ELISA 

injection

Second ELISA 

injection Inj 1/ Inj 2

Mean 

(µg/L)

RSD(%) of replicate 

automated analysis  

in same vial Raw FC O3 PM

R-1401 Raw 1.05 0.28 3.73 0.67 81.71 81.71

R-1402 Raw >3 1.26 1.26 2.26 2.26

R-1403 FC - L 1.15 0.90 1.29 1.03 17.71 17.71

R-1404 FC-M 1.46 1.10 1.33 1.28 20.01 20.01

R-1405 FC-M - D 1.50 1.21 1.24 1.35 15.11 15.11

R-1406 FC - H >3 1.00 3.00 1.00 2.00 2.00

R-1407 PM - L 0.75 1.57 0.48 1.16 49.61 49.61

R-1408 PM - L - D 0.85 0.55 1.53 0.70 29.81 29.81

R-1409 PM - M 1.10 1.13 0.97 1.12 2.31 2.31

R-1410 PM - H 1.98 0.53 3.76 1.25 82.01

R-1411 O3- L 0.71 1.48 0.48 1.10 49.61 49.61

R-1412 O3- L - D 0.78 1.14 0.69 0.96 26.11 26.11

R-1413 O3-M 1.41 1.14 1.24 1.28 15.11 15.11

R-1414 O3-H 1.93 0.45 4.28 1.19 87.81 87.81

R-1415 Raw 1.01 0.88 1.14 0.95 9.51 9.51

R-1416 Raw 0.50 0.54 0.93 0.52 5.31 5.31

R-1417 FC - L 1.17 0.81 1.44 0.99 25.51 25.51

R-1418 FC-M 1.83 0.65 2.83 1.24 67.61 67.61

R-1419 FC - H 0.17 1.14 0.15 0.66 105.21 105.21

R-1420 PM - L 0.87 0.37 2.33 0.62 56.51 56.51

R-1421 PM - L - D 0.28 1.02 0.27 0.65 81.41 81.41

R-1422 PM - M 1.63 0.68 2.41 1.15 58.61 58.61

R-1423 PM - H 0.34 0.88 0.38 0.61 63.41 63.41

R-1424 O3- L 1.28 0.52 2.44 0.90 59.31 59.31

R-1425 O3-M 0.32 >3 0.11 0.32 1.32 1.32

R-1426 O3-H >3 0.08 37.50 0.08 1.08 1.08

R-1427 Raw 0.30 0.55 0.54 0.43 41.91 41.91

R-1428 Raw 1.37 0.17 8.01 0.77 110.01 110.01

R-1429 FC - L 0.25 1.03 0.24 0.64 86.41 86.41

R-1430 FC-M 0.66 0.14 4.71 0.40 91.91 91.91

R-1431 FC - H 0.19 0.36 0.52 0.28 45.31 45.31

R-1432 PM - L 0.89 0.24 3.75 0.57 81.81 81.81

R-1433 PM - M 0.12 >3 0.00 0.12 1.12 1.12

R-1434 PM - H 1.57 0.25 6.34 0.91 102.91 102.91

R-1435 O3- L 0.10 0.62 0.15 0.36 103.61 103.61

R-1436 O3- L - D 0.93 0.75 1.24 0.84 15.11 15.11

R-1437 O3-M 0.03 0.56 0.05 0.30 128.51 128.51

R-1438 O3-H 0.88 0.96 0.92 0.92 6.11 6.11

Duplicate injections/same vial
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Appendix CY-6 

 

 

 

CY-6. Statistical parameters for cylindrospermopsin oxidation experiment by CAAS.  

 RSD for replicates of same sample by CAAS 

Parameter Overall Raw FC O3  PM 

Average 48 42 48 43 54 

Median 47 26 35 38 57 

Minimum 1 2 2 1 2 

Maximum 129 110 105 103 129 

RSD(%) 80% 108% 78% 92% 74% 

 



 
 

 

 

CURRICULUM VITAE 
 

 

Shadi Haji Eghrari 

 

 

 

EDUCATION: 

 

 

 

Ph.D. Civil and Environmental Engineering, Utah State 

University, Logan, Utah. GPA: 3.92 

Sep 2013- 

May 2021 

(Expected)  

 PhD Dissertation: Exploring Analytical Issues Associated with Oxidation 

Kinetics in Drinking Water 

 

M.Sc. Pharmaceutical Engineering, University of Tehran, Tehran, 

Iran. GR G.P.A: 3.48                        

Sep 2009- 

Feb 2012 

 Thesis Project: Experimental and Theoretical Investigations on the Solubility 

Behavior of Losartan Potassium and Amoidarone Hydrochloride in Mixed 

Solvents at Various Temperatures 

 

 

B.Sc. Applied Chemistry, University of Tabriz, Tabriz, Iran. UG 

G.P.A: 3.31                        

Feb 2004-  

Sep 2009 

  

 
 

EXPERIENCE: 
 

Assistant Chemist, City of San Diego, Public Utilities, Drinking Water Quality          

Oct 2018-Present 

 

Junior Chemist, City of San Diego, Public Utilities, Drinking Water Quality            

Feb 2018-Oct 2018 

 

Graduate Research Assistant, Utah Water Research Laboratory, Utah State 

University    Sep 2013-Jun 2017 

 

 



 143 

PUBLICATIONS  

 

Ali Shayanfar, Shadi H. Eghrary, Faroukh Sardari, William E. Acree,Jr., and 

Abolghasem Jouyban, “Solubility of Anthracene and Phenanthrene in Ethanol 

+2,2,4-Trimethylpentane Mixtures at Different Temperatures ”, Journal of 

Chemical & Engineering Data. 

 

Shadi H. Eghrary, Reza Zarghami, Fleming Martinez, and Abolghasem 

Jouyban, “Solubility of 2-Butyl-3-benzofuranyl 4-(2-(Diethylamino)ethoxy)-3,5-

diiodophenyl Ketone Hydrochloride (Amiodarone HCl) in Ethanol +Water and 

N-Methyl-2-pyrrolidone + Water Mixtures at Various Temperatures”, Journal of 

Chemical & Engineering Data. 

 

Shadi H. Eghrary, Reza Zarghami, and Abolghasem Jouyban, “Solubility of 

Losartan Potassium in Several Mono-Solvents at Different Temperatures” Latin 

American Journal of Pharmacy. 

 

Abolghasem Jouyban, Shadi H. Eghrary, Reza Zarghami “Solubility of 

amiodarone HCl in propylene glycol + ethanol, propylene glycol + water and 

their ternary solvent mixtures at 25 and 37 °C” Journal of Molecular Liquids. 

 

 


	Exploring Analytical Issues Associated With Oxidation Kinetics in Drinking Water
	Recommended Citation

	tmp.1621886395.pdf.XyRKt

