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ABSTRACT

Algorithms for Covering Barrier Points by Mobile Sensors with Line Constraint

by

Princy Jain, Master of Science

Utah State University, 2021

Major Professor: Haitao Wang, Ph.D.
Department: Computer Science

In this thesis, we study the problem of covering barrier points by mobile sensors. Each

sensor is represented by a point in the plane with the same covering range r so that any

point within distance r from the sensor can be covered by the sensor. Given a set B of

m points (called “barrier points”) and a set S of n points (representing the “sensors”) in

the plane, the problem is to move the sensors so that each barrier point is covered by at

least one sensor and the maximum movement of all sensors is minimized. The problem

is NP-hard. In this thesis, we consider two line-constrained variations of the problem and

present efficient algorithms that improve the previous work. In the first problem, all sensors

are given on a line ` and are required to move on ` only while the barrier points can be

anywhere in the plane. We propose an O((n + m) log(n + m)) time algorithm for the

problem. We also consider the weighted case where each sensor has a weight; we give an

O((m + n) log2(m + n)) time algorithm for this case. In the second problem, all barrier

points are on ` while all sensors are in the plane but are required to move to ` to cover all

barrier points. We solve the weighted case in O(m logm+ n log2 n) time.

(38 pages)
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PUBLIC ABSTRACT

Algorithms for Covering Barrier Points by Mobile Sensors with Line Constraint

Princy Jain

In this thesis, we develop efficient algorithms for the problem of covering barrier points

by mobile sensors. Each sensor is represented by a point in the plane with the same covering

range r so that any point within distance r from the sensor can be covered by the sensor.

Given a set B of m points (called “barrier points”) and a set S of n points (representing

the “sensors”) in the plane, the problem is to move the sensors so that each barrier point

is covered by at least one sensor and the maximum movement of all sensors is minimized.

The problem is NP-hard. In this thesis, we consider two line-constrained variations of

the problem and present efficient algorithms that improve the previous work. In the first

problem, all sensors are given on a line ` and are required to move on ` only while the barrier

points can be anywhere in the plane. We propose an O((n+m) log(n+m)) time algorithm

for the problem. We also consider the weighted case where each sensor has a weight; we

give an O((m + n) log2(m + n)) time algorithm for this case. In the second problem, all

barrier points are on ` while all sensors are in the plane but are required to move to ` to

cover all barrier points. We solve the weighted case in O(m logm+ n log2 n) time.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Definition

Let B be a set of m points and D be a set of n disks of the same radius r in the

plane. We consider the problem of moving the disks of D to cover all points of B so that

the maximum moving distance of all disks is minimized. The problem is NP-hard.1 In

this thesis, we consider two line-constrained variations of the problem and present efficient

algorithms for them.

Due to its potential applications in barrier coverage of mobile sensors in wireless sensor

networks [3–5], we consider the problem from the barrier coverage point of view. We call

the points of B the barrier points. Let S be the set of centers of all disks of D, and points

of S are called sensors. All sensors have the same covering range (or sensing range) r so

that any point within distance r from a sensor s can be covered by s (i.e., s covers all points

in the disk centered at s with radius r). Hence, our problem becomes the following: move

sensors of S to cover all barrier points of B such that the maximum moving distance of all

sensors is minimized.

We study a line-constrained variation of the problem where all sensors are given on a

line ` and are required to move on ` only while the barrier points can be anywhere in the

plane. We also consider its weighted case where each sensor si has a weight wi > 0 and the

moving cost of si is defined to be its moving distance times wi.

To the best of our knowledge, we are not aware of any previous work on this particular

problem. If all barrier points are all on `, which becomes a 1D problem (our original

problem can be considered as a 1.5D problem), the algorithm of Li and Wang [6] can

solve the unweighted case in O(m logm + n logm log n) time. In this thesis, we present

1This can be proved by an easy reduction from the minimum disk coverage problem [1]; e.g., see [2] for
a reduction for a similar problem.
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an O((n + m) log(n + m)) time for the unweighted case and an O((n + m) log2(n + m))

time algorithm for the weighted case. Hence, our algorithm for the unweighted case, albeit

solving the 1.5D problem, improves the algorithm of [6] by roughly a logarithmic factor.

We also consider another problem variation in which all barrier points are on a line `

while sensors can be anywhere in the plane. We want to move all sensors to ` to cover all

barrier points so that the maximum moving cost of all sensors is minimized. Previously,

Huang et al. [3] studied the unweighted case and gave an O(mn log(m+n)) time algorithm.

Our techniques solve the weighted case in O(m logm + n log2 n) time. This improves the

algorithm of Huang et al. [3] by almost a linear factor. Note that we do not have a faster

algorithm for the unweighted case. As all barrier points are on ` and all sensors will finally

move to `, once a sensor s moves to `, the portion of the covering disk of s that is relevant

is an interval of `. For this reason, we refer to this problem as the mobile interval coverage

problem; for differentiation, we refer to the first problem above as the mobile disk coverage

problem. Note that if sensors have different ranges, even the 1D problem (i.e., all sensors

and barrier points are on `) is NP-hard [3].

1.2 Related Work

Many variations of mobile sensor barrier coverage problem have been studied in the

literature.

Czyzowicz et al. [7] studied the problem of covering a barrier segment on a line ` by

moving a set of n sensors on ` (the sensors are initially given on `); they gave an O(n2) time

algorithm. Chen et al. [8] presented a more efficient O(n log n) time algorithm. Chen et

al. [8] also studied the case where sensors may have different covering ranges and proposed

an O(n2 log n) time algorithm. For the weighted case where the sensors have weights as

defined in our problems (but sensors have the same range), Lee et al. [9] derived an algorithm

of O(n2 log n log log n) time.

Li and Shen [5] studied the same problem as our interval coverage problem except

that their barrier is not a set of points but a single line segment on `. They proposed

an O(n3 log n) time algorithm. The algorithm was later improved to O(n2 log n log log n)
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time by Li and Wang [6]. Li and Wang [6] also studied a more general problem setting

where the barrier is a set of disjoint line segments on ` (and the sensors are still in the

plane and are required to move to `); they gave an O(n2 log n log logn + nm logm) time

algorithm. Further, for the 1D case where all sensors are initially on `, the algorithm of Li

and Wang [6] solves the problem in O(m logm + n log n logm) time. These results are for

the case where sensors have the same range; if sensors have different ranges, even the 1D

problem is NP-hard by a simple reduction from the Partition Problem as in [7].

The min-sum version of the line-constrained barrier coverage was also studied in the

literature where sensors are given on ` and a barrier segment is also on `, and the goal is to

move sensors to cover the barrier segment such that the total sum of the moving distances

of all sensors is minimized. If sensors have different ranges, the problem is NP-hard [10].

Otherwise, Czyzowicz et al. [10] solved the problem in O(n2) time. Later Andrews and

Wang [11] proposed a faster algorithm of O(n log n) time.

A circular barrier coverage problem was also considered, where the barrier is a circle

and sensors are initially located inside the circle and the goal is to move all sensors to the

circle to form a regular n-gon (to form a coverage) so that the maximum moving distance

of all sensors is minimized. Bhattacharya [12] first gave an algorithm of O(n3.5 log n) time.

An improved algorithm of O(n log3 n) time was later derived by Chen et al. [13].

There are also other variations of the barrier coverage problem, e.g., see [14–17].

1.3 Our Approach

We first discuss the mobile disk coverage problem. Let λ∗ denote the optimal moving

cost, i.e., the maximum moving cost of all sensors in an optimal solution. In both the

unweighted and weighted cases, we first consider the decision problem: Given any value λ,

determine whether λ ≥ λ∗.

For the unweighted case, a critical property is an order-preserving property: There

exists an optimal solution in which the order of the sensors are consistent with their order

in the input. Due to the property, we can solve the decision problem in linear time by a

simple greedy algorithm (after all barrier points and all sensors are sorted). Next, we use
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the decision algorithm to compute λ∗. To this end, we define 2m arrays of size n each and

we show that λ∗ must be an element of one of the arrays. To search λ∗ in these arrays

in an efficient way, we form these arrays implicitly. A helpful observation is that each of

these arrays is sorted. Consequently, by using our decision algorithm, we apply a sorted

matrix searching technique [18–20] (or a simpler implementation called binary search on

sorted arrays in [21]) to find λ∗ in these arrays in O((n+m) log(n+m)) time.

For the weighted case, unfortunately the order-preserving property does not hold any-

more. In fact, the major difficulty is to find the correct order for sensors in an optimal solu-

tion. This is also the case for solving the decision problem. So we have to use a different ap-

proach to solve the decision problem. The runtime of the algorithm is O((n+m) log(n+m)).

To compute the optimal cost λ∗, we implicitly form 2n arrays of size m each such that λ∗ is

one of the array elements. To apply the sorted matrix searching technique, we manage to

find a way to order the array elements implicitly so that the arrays are still sorted. Then,

with the decision algorithm, the value λ∗ can be found in O((n+m) log2(n+m)) time.

For the mobile interval coverage problem, we solve the weighted cases directly (without

having a faster algorithm for the unweighted case). As above, we also solve the decision

problem first, and then form sorted arrays and apply the sorted array searching technique.

To solve the decision algorithm, we use an algorithm similar to the weighted case of the

above mobile disk coverage problem, but with a simpler and slightly faster implementation.

The runtime of our decision algorithm is O(m+ n log n) after O((n+m) log(n+m)) time

preprocessing for sorting all sensors and barrier points. The time of the overall algorithm

(for computing the optimal value λ∗) is O(m logm+ n log2 n).



5

CHAPTER 2

PRELIMINARIES

For each problem we consider, we use λ∗ to denote the optimal moving cost. Given

any λ, the decision problem is to decide whether λ ≥ λ∗, i.e., whether it is possible to move

sensors to cover all barrier points so that the moving cost of each sensor is at most λ. If

λ ≥ λ∗, we say that λ is a feasible value. We use feasibility test to refer to the procedure

for determining whether λ ≥ λ∗. For differentiation, we refer to our original problem for

computing λ∗ as the optimization problem.

Without loss of generality, we simply assume that the line ` is the x-axis. Let S =

{s1, s2, . . . , sn} be the set of sensors (unless otherwise stated, the order is arbitrary). For

each si, we use (xi, yi) to denote its coordinate in the input. For differentiation, for each

barrier point b ∈ B, we use (xb, yb) to denote its coordinate.

In each problem, we use a configuration to refer to a specification on where each sensor

si is located. For example, in the input configuration, each sensor si is at (xi, yi).

For each sensor s, we use D(s) to refer to its covering disk, i.e., the disk of radius r

centered at s. For any disk D, we use ∂D to denote its boundary, which is a circle. The

left half-circle of ∂D refers to the portion of ∂D to the left of the vertical line through the

center of D; the right half-circle is defined similarly.

For the mobile disk coverage problem, for simplicity of discussion, we assume that all

barrier points above or on ` since if a barrier point is below `, then we can use its symmetric

point about ` to replace it and that does not affect the solution of the problem.

For any point p on `, for convenience, sometimes we also use p to refer to its x-

coordinate. For example, for two points p and q on `, p ≤ q means that p is to the left of q

(including the case where p and q are coincident) and p < q means that p is strictly to the

left of q.
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For each problem, for ease of exposition, we assume that it is always possible to cover all

barrier points by moving sensors (i.e., the covering range r is big enough). Our algorithm

can actually determine whether the assumption is true or not. This implies that in the

mobile disk coverage problem, for each barrier point b, yb ≤ r must hold since otherwise no

sensor on ` can cover b.

For a barrier point b and the covering disk D(s) of a sensor s, we say that D(s) is

strictly to the left (resp., right) of b if D(s) does not cover b and the intersection between

D(s) and the horizontal line through b is strictly to the left (resp., right) of b.
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CHAPTER 3

THE MOBILE DISK COVERAGE PROBLEM: THE UNWEIGHTED CASE

In this chapter, we consider the unweighted case of the mobile disk coverage problem.

In this problem, all sensors of S are on the line ` while each barrier of B can be anywhere

in the plane. We first present an algorithm to solve the decision algorithm. Consider a

value λ. If λ ≥ λ∗, we use a feasible solution to refer to a configuration in which all barrier

points are covered and the moving cost of each sensor is no more than λ. As all sensors have

the same range, it is not difficult to see that the order-preserving property in the following

observation holds.

Observation 1 (The order-preserving property) If λ ≥ λ∗, then there exists a feasible

solution in which the order of sensors is the same as in the input.

Due to the order-preserving property, we can solve the decision problem by a simple

greedy algorithm in linear time (after sensors and barrier points are sorted).

Lemma 1 After O(n log n+m logm) time preprocessing, given any λ, whether λ ≥ λ∗ can

be decided in O(m+ n) time.

Proof: In the preprocessing, we sort all sensors of S from left to right on `; let S =

{s1, s2, . . . , sn} be the sorted list. We also sort all barrier points of B by their x-coordinates

from left to right; let B = {b1, b2, . . . , bm} be the sorted list. Given any λ, in what follows

we describe our O(n + m) time algorithm for deciding whether λ ≥ λ∗, which is based on

the greedy strategy.

We first move each sensor rightwards on ` by distance λ and we use C0 to refer to the

configuration, i.e., in C0, the location of each si is xi +λ. Then, during the algorithm, each

sensor will not be allowed to move rightwards anymore but can move leftwards by 2λ.

Starting from i = 1 and j = 1, we process sensors si and barrier points bj incrementally.

We first check whether bj is covered by si. If yes, we increase j by one (if j = m before
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the increase, then all barrier points are covered and we have found a feasible solution; in

this case, we can stop the algorithm and report that λ is a feasible value, i.e., λ ≥ λ∗).

Otherwise, either bj is to the right of the covering disk D(si) of si or bj is to the left of

D(si). In the former case, we increase i by one and proceed as above (if i = n before

the increase, then we can stop the algorithm and report that λ is not a feasible value, i.e.,

λ < λ∗). In the latter case, we check whether it is possible to move si leftwards by distance

at most 2λ to cover bj . If not, then we can stop the algorithm and report that λ is not

a feasible value. Otherwise, we move si leftwards until bj is covered (i.e., bj is on the left

half-circle of ∂D(si)); we then increase j by one and proceed as above (if j = m before the

increase, then all barrier points are covered and thus we can stop the algorithm and report

that λ is a feasible value). This finishes the description of the algorithm.

The correctness of the algorithm is based on the order-preserving property. It is not

difficult to see that the running time of the algorithm is O(n+m). 2

We next tackle the optimization problem for computing λ∗, by making use of our

decision algorithm in Lemma 1 as a subroutine. For this, we have the following lemma.

Lemma 2 λ∗ is equal to xi −
√
r2 − y2b − xb or xb −

√
r2 − y2b − xi for a sensor si and a

barrier point b.

Proof: Consider an optimal solution OPT , where λ∗ is the maximum moving distance of

all sensors. Then, λ∗ is equal to the moving distance of a sensor si. Let x′i be the position

of si in OPT . If x′i < xi, then si has been moved leftwards. In this case, there must

be a barrier point b on the left half-circle of ∂D(si) since otherwise we could move D(si)

rightwards slightly so that D(si) still covers the same set of barrier points as before but

the moving distance of si is strictly smaller than λ∗, a contradiction to the definition of λ∗.

Thus, we have x′i =
√
r2 − y2b + xb. Hence, λ∗ = xi − x′i = xi −

√
r2 − y2b − xb. If x′i > xi,

then by similar analysis as above, we can show that λ∗ = xb −
√
r2 − y2b − xi. 2

We sort all sensors of S from left to right on `; let S = {s1, s2, . . . , sn} be the sorted list.

For each barrier point b ∈ B, we define two arrays Ab[1 · · ·n] and A′b[1 · · ·n] of size n each as

follows: For each i ∈ [1, n], define Ab[i] = xi−
√
r2 − y2b −xb and A′b[i] = xb−

√
r2 − y2b −xi.
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According to Lemma 2, λ∗ is an element in one of the 2m arrays Ab and A′b for all b ∈ B.

We next find λ∗ in these arrays. Computing these arrays explicitly will take Ω(nm) time.

Below, we present a near linear time algorithm without computing these arrays explicitly.

Indeed, given an index i ∈ [1, n] and a barrier point b ∈ B, we can obtain the values Ab[i]

and A′b[i] in constant time.

An easy observation is that elements of the array Ab are sorted in ascending order and

elements of A′b are sorted in descending order. Therefore, we are searching λ∗ in 2m sorted

arrays of size n each. Note that λ∗ is actually the smallest feasible value in these 2m arrays.

We can use the sorted matrix searching techniques [18–20] (or a simpler implementation,

called binary search on sorted arrays, in [21]) to search sorted arrays with the following

lemma.

Lemma 3 [18–21] Suppose we have a set of M sorted arrays of size at most N each such

that each array element can be evaluated in O(1) time (i.e., given the index of an array,

the element of the array can be obtained in O(1) time). Then, the smallest feasible value in

these arrays can be computed by O(log(N + M)) feasibility tests and the total time of the

algorithm excluding the feasibility tests is O(M logN).

Applying the algorithm of Lemma 3 and using our decision algorithm in Lemma 1, λ∗

can be found in O((m + n) log(m + n)) time. We summarize our result in the following

theorem.

Theorem 1 Given a set of m barrier points in the plane and a set of n sensors on a line

`, the problem of moving sensors on ` to cover all barrier points such that the maximum

moving cost of all sensors is minimized can be solved in O((m+ n) log(m+ n)) time.

Note that after λ∗ is computed, we can apply our decision algorithm in Lemma 1 with

λ = λ∗ to find a way to move sensors on ` so that all barrier points are covered and the

maximum moving cost of all sensors is at most λ∗.
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CHAPTER 4

THE MOBILE DISK COVERAGE PROBLEM: THE WEIGHTED CASE

In this chapter, we solve the weighted case of the mobile disk coverage problem. Here

also, we start with the decision problem and later solve the optimization problem by ap-

plying sorted array searching techniques in Lemma 3. In the weighted case, each sensor si

is associated with a weight wi > 0.

4.1 The Decision Problem

Given any λ, the problem is to decide whether λ ≥ λ∗. Although our algorithm is

similar in spirit to those in the previous work [6, 8, 9], our algorithm is for a more general

problem setting in that the barrier points are in the plane while the barriers in all previous

work [6, 8, 9] are on `. In the following, we first describe our algorithm, and then prove its

correctness; finally, we will discuss how to efficiently implement the algorithm in O((n +

m) log(n+m)) time.

4.2 The Algorithm Description

For each sensor si, define xli = xi − λ/wi and xri = xi + λ/wi, i.e., xli is the leftmost

location on ` where si can move to and xri is the rightmost location on ` where si can

move to with respect to λ. We call xli (resp., xri ) the leftmost (resp., rightmost) λ-reachable

location.

For each barrier point b, we use c(b) to denote the center of the circle of radius r whose

center is at ` and whose left half-circle contains b, i.e., c(b) = xb +
√
r2 − y2b . We sort all

barrier points b ∈ B in the order of the values c(b). Alternatively, it is also the order of

the barrier points of B encountered by sweeping a left half-circle centered at ` from left to

right. Let B = {b1, b2, . . . , bm} be the sorted list.

Initially, we move each sensor si to xri and thus si will not be allowed to move rightwards
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anymore but can move leftwards by 2λ/wi. Let C0 denote the resulting configuration. If

λ ≥ λ∗, our algorithm will find a subset of sensors with their new locations such that all

barrier points are covered and the maximum moving cost of each sensor is at most λ (sensors

not in the subset are still in their positions of C0).

Consider the i-th iteration of the algorithm (initially, i = 1). Let Ci−1 be the configu-

ration right before the iteration. Our algorithm maintains the following invariants.

1. A subset of sensors Si−1 = {sg1 , . . . , sgi−1} has been computed, where gj is the index

of the sensor sgj for each j ∈ [1, i− 1].

2. In Ci−1, each sensor sk of Si−1 is at a location, denoted by x′k, which may not be

equal to xrk, while sensors of S \Si−1 are still in their locations of C0 (i.e., each sensor

of S \ Si−1 is at its rightmost λ-reachable location).

3. An index hi−1 of a barrier point is maintained such that in the configuration Ci−1,

the barrier point bhi−1
is not covered by any sensor of Si−1 while bk is covered by a

sensor in Si−1 for each k < hi−1 (note that it is possible that bk for some k > hi−1 is

also covered by a sensor in Si−1, which cannot happen in the problem settings of the

previous work [6, 8, 9]; this case makes our problem more challenging to solve).

4. Each sensor of Si−1 covers at least one barrier point bj with j < hi−1 in Ci−1.

5. The locations of the sensors sg1 , sg2 , . . . , sgi−1 in Ci−1 are sorted from left to right on

`.

6. The barrier point bhi−1
is strictly to the right of the covering disk D(sgi−1) of sgi−1 if

Si−1 6= ∅.

Initially when i = 1, we have S0 = ∅ and we set h0 = 1; thus, all algorithm invariants

trivially hold. The i-th iteration of the algorithm finds a sensor sgi from S \Si−1 and move

it to a new location x′gi ∈ [xlgi , x
r
gi ] to obtain a new configuration Ci with Si = Si−1 ∪ {sgi}.

The details of the i-th iteration of the algorithm are described below.
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sgi

bhi−1
bhi

`

Fig. 4.1: Illustrating the Invariant (6) in the proof of Lemma 4: the circle is the boundary
of D(sgi).

Define Si1 to be the set of sensors that cover the barrier point bhi−1
in the configuration

Ci−1. According to our algorithm invariants, bhi−1
is not covered by any sensor in Si−1.

Hence, Si1 ⊆ S \ Si−1.

If Si1 6= ∅, we pick an arbitrary sensor from Si1 as sgi and set x′gi = xrgi (i.e., the sensor

does not move from its position in Ci−1); thus Ci = Ci−1. We set hi = k + 1, where k is

the largest index in [hi−1, n] such that barrier points bj for all j ∈ [hi−1, k] are covered by

sensors of Si. If hi = n + 1, all barrier points bj for all j ∈ [hi−1, n] are covered, and thus

we can stop the algorithm and report λ ≥ λ∗.

Lemma 4 All algorithm invariants hold.

Proof: We go through every invariant. Invariant (1) trivially holds. Invariant (2) holds

because Ci = Ci−1. Invariant (3) follows immediately from how our algorithm computes

hi. Invariant (4) holds because sgi covers bhi−1
in Ci. For Invariant (5), it suffices to show

that sgi−1 is to the left of the sgi in Ci. Indeed, according to Invariant (6) in Ci−1, bhi−1

is strictly to the right of the covering disk D(sgi−1). Since bhi−1
is covered by sgi in Ci, we

obtain that sgi−1 must be to the left of sgi in Ci. For Invariant (6), since the sensor sgi

covers bhi−1
but does not cover bhi and hi−1 < hi, according to the definition of the indices

of the barrier points, we can obtain that bhi must be strictly to the right of the covering

disk D(sgi) of sgi (e.g., see Fig. 4.1). This proves Invariant (6). 2

If Si1 = ∅, we define Si2 = {sk | xlk ≤ c(bhi−1
) < xrk, sk ∈ S \ Si−1}, i.e., the set of

sensors sk that do not cover bhi−1
in Ci−1 but can be moved leftwards to cover bhi−1

; e.g.,
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bhi−1

`
sk

xrkxrl

Fig. 4.2: Illustrating the definition of Si2: The solid circle shows the position of sk in Ci−1,
i.e., at xrk, and the dashed circle shows its leftmost λ-reachable location, i.e., xlk.

see Fig. 4.2. Note that each sensor of Si2 is currently at its rightmost λ-reachable location

in Ci−1.

If Si2 6= ∅, then among all sensors of Si2, we choose the leftmost one (with respect to

their positions in Ci−1) as sgi and add it to Si−1 to obtain Si. We move sgi leftwards until

bhi−1
is covered (i.e., it is on the left half-circle of ∂Dgi); this obtains the configuration Ci.

Next, we set hi = k + 1, where k is the largest index in [hi−1, n] such that barrier points

bj for all j ∈ [hi−1, k] are covered by sensors of Si. If hi = n + 1, then all barrier points

are covered and thus we can stop the algorithm and report λ ≥ λ∗. Following the similar

analysis as Lemma 4, we can show that all algorithm invariants hold.

If Si2 = ∅, then we terminate the algorithm and report that λ < λ∗.

In summary, if Si1 = Si2 = ∅, then the algorithm will terminate and report λ < λ∗.

Otherwise, a sensor sgi is found from either Si1 (if it is not empty) or Si2 and added to Si−1

to obtain Si. In either case, hi = k + 1, where k is the largest index in [hi−1, n] such that

barrier points bj for all j ∈ [hi−1, k] are covered by sensors of Si. If hi = n + 1, then the

algorithm will terminate and report λ ≥ λ∗; otherwise, the algorithm will proceed to the

next iteration i+ 1 and all algorithm invariants hold. As there are m barrier points and a

new barrier point is covered in each iteration, the algorithm has at most m iterations. On

the other hand, as there are n sensors and each iteration finds a new sensor to form Si, the

algorithm has at most n iterations. Hence, the algorithm will stop in min{n,m} iterations.

4.3 The Algorithm Correctness

We now prove the correctness of the algorithm. The high-level idea of the proof is
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similar to the previous work [6,8,9], although the details are quite different because in our

problem barrier points are in the plane while the barriers in the previous work [6, 8, 9] are

all on `.

Suppose the algorithm reports λ ≥ λ∗, say, in the i-th iteration of the algorithm. Then,

according to our algorithm, the configuration Ci is a feasible solution. Thus, it suffices to

show that if the algorithm reports λ < λ∗, then no feasible solution exists.

For any index i ∈ [0,m] for the barrier points, we say that [0, i] is a prefix interval of

[0,m]. For convenience, depending on the context, we may also use [0, i] to represent the

subset of barrier points bj for all j ∈ [0, i] (the subset is ∅ if i = 0). For example, we say

that the interval [0, i] is covered by a set of sensors if all barrier points bj , 0 ≤ j ≤ i, are

covered by the set of sensors. We say that another prefix interval [0, i′] is larger than [0, i]

if i′ > i.

Lemma 5 Consider the configuration Ci produced in the i-th iteration of our algorithm

with i ≥ 1. Suppose S′i is the set of sensors of S whose covering disks are strictly to the left

of bhi in Ci. Then, [0, hi − 1] is the largest possible prefix interval that can be covered by

sensors of S′i with respect to λ (i.e., the moving cost of each sensor of S′i is at most λ).

Before proving Lemma 5, we use it to prove the correctness of our algorithm, i.e., we

prove that if the algorithm reports λ < λ∗, then no feasible solution exists.

Suppose our algorithm reports λ < λ∗ in the i-th iteration. Then, according to our

algorithm, bhi−1
is not covered by any sensor in Ci−1 and Si1 = Si2 = ∅. By Lemma 5

(replacing the index i in the lemma by i− 1), [0, hi−1 − 1] is the largest prefix interval that

can be covered by sensors of S′i−1. According to our algorithm invariants, the covering disk

of each sensor of Si−1 is strictly to the left of bhi−1
in Ci−1. Hence, Si−1 is a subset of

S′i−1. Since both Si1 and Si2 are empty in Ci−1, no sensor in S \ S′i−1 can cover the barrier

point bhi−1
. Therefore, it is not possible to cover all barrier points in the interval [0, hi−1]

using the sensors of S (with respect to the maximum moving cost λ). This implies that no

feasible solution exists.
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4.4 Proof of Lemma 5

We now prove Lemma 5. We follow the notation in Lemma 5. Note that according to

our algorithm invariants, Si = {sg1 , sg2,, . . . , sgi} is a subset of S′i.

We first prove the following lemma and then use the lemma to prove Lemma 5.

Lemma 6 If C is a configuration in which a prefix interval [0, t] is covered by the sensors

of S′i, then there also exists a configuration C∗ in which [0, t] is covered and the location of

each sensor sgj of Si in C∗ is the same as its location in Ci.

Proof: We prove the lemma by induction. We assume that the lemma statement holds for

k − 1, 1 ≤ k ≤ i, i.e., there exists a configuration C ′ in which the interval [0, t] is covered

and the location of each sensor sgj of Si with 1 ≤ j ≤ k−1 in C∗ is the same as its location

in Ci (i.e., x′gj ). The assumption trivially holds for k = 1. Below we show that the lemma

statement holds for k.

Our goal is to find a configuration C ′′ in which barrier points of the interval [0, t] are

also covered and the location of each sensor sgj of Si with 1 ≤ j ≤ k in C ′′ is x′gj . We refer

to such a configuration that satisfies the above condition as a satisfying configuration.

According to our algorithm, in the configuration Ck, sgj is at x′gj for all 1 ≤ j ≤ k,

and the interval [0, hk − 1] is covered by sensors of Sk. Hence, if t ≤ hk − 1, then we can

simply let C ′′ = Ck, which is a satisfying configuration. In the following, we assume that

t ≥ hk. Let xC′(sgk) be the location of sgk in the configuration C ′. If xC′(sgk) = x′gk ,

then let C ′′ = C ′, which is a satisfying configuration. In what follows, we assume that

xC′(sgk) 6= x′gk . According to our algorithm, sgk is either from Sk1 or from Sk2. We discuss

the two cases below.

The case sgk ∈ Sk1 If sgk is from Sk1, then according to our algorithm, x′gk = xrgk . As

xC′(sgk) 6= x′gk , it must be that xC′(sgk) < x′gk . Let C ′′ be the configuration obtained from

C ′ by moving sgk from xC′(sgk) rightwards to x′gk . In the following, we show that C ′′ is a

satisfying configuration.
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Indeed, in light of the induction hypothesis, the location of each sensor sgj of Si with

1 ≤ j ≤ k in C ′′ is x′gj (i.e., the same as its location in Ci). Thus, it suffices to show that the

interval [0, t] is covered by sensors of S′i in C ′′. Consider any barrier point bl with l ∈ [1, t].

• If l ≤ hk − 1, then according to our algorithm, bl is covered by a sensor s in Sk in Ci.

As Sk ⊆ Si ⊆ S′i, s is in S′i. Further, since s ∈ Sk, its location position in C ′′ is the

same as in Ci. Therefore, bl is covered by s in C ′′ and thus bl is covered by sensors of

S′i in C ′′ since s ∈ S′i.

• If l ≥ hk, then depending on whether bl is covered by a sensor of Sk in Ci, there are

two subcases. If bl is covered by a sensor of Sk in Ci, then following the same analysis

as above, bl is covered by sensors of S′i in C ′′. Otherwise, since the locations of the

sensors of Sk−1 in C ′′ are the same as in C ′, bl must be covered in C ′ by either sgk or

a sensor in S′i \ Sk.

We claim that bl cannot be covered by sgk in C ′. Indeed, according to our algorithm

invariants, the covering disk of sgk is strictly to the left of bhk in Ck. Since xC′(sgk) <

x′gk , i.e., the location of sgk in C ′ is strictly to the left of its location in Ck, the covering

disk D(sgk) is also strictly to the left of bhk in C ′. Since l ≥ hk, by our definition of

the indices of the barrier points, bl cannot be in D(sgk) in C ′.

The above claim implies that bl is covered in C ′ by a sensor s of S′i \ Sk. Since the

location of s in C ′′ is the same as its location in C ′, s still covers bl in C ′′. Therefore,

bl is covered by sensors of S′i in C ′′.

This proves that C ′′ is a satisfying configuration.

The case sgk ∈ Sk2 If sgk is from Sk2, then according to our algorithm, Sk1 = ∅ and sgk

is the leftmost sensor of Sk2 in the configuration Ck−1 and x′gk is the rightmost location for

sgk to cover bhk−1
(i.e., bhk−1

is on the left half-circle of ∂D(sgk)). If xC′(sgk) < x′gk , then

we can use the same argument as the above case to obtain a satisfying configuration. In the

following, we assume that xC′(sgk) > x′gk . This also implies that sgk does not cover bhk−1
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bhi−1

`
sgk

C ′

bhi−1

`
sa

C ′′

sa

sgk

Fig. 4.3: Illustrating the sensors sa and sgk in the two configurations C ′ and C ′′.

in C ′. Since t ≥ hk > hk−1, there must be a sensor sa that covers the barrier point bhk−1

in C ′. Also, because Sk1 = ∅ and the positions of the sensors sgj for all 1 ≤ j ≤ k− 1 in C ′

are the same as in Ck−1, sa must be from Sk2. As sgk is the leftmost sensor of Sk2 in Ck−1,

it must hold that xrgk ≤ x
r
a.

Let C ′′ be the configuration obtained from C ′ by moving sa to xC′(sgk) and moving sgk

to x′gk , i.e., sa moves to the position of sgk in C ′ and sgk moves to its position in Ck (e.g.,

see Fig. 4.3). Below we argue that C ′′ is a satisfying configuration. For this, we will show

the following: (1) The interval [0, t] is still covered by sensors of S′i in C ′′; (2) the moving

cost of sa is no more than λ (note that since the position of sgk in C ′′ is the same as its

position in Ck, we know that its moving cost in C ′′ is no more than λ; other sensors do not

change locations from C ′ to C ′′).

We first prove the above (1). Since the locations of the senors of sgj for all j ∈ [1, k]

in C ′′ are the same as their locations in Ck, these sensors together cover all barrier points

of the interval [0, hk − 1]. Consider any other barrier point bl with l ∈ [hk, t]. To prove (1),

it suffices to show that bl is covered by a sensor of S′i in C ′′. Recall that bl is covered by a

sensor of S′i in C ′; let s be such a sensor.
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bhk−1

`
sgk

bl

sa

Fig. 4.4: Illustrating the relative positions of sa, sgk , bhk−1
, and bl: the locations of sa and

sgk are xC′(sa) and x′gk , respectively.

1. If s is sgj for any j ≤ k− 1, since s has the same location in C ′ and C ′′, s also covers

bl in C ′′.

2. If s is sa, then we claim that bl must be covered by sgk in C ′′. Indeed, recall that bhk−1

is on the left half-circle of the covering disk of sgk when sgk is at x′gk in C ′′ (and also in

Ck). Since bhk−1
is covered by sa in C ′, we obtain that xC′(sa) ≤ x′gk , where xC′(sa) is

the location of sa in C ′ (e.g., see Fig. 4.4). Since sa also covers bl and l ≥ hk > hk−1,

if we move a disk D of radius r centered at xC′(sa) rightwards until x′gk , D starts at

the covering disk of sa in C ′ and stops at the covering disk of sgk in C ′′. Hence, in the

beginning of the movement of D, it covers bl, and at the end of the movement, bhk−1

is on the left half-circle of ∂D. Since l > hk−1, during the above movement of D, its

left half-circle cannot encounter the barrier point bl. This implies that bl is always

inside D during the movement of D. This further implies that bl is covered by sgk in

C ′′.

3. If s is sgk , then since sa moves to the position of sgk in C ′′, sa also covers bl in C ′′.

4. If s is not a sensor in the above three cases, then s does not change its location from

C ′ to C ′′. Hence, s still covers bl in C ′′.

In summary, the barrier point bl is still covered by sensors of S′i in C ′′.

We proceed to prove the above (2), i.e., the moving cost of sa is no more than λ in C ′′.

Let xC′′(sa) denote the location of sa in C ′′. It suffices to show that xC′′(sa) ∈ [xla, x
r
a].
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According to our definition of C ′′, xC′′(sa) = x′gk . Recall that xrgk ≤ xra. Since x′gk ≤

xrgr , we obtain that xC′′(sa) = x′gk ≤ x
r
gr ≤ x

r
a.

On the other hand, recall that x′gk < xC′(sgk) = xC′′(sa). Also, xC′(sa) ≥ xla, where

xC′(sa) is the location of sa in C ′. Since bhk−1
is on the left half-circle of ∂D(sgk) when sgk is

at x′gk and bhk−1
is covered by sa in C ′ when sa is at xC′(sa), we obtain that xC′(sa) ≤ x′gk .

Therefore, we can derive xla ≤ xC′(sa) ≤ x′gk < xC′(sgk) = xC′′(sa).

This proves that xC′′(sa) ∈ [xla, x
r
a]. Hence, C ′′ is a satisfying configuration. 2

Proving Lemma 5 In what follows, we use Lemma 6 to prove Lemma 5.

Let [0, t] be the largest prefix interval of sensors that can be covered by sensors of S′i

(with respect to the maximum moving cost λ). By Lemma 6, there exists a configuration

C∗ in which [0, t] is still covered and the location of each sensor sgj of Si in C∗ is the same

as its location in Ci, i.e., x′gj .

Consider any sensor sk ∈ S′i \ Si. According to our algorithm, sk is at xrk. By the

definition of S′i, the covering disk D(sk) is strictly to the left of bhi in Ci. Hence, sk cannot

be used to cover bhi in any configuration (with respect to λ), in particular, in C∗. On

the other hand, according to our algorithm, all barrier points of the interval [0, hi − 1] are

covered by sensors of Si in Ci. As the sensors of Si have the same locations in C∗ as in Ci,

all barrier points of [0, hi − 1] are covered by sensors of Si in C∗. Combining the above, we

can conclude that [0, hi − 1] is the largest prefix interval that can be covered by sensors of

S′i in C∗, i.e., t = hi − 1. This proves Lemma 5.

4.5 The Algorithm Implementation

We now provide an efficient way to implement the algorithm in O((n+m) log(n+m))

time. For differentiation, we use “algorithm implementation” to refer to the algorithm we

will discuss below and use “algorithm description” to refer to the algorithm we described

before in Section 4.2.

We sweep a point p on ` from left to right. The event point set is E = {c(b) | b ∈

B}∪{xli, xri | si ∈ S}. We sort all points of E from left to right on ` and put them in a list,
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`
s′

b

s

Fig. 4.5: Illustrating Observation 2.

still denoted by E. Using the sorted list E as a guide, we sweep p on ` from left to right.

When p encounters a point xlk for some sensor sk, we insert sk to a balanced binary search

tree T in which the sensors sk are ordered by their values xrk. As will be shown later, the

tree T is used to maintain the set Si2. When p encounters a point xrk, we remove sk from

T and store sk at a variable s∗ (if s∗ already stores a sensor, we simply update s∗ to sk).

Our algorithm implementation maintains the following invariant: the sensor sk stored in s∗

and all sensors of T are at their positions in C0.

Now consider the case where p encounters c(bj) for some barrier point bj . We assume

that j is equal to hi−1 for some i as defined in the algorithm description. The assumption

is true initially when j = 1 and i = 1. This means that we are at the beginning of the

i-th iteration in the algorithm description. We first need to check whether Si1 = ∅. To this

end, we have the following Lemma 7. But before giving Lemma 7, we prove the following

observation, which will be used in the proofs of Lemma 7 and other lemmas.

Observation 2 Consider a barrier point b and two sensors s and s′. Suppose the followings

hold (e.g., see Fig. 4.5): (1) s′ is to the right of s; (2) s covers b; (3) b is to the right of

the left half-circle of ∂D(s′). Then, s′ also covers b.

Proof: Assume to the contrary that s′ does not cover b. Then, since b is to the right of the

left half-circle of ∂D(s′), b must be strictly to the right of the right half-circle of ∂D(s′).

Because s′ is to the right of s, b must also be strictly to the right of the right half-circle of

∂D(s). But this means that s does not cover b, a contradiction. 2
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Lemma 7 If the sensor sk stored in s∗ covers bj when sk is at xrk, then sk ∈ Si1; otherwise

(including the case where s∗ does not store any sensor) Si1 = ∅.

Proof: Suppose the sensor sk stored in s∗ covers bj when sk is at xrk. To prove the lemma,

it suffices to show that if Si1 6= ∅, then sk must be Si1. In the following, we assume that

Si1 6= ∅. Our goal is to prove that sk is in Si1. Since sk is stored in s∗, according to our

algorithm implementation invariant, sk is at xrk. Hence, to prove sk ∈ Si1, by the definition

of Si1, it is sufficient to show that sk covers bj (when sk is at xrk).

Let sa be a sensor of Si1. If sa is sk, then it is vacuously true that sk ∈ Si1. In

what follows, we assume that sa is not sk. Because sa is in Si1, according to our algorithm

description, sa is at xra and has never been moved during the algorithm, and further, sa

covers bj . Since the sweeping point p is at c(bj), which is the rightmost position on ` for

the center of a circle of radius r to cover bj , p must have passed xra. Therefore, according

to our algorithm implementation, sa had been stored in s∗ before and later s∗ got updated

to sk. This implies that sk is to the right of sa (and both of them are at their rightmost

λ-reachable locations). Because p is now at c(bj), p has already passed xrk. Therefore, bj is

to the right of left half-circle of ∂D(sk). Since bj is covered by sa and sk is to the right of

sa, by Observation 2, bj must be covered by sk. 2

By Lemma 7, if s∗ does not store any sensor or if the sensor stored at s∗ does not cover

bj , then Si1 = ∅. Otherwise, the sensor stored at s∗, denoted by sk, covers bj and is in Si1.

Depending on whether Si1 = ∅, there are two cases to proceed.

The case Si1 6= ∅ We first consider the case Si1 6= ∅. In this case, according to our

algorithm description, we can simply choose sk as sgi and add it to Si−1 to obtain Si. Next,

we need to determine hi, which is equal to l + 1 with l as the largest index such that all

barrier points bj , bj+1, . . . , bl can be covered by sensors of Si. To find l, we initialize l = j

and then keep sweeping p rightwards. If p encounters a point xlk or xrk, we process the event

in the same way as before. If p encounters a point c(bj′), we know that j′ = l+ 1. We need

to determine whether bj′ can be covered by sensors of Si. For this, we have the following

lemma.
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Lemma 8 bj′ can be covered by sensors of Si if and only if bj′ can be covered by sgi.

Proof: If bj′ is covered by sgi , then it is vacuously true that bj′ is covered by sensors of Si

because sgi is in Si.

Now assume that bj′ is covered by a sensor sga ∈ Si. We need to prove that sgi also

covers bj′ . This is obviously true if a = i. We now assume a 6= i, implying that a < i.

According our algorithm implementation, bj′ is to the right of the left half-circle of ∂D(sk)

and sgi = sk. According to our algorithm invariants in the algorithm description, sga is to

the left of sgi . Since sga covers bj′ , by Observation 2, sgi also covers bj′ . 2

In light of Lemma 8, we check whether bj′ is covered by sgi . If yes, we increment l by

one and proceed as above (if l = n, then all barrier points are covered and we can stop the

algorithm and report λ ≥ λ∗). Otherwise, we set hi = j′; in this case, we have finished the

i-th iteration of the algorithm and we then proceed to the (i+ 1)-th iteration.

The case Si1 = ∅ We now consider the case Si1 = ∅. In this case, we need to know

whether Si2 = ∅, and if not, we need to find the leftmost sensor in Si2. For this, we have

the following lemma.

Lemma 9 The sensors stored in the current tree T are exactly the sensors of Si2.

Proof: We prove the lemma by analyzing our algorithm implementation. Recall that the

sweeping point p is now at c(bj) and j = hi−1.

• Let sa be a sensor of Si2. We show that sa is stored in T . Indeed, since sa is in

Si2, by the definition of Si2, we have xla ≤ c(bj) < xra. According to our algorithm

implementation, when p encounters xla, sa is inserted to T and will not be removed

from T until p counters xra. Since p is at c(bj) right now and c(bj) < xra, sa is still in

T .

• Let sa be a sensor stored in T . We show that sa is in Si2. Indeed, since sa is

in T , according to our algorithm implementation, p has already passed xla but not

encountered xra yet. Since p is at c(bj) right now, we obtain that xla ≤ c(bj) < xra.
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Further, according to our algorithm implementation invariant, sa has not been moved

from its position in C0, i.e., sa is still at xra. Therefore, sa is in Si2.

This proves the lemma. 2

In light of Lemma 9, we can use T to find the leftmost sensor of T in O(log n) time;

let sk denote the sensor. We choose sk as sgi and add it to Si−1 to obtain Si. Then, we

move sk leftwards to c(bj), i.e., setting x′k = c(bj), and remove sk from T . We also remove

both events xlk and xrk from the list E because we do not need to process these two events

anymore.1 Next, we need to determine hi. This can be done using the same method as in

the above case where Si1 6= ∅ (i.e., keep sweeping p rightwards and making use of Lemma 8,

which is still applicable here). After hi is found, we finish the i-th iteration of the algorithm

and begin the (i+ 1)-th iteration.

This finishes the description of the algorithm implementation. The proof of the follow-

ing lemma analyzes the running time of the algorithm.

Lemma 10 Given any λ, whether λ ≥ λ∗ can be decided in O((m+ n) log(n+m)) time.

Proof: We analyze the running time of our implementation. In the beginning, computing

the sorted list E takes O((m+ n) log(m+ n)) time. There are O(n+m) operations on E,

each of which takes O(1) time. The time we spent on the binary search tree T is bounded

by O(n log n) as there are n sensors and each sensor can be inserted and removed from T at

most once (also, there are at most n operations of “finding the leftmost sensor”). Therefore,

the total time of the algorithm is O((n+m) log(n+m)). More specifically, after the points

of E are sorted in O((m+n) log(m+n)) time, the rest of the algorithm takes O(m+n log n)

time. 2

4.6 The Optimization Problem

We now solve the optimization problem, i.e., computing λ∗, by using the algorithm of

Lemma 10 as a subroutine. We begin with the following lemma.

1To implement each remove operation in constant time, we can store the list E by a doubly-linked list
and associate each of the values xl

a and xr
a for all sensors sa ∈ S with a pointer pointing to its location in E.
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Lemma 11 λ∗ is equal to (xi −
√
r2 − y2bj − xbj )/wi or (xbj −

√
r2 − y2bj − xi)/wi for a

sensor si and a barrier point bj.

Proof: The proof is almost the same as that of Lemma 2 except that we have to consider

the weight in the last step of the proof. We briefly discuss it below.

Consider an optimal solution OPT , where λ∗ is the maximum moving cost of all sensors.

Then, λ∗ is equal to the moving cost of some sensor si. Let x′i be the x-coordinate of

si in OPT . If x′i < xi, then si has been moved leftwards and there must be a barrier

point bj on the left-circle of ∂D(si). Thus, we have x′i =
√
r2 − y2bj + xbj . Hence, λ∗ =

(xi − x′i)/wi = (xi −
√
r2 − y2bj − xbj )/wi. If x′i > xi, by similar analysis, we can show that

λ∗ = (xbj −
√
r2 − y2bj − xi)/wi. 2

For each sensor si, we will define two sorted arrays Ai[1 · · ·m] and Bi[1 · · ·m] of size m

each. Unlike the unweighted case where defining sorted arrays is relatively straightforward,

here the definitions are quite subtle. We define the array Ai first, which consists of the values

(xi−
√
r2 − y2bj −xbj )/wi for all j = 1, . . . ,m. For each j ∈ [1,m], let aj =

√
r2 − y2bj +xbj .

We sort the values aj for all j = 1, . . . ,m in ascending order. For each j ∈ [1,m], we let

π(j) = k if ak ranks the j-th place in the above sorted list. Hence, π(·) is a permutation of

the indices 1, 2, . . . ,m; note that we can obtain π(·) in O(m logm) time. For each j ∈ [1,m],

we define Ai[j] = (xi − aπ(j))/wi. In light of the definition of π(·), Ai is a sorted array.

Analogously, we can define a sorted array Bi for the m values (xbj −
√
r2 − y2bj − xi)/wi,

j = 1, . . . ,m. Note that the permutation π(·) can be used to define Ai for all i = 1, 2, . . . , n.

Hence, in O(n + m logm) time, we can implicitly form 2n sorted arrays Ai and Bi for all

i = 1, 2, . . . , n, such that given any index j and any array Ai (resp., Bi), we can obtain

the array element Ai[j] (resp., Bi[j]) in O(1) time. Also, Lemma 11 implies that λ∗ is the

smallest feasible value of all elements of these arrays. By applying Lemma 3 and using

our decision algorithm in Lemma 10, we can find λ∗ in O((n + m) log2(n + m)) time. We

summarize our result in the following theorem.

Theorem 2 Given a set of m barrier points in the plane and a set of n weighted sensors

on a line `, the problem of moving sensors on ` to cover all barrier points such that the
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maximum moving cost of all sensors is minimized can be solved in O((m+ n) log2(m+ n))

time.
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CHAPTER 5

THE MOBILE INTERVAL COVERAGE PROBLEM

In this chapter, we consider the mobile interval coverage problem, where the barrier

points are on the x-axis ` while the sensors can be anywhere in the plane. The problem is

to move all sensors to ` to cover all barrier points so that the minimum moving cost of all

sensors is minimized.

We first sort all barrier points from left to right on ` in O(m logm) time; let B =

{b1, b2, . . . , bm} be the sorted list. Recall that for each sensor si ∈ S, (xi, yi) is its coordinate.

In the weighted case, each sensor si has a weight wi > 0. In the following, we only give an

algorithm for the weighted case because we do not have a faster algorithm for the unweighted

case. Our goal is to compute the optimal moving cost λ∗. Note that since we require that

all sensors finally move to `, it must hold that λ∗ ≥ max1≤i≤nwi · yi.

We again first consider the decision problem: Given any λ, decide whether λ ≥ λ∗. We

present an algorithm of O(m+ n log n) time (not including the time for sorting the barrier

points) for the problem. Later we will solve the optimization problem (i.e., computing λ∗)

using Lemma 3 and the decision algorithm.

5.1 The Decision Problem

Consider a value λ. We assume that λ ≥ max1≤i≤nwi ·yi since otherwise it is impossible

to move all sensors to ` (and thus we immediately report λ < λ∗). For each sensor si, define

xri = xi +
√

(λ/wi)2 − y2i and xli = xi−
√

(λ/wi)2 − y2i . We call xri (resp., xli) the rightmost

(resp., leftmost) λ-reachable location of si.

At the outset, we move each sensor si to xri on `. Let C0 denote the resulting con-

figuration. The rest of the algorithm is similar to the one in Section 4.1. In fact, we can

basically apply the same algorithm. But since the problem setting here is simpler (because

all barrier points are now on `), below we describe the algorithm in a simpler way (the
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running time is also slightly faster if m is significantly larger than n).

Consider the i-th iteration of the algorithm (initially i = 1). Let Ci−1 denote the

configuration right before the iteration. Our algorithm maintains the following invariants:

1. A subset Si−1 = {sg(1), sg(2), . . . , sg(i−1)} of sensors has been computed.

2. In Ci−1, each sensor sk of Si−1 is at a location, denoted by x′k, which may not be

equal to xrk, while sensors of S \ Si−1 are still in their locations of C0.

3. An index hi−1 of a barrier point is maintained such that in the configuration Ci−1,

the barrier point bhi−1
is not covered by any sensor of Si−1 while bk is covered by a

sensor in Si−1 for each k < hi−1

4. Each sensor of Si−1 covers at least one barrier point bj with j < hi−1 in Ci−1.

5. The locations of the sensors sg1 , sg2 , . . . , sgi−1 in Ci−1 are sorted from left to right on

`.

6. The barrier point bhi−1
is strictly to the right of the covering disk D(sgi−1) of sgi−1 if

Si−1 6= ∅.

Initially when i = 1, we have S0 = ∅ and set h0 = 1; thus all algorithm invariants

hold. The i-th iteration of the algorithm finds a sensor sgi from S \ Si−1 and move it to a

new location x′gi ; we thus obtain a new configuration Ci with Si = Si−1 ∪ {sgi}. We briefly

discuss algorithm below.

Define Si1 be the set of sensors that cover the barrier point bhi−1
in Ci−1. Again, due

to our algorithm invariants, Si1 ⊆ S \ Si−1.

If Si1 6= ∅, we choose an arbitrary sensor in Si1 as sgi and set x′gi = xrgi . Hence,

Ci = Ci−1. Next, we set hi = k+ 1, where k is the largest index such that all barrier points

of [hi−1, k] are covered by Si (it is easy to see that a barrier point bl with l ≥ hi−1 is covered

by Si if and only if bl is covered by sgi , i.e., Lemma 8 is still applicable). If k = m, then we

stop the algorithm and report λ ≥ λ∗.
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If Si1 = ∅, we define Si2 as the set of sensors of S \Si−1 that do not cover bhi−1
in Ci−1

but can be moved leftwards to cover bhi−1
. If Si2 6= ∅, we choose the leftmost sensor of Si2

as sgi and set x′gi = xb + r to obtain a new configuration Ci, where b = bhi−1
. Next, we

set hi in the same way as above. If Si2 = ∅, then we terminate the algorithm and report

λ < λ∗.

The algorithm will terminate in at most min{m,n} iterations. The correctness of the

algorithm can be proved in a similar way as before.

To implement the algorithm, we first sort the barrier points in the preprocessing, which

takes O(m logm) time. Then, given any λ, we can implement the algorithm in O(m+n log n)

time using essentially the same implementation as in Section 4.1. We briefly discuss it below.

We first compute xri and xli for each sensor si ∈ S, and sort all these 2n values in

O(n log n) time. Then, we compute the value c(b) for each barrier point b ∈ B. Unlike

in Section 4.1, here the value c(b) is fixed and does not depend on λ, and the sorted list

of c(b) of all barrier points b ∈ B is consistent with the sorted list of all barrier points

b ∈ B. Since the sorted list of B is already computed in the preprocessing, we can obtain

the sorted list of c(b) for all barrier points b ∈ B in O(m) time. By merging it with the

sorted list of xri and xli for all sensors si ∈ S, we can obtain the sorted list of the event

set E = {c(b) | b ∈ B} ∪ {xli, xri | si ∈ S} in additional O(n + m) time. Using E, we run

the same sweeping algorithm as before. We still use a binary search tree T to maintain the

sensors of Si2 and use a variable s∗ to store a sensor of Si1. When p encounters xlk for a

sensor sk, we insert sk to T . When p encounters xrk, we remove sk from T and set s∗ to

sk. When p encounters a barrier point bj , we determine the sensor sgi using the variable s∗

and the tree T in the same way as before. As analyzed in the proof of Lemma 10, the total

time of the algorithm is O(m+ n log n).

Lemma 12 After O(m logm) time preprocessing, given any λ, whether λ ≥ λ∗ can be

decided in O(m+ n log n) time.
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5.2 The Optimization Problem

We now show how to compute λ∗. We first implicitly form 2n sorted arrays as follows.

For each sensor si, we define two sorted arrays Ai[1 . . .m] and Bi[1 · · ·m] of size m each: for

each 1 ≤ j ≤ m, Ai[j] = (
√
x2i + y2i − r−xbj )/wi and Bi[j] = (xbj − r−

√
x2i + y2i )/wi. One

can verify that λ∗ must be one of the elements of these arrays (e.g., using analysis similar

to Lemmas 2 and 11) and each array is sorted. Then, applying Lemma 3 with our decision

algorithm in Lemma 12, λ∗ can be computed in O(m logm+(m+n log n) log(n+m)) time,

which is bounded by O(m logm+ n log2 n) as shown in the following lemma.

Lemma 13 m logm+ (m+ n log n) log(n+m) = O(m logm+ n log2 n).

Proof: To prove the lemma, first it is easy to see that m logm+ (m+n log n) log(n+m) =

O(m logm + n log n log(n + m)). Further, if m ≥ n2, then m logm + n log n log(n + m) =

O(m logm); otherwise, log(n + m) = Θ(log n) and thus m logm + n log n log(n + m) =

O(m logm+ n log2 n). The lemma thus follows. 2

The following theorem summarizes our result for the mobile interval coverage problem.

Theorem 3 Given a set of m barrier points on a line ` and a set of n weighted sensors

in the plane, the problem of moving sensors to ` to cover all barrier points such that the

maximum moving cost of all sensors is minimized can be solved in O(m logm + n log2 n)

time.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we present efficient algorithms for solving line-constrained mobile sensor

coverage problems. Future work includes investigating whether a logarithmic factor can be

further shaved for the weighted case of the mobile disk coverage problem as well as for the

mobile interval coverage problem. In particular, it would be interesting to see whether a

faster algorithm exists for the unweighted case of the mobile interval coverage problem.

Note that for the 1D problem, i.e., all sensors and barrier points are given on ` and

sensors are allowed to move on ` only, the algorithm can be simplified as follows. For

the unweighted case, we can use the same algorithm as in Section 3 but the algorithm

becomes simpler as yb = 0 for each barrier point b ∈ B. The runtime of the algorithm is

O((m+n) log(n+m)). For the weighted case, we can use the same algorithm as in Section 5

but the algorithm becomes simpler as yi = 0 for each sensor si ∈ S. The runtime of the

algorithm is O(m logm+ n log2 n).
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