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ABSTRACT 

Analysis of Large Embankment Dam in Case of Rapid Drawdown and Earthquake 

Aftershock 

by 

Pothikul Vivithkeyoonvong, Master of Science 

Utah State University, 2021 

 

Major Professor: Dr. James A. Bay 
Department: Civil and Environmental Engineering 

Dams and reservoirs are important as a source of freshwater as well as for 

regulating flooding and producing hydroelectricity. The same as with any other 

manmade structure, dams need to monitored and maintained to prevent disastrous 

failure. 

One of the events that can reduce the stability of an embankment dam is rapid 

drawdown. Rapid drawdown is when the water level decreases at such a rapid rate that 

the dam material(s) cannot drain and adjust to the equilibrium in time. Without the 

buttressing effect of the water, the upstream slope of the dam becomes less stable. 

Another threat to dam stability is earthquake shakings. Strong seismic events can cause 

damage to dams and appurtenant structures. 

The main objective of this thesis is to analyze the stability of large embankment 

dam in the event of rapid drawdown and aftershock loading at the same time. The slope 
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stability analysis is run in the program GeoStudio 2020. Sirikit Dam is used for the 

analyses. The dam geometry and materials properties used are a combination of 

existing data, reasonable estimation, Stark and Hussain’s (2013) empirical correlation for 

drained fully softened secant friction angle, and engineering judgment. 

The method for analyzing slope stability during rapid drawdown in this research 

is the multi-stage rapid drawdown analysis proposed by Duncan, Wright, and Wong 

(1990). 

Seismicity data for the two active faults in the area are from a U.S. Geological 

Survey report, Thailand’s Department of Mineral Resources, and Thailand’s 

Meteorological Department. Maximum moment magnitude of each earthquake source 

is estimated from these data. Using Bath’s Law, the largest aftershock magnitude is 

estimated. Maximum peak ground acceleration (PGA) is estimated from the NGA-West2 

ground motion prediction equations (GMPEs) model. Horizontal seismic coefficients (kh) 

are determined from PGA and applied in the SLOPE/W slope analysis in GeoStudio. 

The results of this study show that this mode of failure should be considered for 

embankment dams. The analyses results shows that Sirikit Dam outperforms the 

required factors of safety in the largest possible event of rapid drawdown and 

aftershock. This method of analysis can be extended to other embankment dams. 

Further research could estimate the probability of this event. 

 

 

(119 pages)  
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PUBLIC ABSTRACT 

Analysis of Large Embankment Dam in Case of Rapid Drawdown and Earthquake 

Aftershock 

Pothikul Vivithkeyoonvong 

 

 Dams and reservoirs are important as a source of freshwater as well as 

for regulating flooding and producing hydroelectricity. The same as with any other 

manmade structure, dams need to monitored and maintained to prevent disastrous 

failure. 

One of the events that can reduce the stability of an embankment dam is rapid 

drawdown. Rapid drawdown is when the water level decreases at such a rapid rate that 

the dam material(s) cannot drain and adjust to the change in time. Without the 

buttressing effect of the water, the upstream slope of the dam becomes less stable. 

Another threat to dam stability is earthquake shakings. Strong seismic event can cause 

damage to dams and appurtenant structures. 

The analysis is run in the program GeoStudio 2020 using existing data, 

reasonable estimation, well-accepted theories, and engineering judgment. 

The results of this study show that this mode of failure should be considered for 

embankment dams. The analyses results shows that Sirikit Dam outperforms the 

required factors of safety in the largest possible event of rapid drawdown and 

aftershock. This method of analysis can be extended to other embankment dams. 

Further research could estimate the probability of this event.  
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Disclaimer 

The purpose of this research was to assess the viability of a dam failure mode 

involving the combination of rapid drawdown and seismic loading due to an earthquake 

aftershock, and to determine methods and procedures to evaluate this failure mode.  

The analyses required to assess this failure mode were performed on Sirikit (SRK) Dam.  

To perform these analyses, we relied on data and material properties developed and 

published by others, that we could not verify.  Furthermore, there is no record of other 

material properties required for these analyses.  Lacking actual measurements of 

material properties, reasonable assumptions were made, that would be consistent with 

typical properties of materials used in a well-constructed earth dam.   

While this research did not raise any concerns about the safety of SRK Dam, it 

should not be construed as being specific to SRK Dam.  Applying these analyses to SRK 

Dam, or any other dam would require a laboratory and field investigation of geometry 

and material properties of that specific dam.  Lacking these investigations, this research 

should be viewed a general evaluation of the failure mode, and the development of 

procedures to evaluate the failure mode.   
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CHAPTER 1 

INTRODUCTION 

Dams and reservoirs play a vital role in providing usable water for humanity. 

They regulate flooding, can be used for recreation, and produce clean hydroelectric 

power. A dam is a manmade structure that needs to be designed, built, and maintained 

thoroughly as the failure of a dam can cause major loss of life and property damage. 

One phenomenon that can threaten the stability of a dam is rapid drawdown. 

This occurs when the water level on the upstream face of a dam decreases at such a 

rate that the dam’s fine-grained materials do not have enough time to drain and adjust. 

Without the buttressing effect of the water, the upstream slope becomes less stable. 

Rapid drawdown may lead to slope failure, which may develop into dam breach. 

Another threat to a dam’s stability is earthquake shakings. Earthquakes can 

cause such damage to a dam as cracks, crest settlement, and slope failure. They can lead 

to overtopping or internal erosion that develops into a dam breach. Earthquakes may 

cause seiches and large waves in the reservoir that may overtop the dam. Damage to a 

water-releasing structure such as a spillway, river outlet, or penstock can impede 

controlled water release and may lead to overtopping. 

An aftershock is a smaller earthquake that follows the larger main shock. An 

aftershock that follows a large earthquake can be quite large itself and may cause more 

damage to the already weakened structures. If a reservoir were to being drawn down 
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after exhibiting damage from a main shock, it is very likely that it would also experience 

aftershocks. 

Rapid drawdown and aftershocks may seem unrelated. However, under certain 

circumstances, they may contribute to a dam breach. One possible sequence starts when 

a large earthquake occurs and causes consequential damage to a fine-grained 

embankment dam. The dam operators, in an attempt to lessen the load on the dam, may 

decide to draw down the reservoir. As a result, the upstream slope will be in a rapid-

drawdown condition. An aftershock may occur within that time period and may cause 

slope failure, which in turn may lead to dam breach. This sequence is shown in Fig 1.1. 

 

Fig. 1.1 Simplified event tree for possible dam breach event due to rapid drawdown and 
aftershock loading. 

This research investigates the failure mode of rapid drawdown with earthquake 

aftershocks, leading to a dam breach. The Dam used in the analyses is Sirikit Dam (SRK 
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Dam). SRK Dam is a 113.6 m tall earth dam located in Uttaradit Province, Thailand. Its 

large reservoir and powerhouse have a vital role in providing fresh water, preventing 

flooding, and generating electricity for the northern region of Thailand. There are two 

known active faults located within a 200 km radius of the dam. 

SRK Dam has a very large reservoir and thus cannot be drawn down very rapidly. 

It is also in a region with moderate seismicity. To make this research applicable to other 

dams, the analyses include larger drawdown rates and larger earthquake aftershocks 

than SRK Dam could experience.   

The objectives of this research are as follows: 

• To identify if this new mode of failure should be included in risk assessment 

for embankment dams.  

• To analyze the stability of SRK Dam in the event of rapid drawdown coupled 

with aftershock loading. 

• To determine whether to modify the current large earthquake emergency 

plan. 

To perform this research, SRK Dam is modeled in GeoStudio 2020. The initial 

water level is at normal full pool for the reservoir (+162m MSL). The embankment 

material properties are determined from existing data, literature, and engineering 

judgment. The two analyses in GeoStudio are SEEP/W and SLOPE/W. SEEP/W analyzes 

the steady-state seepage conditions for a water level from +162m MSL to +112m MSL at 

5m intervals. The levels of drawdown in meters are 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 

and 50. These levels include the practical and impractical drawdown for SRK Dam. 
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SLOPE/W uses the pore water pressure condition from SEEP/W analyses and various 

seismic coefficients to determine the critical factor of safety for each scenario. From 

then on, scenarios with practical drawdown levels and aftershock seismic coefficients 

are analyzed to determine if the factors of safety meet the minimum requirement. 

This thesis consists of five chapters. Chapter 1 is the research introduction of the 

subject and objectives. Chapter 2 presents a summary of literature materials relevant to 

understanding and selecting suitable data and parameters in soil strengths, rapid 

drawdown analysis, seismic hazard analysis, and aftershocks. Chapter 3 is a description 

of data used in the analysis of SRK Dam in case of rapid drawdown and aftershock 

loading. Chapter 4 describes the development of SRK Dam model in the GeoStudio 

program. Chapter 5 discusses the analysis procedure and presents the results. Lastly, 

Chapter 6 contains the summary and conclusions of this research. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Although there is extensive research on the topic of rapid drawdown and seismic 

loading on dams, there is little research that include the two events happening 

simultaneously. The effects both phenomena have on slope stability are still little 

known. 

The following topics are related to strength parameters for an existing dam, 

rapid drawdown, ground motion prediction, and aftershocks. 

2.2 Fully Softened Shear Strength 

2.2.1 Stress-Strain Behavior in Fine-Grained Soils 

Overconsolidated and compacted clays have brittle stress-strain characteristics. 

After the peak in the stress-strain curve has been reached, the shearing resistance of the 

brittle soils decrease with further strain. Skempton (1977) concluded that 

overconsolidated clays undergo a softening process which results in the fully softened 

strength and not the peak shear strength of the intact or unsoftened overconsolidated 

clay. Fully softened strengths are used for slopes that have not undergone previous 

sliding (first-time slides). 
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The source of the fully softened strength of fine-grained soil is achieved when 

clay structure is destroyed during straining. With further strain, clay particles align with 

the failure surface forming slickensides, and strength is further reduced to a residual 

shear strength. Both fully softened and residual shear strength depend on mineral 

composition, which is related to plasticity and grain-size characteristics. 

Fully softened strength is numerically equivalent to the drained peak strength of 

a normally consolidated specimen given that there is no preexisting slickensided failure 

surface as shown in Fig. 2.1. It corresponds with the back-calculated strengths of first-

time slides. Once a failure has occurred and a continuous slickensided failure surface has 

developed, only the residual shear strength is available to resist sliding. 

This type of stress-strain behavior makes progressive failure possible, and makes 

it impossible to mobilize the peak strength simultaneously at all points around a 

potential shear surface. 

 

Fig. 2.1 Shear strengths of fine-grained soil. 
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2.2.2 Progressive Failure 

Duncan, Wright, and Brandon (2014) 

Progressive failure is an effect of soil brittleness. Field observations indicate that 

the fully softened strength can be mobilized around excavations in fissured clays and 

compacted clay embankments subjected to cycles of desiccation and weathering. 

A non-uniform ratio of stress to strength along the potential slip surface results 

in different points reaching the peak strength and fully softened strength at different 

times. Duncan et al. (2014) stated that in the case of excavated slopes in 

overconsolidated clay and shales, particularly stiff-fissured clays and shales, there is a 

strong possibility of progressive failure. Immediately after excavation of the slope (at 

time t1), only the stresses at point A might have reached the peak of the stress-

displacement curve as shown in Fig. 2.2. The slope would rebound into the cut as a 

result of delayed response to the unloading from the excavation, and possibly also due 

to swelling of the clay as its water content increases following the reduction in stress. 

With time (t2), the displacements at A, B, and C would all be larger. The shear 

stress at point A would decrease as it moves beyond the peak, and the shear stresses at 

points B and C would move toward the peak. 

At some later time (t3), the shear stress at point B would also pass the peak and 

decrease the average shear strength. Through this process, progressively, failure would 

spread around the slip surface, without ever mobilizing the peak shear strength 

simultaneously at all points along the slip surface. 
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In conclusion, it would be an overestimation to assume that the entire slope is at 

peak strength when mobilized. Therefore, in slope stability analysis where slickensides 

have not developed, fully softened strength is used to model progressive failure. 

 

Fig 2.2. Mechanism of progressive failure on an excavated slope in overconsolidated 
clay (Duncan et al. 2014). 

2.2.3 Drained Fully Softened Friction Angle for Fine-Grained Soil 

Stark and Hussain (2013) 

The fully softened strength of fine-grained soil corresponds to a random 

arrangement of clay particles and is stress dependent. Therefore, an empirical 

correlation incorporating effective normal stress (σ’n), liquid limit (LL), and clay fraction 

(CF) provides a good estimate of the friction angles. These empirical correlations were 



9 
 

developed using torsional ring shear test results and verified using back-analysis of 

landslide case histories. 

Stark and Hussain (2013) stated that the empirical correlation for drained fully 

softened secant friction angle requires only LL and CF to estimate the drained ɸ’fs.   

Thus, the fully softened strength correlation suggested by Stark, Choi, and McCone 

(2005) provides a reliable estimate of ɸ’fs for use in preliminary design, verification of 

laboratory test results, and confirmation of back analysis of first-time slides. 

The fully softened strength empirical correlation uses three different CF groups 

(CF ≤ 20%, 25% ≤ CF ≤ 45%, and CF ≤ 50%) and accounts for the effect of CF and σ’n on 

ɸ’fs values, as shown in Fig. 2.3.

 

Fig 2.3 Empirical correlation for drained fully softened secant friction angle based on LL, 
CF, and σ’n for 39 natural soils (Stark and Hussain 2013). 



10 
 

The current study suggests a separate mathematical expression for each trend 

line of the correlation in Fig. 2.3 that can be used to estimate values of ɸ’fs and a stress-

dependent strength envelope using values of LL and CF measured using disaggregated 

samples. 

2.2.4 Effective Cohesion 

The fully softened shear strength corresponds to the drained peak strength of a 

normally consolidated specimen, and this suggests that the value of effective stress 

cohesion (c’) should be set to zero, i.e., the value of cohesion measured in shear tests on 

normally consolidated clay (Holtz et al. 2013; Terzaghi et al. 1996) for the analysis of 

first-time slides in overconsolidated clays. This is important because even small values of 

c’ can result in significant differences in calculated factors of safety, especially in shallow 

slides, such as levee or embankment slopes. However, back-analysis of first-time slides 

in London clay indicates that small values of c’, approximately 0.96 kPa (20 psf), can be 

mobilized (Chandler and Skempton 1974). Skempton (1977) also suggested a c’ of 0.96 

kPa (20 psf) and a ɸ’fs of 20 degrees for London clay. Mesri and Abdel-Ghaffar (1993) 

back-analyzed 45 case histories and concluded that c’ can range from zero to 24 kPa. In 

summary, the fully softened value of cohesion should be zero unless back-analysis of 

local case histories suggests a value greater than zero. 
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2.3 Slope Stability During Rapid Drawdown 

The upstream slope stability of an embankment dam or a levee is influenced by 

water pressure. The water has a buttressing effect that increases the stability of the 

upstream slope. If the water level drops at such a rapid rate that the pore pressures 

within the slope do not have enough time to adjust in equilibrium with the drop in 

external water level, the slope becomes less stable (Duncan et al. 1990). Rapid 

drawdown failure can and does happen on river bank slopes and other slopes subject to 

submersion. 

Rapid drawdown is frequently the design condition that controls the steepness of 

the upstream slopes of dams. Factors of safety for this condition vary from case to case. 

For dams with an extremely large storage capacity, rapid drawdown from a high reservoir 

level is an improbable event. Therefore, the factor of safety for the rapid drawdown 

condition may be lower. On the other hand, pumped-storage reservoirs experience 

drastic water level changes as a regular operating condition. Therefore, they require a 

higher factor of safety for the drawdown condition. The minimum required factor of 

safety for rapid drawdown from USACE Slope Stability manual (2003a) is 1.1–1.3. 

The permeability of the embankment material dictates the rate at which an 

embankment will drain. The higher the permeability, the faster the material drains. In 

some cases, it may be difficult to decisively determine if the material will drain or not. 

Thus, it must be assumed that drainage will or will not occur, whichever will result in the 

lower shear strength within the particular zone, and the lowest factor of safety for the 

slope (Duncan et al. 1990). 
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There are a number of methods for analyzing slope stability during rapid 

drawdown. These include the effective stress method, the Corps of Engineers method 

(U.S. Army 2003), and the Lowe and Karafiath method. In 1990, Duncan, Wright, and 

Wong proposed the “multi-stage rapid drawdown analysis,” also known as “staged 

undrained strength,” that combines the best features of previous methods. The three 

steps are as follows: 

1. Determine whether drainage will occur during rapid drawdown. This must be 

performed for every soil layer in the cross-section. The dimensionless time factor 

T is estimated by the following equation: 

T = cvt/D2 (Eq. 2.1) 

where cv = coefficient of consolidation, t = time for drawdown, and D (or H) = 

length of drainage path. 

Values of cv can be calculated using data for the time rate of 

consolidation during consolidation tests. Approximate values for various types of 

compacted soils are listed in table 2.1. 

If the calculated value of T is equal to or greater than 0.848, the 

dissipation of excess pore pressures during drawdown will be 90 percent or 

more, and it is reasonable to consider the material fully drained. If the value of T 

is less than 0.848, undrained strength should be considered. The following steps 

assure that the undrained strength used in the stability analyses will not be 

larger than the drained strength. If there is doubt whether or not complete 

drainage will occur, the material should be assumed to be undrained. 
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2. Establish the strength envelopes required for the analyses. If the materials drain 

during drawdown, only the drained strength envelope is required. If low-

permeability materials are undrained during drawdown, both the drained 

envelope and the undrained envelope from an isotopically consolidated CU test 

are required. The required envelopes for values of Kc between 1.0 and Kf can be 

determined by linear interpolation. 

Kc is the effective principal stress ratio during consolidation, σ’1c/ σ’3c. In the 

earlier rapid drawdown method presented by Lowe and Karafiath in 1960, the 

undrained stress of soils, when plotted as τff vs σ’fc , varies with Kc. The value of 

this ratio can vary from unity (for consolidation under isotropic stresses) to Kf, 

the value σ’1c/ σ’3c at failure. For any material there is a family of undrained 

strength envelopes corresponding to different values of Kc varying from 1.0 to Kf. 

This multistage analysis uses this τff vs. σ’fc envelope as shown in Fig. 2.4. 

Table 2.1 Approximate value of cv for various soils (after Duncan et al.,1990). 
Type of Soil Values of cv 

ft2/day m2/day 
Coarse sand >10,000 > 929 

Fine sand 100 to 10,000 9.3 to 929 
Silty sand 10 to 1000 0.93 to 92.9 

Silt 0.5 to 100 4.6x 10-2 to 9.3 
Compacted clay 0.05 to 5 4.6 x 10-3 to 0.46 

Soft clay < 0.2 < 1.86 x 10-2 

 

3. Calculate the factor of safety after drawdown for a slip surface using a 3-step 

procedure: 
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Fig. 2.4 Undrained strength envelope (Duncan et al. 1990). 

i. Perform a stability analysis before drawdown using drained strength 

parameters for all materials in the slope. The pore-water pressure 

condition uses the piezometric line before drawdown. This step is to 

determine the effective normal stress (σ’fc) and shear stress (τff) on the 

base of each slice and the value of Kc for each slice. 

ii. Perform an analysis of stability after drawdown using piezometric line 

after drawdown as pore-water pressure condition. For materials that 

drain during drawdown, use effective strength parameters. For materials 

that do not drain freely, use the interpolated strengths determined in 

stage i. 

iii. Compute drained strength for all slices along the slip surface using the 

effective normal stress from stage ii and the effective strength 
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parameters. For materials that do not drain freely, compute the 

undrained strength at the base of the slice and compare with the drained 

strength. Choose the smaller strength to compute factor of safety. 

4. Repeat the 3-step procedure for other slip surfaces to locate the critical slip 

surface (the one with the lowest factor of safety) following drawdown. 

2.4 Ground Motion Prediction 

The Pacific Earthquake Engineering Research Center (PEER), in collaboration with 

international multidisciplinary experts, has developed the “Next Generation of Ground-

Motion Attenuation Models” (NGA, also known as NGA-West1) project. The main 

objective is to develop ground-motion prediction relations for shallow crustal 

earthquakes in the western United States and similar active tectonic regions. Five teams 

of experts developed the ground motion prediction equations (GMPEs) to be used in 

earthquake hazard analysis at the global and regional levels (Power 2019). The 

developer teams are as follows: 

•  Abrahamson, Silva, and Kamai (ASK) 

•  Boore, Stewart, Seyhan, and Atkinson (BSSA) 

•  Campbell and Bozorgnia (CB) 

•  Chiou and Youngs (CY) 

•  Idriss (I) 

These teams worked independently on their models but had frequent interactions. 

NGA-West2 is the follow-up project which is the current version. 
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Ground Motion Prediction Equations (GMPEs), or “attenuation” relationships, 

provide a means of predicting the level of ground shaking and its associated uncertainty 

at any given site or location, based on an earthquake magnitude, source-to-site 

distance, local soil conditions, fault mechanism, etc. GMPEs are efficiently used to 

estimate ground motions for use in both deterministic and probabilistic seismic hazard 

analyses. 

Bozorgnia et al., 2014 

The NGA-West2 database includes 21,332 (mostly) three-component recordings, 

after excluding the recordings with missing important metadata (like magnitude) and/or 

missing ground motion data (like PGA). The database includes a moment magnitude 

range of 3.0 to 7.9. The range of distances from the recording site to the rupture plane is 

from 0.05 to 1533 km. However, the database is well populated up to around the 

400 km range. 

The horizontal GMPEs address: horizontal components of peak ground 

acceleration (PGA), peak ground velocity (PGV), and pseudo-absolute response spectral 

acceleration (PSA) for at least 21 oscillator periods (T) ranging from 0.01 to 10 s. The 

general applicable limits of the NGA-West2 GMPEs are: M ≤ 8.5 for strikeslip faults, 

M ≤ 8.0 for reverse faults, and M ≤ 7.5 for normal faults; and rupture distance, RRUP, or 

Joyner and Boore distance, RJB, ranging from 0 to 300 km. 

The NGA-West1 and NGA-West2 spectral acceleration ground motion models 

were developed for a reference damping ratio of 5%. As part of the NGA-West2 project, 

PEER researchers developed a new damping model that can be used to adjust the 5% 
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damped GMPEs for damping values ranging from 0.5% to 30%. The new damping model 

was developed directly from the NGA-West2 database and is independent of any 

specific GMPE. 

NGA-West2 GMPEs include terms for local site amplification, and all five NGA-

West2 GMPEs use the average shear-wave velocity in the upper 30 m of sediments, VS30, 

as the site parameter. 

Additionally, there are a number of supporting research projects assisting in 

defining and constraining the GMPEs. The NGA database and models are updated and 

adjust when new data is available. 

Models of the NGA research programs are adopted by the earthquake 

community in a wide spectrum of application such as: (1) site-specific seismic analysis 

and design of structures and facilities; (2) development of regional seismic hazard maps 

for use in building codes, financial estimation, etc.; and (3) social and financial loss 

estimation. 

2.5 Deterministic Seismic Hazard Analysis 

Kramer (1996) 

Deterministic seismic hazard analysis (DSHA) is a four-step seismic hazard 

evaluation at a particular site. The steps can be simply described as follows: 

1. Identify all earthquake sources capable of producing significant ground 

motion at the site. Characterize their geometry and earthquake potential. 
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2. Select a distance parameter from source to site for each source zone. 

Typically, the shortest distance is selected. It can be the distance from the 

earthquake epicenter or hypocenter. 

3. Select the earthquake expected to produce the largest level of shaking at the 

site (the controlling earthquake). The selection is made by comparing the 

levels of shaking caused by the earthquake potential from step 1 occurring at 

the distance of step 2. 

4. Define the hazard at the site, normally in terms of the ground motion 

parameters of the controlling earthquake. Peak acceleration, peak velocity, 

and response spectrum ordinates are commonly used to characterize the 

seismic hazard. 

This procedure does not provide information on the likelihood of occurrence. 

DSHA is a worst-case-scenario evaluation. However, it is still a suitable hazard analysis 

for critical structure such as large dams which may cause disastrous consequences upon 

failure. 

2.6 Aftershock Magnitude 

Båth, 1965 

Båth’s law states that for shallow shocks, there is a finite difference between the 

magnitude of the earthquake main shock (M) and the largest aftershock (M1). The 

difference is 1.2 and it is independent of magnitude. Båth’s law can be expressed as 

follows: 
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M – M1 = 1.2 (Eq. 2.2) 

The magnitudes are based on the surface wave scale. Equation 2.2 implies that the 

seismic energy of the main shock is on average about 53 times as large as the energy of 

the largest aftershock. Båth stated that there are exceptions to this law but it still has a 

remarkable range of validity nonetheless. 

Båth (1965) presents one example of an aftershock sequence that did not strictly 

follow Båth’s law was that of the 8.5 Alaska earthquake in March 28, 1964. There was 

no definitive largest aftershock, but there were five shocks within the range of 6.5–6.8 

magnitude. Together these five shocks yielded the same energy as one shock of 

magnitude 7.2 would do. If this is taken to be the largest aftershock (M1), 8.5 – 7.2 = 1.3, 

in close agreement with Båth’s law. Assuming that similar circumstances hold in the 

case of several equally large main shocks, Båth presented the energy–magnitude 

relation as follows: 

M − M1 = 1.2 +
log�N1N �

1.2
  (Eq. 2.3) 

where  N = number of equally large main shocks, N1 = number of largest aftershocks, 

and the logarithm is to base 10. 

Båth also suggested that the depth of focal depth can affect the largest 

aftershock magnitude. The difference between the main shock and the largest 

aftershock increases with increasing focal point which can be express as follows: 

M − M1 =  2
3

h + 1 (Eq. 2.4) 

Where h = focal depth in units of 100 km. However, Båth stated that little data existed 

from deeper aftershock sequences to test and it would need more investigation. 
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There have been more studies on the variability of the difference between the 

main shock and the largest aftershock, as well as earthquakes and aftershocks data that 

show differences slightly less than 1.2. Shcherbakov and Turcotte (2005) proposed a 

modified version of Båth’s law based on an extrapolation of the Gutenberg-Richter 

statistics. From their study, the scatter in the modified Båth’s law is less than the scatter 

in the original Båth’s Law. 
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CHAPTER 3 

DATA DESCRIPTION 

3.1 SRK Dam 

3.1.1 SRK Dam General Characteristics 

Sirikit Dam or SRK Dam is the largest zoned earth dam in Thailand. It is located in 

Tha Pla District, Uttaradit Province. SRK Dam was constructed as a part of the 

Development of the Nan River Basin Project to prevent flooding in the southern area of 

Uttaradit Province. Previously known as the Phasom Dam, SRK Dam was buit by the 

Royal Irrigation Department. Construction started in 1963 and was completed in 1972, 

while the construction of Sirikit Hydropower Plant by the Electricity Generating 

Authority of Thailand (EGAT) started in 1968 and was completed in 1972. 

SRK Dam construction project comprises the main embankment dam and eight 

saddle dams. The main dam height is 113.60 m. The crest level is at +169 m above mean 

sea level (MSL) without camber. The crest is 810 m in length and 12 m in width. The 

maximum width at the base of the dam is 630 m. SRK Dam is an earth dam with an 

impervious clay core, filter drain, and riprap covering part of the upstream slope. 

On the upstream side, the slope from elevation +60 to +120 m MSL is 1:3 and the 

slope from elevation +120 to crest is 1:2.5. On the downstream side, the slope from 

elevation +60 to +150 m MSL is 1:2.5 and the slope from elevation +150 to crest is 
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1:2.25 as shown in Fig 3.1 from the Royal Irrigation Department (RID) Sirikit Dam Report 

(1975). 

 

Fig 3.1 Maximum section of SRK Dam (Royal Irrigation Department 1975). 

Eight saddle dams (or dikes) located 20 km northeast of the main dam have a 

total length of 5.3 km. The crest is 8 m wide and the dams’ lengths range from 40 to 

1,450 m. The crest level is at +168 m MSL except Dike 2 which stands at +169 m MSL. 

The heights of the dikes vary from 1 to 30 m. On the upstream side, the slope from 

elevation crest to +160 m MSL is 1:2 and the slope below elevation +160 m MSL is 1:3. 

Downstream slope is 1:2. Dike 2 is the only one with an irrigation outlet. The typical as-

built section of saddle dams is shown in Fig. 3.2. 

 Fig. 3.3 and 3.4 show a plan view of SRK Dam and saddle dams. 

The catchment area of the reservoir is 13,130 km2 with a length of 129 km. The 

normal retention level is at +162 m MSL. Maximum retention level is at +166 m MSL. 

Tailrace water level is at +76 m MSL. Total storage capacity is 9,510 million m3. Dead 
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storage capacity is 4,819 million m3. Average annual inflow (for 10 years return period) 

is 2,850 million m3. Average annual loss is 342.20 million m3. 

 

Fig. 3.2 Typical as-built section of a saddle dam (Royal Irrigation Department 1975). 

 

Fig. 3.3 Plan view of SRK Dam (Royal Irrigation Department 1975). 
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Fig 3.4 Plan view of saddle dams (Royal Irrigation Department 1975). 

SRK Dam has three water-releasing structures: river outlet, penstocks (release 

through turbines to produce electricity in the power plant), and spillway, with maximum 

releasing capacity of 400 cubic meters per second (CMS), 732 CMS, and 3,250 CMS 

respectively. 

3.1.2 Site Geology 

3.1.2.1 Main Dam 

Geologically the main dam site consists of metamorphic rocks from the Silurian-

Devonian Period. The dam’s foundation is mostly made of quartz-mica schist, talcose 

schist, and graphitic schist. Originally, the geological profile consisted of an about 1 m 

thick residual soil layer followed by a weathered rock layer and a strong fresh rock layer. 

The rocks are highly fractured in a mostly even pattern throughout the site. 
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A fault zone consisting of clay and crushed rock was found at station 0+600 m as 

shown in Fig. 3.5. There was no evidence to indicate that it was an active fault. 

 

Fig. 3.5 SRK Dam profile (Royal Irrigation Department 1975). 

3.1.2.2 Saddle Dams 

Geological feature of the saddle dams site consists of phyllite, phyllitic-shale, and 

slaty shale. Originally, the geological profile consisted of an about 4 m thick residual soil 

layer followed by a weathered rock layer and a strong fresh rock layer. The rocks are 

highly fractured, especially at a depth of 2 to 10 m. 

3.1.3 Excavation and Foundation Improvement 

3.1.3.1 Main Dam 

The excavation was down to the top of the sound rock layer. There was a large 

amount of good quality river sand and gravel. They were subsequently used as fill on the 

downstream side of the dam. Three rows of grout curtains were constructed to prevent 
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seepage through the foundation as shown in Fig. 3.1. The foundation rocks on the right 

abutment are highly fractured and discontinuous. Furthermore, there was a rock slide 

incident that was the result of constructing intake tunnels. Therefore, the slope was 

adjusted to 1:2 and rock anchors and shotcrete were installed. 

The inactive fault at station 0+600 m was remediated by removing residual soil 

and fractured rocks from the fault and filling with dental concrete. 

3.1.3.2 Saddle Dams 

Only 1 m of the residual soil layer was removed. The designer believed that to be 

sufficient because the saddle dams had low height, low water pressure, and low 

overburden. 

3.1.4 Material Properties 

3.1.4.1 Existing Data 

Data for material properties are from Stability Analysis of SRK Dam under Seismic 

Loading Report by Geotechnical Engineering Research and Development Center, 

Department of Civil Engineering, Faculty of Engineering, Kasetsart University (GERD) in 

2012. Table 3.1 shows the designed material properties for SRK main dam. 

Table 3.2 shows and compares material properties during construction (1963–

1972) and after the dam has been in operation (2012). The report from the construction 

period stated that the properties of the random fill material were substantially 



27 
 

Table 3.1. Designed SRK Dam material properties (Geotechnical Engineering Research 
and Development Center, 2012). 

Material USCS 
Net 

Weight 
(t/m3) 

Saturated 
Weight 
(t/m3) 

Ø 
(Degree) 

c 
(kg/m2) 

Core Zone SC 2.00 2.12 27.0 0.5 
Random Fill GM, GM-GC 2.00 2.12 28.5 0.2 
Sand Filter * 1.80 1.90 33.0 0.0 
Rock Fill * 1.80 1.90 37.0 0.0 
Foundation (Earth) * 1.90 2.00 27.0 0.0 
Foundation (Rock) Quartzitic 

Schist 
2.60 2.00 30.0 0.5 

 

consistent (Geotechnical Engineering Research and Development Center 2012). 

Therefore, the random fill and the core will be treated as the same material in this 

research (clayey sand) but with different levels of compaction and permeability. 

There are inconsistency and uncertainty in the recorded data. Therefore, the 

material properties used in the analysis will be estimated from a combination of existing 

data, typical properties of materials, and engineering judgment. 

3.1.4.2 Hydraulic Conductivity (k) 

Hydraulic conductivity or permeability of soil represents how quickly water 

passes through soil. The value can vary greatly depending on types of soil, void ratio, 

turbulence of flow, fines content, clay types, soil density, and compaction. 

The value of hydraulic conductivity can be determined in laboratory tests. Table 

3.3 provides the general range for the values of hydraulic conductivity (k) for various 

soils. 
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Table 3.2. Main Dam material properties during construction and after use (after 
Geotechnical Engineering Research and Development Center 2012). 

Property Unit 
During Construction 

(RID, 1975) After use 
(GERD, 2012) 

Clay Core Random Fill 
USCS - SC GM SC, CL 
Liquid Limit % 31.5 30.1 30.81 – 39.55 
Plastic Limit % - - 22.04 – 26.58 
Plastic Index % 12.9 7.8 7.41 - 16.86 
Maximum Dry Density  (t/m3) 1.73 2.01 1.31 – 1.90 
Optimum Moisture Content % 14.7 8.7 15.25 - 18.62 
Compaction Dry Density  % 99.1 98.9  
Compaction Moisture 
Content % 1.0 dry of 

optimum 
0.9 dry of 
optimum  

Hydraulic Conductivity (k) cm/s 4x10-8  6.5x10-8 - 
5.7x10-10 

Cc - - - 0.078 - 0.260 
Effective Cohesion (c’) kN/m2 - - 14.87 - 25.66 
Effective Friction Angle (Ø’) degree - - 24.74 - 35.52 
Total Cohesion (c) kN/m2 0.5 (design) - 11.26 - 12.92 
Total Friction Angle (Ø) degree 27 (design) - 12.92 - 16.34 

 

The impervious sections of earth dam have a k range of 10-6–10-11 m/s (Holtz et 

al. 2013). There is no reliable present data for the k value of SRK dam. Combining the 

available information with typical values and standards, k values of SRK Dam core and 

fill estimated at 4x10-7 m/s and 1.6x10-6 respectively. The significance of the two values 

is that the core has one-fourth the permeability of the fill. The estimated k for sand filter 

drain is 5x10-4 m/s. For rock riprap, the k value is 0.01 m/s. The exact values of the 

hydraulic conductivity of these materials are not as important as the ratios among them. 

These estimated values produce a reasonable pore water condition in the dam model 

which is vital for analyzing slope stability. 
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Table 3.3. Range of the hydraulic conductivity for various soil (after Das and Sivakugan 
2019). 

Type of Soil Hydraulic Conductivity, k (m/s) 
Medium to coarse gravel Greater than 10-3 

Coarse to fine sand 10-3–10-5 

Fine sand, silty sand 10-5–10-7 
Silt, clayey silt, silty clay 10-6–10-8 

Clays 10-9 or less 
 

The embankment dam is deposited in layers, which results in the difference 

between horizontal and vertical permeability. This produces standard anisotropy ratios 

(kH/kV) in the embankment as shown in table 3.4. 

Table 3.4. Anisotropy of embankment materials according to USBR standard placement 
(after U.S. Department of Interior, Bureau of Reclamation 2014). 

Material kH/kV range 
Embankment core 4 to 9 
Embankment shell 4 to 9 

Embankment drains 1 to 4 
 

From the construction report and the downstream piezometers data, it is 

reasonable to assume that the kH/kV ratio of SRK core is 4. There was no report on the 

effectiveness of compaction of the fill. In order to be on the safe side, a kH/kV ratio of the 

shell in this research is 10 to account for the higher level of soil variation. For the sand 

drain, rockfill, and riprap layers, the kH/kV ratio is 1 (U.S. Department of Interior, Bureau 

of Reclamation 2014). 



30 
 

3.1.4.3 Cohesions and Friction Angles 

More than 45% of rockfill material is 0.03–0.4 m sized rocks with less than 5% 

fine material (Geotechnical Engineering Research and Development Center 2012). The 

typical effective friction angle for cohesionless rockfill is 45°. Rockfill embankment is an 

easily drained material and therefore will go through the cycle of saturation–

unsaturation frequently. When most of the water drains, the moisture film surrounding 

the individual grains of material creates an “apparent cohesion.” This phenomenon is 

caused by the water surface tension occurring between the surfaces of water, mineral 

grains, and air (Holtz et al. 2013). This apparent cohesion should not be relied on for 

strengths of the materials as it can vanish when more water is introduced (e.g., rain, 

flood) or water evaporates. 

As mentioned in section 3.1.4.1, the core and fill layers of the dam were built 

with the same material. The typical cohesion of clayey sand and saturated compacted 

clayey sand are 5 kPa and 11 kPa respectively (Geotechdata n.d.). This research selected 

7.5 kPa as the appropriate effective cohesion value for core and fill material.  

In order to determine the drained fully softened friction angle, values of clay size 

fraction and liquid limit of the material are required. From the available grain size 

analysis data (table 3.5), the core material has an average clay size fraction of 22%. From 

Atterberg’s limit data (table 3.6), the core material has an average liquid limit of 35.5%. 

Therefore, a reasonable estimation of the drained fully softened friction angle is 

32° as shown in Fig. 3.6. The undrained friction angle is estimated to be 17°. 
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Table 3.5. Grain size analysis of SRK Dam core sample (Geotechnical Engineering 
Research and Development Center 2012). 

 

Table 3.6. Atterberg’s limit of SRK Dam core sample (Geotechnical Engineering Research 
and Development Center 2012). 

 

There are no data on the cohesions and friction angles of the sand drain layer 

therefore they are assumed to be the same as fill to be on the conservative side. 

3.1.4.4 Unit Weights 

From the GERD 2012 report, the unit weight (ɣ) of the core zone is 20 kN/m2. 

The same unit weight will be used for the fill and drain layer. The rock riprap unit weight 

is 22 kN/m2. 

The material properties used in this research are shown in table 3.7. 
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Fig. 3.6 Drained fully softened friction angle for SRK Dam’s clayey sand material (after 
Stark and Hussain 2013). 

Table 3.7. Material properties of SRK Dam used in this research. 
Material 

Zone 
K (m/s) kH/kV c' ɸ’ c ɸ ɣ 

(kN/m2) 
Riprap, 
Rockfill 

0.01 1 0 45 0 45 22 

Fill 1.6x10-6 10 7.5 32 35 17 20 
Core 4.0x10-7 4 7.5 32 35 17 20 
Drain 5.0x10-4 1 7.5 32 35 17 20 
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3.2 Rapid Drawdown 

3.2.1 Drawdown Plot 

The maximum rate of drawdown is calculated by the maximum capacity of all 

water-releasing structures at SRK Dam (i.e., spillway, power plant turbines, and river 

outlet) along with the lowest rate of inflow. 

The spillway or service spillway is a two-tunnel horseshoe-section concrete 

spillway. The tunnels are 90 m long and each has a diameter of 11 m. The crest elevation 

is at +150.5 m MSL. There are 2 radial control gates of the dimensions 11.85 x 15 m. The 

maximum water-releasing capacity is 3,250 CMS with the maximum gate opening of 

9.2 m. 

SRK power plant has 4 generators capable of generating 125 MW each. The 

maximum flow through these generator turbines is 732 CMS. The intake sill sits at 

+104 m MSL. 

The river outlet is a 6 m diameter tunnel. The inlet level is at +104 m MSL. The 

river outlet has maximum capacity of 400 CMS. 

To estimate the quickest possible drawdown, this analysis will use the reservoir 

inflow during dry season. From the recorded average of inflow during the three driest 

months of the year, the inflow is estimated to be 30 CMS (Civil Maintenance Division 

2003). 

From SRK Dam Spillway Manual, the reservoir water level (RWL) can be plotted 

against the reservoir storage volume in million cubic meters (MCM) as shown in Fig. 3.7. 
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Fig. 3.7 Reservoir water level vs. reservoir volume. 

The rate of maximum outflow is calculated by subtracting the minimum inflow 

from the combined maximum capacity of all releasing structures. Fig. 3.8 shows the rate 

of outflow at each RWL in the range of +162 m MSL to +120 m MSL. Fig. 3.9 shows the 

decrease of RWL as the result of the continuous maximum outflow rate.

 

Fig. 3.8 Reservoir water level vs. maximum outflow rate. 
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Fig. 3.9 Reservoir water level vs. time. 

This graph represents the quickest possible time that the reservoir can be drawn 

down. It is important to note that in practice, there are a number of factors that will 

prevent this drastic scenario such as the safety of the downstream community, possible 

damage to downstream lands and properties, the higher rate of inflow, and the 

stoppage of turbine flow due to a high tailrace water level. 

3.2.2 Drawdown Time for SRK Dam 

The equation for drawdown time (equation 2.1 in section 2.3) can be used to 

calculate the number of days that SRK dam materials will drain after drawdown. 

t = TD2/cv (Eq. 3.1) 

The average degree of consolidation, U, as a percentage can express the degree of pore 

water pressure dissipation. In the multistage rapid drawdown analysis method by 
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Duncan, Wright, and Wong (1990), it is stated that for material to be considered 

drained, 90% of excess pore pressure needs to be dissipated. This value is considered 

highly conservative since this method considered the material fully undrained up until 

that point. In reality, some drainage would have occurred before the dissipation reached 

90%. In this research, setting the value of U at 50% is considered to be appropriate to 

calculate drawdown time. This is still somewhat conservative for this analysis since 

there is a layer of rockfill riprap which is an easily drained material. The time factor, T, 

for U = 50% is 0.197 and for U = 90% is 0.848 (Das and Sivakugan 2019). 

Length of drainage path, D, is considered in two cases. Given the geometry of the 

dam, failure on the upstream face may occur in two modes. First, the slip surfaces may 

be controlled by both a decrease in water level and the +120 m MSL berm and result in 

relatively shallow failures as shown in Fig. 3.10. In this case, the average depth from the 

base of the slice to the surface is approximately 10 m. Secondly, the failure surface may 

extend beyond the berm and include the whole face of the upstream slope as shown in 

Fig. 3.11. In this case the average estimated drainage depth is 30 m, which is deeper 

than the first case. 

The range coefficient of consolidation, cv, is estimated from the typical value for 

clayey sand because of the limited existing data. This research uses a cv of 1–5 m2/day. 

Table 3.8 shows the result of equation 3.1 using the T, D, and cv values selected. 

3.2.3 Drawdown History 

A maximum drawdown event at SRK Dam occurred in January to March of 1983. The  
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Fig. 3.10 An example of a shallow failure surface in the upstream slope of SRK Dam. 

 

Fig. 3.11 An example of a deep failure surface in the upstream slope of SRK Dam. 

Table 3.8. Time for drawdown of SRK Dam. 
Length of drainage path U = 50 % U = 90% 

cv (m2/day) cv (m2/day) 
5 1 5 1 

Shallow (m) 10 4 days 20 days 17 days 85 days 
Deep (m) 30 35 days 177 days 153 days 763 days 

 

water level decreased from +163 m MSL to +143 m MSL in approximately 60 days. This 

level of drawdown has happened only once since SRK Dam has been in operation. 

Therefore, it is reasonable to state that in the practice, maximum drawdown of SRK 

Dam reservoir is 20 m. 
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3.3 Seismicity 

3.3.1 Earthquake Sources Identification and Characterization 

3.3.1.1 Active Faults in The Area 

The two active fault zones nearest SRK Dam are the Uttaradit Fault and the 

Thoen Fault, as shown in Fig. 3.12. Both faults orientate along a northeast–southwest 

direction. The Uttaradit Fault is the closer of the two. The distance from the main dam 

to the Uttaradit Fault is in the range of 8 to 62 km. The minimum distance from SRK 

main dam to the Thoen Fault is 52 km. 

 

Fig. 3.12 Faults near SRK main dam and saddle dams. 

The Earthquake Observation Division, Thai Meteorological Department (n.d.) has 

records of earthquake events from the two faults since 2007. The magnitude ranges 

from 1.3 to 3.5 with a depth between 1 and 10 km. 

SRK Main Dam 
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USGS (Petersen et al. 2007) reported the Uttaradit Fault to be a normal fault 

with a length of 38 km and the Thoen Fault to be a normal fault with a length of 107 km. 

The moment magnitude of each fault can be estimated using the empirical relationship 

for normal fault movement presented by Wells and Coppersmith (1994) as follows: 

Mw = 4.86 + 1.32 log L (Eq. 3.2) 

Where Mw is the moment magnitude Mw and L is surface rupture length in km. 

From equation 3.2, the largest earthquake magnitude of the Uttaradit Fault and 

Thoen Fault are 6.95 and 7.55 respectively. 

3.3.1.2 Background Earthquake 

In addition to the two known faults, there is a possibility of an undiscovered 

earthquake source. In a tropical area like Thailand, the precipitation and vegetation 

often hinder a thorough exploration and discovery of earthquake faults. Therefore, 

another potential earthquake source should be considered. A background earthquake is 

an earthquake not linked to identified sources. The maximum background earthquake 

(MBE) typically has a magnitude of 6. Because of the uncertainties of the area source, 

the source-to-site distance for the background earthquake in this case is 0 km. 

The characteristics of the Uttaradit Fault, Thoen Fault, and background 

earthquake are presented in table 3.9. The fault mechanism of the two known faults are 

summarized from the USGS documentation (Petersen et al. 2007) as well as data from 

Thailand’s Department of Mineral Resources (2016). 
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Table 3.9. Characteristics of earthquake sources of SRK Dam site. 
Source Mw Distance (km) Fault mechanism Dip 

Background  6 0 normal hanging 50 
Thoen Fault 7.55 52 normal foot 50 

Uttaradit Fault 6.95 8 normal hanging 50 

3.3.2 Peak Ground Acceleration and Horizontal Seismic Coefficient 

The maximum peak ground acceleration (PGA) can be estimated from the NGA-

West2 Ground Motion Prediction Equations (GMPEs) as mentioned in chapter 2. The 

GMPEs spreadsheet is available from the PEER Center (n.d.) website. The input variables 

for a maximum earthquake event from a background earthquake, the Thoen Fault, and 

the Uttaradit Fault are as shown in table 3.10. 

Table 3.10. NGA-West2 GMPEs input variables for a maximum earthquake event from 
the three SRK Dam earthquake sources. 

Variable Description Background Thoen fault Uttaradit 
fault 

Mw Moment magnitude 6 7.55 6.95 
RJB (km) Source to site distance 0 52 8 
RX (km) Horizontal distance from top 

of rupture measure 
perpendicular to fault strike 

0 -52* 8* 

VS30 

(m/s) 
The average shear-wave 
velocity 

760** 760** 760** 

U Unspecified-mechanism factor 0 0 0 
FRV Reverse-faulting factor 0 0 0 
FNM Normal-faulting factor 1 1 1 
FHW Hanging-wall factor 1 0 1 
Dip 

(deg) 
Average dip of rupture plane 50 50 50 

ZTOR (km) Depth to top of rupture 2,5,10 2,5,10 2,5,10 
Vs30flag 1 for measured, 0 for inferred measured measured measured 

FAS Aftershock effect No No No 
Region Regions considered in the 

models 
California*** California*** California**

* 
*For a hanging wall, Rx is equal to RJB. For a foot wall, Rx is equal to negative RJB. 
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** Soil site class B: Rock 

*** From the available region in the spreadsheet, California is the closest to SRK Dam 
area 

The depths of 2, 5, and 10 km are considered based on the recorded seismic 

events in the area. 

Each of five models is applied and the resulting PGA are averaged as presented 

in table 3.11. 

Table 3.11. Peak ground acceleration of maximum earthquake from each source. 
Source 

  
ZTOR 

(km) 
PGA 

ASK14 BSSA14 CB14 CY14 I14 Average 
Background 
earthquake 

2 0.3675 0.3203 0.3778 0.3161 0.3652 0.35 
5 0.3048 0.3203 0.2992 0.2414 0.2523 0.28 

10 0.2218 0.3203 0.1858 0.1762 0.1561 0.21 
Thoen fault 2 0.0871 0.0837 0.0729 0.0723 0.0768 0.08 

5 0.1024 0.0837 0.0726 0.0800 0.0764 0.08 
10 0.1331 0.0837 0.0718 0.0943 0.0752 0.09 

Uttaradit fault 2 0.3860 0.2157 0.2857 0.2532 0.3132 0.29 
5 0.3873 0.2157 0.2748 0.2575 0.2857 0.28 

10 0.3146 0.2157 0.2247 0.2447 0.2262 0.25 
 

The controlling earthquake in this case is the background earthquake. However, 

this research is interested in the aftershock. According to Båth’s law, the largest 

aftershock is 1.2 magnitude smaller than the main shock. Subtracting 1.2 from the 

moment magnitudes from table 3.9 results in the aftershock moment magnitudes that 

can be entered in the GMPEs spreadsheet to calculate PGA. The focal depth range of 

earthquake events from both faults is 2 – 10 km. From equation 2.4, the magnitude 

difference is between 1.01 and 1.07. Furthermore, there are records of aftershocks that 

do not strictly follow Båth’s law. Therefore, 1 and 0.8 magnitude differences are also 
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considered. PGA values of each aftershock magnitude are as shown in tables 3.12, 3.13, 

and 3.14. 

Table 3.12. Peak ground acceleration of the largest aftershock according to Båth’s Law 
from each source. 

-1.2 Magnitude 
Difference 

Ztor 

(km) 
PGA 

ASK14 BSSA14 CB14 CY14 I14 Average 
Background 
earthquake 

MW = 4.8 

2 0.1728 0.0927 0.1114 0.1240 -* 0.13 
5 0.1230 0.0927 0.0845 0.0889 -* 0.10 

10 0.0794 0.0927 0.0479 0.0644 -* 0.07 
Thoen 

MW = 6.35 
2 0.0323 0.0336 0.0376 0.0261 0.0302 0.03 
5 0.0379 0.0336 0.0374 0.0291 0.0300 0.03 

10 0.0490 0.0336 0.0368 0.0345 0.0295 0.04 
Uttaradit 

MW = 5.75 
2 0.1591 0.1581 0.1878 0.1344 0.1582 0.16 
5 0.1628 0.1581 0.1678 0.1346 0.1419 0.15 

10 0.1477 0.1581 0.1250 0.1211 0.1075 0.13 
 * I14 model is applicable for MW ≥ 5.0 

Table 3.13. Peak ground acceleration of 1 magnitude difference aftershock from each 
source. 

-1 Magnitude 
Difference 

Ztor 

(km) 
PGA 

ASK14 BSSA14 CB14 CY14 I14 Average 
Background 
earthquake 

MW = 5 

2 0.2189 0.1292 0.1474 0.1642 0.2398 0.18 
5 0.1700 0.1292 0.1129 0.1177 0.1574 0.14 

10 0.1160 0.1292 0.0651 0.0838 0.0912 0.10 
Thoen 

MW = 6.55 
2 0.0398 0.0379 0.0440 0.0317 0.0362 0.04 
5 0.0467 0.0379 0.0438 0.0353 0.0360 0.04 

10 0.0605 0.0379 0.0431 0.0417 0.0354 0.04 
Uttaradit 

MW = 5.95 
2 0.1974 0.1665 0.2077 0.1537 0.1769 0.18 
5 0.1989 0.1665 0.1901 0.1537 0.1591 0.17 

10 0.1698 0.1665 0.1447 0.1387 0.1214 0.15 
 

The controlling aftershock earthquake from tables 3.12 and 3.13 is from the 

Uttaradit Fault while the controlling aftershock earthquake from table 3.14 is from the 

background earthquake. Marcuson (1981) suggested that the appropriate seismic 
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pseudo-static coefficient for dams should correspond to one-third to one-half of the 

acceleration, including amplification or deamplification effects. From the PGA of all 

controlling earthquakes, horizontal seismic coefficients (kh) can be determined as shown 

in table 3.15. 

Table 3.14. Peak ground acceleration of 0.8 magnitude difference aftershock from each 
source. 

-0.8 Magnitude 
Difference 

Ztor 
(km) 

PGA 
ASK14 BSSA14 CB14 CY14 I14 Average 

Background 
earthquake 

MW = 5.2 

2 0.2391 0.1807 0.1948 0.2034 0.2584 0.22 
5 0.1888 0.1807 0.1506 0.1463 0.1713 0.17 

10 0.1323 0.1807 0.0886 0.1028 0.1006 0.12 
Thoen 

MW = 6.75 
2 0.0490 0.0426 0.0486 0.0381 0.0437 0.04 
5 0.0576 0.0426 0.0484 0.0423 0.0434 0.05 

10 0.0746 0.0426 0.0477 0.0499 0.0426 0.05 
Uttaradit 

MW = 6.15 
2 0.2444 0.1753 0.2291 0.1734 0.1987 0.20 
5 0.2427 0.1753 0.2129 0.1737 0.1792 0.20 

10 0.1949 0.1753 0.1650 0.1578 0.1377 0.17 

Table 3.15. Horizontal seismic coefficients of each controlling aftershock earthquake in 
the range of one-third to one-half peak ground acceleration. 

Controlling Aftershock PGA kh 
One-third One-half 

0.16 0.05 0.08 
0.18 0.06 0.09 
0.22 0.07 0.11 

 

To account for the amplification effect, Anderson et al. (2008) recommended the 

following equations: 

kav = αkmax (Eq. 3.3) 

where kmax = peak seismic coefficient at the ground surface 

 α = fill height-dependent reduction factor 
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For the site class B rock foundation, 

α = 1.20*(1+0.01H[(0.5β)-1]) (Eq. 3.4) 

If the fill height is greater than 100 feet, H can be assumed to be 100 in 

Equation 3.4. 

β = 1 second PSa/PGA (Eq. 3.5) 

where 1 second Psa is predicted from GMPEs models. 

Kh is suggested to be in the range of 0.5kav to 1.0 kav. Table 3.16 shows the values 

of kh when amplification is considered. 

Table 3.16. Horizontal seismic coefficients of each controlling aftershock earthquake 
with amplification effect. 

Controlling 
Aftershock 

PGA 

α Amplification 
(GERD, 2012) 

kh 
0.5 0.75 1.0 

0.16 0.2453 2.67 0.05 0.08 0.10 
0.18 0.2807 2.63 0.07 0.10 0.13 
0.22 0.1663 2.57 0.05 0.07 0.09 

 

kh values of the Uttaradit controlling aftershock from tables 3.15 and 3.16 

generally matched. The background aftershock produces lower 1 second Psa values, 

which results in a lower amplification effect on the kh. Considering the existing data and 

both methods of estimation, the reasonable range of aftershock kh analyzed in this 

research is 0.05 to 0.1. 
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CHAPTER 4 

DEVELOPMENT OF MODEL 

This research uses GeoStudio 2020’s SEEP/W and SLOPE/W to analyze the slope 

stability of SRK Dam in case of rapid drawdown and aftershock loading. 

SRK Dam’s geometry is plotted onto the program according to the as-built 

maximum section drawing of the dam in the 2-D analysis. The crest elevation does not 

include camber. Fig. 4.1 shows the 2D geometry of SRK Dam in GeoStudio. 

 

Fig. 4.1 SRK Dam geometry in GeoStudio. 

SEEP/W is used to achieve the seepage condition through the dam. The analysis 

type is steady-state with the water level at full normal retention level of +162 m MSL. 

The materials are defined as presented in table 4.1. 

The model mesh is set to a quads and triangles pattern. An element size of 1 m is 

used for the element in the area subjected to changes in water level and seepage 

condition, such as the upper part of upstream fill and the core. The downstream fill 

element is 3x3 and the foundation element is 6x6 as shown in Fig. 4.2. 
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Table 4.1. Material definitions in SEEP/W. 

Material Region Color Material model Saturated kx 

(m/s) 
Anisotropy 

Ky’/kx’ 
Core  Saturated/Unsaturated 4x10-7 0.25 

Upstream fill  Saturated/Unsaturated 1.6x10-6 0.1 
Downstream fill  Saturated/Unsaturated 1.6x10-6 0.1 

Drain  Saturated 5.0x10-4 1 
Riprap  Saturated/Unsaturated 0.01 1 

Foundation  Saturated 1x10-10 1 
 

The boundary condition on the upstream slope is set as 162 m constant water 

total head. 

 

.  

Fig. 4.2 SRK Dam model mesh. 

In SLOPE/W, the analysis type is Spencer with Staged Rapid Drawdown analysis 

(Duncan et al. 1990), with settings as shown in Fig. 4.3. This setting only allows 

piezometric lines as pore water pressure conditions. 

The slip surface setting is as follows. The direction of movement for upstream 

analysis is right to left and for downstream analysis is left to right. The slip surface 

option is entry and exit. The entry range is set to always include at least some part of 
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Fig. 4.3 Setting in SLOPE/W for rapid drawdown and seismic loading analysis. 

the dam crest because such failures will decrease the height of the crest and increase 

the risk of dam overtopping. The exit range for the upstream slope analysis is set in two 

modes. The two possible failure surfaces, as mentioned in section 3.2.2, are shallow 

failures and deep failures. The minimum slip surface depth is set to 7 m. 

The 0 point of the X-axis is set at the centerline of the dam crest. The Y-

coordinates are the elevation above mean sea level as in SRK Dam as-built drawing. 

The initial entry and exit range of the shallow failures on the upstream slope is 

set as shown in Fig. 4.4 and 4.5. The next step is solving for the critical slip surface to 

estimate the entry and exit points of the failure. The entry and exit ranges are then 
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narrowed down and the number of increments is increased to achieve a more precise 

and accurate factor of safety for the critical slip surface. This process is repeated until 

the safety factor value is within 0.01 of the previous step’s value. 

 

Fig. 4.4 Setting of the initial entry and exit range of shallow failure mode on the 
upstream slope. 

 

Fig. 4.5 Range of entry and exit on SRK Dam Model for shallow failure surface on the 
upstream slope. 

Initial Entry Range Initial Exit Range 
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The initial entry and exit range of the deep failures on the upstream slope is set 

as shown in Fig. 4.6 and 4.7. The initial entry point range is the same used in the shallow 

failure analysis. The exit range is set at the upstream toe area so that the failure would 

include the majority of the slope and tangent to the foundation. The entry and exit 

ranges are narrowed down and the number of increments is increased until the safety 

factor value is within 0.01 of the previous step’s value. 

 

Fig. 4.6 Setting of the initial entry and exit range of deep failure surface on the upstream 
slope.  

The initial entry and exit range of the failures on the downstream slope is set as 

shown in Fig. 4.8 and 4.9. The downstream side is not affected by the water level 

drawdown, and therefore the exit range is not limited to the shallow or deep failure 

surface. The process of narrowing the entry and exit range and increasing the number of 

increments is the same used in the upstream analysis. 
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Fig. 4.7 Range of initial entry and exit on SRK Dam Model for deep failure surface on the 
upstream slope. 

 

Fig. 4.8 Setting of the initial entry and exit range of failure on the downstream slope. 

The material properties in SLOPE/W are as presented in table 4.2. 

In this research scenario, the horizontal seismic coefficient (kh) of the largest 

aftershock is in the range of 0.05 to 0.08 according to Båth’s law. Kh may reach 0.1 if the 

aftershock is larger than expected. The value for kh in these research analyses are 0, 

Initial Entry Range Initial Exit Range 
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Fig. 4.9 Range of initial entry and exit on SRK Dam Model for failure on the downstream 
slope. 

Table 4.2 Material definitions in SLOPE/W. 

Material Region 
Color Material model 

Basic R Envelope* 
Unit Weight 

(kN/m3) 
c’ 

(kPa) 
ɸ’ 
(°) 

c 
(kPa) 

ɸ 
(°) 

Core  Mohr-Coulomb 20 7.5 32 35 17 
Upstream fill  Mohr-Coulomb 20 7.5 32 35 17 
Downstream 

fill  Mohr-Coulomb 20 7.5 32 35 17 

Drain  Mohr-Coulomb 20 7.5 32 35 17 
Riprap  Mohr-Coulomb 22 0 45 5 44 

Foundation  Bedrock 
(impenetrable) - - - - - 

* Undrained strength parameters 

0.025, 0.0375, 0.05, 0.0625, 0.075, 0.10, 0.15, 0.20, and 0.30. Larger seismic coefficients 

were included to make this research applicable to other dams in more seismically active 

regions.  

The levels of drawdown in this analysis are from 0 to 50 m with 5-meter, at 5-

meter interval. The maximum drawdown of SRK Dam is 20 meters. The larger levels are 

Initial Entry Range Initial Exit Range 
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included to make this research applicable to other dams with more drastic drawdown 

level.   
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CHAPTER 5 

ANALYSIS AND RESULTS 

5.1 Corrections for Upstream Slope Analysis 

5.1.1 Pore Water Pressure Condition 

One of the limitations of Staged Rapid Drawdown analysis in SLOPE/W is that 

only piezometric line can be used as the pore water pressure (PWP) condition. There is 

no option to use the result from SEEP/W analysis. The piezometric line is traced as 

closely as possible from the result of SEEP/W seepage analysis. The factor of safety (FS) 

results from the two PWP conditions are expected to differ. In order to determine the 

discrepancy and solve for the correction equations, the following condition is set up to 

compare the results in FS: water level is at 162 m and analysis mode is “Staged Pseudo-

static analysis: Undrained Strengths (Duncan et al., 1990).” 

For the upstream shallow failure mode and deep failure mode, the results are as 

shown in tables 5.1 and 5.2 respectively. The ratio is calculated by the FS of the PWP: 

SEEP/W result analysis divided by the FS of the PWP: Piezometric line analysis. 
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Table 5.1. Factors of safety from the analyses using the result of SEEP/W analysis and 
piezometric line as pore water pressure condition (shallow failure surface). 

kh Factor of Safety Ratio 
PWP: SEEP/W Result PWP: Piezometric Line 

0.00 2.08 1.82 1.143 
0.025 1.87 1.63 1.143 

0.0375 1.77 1.55 1.143 
0.05 1.69 1.48 1.143 

0.0625 1.62 1.41 1.144 
0.075 1.55 1.35 1.143 
0.10 1.42 1.24 1.144 
0.15 1.23 1.07 1.145 
0.20 1.08 0.943 1.146 
0.30 0.871 0.757 1.151 

Table 5.2. Factors of safety from the analyses using the result of SEEP/W analysis and 
piezometric line as pore water pressure condition (deep failure surface). 

kh 
Factor of Safety 

Ratio PWP: SEEP/W Result PWP: Piezometric Line 
0.00 2.25 1.89 1.188 

0.025 1.95 1.64 1.188 
0.0375 1.83 1.54 1.188 

0.05 1.72 1.45 1.188 
0.0625 1.63 1.37 1.189 
0.075 1.54 1.30 1.188 
0.10 1.39 1.17 1.189 
0.15 1.17 0.985 1.189 
0.20 1.01 0.849 1.190 
0.30 0.792 0.665 1.191 

 

From tables 5.1 and 5.2, it is clear that the factors of safety from the analysis 

using the SEEP/W result PWP condition is higher than that from the analysis using the 

piezometric line. Furthermore, the ratio from the deep failure surface is higher than the 

shallow failure surface. This increase is expected since the amount of seepage in the 

deep failure surface is more than the shallow, and therefore the ratio should be greater.  
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The factors of safety from the piezometric line analysis are plotted against the ratios 

(Fig. 5.1) and the curve fitted to achieve the correction equations (eq. 5.1 and 5.2). 

 

Fig. 5.1 Factor of safety of the piezometric line analysis vs. PWP: SEEP/W result to PWP: 
Piezometric Line factor of safety ratio. 

Shallow Failure Mode FS Correction =  

1.1895 – 0.08617*FS + 0.053536*FS2 – 0.011133*FS3 (Eq. 5.1) 

Deep Failure Mode FS Correction = 1.1922 – 0.0026284*FS (Eq. 5.2) 

5.1.2 Initial Condition 

The other limitation of Staged Rapid Drawdown analysis in SLOPE/W is that the 

horizontal seismic coefficient (kh) is applied in the first stage of the analysis, which does 
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first stage and is therefore more accurate. The following analyses were performed to 

compare the results in FS between the two analysis modes: water level is at 162 m and 

piezometric line is used as PWP. 

The results for the upstream shallow failure surface and deep failure surface are 

as shown in tables 5.3 and 5.4 respectively. The ratio is calculated by the FS of the 

Staged Pseudo-static analysis divided by the FS of the Staged Rapid Drawdown analysis. 

Table 5.3. Factors of safety from the staged pseudo-static analysis and staged rapid 
drawdown analysis (shallow failure surface). 

kh 
Factor of Safety 

Ratio Staged Pseudo-static analysis Staged Rapid Drawdown analysis 
0.00 1.82 1.84 0.991 

0.025 1.63 1.64 0.995 
0.0375 1.55 1.56 0.997 

0.05 1.48 1.48 0.999 
0.0625 1.41 1.41 1.001 
0.075 1.35 1.35 1.004 
0.10 1.24 1.23 1.008 
0.15 1.07 1.05 1.019 
0.20 0.943 0.908 1.039 
0.30 0.757 0.699 1.083 

 
From tables 5.3 and 5.4, there is a discrepancy in FS between the two modes of 

analysis. The maximum difference is 8% for kh = 0.3 in shallow failure mode, followed by 

7.5% kh = 0.15 and 0.2 in deep failure mode. In the kh range particularly relevant to this 

research (0.05–0.1), the difference does not exceed 5.2%. These ratios will be used as 

correction in the next stage of analysis. The kh is plotted against the ratio as shown in Fig 

5.2.  
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Table 5.4. Factors of safety from the staged pseudo-static analysis and staged rapid 
drawdown analysis (deep failure surface). 

kh 
Factor of Safety 

Ratio Staged Pseudo-static analysis Staged Rapid Drawdown analysis 
0.00 1.89 1.91 0.991 

0.025 1.64 1.67 0.983 
0.0375 1.54 1.57 0.977 

0.05 1.45 1.49 0.970 
0.0625 1.37 1.42 0.965 
0.075 1.30 1.35 0.958 
0.10 1.17 1.24 0.947 
0.15 0.985 1.07 0.925 
0.20 0.849 0.918 0.925 
0.30 0.665 0.691 0.962 

 

 

 

Fig. 5.2 kh vs. staged pseudo-static analysis to staged rapid drawdown analysis factor of 
safety ratio. 
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5.2 Staged Rapid Drawdown Analysis 

The levels of drawdown in this analysis are from 0 to 50 m, at 5 m intervals. Each 

level is analyzed using the “Staged Rapid Drawdown analysis (Duncan et al., 1990)” 

settings with horizontal seismic coefficients of 0, 0.025, 0.0375, 0.05, 0.0625, 0.075, 

0.10, 0.15, 0.20, and 0.30. This process is to achieve the critical slip surface and the 

factor of safety in each condition for all three modes of slope failure (upstream shallow 

failure, upstream deep failure, and downstream failure). The abovementioned 

corrections are applied to the factors of safety to attain the most accurate value 

possible. Tables 5.5, 5.6, and 5.7 show the results of the analyses. Fig. 5.3 and 5.4 show 

the plot of kh vs. factors of safety for shallow failure and deep failure respectively.  

Table 5.5. Factors of safety for upstream shallow failure surface in each drawdown level 
and horizontal seismic coefficient. 

kh 
Factors of Safety for Each Drawdown Level (Shallow Failure) 

0m 5m 10m 15m 20m 25m 30m 35m 40m 45m 50m 
0.00 2.10 1.90 1.71 1.56 1.46 1.37 1.29 1.23 1.19 1.18 1.18 

0.025 1.87 1.70 1.56 1.45 1.34 1.26 1.20 1.15 1.11 1.10 1.11 
0.0375 1.77 1.63 1.50 1.39 1.30 1.22 1.16 1.12 1.08 1.07 1.08 

0.05 1.69 1.56 1.44 1.34 1.25 1.18 1.12 1.09 1.05 1.05 1.05 
0.0625 1.61 1.49 1.39 1.30 1.22 1.15 1.09 1.05 1.03 1.02 1.03 
0.075 1.55 1.44 1.34 1.25 1.18 1.12 1.06 1.03 1.01 1.00 1.01 
0.10 1.42 1.33 1.25 1.17 1.11 1.05 1.01 0.97 0.96 0.96 0.96 
0.15 1.23 1.16 1.10 1.04 0.99 0.95 0.91 0.88 0.87 0.87 0.87 
0.20 1.08 1.03 0.98 0.94 0.90 0.86 0.83 0.81 0.79 0.79 0.79 
0.30 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.69 0.68 0.68 
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Table 5.6. Factors of safety for upstream deep failure surface in each drawdown level 
and horizontal seismic coefficient. 

kh 
Factors of Safety for Each Drawdown Level (Deep Failure) 

0m 5m 10m 15m 20m 25m 30m 35m 40m 45m 50m 
0.00 2.27 2.18 2.10 2.02 1.94 1.86 1.79 1.71 1.63 1.57 1.52 

0.025 1.95 1.89 1.83 1.77 1.70 1.64 1.58 1.53 1.47 1.42 1.37 
0.0375 1.83 1.77 1.72 1.67 1.61 1.56 1.51 1.46 1.41 1.36 1.31 

0.05 1.72 1.67 1.63 1.58 1.53 1.48 1.44 1.39 1.35 1.30 1.26 
0.0625 1.62 1.59 1.54 1.50 1.46 1.42 1.37 1.33 1.29 1.25 1.21 
0.075 1.54 1.51 1.47 1.43 1.40 1.35 1.32 1.28 1.24 1.21 1.17 
0.10 1.39 1.37 1.34 1.31 1.28 1.25 1.22 1.18 1.15 1.12 1.09 
0.15 1.17 1.16 1.14 1.12 1.10 1.07 1.05 1.03 1.01 0.99 0.96 
0.20 1.01 1.00 0.98 0.97 0.95 0.93 0.92 0.90 0.89 0.87 0.85 
0.30 0.79 0.78 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70 

Table 5.7. Factors of safety for downstream failure surface in each horizontal seismic 
coefficient. 

kh Factors of Safety 
0 1.74 

0.025 1.62 
0.0375 1.57 

0.05 1.52 
0.0625 1.48 
0.075 1.43 
0.10 1.35 
0.15 1.21 
0.20 1.09 
0.30 0.909 

 

The downstream slope factors of safety are not affected by the drawdown level. 

The general shapes of the slip surface for upstream shallow failure, upstream 

deep failure, and downstream failure are as shown in Fig. 5.5, 5.6, and 5.7 respectively. 
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Fig. 5.3 kh vs. factor of safety for shallow failure in each depth of drawdown.
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Fig. 5.4 kh vs. factor of safety for deep failure in each depth of drawdown. 
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Fig. 5.5 Slip surface of typical upstream shallow failure for 10 m drawdown and kh = 
0.05. 

 

Fig. 5.6 Slip surface of typical upstream deep failure for 10 m drawdown and kh = 0.05. 

 

Fig. 5.7 Slip surface of typical downstream failure for kh = 0.05. 

The upstream slope factors of safety can be presented in two ways: each 

drawdown level and each seismic coefficient value. Fig. 5.8–5.18 show the plot of kh vs. 

factors of safety for each level of drawdown for the upstream slope. 
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Fig. 5.8 kh vs. factors of safety for 0 m drawdown (upstream slope). 

 

Fig. 5.9 kh vs. factors of safety for 5 m drawdown (upstream slope). 
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Fig. 5.10 kh vs. factors of safety for 10 m drawdown (upstream slope). 

 

Fig. 5.11 kh vs. factors of safety for 15 m drawdown (upstream slope). 
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Fig. 5.12 kh vs. factors of safety for 20 m drawdown (upstream slope). 

 

Fig. 5.13 kh vs. factors of safety for 25 m drawdown (upstream slope). 
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Fig. 5.14 kh vs. factors of safety for 30 m drawdown (upstream slope). 

 

Fig. 5.15 kh vs. factors of safety for 35 m drawdown (upstream slope). 
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Fig. 5.16 kh vs. factors of safety for 40 m drawdown (upstream slope). 

 

Fig. 5.17 kh vs. factors of safety for 45 m drawdown (upstream slope). 
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Fig. 5.18 kh vs. factors of safety for 50 m drawdown (upstream slope). 

From Fig. 5.8–5.18, shallow failure has the critical factor of safety for most 
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drawdown with 0.03 kh). In those cases, the differences are not significant. It is 

reasonable to conclude that for each level of drawdown at SRK Dam, upstream shallow 

failure is the critical failure mode. Furthermore, the seismic coefficient which represents 

the earthquake shaking has an impact on the factor of safety. Fig. 5.8–5.18 show that as 

the kh value increases, the FS value decreases. 

The results can be analyzed by presenting them according to each seismic 

coefficient value. Fig. 5.19–5.28 show the plot of levels of drawdown vs. factors of 

safety for each seismic coefficient. 
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Fig. 5.19 Level of drawdown vs. factors of safety for kh = 0 (upstream slope). 

 

Fig. 5.20 Level of drawdown vs. factors of safety for kh = 0.025 (upstream slope). 
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Fig. 5.21 Level of drawdown vs. factors of safety for kh = 0.0375 (upstream slope). 

 

Fig. 5.22 Level of drawdown vs. factors of safety for kh = 0.05 (upstream slope). 
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Fig. 5.23 Level of drawdown vs. factors of safety for kh = 0.0625 (upstream slope). 

 

Fig. 5.24 Level of drawdown vs. factors of safety for kh = 0.075 (upstream slope). 
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Fig. 5.25 Level of drawdown vs. factors of safety for kh = 0.1 (upstream slope). 

 

Fig. 5.26 Level of drawdown vs. factors of safety for kh = 0.15 (upstream slope). 

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40 50

FS

Drawdown Depth

Shallow

Deep

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40 50

FS

Drawdown Depth

Shallow

Deep



73 
 

 

Fig. 5.27 Level of drawdown vs. factors of safety for kh = 0.20 (upstream slope). 

 

Fig. 5.28 Level of drawdown vs. factors of safety for kh = 0.30 (upstream slope). 
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From Fig. 5.19–5.28, the majority of critical FS are those of shallow failure 

surface. The exceptions are those in the higher kh with lower drawdown depths. The FS 

for shallow failure surface level out at 40–50 m because the upstream +120m MSL berm 

is the controlling factor. The differences in FS values of shallow and deep failure 

decrease as the seismic coefficient increases. Notably in the case of kh = 0.30, the FS 

from both failure modes virtually match for all drawdown depths. It is important to also 

recognize that increased depth of drawdown results in decreased factors of safety. 

Overall, the shallow slip surface is the critical failure for each horizontal seismic 

coefficient analysis. 

A visible damage on the dam crest will likely prompt dam operators to lower the 

reservoir level. A tension crack with a depth of 3 m is put into the model to simulate the 

damage that maybe cause by a main shock on the dam crest as shown in Fig. 5.29. This 

analysis is to determine the crack’s effect on slope stability 

 

Fig. 5.29 Range of possible tension crack location on the dam model in GeoStudio. 

Possible Crack Location 
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The slope stability results from the model with and without tension crack for 0 m 

drawdown are compared in table 5.8. 

Table 5.8. Upstream shallow failure analysis results of SRK dam with tension crack and 
without tension crack for 0 m drawdown depth. 

kh Factor of Safety 
Without Tension Crack With Tension Crack 

0 2.099 2.104 
0.025 1.865 1.867 

0.0375 1.774 1.775 
0.05 1.691 1.692 

0.0625 1.614 1.615 
0.075 1.546 1.547 
0.10 1.423 1.423 
0.15 1.229 1.230 
0.20 1.082 1.081 
0.30 0.872 0.862 

 

The slope stability results from the model with and without tension crack for kh = 

0.05 are compared in table 5.9. 

Table 5.9. Upstream shallow failure analysis results of srk dam with tension crack 

and without tension crack for kh = 0.05. 

Drawdown (m) Factor of Safety 
Without Tension Crack With Tension Crack 

0 1.691 1.692 
5 1.556 1.557 

10 1.442 1.444 
15 1.341 1.340 
20 1.253 1.253 
25 1.184 1.183 
30 1.124 1.124 
35 1.088 1.083 
40 1.055 1.057 
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A typical slip surface for a dam model with tension crack is shown in Fig. 5.30. 

 

Fig. 5.30 Typical slip surface for dam model with tension crack line on the crest. 

While the entry point is mainly controlled by the tension crack line, the overall 

shape of the slip surface remains the same. Moreover, the safety factor values remain 

largely the same as the model without the tension crack, with minor differences in the 

third digit. Therefore, it can be concluded that the 3 m tension crack has little to no 

effect on the analysis. 

5.3 Time for Drawdown at SRK Dam 

The above analysis of drawdown covers a wide range of depths but has not yet 

accounted for time. As calculated in section 3.2.2, the times for SRK Dam materials to be 

considered 50% drained are 4–20 days for shallow failure and 35–177 days for deep 

failure. From Fig. 3.9, the maximum possible drawdown depths with the initial reservoir 

water level of +162 m MSL are shown in table 5.10. 
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Table 5.10. SRK maximum possible drawdown depth for each rapid drawdown time. 
Days Maximum Possible Drawdown (m) 

4 3 
20 11 
35 20 

177 58* 
* 58 m of drawdown is when the water level reaches the dead storage 

In theory, the reservoir can be drawn down to the dead storage at +104 m MSL. 

However, in practice there are a number of constraints that do not allow such drastic 

release of water. As mentioned in section 3.2.3, maximum drawdown is 20 m. 

5.4 Results 

As discussed in chapter 4, the horizontal seismic coefficient of the largest 

controlling aftershock is in the range of 0.05 to 0.1. Table 5.11 presents the factors of 

safety for shallow failure within the mentioned kh range. Fig. 5.27 shows the plot of 

drawdown depths vs. factors of safety for shallow failure with kh = 0.05, 0.0625, 0.075, 

and 0.1. 

For the upstream shallow slip surface, the maximum drawdown depth within the 

rapid drawdown period is 3–11 m. From table 5.11, the factors of safety in the 

drawdown range of 0–15 m are all higher than 1.1, which is the minimum required FS 

for rapid drawdown shallow failures. 

Factors of safety for deep failure in the same kh range are presented in table 

5.12. Fig. 5.32 shows the plot of drawdown depths vs. factors of safety for deep failure 

with kh = 0.05, 0.0625, 0.075, and 0.1. 
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Table 5.11. Factors of safety for upstream shallow failure with kh = 0.05, 0.0625, 0.075, 
and 0.1. 

Drawdown (m) 
Factor of Safety 

kh = 0.05 kh = 0.0625 kh = 0.075 kh = 0.1 

0 1.69 1.61 1.55 1.42 
5 1.56 1.49 1.44 1.33 

10 1.44 1.39 1.34 1.25 
15 1.34 1.30 1.25 1.17 
20 1.25 1.22 1.18 1.11 
25 1.18 1.15 1.12 1.05 
30 1.12 1.09 1.06 1.01 
35 1.09 1.05 1.03 0.97 
40 1.05 1.03 1.01 0.96 
45 1.05 1.02 1.00 0.96 
50 1.05 1.03 1.01 0.96 

 

Fig. 5.31 Drawdown depths vs. factors of safety for shallow failure with kh = 0.05, 
0.0625, 0.075, and 0.1. 
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Table 5.12. Factors of safety for upstream deep failure with kh = 0.05, 0.0625, 0.075, and 
0.1. 

Drawdown (m) 
Factor of Safety 

kh = 0.05 kh = 0.0625 kh = 0.075 kh = 0.1 

0 1.72 1.62 1.54 1.39 
5 1.67 1.59 1.51 1.37 

10 1.63 1.54 1.47 1.34 
15 1.58 1.50 1.43 1.31 
20 1.53 1.46 1.40 1.28 
25 1.48 1.42 1.35 1.25 
30 1.44 1.37 1.32 1.22 
35 1.39 1.33 1.28 1.18 
40 1.35 1.29 1.24 1.15 
45 1.30 1.25 1.21 1.12 
50 1.26 1.21 1.17 1.09 

 

Fig. 5.32 Drawdown depths vs. factors of safety for deep failure with kh = 0.05, 0.0625, 
0.075, and 0.1. 
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For the upstream deep slip surface, the maximum drawdown depths within the 

rapid drawdown period is 20 m. From table 5.12, the factors of safety in the drawdown 

range of 0–20 m are all higher than 1.3, which is the minimum required FS for rapid 

drawdown deep failures. 

The factors of safety for downstream slope in the 0.05–0.1 kh range are 1.35 and 

above, as shown in table 5.13. The minimum factor of safety for the downstream slope 

in case of earthquake is 1.1–1.2. 

Table 5.13. Factors of safety of downstream slope with kh = 0.05, 0.0625, 0.075, and 0.1. 
kh Factor of Safety 

0.05 1.52 
0.0625 1.48 
0.075 1.43 

0.1 1.35 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Rapid drawdown and seismic loading both threaten the stability of dams. The 

main objective of this thesis is to identify if the event of rapid drawdown and 

earthquake aftershock loading at the same time should be included in risk assessment 

for embankment dams. Sirikit Dam is used in the analyses. The model was developed in 

GeoStudio to analyze for the critical factor of safety in various cases of drawdown 

depths and seismic loadings. 

 SRK Dam geometry is plotted in the program according to the as-built drawing. 

The materials descriptions and properties used are a combination of existing data, 

reasonable estimation, Stark and Hussain’s (2013) empirical correlation for drained fully 

softened secant friction angle, and engineering judgment. The maximum rate of 

drawdown for SRK reservoir is calculated using the maximum capacity of all water-

releasing structures and the minimum rate of reservoir inflow. The time for the dam 

materials to drain after drawdown is calculated using the first step of the multi-stage 

rapid drawdown analysis proposed by Duncan, Wright, and Wong (1990). The times for 

drainage for shallow failure are 4–20 days, which has the maximum drawdown depth in 

the range of 3–11 m. For deep failure, times for drainage are 35–177 days, with 

maximum drawdown of 20–58 m. However, the practical level of drawdown based on 

historical data is 20 m, which can be achieved in 35 days at the quickest. The effect of 

rapid drawdown is only applicable for the upstream slope. 
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The seismicity data of the two active faults in the nearby area are from the U.S. 

Geological Survey (2007), Department of Mineral Resources of Thailand (2011), and 

Seismological Bureau, Meteorological Department of Thailand (2017). From these data, 

the maximum moment magnitude of each earthquake source is estimated using Wells 

and Coppersmith’s (1994) empirical relationships between moment magnitude and 

surface rupture length. Using Båth’s (1965) law, the largest aftershock magnitude is 

estimated. Furthermore, aftershock magnitudes larger than what Båth’s law predicts are 

also considered. Maximum peak ground acceleration (PGA) values are estimated from 

aftershock magnitudes using the NGA-West2 Ground Motion Prediction Equations 

(GMPEs) model. Horizontal seismic coefficients are determined and applied in the 

SLOPE/W slope analysis. 

There are some limitations of the GeoStudio functions that causes the resulting 

factor of safety to be lower than it should be. Therefore, corrections are developed by 

performing analyses with the same settings and applied to rapid drawdown with seismic 

coefficient analysis. 

The analyses are performed with a range of drawdown from 0 m to 50 m with 

5 m intervals. The seismic coefficients are 0, 0.025, 0.0375, 0.05, 0.0625, 0.075, 0.1, 

0.15, 0.20, and 0.30. The stability analysis results of the possible rapid drawdown and 

aftershock scenario for SRK Dam is shown in tables 6.1, 6.2, and 6.3. 

The minimum factor of safety for rapid drawdown shallow failure is 1.1. From 

table 6.1, all factors of safety for SRK Dam’s upstream slope are larger than the 
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Table 6.1. Factors of safety for upstream shallow failure.  

Drawdown (m) Factor of Safety 
kh = 0.05 kh = 0.0625 kh = 0.075 kh = 0.1 

0 1.69 1.61 1.55 1.42 
5 1.56 1.49 1.44 1.33 

10 1.44 1.39 1.34 1.25 
15 1.34 1.30 1.25 1.17 

Table 6.2. Factors of safety for upstream deep failure. 

Drawdown (m) Factor of Safety 
kh = 0.05 kh = 0.0625 kh = 0.075 kh = 0.1 

0 1.72 1.62 1.54 1.39 
5 1.67 1.59 1.51 1.37 

10 1.63 1.54 1.47 1.34 
15 1.58 1.50 1.43 1.31 
20 1.53 1.46 1.40 1.28 

Table 6.3. Factors of safety for downstream failure. 
Factor of Safety 

kh = 0.05 kh = 0.0625 kh = 0.075 kh = 0.1 
1.52 1.48 1.43 1.35 

 

requirement. For deep failure, the minimum factor of safety is 1.3. From table 6.2, SRK 

Dam also meets the requirement. The downstream slope, which is not affected by rapid 

drawdown, has a minimum factor of safety requirement for seismic shaking of 1.2. From 

table 6.3, SRK downstream slope has a greater factor of safety than the requirement. In 

conclusion, this research analysis shows that SRK Dam is safe from the largest possible 

rapid drawdown and aftershock loading at the same time. Additionally, the result does 

not suggest any modifications to the current large earthquake emergency plan. 

However, it is important to note that the data and materials properties used in 

this research are from reports by others. Reasonable assumptions based upon 
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geotechnical principles and engineering judgement were made to achieve suitable 

parameters for the analyses. Further laboratory and field investigation of geometry and 

material properties are required achieve more accurate factors of safety.   

From tables 6.1 and 6.2, the critical slip surface is the shallow failure for all cases. 

However, the factors of safety for deep failure are not much larger than those for 

shallow. The deep slip surface is an arguably more dangerous mode of failure. In field 

conditions, there may be some factors that cause deep failure to mobilize before 

shallow failure can occur. Therefore, deep failure should always be included in stability 

analysis of dams even though it may not be the critical mode of failure. 

In each level of drawdown depth, the factor of safety decreases as the seismic 

coefficient increases. Similarly, in each seismic coefficient value, the factor of safety 

decreases as the drawdown depth increases. It can be concluded that drawdown 

condition and seismic condition have effects on each other. 

Because of the size of the dam and its reservoir, lowering the water level in 

practice is a slow process. It is very unlikely for SRK Dam to experience rapid drawdown 

and strong aftershock shaking at the same time. However, the water level of smaller 

embankment dams can fluctuate significantly. Rapid drawdown coupled with aftershock 

earthquake loading can be a significant failure mode for smaller dams. Therefore, this 

mode of failure should be considered for all embankment dams. 

Further research may be performed on the actual probability of rapid drawdown 

and aftershock, scenarios with different initial water level and outflow rate, and the 

effect of deformation on the dam. 
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Fig A.1 Slip surface of upstream shallow failure with 0 m. drawdown and kh = 0.05. 

 

Fig A.2 Slip surface of upstream shallow failure with 0 m. drawdown and kh = 0.0625. 

 

Fig A.3 Slip surface of upstream shallow failure with 0 m. drawdown and kh = 0.075. 
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Fig A.4 Slip surface of upstream shallow failure with 0 m. drawdown and kh = 0.10. 

 

Fig A.5 Slip surface of upstream shallow failure with 5 m. drawdown and kh = 0.05. 

 

Fig A.6 Slip surface of upstream shallow failure with 5 m. drawdown and kh = 0.0625. 
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Fig A.7 Slip surface of upstream shallow failure with 5 m. drawdown and kh = 0.075. 

 

Fig A.8 Slip surface of upstream shallow failure with 5 m. drawdown and kh = 0.10. 

 

Fig A.9 Slip surface of upstream shallow failure with 10 m. drawdown and kh = 0.05. 
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Fig A.10 Slip surface of upstream shallow failure with 10 m. drawdown and kh = 0.0625. 

 

Fig A.11 Slip surface of upstream shallow failure with 10 m. drawdown and kh = 0.075. 

 

Fig A.12 Slip surface of upstream shallow failure with 10 m. drawdown and kh = 0.10. 



93 
 

 

Fig A.13 Slip surface of upstream shallow failure with 15 m. drawdown and kh = 0.05. 

 

Fig A.14 Slip surface of upstream shallow failure with 15 m. drawdown and kh = 0.0625. 

 

Fig A.15 Slip surface of upstream shallow failure with 15 m. drawdown and kh = 0.075. 
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Fig A.16 Slip surface of upstream shallow failure with 15 m. drawdown and kh = 0.10. 

 

Fig A.17 Slip surface of upstream deep failure with 0 m. drawdown and kh = 0.05. 

 

Fig A.18 Slip surface of upstream deep failure with 0 m. drawdown and kh = 0.0625. 
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Fig A.19 Slip surface of upstream deep failure with 0 m. drawdown and kh = 0.075. 

 

Fig A.20 Slip surface of upstream deep failure with 0 m. drawdown and kh = 0.10. 

 

Fig A.21 Slip surface of upstream deep failure with 5 m. drawdown and kh = 0.05. 
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Fig A.22 Slip surface of upstream deep failure with 5 m. drawdown and kh = 0.0625. 

 

Fig A.23 Slip surface of upstream deep failure with 5 m. drawdown and kh = 0.075. 

 

Fig A.24 Slip surface of upstream deep failure with 5 m. drawdown and kh = 0.10. 
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Fig A.25 Slip surface of upstream deep failure with 10 m. drawdown and kh = 0.05. 

 

Fig A.26 Slip surface of upstream deep failure with 10 m. drawdown and kh = 0.0625. 

 

Fig A.27 Slip surface of upstream deep failure with 10 m. drawdown and kh = 0.075. 
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Fig A.28 Slip surface of upstream deep failure with 10 m. drawdown and kh = 0.10. 

 

Fig A.29 Slip surface of upstream deep failure with 15 m. drawdown and kh = 0.05. 

 

Fig A.30 Slip surface of upstream deep failure with 15 m. drawdown and kh = 0.0625. 
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Fig A.31 Slip surface of upstream deep failure with 15 m. drawdown and kh = 0.075. 

 

Fig A.32 Slip surface of upstream deep failure with 15 m. drawdown and kh = 0.10. 

 

Fig A.33 Slip surface of upstream deep failure with 20 m. drawdown and kh = 0.05. 
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Fig A.34 Slip surface of upstream deep failure with 20 m. drawdown and kh = 0.0625. 

 

Fig A.35 Slip surface of upstream deep failure with 20 m. drawdown and kh = 0.075. 

 

Fig A.36 Slip surface of upstream deep failure with 20 m. drawdown and kh = 0.10. 
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Fig A.37 Slip surface of downstream failure with kh = 0.05. 

 

Fig A.38 Slip surface of downstream failure with kh = 0.0625. 

 

Fig A.39 Slip surface of downstream failure with kh = 0.075. 



102 
 

 

Fig A.40 Slip surface of downstream failure with kh = 0.10. 
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