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        ABSTRACT 

 

Deaths of Despair in the United States 

by 

Amin Etemadifar, , Doctor of Philosophy 

Utah State University, 2021 

 

Major Professor: Dr. Eric Reither 

Department: Sociology, Social Work, and Anthropology 

 

Thanks to medical advancements, life expectancy has substantially increased 

in the twentieth century, particularly in advanced nations. However, the life 

expectancy of Americans has become stagnant since 2010; that is unexpected news 

and a warning. An important body of scholarship has attempted to explain stagnant 

longevity in the United States through “deaths of despair”. According to the theory, 

there is a rise in midlife mortality among non-Hispanic white Americans, especially 

without college education, that is attributable to drugs, alcohol, and suicide. Although 

numerous studies have inspected various aspects of that thesis, there are still 

significant unresolved questions.  

This dissertation addresses two major gaps in the extant literature. First, 

focusing on geographic disparities, this study analyzes trends in deaths of despair for 

each of the 50 states from 1999 to 2019. Although the results show an overall uptrend 

in the US for all three contributors to deaths of despair, there are large disparities 

among states with respect to rates of increase. For example, New Jersey, North 

Dakota, and Maryland have the highest drug mortality growth among midlife whites, 

with annual change in each state near 20 percent; conversely, Hawaii, Wyoming, and 
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Utah have the lowest growth in recent years, with annual percent change around zero. 

In general, states such as Maryland, Connecticut, New Jersey, Delaware, and New 

Hampshire, all located in the Northeast region, are experiencing the highest growth in 

despair mortality in recent years. 

The second literature gap is an insufficient explanation for deaths of despair; 

consequently, this dissertation explores a large set of social and economic variables. 

This study applies spatial fixed-effect panel models to examine how changes in 

predictor measures for each county are associated with despair-related mortality. The 

findings suggest increases in factors such as social capital, percentage of married 

people, and population density in the county lead to lower despair-related mortality 

over time; by contrast, rising rates of poverty lead to higher despair-related mortality. 

In addition, the findings highlight the importance of precieved loss of socioeconomic 

status (e.g. average levels of education, income, and employment) at the county level 

for midlife whites.  

(157 pages)   
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PUBLIC ABSTRACT 

 

Deaths of Despair in the United States 

Amin Etemadifar 

 

 

Life expectancy is one of the most important indicators of public health and is 

an indication of overall health status in a population. Thanks to public health and 

medical advancements over recent decades, the life expectancy of all nations has 

significantly increased, and that is more true for developed nations like the United 

States. However, the most recent data shows the longevity of Americans has become 

stagnant since 2010. So the first question that comes to mind is why that is 

happening, and the main goal of this dissertation is to answer that question.  

In order to address that question, this study examines a theory called “deaths 

of despair”. According to that theory, the mortality of midlife white Americans, 

especially those without college education, has significantly increased over recent 

decades and that is one of the major reasons of life expectancy stagnancy. 

Specifically, the theory points to three causes for deaths of despair, including drugs, 

alcohol, and suicide; However, those causes are the result of underlying problems that 

have a root in the social and economic determinants of health. The findings of this 

dissertation have two parts. The first part explores the geographic distribution of 

midlife white mortality, showing how each cause of death (i.e. drug, alcohol, and 

suicide) differs across US states. For example, while drug mortality is a critical issue 

in West Virginia, that is not the case in Utah, but in Utah suicide is a major problem.  

The second part of the findings deals with an explanation for deaths of despair 

at the county level, and examines the influence of different social and economic 
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factors on despair mortality. The findings suggest social isolation and economic 

hardship as two significant determinants of deaths of despair. In addition, a perceived 

loss of socioeconomic status (defined by factors like income, education, and 

employment) for white people may be another significant factor. One important 

conclusion is that there is a subgroup of the non-Hispanic white American population 

that is struggling with life difficulties as much as other marginalized groups, and they 

need special attention and support.  
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CHAPTER I 

INTRODUCTION 

 

Statement of problem 

  Thanks to health improvements and medical advancements, life expectancy 

increased dramatically in the twentieth century, especially in developed nations. For 

generations, Americans have become used to an annual increase in life expectancy 

and each new generation has expected to live longer than its parents. We can see this 

hopeful expectation in a speech that Francis Collins, the Director of National 

Institutes of Health (NIH), presented in 2014: “our Nation has gained about one year 

of longevity every six years since 1990. A child born today can look forward to an 

average lifespan of about 78 years — nearly three decades longer than a baby born in 

1900” (NIH 2015). 

  However, according to the latest data from the National Center for Health 

Statistics (NCHS), the life expectancy of Americans has been stagnant in recent 

years. For example, in 2010 U.S. life expectancy was 78.7 years, the same value as in 

2018. As figure 1 presents, there was an upward trend in life expectancy from 1999 to 

2010, but after 2010 that measure fluctuates around 78.7. In some years (e.g. 2017) 

there is even a decline in life expectancy. Evidence over the past decade suggests a 

long-term stagnation in U.S. life expectancy, which is surprising and troubling news. 

The last time that the United States experienced a decline in life expectancy for 

multiple years was 1918, during the first world war and the Spanish influenza 

pandemic (Newman 2018). The current stagnation in life expectancy is a serious 
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warning to the U.S. public as well as policymakers and public health authorities. The 

theory of deaths of despair provides one major explainaton for that problem. 

Deaths of despair (DoD) theory 

Prior to 2015, some studies warned about the future life expectancy of 

Americans. For example, Olshansky (2005) refers to the rise of obesity since the 

1980s and concludes that we may expect a decline in life expectancy in the near 

future. Reither et al. (2011) assert that conventional demographic and statistical 

measures, such as period life expectancy, can create inaccurate impressions about 

current and future population health status. Other measures and projection methods 

that incorporate the health of younger birth cohorts suggest that U.S. death rates are 

likely to increase in the future. Since the publication of these articles, life expectancy 

Figure 1. Life expectancy in the United States of America, 1999-2019 (NCHS 2021) 
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has indeed stagnated and declined—but the reasons why are contested among 

scholars in this field of study. 

Denney et al. (2013) highlight stagnant life expectancy among Americans and 

the continuing drop of the U.S. in international life expectancy rankings. By 

conducting an analysis of more than 70 years of mortality data, they project that U.S. 

life expectancy in 2055 will increase by only three additional years, relative to current 

levels. Avendano and Kawachi (2014) attempt to answer why longevity among 

Americans is the lowest among other high-income countries. They emphasize 

contributors to suboptimal longevity such as socioeconomic inequalities, differences 

in health care, and individual behaviors as the main causes of that difference.  

After Deaton and Case (2015) published their seminal study on “deaths of 

despair,” attention to the issue of U.S. life expectancy significantly increased in both 

academic journals and non-academic media. By examining data from 1999 to 2013 

and presenting the results in their article “Rising morbidity and mortality in midlife 

among white non-Hispanic Americans in the 21st century,” Deaton and Case (2015) 

point to an unexpected increase in the mortality of middle-aged non-Hispanic white 

Americans in recent years. They argue the United States is the only country among 

high-income developed countries experiencing such an increase in mortality among 

people in midlife. For example, from 1978 to 1998, the death rate of 45 to 54 year-old 

people in the U.S. decreased by 2 percent per year, similar to other industrialized 

countries. However, after 1998, the death rate of that age group started to increase by 

0.5 percent per year in the U.S. and since then has significantly diverged from other 

developed nations.  



4 

 

 

 

In addition, the authors assert that the mortality increase is happening among 

non-Hispanic white people, not other racial and ethnic groups in the U.S. population. 

They suggest two explanations for the matter. First, they highlight three causes of 

death including drug poisoning, suicide, and chronic liver diseases and cirrhosis 

(mainly caused by alcohol abuse) as the most important culprits of mortality increase 

among midlife white Americans. They assert that the increase in suicide and drug- 

and alcohol-related mortality is enough to offset the decrease in mortality caused by 

other major causes of death like cardiovascular diseases and cancers (Case and 

Deaton 2015, 2017). The second explanation is related to distal determinants of health 

involving social, economic, and cultural factors. They argue that education is a 

critical determinant of death rates as, between 1999 and 2013, the death rate increased 

by 134 (per 100,000 persons) among midlife white Americans without a college 

education. Over this same period, midlife white Americans with some college 

education experienced a decline in mortality of 3.3 deaths per 100,000 persons, and 

midlife white Americans with a Bachelor’s degree or higher experienced a decline of 

57.0 deaths per 100,000. In addition, Case and Deaton (2015) point to increasing 

income inequality and economic decline after the 1970s as major contributors to 

increasing mortality rates among midlife white Americans. Because of those factors, 

many midlife working-class baby boomers with lower education have found that they 

are not able to exceed the living standards of their parents. As a result of poor 

economic prospects and the lack of well-paying jobs, that cohort of the population 

feels pain and distress in their lives such that they gravitate toward self-harm and drug 

abuse. The authors refer to this phenomenon as “deaths of despair.”     

In a more recent study, Case and Deaton (2017) contend that deaths of despair 

actually started to rise in the early 1990s, but the decrease in some major causes of 
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deaths, like cardiovascular diseases, offset that increase. However, while deaths of 

despair continued to rise after 1999, the decline in other major causes of death like 

heart disease leveled off and did not offset deaths of despair anymore. In the study, 

they refer to “cumulative disadvantages” as the main mechanism driving the problem 

(i.e., DoD). By cumulative disadvantages, they mean social, cultural, and economic 

changes in American society after the 1970s. From that time, the heyday of working-

class wages ended and the traditional structure of economy and society that once 

supported working-class people began to falter. For instance, unlike previous 

generations, today’s workers cannot expect a well-paying manufacturing job. As a 

result of globalization and technical advancements, the quantity and quality of well-

paying jobs for the working-class have declined and labor unions have lost their 

importance. At the same time, marriage, the traditional institution to provide personal 

and familial support, is no longer the only way of partnership and raising children, 

and religious communities, weakened by various social forces, are not able to support 

their members as they used to do. The result of all those changes is a more 

challenging life for midlife white people in the working-class, and they find 

significant disadvantages compared to the older generations. 

Figure 2 shows the age-adjusted mortality rate of Americans in the 25 to 64 

year-old age group that is attributable to drugs, suicide and alcohol. As the figure 

indicates, there is a strong uptrend for white people such that the mortality rate rose 

from 47.6 in 1999 to 108.0 in 2019—an increase of 126.9%. Also, while midlife 

mortality caused by despair is almost steady since 1999 to 2010 for Hispanics, there 

is a sudden drop for non-Hispanic Blacks (hereafter refered to as Blacks) that began 

in 2006 and continues to 2010. After 2010, there is a significant uptrend for midlife 

despair mortality of Blacks and Hispanics, which is contrary to Case and Deaton’s 
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argument that the rise in “deaths of despair” is happening only for non-Hispanic 

white Americans. As the figure 2 shows, mortality in 1999 was lower among whites 

than among Blacks and Hispanics. However, over time white mortality surpassed 

other racial/ethnic groups, confirming that the situation for midlife white people is 

becoming considerably more serious.    

The growing deaths of despair is threatening a large vulnerable group of the 

American population and can be considered an urgent priority, necessitating further 

research on the topic. This dissertation defines its overarching goal as taking some 

steps toward a deeper understanding of the issue. I start with a literature review on the 

most important studies related to that topic. Then, I point to two major gaps of the 

existing literature, and according to those gaps, I design the main questions of this 

Figure 2. Age adjusted mortality rate among 25-64 year-old Americans attributable to 

drugs, suicide and alcohol by race/ethnicity, 1999-2019 (NCHS 2021) 
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study as well as methods of analysis to answer the questions. I devote two chapters to 

review results that emerge from my analyses. Finally, in the last chapter, I discuss the 

most significant findings, future directions, limitations, and suggested policies.    

Literature review  

This literature review includes four subsets. First, I summarize studies that 

have addressed the deaths of despair (DoD) thesis in recent years. In the second 

section, I summarize studies focusing only on drug mortality, because the number of 

them is growing and they deserve more attention. The third section is related to 

studies that emphasize geographic disparities in DoD, which may reveal important 

differences across US states and other geopolitical entities. Finally, the fourth section 

is a summary of studies that attempt to provide an explanation for DoD generally or 

drug mortality in particular.  

Deaths of Despair (DoD) 

Case and Deaton’s (2015) work has attracted much attention from public 

media, as highlighted via a keyword search for “deaths of despair” on the Internet. 

This search returns a huge number of articles, interviews, and TV reports related to 

the matter. At the same time, many researchers in academia in different fields such as 

public health, epidemiology, sociology, demography, economics, and public policy 

have investigated deaths of despair. In what follows, I discuss several important 

studies on the issue. 

Snyder (2016) attempts to refine Case and Deaton’s study in terms of 

urbanization. Using six levels of urbanization, from metropolitan areas to rural areas, 

he found that the 45 to 54 year-old group of non-Hispanic white Americans who lived 

in more urban areas experienced a 7.6 percent reduction in death rates from 1999 to 
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2013. As urbanicity declined in this age group, from somewhat less urban areas to 

more rural areas, mortality increased steadily from 6.3 to 76 percent in the same 

period.  

In a short response to Case and Deaton (2015), Schmid (2016) contends that 

their explanations based on deaths of despair (including suicide, drug overdose, and 

alcohol abuse) only explain one-third of the observed mortality increase, necessitating 

another explanation for the remaining two-thirds. Gelamn and Auerbach (2016), in 

another response, argue that the pattern reported by Case and Deaton is at least 

partially due to age aggregation bias and the changing age composition of 45 to 54 

year-old Americans. They show that the age distribution among 45 to 54 year-olds 

was skewed toward younger ages in 1999 but shifted toward older ages by 2013. 

They also add that the mortality increase for white women is more serious than that of 

men, and researchers need to take that point into consideration. Case and Deaton 

(2016) attempted to address some of the above-mentioned concerns by 

acknowledging that their initial study should be refined based on three factors: sex 

disparities, additional causes of death, and geographic areas.  

Nevertheless, Case and Deaton (2017) refute the concern of age bias raised by 

Gelman and Auerbach (2016). To address that concern, they replicate their analysis 

by five-year age groups, instead of 10-year ones, and conclude the new results do not 

have any significant difference from their previous analysis. For example, the results 

for the 50 to 54 year-old group in the new study is only 0.09 of a year (or 33 days) off 

from the first study, and they argue that is negligible. 

Shiels et al. (2017) investigate age groups between 25 to 64 years of age from 

1999 to 2014, with more of a focus on sex, race and ethnicity differences. They 
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confirm the increase in midlife mortality among white Americans, showing that the 

death rate increased among 30-year-old non-Hispanic white American women and 

men by 2.3 percent and 0.6 percent, respectively. However, in addition they observe 

an increase in death rates among American Indians and Alaska Natives. They also 

confirm that deaths of despair are mainly responsible for that increase. In contrast to 

non-Hispanic whites and American Indians and Alaska Natives, they find evidence of 

mortality declines among all age groups for Blacks (up to a 3.9% decrease), 

Hispanics (up to 3.2%), and Asians and Pacific Islanders (up to 2.6%). They assert 

that these declines are attributable to reductions in mortality related to HIV, cancer, 

cardiovascular diseases, and smoking cessation. 

Woolf et al. (2018) examine the mortality of midlife Americans across racial 

and ethnic groups from 1999 to 2016. Like Shiels et al. (2017), their investigation 

concludes that mortality in midlife has not only increased for non-Hispanic whites, 

but also for Non-Hispanic American Indians and Alaskan natives. However, while 

all-cause midlife mortality for non-Hispanic Blacks, non-Hispanic Asians, Pacific 

Islanders, and Hispanics decreased until 2009-2011, it increased after those years. 

Drug poisoning is the main cause of midlife death increase in all racial and ethnic 

groups assessed in the study, and alcohol abuse, suicide, and organ diseases involving 

multiple body systems are in the next ranks. Also, they find that midlife mortality 

increase is different based on sex and levels of urbanization; deaths caused by drug 

overdoses are more common among women than men, and death rates from these 

causes are higher in small cities and non-metropolitan areas than in large urban 

centers. 
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In another analysis, Stein et al. (2017) inspect mortality among people 

between 25 to 64 years of age in two time periods, 1999 to 2001 and 2013 to 2015. 

The authors attempt to reveal nuances in the deaths of despair hypothesis by 

examining race, urbanization, and various specific causes of death. Like some other 

studies, their findings suggest a decrease in mortality among Blacks and Hispanics 

over the two periods, mainly due to improvements in motor vehicle collisions (MVC) 

and HIV in the 25 to 34 year-old group, and improvements in chronic diseases in the 

45 to 64 year-old group. One important point is that among younger Blacks and 

Hispanics, the significant decrease in deaths due to these causes offsets the death 

increase caused by drug poisonings and suicides. They add that the most significant 

increase in mortality has happened among non-Hispanic whites in the 25 to 34 year-

old group that lives in suburban areas, and especially among the 45 to 64 year-old 

group from rural areas. The growth of poverty in suburban areas and loss of 

manufacturing jobs in rural areas are suggested causes of those mortality increase by 

authors. They argue that their findings generally support the deaths of despair 

hypothesis.  

Woolf and Schoomaker (2019) examine life expectancy and mortality data 

and find that, for the first time in the last six decades, U.S. life expectancy declined 

for three consecutive years after 2014. As an explanation for that decline, they refer to 

an increase in cause-specific mortality among 25 to 64 year-old people that started in 

the early 1990s, which eventually resulted in a rise in all-cause mortality that began in 

2010. According to the authors, this increase is happening over all racial groups and 

is caused by drug, alcohol, suicide, and a variety of organ system diseases.  
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From Deaths of Despair to the Opioid Crisis 

In the more recent literature, particularly after 2017, there are a number of 

studies focusing on deaths caused by drugs alone. For instance, Ruhm (2018a) argues 

that DoD is actually an opioid crisis. In this section, I summarize some of those 

studies.  

Masters et al. (2017) study the mortality data of white people in the 45 to 54 

age group from 1980 to 2013. Their findings point to two issues that are not 

consistent with the deaths of despair thesis and some earlier studies. Their first 

assertion is that while mortality among middle-aged white people caused by drug 

overdoses increased significantly from 1980 to 2013, mortality caused by suicide and 

chronic liver diseases was fairly stable over the same time period. Consequently, 

Masters et al. suggest that bundling the three causes of death commonly attributed to 

DoD (i.e., suicide, alcohol, and drugs) is not justifiable because drug poisoning has 

special importance. Another key argument in this study involves significant sex 

disparities in extrinsic causes of death (i.e., causes of death that are external to the 

body), as its findings suggest that there is not a common underlying factor that 

explains mortality increases for men and women. As a result, they believe that the 

singular theory for deaths of despair is not tenable because it assumes the U.S. 

mortality increase has a common cause rooted in hopelessness and distress regardless 

of sex.  

In another study, Masters et al. (2018) examine mortality data among white 

Americans from 1980 to 2014 and add extrinsic causes of death as well as metabolic 

diseases (i.e. deaths from cardiovascular diseases, diabetes, obesity, and 

hypertension) to drug poisonings, alcohol abuse, and suicide. Again, they emphasize 

that deaths caused by drug poisonings have significantly increased since the 1990s, 
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but the data show no such increase in mortality caused by alcohol or suicide. 

Furthermore, they argue that the drug mortality increase is not limited to middle-aged 

groups, but rather includes all ages from the 20s to 50s. They explain that increase by 

the rising availability of some opioids, as well as (1) misuse or over-prescription of 

some opioid-based painkillers by medical practitioners and (2) an increase in heroin 

use. Moreover, as in their previous study, they emphasize differences between men 

and women and argue that sex-specific explanations for rising mortality are 

necessary. For example, there has been a decline in deaths caused by metabolic 

disorders among middle-aged white American men, but this decline has stalled 

among women. They add that deaths caused by metabolic disorders are significantly 

higher among more recently born white people, confirming some other studies about 

an expanding obesogenic environment in the country (e.g. Olshansky 2005). In their 

conclusion, Masters et al. (2018) state that the expanding obesogenic environment 

along with the drug and opioid epidemic can provide a strong explanation for the 

increase in deaths among midlife white Americans.  

In two separate studies, Ruhm (2018a, 2018b) focuses on drug death data 

from 1999 to 2015. Based on findings from these investigations, he asserts that deaths 

of despair are actually an opioid crisis happening rapidly throughout the US. He 

argues that counties in economic decline experience more drug deaths, but that 

relationship is not particularly strong; therefore, deaths of despair cannot be the main 

cause of drug overdoses. Ruhm (2018b) concludes that fatal drug overdoses are the 

main cause of the mortality increase among early-to-midlife whites, particularly in the 

22 to 39 year-old age group; this association is stronger for men than women. 

Furthermore, illicit opioids have a stronger effect than prescription opioids on the 

increase in mortality.  
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Shiels et al. (2019) inspect trends in premature deaths (deaths between 25 and 

64 years of age) due to (1) all causes and (2) drug poisoning between 2000 and 2015 

among various racial/ethnic groups in the US population. According to the findings, 

the premature death rate (due to all causes) from 2000 to 2015 declined for Latino 

and black people and increased for white people, particularly whites living in less 

affluent and more rural counties. However, the death rate caused by drug poisoning 

rapidly increased among white, Latino, and Black men and women. This increase also 

happened in both rural and urban counties as well as more and less affluent counties. 

In terms of the absolute number of deaths (not the death rate) between 2012 and 2015, 

75 percent of deaths caused by drug poisoning occurred in metropolitan counties 

while only one percent of deaths occurred in rural counties. Another significant point 

is that heroin is the most common cause of opioid deaths among white and Latino 

men, while prescription opioids are the most common cause among white and Latino 

women. Among both Black men and women, cocaine is the most common cause of 

drug poisoning death.  

Kiang et al. (2019) focus on the geographic distribution of drug morality 

across the US and how that distribution has changed from 1999 to 2016. The study, 

which is based on individual-level survey data from the National Center for Health 

Statistics (NCHS), asserts that opioid mortality and especially synthetic opioid 

mortality has rapidly increased in most states but particularly in eastern states of the 

nation. Conversely, in most states, natural and semisynthetic opioid mortality has 

remained stable. The findings show, in 2016, overall opioid mortality caused the life 

expectancy of Americans to decrease by 0.36 years.   
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Spatial Disparities in DoD 

In a follow-up note, Case and Deaton (2016) suggest their seminal paper 

should be refined by examining three factors, one of which is geography. Consistent 

with this suggestion, a number of studies in the literature assess geographic variations 

in mortality caused by drugs, alcohol, and suicide. For example, Squires and 

Blumenthal (2016) argue that states in the South, including Alabama, Arkansas, 

Kentucky, Mississippi, Oklahoma, Tennessee, and West Virginia, experience a more 

intense problem while the situation in the northeast is better. They conclude that 

social and economic factors such as low education, social isolation, disengagement 

from the economy, weakened communities, and the splintering of society based on 

social class and cultural lines are possible causes of this geographical variation in 

health disparities. 

Dwyer-Lindgren et al. (2016) argue that the level of change in cause-specific 

mortality rates varies significantly across counties. For example, death rates from 

self-harm and interpersonal violence are highest in Alaska, on native-American 

reservations in North and South Dakota, and in southwestern states. Belluz and 

Frostenson (2017) argue that despite substantial advances in population health since 

1980, some parts of the country could not take advantage of the advances. They assert 

that deaths caused by mental disorders and substance use are more concentrated 

around midwestern states like Pennsylvania, Ohio, Indiana, West Virginia, Kentucky, 

and Missouri, and deaths caused by self-harm and interpersonal violence are more 

prevalent in counties located in the southwestern part of the nation. In a second study, 

Dwyer-Lindgren et al. (2018) find that deaths caused by alcohol, drug, self-harm, and 

inter-personal violence also vary significantly across counties. Between 1980 and 

2014, mortality rates from alcohol, self-harm, and interpersonal violence declined, on 
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average, but that is not true for every county. Over the same time period, drug deaths 

increased for every U.S. county, but the level of increase was significantly different 

across counties. 

Kiang et al. (2019) argue that opioid-related mortality is concentrated in 

Appalachian and midwestern states, but is now spreading rapidly among eastern 

states. They emphasize the role of synthetic opioids as the main culprit of the 

problem. Wilt et al. (2019) also find clusters of high drug mortality in eastern and 

midwestern states, which have significantly grown from 2000 to 2016. Woolf and 

Schoomaker (2019) show that states like New Hampshire, Maine, Vermont in New 

England, and West Virginia, Ohio, and Indiana, and Kentucky in Ohio Valley have 

experienced the highest midlife mortality rates caused by drug, alcohol, suicide, and a 

variety of organ system diseases since the beginning of the 1990s.  

Explanations for DoD 

In order to explain drug deaths or deaths of despair in general, some studies 

inspect the effects of economic, social, or environmental factors. Among these 

studies, some focus on a narrow subset of purported determinants. For example, Dean 

and Kimmel (2019) examine the effects of job loss and international trade on opioid 

mortality in 1999 and 2015; they find that trade-related job loss is significantly 

associated with opioid deaths. Hollingsworth et al. (2017) study how macroeconomic 

conditions (represented by unemployment) affect deaths or emergency department 

visits related to opioid overdose, and find significant associations between these 

measures at both county and state levels. Knapp et al. (2019) examine the effect of 

change in economic insecurity on deaths of despair between 2000 and 2015. They 

find that counties experiencing a higher level of economic insecurity have a higher 
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level of mortality from DoD-related causes. Shiels et al. (2019) argue that counties 

with lower socioeconomic status suffered from a more rapid increase in drug 

mortality from 2000 to 2015. Zooroba and Salemi (2017) examine the effects of 

social capital on mortality caused by drug overdose from 1999 to 2014. After 

controlling for factors such as sociodemographic characteristics, the availability of 

substance abuse treatment, and opioid prescribing practices, they find that there is a 

significant negative association between social capital and drug mortality. These 

findings lead the authors to conclude that a high level of social capital protects the 

community against drug mortality. 

Relative to these aforementioned studies, other investigations examine a wider 

range of variables. For instance, Monnat (2018) argues that there are significant 

geographic disparities in drug mortality such that in counties with economic 

hardships (including communities heavily dependent on mining) and family distress, 

the death rate is substantially higher than in counties with supporting religious 

organizations and a large number of new in-migrants. Interestingly, drug-related 

mortality rates are also higher in counties that are more reliant on the public sector 

job market. Another interesting finding from Monnat (2018) is that healthcare 

conditions do not have a significant effect on drug-related mortality. In a similar 

study, Monnat (2019a) inspects drug mortality in 2000 and 2015 and tries to explain 

increases over that period of time via socioeconomic variables and opioid supply. 

This study finds that economic and family distress, persistent population loss, and 

restrictions on opioid supply all have inverse associations with drug-related mortality 

among white people. Findings from this study also indicate significant variation 

between rural and urban areas; whereas illicit drug mortality increased most in large 
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metropolitan and urban areas, prescription opioids played a more significant role in 

rural areas.    

Monnat et al. (2019b) also examine associations between drug deaths and 

socioeconomic, demographic, and labor market characteristics of U.S. counties. They 

find that counties with socioeconomic disadvantages, more blue-collar and service-

occupation labor, and higher opioid prescription rates tend to experience higher rates 

of overall drug mortality. Findings from this study also show that the economic and 

labor market conditions affect the type of opioid deaths. For example, more 

economically disadvantaged counties with larger working-class populations are 

associated with more deaths from combinations of synthetic and prescription opioids 

as well as prescription opioid deaths; conversely, urban, less economically 

disadvantaged counties with a high concentration of professional workers suffer from 

heroin and all other major opioid types of death.  

Siddiqi et al. (2019) examine the trends and correlations between race, age, 

mortality, and a set of social and economic indicators from 2000 to 2016. Their 

investigation shows that increasing mortality among white Americans is not restricted 

to those with low education, but it is happening in higher education groups as well. In 

addition, neither short-term nor long-term economic variables can account for the 

increase. They emphasize the perception among whites that their social status is under 

threat as a factor explaining the rise in death rates.  

Importance of the issue and gaps in the literature 

After decades of advancement and improvement in health, the life expectancy 

of Americans began to stagnate in 2010. In addition to humanitarian concerns 

associated with this stagnation in longevity, which of course is the most important 
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consideration, diminished health and reduced longevity may eventually have serious 

consequences for the financial health of the United States. For instance, if health 

conditions among midlife Americans deteriorate, one serious concern is that when 

they reach older ages, their health status will be worse than old age groups at the 

current time. Meara and Skinner (2015) contend that to the degree baby-boomers and 

subsequent generations are approaching retirement age with worse health conditions, 

expenditures for health programs such as Medicare, Medicaid, and Social Security 

Disability Insurance will increase substantially. Complicating the situation is health 

care spending in the U.S. that is already excessive. For instance, the U.S. spent 

$10,966 per capita on healthcare in 2019, which was 42% and 65% higher than 

Switzerland ($7,732) and Germany ($6,646), respectively, which are the second and 

third-leading countries with respect to per-capita health expenditures (Kamal et al. 

2020).     

  Although the studies examined in my literature review address many facets 

of declining longevity in the U.S., there are still gaps and ambiguities in the literature. 

This dissertation focuses on two major issues that have not been addressed adequately 

by prior studies. First, as discussed, there is strong evidence that DoDs are not 

randomly distributed in the United States. For example, Dwyer-Lindgren et al. (2018) 

conclude that deaths caused by drug, alcohol abuse, self-harm, and interpersonal 

violence vary widely across counties, both in terms of mortality levels and trends. 

However, they do not discuss how the mortality trend in each region of the U.S. has 

changed over time. Similarly, Kiang et al. (2019) analyze opioid mortality trends in 

each state from 1999 to 2016, finding significant disparities in state-level trends. 

However, their study focuses only on opioid mortality, not other causes of DoD. The 

analyses in this dissertation will be the first to evaluate state-level mortality trends 
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that includes all major causes of death (i.e. suicide, drugs, and alcohol) embedded in 

the DoD thesis.  

Second, as Monnat (2018) argues, the contribution of social and economic 

factors to geographical variations of mortality is unknown, and more empirical 

research is necessary. Likewise, Shanahan et al. (2019) argue that although the term 

DoD has attracted much attention, there is not enough empirical evidence 

demonstrating how unfavorable socioeconomic conditions influence the level of 

despair in individuals. Therefore, another goal of this dissertation is to search for an 

explanation that is rooted in a thorough examination of the economic and social 

determinants of mortality increases related to DoD.  

There are many different factors that affect human mortality. For example, 

(Rogers et al. 2019, p. 357) talk about four general distal causes including 

socioeconomic status, social relations, geographic variations, and human and 

environmental hazards that influence mortality through factors more proximate to 

death. Specific to deaths of despair, Shanahan et al. (2019) propose a theoretical 

roadmap suggesting how economic and social factors influence mortality attributable 

to alcohol, drugs, and suicide. In that framework, risk factors of despair include 

declining income, poor job prospects, disengagement from the labor force, loss of 

traditional family structure, and social isolation. Among these risk factors, the first 

three are related to the job market and economy, and the other two pertain to 

supportive communities and social capital. Similarly, Case and Deaton (2017) discuss 

the role of decline in the job market and economic prospects, especially for people 

with no college education, as well as the importance of supportive institutions like 

labor unions, family, and the church as main factors influencing deaths of despair. 
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Therefore, as far as data availability allows, I select measures for this study that 

reflect both economic and social variability across counties, as suggested by the 

above-mentioned studies.  

In addition, a number of demographic variables are used as important 

covariates. Among those variables, two measures are related to the racal/ethnic 

composition of a county. One potential significant effect of racal/ethnic composition 

can be the social marginalization of white people. That is especially true for counties 

with a higher proportion of Hispanics in the population because there are studies that 

argue how the shared culture and social support in Hispanic neighborhoods and 

communities create ethnic enclaves (Pickett and Wilkinson 2008; Osypuk et al. 2009; 

Osypuk et al. 2010). Although such enclaves cause health benefits for Hispanics, they 

might bring about more isolation for other racial/ethnic groups. Another issue related 

to the racal/ethnic composition of a county may relate to the labor market. The 

educational attainment of Hispanics and Blacks on average is lower than that of 

whites. So it is reasonable to assume that in areas with larger Hispanic and Black 

populations, whites without college education experience more intense competition in 

the job market. The details of all selected variables are discussed in the Methods 

chapter. 

There are other advantages in this study compared to prior investigations. 

While many studies use non-restricted versions of mortality data, and either exclude 

or impute the mortality rates of counties with fewer than 10 deaths, in this study I use 

restricted mortality data that includes all counties without suffering from data 

suppression. In addition, this study takes a crucial step beyond cross-sectional 

analysis by implementing fixed-effect panel and spatial models. There are numerous 



21 

 

 

 

advantages of these models with respect to causal inference, which are discussed later 

in the Methods chapter. Also, this study implements a clear and thoughtful definition 

of DoD that is consistent with the original theory. Conflict between findings from 

prior studies and the ambiguity around the DoD hypothesis are traceable, in part, to 

inconsistent and unclear definitions. For example, some studies apply the DoD theory 

to all age groups of white Americans (e.g. Siddiqi et al. 2019), some do not 

distinguish between Hispanics and non-Hispanics whites (e.g. Masters et al. 2017), 

some assume that DoD are the equivalent of drug or opioid mortality (e.g. Ruhm 

2018a; Monnat 2018), and so on. As discussed previously, the theory of deaths of 

despair, formulated by Case and Deaton (2015), refers to deaths among midlife non-

Hispanic white Americans caused by three factors—drugs, alcohol, and suicide. So 

studies that do not follow that definition have deviated from the theory and they are 

testing something out of the scope and not explained by that theory. That’s why in 

this dissertation, I return to the original definition provided by the creators of the DoD 

theory as much as possible, thereby providing a thorough empirical test that is faithful 

to its original conception. 

Nevertheless, the trend analysis in this study is applied separately for each 

cause of despair-related mortality (i.e. drug, alcohol, and suicide). Because the nature 

of trend analysis is descriptive, the advantage of applying separate analysis for each 

cause is that we can isolate how each of these causes affects each state differently. 

However, for the explanative part of the study, I use the aggregate mortality caused 

by those three causes because the goal is to find a general explanation based on 

measures extracted from the theory of DoD. As that theory argue, those three causes 

are influenced by the same social and economic determinants and are the various 

manifestations of the same fundamental problems in American society, so the 
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separation of the causes of deaths reduces the analysis to explain three different 

phenomena and misses the rationale of that theory.  
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CHAPTER II 

METHODS 

 

Questions 

Based on the literature reviewed and arguments outlined in the introduction, I 

defined two main questions for this study: First, how do trends in mortality related to 

deaths of despair vary across the 50 states? Second, which predictor variables are 

most useful in explaining deaths of despair? For the first question, the units of 

analysis are states (e.g., Utah); to address this question, I use trend analysis. The units 

of analysis for the second question are counties (e.g., Cache County, Utah); to address 

this question I estimate different types of regression models, which I describe below. 

Data 

 The data of this dissertation is from four sources including National Vital 

Statistics System, American Community Survey, Northeast Regional Center for Rural 

Development at Penn State University, and Bureau of Labor Statistics.  

 The main measure of trend analysis is the mortality rate of non-Hispanic 

whites aged 25 to 64 that is caused by drugs, alcohol, or suicide from 1999 to 2019, 

and the analysis includes all 50 states. That mortality rate is based on multiple cause 

of death data, and is age-adjusted by the direct method according to the 2000 Census 

population and are reported per 100,000 persons. Appendix A includes the ICD-10 

codes for specific causes of death. The source of mortality data is restricted-use files 

of the National Vital Statistics System (NCHS 2019).   

The panel data used in this study contains three points of observation: 2009, 

2014, and 2019. The 2009 data set includes data collected by the ACS from 2005 to 
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2009, and the mortality rate covering the same period. However, owing to the lack of 

data for median income and Gini index in 2005 to 2009, I used data from 2006 to 

2010 for those measures.  

The 2014 data set includes data collected from 2010 to 2014 by the ACS, and 

the mortality rate covering the same period. The 2019 data set includes data collected 

from 2015 to 2019 by the ACS, and the mortality rate from 2015 to 2018, calculated 

from the most recent mortality data at the time of this study. Because the social 

capital index is only available for 2005, 2009, and 2014, I used those three years for 

the 2009, 2014, and 2019 data sets, respectively. This issue can have a potential 

benefit because the data of social capital belongs to almost the beginning of each data 

set (i.e. 2005, 2009, and 2014), so the influence of social capital on mortality has a 

built-in lag time. Also, I included the unemployment data for 2009, 2014, and 2019 in 

the corresponding panel data sets.  

Due to the lack of data, two states (Alaska and Hawaii) as well as Broomfield 

County, Colorado were excluded from the panel data. Also, I dropped Bedford 

(independent) city, Virginia because it was merged to Bedford County in 2013. There 

is a total of 3,107 counties in the analysis.  

Measures of panel data 

Dependent variable 

The dependent variable in this study is the mortality rate of non-Hispanic 

whites aged 25 to 64 that is attributable to drugs, alcohol, or suicide, based on 

multiple cause of death data. All mortality rates are age-adjusted by the direct method 

based on the 2000 Census population and are reported per 100,000 persons. The ICD-

10 codes for specific causes of death in this study are included in appendix A. The 



25 

 

 

 

source of mortality data is restricted-use files of the National Vital Statistics System 

(NCHS 2019). A significant advantage of restricted-use data over public-use data is 

that while the public-use data include only counties with deaths counts higher than 

10, the restricted-use version contains all counties, regardless of death counts.   

Independent variables 

As discussed in the previous chapter, the independent variables in this 

investigation include a set of economic and social measures that reflect important 

concepts from the deaths of despair literature. Also, four demographic variables are 

selected as control variables. The demographic measures include 

• Black Population %: The population of non-Hispanic Blacks in a county 

divided by the total population of the county multiplied by 100.  

• Hispanic Population %: The population of Hispanics in a county divided by 

the total population of the county multiplied by 100.  

• Median Age: Median age of people living in the county. 

• Population Change: Population of the county in 2000 minus the population of 

the county at the end of data observation period (2009, 2014, or 2019) and then 

divided by 1000. 

The source of all four demographic measures is the American Community 

Survey (5-year estimates) (U.S. Census Bureau 2014 and 2020). The economic and 

social measures include 

• Social Capital Index: The index of social capital for each county. This index is 

constructed using principal component analysis from factors such as the number of 

religious, business, recreational and entertainment, political, professional, non-profit, 

etc. organizations, associations, and activities in a county divided by population size 
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(Penn State University’s Department of Agricultural Economics Sociology and 

Education 2021).  

• Married %: The population of married people divided by the total population 

over 15 years old, multiplied by 100. 

• Population Density (log): This measure is the natural logarithm of the 

population of a county divided by the area of the county in square miles.  

• Median Income: The median income of all households in a county. 

• Unemployment %: The number of unemployed people divided by the sum of 

unemployed and employed people in a county multiplied by 100 (Bureau of Labor 

Statistics 2021).  

• Gini Index: The measure of income inequality between 0 (perfect equality) to 

1 (maximum inequality) for a county. According to the Census Bureau (2016) the 

index is calculated from the difference between the observed cumulative income 

distribution and a perfectly equal income distribution. 

• People under the Poverty Line %: The population of people living under the 

poverty line divided by the total population over 15 years old in a county, multiplied 

by 100. 

• People with at least Some College Education %: The number of people with 

some years of college or a college degree (associate to doctorate level) divided by the 

total population over 25 years old in a county multiplied by 100. 

The source of data for all economic and social measures, except for the social 

capital index and unemployment rate, is the American Community Survey (5-year 

estimates) (U.S. Census Bureau 2014 and 2020). The social capital index is estimated 

by the Northeast Regional Center for Rural Development at Penn State University 
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(Rupasingha et al. 2006, with updates). Unemployment data is from Local Area 

Unemployment Statistics (Bureau of Labor Statistics 2020). 

Analysis 

Joinpoint Models 

I used joinpoint regression to address the first main question of the study. 

Joinpoint regression, also named segmented regression or piecewise regression (Kim 

et al., 2000; Goovaerts and Xiao 2011; Hegerl et al., 2013), estimates the years when 

a significant change in DoD-related mortality trends occur for each individual state. 

The model starts with a single line estimation with no joinpoint and then tests to see 

whether the data warrant one or more joinpoints that reflect significant changes in the 

mortality trend. A series of Monte Carlo permutation tests are applied repeatedly 

between the model with fewer joinpoints and a more complicated one to determine 

the optimum number of joinpoints (Kim et al. 2000). I set the minimum joinpoint to 

zero and maximum to three which is the recommended number in the software 

documents for 21 years of data (National Cancer Institute 2020). Also, I set the 

minimum number of observations from a joinpoint to the end of the observation 

period as five. The slope of lines estimated by each joinpoint regression is the annual 

percentage change (APC) over the time interval of the study (1999 to 2019).  

Fixed-effect panel model  

To address the second major study question, I use fixed-effect panel models. 

The most important feature of such models is that they account for the unobserved 

time-constant unit-level heterogeneity (which in this study is unobserved county-level 

heterogeneity). From a sociological and public health standpoint, there are numerous 

variables in a county that can be assumed time- invariant and, at the same time, 

quantifying and measurement of such variables is difficult, if not impossible. Maybe 
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the most important of those factors is social structure. Political economy and 

structural inequalities influence health disparities through social status, neighborhood 

segregation, racism, gender bias, etc (Stonington et al. 2018). Moreover, as the theory 

of health lifestyle discusses, the interplay of social structure and individuals shape 

behaviors such as smoking, drug abuse, alcohol drinking, exercise, sleep, diet, 

violence, use of healthcare, and so on (Hinote 2015; Hruschka 2009). Also, state 

membership of a county and all considerations related to that membership such as 

quality of healthcare, state tax and benefits, long-term economic and social programs, 

etc. are other examples of time-constant heterogeneities. Therefore, one of the 

significant advantages of applying fixed-effect models in this study, compared to 

previous cross-sectional analyses (e.g. Monnat 2018), is to eliminate, or at least 

reduce the bias of such time-invariant omitted determinants of health. 

 Unlike random effect models, unobserved time-constant heterogeneity can be 

correlated with the regressors (Wooldridge 2010; Nerlove 2005). Fixed-effect panel 

models are defined as: 

   𝑦𝑖𝑡 =  𝑋𝑖𝑡 𝛽 +  𝛼𝑖 +  𝑢𝑖𝑡     (1) 

Where 𝑦𝑖𝑡 is a vector of the dependent variable for county i at time t; 𝑋𝑖𝑡 is a 

vector of time-variant regressors; 𝛼𝑖 is a vector of unobserved time-invariant county-

level heterogeneity indicators; 𝛽 are a vector of unknown parameters; and 𝑢𝑖𝑡 are 

vectors of error terms. The interpretation of β is that one unit increase/ decrease in a 

predictor variable (e.g., X1) of a county across time is associated with a β unit 

increase/decrease of the dependent variable in that county. 

The fixed-effect model cancels 𝛼𝑖 (unobserved time-invariant county effects) 

by demeaning both sides of equation (1) using within-group transformations:   
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(𝑦𝑖𝑡 −  𝑦̅𝑖) = (𝑋𝑖𝑡 − 𝑋̅𝑖) 𝛽 + (𝛼𝑖 −  α̅𝑖) +  (𝑢𝑖𝑡 −  u̅𝑖)     (2) 

In fixed models, 𝛼𝑖 is assumed to be constant; therefore 𝛼𝑖 −  α̅𝑖 = 0. Also, by 

assuming  𝑦𝑖𝑡 −  𝑦̅𝑖 =  𝑦̈𝑖𝑡 ;  𝑋𝑖𝑡 − 𝑋̅𝑖 =  𝑋̈𝑖𝑡;  and 𝑢𝑖𝑡 −  𝑢̅𝑖 =  𝑢̈𝑖𝑡 , the equation (2) 

can be rewritten as: 

   𝑦̈𝑖𝑡 =  𝑋̈𝑖𝑡 𝛽 +  𝑢̈𝑖𝑡    (3) 

The model estimates 𝛽 in equation (3) based on OLS regression of  𝑦̈  on 𝑋̈. 

This approach is equivalent to including a dummy variable for each unit of analysis 

(i.e. county) as a regressor such that equation 1 can be rewritten as: 

 𝑦𝑖𝑡 =  𝑋𝑖𝑡 𝛽 +  𝐷1𝑖  𝛼1 +  𝐷2𝑖  𝛼2 + ⋯ +  𝐷𝑛𝑖  𝛼𝑛  +  𝑢𝑖𝑡     (4) 

Where 𝐷1𝑖, 𝐷2𝑖 , … , 𝐷𝑛𝑖 are dummy variables, with each dummy variable 

absorbing the particular effect of each county. 

There are studies that discuss the pitfalls and limitations of fixed-effect panel 

models (e.g. Hill et al. 2020; Collischon and Eberl 2020; and Vaisey and Miles 2017; 

Elhorst 2012). I refer to three of those limitations which are more applicable to this 

analysis. First, the estimation of fixed-effect models is based on changes within 

counties over time, so one limitation of this model is that any measure that does not 

change over time cannot be estimated. Reverse causality is another potential problem 

of such models. Although the change in both dependent and independent variables 

may be significantly associated with each other, we cannot make sure of the direction 

of causality unless there is clear empirical evidence for that. The third potential 

limitation of fixed-effect panel models is related to time-varying unobserved 

heterogeneity. Although such models account for time-constant unobserved measures, 
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they are still sensitive to the bias caused by omitting time-variant variables. Also, 

because the estimation is based on canceling the effect of omitted time-constant 

variables, there is no estimated coefficient for the effect of such variables, and it is 

unclear which biases are eliminated. Despite those limitations, several scholars 

welcome the growing use of fixed-effect panel models in sociology. For example, 

Collischon and Eberl (2020) argue that we can find similar limitations in other 

regression models, and they encourage applying fixed-effect panel models for 

specific kinds of research questions that involve change over time. I will come back 

to the potential influence of those limitations on the findings of this study in the 

discussion chapter. 

Another issue to be considered in the analysis is the existence of cross-

sectional dependency in the model because such dependency violates the assumption 

of independent observations and the estimations and inferences would not be reliable. 

In this study, because counties, as the unit of analysis, have a spatial nature, spatial 

dependence or spatial autocorrelation is the most significant type of such a 

dependency, justifying the use of spatial fixed-effect models.  

  Spatial fixed-effect panel model 

According to the first law of geography, “everything is related to everything 

else, but near things are more related than distant things” (Tobler 1970:236). If we 

apply that law in this study, then counties closer to each other will have stronger 

mutual effects. Consequently, the measures derived for each county are under greatest 

influence from the characteristics of adjacent counties. 

There are three potential sources of spatial dependency or spatial 

autocorrelation (Manski 1993; Fingleton 1999; Elhorst 2014). First, endogenous 

https://www.tandfonline.com/doi/full/10.1080/17421770903541772
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interaction effects originate from associations between the dependent variable of a 

unit (i.e. counties in this study) with the dependent variable of neighboring units. The 

model to address endogenous interaction is the spatial lag model or the spatial 

autoregressive model (SAR). Second, exogenous interaction effects are caused by 

associations between the independent variables of a unit with those of adjacent units; 

the spatial lag of X model (SLX) controls for that dependency by adding a spatial lag 

of independent variables to the model. The third type of spatial dependency originates 

from associations between omitted variables of units and appears as an 

autocorrelation in error terms. The spatial error model (SEM) is designed to address 

that type of dependency. When more than one type of spatial dependency exists, a 

combination of the aforementioned models—such as the spatial Durbin model (for 

type 1 and 2) or the spatial autoregressive combined model (for type 1 and 3)—is 

used (Elhorst 2010). 

 Global Moran’s I is the most common test for spatial autocorrelations. Table 1 

presents the result of that test for all measures used in this study, across the three data 

sets in the panel. The results suggest that there are significant autocorrelations for all 

measures including dependent and independent variables. Lagrange multiplier (LM) 

tests and the robust version of them are other tests applied to the residuals of non-

spatial models to detect the presence of spatial lag and spatial error dependence 

(Burridge 1980; Anselin et al. 1996; Elhorst 2010). Table 2 shows the results of those 

tests applied to the residuals of a non-spatial fixed-effect panel model. The results 

suggest the presence of both lag and error spatial dependence (type 1 and 3) although 

the presence of lag dependence seems stronger. 
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The results of Global Moran’s I and LM tests suggest that we should be 

concerned about all three types of endogenous, exogenous, and error interaction 

effects in the panel data. The most general model that addresses all three types of  

spatial dependency is called the Manski, SAC Durbin, or SARAR Durbin model and 

is defined based on this equation (Bivand 2011, LeSage and Pace 2009): 

Table 1. Global Moran’s I test statistics on all measures 

Measure 2009 2014 2019 

Adj. Mortality Rate 0.087 *** 0.070 *** 0.082 *** 

Black % 0.234 *** 0.233 *** 0.231 *** 

Hispanic % 0.334 *** 0.336 *** 0.343 *** 

Population Decline 0.041 ** 0.050 *** 0.050 ** 

Median Age 0.086 *** 0.069 *** 0.056 *** 

Social Capital Index 0.282 *** 0.224 *** 0.220 *** 

Married % 0.112 *** 0.126 *** 0.110 *** 

Population density (log) 0.152 *** 0.150 *** 0.148 *** 

Median Income 0.136 *** 0.126 *** 0.125 *** 

Unemployment %  0.126 *** 0.212 *** 0.146 *** 

Gini Index 0.114 *** 0.114 *** 0.110 *** 

Under Poverty Line % 0.186 *** 0.171 *** 0.155 *** 

College Education % 0.169 *** 0.165 *** 0.164 *** 

*= p<.05; **= p<.01;***= p<.001    

Tables 2. Lagrange Multiplier tests for spatial dependence in panel models 

Test Test Statistic 

Test for spatial lag dependence 245.29 *** 

Test for spatial error dependence 50.88 *** 

Robust test for spatial lag dependence sub spatial error 534.57 *** 

Robust test for spatial error dependence sub spatial lag 340.16 *** 

***= p<.001  



33 

 

 

 

 𝑦𝑖𝑡 =  ρW𝑦𝑖𝑡 + 𝑋𝑖𝑡𝛽 + 𝑊𝑋𝑖𝑡θ + 𝑢𝑖𝑡     (4) 

𝑢𝑖𝑡 =  λW𝑢𝑖𝑡 + ε𝑖𝑡       (5) 

In equations (4), (5), and (6), 𝑦𝑖𝑡 is a vector of the dependent variable for 

county i at time t; 𝑋𝑖𝑡 is a vector of regressors; W is the spatial weight matrix; ρ is a 

spatial autoregressive coefficient; θ and 𝛽 are vectors of fixed and unknown 

parameters; λ is a spatial error coefficient; 𝑢𝑖𝑡 and ε𝑖𝑡 are vectors of error terms; 

W𝑦𝑖𝑡 represents endogenous interaction effects among the dependent variables; 𝑊𝑋𝑖𝑡 

represents exogenous interaction effects among the independent variables; and W𝑢𝑖𝑡 

represents interaction effects among the error terms. 

Gibbons & Overman (2012) argue against the conventional routines of model 

selection merely based on statistics tests (e.g. Lagrange Multiplier tests, as discussed 

previously), indicating it is too mechanical to grasp the reality of spatial dependence. 

Vega & Elhorst (2015) address that issue by suggesting the SLX model as a point of 

departure because SLX is the simplest model among spatial models and produces 

flexible spillovers. In addition, the interpretation of direct and indirect (spillover) 

effects for that model is straightforward. That’s why, in this study, I apply a SLX 

model as a spatial panel model. By assuming ρ =  λ = 0,  the equations 4 and 5 are 

reduced to:    

 𝑦𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝑊𝑋𝑖𝑡θ + ε𝑖𝑡     (6) 

This is the equation for the SLX model. In equation (6), 𝛽s can be interpreted 

as direct effects while θs can be interpreted as indirect spatial effects (Vega & Elhorst 

2015). The interpretation of β is the same as mentioned for the non-spatial fixed-

effect panel model, and the interpretation of θ is one unit increase/decrease in a 



34 

 

 

 

predictor variable (e.g., X1) of a county over time is associated with a θ unit 

increase/decrease in the dependent variable in neighboring counties. 

Spatial Weight Matrix (W) 

A spatial weight matrix defines the spatial structure and connectedness of 

units (i.e. counties), and incorporates that structure into the econometric model 

(Anselin 1988). A weight matrix W is a square symmetric matrix and the element wij 

is equal to the spatial effect of unit j on unit i while all diagonal elements are zero. I 

define the weight matrix based on queen contiguity, which is the most common type. 

The matrix is defined as a binary matrix, meaning if county i and j are adjacent the 

value of the element wij is equal to one and otherwise that is equal to zero. However, 

the final matrix is row standardized such that each element wij is divided by the row-

sum and takes a value between zero and one. The assumption is that the weight 

matrix is constant over the time period of the study.   

Software  

I used the software provided by the Surveillance Research Cancer Control and 

Population Sciences, NCI, ver. 4.9.0.0, to apply joinpoint models. I used R 4.03 and 

RStudio 1.3 for programming, data cleaning, and fitting the regression models. Also, 

I used ArcGIS 10.8 to produce maps.  
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  CHAPTER III 

FINDINGS OF TREND ANALYSIS 

 

In the first section of the results, I present research findings on disparities in 

DoD-related mortality trends across states; this addresses the first main research 

question of this study. For each state, I include a separate trend analysis for each of 

the three causes of DoD (i.e. drug, alcohol, and suicide). The presentation of results 

begins with an examination of the overall trend in the US since 1999, and then 

continues with more detail for each state. Also, appendix B provides trends for each 

despair-related cause of mortality for all 50 states.  

Drug mortality 

Figure 3 shows the joinpoint trend of drug mortality for non-Hispanic white 

Americans in the 25 to 64 year-old age group. According to the graph, there is an 

overall uptrend in drug mortality after 1999. The most recent significant section of 

APC (annual percent change) is 6.9 meaning drug deaths for the U.S. population have 

increased by an average rate of 6.9 percent per year since 2013.  

Table 3 presents drug-related mortality trends for each state. The first column 

is the most recent annual percentage change (APC) of drug mortality for each state, 

estimated by joinpoint regression. The second column is the average annual 

percentage change (AAPC) from 1999 to 2019. The third column is the age-adjusted 

drug mortality rate of each state in 2019 (per 100,000 persons). New Jersey, North 

Dakota, and Maryland with APC of 19.0, 18.0, and 17.6, respectively, have the 

highest drug mortality growth; Hawaii, Wyoming, and Utah with APC of -0.8, 1.2, 

and 1.3, respectively, have the lowest growth in recent years. However, in terms of 
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level or rate of drug mortality in 2019, Delaware, West Virginia, and Maryland with 

118.0, 117.2, and 87.8 deaths per 100,000, respectively, have the highest drug 

mortality rates while South Dakota, Nebraska, and Iowa with 20.1, 20.9, and 28.9 

deaths per 100,000 have the lowest drug mortality rates. 

Figure 4 and 5 show the spatial distribution of recent drug mortality growth 

and drug mortality level in 2019 by the state on the U.S. map. According to figure 4, 

states with the highest growth rates (with the exception of North Dakota) are located 

at the eastern side of the US; according to figure 5, states with the highest level of 

drug mortality (with exception of Nevada, Arizona, and New Mexico) are located in 

the Interwestern region of the US.  

 

Figure 3. Trend of drug mortality in 25-64-year-old age group of whites, 1999-2019 
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Table 3. Drug mortality in 25-64 year-old age group among whites for each state 

State Last APC (95% CI) AAPC (95% CI) 
Age-Adj. Mortality 

Rate, 2019 

Alabama 3.3* (1.5 to 5.1) 9.3* (5.2 to 13.5) 43.3 (40 to 46.7) 

Alaska 4.5* (3.3 to 5.8) 4.5* (3.3 to 5.8) 45.7 (37.2 to 54.1) 

Arizona 5.6* (5.2 to 6.1) 5.6* (5.2 to 6.1) 56.6 (53.2 to 60.1) 

Arkansas 3.3* (1.4 to 5.4) 8.9* (7.3 to 10.5) 38.6 (34.8 to 42.4) 

California 2.7* (2.1 to 3.3) 4.0* (1.7 to 6.4) 47.1 (45.6 to 48.6) 

Colorado 3.2* (2.2 to 4.2) 5.4* (4.5 to 6.3) 36.9 (34.3 to 39.5) 

Connecticut 16.9* (12.6 to 21.3) 9.7* (7.8 to 11.6) 74.7 (69.4 to 80) 

Delaware 16.0* (11.6 to 20.6) 11.3* (6 to 16.9) 118 (104.8 to 131.1) 

Florida 15.2* (9.2 to 21.5) 10.8* (6.3 to 15.4) 80.3 (77.8 to 82.9) 

Georgia 5.0* (4 to 6.1) 8.9* (7.4 to 10.5) 36.1 (33.8 to 38.3) 

Hawaii -0.8 (-3.4 to 1.9) 4.0* (1.6 to 6.5) 35.2 (27.1 to 45.1) 

Idaho 6.2* (5.2 to 7.3) 8.2* (6 to 10.4) 31.1 (27 to 35.2) 

Illinois 8.6* (8.1 to 9.2) 8.6* (8.1 to 9.2) 42.7 (40.6 to 44.8) 

Indiana 9.1* (7.8 to 10.3) 12.9* (11.3 to 14.4) 60.9 (57.8 to 63.9) 

Iowa 5.4* (3.5 to 7.3) 11.8* (10.3 to 13.3) 28.9 (26 to 31.9) 

Kansas 3.9* (2.5 to 5.2) 9.2* (7.5 to 10.9) 34.6 (31 to 38.2) 

Kentucky 8.2* (7 to 9.5) 12.1* (10 to 14.3) 77.3 (73.2 to 81.4) 

Louisiana 10.4* (6.8 to 14.1) 10.6* (8.4 to 12.9) 73.1 (68.4 to 77.7) 

Maine 16.4* (10 to 23.3) 13.6* (8.3 to 19.2) 60.5 (54.1 to 67) 

Maryland 17.6* (12.2 to 23.3) 9.5* (7.4 to 11.6) 87.8 (82.9 to 92.6) 

Massachusetts 9.0* (7.8 to 10.2) 9.0* (7.8 to 10.2) 71 (67.5 to 74.4) 

Michigan 6.7* (5.2 to 8.2) 8.8* (7.2 to 10.4) 49 (46.7 to 51.4) 

Minnesota 4.7* (3.4 to 6) 9.6* (8.6 to 10.6) 29.4 (27.1 to 31.7) 

Mississippi 1.3* (0 to 2.6) 7.8* (6.5 to 9.2) 42.5 (38 to 47.1) 

Missouri 5.4* (4.2 to 6.6) 10.1* (9 to 11.2) 50.2 (47.3 to 53.1) 

Montana 3.1* (1 to 5.1) 7.4* (4.5 to 10.4) 30.5 (25.3 to 35.7) 

Nebraska 9.7* (8.2 to 11.2) 9.7* (8.2 to 11.2) 20.9 (17.5 to 24.3) 

Nevada 3.0* (2 to 4) 5.1* (3.6 to 6.5) 55.7 (50.5 to 60.9) 

New Hampshire 13.8* (11.6 to 16) 13.8* (11.6 to 16) 65.1 (58.4 to 71.9) 

New Jersey 19.0* (16 to 22) 9.4* (7.6 to 11.3) 75.9 (72.2 to 79.6) 

New Mexico 2.3* (0.4 to 4.1) 4.9* (3.4 to 6.3) 57.3 (49.3 to 65.3) 

New York 8.5* (6 to 11) 9.3* (3.1 to 15.8) 39.9 (38.1 to 41.6) 

North Carolina 6.4* (5.1 to 7.7) 10.0* (8.1 to 11.9) 53.9 (51.4 to 56.5) 

North Dakota 18.0* (13.5 to 22.6) 18.0* (13.5 to 22.6) 29 (23.2 to 35.9) 

Ohio 13.1* (11.8 to 14.5) 13.1* (11.8 to 14.5) 82.1 (79.4 to 84.9) 

Oklahoma 2.5* (0.2 to 4.8) 8.7* (6.6 to 10.8) 45.6 (41.9 to 49.3) 

Oregon 3.0* (1.7 to 4.3) 4.7* (3.5 to 5.9) 40.8 (37.7 to 43.8) 

Pennsylvania 10.2* (9.1 to 11.3) 10.2* (9.1 to 11.3) 68.7 (66.2 to 71.1) 

Rhode Island 7.3* (5.6 to 8.9) 10.0* (7.6 to 12.4) 66.2 (57.6 to 74.7) 

South Carolina 9.8* (6 to 13.7) 9.9* (7.2 to 12.6) 60.1 (56.2 to 64) 

South Dakota 4.6* (0.2 to 9.3) 12.7* (9.1 to 16.5) 20.1 (15.5 to 25.6) 

Tennessee 9.4* (7.7 to 11.1) 11.4* (10.3 to 12.4) 73.6 (70.2 to 77) 

Texas 2.7* (2.2 to 3.2) 5.3* (4.6 to 6) 32.4 (30.9 to 33.8) 

Utah 1.3 (-0.1 to 2.7) 4.9* (3.4 to 6.4) 38.6 (35.1 to 42.1) 

Vermont 12.6* (10.3 to 14.9) 10.5* (7.7 to 13.2) 51.1 (42.3 to 59.8) 

Virginia 11.6* (8.6 to 14.7) 9.2* (4.5 to 14) 41 (38.5 to 43.5) 

Washington 5.6* (2 to 9.3) 5.0* (3.6 to 6.4) 41.1 (38.7 to 43.5) 

West Virginia 13.2* (10.9 to 15.6) 13.2* (10.9 to 15.6) 117.2 (109.4 to 125) 

Wisconsin 9.6* (7.3 to 11.9) 11.1* (7.4 to 14.9) 40.1 (37.5 to 42.8) 

Wyoming 1.2 (-3.2 to 5.9) 9.6* (5.9 to 13.4) 33.1 (26.1 to 41.4) 
*= p<.05    
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Figure 5. Drug mortality rate in the 25-64 year-old age group among whites, 2019 

Figure 4. Drug mortality growth in the 25-64 year-old age group among whites 



39 

 

 

 

Alcohol mortality 

Figure 6 presents the trend in alcohol mortality for the entire US population. 

According to the graph, the most recent significant section of APC (annual percent 

change) is 2.99, meaning that alcohol-related deaths in the US population have 

increased by an average rate of 2.99 percent per year since 2008.  

Table 4 provides information about alcohol mortality for each state. The first 

column is the most recent significant annual percentage change (APC) of alcohol 

mortality for each state. The second column is the average annual percentage change 

(AAPC) from 1999 to 2019, and the third column is the adjusted alcohol mortality 

rate for each state in 2019 (per 100,000).    

 

Figure 6. Trend of alcohol mortality in the 25-64 year-old group among whites, 

1999-2019 
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Table 4. Alcohol mortality in the 25-64 year-old age group among whites for each state 

State Last APC (95% CI) AAPC (95% CI) 
Age-Adj. Mortality 

Rate, 2019 

Alabama 2.6* (2.2 to 3.1) 2.6* (2.2 to 3.1) 36.5 (33.8 to 39.3) 

Alaska 2.5* (1.3 to 3.7) 2.5* (1.3 to 3.7) 36.3 (29.1 to 43.5) 

Arizona 0.5 (-2.1 to 3.3) 2.3 (-0.3 to 5) 41.8 (39 to 44.5) 

Arkansas 3.3* (2.8 to 3.9) 3.3* (2.8 to 3.9) 38.9 (35.4 to 42.4) 

California 0.4 (-0.1 to 0.8) 1.3* (0.7 to 2) 37.7 (36.4 to 39) 

Colorado 2.2* (1.8 to 2.7) 2.2* (1.8 to 2.7) 49.7 (46.8 to 52.6) 

Connecticut 6.3* (4 to 8.6) 1.7* (0.5 to 3) 31 (28 to 34) 

Delaware 0.6 (-0.3 to 1.5) 0.6 (-0.3 to 1.5) 40.8 (33.9 to 47.7) 

Florida 1.4 (-0.5 to 3.4) 2.2* (0.7 to 3.6) 47.9 (46.1 to 49.6) 

Georgia 3.4* (2.7 to 4.1) 1.9* (0.7 to 3.1) 31.5 (29.5 to 33.4) 

Hawaii -0.8 (-3.2 to 1.7) 2.6* (1 to 4.2) 37.6 (29.3 to 47.6) 

Idaho 4.0* (3.4 to 4.6) 4.0* (3.4 to 4.6) 40.4 (36 to 44.8) 

Illinois 3.8* (2.5 to 5.2) 2.0* (1.2 to 2.7) 29.7 (28.1 to 31.3) 

Indiana 3.5* (1 to 6) 3.5* (1.2 to 5.8) 39.3 (37.1 to 41.6) 

Iowa 4.4* (3.9 to 5) 4.4* (3.9 to 5) 36.7 (33.6 to 39.8) 

Kansas 3.2* (1.9 to 4.5) 2.9* (0.1 to 5.8) 34.7 (31.3 to 38) 

Kentucky 5.9* (4.7 to 7.1) 3.8* (2.9 to 4.7) 48.4 (45.5 to 51.4) 

Louisiana -1.6 (-4.9 to 1.8) 1.1 (-1.2 to 3.5) 30.1 (27.4 to 32.8) 

Maine 2.1* (1.5 to 2.7) 2.1* (1.5 to 2.7) 29 (25.1 to 32.9) 

Maryland 6.2* (3.4 to 8.9) 1.8* (0.7 to 2.9) 33.3 (30.5 to 36) 

Massachusetts 1.2* (0.6 to 1.8) 1.2* (0.6 to 1.8) 32.6 (30.5 to 34.7) 

Michigan 1.7* (1.3 to 2) 1.7* (1.3 to 2) 33.5 (31.7 to 35.2) 

Minnesota 4.4* (3.8 to 5) 2.3* (1 to 3.7) 35.6 (33.3 to 37.9) 

Mississippi 1.8* (1.3 to 2.3) 1.8* (1.3 to 2.3) 41.1 (37 to 45.2) 

Missouri 1.1* (0.4 to 1.9) 1.1* (0.4 to 1.9) 32 (29.9 to 34.2) 

Montana 1.1* (0.2 to 1.9) 2.3* (1 to 3.5) 43.1 (37.3 to 48.8) 

Nebraska 8.8* (5.1 to 12.7) 5.3* (3.8 to 6.7) 32.1 (28.2 to 36) 

Nevada 0.8 (-1.1 to 2.8) 1.4 (-1.1 to 4) 57.9 (52.9 to 63) 

New Hampshire 5.6* (3.5 to 7.7) 3.4* (2.3 to 4.6) 39.1 (34.3 to 43.8) 

New Jersey 2.5* (1.2 to 3.9) 0.8 (0 to 1.7) 25.7 (23.9 to 27.6) 

New Mexico 3.7* (2.9 to 4.4) 3.7* (2.9 to 4.4) 62.6 (54.7 to 70.6) 

New York 1.8* (1.4 to 2.1) 1.8* (1.4 to 2.1) 21.8 (20.6 to 23) 

North Carolina 0.8 (-1.3 to 3) 1.9 (-0.1 to 3.9) 38.2 (36.3 to 40.2) 

North Dakota 4.6* (3.4 to 5.9) 4.6* (3.4 to 5.9) 40.7 (33.6 to 47.7) 

Ohio 4.3* (3 to 5.5) 3.1* (1.5 to 4.9) 35 (33.4 to 36.6) 

Oklahoma 3.7* (3.1 to 4.3) 3.7* (3.1 to 4.3) 49.7 (46.1 to 53.2) 

Oregon 2.3* (1.7 to 2.9) 3.7* (2.9 to 4.5) 49.8 (46.6 to 53) 

Pennsylvania 2.2* (1.2 to 3.3) 2.7* (0.5 to 4.9) 26.6 (25.2 to 27.9) 

Rhode Island 2.7* (0.7 to 4.8) 3.2* (0.7 to 5.7) 54.7 (47.5 to 61.9) 

South Carolina 3.3* (2.2 to 4.3) 2.0* (1.2 to 2.8) 42.1 (39.1 to 45) 

South Dakota 4.3* (3.3 to 5.3) 4.3* (3.3 to 5.3) 39.1 (32.8 to 45.3) 

Tennessee 4.7* (4.1 to 5.4) 3.4* (2.4 to 4.5) 48.4 (45.9 to 51) 

Texas 1.6 (-0.2 to 3.3) 2.1* (1 to 3.3) 39.3 (37.9 to 40.8) 

Utah 2.4* (1.8 to 3.1) 2.4* (1.8 to 3.1) 27.9 (24.9 to 30.8) 

Vermont 3.0* (2.2 to 3.8) 3.0* (2.2 to 3.8) 35.9 (29.6 to 42.1) 

Virginia 3.0* (2.6 to 3.5) 3.0* (2.6 to 3.5) 31.6 (29.6 to 33.7) 

Washington 1.3* (0.3 to 2.4) 2.8* (2.1 to 3.5) 41 (38.8 to 43.3) 

West Virginia 5.7* (4.1 to 7.3) 3.6* (2.6 to 4.6) 60.8 (55.6 to 66) 

Wisconsin 3.7* (2.4 to 5) 2.3* (1.5 to 3.2) 36.6 (34.4 to 38.9) 

Wyoming 4.1* (3.3 to 5) 4.1* (3.3 to 5) 71.7 (61.3 to 82.1) 

*= p<.05    
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According to the table 4, Nebraska, Connecticut, and Maryland with APC of 

8.8, 6.3, and 6.2, respectively, have the highest growth in alcohol-related mortality; 

Louisiana, Hawaii, and California with APC of -1.6, -0.8, and 0.4, respectively, have 

the lowest growth in recent years. However, in terms of the level of alcohol mortality 

in 2019, Wyoming, New Mexico, and West Virginia with 71.7, 62.6, and 60.8 deaths 

per 100,000, respectively, have the highest alcohol mortality rates while New York, 

New Jersey, and Pennsylvania with 21.8, 25.7, and 26.6 deaths per 100,000 have the 

lowest alcohol mortality rates. 

Figure 7 and 8 show the spatial distribution of recent alcohol mortality 

growth and alcohol mortality level in 2019 for each state on the U.S. map. The maps 

suggest significant differences in the spatial distribution of mortality growth and 

mortality level. Moreover, the distribution of both growth and level of alcohol 

mortality is significantly different across states in comparison to the growth and level 

of drug mortality. States with the highest growth in alcohol-related mortality are 

mostly on the Western side of the US, which is the opposite pattern observed for drug 

mortality. As noted previously, growth in drug mortality is primarily concentrated in 

Eastern US states. 
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Figure 7. Alcohol mortality growth in the 25-64 year-old age group among whites 

Figure 8. Alcohol mortality rate in the 25-64 year-old age group among whites, 2019 
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Suicide mortality 

Figure 9 presents the trend in suicide mortality for the US population. 

According to the graph, the most recent significant change in APC (annual percent 

change) is 1.55 meaning suicide deaths for the US population have increased by a rate 

of 1.55 percent per year since 2010. Although the overall trend is still increasing, the 

current growth in suicide mortality is slower than growth between 1999 to 2012.  

Table 5 provides information about suicide mortality levels and trends for 

each state. The first column is the most recent significant annual percentage change 

(APC) of suicide mortality for each state, estimated by joinpoint regression. The 

second column is the average annual percentage change (AAPC) from 1999 to 2019. 

The third column is the adjusted suicide mortality rate of each state in 2019 (per 

100,000).    

 

Figure 9. Trend of suicide mortality in 25-64 year-olds among whites, 1999-2019 
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Table 5. Suicide Mortality in the 25-64 year-old age group among whites for each State 

State Last APC (95% CI) AAPC (95% CI) 
Age-Adj. Mortality 

Rate, 2019 

Alabama 2.1* (1 to 3.2) 2.0* (0.7 to 3.4) 29.3 (26.6 to 32.1) 

Alaska 2.5* (1.5 to 3.5) 2.5* (1.5 to 3.5) 28.6 (22.4 to 36) 

Arizona -0.2 (-2.3 to 2) 1.8* (0.9 to 2.6) 31.5 (29 to 34.1) 

Arkansas 2.8* (2.3 to 3.4) 2.8* (2.3 to 3.4) 30.1 (26.8 to 33.4) 

California 0.2 (-1 to 1.4) 1.8* (1 to 2.6) 22.4 (21.3 to 23.4) 

Colorado 2.3* (1.8 to 2.8) 2.3* (1.8 to 2.8) 32.5 (30 to 34.9) 

Connecticut 2.7* (2.1 to 3.3) 2.7* (2.1 to 3.3) 19.8 (17.1 to 22.4) 

Delaware 1.3* (0.4 to 2.3) 1.3* (0.4 to 2.3) 23 (17.7 to 29.5) 

Florida 0.6 (-0.2 to 1.4) 1.6* (1.1 to 2.2) 29 (27.5 to 30.5) 

Georgia 2.6* (2.2 to 3) 2.6* (2.2 to 3) 28.7 (26.7 to 30.7) 

Hawaii 3.1* (1.5 to 4.7) 3.1* (1.5 to 4.7) 30.7 (23 to 40.3) 

Idaho 2.9* (2 to 3.8) 2.9* (2 to 3.8) 26.6 (22.8 to 30.4) 

Illinois 2.5* (2.1 to 2.8) 2.5* (2.1 to 2.8) 19.3 (18 to 20.7) 

Indiana 2.3* (1.8 to 2.9) 2.3* (1.8 to 2.9) 21.7 (19.9 to 23.5) 

Iowa 2.9* (2.5 to 3.4) 2.9* (2.5 to 3.4) 24.5 (21.8 to 27.2) 

Kansas 2.8* (2.2 to 3.5) 2.8* (2.2 to 3.5) 27 (23.8 to 30.2) 

Kentucky 2.1* (1.8 to 2.5) 2.1* (1.8 to 2.5) 25.7 (23.4 to 28) 

Louisiana 2.5* (2 to 2.9) 2.5* (2 to 2.9) 27.8 (25 to 30.6) 

Maine 2.8* (2 to 3.6) 2.8* (2 to 3.6) 27.9 (23.6 to 32.1) 

Maryland 1.9* (1.5 to 2.2) 1.9* (1.5 to 2.2) 19.5 (17.3 to 21.8) 

Massachusetts 1.3 (0 to 2.5) 2.5* (0.9 to 4.1) 15 (13.5 to 16.5) 

Michigan 1.8* (1.4 to 2.2) 2.3* (1.8 to 2.8) 21.8 (20.3 to 23.4) 

Minnesota 2.3* (1.7 to 2.9) 3.0* (2.4 to 3.5) 21.1 (19.2 to 23) 

Mississippi 0.3 (-1.6 to 2.1) 2.0* (0.8 to 3.2) 27.6 (24 to 31.3) 

Missouri 2.8* (2.5 to 3.2) 2.8* (2.5 to 3.2) 28 (25.8 to 30.1) 

Montana 2.5* (1.8 to 3.2) 2.5* (1.8 to 3.2) 32.6 (27.3 to 38) 

Nebraska 5.0* (2.7 to 7.3) 2.2* (0.7 to 3.7) 26.1 (22.4 to 29.8) 

Nevada 1.2* (0.7 to 1.7) 1.2* (0.7 to 1.7) 37.4 (33.1 to 41.7) 

New Hampshire 3.7* (2.8 to 4.5) 3.7* (2.8 to 4.5) 24.7 (20.7 to 28.7) 

New Jersey 2.4* (1.8 to 3) 2.4* (1.8 to 3) 14.8 (13.3 to 16.4) 

New Mexico 2.1* (1.4 to 2.9) 2.1* (1.4 to 2.9) 36.6 (30.3 to 42.9) 

New York 0.3 (-1.4 to 1.9) 2.4* (1.1 to 3.7) 14.6 (13.5 to 15.6) 

North Carolina 1.5* (1.2 to 1.9) 1.5* (1.2 to 1.9) 22.2 (20.6 to 23.8) 

North Dakota 4.4* (3.5 to 5.3) 4.4* (3.5 to 5.3) 28.1 (22.4 to 34.8) 

Ohio 2.7* (2.3 to 3.2) 2.7* (2.3 to 3.2) 22.8 (21.4 to 24.2) 

Oklahoma 0 (-3.2 to 3.4) 1.6* (0.4 to 2.9) 30.8 (27.8 to 33.8) 

Oregon 2.1* (1.5 to 2.6) 2.1* (1.5 to 2.6) 29.9 (27.3 to 32.6) 

Pennsylvania 2.5* (2.1 to 2.8) 2.5* (2.1 to 2.8) 22.1 (20.7 to 23.4) 

Rhode Island 3.2* (1.8 to 4.6) 3.2* (1.8 to 4.6) 20.6 (16.3 to 25.7) 

South Carolina 2.6* (2.2 to 2.9) 2.6* (2.2 to 2.9) 27.9 (25.2 to 30.5) 

South Dakota 2.7* (1.8 to 3.6) 2.7* (1.8 to 3.6) 24.9 (19.8 to 30.8) 

Tennessee 1.9* (1.5 to 2.2) 1.9* (1.5 to 2.2) 26.8 (24.8 to 28.9) 

Texas 2.3* (2.1 to 2.6) 2.3* (2.1 to 2.6) 27.8 (26.4 to 29.1) 

Utah 2.9* (2.3 to 3.5) 2.9* (2.3 to 3.5) 32.7 (29.4 to 35.9) 

Vermont 2.8* (2 to 3.7) 2.8* (2 to 3.7) 23.1 (17.8 to 29.6) 

Virginia 2.0* (1.6 to 2.4) 2.0* (1.6 to 2.4) 21.4 (19.6 to 23.2) 

Washington 1.8* (1.4 to 2.2) 1.8* (1.4 to 2.2) 24.2 (22.4 to 26.1) 

West Virginia 2.7* (2 to 3.5) 2.7* (2 to 3.5) 26.9 (23.2 to 30.7) 

Wisconsin 2.2* (1.7 to 2.7) 2.2* (1.7 to 2.7) 20.6 (18.7 to 22.4) 

Wyoming 3.0* (2.1 to 3.9) 3.0* (2.1 to 3.9) 40.1 (32.3 to 49.2) 

*= p<.05    
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According to table 5, Nebraska, North Dakota, and New Hampshire with 

APC of 5.0, 4.4, and 3.7, respectively, have the highest growth in suicide mortality. 

Conversely, Arizona, Oklahoma, and California, with APC of -0.2, 0.0, and 0.2, 

respectively, have the lowest growth in recent years. However, in terms of the level of 

suicide mortality in 2019, Wyoming, Nevada, and New Mexico with 40.1, 37.4, and 

36.6 deaths per 100,000, respectively, have the highest suicide mortality rates. New 

York, New Jersey, and Massachusetts with 14.6, 14.8, and 15.0 deaths per 100,000, 

respectively, have the lowest suicide mortality rates. 

Figure 10 and 11 show the spatial distribution of recent suicide mortality 

growth and suicide mortality rate or level in 2019 by state. Like drug and alcohol 

mortality, the maps suggest significant differences between mortality growth and 

mortality level. In addition, the distribution of both growth and level of suicide 

mortality is significantly different from those of alcohol, and especially, drug 

mortality.  
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Figure 10. Suicide mortality growth in the 25-64 year-old age group among whites 

Figure 11. Suicide mortality rate in the 25-64 year-old age group among whites, 2019 
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CHAPTER IV 

FINDINGS OF AN EXPLANATION FOR DOD 

 

In this section of the dissertation, I present results that address the second 

research question—namely which variables predict within-county changes in DoD-

related causes of mortality. As discussed in the methods chapter, I applied a non-

spatial fixed-effect panel model, as well as a SLX fixed-effect panel model to account 

for at least some parts of the spatial dependence. Before presenting the results of 

those models, I will discuss the results of some descriptive analyses. 

Figure 12 to 14 present the spatial distribution of DoD in three sets of panel 

data (i.e. 2005-2009, 2010-2014, and 2015-2019).  

 

Figure 12. DoD-attributable mortality rate (per 100,000 persons), 2005 to 2009 
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Figure 13. DoD-attributable mortality rate (per 100,000 persons), 2010 to 2014 

Figure 14. DoD-attributable mortality rate (per 100,000 persons), 2015 to 2018 
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By comparing the maps, it is obvious that mortality related to DoD has been 

significantly expanding over time. In 2009, DoD-related mortality was concentrated 

primarily in some western states, as well as Oklahoma, Florida, and some counties of 

Virginia and Kentucky. By 2018, almost all US states have at least some counties 

with either orange or red color, reflecting the highest mortality levels from DoD.   

Tables 6 to 8 present descriptive statistics for measures in all three sets of 

panel data, and tables 9 to 11 present the results of correlations between all measures 

of the analysis in these three sets of panel data. 

 

Table 6. Descriptive Statistics of Measures for 2005-2009; N=3,107 

Variable Mean S.D. Min. Max. 

Age-Adj. DoD Mortality Rate 67.34 30.26 0.00 266.80 

Black Population % 8.94 14.49     0.00   86.76   

Hispanic Population % 7.55 12.82 0.00   98.63   

Median Age 39.47   4.94    21.70   59.60   

Population Change (per 1000) -6.39 29.35 -783.37 156.00 

Social Capital Index 0.00 1.39    -3.91   14.30   

Married People % 56.38   6.73    27.49   93.59   

Population Density (Log) 3.72   1.69    -2.12   10.78   

Median Household Income (per $1000) 43.76 12.10    10.93 115.57 

Unemployment Rate 6.57   2.23     1.67   21.03   

Gini Index 0.43   0.04     0.21    0.64    

People with College Education % 46.46 10.87    18.11   88.57   

People under Poverty Line %   16.14   8.02 0.00   64.72   
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Table 7. Descriptive Statistics of Measures for 2010-2014; N=3,107 

Variable Mean S.D. Min. Max. 

Age-Adj. DoD Mortality Rate 82.33 35.28     0.00 318.40   

Black Population % 9.08 14.55     0.00   85.91    

Hispanic Population % 8.69 13.47     0.00   95.68    

Median Age 40.75   5.20    21.60   64.50    

Population Change (per 1000) -10.41 43.60 -875.23 271.08 

Social Capital Index 0.00   1.34    -3.93   17.44    

Married People % 54.23   6.55    22.74   79.83    

Population Density (Log) 3.75   1.70    -2.04   10.78    

Median Household Income (per $1000) 46.35 11.93    19.15 123.97   

Unemployment Rate 7.90   2.68     1.42   26.82    

Gini Index 0.44   0.03     0.33    0.65     

People with College Education % 50.11 10.65    21.35   87.89    

People under Poverty Line %   16.85   6.51     1.04   47.92    

Table 8. Descriptive Statistics of Measures for 2015-2019; N=3,107 

Variable Mean S.D. Min. Max. 

Age-Adj. DoD Mortality Rate 102.97 43.57      0.00 415.20   

Black Population % 9.16 14.56      0.00   87.23    

Hispanic Population % 9.46 13.93      0.00   99.17    

Median Age 41.47   5.39     22.30   67.40    

Population Change (per 1000) -13.81 59.69 -1256.66 303.86 

Social Capital Index 0.01   1.26     -3.18   21.81    

Married People % 53.22   6.61     21.82   82.48    

Population Density (Log) 3.75   1.71     -1.97   10.79    

Median Household Income (per $1000) 53.29 14.09     21.50 142.30   

Unemployment Rate 4.67   1.57     1.74   21.06   

Gini Index 0.45   0.04      0.32    0.71     

People with College Education % 52.74 10.68      6.28   91.62    

People under Poverty Line %   15.14   6.31      2.43   55.45    
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The correlation matrices show associations in 2014 and 2019 that are more 

similar, generally speaking, than associations in 2009. For example, while the Gini 

index and “below poverty line percentage” have a positive significant correlation with 

mortality caused by DoD in 2014 and 2019, the correlation between the same measures 

is insignificant in 2009. In all three years, Black and Hispanic county population 

percentage, population density, and unemployment percentage have positive 

correlations with mortality. Conversely, social capital, college education, and median 

income have negative correlations with mortality. Population change has a statistically 

insignificant correlation (i.e., there is no evidence that r is different from 0.0) with 

mortality in all three years.  

Tables 12 and 13 show the results of regression models. In these models, 

demographic measures serve as control variables; social and economic measures are 

the main predictor variables, based on the theory of DoD and other studies, as 

discussed in introduction chapter. In both non-spatial and spatial models, models one 

and two, include, respectively, (1) demographic and (2) social and economic measures. 

Model three includes all measures, showing how much of the social and economic 

effect is actually attributable to demographic changes within counties over time.   

According to table 12, which presents the results of non-spatial fixed-effect 

panel models, changes in DoD-attributable mortality are significantly associated with 

changes in most of the measures across time. In model three, increases in Hispanic 

population percentage (β = 2.78, p < 0.001), median age (β = 2.78, p < 0.001), median 

income per thousand dollars (β = 0.28, p < 0.001), percentage of population with a 

college education (β = 1.67, p < 0.001), and percentage of population under the 

poverty line (β = 0.48, p < 0.001) all significantly contribute to higher DoD-related  
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mortality. Conversely, decreases in social capital (β = -2.42, p < 0.01), the percentage 

of married people (β = -1.22, p < 0.001), the log of population density (β = -36.05, p < 

0.001), and unemployment (β = -2.12, p < 0.001) are associated with significant 

increases in mortality caused by DoD. For example, one percent increase in Hispanic 

population in a county over time is associated with 2.78 more deaths related to DoD 

per 100,000 residents. Similarly, one percent increase in the married population of a 

given county is associated with 1.22 fewer deaths caused by DoD per 100,000 

persons.  

One interesting point is that while income and percentage with a college 

education have significant negative correlations with DoD-related mortality, the 

Table 12.  Non-spatial panel fixed-effect regression models predicting changes in age-adjusted DoD-

attributable mortality; N=3107 

 Model 1 Model 2 Model 3 

Variable Est. (S.E.) Est. (S.E.) Est. (S.E.) 

Demographic Measures    

   Black % 1.32 (.345)***  .32 (.326) 

   Hispanic % 4.94 (.210)***  2.78 (.225)*** 

   Median Age 5.38 (.199)***  2.78 (.211)*** 

   Population Change (per 1000) .01 (.021)  .03 (.021) 

Social and Economic Measures    

   Social Capital Index  -.105 (.795)  -2.42 (.790)** 

   Married People %  -1.68 (.115)*** -1.22 (.117)*** 

   Pop. Density (log)  -22.40 (6.793)*** -36.05 (.175)*** 

   Median Income (per $1000)  .40 (.045)*** .28 (.045)*** 

   Unemployment %   -2.46 (.186)*** -2.12 (.183)*** 

   Gini Index  19.30 (11.830) 5.48 (11.616) 

   With College Edu. %  2.27 (.096)*** 1.67 (.101)*** 

   Under Poverty Line %  .55 (.086)*** .48 (.084)*** 

AIC 90257.86 89411.46 88955.75 

*= p<.05; **= p<.01; ***= p<.001 
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associations of the same variables in regression models becomes significantly 

positive. On the other hand, while unemployment and population density have a 

significant positive correlation with mortality, in regression panel models their effects 

are significantly negative. Those points deserve more attention and we will come back 

to them in the next chapter.    

Table 13 shows the results of SLX panel models which are spatial. The 

coefficient of spatially lagged measures (the rows with factor “W”) represent the 

indirect effects of predictor variables, which capture the spatial effects of predictor 

variables in neighboring counties. In comparison to the effects of predictors in non-

spatial models, the direct effects of predictor variables in spatial models are the same 

in terms of significance, and the magnitude of coefficients is very close. In model 

three, a rise in Hispanic population percentage (β = 2.85, p < 0.001), median age (β = 

2.81, p < 0.001), median income (β = 0.28, p < 0.001), percentage of population with 

a college education (β = 1.67, p < 0.001), and percentage of population under the 

poverty line (β = 0.56, p < 0.001) is associated with a significant increase in 

mortality caused by DoD. At the same time, a decrease in social capital (β = -2.13, p 

< 0.01), percentage of married people (β = -1.23, p < 0.001), log of population 

density (β = -36.23, p < 0.001), and unemployment (β = -2.12, p < 0.001) across time 

is associated with a significant reduction in DoD-related mortality. For instance, a 

one-year increase in the median age of a county over time is associated with 2.81 

more deaths related to DoD, per 100,000 persons. Conversely, a one percent increase 

in population density over time is associated with .36 fewer deaths caused by DoD, 

per 100,000 residents.   
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Among the spatial spillover effects, an increase in the log of population 

density (θ = 1.09, p < 0.05) and median age (θ = .03, p < 0.05) in a given county over 

time significantly contributes to the rise of DoD-related mortality in the neighboring  

Table 13. SLX panel fixed-effect regression models predicting changes in  age-adjusted DoD-

attributable mortality; N= 3107 

 Model 1 Model 2 Model 3 

Variable Est. (S.E.) Est. (S.E.) Est. (S.E.) 

Demographic Measures    

   Black % 1.33 (.345)***  .35 (.327) 

   Hispanic % 4.91 (.211)***  2.85 (.226)*** 

   Median Age 5.33 (.201) ***  2.81 (.212)*** 

   Population Change (per 1000) .01 (.021)   .02 (.021) 

   W* Black % -.00 (.042)  -.11 (.050)* 

   W* Hispanic % -.10 (.041)*  .00 (.045) 

   W* Median Age -.00 (.140)  .32 (.148)* 

   W* Population Change (per 1000) -.06 (.017)***  -.03 (.018) 

Social and Economic Measures    

   Social Capital Index  -.10 (.799)  -2.13 (.798)** 

   Married People %  -1.70 (.115)*** -1.23 (.118)*** 

   Pop. Density (log)  -22.28 (6.833)** -36.23 (7.200)*** 

   Median Income (per $1000)  .40 (.045)*** .28 (.045)*** 

   Unemployment %   -2.49 (.189)*** -2.12 (.188)*** 

   Gini Index  19.86 (11.846) 6.15 (11.622) 

   With College Degree %  2.27 (.097)*** 1.67 (.102)*** 

   Under Poverty Line %  .56 (.086)*** .49 (.084)*** 

   W* Social Capital Index  .87 (.575) .91 (.619) 

   W* Married People %  .04 (.112) -.07 (.125) 

   W* Pop. Density (log)  .76 (.465) 1.09 (.501)* 

   W* Median Income (per $1000)  -.00 (.076) -.04 (.076) 

   W* Unemployment %  .01 (.205) .31 (.201) 

   W* Gini Index  -17.68 (23.559) -37.45 (24.004) 

   W* With College Edu. %  -.06 (.070) -.16 (.072)* 

   W* Under Poverty Line %  -.02 (.161) .18 (.158) 

AIC 90242.38 89417.86 88944.73 

*= p<.05; **= p<.01; ***= p<.001 
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counties, and on the other hand, a decline in Black population percentage (θ = -0.11, p 

< 0.05) and percentage of population with a college education (θ = -0.16, p < 0.05) in 

a county across time contributes significantly to mortality caused by DoD in 

neighboring counties. For example, one year rise in median age of a county over time 

is associated with .31 more deaths caused by DoD per 100,000 residents in 

neighboring counties.  

One noticeable point is the opposite significant association of the direct and 

indirect effect of population density and college education percentage on the mortality 

of neighboring counties. While a rise in population density of a county across time is 

associated with fewer despair deaths in the same county, it is also associated with 

more deaths caused by despair in neighboring counties. Also, an increase in the 

percentage of people with a college education in a county over time is associated with 

more despair deaths in the same county, but it is associated with fewer despair deaths 

in adjacent counties.   
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            CHAPTER V 

DISCUSSION 

 

The mortality of midlife non-Hispanic white people caused by drug, alcohol, 

and suicide, which are collectively referred to as deaths of despair (DoD), has 

significantly increased in recent decades. The increase in DoD is one of the main 

reasons for stagnancy in the life expectancy of Americans. In this study, I addressed 

two gaps in the existing literature on that issue. The first gap is that the spatial 

distribution of DoD-related mortality growth in the US is not well understood. To 

address this shortcoming, I analyzed mortality trends that are attributable to drugs, 

alcohol, and suicide, from 1999 to 2019, in all 50 states. I started the analysis with a 

general look at DoD-related mortality trends in the US. Results from this study show 

that there is a significant increase in all three causes of death (i.e. drugs, alcohol, and 

suicide) since 1999. This finding is contrary to other studies (e.g. Ruhm 2018a; 

Masters et al. 2017 and 2018) that have emphasized only the rise in drug-related 

mortality. At the same time, it is equally clear that, in terms of both level and growth, 

the situation for drug mortality is more critical.  

The general uptrend for the whole country should not mislead us that the 

situation is similar for all regions, however. As the results show, there are significant 

disparities across states in terms of the level and growth of mortality caused by DoD. 

For example, while drug mortality has recently grown with an annual rate near 20 

percent for states such as New Jersey, North Dakota, and Maryland, in other states 

like Wyoming and Utah the growth is essentially zero. In the case of Hawaii, the 

growth in drug mortality is actually negative. In another example of DoD disparities 
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across states, alcohol-related mortality in Nebraska is increasing by about 9 percent 

per year, but Louisiana and Hawaii are improving—i.e., growth is negative. Although 

the range of changes in suicide mortality is narrower across states, there are 

nevertheless notable differences between states like Nebraska with about five percent 

growth and Arizona with negative growth.  

Another point to consider is that high mortality growth in one specific cause of 

DoD does not mean high growth in the other causes. For instance, although Utah is 

among the states with the lowest growth in terms of drug and alcohol mortality, its 

growth in suicide mortality is among the highest. As another example, Florida has one 

of the highest growth rates with respect to drug-related mortality but its suicide 

mortality growth rate is near zero.     

One issue that makes the analysis of disparities more complex is the 

significant difference between the distribution of mortality level and growth, as figure 

4 , 5, 7, 8, 10, and 11 clearly show. For example, in terms of drug mortality, North 

Dakota is among the states experiencing the highest rate of growth, but in terms of 

mortality level, it is among the lowest. Similarly, while Nevada, Arizona, New 

Mexico, and Oklahoma are among the states with the highest growth in suicide 

mortality, their suicide mortality levels are among the lowest. Of course, some states, 

like Florida (for drug), West Virginia (for drug and alcohol), and Utah (for suicide) do 

exhibit both high growth and high levels of mortality—and these states are of special 

concern. Therefore, it is imperative to differentiate between level and change in DoD-

attributable mortality when discussing the public health situation in any given state.  
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Figure 15 shows hot-spot states in terms of growth for all three causes of DoD. 

If we define a hot-spot state one with DoD growth of 10 percent or higher, all five of 

those states (Maryland, Connecticut, New Jersey, Delaware, and New Hampshire) are 

located in the Northeast region. This issue deserves serious additional investigation. 

At the first look, the bias of small area estimation may be a concern as most of those 

states are among the smallest states. However, that is not the case because the lowest 

deaths count caused by despair among those five states is for Delaware, which 

annually has been around 500 deaths in recent years. That number is big enough to 

refute concerns about small-sample bias. A possible explanation is related to 

education, as the majority of those states are among the most educated in the U.S. 

Although counterintuitive, one line of reasoning is that a heavier burden of distress 

and frustration falls on midlife white people with low education in states that are 

Figure 15. States with highest growth (10 percent or above) of despair deaths 
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above average with respect to educational attainment. Results from my regression 

models are consistent with that explanation; I will return to this point momentarily.  

The second literature gap addressed by this study is to find a set of factors that 

may explain increases in county-level DoD. As discussed in the previous chapter, the 

results of non-spatial and spatial panel models are consistent. In these models, a rise 

in measures related to social context such as social capital and the percentage of 

married people over time is associated with reductions in the level of despair-related 

mortality. This result is consistent with some previous studies (e.g. Zooroba and 

Salemi 2017, Monnat 2018). If we consider that growth in those measures is likely 

associated with reductions in social isolation, then my results are consistent with the 

argument of DoD theory that social isolation is one of the main causes of despair-

attributable mortality. In addition, over time, there is an association between an 

increase in the percentage of the Hispanic population of a county and higher mortality 

caused by despair. As I discussed in the first chapter, some studies (e.g. Pickett and 

Wilkinson 2008; Osypuk et al. 2009; Osypuk et al. 2010) address how shared culture 

and strong communal relationships create Hispanic enclaves. Those ethnic enclaves 

provide support and benefits for the Hispanic residents but, on the other hand, it can 

be argued that ethnic enclaves cause more isolation of the vulnerable local white 

population, and the results support that argument.  

Among economic variables, an increase in the percentage of people under the 

poverty line is significantly associated with higher DoD over time. That result is 

expected and is consistent with the theory of DoD, which asserts that economic 

hardships are among the chief determinants of DoD. Also, a rise in the population 

density of a county is significantly associated with fewer DoD. If we consider the 
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increase in population density as an indication of the economic prosperity of the 

county (Nunn et al. 2018), that result would be consistent with the theory of DoD as 

well.     

However, there are three socioeconomic status (SES)-related measures with 

counterintuitive associations that apparently do not support the DoD argument, 

including median income, percentage of people with a college education, and 

unemployment. Per the DoD theory, I hypothesized that counties experiencing a rise 

in median income, percentage of people with a college education, and employment 

will experience less DoD. However, the regression models show just the opposite; 

DoD-related mortality was higher in counties that experienced these seemingly 

salubrious shifts in socioeconomic conditions. Returning to my prior argument, one 

plausible explanation for this unexpected result involves subjective socioeconomic 

status (SES); there is a well-established literature promoting the argument that 

subjective SES is as important as, or even outweighs, objective SES with respect to 

health outcomes (e.g. Singh-Manoux et al. 2003; Singh-Manoux et al. 2005; 

Demakakos et al. 2008; Wolff et al. 2010; Gelatt 2013; Cundiff et al. 2013; Euteneuer 

2014; and Krug and Eberl 2018). Therefore, white individuals with lower education 

living in counties with increasing average income, education, and employment likely 

struggle with more psychological distress and pain than poorly-educated whites in 

other areas, because they compare their SES with people who enjoy much higher 

standards of living.  

Other analyses also support this line of reasoning. For instance, Siddiqi et al. 

(2019) emphasize the perception among whites that their social status is being 

threatened as a contributor to premature mortality. Case and Deaton (2015, 2017, and 
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2020) look at subjective SES from another angle. They argue that white baby boomers 

with low education and traditional manufacturing job skills compare their life 

situation to their parents’ lives. Since many baby boomers cannot meet or exceed the 

living standard that they were accustomed to as children, they feel distressed and 

frustrated. As Woolf and Schoomaker (2019) assert, there are other works based on 

ethnography and qualitative methods that emphasize perceived loss of social status 

and uncertainties of the future as causes of distress and hopelessness among working-

class whites (e.g. Lamont 2009; Putnam 2015; Gest 2016; Hochschild 2018; Metzl 

2019).  

To my knowledge, this study is one of the few to inspect DoD by longitudinal 

models. If the arguments on how the working-class whites’ perception of their SES 

causes extra dismay and pain are true, that would show one of the substantial 

strengths of longitudinal models applied in this analysis over the conventional cross-

sectional models applied in most studies. Generally speaking, the findings of this 

study can be interpreted as confirmation for the theory of DoD. However, the results 

suggest some direction for future studies.  

First of all, further studies are needed to shed light on the spatial aspects of 

DoD. As figure 4.1 to 4.3 in the last chapter show, there are significant DoD 

disparities across states and counties. I suggest new analyses to focus more on local 

explanations, instead of a single general explanation approach used in this study. 

Indeed, one important implication of this study is that local analyses of DoD could 

help explain why, for example, alcohol-related mortality is predominant in one region 

but suicide is predominant in another. This point is critical to make new, more 
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effective policies capable of addressing DoD because each region is struggling with 

its own set of specific problems.  

In addition, future studies are necessary to explore the role of significant 

spillover effects. Model results highlight four measures that are spatially associated 

with despair-related mortality in neighboring counties, including Black population 

percentage, median age, population density, and percentage of the population with a 

college education. One noticeable point is the opposite association of population 

density and despair mortality within and across counties. The spillover effects 

suggests an increase in population density over time is associated with higher despair 

mortality in neighboring counties. As I discussed, higher population density can be an 

indication of economic prosperity in a county (Nunn et al. 2018). In addition, counties 

are self-governing entities that implement their own social and health policies as well 

as development programs (Knapp et al. 2019; Osypuk and Galea 2007; National 

Association of Counties 2016). So each county provides its own benefits for its 

residents, but that is not necessarily the case for the residents of neighboring counties. 

We may argue that the prosperity of a county over time has a negative influence on 

the subjective SES of residents in neighboring counties who may not enjoy that same 

level of prosperity. This is additional evidence that could underscore the importance 

of perceived SES; however, future studies are needed to examine that issue with 

stronger and more direct evidence. 

The percentage of people with college education is another measure that has 

an opposite within- and across-county effect. Among the other SES-related covariates, 

including income and employment, college education is the only one with such an 

opposite significant effect. That issue seems complex and further studies are 
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necessary. In addition, although there is no significant spillover effect of social capital 

on mortality caused by despair in this analysis, using the same social capital index, 

Yang et al. 2019 argue how a higher level of social capital in a county significantly 

reduces mental distress, not only within the county, but also in neighboring counties. 

A future analysis that replicates their study for specifically midlife whites would be 

insightful.   

The second direction for future studies is to take additional factors into 

account. For example, new studies can compare how despair-related mortality varies 

between different racial/ethnic groups. Attention to midlife Blacks and Hispanics is 

particularly important because, as discussed in chapter one, there is an uptrend in 

mortality caused by drugs, alcohol, and suicide for those groups since 2010. Another 

factor that is substantial but not included in this study is sex. There are studies that 

point to disparities in DoD between white males and females (Gelamn and Auerbach 

2016; Woolf et al. 2018; Masters et al. 2017 and 2018). Because the main goal of this 

study is to find a general explaination for DoD, I did not take sex into account; 

however, future studies that inspect the role of sex could be insightful. Also, analyses 

comparing the mortality of white people with and without a college education would 

be helpful. A stronger focus on job market conditions and different types of 

occupations is another suggestion to help refine research in this area of inquiry.  

Third, future studies could evaluate the influence that each cause of death has 

on life expectancy. For example, applying methods such as life tables and age and 

cause decomposition of differences in life expectancy can evaluate the weight of each 

cause of death for each age group, and therefore help refine some findings from this 

analysis. As an example for applying such methods, Roberts et al. (2020) analyze the 
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effect of different causes of deaths on life expectancy gap between whites and Blacks 

in Washington DC.   

Limitations 

Despite its many notable strengths, there are also limitations to this study. 

Perhaps the most problematic issue is what is called the ecological fallacy. Despair-

related death is a phenomenon happening at the individual level; however, in this 

analysis, we focus on factors measured at the county level. The fact that we equally 

attribute the social and economic measures like social capital, median income, or 

poverty of a county to all deaths that happened in that county can be a matter of 

debate.    

Another important limitation of this study pertains to the potential pitfalls of 

applied fixed-effect panel models. As discussed in the methods chapter, one of the 

strengths of applied fixed-effect models is to account for the unobserved time-

invariant county heterogeneity. However, in reality, there are always some time-

varying unobserved factors as well. Alcohol tax, drug availability, and drug prices are 

examples of three important variables that I was unable to include in the models. For 

instance, Naimi et al. (2018) discuss how state-specific excise taxes experience 

substantial inflation-adjusted declines over time, which could relate to alcohol 

consumption at the state level. Unick et al. (2014) argue that heroin market dynamics 

in the US, like price, influence heroin overdoses. These measures are unobserved in 

my data, vary over time, and therefore have the potential to confound associations 

observed in the fixed-effect regression models. 
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Furthermore, regression estimates from fixed-effect models are based on 

changes within counties over time, so such models are not able to capture the effect of 

any measure that does not change, or slowly changes, over time. The Gini index can 

potentially be one of those measures. The mean of the Gini index in three data sets of 

panel data is .43, .44, and .45, respectively for 2009, 2014, and 2019, which suggests 

a very slow increase of income inequality across time. Although the estimation 

suggests that an increase in the Gini index (i.e. increase in income inequality) of a 

county over time is associated with higher mortality caused by despair, that 

association is not statistically significant. Also, as discussed in the methods chapter, 

another potential issue of fixed-effect models is reverse causality. Although it seems 

that mortality, as the final outcome measure in any model involving human beings, 

cannot affect social and economic predictors, we need to consider the fact that despair 

mortality is the outcome of distress, pain, and health deterioration, which could 

simultaneously influence main predictors (e.g., marital and employment status) in my 

models. So one needs to be cautious during the interpretation of coefficients as causal 

effects unless there is very strong empirical evidence for that.   

Policy suggestions 

Although providing detailed policies is beyond the scope of this study, the 

findings do suggest some interesting directions for future policy. Of course, each state 

can impose policies on drugs and alcohol use such as prescription regulations or 

alcohol tax, to reduce the use of drugs and/or alcohol, depending on the severity of the 

problem in the state. However, to take a step toward the social determinants of health 

and a deeper understanding of the problem, focusing to a greater extent on vulnerable 

white people is essential. Instead of the common stereotypical language that says 
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“whites are doing better than Blacks or Hispanics,” we need more accurate language 

acknowledging the fact that some specific groups of white Americans are struggling 

with life hardships like other vulnerable racial/ethnic or marginalized groups, and 

perhaps even harder in some respects because they have to endure the extra burden of 

perceived loss of SES.  

Also, as the theory of deaths of despair argues and the findings confirm, the 

role of education is critical, so policies that encourage higher education seem 

warranted. In addition, investment in supporting communities and promoting 

engagement in religious, political, sport, entertainment activities, etc. can work 

against social isolation. As other studies (e.g. Woolf and Schoomaker 2019; Jonas et 

al 2019) suggest, policies strengthening the capacity of the healthcare system to deal 

with chronic diseases, and more focus on behavioral health services are considerable. 

Moreover, if the findings of this study concerning the importance of perceived SES 

were true, strategies to correct or improve the perception of suffered individuals 

would be helpful, and the field of psychology can provide valuable advice. Obviously, 

all of those suggested policies should be tailored according to the major local 

problems. 

The stagnancy of Americans’ life expectancy should be considered a serious 

priority for all US citizens, especially policymakers and political authorities. The 

findings of this dissertation confirm that deaths of despair are at least one of the main 

culprits for that issue. Substantial geographical disparities in DoD are among the most 

important findings, and instead of a general simple approach, the policies to address 

the issue should take local considerations into account. In addition, social isolation 

and economic hardships are other factors emphasized in the theory of DoD and 
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confirmed by this study. The significant role of subjective socioeconomic status and 

perception of vulnerable whites of themselves compared to stereotypical “privileged 

whites” is another major finding of this study and further studies particularly can 

focus in that direction and provide more insight. 
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Appendix A. ICD-10 codes 

Table 14 presents the ICD-10 codes for deaths of despair. All codes except for 

F11-16, F19, and F10 are consistent with Case and Deaton’s (2015) original study. I 

added those extra codes based on Masters et al. (2018). They argue that F11-16 and 

F19 are related to drug dependency and abuse, making a more comprehensive set of 

ICD codes for drug-related deaths. Likewise, adding F10 for alcohol-dependence 

disorders better captures the full range of alcohol-related deaths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. ICD-10 Codes for despair mortality 

Cause Codes 

Drug F11-16, F19, X40-X45, X85, Y10-Y15   

Alcohol F10, K70, K73-K74 

Suicide U03, X60-X84, Y87 
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Appendix B. mortality trends in states 

Figure 16 to 65 present trends of despair-related mortality in 25-64-year-old 

age group of whites for all 50 states. There are three graphs for each state on each 

page, showing mortality trends attributable to drugs, alcohol, and suicide, 

respectively, from 1999 to 2019. 
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Figure 16. Trends of DoD in Alabama 
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Figure 17. Trends of DoD in Alaska 
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Figure 18. Trends of DoD in Arizona 
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Figure 19. Trends of DoD in Arkansas 
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Figure 20. Trends of DoD in California 
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Figure 21. Trends of DoD in Colorado 
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Figure 22. Trends of DoD in Connecticut 
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Figure 23. Trends of DoD in Delaware 
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Figure 24. Trends of DoD in Florida 
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Figure 25. Trends of DoD in Georgia 
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Figure 26. Trends of DoD in Hawaii 
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Figure 27. Trends of DoD in Idaho 
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Figure 28. Trends of DoD in Illinois 
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Figure 29. Trends of DoD in Indiana 
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Figure 30. Trends of DoD in Iowa 
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Figure 31. Trends of DoD in Kansas 
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Figure 32. Trends of DoD in Kentucky 
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Figure 33. Trends of DoD in Louisiana 
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Figure 34. Trends of DoD in Maine 
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Figure 35. Trends of DoD in Maryland 
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Figure 36. Trends of DoD in Massachusetts 
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Figure 37. Trends of DoD in Michigan 
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Figure 38. Trends of DoD in Minnesota 
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Figure 39. Trends of DoD in Mississippi 

 

 

 



115 

 

 

 

Figure 40. Trends of DoD in Missouri 
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Figure 41. Trends of DoD in Montana 
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Figure 42. Trends of DoD in Nebraska 
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Figure 43. Trends of DoD in Nevada 
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Figure 44. Trends of DoD in New Hampshire 
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Figure 45. Trends of DoD in New Jersey 
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Figure 46. Trends of DoD in New Mexico 
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Figure 47. Trends of DoD in New York 
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Figure 48. Trends of DoD in North Carolina 
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Figure 49. Trends of DoD in North Dakota 
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Figure 50. Trends of DoD in Ohio 

 

 

 



126 

 

 

 

Figure 51. Trends of DoD in Oklahoma 
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Figure 52. Trends of DoD in Oregon 
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Figure 53. Trends of DoD in Pennsylvania 
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Figure 54. Trends of DoD in Rhode Island 
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Figure 55. Trends of DoD in South Carolina 
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Figure 56. Trends of DoD in South Dakota 
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Figure 57. Trends of DoD in Tennessee 
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Figure 58. Trends of DoD in Texas 
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Figure 59. Trends of DoD in Utah 
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Figure 60. Trends of DoD in Vermont 
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Figure 61. Trends of DoD in Virginia 
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Figure 62. Trends of DoD in Washington 
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Figure 63. Trends of DoD in West Virginia 
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Figure 64. Trends of DoD in Wisconsin 
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Figure 65. Trends of DoD in Wyoming 
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