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ABSTRACT

Deep Learning Data and Indexes in a Database

by

Vishal Sharma, Doctor of Philosophy

Utah State University, 2021

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

In this thesis, we apply deep learning techniques to databases to solve two specific

research problems 1) index configuration for offline and online workloads and 2) entity

resolution in heterogeneous databases.

Over the last decade, decision-making in a variety of areas has grown enormously

towards a data-driven approach. A data-driven application collects and generates a massive

amount of data. Such an application require processing data at a fast pace to retrieve

information from data, performing Extract-Transform-Load (ETL), and to perform complex

analysis. The performance of a data-driven application is significantly affected by a database

system. A database system requires tuning for optimal performance. However, there are

tens of configuration parameters, it can be challenging to manually configure a database.

Moreover, a database has to be reconfigured periodically to keep pace with a changing

data collection and workload. The physical design of the database plays an important

role in optimal performance. An important component of a physical design is selecting

a set of indexes that balances the trade-off between query execution time, storage cost,

and maintenance cost. We propose utilizing the query workload history to improve its

performance. First, we built an index recommender using deep reinforcement learning for

a standalone database. We evaluated the effectiveness of our algorithm by comparing to
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several state-of-the-art approaches. Second, we develop a real-time index recommender

that can, in real-time, dynamically create and remove indexes for better performance in

response to sudden changes in the query workload. Third, we develop a database advisor.

Our advisor framework will be able to learn hidden patterns from a workload. It can

enhance a query, recommend interesting queries, and summarize a workload.

The entity resolution problem is to match entities from heterogeneous databases. With

the emergence of massive amount of data, linking data between data collections, known as

entity resolution, has become very important. We build a system to link social media

profiles from three popular social media networks. Our system, called LinkSocial , is fast,

scalable and accurate.

Overall, this thesis provides evidence for two statements 1) using a historical SQL

workload, a database can be optimized autonomously with high accuracy, 2) using basic

features from social media, user entities can be effectively linked across multiple social media

platforms.

(73 pages)
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PUBLIC ABSTRACT

Vishal Sharma

A database is used to store and retrieve data, which is a critical component for any
software application. Databases requires configuration for efficiency, however, there are tens
of configuration parameters. It is a challenging task to manually configure a database. Fur-
thermore, a database must be reconfigured on a regular basis to keep up with newer data
and workload. The goal of this thesis is to use the query workload history to autonomously
configure the database and improve its performance. We achieve proposed work in four
stages: (i) we develop an index recommender using deep reinforcement learning for a stan-
dalone database. We evaluated the effectiveness of our algorithm by comparing with several
state-of-the-art approaches, (ii) we build a real-time index recommender that can, in real-
time, dynamically create and remove indexes for better performance in response to sudden
changes in the query workload, (iii) we develop a database advisor. Our advisor framework
will be able to learn latent patterns from a workload. It is able to enhance a query, rec-
ommend interesting queries, and summarize a workload, (iv) we developed LinkSocial , a
fast, scalable, and accurate framework to gain deeper insights from heterogeneous data.
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CHAPTER 1

INTRODUCTION

Organizations use databases to manage data; for instance, banks store financial data in

databases, marketplaces use databases for tracking products, and scientists deposit knowl-

edge gleaned from experiments in databases. Databases are widely used because they

support efficient querying and updating by multiple users.

Traditionally, a machine learning technique was used to acquire patterns from the

dataset. A machine learning algorithm learns a mapping from given input data to an

output. This approach has limitations concerning the representation of data. The Deep

Learning technique solves this problem by learning to represent data and map an input to

the output. The learned representation usually outperforms traditional handcrafted fea-

tures. Deep Learning is also known as representation learning. Deep Learning has been

previously used to solve many problems and has been applied to almost every research

domain, e.g., Biology, Economics, Engineering, etc. Such representation learning has also

gained significant research development in the field of Computer Vision and Natural Lan-

guage Processing. The research and practice in databases have also been influenced by deep

learning. Deep learning has been used for buffer size tuning [1], learning index structure [2],

data layout partitioning [3], join order selection [4].

Deep Learning techniques have been previously applied to databases. For instance, it

has been applied to tune buffer size tuning [1], learning indexes [2], improve data layout

partitioning [3], and reorder joins [4]. A recent survey of literature in the field [5] organized

the application of deep learning into four broad categories: (1) knob tuning (2) optimization

(3) monitoring, and (4) learning physical layout. These categories are depicted in Figure 1.1.

Knob tuning the process of adjusting database parameters, such as buffer size, to optimize

performance. The problem is complex because a database has many tens of parameters
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that can be tuned. Monitoring is keeping track of how the health of a database, e.g.,

throughput, latency, memory use, changes over time, and tuning knobs as needed to ensure

continued good health. Optimization is learning how to improve query performance. Query

optimization needs to estimate the size of intermediate query results, decide when to use an

index to improve a query and explore the space of query execution plans to choose an optimal

plan. Finally, physical layout refers to how the data is organized in storage, either on disk or

sharded in a cloud computing architecture. In terms of traditional database problems, index

selection, buffer size recommendation, and workspace memory allocation are knob tuning

types of problem. Database performance management, the health of a DBMS, and workload

analysis can be categorized as monitoring problems. Estimating database cardinality, query

cost, and join order selection is classified as optimization problems. Learning an index

structure, table partitioning, and linking data from sources are categorized as learning a

database’s physical layout.

In this proposal, we focus on three different categories of database improvement using

deep learning:

• Knob Tuning : We propose an index recommendation framework using Deep Re-

inforcement Learning for an offline(standalone: RL Index) and online (streaming:

Indexer++) workload.

• Physical Layout : We propose a LinkSocial framework for an entity linkage using

deep learning in a heterogeneous database.

• Monitoring : We propose QueryEnhancer a deep learning powered database workload

analyzer.

1.1 Outline of Thesis

In the remainder of Chapter 1, we describe the index recommendation problem and

related works in more detail in Section 1.2. We then describe Entity Resolution problem in

Section 1.3 and propose our overall contribution in Section 1.4. In Chapter 2 we describe
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AI to DB

Knob Tuning

Optimization Physical Layout

Monitoring
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Figure 1.1: Artificial Intelligence applied to different areas of databases

our work on Entity Resolution across social media. In Chapter 3 we describe our solution

to index selection for a standalone database. In Chapter 4, we introduce our solution

for online index selection. In Chapter ??, we propose our ongoing work on deep learning

powered Query Enhancer.

1.2 Database Index Recommendation

There are three broad approaches to achieving a self-managing database: 1) heuristics,

2) Machine Learning/Deep Learning, and 3) Reinforcement Learning to learn to optimize

knobs automatically. A database can be tuned using 1) external, and 2) internal methods.

An external method of tuning uses an API to access database management system (DBMS)

configurations to control, and an internal way is to integrate algorithms for tuning within

the DBMS. The former approach for tuning is very widely used because it requires building

or modifying (often proprietary) DBMSs. Most of the approaches discussed below are

external tuning methods, internal tuning DB are mostly industry-based, e.g., IBM DB2,

Microsoft SQL Server and the Oracle9i optimizers.

One of the focus in this thesis will be on one kind of DBMS knob: indexes. A database

index is a performance-enhancing data structure. It can be built for a column or several

columns of a database table. The only benefit of an index is that a query optimizer can

generate a query execution plan that uses the index to speed up the query’s evaluation.

Only some kinds of queries can be improved with an index. It adds to the total size of
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a database. Database indexes are critical to optimizing query workloads. They are very

efficient in locating and accessing data. Out of several parameters, database indexes are

among the most time-consuming and impacting parameters for a workload performance [6].

In this thesis, one of the problems we address is index recommendation in a database. An

approach that is effective and practical in the real world. In the next few sections, we

explore previous work, their limitations, and propose our contribution.

1.2.1 Previous Work

Tuning Based on Heuristics

The idea of a self-managing database based on heuristics dates back to the 1970s

when a self-adaptive physical database design was proposed [7]. This idea was extended

by introducing a heuristic algorithm for index selection [8] and attribute partitioning [9]

in a self-adaptive DBMS. In 1992, an adaptive and automatic index selection was pro-

posed based on query workload statistics [10]. Two years later, the COMFORT online

automatic tuning project was described, it had performance load tuning and a self-tuning

buffering method [11]. In the late 1990s, several enhancements were made in Microsoft’s

SQL server with automatic index selection [12] and physical design tuning wizard [13]. By

early 2000, IBM’s DB2 was equipped with better API support which led to several new

areas of database tuning [14] for instance buffer pool size selection [15], index selection [16],

automatic physical database design [17], adaptive self-tuning memory heaps and database

memory allocation [18]. Self-tuning architectures were also proposed by Oracle in 9i and

10g DBMS [19,20].

The methods used to tune DMBS during these years were based on either heuristics

(hard-coded rules) or cost-based optimization (greedy approach, genetic algorithms) [21].

Both approaches have limitations, heuristics can not generalize a problem, and cost-based

optimization is very cost-ineffective. These techniques are also an offline mode of training

where they do not consider previously tuned configuration for the next tuning/online tuning.
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Tuning Based on Machine Learning

During the 2010s, Machine Learning techniques have been widely used for optimizing

DBMSs. Aken et al. [22], utilizes both supervised and unsupervised machine learning

for recommending knob configurations. They identify the essential knobs using Lasso,

categorize workload using K-means clustering and recommend knob setting in both online

and offline settings [23]. Kraska et al. [24] proposed SageDB, a new DBMS system capable

of learning the structure of data and providing optimal query plans. Recursive model indexes

(RMI) [2] learn indexes for efficient data access and perform better than traditional B-tree

indexes. They also propose smarter query execution plans to take advantage of GPUs/TPUs

for computation. Kossmann and Schlosser [25] proposed a component (workload analyzer,

tuner, organizer) based modular framework for self-managing databases. They use cost-

effective Linear Programming (LP) algorithms to solve optimization problems. Pavlo et al.

[26] proposed a self-managing database built from scratch with fully autonomous operation

capability. Ding et al. [27] used Neural Network for a better query cost estimation and

used the estimates for index recommendation. Finally, Neuhaus proposed using a genetic

algorithm for optimization and index selection et al. [28].

Machine Learning-based tuning has a weakness in that they require enormous data and

massive computation power to be effective. Such systems can perform great in a controlled

environment, but they have minimal use in real-time scenarios. With these limitations of

heuristics and Machine Learning approaches, we move to our third approach, which has not

been explored.

Tuning Based on Reinforcement Learning

In recent years, Reinforcement Learning (RL) has become popular technique for combi-

natorial optimization. It has been used in several optimization problems in databases such

as optimizing join order [4,29,30], query optimization [31–34], self-tuning databases [35,36]

and data partitioning [3, 37, 38]. For the index selection problem, Basu et al. [39], pro-

posed a tuning strategy using Reinforcement Learning. They formulated index selection

as a Markovian Decision Process and used a state-space reduction technique to help scale
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their algorithm for larger databases and workloads. Sharma et al. [40] proposed NoDBA

for index selection. They use a given workload (Iworload) and potential indexes (Iindexes)

stacked as input to the neural network. Specifically, they use Deep Reinforcement Learning

with a custom reward function. Their actions include only single indexes that make this

approach faster but unable to learn multi-column indexes. Welborn et al. [41], introduced

latent space representation for workload and action spaces calling it the Structured Action

Space. This representation enables them to perform other tasks as well, e.g., workload

summarization and analyzing query similarity. They use a variant of DQN with dueling

called BDQN (Branched Deep Q-Network) for learning index recommendation. Licks et al.

[42] introduced SmartIX where they use Q-Learning for index recommendation. In their

approach, they learn to build indexes over multiple tables in a database. They also evaluate

SmartIX using a the metrics QphH@size, power and throughput. They use QphH@size

in their reward function, which makes the evaluation process slow, and in some cases, it

may take several days of computation, which impacts the scalability of their approach. We

also use the same standard metrics for evaluation but not in our reward function. Kllapi et

al. [43] propose a linear programming-based index recommendation algorithm. In their

approach, they identify and build indexes during idle CPU time to reduce computation cost.

Our literature survey of previous work showed a focus only on building B-tree indexes.

A modern query workload has wide diversity, and other index types such as BRIN, Hash,

and Spatial indexes are also useful common indexes. Moreover, an index’s size also plays a

crucial role in database performance, but it has not previously been given much attention.

There are no previous approaches for performing an end-to-end, multi-attribute, and multi-

type index selection, which is one of our proposal’s focus.

1.2.2 Incremental Indexing Indexer++

In recent years, cloud-based Software as a service (Saas) has become a prevalent choice

for hosting any software application. Such services have several benefits over standalone

software applications e.g., scalability, effective collaboration, security, and cost savings. A

cloud database provides access to all popular SQL and NoSQL databases as a Saas. A
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cloud-based database is usually designed for hundreds or thousands of users. In such an

environment database runs through several changes in hardware configuration and work-

load. A database configuration might be tuned for a general scenario, and it may perform

effectively for a certain period in time, but if the trend of queries changes, it will need to

be reconfigured. A cloud database needs to be able to adapt to such a change in trends

for optimal performance. Currently, a DBA adjusts cloud database parameters; with the

increase in the number of parameters and the number of such services, there is a need for

automatic configuration. With the proliferation of such cloud-based databases, there is a

problem of database adaptation to the streaming workload, requiring attention.

In this research project, we focus on searching for optimal parameters of a database

for streaming workload. Overall, our goal is to adapt a database for streaming workload

using incremental index recommendation in real-time we call it Indexer++. A traditional

index selector works on heuristics [44] and in some cases need a DBA for good quality index

selection [45]. An ML-based index selection works in batches of streaming queries [46, 47].

Considering the cost of training computation and time, such a recommendation system could

be slow and may not be feasible for a real-time scenario. Much practical approach has been

proposed using Reinforcement Learning [48–50], where authors utilize Deep Reinforcement

Learning (DRL) for online index recommendation.

The area of incremental tuning using Deep Reinforcement Learning(RL) has not gained

much attention. The primary reason for that is that learning indexes for a query stream

are expensive and time-consuming. The creation and deletion of indexes on an extensive

database may take up to several minutes. During this time, a database may not be able to

serve any request. With that in mind, if the rendering of database indexes is transferred

to the main memory using hypothetical indexes, the online index recommendation can be

achieved. This is our focus area of research for this project. We primarily focus on the

problem of adapting a database to the changing workload in real-time.

1.2.3 Deep Learning Based Query Enhancer (ongoing work)

Further, in this proposal, we focus on SQL Query enhancer. A Query enhancer has
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not received significant attention previously. An SQL query is used to retrieve data from

a database. An SQL workload represents a historic set of queries requested to a database.

Analyzing a workload could facilitate a database, user and DBA in several areas (1) Identi-

fying interesting queries, (2) Enhancing a query to return interesting information, (3) Index

recommendation using workload summarization, (4) Error prediction, (5) Query classifica-

tion, (6) Other administrative tasks. Such workload analytics has been an open research

problem. We vision a DB assistant based on Deep Learning, which can analyze and ex-

tract patterns from a workload. Firstly, we propose a workload representation using Deep

Learning. Such representation will have the capability to perform arithmetic operations.

For example, if a query A returns John and query B returns Snow when we perform A +

B should return John Snow. Secondly, to measure the workload representation quality, we

plan to perform index recommendations using summarized workload and compare with the

complete workload. Thirdly, we use this representation to identify interesting queries and

enhance queries based on custom metrics.

Previous work on workload summarization based on cost/distance based [51–53], where

authors use hard-coded rules and predefined distance measures. Recently, there have been

few approaches based on Deep Learning [54–56]. Currently, there are four benchmark

datasets for evaluation of SQL workload to vector representation:

• WikiSQL: It consists of 26,531 tables extracted from Wikipedia and is the largest

benchmark.

• ATIS/GeoQuery: ATIS consists of information about flight booking and consists

of 25 tables. GeoQuery consists of a USA geographic database with seven tables.

• MAS: Microsoft Academic Search (MAS) represents an academic, social network. It

consists of 17 tables.

• Spider: Consists of 200 tables.
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These benchmarks consist of join, grouping, selection, nested, and ordering types of queries.

We plan to design and build a state-of-the-art approach that will outperform existing ap-

proaches in the datasets mentioned above. Our approach is briefly described in a later

section.

1.3 Entity Resolution in Heterogeneous Databases

Entity Resolution is the task of finding the same entity across the different datasets. We

primarily focus on the problem of User Profile Linkage (UPL) across multiple social media

networks. A social media network can be considered a graph network of user-profiles. Such

datasets are heterogeneous. User Profile Linkage (UPL) is the process of linking user profiles

across social media platforms. Social media is an amalgam of different platforms covering

various aspects of an individual’s online life, such as personal, social, professional, and

ideological aspects. Social media platforms generate massive amounts of data. Previous

studies have analyzed this data to learn a user’s behavior, interests, and recommendations.

Such studies are limited to using only one aspect of an individual’s online life by harvesting

data from a single social media platform. By linking profiles from several platforms, it

would be possible to construct a much richer body of knowledge about a person and glean

better insights about their behavior, social network, and interests, which in turn can help

social media providers improve product recommendations, friend suggestions and other

services. The UPL is a subproblem of a larger problem that has been studied under different

names such as record linkage, entity resolution, profile linkage, data linkage, and duplicate

detection. In the next section, we look into previous work related to UPL.

1.3.1 Previous Work

In the field of databases, entity resolution links an entity in one table/database to

another entity from another table/database, e.g., when linking data from the healthcare

to the insurance data [57]. Entity resolution has been referred to as coreference resolu-

tion [58] in NLP and named disambiguation [59] in IR. Approaches to solving the problem

fall into three categories: numerical, rule, and workflow-based [60]. Numerical approaches
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use weighted sums of calculated features to find similarities. Rule-based approaches match

using a threshold on a rule for each feature. Workflow-based approaches use iterative feature

comparisons to match.

There have been several approaches that utilize user behavior to solve the pair-wise

matching problem, such as a model-based approach [61], a probabilistic approach [62], a

clustering approach [63], a behavioral approach [64], user-generated content [65], and both

supervised [66] and unsupervised learning approaches [67]. The problem of user linkage on

social media was formalized by Zefarani et al. [68] where they used usernames to identify

the corresponding users in a different social community. In our LinkSocial framework, we

used a supervised approach and mitigated the cost by reducing the number of comparisons.

Most previous work in UPL focuses on pair-wise matching due to challenges in compu-

tational cost and data collection. In pair-wise matching, Qiang Ma et al. [69] approached

the problem by deriving tokens from features in a profile and used regression for prediction;

R. Zefarani et al. [70] used username as a feature and engineered several other features

by applying a supervised approach to the problem. Unlike these approaches, LinkSo-

cial can perform multi-platform matching as well as pair-wise matching. Multi-platform

UPL has received less attention. Xin et al. [71] approached the multi-platform UPL us-

ing latent user space modeling, Silvestri et al. [72] uses attributes, platform services, and

matching strategies to link users on Github, Twitter, and StackOverFlow; Gianluca et

al. [73] leverage network topology for matching profiles across n social media. Liu et al. [61]

use heterogeneous user behavior (user attributes, content, behavior, network topology) for

multi-platform UPL but gaining access to such data is not a trivial task.

We propose a scalable, efficient, accurate framework called LinkSocial , for linking

user profiles on multiple platforms. LinkSocial collects profiles from Google+, Twitter,

and Instagram. The data is cleaned, and features from the data are extracted. The similarity

is measured in various ways, depending on the feature. Preliminary matches are then

refined, and a final match prediction is made.
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1.4 Overall Contributions

• Offline index recommendation in a database using reinforcement learning

• Real-time online database index tuning based on reinforcement learning

• A deep learning powered database query enhancer

• An entity resolution algorithm for heterogeneous databases
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Abstract—Social media connects individuals to on-line com-
munities through a variety of platforms, which are partially
funded by commercial marketing and product advertisements.
A recent study reported that 92% of businesses rated social
media marketing as very important. Accurately linking the
identity of users across various social media platforms has several
applications viz. marketing strategy, friend suggestions, multi
platform user behavior, information verification etc. We propose
LINKSOCIAL, a large-scale, scalable, and efficient system to link
social media profiles. Unlike most previous research that focuses
mostly on pair-wise linking (e.g., Facebook profiles paired to
Twitter profiles), we focus on linking across multiple social media
platforms. LINKSOCIAL has three steps: (1) extract features from
user profiles and build a cost function, (2) use Stochastic Gradient
Descent to calculate feature weights, and (3) perform pair-wise
and multi-platform linking of user profiles. To reduce the cost of
computation, LINKSOCIAL uses clustering to perform candidate-
pair selection. Our experiments show that LINKSOCIAL predicts
with 92% accuracy on pair-wise and 74% on multi-platform
linking of three well-known social media platforms. Data used in
our approach will be available at http://vishalshar.github.io/data/.

Index Terms—Social Media Analysis, User Profile Linkage,
Social Media Profile Linkage, Entity Resolution

I. INTRODUCTION

Social media is an amalgam of different platforms covering
various aspects of an individual’s on-line life, such as personal,
social, professional, and ideological aspects. For instance, an
individual may share professional content on LinkedIn, social
pictures on Instagram, and ideas and opinions on Twitter [16].
A recent study found that more than 42% of the adults use
more than two social media platforms in everyday life1.

An individual creates a profile to participate in a social
media platform. A profile has a public view and a private view,
e.g., a credit card number would be part of the private view. In
this paper we are only concerned with a publically available
information of a profile that consists of a username, name, bio
and profile image. This limited profile is at the intersection of
the kinds of information in public profiles across social media
platforms. An individual has a separate profile for each social
media platform.

Social media platforms generate massive amounts of data.
Previous studies have analyzed this data to learn a user’s
behavior [17], interests [18] and recommendations [19]. But

1http://bit.ly/2FiRy8i

such studies were limited to using only one aspect of an
individual’s on-line life by harvesting data from a single social
media platform. By linking profiles from several platforms
it would be possible to construct a much richer body of
knowledge about a person and glean better insights about their
behavior, social network, and interests, which in turn can help
social media providers improve product recommendations,
friend suggestions and other services.

User Profile Linkage (UPL) is the process of linking user
profiles across social media platforms. Previous research has
shown how to use features in a profile to achieve UPL. For
instance, 59% of the users prefer to keep their username
the same across multiple social media platforms [13], which
makes the username an important feature in UPL. But ex-
ploiting such features is not straightforward as there can be
inconsistent, missing, or false information between profiles.
UPL is also computationally expensive, making it difficult to
obtain high accuracy in the linkage across platform [32].

We propose a scalable, efficient, accurate framework called
LINKSOCIAL, for linking user profiles on multiple platforms.
The framework is depicted in Figure 1. To the left of the
figure, LINKSOCIAL collects profiles from Google+, Twitter,
and Instagram. The data is cleaned and features of the data
are extracted. Next, the similarity is measured in various
ways, depending on the feature. Preliminary matches are then
refined, and a final match prediction is made. Our empirical
evaluation shows the efficacy of LINKSOCIAL.

This paper makes three major contributions.
1) We describe how to engineer relevant features for linking
user profiles across multiple social media platforms. We show
that highly accurate linkage can be achieved by using relatively
few public features.
2) We show how to decrease the high computation cost of UPL
by using clustering. Our intuition is that if we can reduce the
number of linkage attempts, then the cost will decrease, so
we focus on pruning low similarity linkages. Given a user’s
profile from one social media platform, to find similar profiles
from other platforms, we cluster candidate profiles using
similarity based on bi-grams of the username and name. Our
experiments show that optimization preserve accuracy while
reducing computation by 90%. The cost reduction claimed
does not include pre-computing cost of Jaccard similarity.
3) We empirically evaluate the effectiveness of our framework

14



Data 
Cleaning

Feature 
Engineering

Bio

User Name

Full Name

Similarity
Measure

Learning
Weights

Match
Prediction

Jaro - Winkler TF-IDF

KL-Divergence

SGD* RF*

Fig. 1. LINKSOCIAL Framework

by performing extensive experiments and achieving 92% accu-
racy on pair-wise and 74% accuracy on multi-platform linking.

This paper is organized as follows. Section II motivates
the User Profile Linkage problem. In Section III the data
acquisition is described. The LINKSOCIAL framework is intro-
duced in Section IV. The section also describes the engineered
features, how we measured similarity, and how we optimized
for feature weights and reduced the cost of the computation.
Section V reports the results of our empirical evaluation
of LINKSOCIAL. Related work is presented in Section VI.
Section VII presents conclusions and future work.

II. MOTIVATION

In this section, we describe applications of LINKSOCIAL
and challenges in UPL.

A. Applications of LINKSOCIAL

Data about an individual’s social, professional, personal and
ideological aspects can be used in various ways.
Security - Social media is widely used for spreading malicious
content [21]. Consider a user spreading such content on a
social media platform, their activity can be observed on other
platforms using LINKSOCIAL. This can help security agencies
identify threats or other malicious activity.
Multi-Platform User Behavior - User behavior and activi-
ties have been studied extensively using single social media
platforms [17]. Linking behaviors from multiple platforms
can create a comprehensive picture of a user’s behavior. For
example, a user A may be active in social life but disassociate
professionally. Understanding multi-platform user behavior
may lead to insights into why and how friends network
differ across platforms. LINKSOCIAL can help link different
behaviors to support multi-platform studies.
Information Verification - A user profile could contain
false information. For instance, the mobile social networking
app Skout reported that, on average, every two weeks three
adults masqueraded as teenagers in its forum [22]. By linking
user accounts from multiple social media platforms we can
check consistency and improve verification of information by
merging and validating information from several sources.
Recommendation - Recommendation of products and ser-
vices is usually based on data from a single social media
platform [19]. Data from multiple platforms can enhance the
quality and relevance of recommendations, thus, increases
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Fig. 2. Missing profile information on various social media platforms.

user engagement. Most friend recommendation algorithms
leverage mutual friends. As pointed out by Shu. et al, multi-
platform friend recommendations could improve on pair-wise
recommendations [20].

B. Challenges in linking users cross social media platforms

Data Collection - Gathering profiles from social media plat-
forms is not trivial since user privacy concerns limit the
available information [27]. Even if we could scrape platforms
and collect millions of profiles, ground truthing a UPL solution
is elusive since there is no independent way to verify that
profiles from different platforms belong to the same user.
Incomplete information - The attributes in a public profile
differs across platforms. Some platforms may have an e-mail
address, provide a location, or contact information, but most
do not. Users also incompletely fill out a profile. Some users
may expose gender, age, or ethnicity, but not all users due
to privacy. The inconsistency of profile attributes between
platforms and among users decreases the potential for linkage.
False information - Faking identity on social media is com-
mon [23] as is sharing false content [25] and providing false
information about an individual [24]. Social media platforms
do not provide verification mechanisms for profile data.
Missing information - A profile provides only a small amount
of data about a user since privacy concerns limit the amount
of public sharing [26]. Profiles with missing data further
exacerbates the difficulty of linking as shown in Figure 2. The
paucity of available data coupled with the high rate of missing
data complicates the task of accurately linking profiles.
Limited Access - Data from major social media platforms
can be accessed through a platform-specific API but due to
privacy concerns, social media providers reveal only a limited
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amount of data. Even after collecting data, we might lack
enough common features to link profiles.

III. PROBLEM DEFINITION

This section gives the problem statement, and discusses data
collection and pre-processing.

A. Problem Statement.

Let P k
i be the ith public profile on social media platform

k. Let I be an identify function that maps a P k
i to the identity

of the user who created the profile. For linking profiles from
n social media platforms, we use the following objective
function.

Φn(P 1
i , . . . , P

n
k ) =

{
1 if I(P 1

i ) = . . . = I(Pn
k )

0 otherwise
(1)

Our goal is to build and learn functions Φ2(.) and Φ3(.) for
linking pair-wise and three-platform profiles. We assume that
in our dataset, every user has exactly one profile in each social
media platform.

B. Dataset Collection

For testing a UPL solution, we need ground truth data.
While social media platforms have APIs to access user data,
there is no platform to help us link a profile to an individual.
However, there are ways that we could build a set of ground
truths. For instance, we could crowd-source the ground-
truthing (viz. Amazon Mechanical Turks) or use surveys [22],
but these methods are prone to getting unreliable data. Instead,
we used a novel resource, the website about.me, which is a
site that requires users to input links to profiles on other social
media platforms . When creating a profile on the site, a user
will provide links to their other social media profiles.

We used a dataset of 15,298 usernames from six social me-
dia platforms: Google+, Instagram, Tumblr, Twitter, Youtube,
and Flickr [12]. We narrowed the dataset to Instagram, Twitter,
and Google+ for our study since they make the username,
name, bio, and profile image are publicly available.

Next, we built a crawler to collect profiles from the three
platforms. Table II displays information about our collected
data. We gathered data on 7,729 users from all three platforms,
6,039 users have data available on a pair of platforms and
1,530 have data available only from one platform. Missing
profiles could be because of users deactivating their accounts.

C. Dataset Analysis

We analyzed the collected profiles to determine how much
information was missing. Figure 2 shows the count of missing
profile attributes for each platform. In Google, Twitter, and
Instagram there were 28%, 13% and 21% of user profiles
with at least one missing attributes, respectively. 9% and 8%
of Google and Instagram profiles had at least two missing
attributes. There were 87%, 62%, and 69% of profiles on
Twitter, Google, and Instagram, respectively, without miss-
ing information. Three attributes were missing from 2% of
Instagram profiles, making it impossible to match them. The
attributes that were presented have some variance. On average,

TABLE I
NUMBER OF PROFILES OBTAINED PER SOCIAL MEDIA PLATFORM.

Social Media Profile Count

Instagram 10,958
Twitter 13,961

Google+ 11,892
TABLE II

NUMBER OF USERS WITH PROFILES ON PAIR-WISE AND
MULTI-PLATFORMS

Social Media Profile Count
Instagram - Google+ 614
Twitter - Instagram 2451
Google+ - Twitter 2974

Google+ - Instagram - Twitter 7729
aThere were 1530 users with only one profile.

bios on Google+ were longer than Instagram and Twitter;
164 characters on Google+ compared to 70 and 96 for Insta-
gram and Twitter. However, the username attribute has little
variance, it was 11-13 characters on average across all three
platforms.

IV. THE LINKSOCIAL FRAMEWORK

This section describes LINKSOCIAL, discusses computation
cost, and shows how to reduce the cost using clustering.
A. Feature Engineering

LINKSOCIAL uses the basic features in a profile as well as
the following engineered features.

Username and Name bi-grams - The username is an
important feature for profile linkage since people tend to use
the same username across social media platforms. When a
new name is used, parts of the name is often re-used. For
example, John_snow, johnsno, and snow_john could
belong to the same person. String similarity metrics such as
Jaro-Winkler, longest common subsequence, or Levenshtein
distance, tend to perform poorly on name transpositions [34].
To better align names, we engineer the bi-grams of usernames
as a feature. We also merge the bi-grams of usernames with
the bi-grams of names as a feature since people also like to
transpose their surname and first name in for a username. We
engineer the following feature sets.

• bi-gram of username. (uu)
• bi-gram of name. (un)
• merging above two features. (ub)

These three feature sets capture a range of different ways to
create a username.

Character Distribution - User’s like to create usernames
using substrings of their name or other personal information
(a pet’s name or a significant date). To handle scenarios where
bi-grams could not capture the similarity, we use the character
distribution of usernames and names as features. To measure
distribution similarity we use Kullback-Leibler divergence as
defined below,

KLdivergence(P ||Q) =
n∑

i=1

P (i) · log
P (i)

Q(i)
(2)

where P and Q are given probability distributions. We engi-
neered the following features sets using character distribution
similarity.
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• username. (uu sim)
• name. (un sim)
• username + name. (ub sim)
We perform experiments on real data and have not consid-

ered scenarios where username and name have no relationship.
Profile Picture Similarity - Users often use the same

profile picture in multiple platforms. To capture similarity
between profile images, we use OpenFace [14], an open source
image similarity framework. Openface crops images to extract
face and uses deep learning to represent the face on a 128-
dimensional unit hypersphere. We use `2 norm to calculate
distance between vectors of two profile images.

B. Similarity Measures

LINKSOCIAL uses two similarity measures.
Jaro-Winkler Distance - Jaro-Winkler is metric for string

matching and is commonly used when matching names in
UPL [11]. Studies show that the metric performs well for
matching string data [15]. Jaro accounts for insertions, dele-
tions, and transpositions while Winkler improves Jaro based
on the idea that fewer errors occur early in a name.

TF-IDF and Cosine Similarity - LINKSOCIAL uses a
different similarity measure for matching profile bios since
bios are longer than names. TF-IDF and cosine similarity are
widely used for measuring the similarity of documents.

C. Matching Profiles

LINKSOCIAL matches profiles using the basic and en-
gineered features of a profile. We transform the matching
problem into a multivariate binary classification problem and
optimize it using Stochastic Gradient Descent (SGD). It is
defined as follows:

h(x) = w0 +w1 · x1 +w2 · x2 +w3 · x3 + ...+wm · xm (3)

In the equation, x1, x2, ..., xm represents the similarity score
of features between two profiles and w1, w2, ..., wm represents
their respective weights or coefficient. We use Mean Squared
Error (MSE), as our loss function. Considering the predicted
values as hw(x)(i) where i ∈ 1, 2, ..., n and y(i) as a given
value (either a match (1) or no match (0)), we define MSE
or cost function fcost(W ) as follows:

MSE = fcost(W ) =
1

M

m∑

i=1

(
y(i) − hw(x)(i)

)2
(4)

LINKSOCIAL uses SGD to optimize the cost function.
Partial derivatives of Equation 4 w.r.t to w1 & w2 are defined
as follows:

5w1
f

′
cost(w1) =

1

M

m∑

i=1

−2x1
(
y(i) − hw(x)(i)

)

5w2f
′
cost(w2) =

1

M

m∑

i=1

−2x2
(
y(i) − hw(x)(i)

)

and similarly for other weights.

Derivatives are followed by updating of the weights. For
example, w1 & w2 as shown below:

w1 = w1 − η5w1 f
′
cost(w1)

w2 = w2 − η5w2
f

′
cost(w2)

In the above equation, η is the learning rate, a value that
typically ranges between 0.0001 - 0.005. During experiments,
we also add elastic net regularization for training.

The derivatives and weights are recursively calculated until
the equation converges and yields an optimized weight for
each attribute based on a training set. To find a match of a
given profile we use Equation 5 where we find the profile
with maximum score on the given attributes and weights.
In Equation 5, WT is a weight vector calculated using the
optimization of Equation 4 and Xu is a vector of attributes.
P k
i is a profile from social media platform k, while U j is a

set of all profiles from platform j.

Match(P k
i , U

j) = max(WT ·Xu), ∀u ∈ U j (5)

Given profile P k
i , Match() outputs the most similar profile

from platform j.

D. Computation Reduction Using Clustering

UPL can be computationally expensive. Given our dataset
with 7,729 user profiles, if we are linking pairs of profiles from
only two of the platforms, then the number of comparisons will
be 7, 729 ∗ 7, 728 = 59, 729, 712. Assuming we can perform
1,000 comparisons per second (which is a very high ballpark),
it will require 17 hours to perform UPL. Matching of millions
of users across multiple platforms will be infeasible (without
the dedication of massive computing power).

To tackle this problem, we introduce candidate profile
clustering. We can reduce the number of comparisons by
pruning low potential comparisons, that is, by avoiding the
work of matching profiles that are dissimilar. In our dataset,
45% of the Instagram and Twitter profiles have the same
username and name. By clustering on the bi-gram features for
username and name we can prune comparisons from profiles in
different clusters. We have observed in previous studies [35],
Jaccard similarity relativly performs well for finding similarity
between bi-grams/n-grams and is also computationally not
expensive. We rank profiles based on Jaccard similarity and
we choose the top 10% of the candidate profiles with the
highest score in the cluster. Algorithm 1 gives our approach
for building clusters. Our clustering approach is conceptually
similar to kNN clustering where distance is defined by Jaccard
similarity j sim and k is 1.

Clustering of profiles before linking can help reduce compu-
tation cost significantly but how big should our clusters be? If
the cluster is big, the computation cost will increase; if cluster
is small, we may fail to capture maximum profile matches. To
understand the effect of clustering, we plotted cluster size (as
a percentage of the total number of profiles) versus match
accuracy on our training data as shown in Figure 3. In the
plot, the x-axis is the percentage of profiles in a cluster (on
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Fig. 3. Comparison of Cluster size to Accuracy on train data.

average). The y-axis shows the maximum accuracy we can
achieve since the matching profile has to be in the cluster.
We observed that clusters roughly 10% of the size of the data
reduces 90% of computation cost while preserving ∼90% of
the potential matches.

Algorithm 1 Computing candidate profiles for a given user u
Input: u, U . U is set of all users from a different social media

than u.
1: procedure FIND CANDIDATE PROFILE(u,U , n) . n is number

of profile to find in cluster.
2: ubg ← uu + un

3: for each p ∈ U do . p is single user profile
4: pbg ← pu + pn
5: j sim← Jaccard similarity(ubg, pbg)
6: Score[p]← j sim . Insert in dictionary
7: end for
8: Candidate Profiles = get top n(n, Score)
9: return Candidate Profiles . Returns n candidate profile

similar to u
10: end procedure
11: procedure JACCARD SIMILARITY(ubg, pbg)
12: Intersection = |ubg ∩ pbg| . Number of common

elements.
13: Union = |ubg ∪ pbg| . Number of unique elements.

14: Jaccard Similarity =
Intersection

Union
15: return Jaccard Similarity
16: end procedure
17: procedure GET TOP N(n, Score)
18: Score← Sort(Score) . Sort Score w.r.t value
19: top key = get key(Score, n) . returns top n key from

sorted Score
20: for each key ∈ top key do
21: top n← Score[key]
22: end for
23: return top n . return top n candidate profiles
24: end procedure

V. EXPERIMENTS

This section reports an experimental evaluation of LINKSO-
CIAL. We establish a baseline for UPL and verify that
LINKSOCIAL can learn Equation 5 and achieve high matching
accuracy. We use several variations of calculating weights and
compare them with the baseline to determine the impact of
the weight calculations. Specifically, we use Random Forest
(RF) and Stochastic Gradient Descent (SGD) for calculating
weights. We also performed feature analysis to understand
which features are important.

TABLE III
COMPARISON WITH PREVIOUS RESEARCH
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Authors Reduce Scalable

et. al Features Dataset Scalable Cost Across

Public Platform
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W
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P. Jain[28] Private 5 5 5 5

A. Mal[8] Public 5 5

R. Zafa[22] Public 5 5 5 5

Y. Li[31] Private 5 5 5 5

LINKSOCIAL Public

A
cr

os
s X. Mu[32] Private 5 5 5

S. Liu[6] Private 5 5 5

LINKSOCIAL Public

A. Experimental Setup

We used the data described in Section III-B. We chose a
60-40 split in the data for training and testing.

Baseline - We built a baseline using Jaro-Winkler and TF-
IDF as discussed in Section IV-B. We use Jaro-Winkler to
analyze username and name similarity, and TF-IDF and cosine
similarity for profile bios. To find the match of a user profile,
we select a profile with the highest score from Equation 6
where the value of the W vector is 1, considering each feature
is equally important and X represents the feature vector.

f(W ) = WT ·Xu (6)

Calculating Weights - To calculate weights for pair-wise
linking, we generated all the features discussed in Sec-
tion IV-A for each pair, which gives us data for correct
matches. To generate data for mismatches, we randomly chose
pairs equal to the number of correct matches and collected
their feature scores.

We used normalized variable importance score from RF and
also SGD optimization algorithm as explained in Section IV-C
for weights calculation. RF was trained using 10-Fold Cross
Validation, it was tuned using grid search, and the square
root of the number of features was selected as the number
of variables to be randomly sampled as candidates at each
split. SGD was also performed on the same dataset to calculate
weights with a learning rate η of 0.001, with 1,000 iterations.

Computing Candidate Profile - To compute candidate
pairs, we follow the approach described in Algorithm 1. In
training, we pre-compute each profile’s potential matches. To
generate a feature vector we score based on clusters. To make
sure we have both positive and negative label samples of equal
size, we randomly sample negative label data of the same size
as the positive label set and generated samples are used to
learn the weight vector.

Multi-Platform Profile Linking - We link users across
three platforms similar to how we perform pair-wise linking.
Due to the very high computation cost, we were unable to
run experiments for linking without first clustering candidate
profiles. We performed experiments by adding and removing
engineered features. To find a similar profile, we choose a
profile in one social media platform and tried to find the
matching profiles in the other two platforms. We performed
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TABLE IV
LINKSOCIAL PERFORMANCE ON PAIR-WISE UPL

Social Media Pairs (Accuracy %)
Experiments G+≡I T≡ I G+≡T
baseline 55.36% 77.86% 56.86%

Prediction without engineered features and clustering.
with RF 77.53% 82.08% 77.14%

with SGD 76.61% 82.21% 66.24%
Prediction with clustering, no engineered features.

with CP & RF 82.62% 83.33% 81.40%
with CP & SGD 82.47% 83.32% 81.19%

Prediction with engineered features, no clustering.
with RF 86.54% 91.17% 84.56%

with SGD 86.63% 91.68% 84.58%
Prediction with engineered features and clustering.

with CP & RF 84.85% 87.92% 83.20%
with CP & SGD 84.91% 88.29% 83.23%

this experiment for each platform. During training, we choose
a platform and compute its respective candidate profiles from
other platforms by building feature vector between candidate
profiles and the given profile. We then perform SGD and RF to
calculate weights for each feature and we used the calculated
weights to find similar profiles.

Previous research comparison - Table III compares our
approach to previous approaches in terms of feature selection,
data availability and scalability. Previous approaches have
used different types of features in their algorithms. A public
feature is publicly available information (e.g., bio, profile
image, name, user name). Private data such as location
data is proprietary limiting the feasibility of approaches that
rely on such information since they need cooperation from
businesses that compete against each other. Making a publicly
available benchmark dataset is an important aspect for future
work and comparison of approaches. Previous researchers
have not shared their data (because of privacy concerns and
data sources), where as in our approach we have collected
all data as public information and have made it available
for future research/comparison. As discussed earlier, UPL is
a computationally expensive process and scalability of an
approach depends on using methods to reduce computation
cost to make the solution practical in a real-life scenario. Also,
designing an algorithm to scale for new/several platforms is
very important aspect. Only a few approaches in past have
used computation cost reduction and are designed to scale for
new social media platforms.

Previous work accuracy Table VI reports accuracies in a
sampling of previous research in both pair-wise and multi-
platform linkage. The accuracy is reported “as is” from the
papers, experimental setups and measurements differ across
papers, for instance previous work with better accuracy for
pair linkage used user generated content data (gaining access
to such data is difficult) but in our approach we use only
publicly available profile data We observe that LINKSOCIAL
is among the leaders in pair-wise UPL and the best at multi-
platform UPL.

TABLE V
LINKSOCIAL PERFORMANCE ON MULTI-PLATFORM UPL

Cross Platform
Experiments T→(G+, I) G+→(T, I) I→(G+,T)

CP & RF 71.56% 72.50% 73.70%
CP & SGD 72.95% 72.86% 74.18%

*RF−Random Forest, SGD−Stochastic Gradient Descent, CP−Candidate
Profiles using Clustering, T−Twitter, G+−Google+, I−Instagram

TABLE VI
REPORTED ACCURACY FROM FEW PREVIOUS WORK.

Linkage Authors Accuracy
Pair-Wise P. Jain et al. [28] 39.0%

Social A. Malhotra et. al. [8] 64.0%
Platform R. Zafarani et. al. [22] 93.8%
Linkage Y. Li et. al. [31] 89.5%

Our Approach 91.68%
Across X. Mu et. al. [32] 44.00%

Multiple S. Liu et. al. [6] (reported by [32]) 42.00%
Platform Our Approach 74.18%

B. Evaluation Metrics

In previous studies, accuracy has been used as a reliable
evaluation metric for UPL [28]. Given two profiles from
different platforms, the accuracy of such matching can be
measured as follows. First, assume the following are known.

• Total number of correct prediction (P): Number of correct
positive prediction by LINKSOCIAL.

• Total number of positive sample (N): Number of positive
linked profiles in the dataset.

Then the accuracy can be computed as follows.

Accuracy(%) =
|P |
|N | · 100 (7)

C. Results

We performed several experiments on pair-wise linking and
the results are shown in Table IV and Table V. Specifically,
we measured the accuracy of LINKSOCIAL on all possible
pairs in our dataset namely, Google+ - Twitter, Google+
- Instagram, and Twitter - Instagram. We also performed
experiments with features and weights calculated using RF
and SGD. As shown in Table [IV], we started with building
a baseline for each pair. We achieved 55%, 78%, 57% for
Google+ - Instagram, Twitter - Instagram and Google+ -
Twitter respectively. We then performed experiments without
using engineered features and clustering. We observed that
RF produced more accurate matches than SGD. Next, we
added candidate pairs but sill no engineered features. In this
case, both RF and SGD performed equally well. We then
added engineered features and perform experiments without
clustering. We observed that SGD outperformed RF. Finally,
we used both engineered features and clustering. SGD again
performed better than RF. Overall, weights calculated using
SGD proved to be more accurate than RF though in some cases
the difference was marginal. In the final stage, we observed
reduction of accuracy by adding clustering. This is due to
the inconsistent username and name used by a user, since
clustering uses username and name (in our dataset, out of all
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Fig. 4. Partial Dependence Plots for individual features.
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pairs, maximum of 45% users have the same username and
22.2% of users with the same name), but slight decrease in
accuracy could be traded for speed.

We performed several experiments on multi-platform link-
ing and the results are shown in Table V. We observed
that, feature weights computation using SGD again outper-
formed RF. We achieved an accuracy of 73%, 73%, 74%
for Twitter→(Google+, Instagram), Google+→(Twitter, Insta-
gram), and Instagram→(Twitter, Google+) respectively. Over-
all, in our experiments on multi-platform linkage, SGD proved
to more accurate.

Model Interpretation - To understand our model, we
performed feature analysis using Partial Dependence Plots
(PDP) [29]. Given predictor variables and response variables,
PDP can interpret the relationship between them. We start by
studying the effect of all variables and later choose variable
pairs for further study.

In Figure 4, the x-axis represents feature similarity score
and the y-axis represents the effect on the class probability.
In Figure 4 we observed, that the score from the merged
distribution similarity is positively correlated to the model,
username and name similarity contributes to the model until
the value of 0.75 then it drops. We plot selected variable pairs,
to study their effect on the model with the results show in Fig-

ure 5. In Figure 5, the x-axis and y-axis represent the score of
respective feature similarity and Partial Dependence represents
the marginal effect of features on the class probability. We ob-
served that higher values of merged and username distribution
similarity score together are highly correlated to the model.
Similarly, username and name similarity score values until
0.75 are highly correlated but the highest values are relatively
low. This implies that there are several instances in our data
where username and name similarity scores together are very
high (close to 1), but selected profiles do not belong to the
same individual. We also observed, with their relatively lower
values of similarity, that there are instances where both profiles
belong to the same person. Finally, we concluded that the
similarity of username and name are insufficient or unreliable
features for linking profiles.

VI. RELATED WORK

UPL is a subproblem of a larger problem that has been
studied under different names such as record linkage, entity
resolution, profile linkage, data linkage, and duplicate de-
tection. In the field of databases, entity resolution links an
entity in one table/database to another entity from another
table/database, e.g., when linking data from the healthcare
to the insurance data [2]. Entity resolution has been referred
to as coreference resolution [1] in NLP and named disam-
biguation [3] in IR. Approaches to solving the problem fall
into three categories: numerical, rule and workflow-based [20].
Numerical approaches use weighted sums of calculated fea-
tures to find similarity. Rule-based approaches match using a
threshold on rule for each feature. Workflow-based approaches
use iterative feature comparisons to match.

There have been several approaches that utilize user be-
havior to solve the pair-wise matching problem, such as, a
model based approach [6], a probabilistic approach [5], a
clustering approach [7], behavioral approach [28], user gener-
ated content [31], and both supervised [9] and unsupervised
learning approaches [10]. The problem of user linkage on
social media was formalized by Zefarani et al. [13] where
they used usernames to identify the corresponding users in
different social community. In our framework, we used a
supervised approach, and mitigate cost by reducing the number
of comparisons.

Most previous work in UPL focuses on pair-wise matching
due to challenges in computational cost and data collection.
In pair-wise matching, Qiang Ma et al. [4] approached the
problem by deriving tokens from features in a profile and used
regression for prediction; R. Zefarani et al. [22] used username
as a feature and engineered several other features by applying a
supervised approach to the problem. Unlike these approaches,
LINKSOCIAL can perform multi-platform matching as well
as pair-wise matching. Multi-platform UPL has received less
attention. Xin et. al [32] approached the multi-platform UPL
using latent user space modeling, Silvestri et.al [33] uses
attributes, platform services, and matching strategies to link
users on Github, Twitter, and StackOverFlow; Gianluca et.
al [30] leverages network topology for matching profiles
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across n social media. Liu et. al. [6] uses heterogeneous user
behavior (user attributes, content, behavior, network topology)
for multi-platform UPL but gaining access to such data is not
a trivial task.

VII. CONCLUSION

In this paper, we investigate the problem of User Profile
Linkage (UPL) across social media platforms. Multi-platform
linkage can provide a richer, more complete foundation for
understanding a user’s on-line life and can help improve
several research studies currently performed only on single
social media platform. UPL has many potential applications
but is challenging due to the limited, incomplete, and po-
tentially false data on which to link. We proposed a large
scale, efficient and scalable solution to UPL which we call
LINKSOCIAL. LINKSOCIAL links profiles based on a few
core attributes in a public profile: username, name, bio and
profile image. Our framework consists of (1) feature extraction,
(2) computing feature weights, and (3) linking pair-wise and
multi-platform user profiles. We performed extensive experi-
ments on LINKSOCIAL using data collected from three popular
social media platforms: Google+, Instagram and Twitter. We
observed that username and name alone are an insufficient
set of features for achieving highly accurate UPL. UPL is
computationally costly, but we showed how to use clustering to
reduce the cost without sacrificing accuracy. Candidate profile
clustering is based on pruning dissimilar profile comparisons.
It reduced 90% of the comparisons which significantly helped
in scaling our framework. We evaluate our framework on both
pair-wise and multi-platform profile linkage with accuracy
91.68% on pair-wise and 74.18% on multi-platform linkage.

Data about a user from multiple social media platforms
has many applications. In future, we plan to (1) extend our
work to study a user’s behavior across platforms, which
to our knowledge has not yet been studied, (2) add more
features to LINKSOCIAL using heterogeneous data, e.g., user
content similarity (text, videos, images), network similarity,
and patterns across social media platforms, and (3) evaluate
LINKSOCIAL on more (up to six) social media platforms.
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Abstract. DBMS performance is dependent on many parameters, such
as index selection, cache size, physical layout, and data partitioning.
Some combinations of these parameters can lead to optimal performance
for a given workload but selecting an optimal or near-optimal combina-
tion is a challenging task, especially for large databases with complex
workloads. Among the hundreds of parameters, index selection is ar-
guably the most important parameter for performance. We propose a
self-administered framework, called the Multiple Type aNd Attribute In-
dex Selector (MANTIS), that automatically selects near optimal indexes.
The framework advances the state-of-the-art index selection by consider-
ing both multi-attribute and multiple types of indexes within a bounded
storage size constraint, a combination not previously addressed. MAN-
TIS combines supervised and reinforcement learning, a Deep Neural Net-
work recommends the type of index for a given workload while a Deep
Q-Learning network recommends the multi-attribute aspect. MANTIS
is sensitive to storage cost constraints and incorporates noisy rewards in
its reward function for better performance. Our experimental evaluation
shows that MANTIS outperforms the current state-of-art methods by an
average of 9.53% QphH@size.

1 Introduction

The performance of a database application is critical to ensuring that the appli-
cation meets the needs of customers. An application’s performance often depends
on the speed at which workloads, i.e., a sequences of data retrieval and update
operations, are evaluated. A database can be tuned to improve performance, e.g.,
by creating an index or increasing the size of the buffer. Figure 1(b) shows the
impact of just two configuration parameters, Memory Size and Buffer Size, on
workload performance. We observe that choosing an optimal combination can
enhance performance significantly. Currently a database administrator (DBA)
manually tunes performance by monitoring performance over time and adjusting
parameters as needed. But the growing number of configuration parameters, as
shown in Figure 1(a), has increased the complexity of manually tuning perfor-
mance.

For many queries, e.g., range and lookup queries, a database index signif-
icantly reduces query time. An index can be created on a single column or
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several columns of a database table. There are also different types of indexes,
for instance, Postgres has six index types: B-tree, Hash, GiST, SP-GiST, GIN
and BRIN. One possible solution is to simply create all possible indexes for a
database, but this approach is infeasible due to large number of potential in-
dexes, e.g., for a single kind of index (B-tree) on a table with N columns, there
are 2N −1 potential (multi-column) indexes. There are two other reasons why it
is important to limit the number of indexes in a database. First, there are space
considerations. An index occupies space in secondary storage that increases the
(stored) size of a database. Second, indexes slow down data modification since
modifications need to update both the data and the index. Creating too many
indexes can decrease the throughput and latency of a database. Hence the set
of indexes created for a database should be parsimonious, while too few indexes
may slow query evaluation, too many may increase space cost and slow down
data modification.

The index recommendation problem can be defined as finding a set of indices
which minimizes the time taken to evaluate a workload and the amount of stor-
age used. Finding a set of indexes which minimizes the cost is a combinatorial
optimization problem, and adding a disk size constraint makes this problem a
constrained combinatorial optimization problem. Finding an optimal solution for
such a problem is NP-hard [19] but Reinforcement Learning (RL) [12] has been
used to find approximate solutions for large scale combinatorial optimization
problems such as for vehicle routing [17], directed acyclic graph discovery [29],
and the traveling salesman problem [14]. RL has also shown that it can learn
complex database tasks with a large search space, such as learning optimal pa-
rameter configuration for a workload [22].

In this paper, we apply RL to maximize query performance by learning which
indexes would be the best to create for a given workload. There has been previous
research on index recommendation using Reinforcement Learning [1, 2, 13, 25].
However, previous research has been limited in one of three ways. First, previous
research has focused on one type of index, B-Tree, but DBMSs typically support
several types,e.g., Postgres has six types. Second, most previous research has in-
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vestigated creating only single attribute indexes, but multi-attribute indexes can
improve the performance of many queries. Third, previous research has not con-
sidered a constraint on storage size, that is, the approaches are non-parsimonious
and allow the creation of more indexes than needed (there is no penalty for cre-
ating too many indexes). A generic framework that captures multi-attribute and
different types of indexes is an open research problem. We propose an end-to-
end index recommendation system that we call the Multiple Type aNd Attribute
Index Selector (MANTIS). MANTIS can learn to recommend multi-attribute
indexes of different types within a given size constraint.

This paper makes the following contributions.

– We formulate the Index Recommendation Problem as a Markovian Decision
Process. We implement a disk size constraint to limit the total index size in
our reward function.

– We propose an end-to-end multi-attribute and multi-index type recommen-
dation framework. Our framework, MANTIS, uses Deep Neural Networks
and Deep Q-Learning Networks for recommendations.

– We perform extensive experiments on MANTIS and compare results with
current state-of-the-art methodologies.

– We make our code and experimental setup publicly available.

This paper is organized as follows, the next section presents related work.
Section 3 gives a precise formulation of the index recommendation problem while
Section 4 describes our MANTIS solution to the problem. We present the eval-
uation of the performance of MANTIS in Sections 5 and 6. Section 7 presents
conclusions and future work.

2 Related work

A database can be tuned using either external or internal methods. An exter-
nal tuning method uses an API to configure a DBMS while an internal method
embeds tuning algorithms in the DBMS. External tuning is widely used because
it is generally applicable. Internal tuning needs access to a DBMSs internals,
which may be proprietary or dependent on the software architecture of a partic-
ular DBMS. Most of the approaches discussed here are external. Internal tuning
is primarily industry-based, e.g., the Oracle9i optimizer.

In recent years, Reinforcement Learning (RL) has become a popular external
tuning method and has been used to optimize join order [15, 24, 27], in query
optimization [7,8,16,18], to self-tune databases [11,28] and to improve data par-
titioning [3, 5, 26]. For the index selection problem, Basu et al. [1] proposed a
tuning strategy using Reinforcement Learning. They formulate the index selec-
tion problem as a Markovian Decision Process and use a state-space reduction
technique to scale their algorithm for larger databases and workloads. Sharma et
al. [22] proposed NoDBA for index selection. NoDBA stacks the workload and
potential indexes as input to the neural network and uses Deep Reinforcement
Learning with a custom reward function for index recommendation. Both of the
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above approaches consider only single attribute indexes and a single kind of
index. They are unable to recommend multi-attribute indexes. Welborn et al.
[25] introduced latent space representation for workload and action spaces. This
representation enables them to perform other tasks, e.g., workload summariza-
tion and analyzing query similarity. They used a variant of DQN with dueling
called BDQN (Branched Deep Q-Network) for learning index recommendation.
Licks et al. [13] introduced SmartIX where they use Q-Learning for index
recommendation. In their approach, they learn to build indexes over multiple
tables in a database. They also evaluate SmartIX using the standard metrics
QphH@size, power and throughput. They use QphH@size in their reward func-
tion, which makes the evaluation process slow, and in some cases, it may take
several days of computation, which impacts the scalability of their approach.
Kllapi et al. [6] propose a linear programming-based index recommendation al-
gorithm. Their approach identifies and builds indexes during idle CPU time to
maximize CPU utilization without affecting performance. Lan et al. [9] propose
an index advisory approach using heuristic rules and Deep Reinforcement Learn-
ing. Sadri et al. [21] utilizes Deep Reinforcement Learning to select indexes for
cluster databases.

The above approaches have mostly focused on recommending B-tree indexes.
By focusing on a single type of index such approaches lack the capability of uti-
lizing other types of indexes like BRIN or Hash to improve query performance.
There are no previous approaches for performing an end-to-end index recom-
mendation for both multi-attribute and multi-type index selection, which is the
focus of this paper. Moreover, previous approaches do not support a storage
space constraint.

3 Problem Formulation

The index recommendation problem is to select a set of indexes that minimizes
the time to evaluate a workload and the amount of storage needed.

A workload W is a set of SQL queries Q1, Q2,.., Qm. An index configuration
I is a set of indexes. We calculate the cost of workload evaluation on database D
using the cost of the evaluation of each individual query given by Cost(Qj , I,D).
The cost of a workload can be described as follows.

Cost(W, I,D) =

m∑

j=1

Cost(Qj , I,D)

Note that the workload cost does not weight queries differently, though we could
trivially include such weights by replicating individual queries in a workload.
The index selection problem is to find a set of indexes Ioptimal that minimizes
the total cost of workload Cost(W, I,D) and has a storage cost of at most C.

Ioptimal = min
S(I∗)≤C

Cost(W, I∗, D)

In this equation S(I∗) is the total storage space cost of the set of indexes I∗.
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4 MANTIS Framework

We designed and built our framework using Deep Neural Networks (DNN) and
Deep Q-Learning Networks (DQN). In order to select a suitable set of index types
for a workload, our first research goal is index type selection. The second research
goal is the index recommendation to pick possible (single/multiple) attributes
for the index. Our framework, research goals, and the challenges we overcome
are described in this section.

4.1 Index Type Selection

Almost all DBMSs have several types of indexes. Though the types vary across
DBMSs, common index types include B-tree index (which includes all B-tree
variants and is often the default index type), block range index (BRIN) which
is helpful in range queries, and hash index, which improves the performance of
hash joins and point queries. Spatial indexes, such as R-tree indexes, are also
commonly available. We trained a Deep Neural Network (DNN) to choose the
best types of indexes for a given workload. The DNN models takes workload as
an input and predicts potential index types.

DNN model: We convert SQL queries in a workload to a vector representa-
tion using feature extraction. Specifically, we extract features describing different
query types for B-Tree, BRIN, Hash, and Spatial.

– feature 1: Describes the count of each operator used in a query. The oper-
ators we search for are [>,<,=,≤,≥]. This feature helps us identify queries
searching for equality, range, or general. In case of equality, a Hash index
would be preferable, and for queries based on [≤,≥] a BRIN index would be
preferred over B-Tree.

– feature 2: The number of columns mentioned in a query.
– feature 3: The number of conjunctions/disjunctions [‘and’,‘or’] in a query.
– feature 4: To identify spatial queries we extract certain keywords from the

query [‘.geom’, ‘.location’, ‘distance’].

Using the above features, we pre-train our DNN model. We use a fully con-
nected multi-layer network with three layers. The first and second layers consist
of 32 neurons with relu activation, and the output layer consists of num classes
(in our case 4) with sigmoid activation. The mean squared error (mse) is used
as the cost function; the number of epochs is 30 and 30% data for validation.
The model is trained using adam optimizer with a learning rate of 0.001, and we
use a learning rate decay (initial rate/epochs) for the stability of the network.

4.2 Index Recommendation

Index recommendation in MANTIS uses Deep Neural Networks for function ap-
proximation with the Q-Learning algorithm, also known as the Deep Q-Learning
Network (DQN). To build the DQN we formulate the index recommendation
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Fig. 2. MANTIS framework

problem as a Markovian decision process (MDP). We extract relevant informa-
tion from a database to define a state, action, and a statet to actiont mapping
at time t. We represent a state using existing indexes in a system and an action
using a set of all possible indexes. Both the state and action are deterministic.
In a conventional MDP, every action is mapped to a state and an associated
reward. The goal of MDP is to reach the final state maximizing cumulative
rewards and identifying a policy, which is a state-action mapping that selects
the appropriate action at a given state. The two fundamental methods to solve
MDPs are value iteration and policy iteration. Value iteration uses the value
of a state that quantifies amount of future rewards it can generate using the
current policy, also known as expected return. Policy iteration uses the policy of
a state-action pair that signifies the amount of current reward it can generate
with an action at a state using a specific policy.

MANTIS uses a variant of value iteration called Q-Learning. Q-Learning
is a value-based, temporal-difference reinforcement learning algorithm. In a Q-
Learning algorithm, the agent learns from the history of environment interac-
tions. Q-Learning uses an average of old and newer observations to update neu-
ral network. It reduces temporal dependence due to the nature of random data
sampling for training, which leads to faster convergence. Our framework can
also learn in a constrained environment, in our case, a storage size bound. The
constraint is generic and could be used in conjunction with other variables, e.g.,
buffer size, memory size.

State and Action: An agent interacts with a state for the learning process.
A state is the representation of the environment. In a state representation, the
information given is available to the learning agent. It should be capable of
accurately explaining the environment. We use a potential set of indexes as the
state representation. The action space represents all possible actions that can
be performed. We calculate the number of possible actions Nactions using the
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following equation:

Nactions = (2Ncolumns − 1) × len(index type)

where, index type is our DNN model predicting the possible index types to be
used and (2Ncolumns − 1) is all possible combination of indexes in a table.

Reward Function: A reward function is another important component of a
reinforcement learning agent. We design our reward function based on workload
cost estimation. We compare the cost of the index set against the set of all
possible indexes as defined below:

rewardssize =

(
1, index size < max allowed size

−1, otherwise

)

rt = max

(
index cost

all index cost
− 1, 0

)
+ rewardssize (1)

where the numerator is the workload cost with a selected set of indexes and the
denominator is workload cost with all possible indexes. We also use a reward for
the storage size constraint.

Noisy Rewards: Inconsistent rewards can cause an agent’s performance to
degrade and a learning agent will not be able to maximize rewards. Though we
use query cost estimate as a reward, previous research has shown the inefficacy of
DBMS cost estimator [10]. To minimize noise in the reward function we perform
an 1D convolution filter with a kernel size of five and use the filter in our reward
function. Given a input vector f of size k and convolution kernel g of size m a
1D convolution filter can be formulated as follows.

(f ∗ g)(j) =

m∑

i=1

(g(j) · f(j − i+m/2)) /m

We experimented with several, well-known noise-reducing filters, namely Ex-
ponential filter, Savitzky-Golay filter, and Kalman Filter. We found that these
filters either over or under estimated rewards. The 1D convolution filter also
tends to underestimate the cost. However, due to its fast computation time and
streaming nature it proved to be a feasible solution. We also added a spike filter
to suppress extreme values.

Agent training: The training procedure consists of Nepisodes episodes, and
each episode has Nindex steps where Nindex represents the maximum number of
indexes. During an episode, the agent performs an action based on a policy and
collects rewards for the selected action, this is known as an experience. These
experiences are stored in a buffer, called the Replay Buffer, for sampling and
training. The cost of an action is calculated by its effect on the total workload
cost of retrieval using the rewards function from Equation 1. The computed
rewards are adjusted using the 1D convolution filter. At the end of this step
state, action, rewards are returned. During training we use the a configuration
batch size of 32, consisting of 100 episodes, a maximum index number of Nindex:
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3 − 6, a priority scale of η: 0.97, a learning rate of α: 0.001, a discount factor of
β: 0.97, and a storage bound of 10-20MB. Our complete framework is depicted
in Figure 2.

5 Experimental Setup

We perform experiments on two datasets, a standard database benchmark TCP-
H [23] and a real time dataset IMDB [10]. We use PostgreSQL as a choice for
our database. We create an OpenGym environment for command based database
interaction. All experiments were performed on a computer with Intel i7 5820k,
Nvidia 1080ti, 32GB of RAM running Ubuntu 18.04 OS. We use Python 3.7
and libraries (powa, gym, psycopg2, sklearn, TensorFlow, Keras) to write and
train our framework. The DNN and DQN were trained on Nvidia 1080ti (3584
CUDA cores and 11GB DDR5 RAM) with CUDA and cuDNN configured for
performance enhancement.

1. TPC-H: TPC is the most well-known and most widely-used family of database
benchmarks. TPC-H is the benchmark for decision support systems. We gen-
erate a dataset of 120k tuples using TPC-H and randomly generate queries
as follows: we randomly select columns and a value from a table. We then
randomly select an operator [>, <, =] and predicate [and, or]. By choosing be-
tween one and four columns, we create four different sets of queries (1C, 2C,
3C, 4C). The variety of queries assists in the validation of our framework’s
efficacy. We generate 100 queries for each TPC-H experiment.
Few randomly generated queries used in our experiments:

1C: SELECT COUNT(*) FROM LINEITEM WHERE L_TAX < 0.02

2C: SELECT COUNT(*) FROM LINEITEM WHERE L_ORDERKEY < 11517219

OR L_TAX < 0.02

3C: SELECT COUNT(*) FROM LINEITEM WHERE L_SUPPKEY < 18015 AND

L_PARTKEY > 114249 AND L_TAX > 0.06

4C: SELECT COUNT(*) FROM LINEITEM WHERE L_ORDERKEY = 8782339

AND L_TAX = 0.01 AND L_PARTKEY = 264524 AND L_SUPPKEY >

14028

2. IMDB: IMDB is a large database of movie-related data. There are 21 ta-
bles, with a few large tables such as cast_info table, which has 36 million
records, and the movie_info table, which has 15 million records. It has 113
computationally intensive SQL queries with multi-joins. We randomly and
equally divide the queries in three stage with 37 (Stage 1), 38 (Stage 2),
and 38 (Stage 3) queries. The aim of separating queries is to create more
real-time scenarios for framework validation.

5.1 Performance Metric

We measure performance using standard DBMS metrics, such as Power@size,
Throughtput@Size, and QphH@Size.
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Power@Size tests the durability of the indexes chosen for inclusion and
deletion of documents throughout the database. This includes a variety of steps,
including (1) a refresh function RF1 that inserts 0.1% of the table’s data, (2) the
execution of a single stream of queries, and (3) the time taken by the RF2 re-
fresh feature, which deletes 0.1% of the table’s records at random. The following
equation is used to calculate the metric:

Power@Size =
3600

Nq

√
(α

Nq

i=1ET (i)) × (α2
j=1RF (j))

× Scale Factor

where, Nq is number of queries, ET (i) is execution time for each query i, RF (j)
is the time taken by the two refresh functions, and Scale Factor is the factor of
database size used from TPC-H and IMDB.

Throughput@Size measures the processing capability of a system (disk
I/O, CPU speed, memory bandwidth, BUS speed, etc.). It is computed using
the equation below:

Throughput@Size =
Query Stream×Nq

Total T ime
× 3600 × Scale Factor

where, Query Stream is the number query streams (for our experiments we used
only a single stream) and Total T ime is the time taken to execute all queries for
all streams.

QphH@Size measures multiple aspects of database performance. It mea-
sures the query processing power and throughput when queries are from multiple
streams. The Query-per-Hour Performance Metric (QphH) is calculated using
Power@Size and Throughput@Size, as shown below:

QphH@Size =
√
Power@Size× Throughput@Size

Experimental Design: In the TPC-H 1C with only single attribute index
selection, there are 16 states (number of columns from LINEITEM). We select
only 4 columns for multi-attribute index selection and for 2, 3, and 4 column
indexes there are 15, 80, and 255 states respectively. For the IMDB dataset, we
use all tables and columns in index selection. We use only single column indexes
and the state space consists of 108 states. The number of states is crucial for
initialization of action and state space of RL agent. The baseline is evaluated on
the database with the same records and workload.

5.2 Baselines

We equate our system to the baselines mentioned below. We choose two enterprise-
based solutions and two index recommender using RL, which we re-implemented
based on information provided in their research papers.

POWA [20]: The PostgresSQL Workload Analyzer is an optimization tool
for PostgresSQL. It collects various statistical data from a database and suggests
indexes to optimize workload.
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Fig. 3. Power, Throughput and QphH values of index recommendation methods and
there comparison in different scenarios on TPC-H dataset.

EDB [4]: EnterpriseDB’s Postgres advanced server is designed to customize,
tune, and handle massive Postgres database deployments. As a benchmark, we
use their index advisor tool.

NODBA [22]: We reimplement NODBA based on details from paper. The
authors use DQN for index recommendation. They use query and index config-
uration as input to the Neural Network.

SMARTIX [13]: We reimplement SMARTIX based on details provided in
the paper. The authors use QphH@Size as reward function and Q-Learning for
selecting indexes.

All Index: We create all possible indexes for the database and use that as a
benchmark. For experiments with IMDB, we do not use All Index due to the
large index space size and also NODBA, it doesn’t support multi-table index
selection.
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Fig. 4. Workload execution cost with respect to selected indexes on IMDB dataset

6 Results

6.1 TPC-H

* First Scenario (1C - one column indexes): We calculate power@Size,
Throughput@Size and QphhH@Size for all of the baseline systems. We
observe that most of the baseline and MANTIS performed similarly. Specif-
ically, SMARTIX performs the best in this setting, followed by POWA and
EDB. Most of the baselines are designed and tuned specially for single index
selection scenarios.

* 2C, 3C and 4C Scenario (multi-attribue indexes): We use both one
and two columns indexes for 2C. We observe that MANTIS performs best
with 17.7% QphH improvement to the second baseline. We use 1, 2 and 3
columns index for 3C scenario. Our framework shows 12.1% QphH improve-
ment to the second baseline. We use 1,2,3 and 4 columns for 4C scenario.
We observe 4% QphH improvement of our framework over the best baseline.
All the results are shown in Figure 3.

6.2 IMDB

We observe MANTIS outperformed other baseline systems in all three stages,
as shown in Figure 5. Specifically, there is 3.19%, 2.9%, and 17.3% of QphhH
improvement to the best baseline at Stage 1, Stage 2, and Stage 3 respectively.
Overall, we observe that our framework outperforms other baselines (3/4) on
TPC-H and IMDB (3/3) datasets.

To better understand the results from IMDB, we designed an experiment
to evaluate performance. Our objective is to evaluate how successful selected
indexes are. We would like to be able to see a drop in the workload’s overall
execution time once an index is created. We re-ran the benchmark and measured
performance after every index creation. The results are shown in Figure 4. The
index selected using MANTIS took the least time in all stages. We also observe
that the first index selected by MANTIS is optimal in all stages. There is a
steady reduction in workload execution costs, which is ideal.
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Fig. 5. Power, Throughput and QphH values of index recommendation methods and
there comparison in different scenarios on IMDB dataset.

7 Conclusion and Future Work

This paper presents MANTIS, a framework to recommend indexes for enhanc-
ing the efficiency of a query workload using Deep Reinforcement Learning. Our
implemented framework uses a Deep Neural Network for index type selection
and a Deep Q-Learning Network algorithm for multi-attribute index recommen-
dation. In comparison to previous methods, MANTIS can learn and propose
single-attribute, multi-attribute, and multi-type indexes. We evaluated MAN-
TIS with four other state-of-the-art methods using two standard benchmark
datasets. We use standard DBMS performance metrics QphH@Size for evalu-
ation. The experiments show that MANTIS can significantly outperform (6/7
cases) the state-of-the-art index recommendation methods. In future, we plan
to extend our work by adding more configuration parameters. We also plan to
study temporal index selection for temporal databases, which is an open prob-
lem. Finally, an exciting area of future research is to use machine learning to
optimally modify or extend a set of indexes in response to a changing workload,
in essence performing incremental index selection.
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ABSTRACT
The optimal set of indexes is a critical component for a high per-
formance of the Database Management System (DBMS). The Data-
base Administrator (DBA) selects a set of indexes based on histor-
ical workload analysis. A modern database processes thousands
of queries per minute. A DBA’s manual index selection for such a
database is a challenging task. Such a modern database is designed
to serve multiple users and applications, and a query workload in
such a database is heterogeneous in nature. With the increasing
workload complexity, the optimal index configuration for such a
database also varies. The ability to learn and adapt to evolving work-
loads is critical for a database performance. This paper proposes
an autonomous workload-aware online index selection using Deep
Reinforcement Learning. Our approach uses a combination of text
analytic techniques and deep reinforcement learning. It consists
of two steps (i) understanding a workload using embeddings. To
support generalized workload analytics, we evaluate several Nat-
ural Language Processing (NLP) techniques for workload vector
representation. We observe, vector representation using pretrained
transformer-based NLP models (BERT, Transformer, XLM, etc.) out-
performs existing feature-based approaches. We use NLP models
that have been pre-trained to detect changes in workload patterns.
Specifically, query workloads are embedded using pretrained mod-
els and K-medoids are used to cluster historical and future workload
trends. (ii) index selection, using deep reinforcement learning. We
improve the performance of Deep Q-Networks (DQN) by utilizing
disk size constraints and handling noisy rewards in our reward
function using a 1D convolution filter. We also introduce Priority
Experience Sweeping in a DQN for an online index tuning. We per-
form several experiments using benchmark and real life datasets
on our framework. We observe that our approach could effectively
detect changes in workload trends and select indexes in a short
period of time.

1 INTRODUCTION
An important part of setting up a database is choosing a set of
indexes that balances the trade-off between query execution time,
storage cost, and update cost [1]. Having too few indexes may slow
the evaluation of some queries while toomanymay increase the cost
of data update and the size of the database. Though choosing the
right set of indexes is critical to achieving good performance [13]
selecting an optimal set of indexes, which we will call the index
selection problem, is NP-hard [47].
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Historically a database administrator chose the set of indexes,
but research in self-managing databases has demonstrated that
automated index selection can outperform manual selection. Previ-
ous research has focused on offline automated methods. An offline
indexer uses the current state of the database and a representative
query workload to determine which indexes to create. Offline index-
ers use heuristics [11, 18, 44, 57], machine learning [15, 26, 27, 58],
or reinforcement learning [3, 24, 53] to recommend a set of indexes.

The set of indexes generated by an offline indexer can become
stale if the workload or database changes. A stale set can be re-
freshed by re-running the offline indexer to recreate the indexes.
But the cost of offline indexers can be high (on the order of hours
of computation time) since an algorithm may run thousands of
queries and build many indexes to determine the optimal set of
indexes. When offline indexers are run once the cost of running the
algorithm is usually a minor concern (the cost is amortized over
the lifetime of the database) but frequent periodic runs can degrade
performance.

In contrast to offline index selection, the goal of online index se-
lection is to keep the set of indexes fresh. An online indexer generates
a set of indexes initially and then incrementally adapts the set in re-
sponse to trends in workload or database changes. Online indexers
face several challenges not shared by their offline counterparts.
(C1) Noise Resilience: Online indexers have the problem of how

to identify a trend, e.g., how many new queries does it take to
indicate a trend? An online indexer must be able to adapt to
changing trends but avoid short-lived trends since there is a
cost to building or removing an index. A constantly shifting
set of indexes could worsen DBMS performance.

(C2) Overhead: Cost is a critical concern. The tuning process
must be able to run concurrently with other DBMS oper-
ations without adversely impacting workload processing.
Low overhead ensures that an online indexer can (in effect)
run continuously to respond to changing trends.

(C3) Trend Detection: Trends move fast. An inability to detect
them quickly may result in delayed index creation. Too big
of a delay in trend detection may, in return, reduce the utility
of the indexer.

(C4) Responsiveness: The tuning approach should be able to
respond quickly, on the order of minutes, if it takes several
hours or more for index selection the tuning may miss a
trend. Ideally an online indexer will be able to achieve real-
time responsiveness.

Previous research in online index selection [7, 39, 46, 48, 50]
focused on how to analyze a query workload window to generate a
set of indexes. These approaches do not adapt to changing workload
patterns. They also have high cost and so have a long delay between
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trend detection and index selection. This reduces the utility of
having an online index selector.

This paper presents Indexer++, a workload-aware, online in-
dexer. The paper makes the following contributions.

• We propose a novel workload trend detection technique using
a pretrained transformer based on a NLP model and a K-
medoids clustering algorithm.

• We describe a real-time, online index selection framework
that uses Deep Reinforcement Learning to predict trends
and tune the set of indexes.

• We use Reinforcement learning to learn the interactions
between indexes [29] that can speed up performance [51].

• We present an extensive evaluation of our framework. The
experiments demonstrate that framework is able to address
challenges C1-C4 listed above.

This paper is organized as follows. Section 2 describes related
work and Section 3 formulates the problem. In Section 4 we describe
our framework, introduce a workload embedding technique, and
use the technique to detect patterns of change in a workload. The
section also describes our algorithm for online index selection.
Section 5 presents experiments, and finally Section 6 concludes the
paper and describes future work.

2 RELATEDWORK
This section explores related work on workload embedding and
online index tuning in DBMSs.

Word Embedding: In the NLP field, obtaining a vector rep-
resentation of word (word embedding) has been extensively stud-
ied. The idea of such representation was introduced by Hinton et
al. [21]. There has been tremendous growth in the NLP research
field with the applications of Neural Network for extracting embed-
dings. Mikolov et al. [42] proposedword2vec a neural network based
model that can learn latent relationship between words from a cor-
pus of text. This advancement led to solving several challenging
problems of NLP with high accuracy such as semantic analogy [33],
sentiment analysis [52], document classification [35] to name a few.
The idea was later extended for a sentence and document [31]. To
improve the vector representation other deep learning techniques
were also applied such as CNN [40], RNN [37], LSTM [36]. There
was a significant improvement in the quality of word embedding
with the introduction of Deep Bidirectional Transformers. Few
models based on transforms are Bert [14], Transformer-XL [12],
XLM [28]. We use pretrained transformer based models for word
embedding in our framework. Our goal of using word embedding
is to learn the semantic and syntactic relationship between queries.

Query Embedding: There has been several previous approaches
to vectorize an SQL query. Bordawekar et al. [5, 6] utilize pre-trained
word2vec models for query embedding and introduce cognitive
capability in databases. Jain et al. [23] performs error prediction,
and workload summarization using vector representation learnt
by training a LSTM based autoencoder. Bandyopadhyay et al. [2]
propose a database column embedding using Bi-LSTM for drug-
drug interaction (DDI) prediction. Cappuzzo et al. [10] propose data
integration using graph-based representation. Günther et al. [17]
proposes enriching database queries using pre-trained word2vec
model.

Online index tuning: The problem of online indexing has been
studied widely. The preliminary work was done by Hammer et
al. [19] in the 1970s, where authors use heuristics for index selec-
tion on a single table. Frank et al. [16] proposed an online tuning
method for a single index selection problem using workload statis-
tics for change detection and using heuristics for index selection.
Kołaczkowski et al. [25] searches for indexes in a query execution
plan space and select them using evolution strategy. A solution
using heuristics may fail in scalability, specifically in challenges
(C4). Bruno et al. [8] design a hardcoded rule approach for index
selection. Their approach is fast and scalable, but it lacks noise
resilience (C1). For a small DBMS application such an approach
may work, but it can worsen the performance on a larger system.
Schnaitter et al. [50] proposed a very effective online indexing
solution that monitors the incoming queries and minimizes the
overhead cost. Their index selection uses heuristics. For real-time
online index selection it is slow (C4) and susceptible to noise (C1).
Sadri et al. [49] proposed an index tuning algorithm using deep
reinforcement learning. As described by the authors, their approach
takes a long time for index selection. Thereby not being able to han-
dle the challenge (C4). The previous approaches does not overcome
all challenges. They mostly fail in noise resilience (C1), and scal-
ability (C4). Our proposed approach overcomes all the challenges
(C1)-(C4). We discuss them in detail in Section 4.3.5.

3 PROBLEM FORMULATION
The index recommendation problem is to select a set of indexes
that minimizes the time to evaluate a workload and the amount
of storage needed. A set of indexes that minimizes the workload
cost with a storage size constraint is a constrained combinatorial
optimization problem.

A workload𝑊 is a set of SQL queries 𝑄1, 𝑄2,.., 𝑄𝑚 . An index
configuration 𝐼 is a set of indexes. We calculate the cost of workload
evaluation on database 𝐷 using the cost of the evaluation of each
individual query given by 𝐶𝑜𝑠𝑡 (𝑄 𝑗 , 𝐼 , 𝐷). The cost of a workload
can be described as follows.

Cost (𝑊, 𝐼, 𝐷) =
𝑚∑︁
𝑗=1

Cost (𝑄 𝑗 , 𝐼 , 𝐷)

Note that the workload cost does not weight queries differently,
though we could trivially include such weights by replicating indi-
vidual queries in a workload. The index selection problem is to find
a set of indexes 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 that minimizes the total cost of a workload,
Cost (𝑊, 𝐼, 𝐷), and has a storage cost of at most 𝐶 .

𝐼optimal = min
𝑆 (𝐼 ∗) ≤𝐶

Cost (𝑊, 𝐼∗, 𝐷)

In this equation 𝑆 (𝐼∗) is the total storage space cost of the set of
indexes 𝐼∗. The space constraint is important because index creation
should be parsimonious. Creating more indexes than necessary
wastes space and slows data modification.

The online index selection problem can be formulated as follows.
Let a workload stream𝑊 ∗ be a sequence of workloads [𝑊1,𝑊2, .. ,
𝑊𝑘 ]. Let Diff (𝑊1,𝑊2, ..,𝑊𝑘 ) be a metric that quantifies the differ-
ence between workloads in the stream. Then online Index Selection
can be defined as:
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reindexconfig (𝐼∗∗, 𝐷) = min
Diff (𝑊 ∗) ≥𝜆

Cost (𝑊 ∗, 𝐼 , 𝐷) (1)

where, 𝜆 is a measure of the sensitivity to re-configure the indexes
based on the workload stream difference. 𝜆 is described in detail in
Section 4.2.1.

4 INDEXER++
Indexer++ has two phases. The first phase identifies workload
trends. It uses query embedding to model a workload. The second
phase tunes the set of indexes using deep reinforcement learning.
This section describes the two phases.

4.1 Workload Embedding
Modern data-based systems are designed to support hundreds of
thousands of users using cloud computing. The continuous tuning
of such a database management system has become challenging.
The performance of the database management system is highly de-
pendent on its configuration, which is chosen based onworkload an-
alytics. A database management system (DBMS) must be able to ad-
just to evolving workloads in order to provide optimal performance.
There is a growing need for a workload-aware self-tuning database
management systems. A successful workload-aware DBMS would
be able to tune itself by adapting to workload patterns [45].

There are several challenges in building such a DBMS [59], such
as: (i) Heterogeneous: a DBMS consists of various types of work-
load such as analytical, data manipulation and data definition. They
have different functionality, and execution cost. The heuristics-
based pattern extraction is difficult for such workloads. It requires
a solution that is able to learn and adapt to heterogeneous work-
loads. (ii) Scale and Volume: with the advent of cloud computing
there has been tremendous growth in data based applications. The
applications are frequently created and are utilized by existing and
new users. This adds large number of queries with changing work-
load patterns. Such rapid change in workload trends requires an
online process of understanding queries. (iii) Representation: a
workload-aware DBMS requires extracting patterns in real-time.
Understanding syntactic and semantic meaning of a workload re-
quires it to be represented in a standard form. It requires a pattern
extraction approach that must be able to learn the relationship
among workload and withstand the workload volume.

A workload-aware DBMS requires a deeper understanding of
input queries. A SQL query workload consists of patterns related
to users and applications. Extracting such patterns may have sev-
eral applications such as workload compression and index recom-
mendation [23]. Due to increase in volume of data and data-based
applications, there is a need for a generalized framework to ex-
tract such patterns. This problem is similar to several NLP based
applications, where input text is represented in a standard form for
analysis. To learn syntactic and semantic meaning of words, Repre-
sentation Learning [4] is heavily used in NLP. The main idea of text
embedding using Representation Learning is to fix a d-dimension
vector for each word in a corpus of text [6]. A word is represented
in high-dimensional vector space as contrary to a sparse, discrete
vector using one-hot encoding. This representation encodes the
meaning of a word. They have shown to capture latent features
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Figure 1: Indexer++ Framework

of a word, in such a way that relationship between words can be
expressed using arithmetic operations e.g., king to man is what to
woman? Answer: queen [34]. These techniques can be extended to
the SQL query embedding.

There has been previous work related to workload representa-
tion. Typically, there has been two proposed ways to represent a
workload (i) using statistics of database by executing workload [58]
(ii) training deep learning models on large corpus and performing
inference [23]. Both of these approaches have drawbacks, former
approach rely on database statistics, to extract such information
the workload needs to be executed which may interrupt ongoing
processes and later approach, requires training during the runtime,
which is time and computationally expensive. A much realistic ap-
proach could be performed using universal embedding. It is a form
of transfer learning, in which model is pre-trained on a very large
corpus of text. There are few advantages of using transfer learning
over existing approaches. Firstly, the inference time 1 has no slack
which makes it a feasible solution for online tuning (overcoming
challenge (ii) Scale and Volume). Secondly, it does not collect any
info from database thereby not interrupting any processes or appli-
cation running. In our experiments, we found universal embedding
to be effectively able toRepresentworkload and have the ability to
identify Heterogeneous workloads. We experiment with several
pre-trained transformer based BERT models and variants as shown
in Section 5.2. Our approach is able to overcome all three chal-
lenges Heterogeneous, Scale and Volume, and Representation
discussed earlier.

4.2 Detecting Change in Workload Trend
So far, we have discussed about transforming a workload to a vector
representation i.e., Workload Embedding. There are several applica-
tions of a such embedding for example, workload summarization,
cost estimation and query classification. In this section, we will ex-
plore Workload Trend Detection an another application of workload
embedding that has not gain much popularity.

Lets presume the App-X framework for trading on the stock
exchange, where users can check for a ticker (abbreviation of stock),
conduct chart analysis, purchase and sell stocks. On a trading day,
value-based stock searches could be strong at the opening bell of
the market and, on the same day, technology-based stock searches
could gain traction near the closing bell. These systems suffer from
a massive shift in search patterns. We may configure a DBMS to
manage such change in search queries, by having the ability to

1time required to convert a word to vector representation using pre-trained model
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Figure 2: Configuration of trigger parameters 𝜆 and
𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2)

detect such patterns. This, in essence, would boost performance
and user experience with the App-X. With the ease in availability of
internet and social media, applications with swiftly moving patterns
are thriving. For such applications, a database must be able to adapt
to the changing environment for better performance. This requires
a DBMS to be able to autonomously detect these rapid change of
trends and perform configuration adjustments. For such a task, we
design and develop a Workload Trend Detection based on Workload
Embedding.

The objective of Workload Pattern Detection is to examine the
variation between workloads and trigger whether the DBMS needs
to be reconfigured. This task can be outlined as follows: Given two
workloads (𝑊1,𝑊2) obtained from a DBMS at two separate periods.
Given a metric function𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2), that performs workload em-
bedding, analyzes and quantifies the difference between workloads.
This metric is used to define similarity or dis-similarity between
workloads. Next, with the help of a sensitivity threshold 𝜆, we
trigger a DBMS reconfiguration when 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) ≥ 𝜆.

To achieveWorkload Trend Detection task, we start with work-
load embedding. We then perform dimensionality reduction using
t-distributed stochastic neighbor embedding (t-SNE), a non-linear
dimensionality reduction technique. The feature space of t-SNE is
found by searching for a low-dimensional projection of data which
is the closest equivalent to the real data using a stochastic neigh-
bor embedding. The neighbor embedding are constructed in two
stages: (i) it constructs probability distribution such that similar
objects are assigned high portability, where as dis-similar as lower.
(ii) it constructs a similar distribution in lower dimension and min-
imizes the entropy using KL Divergence of the two distribution.
This lower dimensional data is widely used to produce scatter plots
for visual data analysis. We perform such an analysis on a real life
IMDB dataset (dataset description in Section 5.1), as shown in Fig 3.
We perform experiments on several pre-trained models, dimension-
ality reduction techniques and clustering algorithms, described in
detail in Section 5.2. We identify t-SNE, ROBERTA, and k-medoids
to be the best dimensionality reduction, pretrained NLP model and
clustering algorithm respectively.

Next, we assume there are two cluster of patterns in a workload:
historic (𝑊1) and upcoming/future workload pattern (𝑊2). With the
assumption in mind we perform clustering on the dataset. Specifi-
cally, we perform k-medoids clustering on the reduced dataset (using
t-SNE). We use k-medoids over k-means and k-means++ due to in-
terpretability of the selected centroids. The k-means and k-means++
returns the centroid that are not an actual data points, instead they
are an average of data points. However, selected centroid using
k-medoids is an actual data from the dataset. The selected centroid

by k-medoids can be traced back to the actual query. It helps in
interpretation and visualization of our framework. The dimension
reduction is a standard pre-processing technique for clustering algo-
rithms, as it decreases the noise in the data [22]. This preprocessing
improves the overall quality of the cluster.

Next, we analyze the distance between historic (𝑊1) and future
workload (𝑊2). We select the centroid of both workloads. We then
calculate euclidean distance between centroids 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2). A
DMBS reconfiguration is triggered based on the value of 𝜆. The
value of 𝜆 (a sensitivity parameter) varies on different size of sys-
tems. We explain in detail the values of 𝜆 and 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) in
Section 4.2.1. After reconfiguration, we merge future workload to
historic workload. This is an iterative process. The workload trend
detection requires minimum of 𝑛 queries in current workload, this
help in mitigating the affect of outliers. In general, the value of 𝑛 ≥
32, it is same as the batch size for DQN algorithm.

4.2.1 Value of 𝜆 and 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2): A reconfiguration of data-
base is required with change in workload trends. To observe the
change in workload trend, we assume there are two workloads (i)
existing, and (ii) future workload. A workload has a span when
represented in a high-dimensional vector space. We assume the
span of a workload to be a sphere. The sphere is centered at com-
puted cluster centroid. The radius of sphere is calculated using
farthermost point from centroid of the workload. The radius of
sphere is termed as 𝜆 in our framework. The value of 𝜆 represents
the spread of workload in vector space. We compute the centroid
of future workload and represent it as an another sphere. We de-
fine the distance between both sphere using the euclidean distance
between respective centroids, termed as 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2). The value
of 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) ≤ 𝜆, indicates that the future workload is similar
to the existing workload. since, the centroid of future workload lies
in the span of existing workload. However, if 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) ≥ 𝜆,
it suggests that the future workload is different. The DBMS will
requires a reconfiguration and recomputing of centroid.

We describe our idea using visual representation in Fig 2. We
have two scenarios (𝑎) and (𝑏). In the figure, 𝑋 and 𝑌 represents
centroid of existing (𝑊1) and future workloads (𝑊2), respectively.
The value of 𝜆 represents the distance between centroid and fur-
thest point and the 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) quantifies the distance between
centroids, 𝑋 and 𝑌 . In scenarios (𝑎,) the reconfiguration is not re-
quires as 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) ≤ 𝜆, instead the future workload is merged
in the existing workload. In the second case (𝑏), the reconfiguration
is triggered as 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) ≥ 𝜆 and new indexes are selected.

Trend Detection on IMDB: To visually describe and evaluate our
workload trend detection approach we perform an experiment on
IMDB dataset. The IMDB queries are split into three groups, namely
Group 1, Group 2, and Group 3, where each group represents a
set of similar queries. There are same number of queries in each
group. The Group 1 is assumed as historical workload and Group
2 and Group 3 are introduced later as future workloads. The SQL
queries are pre-processed by removing SQL keywords and an in-
ference in performed using pretrained ROBERTA. The output of
inference returns a high-dimensional vector. The output is reduced
to two-dimension using t-SNE. A visual of the Group 1 in reduced
dimension is shown in top-left corner of Fig 3. The k-medoids clus-
tering on reduced dataset returns the centroid shown in red circle
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Figure 3: Workload Trend Detection on three groups of TPC-H Random dataset where red circle indicates the centroid of the
cluster. (figure is better viewed in color)
in the figure. A few queries are introduced from Group 2, the visual
next to top left corner shows a clear distinction between Group 1
(in orange) and few queries from Group 2 (in gray). The next visual
consist of all the queries from Group 1 and Group 2. After surpassing
minimum queries𝑛 required for a future workload, clustering is per-
formed (in green) and a data point in red circle shows the centroid.
The clusters are merged based on the 𝐷𝑖 𝑓 𝑓 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡, 𝐹𝑢𝑡𝑢𝑟𝑒) ≥ 𝜆
and the centroid is recomputed. At this time a reconfiguration is
also triggered to add new indexes for the Group 2 workload. A com-
plete description and analysis of values of 𝐷𝑖 𝑓 𝑓 (𝑊1,𝑊2) and 𝜆 is
described in a later Section 4.2.1. In a similar way, in the second row
of the figure Group 3 is introduced. The centroids are recomputed,
and workload is merged to the cluster. A set of indexes for Group 3
are also introduced.

4.3 Online Index Recommendation
Section 3 describes the online index selection problem. We observe
the indexes in a database are intertwined in the sense that query op-
timization may take advantage of the presence of several indexes in
combination to optimize a query, an optimization opportunity that
may be missed if one of the indexes were absent. This means that
the online index problem can be modeled as a sequential decision
making process where we can optimize the performance of DBMS
at every episode/step. Recently, Reinforcement Learning (RL) has
become a popular technique to optimize sequential decision making
problems, also known as Markovian Decision Processes (MDPs). RL
has been used to approximate solutions to various applications of
MDPs such as routing vehicles [43], discovery of directed acyclic
graphs [60], and the traveling salesman problem [41]. In contrast

to traditional Machine Learning, where training requires a labeled
dataset, an RL agent interacts with an environment and learns
from experiences. In a typical RL setup, an agent interacts with an
environment to learn an optimal control policy [55]. At a given
time t with state 𝑠𝑡 , an agent selects an action 𝑎𝑡 ∈ 𝐴, following
a policy 𝜋 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) proceeding to next state 𝑠𝑡+1. It receives a
scalar rewards 𝑟𝑡 during state transition.

We formulate our online index selection problem as a Markovian
process. We extract relevant information from a database to define
a 𝑠𝑡𝑎𝑡𝑒 and design a pipeline where at time 𝑡 we have an 𝑎𝑐𝑡𝑖𝑜𝑛𝑡
to 𝑠𝑡𝑎𝑡𝑒𝑡 mapping. In this scenario, we have a deterministic state
and action. The goal of MDP is to reach the final state maximizing
cumulative rewards 𝐶 (𝑟 ) and identifying a policy 𝜋 (𝑠, 𝑎): action-
state mapping which selects the optimal action 𝑎 ∈ 𝐴 at given state
𝑠 ∈ 𝑆 .

4.3.1 Online DQN Algorithm. In a popular offline RL based al-
gorithm Deep Q-Networks (DQN), policy 𝜋 (𝑠, 𝑎) and values 𝑞(𝑠, 𝑎)
are represented using multi-layer neural networks. The neural net-
works applies high-dimensional input data representation, general-
izing similar experiences and unseen states. The hyper-parameters
of neural networks are trained by gradient descent by minimizing
a loss function. We use the mean squared error as loss function
shown below:

𝐿𝑜𝑠𝑠 (𝜃 ) = E𝜋


1
2

𝑇𝑎𝑟𝑔𝑒𝑡︷     ︸︸     ︷
(𝐵𝑒𝑙𝑙𝑚𝑎𝑛 −

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷       ︸︸       ︷
𝑄 (𝑠, 𝑎;𝜃 ))2


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Figure 4: Workload Trend Detection on TPC-H dataset. It is a scenario when no re-configurations of indexes is trigger. The new
queries are similar to existing workload. The red circle indicates the centroid of the cluster. The existing workload is displayed
in orange and new queries are in gray. (figure is better viewed in color)

where 𝜃 is a parameter for a nonlinear function, in our case
a neural network. Expanding the above equation using Bellman
Optimality equation [56] we get:

𝐿𝑜𝑠𝑠 (𝜃 ) = E𝜋


1
2

©­­­«
(
𝑅𝑒𝑤𝑎𝑟𝑑︷ ︸︸ ︷
𝑅(𝑠, 𝑎) +

𝐹𝑢𝑡𝑢𝑟𝑒 𝑅𝑒𝑤𝑎𝑟𝑑︷                ︸︸                ︷
𝛽 max
𝑎′∈𝐴

𝑄 (𝑠 ′, 𝑎′;𝜃 )) −
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷    ︸︸    ︷
𝑄 (𝑠, 𝑎;𝜃 )

ª®®®¬

2
where, 𝛽 is the discount rate. In above equation, we approach
to learn weights of 𝑄 (𝑠, 𝑎;𝜃 ). We use gradient descent optimiza-
tion algorithm to learn the parameters and a gradient update w.r.t
𝑄 (𝑠, 𝑎;𝜃 ) can be perform using below:

𝑄 (𝑠, 𝑎;𝜃 ) = 𝑄 (𝑠, 𝑎;𝜃 ) − 𝛼
𝜕

𝜕𝑄 (𝑠, 𝑎;𝜃 ) 𝐿𝑜𝑠𝑠 (𝜃 )

replacing 𝐿𝑜𝑠𝑠 (𝜃 ) and taking a partial derivative yields:

𝑄 (𝑠, 𝑎;𝜃 ) = 𝑄 (𝑠, 𝑎;𝜃 ) + 𝛼

©­­­­­­«

𝑇𝐷 𝑇𝑎𝑟𝑔𝑒𝑡︷                            ︸︸                            ︷
𝑅(𝑠, 𝑎) + 𝛽 max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′;𝜃 ) −

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷    ︸︸    ︷
𝑄 (𝑠, 𝑎;𝜃 )︸                                            ︷︷                                            ︸

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑇𝐷) 𝐸𝑟𝑟𝑜𝑟

ª®®®®®®¬
Rearranging the above equation gives:

𝑄 (𝑠, 𝑎;𝜃 ) = (1 − 𝛼) 𝑄 (𝑠, 𝑎;𝜃 ) + 𝛼

(
𝑅(𝑠, 𝑎) + 𝛽 max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′;𝜃 )

)

We use above equation to generalize the approximation of the Q-
value function. A neural network training assumes that input data
are independent and sampled from similar distributions. A neural
network will overfit/underfit if such assumptions are not satisfied.
For Reinforcement Learning, we can observe that the target𝑄 value
depends on itself, making training on a neural network difficult
since it would chase a non-stationary target. To solve this problem,
we implement a target network 𝜃 ′, which stays stationary for a
certain period and later synchronizes with 𝜃 . The above equation
can be re-written using target network 𝜃 ′ as follows:

𝑄 (𝑠, 𝑎;𝜃 ) = (1 − 𝛼)𝑄 (𝑠, 𝑎;𝜃 ) + 𝛼

(
𝑅(𝑠, 𝑎) + 𝛽 max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′;𝜃 ′)

)
︸                                 ︷︷                                 ︸

𝑇𝐷 𝑇𝑎𝑟𝑔𝑒𝑡

4.3.2 DBMS representation: A state of a DQN agent represents
an environment. A state representation should be able to describe
the environment to the finest detail. It is a crucial component for
learning an optimal policy.We use index configuration of a DBMS as
state representation. Specifically, index configuration is represented
in a one-dimensional vector. In the vector, a binary value represents
presence and absence of an index. The length of vector is defined
by the value of all possible index configuration (2𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1). The
action space represents all possible index configuration actions that
can be performed and is also the same size as state space. A reward
function is an another crucial component of the learning process of
DQN agent. It defines a cost function for the agent, with a goal to
maximize. We define our reward function as below:

𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑠𝑖𝑧𝑒 =

(
1 index size < max allowed size

−1 otherwise

)

𝑟𝑡 = max
(

index cost
all index cost − 1, 0

)
+ 𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑠𝑖𝑧𝑒 (2)

where, numerator is the workload cost with selected index and
denominator is workload cost with all index configuration. Our
reward function is designed such that it will have minimum value of
-1 and maximum of 10-20, such smaller range of rewards suppresses
the noise while training Neural Network. We also introduce the
reward for disk size constraint, where total size of selected indexes
is upper bounded with𝑚𝑎𝑥_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑠𝑖𝑧𝑒 e.g.,. 10MB. Our reward
function is generic and can be modified for any other constraints.

4.3.3 Priority Experience Replay: A Reinforcement Learning
algorithm updates while interacting with the environment. In such
a situation, the algorithm tends to forget experiences after a few
epochs of training. To solve this problem, we store a buffer called
Experience Replay, which is used to sample from previous experi-
ences. It also breaks the temporal dependency otherwise found in
regular updates while interacting with environment. Experience
Replay can lead to slow convergence because data is sampled uni-
formly. A previous experience with a large estimated error may
or may not be in sampled data, making the convergence slower.
To solve this problem, we use Priority Experience Replay, where
instead of sampling uniformly, samples are giving importance. We
use Temporal Difference Error to prioritize experiences:
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Algorithm 1 Online DQN Algorithm with Priority Experience
Replay and Sweeping
1: Initialize batch size 𝑁𝑠 ⊲ 32
2: Initialize number of Iterations 𝐼𝑠 ⊲ 1000
3: Initialize length of a episode 𝐿𝑠 ⊲ 3-6
4: Initialize update target network frequency 𝐹𝑠
5: Initialize priority scale 𝜂 ⊲ 1.0
6: Initialize priority constant 𝜖 ⊲ 0.1
7: Initialize network parameter 𝜃
8: Initialize target network parameter 𝜃 ′
9: Initialize learning rate 𝛼 ⊲ 0.001
10: Initialize discount factor 𝛽 ⊲ 0.97
11: for each 𝑙 ∈ 𝐿𝑠 do ⊲ number of episodes
12: Collect experiences (𝑠, 𝑎, 𝑟, 𝑠′, 𝑝) ⊲ until minimum 𝑁𝑠 size
13: for each 𝑖 ∈ 𝐼𝑠 do
14: Sample 𝑁𝑠 prioritized samples from buffer
15: for each 𝑛 ∈ 𝑁𝑠 do
16: 𝑦𝑖 = 𝑟𝑖 + 𝛽 max𝑎′𝑖 ∈𝐴𝑄𝜃 ′ (𝑠′𝑖 , 𝑎′𝑖 )
17: if done ==𝑇𝑟𝑢𝑒 then ⊲ check for terminal state
18: 𝛿𝑖 = |𝑦𝑖 −𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ) | ⊲ calculate TD Error
19: end if
20: end for
21: 𝐿 (𝜃 ) = 1

𝑁𝑠

∑
𝑖 (𝑦𝑖 −𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ))2 ⊲ calculate loss MSE

22: 𝜃 = 𝜃 − 𝛼 ▽𝜃 𝐿 (𝜃 ) ⊲ update network parameters
23: 𝑝𝑖 =

( |𝛿𝑖 |+𝜖 )𝜂∑
𝑗 ( |𝛿 𝑗 |+𝜖)𝜂 ⊲ calculate and update samples priority

24: end for
25: if reconfig ==𝑇𝑟𝑢𝑒 then ⊲ workload trend detection trigger
26: empty replay
27: end if
28: if 𝑙 mod 𝐹𝑠 then
29: 𝜃 ′ = 𝜃 ⊲ update target network
30: end if
31: end for

𝛿 = 𝑅(𝑠, 𝑎) + 𝛽 max
𝑎′∈𝐴

𝑄 (𝑠 ′, 𝑎′;𝜃 ′) −𝑄 (𝑠, 𝑎;𝜃 ) (3)

Using Priority Experience Replay we ensure that our network learns
from experiences which it found hard to generalize, and it also
helps in faster convergence [20].

4.3.4 Priority Experience Sweeping: By nature, DQN algo-
rithm is an online learning process. It interacts with an environment
and by maximizing rewards learns the optimal behaviour. Similarly,
in index tuning process by reducing the query cost, DQN agent
learns to recommend suitable indexes for better query performance.
However, when the trend in workload changes, the optimal policy
of the environment will change and that may require retraining
of the DQN agent. The retraining process is time consuming and
if the process takes longer it will reduce the utility of have online
index tuning. To avoid retraining and to handle this scenario we
introduce Priority Experience Sweeping. The motivation for Priority
Experience Sweeping is that DQN agent has already learned optimal
policy for the environment. The state, action of environment does
not change, instead there is a slight change in the behavior. Rather
than retraining from scratch, how can we utilize previous learned
behavior?

Example: To give the context, we describe Priority Experience
Sweeping using an example of a robot navigation in a warehouse.
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Figure 5: A robot navigation in awarehouse from a start point
(in red) to end point (in green), blue boxes show an optimal
route and gray boxes are obstacles (better view in color)

Given a warehouse where a robot is required to navigate from a
start point to an end point avoiding obstacles as shown in Fig 5 (De-
fault). A DQN agent can learn this behavior by trail and error and
can discover the optimal path for navigation as shown in the same
figure with blue boxes. Consider a slight change in the environ-
ment by adding a new obstacle as shown by X (location: d-iii) in
Minor Change section of Fig 5. With this minor change in the en-
vironment, the optimal path has changed. However, it has a few
similarity to the previously learned path from Default environment.
The location of end point, few initial steps, and direction to nav-
igation learnt from Default environment are the same. Instead of
re-training a DQN agent, the previously learned behaviour from
Default environment can be utilized and in addition to that minor
changes can be learned. A DQN agent stores its previous experi-
ences in replay buffer. The neural network samples data from this
buffer for training. When a change is observed in the environment
the previous experiences become irrelevant. The policy to interact
in the newer environment requires experiences from the newer
environment. Using this idea, when a change in the DBMS work-
load pattern is triggered we remove all experiences from replay
buffer. The replay buffer is reloaded with the newer experiences.
This gives the agent opportunity to sample from newer experiences
and learn the optimal policy for the newer environment.

In robot navigation example, the policy learned from Default
environment when executed in Minor environment, it will suggest
it to follow the previously learned path and robot will hit the obsta-
cle X. We load these failure experiences in the buffer. In order to
maximize rewards (cost function), DQN agent will explore alterna-
tives. The agent has a prior knowledge from Default environment
and in a few iteration of training the agent is able to navigate the
robot to the an alternative path, without retraining from scratch.
If there are Major changes to the environment such an approach
still (end point, direction of navigation and initial step remains
the same) works but this may take longer to adjust to the newer
environment.

In a similarly way, patterns in DBMS workload could be a Minor
orMajor change. With the usage of Priority Experience Sweeping our
framework can ajust to the changes without retraining from scratch.
After a workload trend detection trigger a signal for change in the
environment we remove existing experiences from the priority
experience replay and reload it with newer environment experi-
ences. We train for few iterations and observe that agent was able to
learn the behavior of newer environment without retraining. This
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Algorithm 2 Random Query Generator
1: Initialize maximum number of columns in a query𝐶 ⊲ 1-4
2: Initialize number of queries𝑄 ⊲ 100
3: for each 𝑞 ∈ 𝑄 do ⊲ number of queries
4: for each 𝑐 ∈ 𝐶 do ⊲ number of columns
5: Randomly extract a distinct value
6: Randomly select operator [>, <, =, =>, <=]
7: Randomly select predicates [𝑎𝑛𝑑 , 𝑜𝑟 ]
8: Append 𝑞
9: end for
10: end for

process makes our framework a generic tool for online configura-
tion tuning. The complete DQN algorithm with Priority Experience
Replay and Priority Experience Sweeping is shown in Algorithm 1.

4.3.5 OvercomingChallenges: In Section ??, we discussed about
several challenges in achieving an online index tuning. We design
and build our framework to handle all the challenges. We describe
solutions to each of the challenges below:
(C1) Noise Resilience: We threshold a minimum number of

query in a workload for trend detection. This ensures a few
outliers do not trigger the reconfiguration. We also perform
clustering on the dataset, that helps to reduce affect of out-
liers. We also use a threshold 𝜆 as sensitivity parameter
towards trend detection trigger. Overall, these thresholds
help mitigate noise in the workload.

(C2) Overhead Cost: In our approach for learning the cost of an
index we rely on in memory hypothetical indexes2, contrary
to other approaches of creating an actual index. It works
independent of any other DBMS application running. This
ensures the overhead cost of index tuning do not affect DBMS
performance and our framework can be used concurrently
to active DBMS nodes.

(C3) Trend Detection Time: We perform workload embedding
and analytics on pretrained BERT models. In our approach,
we do not train them and only use inference of the models.
It requires a very short duration of time for inference from
pretrained models.

(C4) Response Time: We use pretrained NLP model for work-
load analytics and DQN for index tuning. We also elimi-
nate re-training of DQN algorithm using Priority Experience
Sweeping. This reduces the overall cost of response time. Our
framework can analyze workload and recommend indexes
in a short period of time (15-20min).

5 EXPERIMENTS
5.1 Dataset Description

(1) IMDB: It is a real life dataset about movies and related facts
about actors, directors etc [32]. The dataset is highly cor-
related and it relates with a real-world scenario. It consists
of 21 tables and a set of 33 queries. The each set consists
of 3-4 queries, and in total consists of 109 queries. In our
experiments, we divide 33 set of queries in 3 groups. The

2https://github.com/HypoPG

set 1-10 creates the Group 1, set 11-20 is Group 2 and set 21-
33 is Group 3. The purpose of forming groups is to analyze
the performance of our framework with changing workload
trend. Each group is used as a workload, we start with Group
1 as current workload and periodically introduced Group 2
and 3. The idea is to analyze and observe trigger detection
in changing workload environment.

(2) TPC-H: A standard benchmark dataset published by Trans-
action Processing Performance Council (TPC). The queries
and data in the dataset are chosen to reflect industry-wide
relevance. It illustrates systems that examine large volume
of data and executing complex queries. The TCP-H consists
of a sub-program Q-gen to generate queries. The Q-gen pro-
gram consists of 22 query templates. The query templates are
not enough to define the diversity of a real-time workload.
Having that in mind, we build a random query generator
to perform experiments. Our query generator is a generic
code base which can generate random queries from any data-
base. Our approach is described in Algo 2. A few of a sample
queries are shown below:

SELECT COUNT(∗) FROM LINEITEM WHERE L_PARTKEY = 30217
SELECT COUNT(∗) FROM LINEITEM WHERE L_ORDERKEY = 7919908
SELECT COUNT(∗) FROM LINEITEM WHERE L_SUPPKEY = 14816
SELECT COUNT(∗) FROM LINEITEM WHERE L_SHIPDATE > 1997−05−23

In this paper, we refer to randomly generated queries as TPC-H Random,
template queries as TPC-H Template and 33 set of queries from
IMDB as IMDB Dataset.

5.2 Experimental Setup and Results
In this section we describe our experiments, experimental setups,
and results. All experiments in our experiments were performed
on a computer with Intel i7 5820k, Nvidia 1080ti, 32GB of RAM
running Ubuntu 18.04 OS. We use Python 3.7 and libraries (powa,
gym, psycopg2, sklearn, TensorFlow, Keras) to write and train our
framework. The DQN was trained on Nvidia 1080ti (3584 CUDA
cores and 11GB DDR5 RAM) with CUDA and cuDNN configured
for performance enhancement.

5.2.1 Experiment Objective 1: What is the most effective combi-
nation of Workload Representation, Clustering, and Dimensionality
Reduction algorithms for SQL queries?

To the best of our knowledge, there has been no such previous
study/experiment to analyze the best available algorithm for these
tasks on SQL queries. We design an experiment by selecting few
popular algorithms for each task. For better evaluation, we perform
our experiment on two different dataset IMDB and TCPH Random.
The selected algorithms are briefly described below:
Pretrained NLP Models:

(1) BERT [14]: It uses a combination of Masked Lanaguage
Model and next sentence prediction in a bidirectional trans-
former which is pretrained on a large english lanagueg cor-
pus of Toronto Book Corpus and Wikipedia.

(2) ALBERT [30]: It is bidirectional transformer based model
similar to BERT. It uses parameter-reduction techniques for
lower memory and higher speed of training. It is a miniature
version of BERT.
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Table 1: IMDB Dataset Queries

BERT
K-Mn K++ K-Md

UMAP 0.759 0.759 0.776
PCA 0.750 0.750 0.750
T-SNE 0.759 0.759 0.767

ALBERT
K-Mn K++ K-Md
0.732 0.732 0.732
0.723 0.723 0.723
0.714 0.714 0.741

RoBERTa
K-Mn K-M K-Md
0.786 0.786 0.768
0.750 0.750 0.750
0.741 0.759 0.786

XLM
K-Mn K++ K-Md
0.768 0.768 0.750
0.741 0.741 0.741
0.768 0.768 0.776

Transformer-T5
K-Mn K++ K-Md
0.750 0.750 0.759
0.732 0.732 0.732
0.741 0.741 0.741

Table 2: TPC-H Random Dataset Queries

BERT
K-Mn K++ K-Md

UMAP 0.849 0.849 0.836
PCA 0.671 0.671 0.657
T-SNE 0.808 0.808 0.877

ALBERT
K-Mn K++ K-Md
0.685 0.685 0.685
0.493 0.671 0.753
0.671 0.671 0.671

RoBERTa
K-Mn K++ K-Md
0.973 0.973 0.945
0.904 0.904 0.890
0.959 0.959 0.904

XLM
K-Mn K++ K-Md
0.753 0.753 0.753
0.986 0.986 1.00
0.986 0.986 0.753

Transformer-T5
K-Mn K++ K-Md
0.822 0.822 0.822
0.822 0.822 0.836
0.932 0.932 0.932

Table 3: IMDB Queries with no SQL Keyword

BERT
K-Mn K++ K-Md

UMAP 0.660 0.660 0.652
PCA 0.661 0.670 0.642
T-SNE 0.688 0.688 0.679

ALBERT
K-Mn K++ K-Md
0.664 0.664 0.664
0.664 0.664 0.664
0.664 0.664 0.664

RoBERTa
K-Mn K-M K-Md
0.768 0.768 0.776
0.750 0.750 0.750
0.750 0.750 0.812

XLM
K-Mn K++ K-Md
0.768 0.768 0.786
0.741 0.741 0.750
0.786 0.768 0.759

Transformer-T5
K-Mn K++ K-Md
0.794 0.794 0.794
0.768 0.768 0.768
0.786 0.786 0.804

Table 4: TPC-H Random Dataset with no SQL Keyword

BERT
K-Mn K++ K-Md

UMAP 0.808 0.808 0.794
PCA 0.575 0.575 0.575
T-SNE 0.589 0.589 0.603

ALBERT
K-Mn K++ K-Md
0.671 0.671 0.740
0.699 0.699 0.699
0.767 0.767 0.767

RoBERTa
K-Mn K++ K-Md
0.835 0.835 0.835
0.917 0.917 0.917
0.849 0.849 0.834

XLM
K-Mn K++ K-Md
0.712 0.712 0.712
0.657 0.657 0.712
0.712 0.712 0.726

Transformer-T5
K-Mn K++ K-Md
0.726 0.726 0.698
0.534 0.534 0.534
0.671 0.671 0.656

*K-Mn: K-Means, *K++: K-Means++, *K-Md: K-Medoids

(3) RoBERTa [38]: It is also a variant of BERTmodel. It modifies
key hyper parameters and are trained with large batch size
and learning rate. It is a very fined tuned version of BERT.

(4) XLM [28]: It is a cross-lingual model using one of the casual
language model, masked language model and translation
language model as objectives for various tasks.

(5) Transformer-T5 [12]: It is a uni-directional transformer
with relative position embeddings. It uses hidden states of
previous layers (residual) for longer memory. It does not
have a length of sequence (input length) limit.

Dimensionality Reduction:

(1) Principal Component Analysis (PCA): It is a linear, ma-
trix factorization based dimensionality reduction method.
It works by computing a hyperplane closest to the dataset.
While maintaining the variation of dataset it projects the
data on the computed hyperplane. The output of PCA are
interpretable.

(2) t-Stochastic Neighborhood Embedding (t-SNE): It is a
non-linear and graph based method. It works by defining

probability distribution of dataset in high and lower dimen-
sion. Using KL divergence it minimizes both distributions. It
does not preserve the global structure only local.

(3) UniformManifoldApproximation andProjection (UMAP):
It is a non-linear and topological structure based method. It
uses exponential probability distribution in high dimensions
instead of euclidean distance by t-SNE. It preserves both
local and global structure of the dataset. It is well suited for
cluster analysis.

In our experiment, we select K-Means, K-Means++ andK-Medoids
as clustering algorithms. We start with workload representation
using pretrained NLP models. The NLP models are trained on word
tokens and adopt a set of rules for input text processing. Our dataset
must follow the same token format. For initial preprocessing, we
use the learned tokenizer from pretrained models. Tokenization is
the method of breaking down a text into words/sub-words. The
subwords are converted to IDs using a Vocab that is unique to the
pretrained models and was learned from a large corpus. Byte-Pair
Encoding (BPE), WordPiece, and SentencePiece are three popular
tokenization methods. The tokenization algorithm used for model
training differs, and we use the tokenizer that was used originally to
train the model. We perform tokenization of workload that returns
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Table 5: Average accuracy from both datasets

With SQL Keyword
Vector Representation

BERT 0.76987524
ALBERT 0.6956675364
RoBERTa 0.8492199391
XLM 0.5686494347
T5 0.8010165253

No SQL Keyword
Vector Representation

BERT 0.6621004566
ALBERT 0.5731065045
RoBERTa 0.8149733638
XLM 0.4783172972
T5 0.7119958143

With SQL Keyword
Clustering

K-Means 0.7843118069
K-Means++ 0.7908431181
K-Medoids 0.7869903783

With SQL Keyword
Dimentionality Reduction
UMAP 0.7860159817
PCA 0.7719259622
TSNE 0.8042033594

No SQL Keyword
Clustering

K-Means 0.7212273566
K-Means++ 0.7209297375
K-Medoids 0.7257527969

No SQL Keyword
Dimentionality Reduction
UMAP 0.7423297701
PCA 0.6985186155
TSNE 0.7270615053

a high-dimensional tensor representation. We apply dimensionality
reduction and perform clustering on the representation. Both of the
datasets are pre-labeled with respective clusters. The labeling on
the IMDB dataset is based on the groups and for TPC-H Random
is based on the columns used in the queries. For TPC-H Random
dataset, we randomly select three columns and generate 25 queries
each with single columns, in total of 75 queries. We measure the
accuracy of the computed clusters (sorted w.r.t IDs) using below:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦′, 𝑦) = 1
𝑛

1
𝑚

𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

(𝑦′𝑖 𝑗 == 𝑦𝑖 𝑗 )
{
1, if, 𝑒𝑞𝑢𝑎𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, 𝑛 is the number of clusters and 𝑚 is the number of data
points in the cluster. We perform our experiment on both datasets
by keeping and removing SQL keywords such as, SELECT, COUNT,
etc. The results are outlined in Tables [1, 2, 3, 4, 5].

Specifically, a pre-trainedmodel is selected e.g.,BERT on IMDB dataset
with SQL keywords. An inference is perfomed using BERT and
dataset is reduced using UMAP, t-SNE, PCA. A clustering is per-
formed using K-Means, K-Means++ and K-Medoids and quality of
the cluster is evaluated in terms of accuracy. Iteratively this ex-
periment is performed on other NLP models ALBERT, RoBERTa,
XLM, Transformer-T5 and the accuracies are reported in Table 1.
We repeat this experiment on TPC-H Dataset, results are shown
in Table 2 and also by removing SQL keywords in both datasets,
results are in Table 3, 4. To identify the most effective method we
calculate the average of cluster accuracy for all experiments and
report them in Table 5. We observe,

• Cluster detection accuracy with SQL keywords is 3.4% better
than without SQL keywords.

• The average accuracy of RoBERTa pretrained model ourper-
formed other models on both with and without keywords.

• TheK-Means++ performs best with keywords andK-Medoids
is best without keywords. Taking the average of both (with

and without keyword) K-Medoid performs better than K-
Means++.

• Dimensional reduction algorithm t-SNE and UMAP performs
best with and without keywork respectively. Taking the
average of both (with and without keyword) t-SNE performs
best.

Overall, in our experiments we observe RoBERTa, t-SNE, and
K-Medoids to be the effective combination for trend detection.

5.2.2 Experiment Objective 2: What is an effective preprocessing
approach for SQL queries?

In the NLP, the positive affects of preprocessing of text on the
final outcome has been widely explored [9, 54]. Our goal is to ex-
plore and analyze preprocessing on SQL queries. We design an
experiment for this analysis. We pre-process workload by remov-
ing SQL keywords. We analyze pre-processing on TPC-H Random,
TPC-H Template, and IMDB workloads. We compare this analysis
with regular SQL queries (with keywords), as shown in Fig 7, 6. The
visual representation for TPC-H Template queries has no major
distinction. The both representation with and without keywords
were similar in nature. In general all queries are equally set apart.
Such a representation shows the queries are very different from
each other. This analysis is validated from the actual queries. The
workload designed by QGEN using TPC-H Template represents
22 different queries. They retrieve very different set of data and
are quite different from each other. However, in the representation
for TPC-H Random, we observe a few similarity. The data can be
observed in clusters. When comparing cluster of queries, they are
more evident after preprocessing. We can observe similar queries
were group together after preprocessing, such as query [33,34] and
[1,3]: However, that was not the case in the representation with
keywords.

ID 33: SELECT COUNT(∗) FROM lineitem WHERE L_ORDERKEY = 2533062
ID 34: SELECT COUNT(∗) FROM lineitem WHERE L_ORDERKEY < 4839745

ID 1: SELECT COUNT(∗) FROM lineitem WHERE L_SUPPKEY < 15859
ID 3: SELECT COUNT(∗) FROM lineitem WHERE L_SUPPKEY < 16455

We also observe the same in IMDB Dataset. At a first glance, rep-
resentation without keywords is spread out and similar queries are
clustered, as contrary to representation with keywords. There are a
few clusters that are consistent in both representations as well are
shown in red boxes in Fig 7, 6. An SQL is a structured language and
each query has keywords. The contextual meaning of SQL query
can be defined using predicates and expression. The preprocessing
step preserves and enhances the contextual meaning of the query
by removing the redundant information from queries. On the other
hand, when the keywords are considered part of the text thereby
loosing the overall contextual meaning of the query. Example, con-
sider SQL query [Q1: SELECT COUNT(*) FROM lineitem WHERE
L_ORDERKEY = 2533062], this query is looking for a the data re-
lated to a specific (= 2533062) order placed (L_ORDERKEY). When
we convert that SQL query to natural language we can observe
the contextual meaning is in the predicates, and the SQL keywords
play a lesser role. By removing keywords the query becomes [Q2:
lineitem L_ORDERKEY = 2533062]. This preprocessing helps to re-
duce the redundant information and thereby improving the quality
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Figure 6: TPC-H Template, TPC-H Random, and IMDB workload representation. The numeric value represent serial number.
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Figure 7: TPC-H Template, TPC-H Random, and IMDBworkload representation with no keywords. The numeric value represent
serial number.
of representation. With this observation we conclude that repre-
sentation of SQL queries after preprocessing (removing keywords)
is very effective.

5.2.3 Experiment Objective 3: Is our proposed DQN algorithm
with priority experience sweeping capable to learning the change in
the environment?

In this experiment, we aim to measure the online efficacy of
the DQN algorithm for priority experience sweeping. To perform
such evaluation we design an experiment with IMDB Dataset and
TPC-H Random dataset. In the modern software systems, applica-
tions are regularly modified or added. Such modification changes
the workload. We simulate and evaluate our framework in such a
scenarios as well. We introduce future Groups of queries by merg-
ing and removing existing workloads. We categorize both datasets
in three groups as described earlier in section 5.1. Our generated
random queries from TPC-H consists of three groups, where Group
1 consists of queries only on single column, Group 2 with exactly
two columns and Group 3 with exactly three columns. A sample
queries from each group is shown below:

SELECT COUNT(∗) FROM LINEITEM WHERE L_PARTKEY = 30217
SELECT COUNT(∗) FROM LINEITEM WHERE L_ORDERKEY < 4741856 AND

L_TAX = 0.02

SELECT COUNT(∗) FROM LINEITEM WHERE L_SUPPKEY > 16616 AND L_TAX
< 0.06 AND L_PARTKEY > 82374

The cumulative rewards graph for both datasets are shown in
Fig 8 9 10 ??, where each experiment has 15,000 episodes and Group
2 and 3 are introduced at 5,000 and 10,000 respectively.

In fig 8, we observe sharp decline in cumulative rewards at
episode 5,000 and 10,000 and progressive nature later. This ex-
plains that the indexes chosen initially for Group 1 were not as
effective for Group 2. This result aligns with the dataset as all three
groups of IMDB dataset are entirely different from each other with
no inter-dependency. However, in the TPC-H dataset groups have
dependency on each other. This can be observed in Fig 9 10, where
both Group 2 and 3 received a gain in performance from previous
indexes. This experiment evaluates efficacy of our framework on
two datasets in a few different scenarios.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose Indexer++ a real-time solution for online
index selection using pretrained NLP models and Deep Reinforce-
ment Learning. We describe our approach for a change in workload
pattern detection. We observe SQL representation to be effective
using t-SNE, K-Medoids and RoBERTa pretrained model. We also
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Figure 8: CumulativeRewards byDQNagent on IMDBdataset.
The dataset is introduced in three stages starting with Group
1 as initial workload then Group 2 and 3.
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Figure 9: Cumulative Rewards by DQN agent on TPC-H
dataset. The dataset is introduced in three stages starting
with Group 1 as initial workload then Group 2 and 3.
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Figure 10: Cumulative Rewards by DQN agent on TPC-H
dataset. The dataset is introduced in three stages starting
with Group 1 as initial workload then combined with Group
2 and 3.
propose priority experience sweeping as an extension to DQN al-
gorithm for generalization in an online environment. We evaluate
our approach on three different datasets. In our experiments, we
observe our proposed framework is able to solve all the existing
challenges for an online index tuning namely, (1) Noise Resilience,
(2) Overhead Cost, (3) Trend Detection Time, and (4) Response Time
and respond to changing workload patterns by selecting optimal
set of indexes.

In the future, we plan to extent our workload pattern detection to
build a classifier to predict runtime, cardinality estimate and error.
We also plan to analyze the affect of SQL operator in workload
representation.
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CHAPTER 5

Conclusion and Future Work

A Self Managing Database eliminates the burden of managing and performing self-

tuning of its parameters. They provide the most efficient way to store and retrieve data.

In a step towards such databases we proposed and evaluate our frameworks MANTIS and

Indexer++ that are able to tune configurations by itself and also provide assistance to

users by recommending indexes in real-time. Analyzing large data and millions of queries

can be a challenging task. A Database Assistant can help us identify ‘interesting’ queries

in a large corpus of queries, recommend sets of queries, and summarize a workload. We

propose and evaluate Query Enhancer a contextual SQL query enhancer able to recommend

interesting queries. To understand and link the relationship of tables in a database we

propose LinkSocial. We perform extensive evaluations of our frameworks using multiple

datasets and compare our results with existing state-of-the-art approaches. Our proposed

frameworks out performs existing approaches.

In future, we plan to extent our work in a few ways. An exciting area of future research

is to extent our workload pattern detection to predict run time, cardinality estimate and

error from workload. Another area of exploration is to optimize several database parameters

using reinforcement learning and eventually leading towards an autonomous self managing

database. Our proposed Query Enhancer can be a extended as a platform for learning SQL,

and this framework will be independent of platforms and can perform equally well across-

platform. Entity Resolution on social media can be extended to study a user’s behavior

across platforms. To our knowledge such an analysis has not yet been studied.
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