Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations, Spring

1920 to Summer 2023 Graduate Studies

12-2021

Assessing the Relationship Between Geophytes and the
Archaeological Presence of Maize in North America

Paige Dorsey
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Archaeological Anthropology Commons

Recommended Citation

Dorsey, Paige, "Assessing the Relationship Between Geophytes and the Archaeological Presence of Maize
in North America" (2021). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8217.
https://digitalcommons.usu.edu/etd/8217

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and

Dissertations, Spring 1920 to Summer 2023 by an /[x\

authorized administrator of DigitalCommons@USU. For /\

more information, please contact IQ‘ .()Al UtahStateUniversity
digitalcommons@usu.edu. ‘e~ MERRILL-CAZIER LIBRARY


https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/319?utm_source=digitalcommons.usu.edu%2Fetd%2F8217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8217?utm_source=digitalcommons.usu.edu%2Fetd%2F8217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ASSESSING THE RELATIONSHIP BETWEEN GEOPHYTES AND THE

ARCHAEOLOGICAL PRESENCE OF MAIZE IN NORTH AMERICA

Approved:

Jacob Freeman, Ph.D.

Major Professor

David Byers, Ph.D.
Committee Member

by
Paige Dorsey

A thesis submitted in partial fulfillment

of the requirements for the degree

of
MASTER OF SCIENCE
in

Anthropology

Molly Cannon, Ph.D.
Committee Member

D. Richard Cutler, Ph.D.
Interim Vice Provost
for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2021



Copyright © Paige Dorsey 2021

All Rights Reserved



ABSTRACT

Assessing the Relationship Between Geophytes and the Archaeological Presence of

Maize in North America

By

Paige Dorsey, Master of Science

Utah State University, 2021

Major Professor: Dr. Jacob Freeman

Department: Anthropology

This thesis attempts to understand the biogeography of maize cultivation in
prehistoric North America. | ask: do regions of N. America where wild geophytes are
more diverse, and (in theory) abundant, display less evidence of prehistoric agriculture
than places where these potential resources were less abundant. To answer this question,
first | create a stylized model of the effect of geophyte and maize production on the
optimal allocation of labor to intensify the production of resources in various
environments. The results from this allowed me to predict under which environmental
conditions an intensification on maize would or would not occur. Following this, |
collected data on geophytes as well as temperature and rainfall (variables that should
affect the productivity of maize). Next, | used the data to statistically test the effects of
geophyte species richness, temperature, and rainfall on the number of observed sites with

evidence of maize. Results are as follows: the presence of archaeological evidence of



maize is potentially impacted by the productivity of geophytes in the area. The
concentration of rainfall during the growing season has a consistent effect on the number
of archaeological sites with maize, and an unaccounted for spatial process accounts for
much variability in the number of archaeological sites with maize across the continent of
N. America. These results help us better understand under which biogeographical

conditions people may invest in the cultivation of maize.

(113 pages)



PUBLIC ABSTRACT

Assessing the Relationship Between Geophytes and the Archaeological Presence of

Maize in North America

Paige Dorsey

This thesis investigates the possible relationship between the
archaeological presence of maize, in the United States, and historical environmental
variables, rainfall and temperature, in addition to the number of underground plants that
store energy and nutrients, in a given area. The thought behind this is that where the
abundance of these underground plant species is highest, the lower the number of
archaeological sites containing maize because such resources were a more attractive
alternative food than maize. Conversely, where geophytes are less abundant,
archaeological instances of maize should be more abundant because maize is a better
option in such environments for individuals who need to produce more food. My results
indicate that the presence of archaeological maize is potentially impacted by the
productivity of geophytes in the area along with climate variables that impact the
productivity of maize. The concentration of precipitation during the growing season, in
particular, has a consistently significant effect on the number of archaeological sites with
maize. By better understanding the environmental conditions that make maize

productivity more favorable, we can better understand the transition to agriculture.
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Chapter 1: Introduction

The goal of this chapter is to introduce the basic concepts upon which my thesis is
built. In this chapter, I will discuss concepts and literature that provide the foundation of
my thesis. Following this, | will pose the question that guided my research. Finally, |

discuss the importance of my research.

A large body of literature in Archaeology and Anthropology illustrates that
geophytes played an important role in prehistoric people’s subsistence practices (Freeman
2007, Herzog and colleagues 2018, Louderback and Pavlik 2017, McGuire and Stevens
2016, Thoms 2009). Importantly, many authors propose that wild geophytes--species of
tubers, bulbs, and corms with below ground, sugar rich storage organs (Brecht 2003)--
may have served as an important alternative to the cultivation of maize in North America
(Black and colleagues 1997, Freeman 2007, Herzog and colleagues 2017, Thoms 2009).
Yet, a formal statistical analysis of the biogeographic relationship between the abundance
of geophytes and the presence of maize cultivation in North America has not been
conducted to test this hypothesis. In this thesis, | model and statistically analyze the
relationships between geophyte species richness, biophysical constraints on the
cultivation of maize, and the presence of maize cultivation in prehistoric N. America. |
ask: Do regions of N. America where wild geophytes are more diverse, and (in theory)
abundant, display less evidence of prehistoric agriculture than places where such
resources were less abundant? This is an important question to answer because
understanding when people will adopt or reject maize agriculture contributes

understanding the transition to agriculture.



Chapter 2: Background and Hypotheses

This chapter’s goal is to better understand the energetic gains of geophytes and
maize in terms of energy gain per unit labor invested in production in various
environments and use this knowledge to develop hypotheses for the biogeographic
distribution of maize cultivation. First, | explore literature that informs my analysis by
examining the importance of geophytes in ethnographically documented cultures.
Subsequently, I model a comparison of production functions of the cultivation of maize
and the harvest of geophytes. Following this, I discuss the possible importance of
growing season rainfall and geophyte abundance and model their effects on the decision
to adopt the cultivation of maize. Lastly, | state my expectations resulting from the

model.

The idea that wild geophytes served as an important alternative resource to maize
agriculture in North America has been proposed by many authors (Bettinger 2015, Black
and colleagues 1997, Dickau and colleagues 2007, Freeman 2007, Johnson and Hard
2008, Madsen and Simms 1998, Simms 1999, Yu 2006). The basic idea is that when
populations face a pressure to intensify their extraction of resources--whatever the
complex set of causes--they will intensify on a resource set that optimizes an individual’s
fitness in a given environment. In environments where geophytes are abundant, these
resources may serve as an alternative to maize agriculture to intensify production. These
resources may provide an attractive alternative because the rate of energy gain from
many geophyte species is often quite high compared with maize among ethnographically
documented societies (Couture and colleagues 1986, Kelly 2013, Rhode 2016, Simms

1984).
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For example, Couture and colleagues (1986), Kelly (2013), and Simms (1984) all
found that bitterroot could produce upwards of 1,374 kcals per hour when gathered at the
right time. Importantly, return rates vary with the density of targeted species; more dense
patches have much lower collection times, and, thus, much higher return rates (Couture
and colleagues 1986). Rates for gathering biscuit root species vary between 134 kcals per
hour (Kelly 2013) and 3,831 kcals per hour (Kelly 2013). Sego lilies have a return rate of
about 207 kcals per hour (Kelly 2013, Rhode 2016, Smith and Martin 2001). Unlike sego
lilies, camas bulbs can provide 5,479 kcals per hour before collection, processing,
transport, and storage and 2,042 kcals after all steps have been taken (Rhode 2016).
Cattails can provide between 128 kcals and 9,360 kcals depending on the season within
which it is gathered as well as the portion of the plant is gathered (Kelly 2013). Bulrush
roots can provide between 160 and 257 kcals per hour (Kelly 2013). Further, geophytes
are often roasted in large earth ovens (Black and Thoms 2014, Gill 2016, Morgan 2015,
Smith 2003, Thoms and colleagues 2018, Yu 2006); and group processing decreases the
handling costs for multiple individuals, increasing the net return from such resources via

the process of increasing returns to scale (Yu 2006).

The return rates of geophytes, thus, compare favorably, where they are highly
productive, with those of maize agriculture. For instance, Barlow (2002:72-73),
concludes that “In Latin America, maize agriculture using only simple hand tools
produces a gross energetic gain of approximately 300-1,800 kcal/hr with average maize
harvests of approximately 3-50 bushels per acre.” The return rates of maize may be
higher using less labor-intensive strategies, such as planting and leaving maize (Barlow

2006). However, planting and leaving maize trades off a higher return rate for a much



great risk of crop loss and a loss of seed corn (Freeman 2012, Huckell and colleagues
2002). It is only practiced ethnographically where foragers and farmers have sustained
interactions, with the strategy highly unstable from year-to-year for any given household

(Freeman 2012).



Table 1 compares types of geophytes and maize by examining processing methods, maximum return rate,

minimum return rate, mean return rate, and sources from which the information was collected.

Species Processing Strategy | Return rate max Return rate min Mean return rate Reference
Kcal/hr Kcal/hr
Maize “Typical” 1,800 700 1,250 Barlow 2002
Agriculture in
Colorado
Balsamroot Fresh, Peeled 369 120.2 244.6 Mullin and
colleagues 1998
Bitter Root Peeled and boiled ~2,300 ~1,250 ~1,775 McGuire and
Stevens 2017
Bulrush Peeled, eaten raw, 257 160 208.05 Kelly 2013
boiled, or roasted Rhode 2016
Camas Cooked then eaten 5,479 kcals 2,042 kcals 3,760.5 Rhode 2016
or dried then stored
Canby’s Biscuit Peeled then 1,219 143 681 Rhode 2016
Root prepared various
ways
Cattails Peeled and eaten 9,360 128 4,744 Kelly 2013
raw, boiled, Rhode 2016
roasted, or dried
and ground into
flour
Epos/Yampah Raw or roasted 2,600 172 1,386 Rhode 2016
Sego Lily Eaten fresh or pit 207 143 175 Rhode 2016
roasted Smith and

Martin 2001




Comparison of Mean Return Rates

Calories (kcals

Species

Figure 1 visually compares kilocalorie mean return rates of the geophytes, listed above, in addition to
maize.

Though the return rates above indicate that geophytes can provide equivalent or
better return rates than maize for individuals, if a geophyte resource and maize are
available at the same time, this does not give us the full picture. The return rate of a
resource changes as a function of the amount of labor invested in that resource. Thus, to
compare the net benefits of intensifying on maize vs. geophytes, we need to understand
the net benefits of allocating time (labor) to these different carbohydrate sources in
various environments. The intensification of production is a time allocation process that
substitutes one set of activities for another. For example, a shift in time spent hunting
toward time spent gathering and processing plants is a process of substitution, shifting
time from hunting to more plant gathering activities to increase productivity per unit area.
The question can be simplified to: When does an average individual choose to invest time

(labor) in geophyte production under different return rate functions for these resources? |
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use a microeconomic model that shares some similarities with a technological investment

model (e.g., Bettinger et al 2006) to help answer this question and guide my analysis.

First, | assume that the technologies used to cultivate maize and harvest and
process geophytes are very similar (e.g., digging sticks, stone metates, and monos),
though the production ceiling (gross production) for maize may be higher than for
geophytes. Second, | assume that individuals attempt to meet a required level of food
production in as little time as possible (i.e., minimized time spent in food production
activities). Third, | assume that maize cultivation requires more initial investment in labor
before the resource can provide a return. This means that, at minimum, gardens must be
cleared, sown, and, potentially, weeded. The upfront costs of producing maize, the
cultivation premium, of course will vary from environment to environment. | assume here
that the farther a biophysical environment is, on average, from the optimal niche for
conducting rainfed maize agriculture, the higher the cultivation premium. Fourth,
geophytes require a negligible initial labor investment in order for them to grow (i.e.,
little to no field preparation, irrigation construction and so on), though while gathering
individuals may engage in tending behaviors and low-cost burring activities that promote

the growth of geophyte species (Anderson 2005).

Given these assumptions, we can compare production functions of the cultivation
of maize and the harvest of geophytes. Figure 2 graphically illustrates the interaction
between a resource target and the gains from harvesting each respective resource type. In
Figure 2, the resource target (m) simulates a pressure to intensify the production of
resources for an average individual foraging in a fixed territory. In Figure 2A and 2B, at

low resource targets, geophyte production is optimal in both low and high productivity
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Figure 2: Comparison of productivity functions for maize and geophytes in high and low abundance geophyte environments. The
parameter m defines the minimum level of production necessary to meet biological and cultural requirements. The function that
reaches m first in each graph minimizes the time spent participating in subsistence activities. A-low population density, high
geophyte density environment. B-low population density, low geophyte density environment. C-High population density, high
geophyte density environment. D-High population density, low gecphyte density environment.

geophyte environments. This strategy would allow an average individual to achieve their

resource target in the least amount of time, even though maize production has a much

higher ceiling than geophyte production. In Figure 2C and 2D the resource target is high.

In this case, geophyte production is still optimal in high geophyte productivity

environments (2C), but maize cultivation is optimal where geophyte productivity is lower

(2D), even if maize cultivation has a high upfront premium to transform a landscape prior

to viable cultivation.




Holding the productivity of maize constant, the above model leads me to predict
that the productivity of geophyte species will directly influence the likelihood that
prehistoric populations adopted maize cultivation and, thus, the biogeography of maize
production. In each area of North America, | would expect a higher geophyte
productivity to correlate with a lower abundance of archaeological maize agriculture.
Conversely, | expect a lower geophyte productivity to correlate with a higher abundance

of evidence for maize agriculture, prehistorically.

Similarly, if we hold m and geophyte productivity equal, then the steepness of the
maize productivity curve should affect which option is optimal in any given environment.
Two climate requirements may affect the optimal environment for growing maize at a
biogeographic scale. The first factor that should be accounted for is the length of the
growing season (temp). Bocinsky and Kohler (2014) estimated that the growing season
should amount to 1800 F growing degree days from the month of May to September. The
second requirement is “30 cm of precipitation for the previous October through the
current September (the “water year” in most of the Southwest)”” (Bocinsky and Kohler
2014). This affects the amount of moisture available during the growing season that may
be available for rainfed farming. However, the absolute amount of moisture may not be
as relevant as the concentration of moisture during the growing season for the adoption of
maize cultivation. If water pulses through an environment during the growing season, it is
much more accessible for plants and for humans to modify landscape features to capture

such pulses of water and cultivate maize.

Figure 3 illustrates, conceptually, the effect of growing season rainfall on the

maize production function. R; rainfall is concentrated during the growing season and this
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leads to a steeper increase in productivity per unit labor than Rz and Rz where rainfall is

less concentrated during the growing season. In Figure 3A, we observe that maize is the
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Figure 3: Comparison of three different growing season rainfall regimes that affect maize productivity

in high (A) and low (B) geophyte productivity environments. The parameter m defines the minimum
level of production necessary to meet biological and cultural requirements. R;=high growing season
rainfall; R,=moderate growing season rainfall; R;=low growing season rainfall.

better intensification strategy for an average individual to reach m than geophytes in an
R1 and Rz environment. However, in an Rz environment, geophytes provide the better
intensification strategy. In Figure 3B, maize always provides the best intensification

strategy. The insights from this set of relationships leads to the following predictions:

Holding m equal, the interaction between the productivity of maize and the productivity
of geophytes should determine the decision to intensify on maize cultivation. | predict
that in high maize and high geophyte productivity environments, people will intensify on
maize. In low maize productivity (lower concentration of growing season moisture) and
high geophyte productivity environments, people will intensify on geophytes. Finally, in

both low maize and geophyte productivity environments, people will intensify on maize.



11

Chapter 3: Data and Methods

In this chapter | will describe the data and variables used to the predictions
outlined in Chapter 2. This is accomplished by dividing this chapter into 6 sections. The
first section focuses on the analysis in R and the variables utilized. The second section
pertains to how maize data, the dependent variable, was collected. The third section
depicts maps of the maize data and discusses the methods utilized in making them. In
section 4, | discuss how lists of geophytes were created and gathered. Furthermore, |
introduce the independent variables (geophyte richness, growing season precipitation,
annual precipitation, and temperature) and how their data were collected. In the next
section, section 5, | present the maps created from the data from section 4 in ArcGIS and

how they were created. Finally, section 6 describes the final data set used for analysis.

R Variables and Analysis Overview

To test my predictions, | needed to develop a dependent variable that tracks maize
cultivation across the lower 48 US states and independent variables that estimate
temperature, growing season precipitation (or the pulse of water through an environment
during higher temperatures) and geophyte abundance. With these variables estimated

(discussed below), I can test my predictions with the following general linear model

zi=a+bl*temp+b2*rain+b3*geophyte+b4*(rain*geophyte)+e 1)

where z;is a count of sites containing evidence of maize in the prehistoric record of a
given geographic area i. Temp is mean annual temperature, rain is either the
concentration of precipitation during the growing season or total growing season

precipitation, and geophyte is either geophyte species richness or consumable geophyte
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species richness in a geographic area i. As discussed below, | assume that geophyte
richness correlates positively with geophyte abundance. Finally, € is the error or deviance
in the count of maize sites not explained by the independent variables. Here, | use a
poisson link function (see Appendix A) as | use count data to estimate the presence of
maize cultivation (count of sites). Note the interaction between geophytes and rain. This
interaction effect tests that maize cultivation is more frequent in high geophyte
abundance and low growing season rainfall environments, but, as growing season
precipitation increases, maize cultivation becomes less frequent, even in high geophyte

abundance environments.

The above equation assumes that ¢ is independent of spatial area. This is not
always or is even rarely the case. Thus, we use a Moran’s I test of spatial autocorrelation
in the ape package in R to test for spatial autocorrelation of residuals. Where we find
significant spatial autocorrelation at p<0.05, we use the spam package in R to run a
spatial regression, simply by adding latitude and longitude vectors for each spatial unit
using a mixed effects model. Note, in all regression models | mean centered precipitation
and geophyte variables using z-scores to avoid multicollinearity problems associated with

variable interaction models.

Dependent Variable

| collected archaeological maize present in sites nationwide (based upon the terms
pollen, cob, cupule, corn, maize, or osteological remains that show maize was part of the
diet). These sites were collected from the Ancient Maize Map database, the CARD

Database (Martindale and colleagues 2016), Utah State University’s online database, of
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academic articles, as well as from sources available for free (which may bias the
availability of information) from Google Scholar (searching state AND archaeology
AND maize then searching archaeological sites that were named in those entries AND
state). In total, 463 archaeological sites containing maize were gathered. Following this, I
collected the civil coordinates of the county, found on Lat-Long.com, that the
archaeological site is in (unless it has a designated museum or is located within a state or
national forest or recreation area) so as to protect the site’s location. The methods utilized

are presented in a workflow table below, Figure 4.
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Figure 4
Ancient Maize CARD Database USU Online
Map _ Library Search:
Site data were downloaded
Maize sites were from site if it matched the Archaeolpgy
manually added to words: Maize, Maize Cob, and AND maize AND
Maize Database Maize Kernel United States

Step 1. Google Scholar Search:
State AND archaeology AND maize
State AND archaeological maize

Name of archaeological site(s) named in an article AND state

v

Step 2. Added to list if terms included in source are: corn/maize pollen, corn/maize
cob, corn/maize cupule, corn, maize, or osteological remains exhibiting maize in their
diet

Step 3. Checked the source (body and citations) for the county of the site and for
more sites mentioned that contain archaeological maize

Y

Step 4. If no county was listed in Step 5. If county for the

the source, then | searched on archaeological site could not be
Google Scholar: » | found, then I searched landmarks
Archaeological site name AND T/lzr;z()md In the article in Google

state AND the author’s name

) r'd

Step 6. Coordinates were added from Lat-Long.com. Coordinates are based upon:
civil seat of the county (most cases), or townships/cities/towns, state or national

parks, national monuments, or recreation areas (lakes, reservoirs, and ponds) (if closer
to site than the civil seat of county), museums associated with the site, or the site if
it’s well known (such as Cahokia)

Figure 4 illustrates the steps taken to create the maize database utilized in my analysis.
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Then, all of these data were recorded in an Excel sheet. Next, | imported the Excel
sheet that contains the archaeological sites in the United States into ArcGIS along with
the geophyte richness data and historic environmental variables. With these points
projected (WGS_1984) together, | created maps to analyze possible relationships
between the two. This allowed me to compare the presence of agriculture to geophyte

species with the purpose of teasing out a possible correlation between the two.
Mapping the Dependent Variable

Figure 5 depicts the locations of archaeological sites with maize throughout the
United States. The methods utilized in creating this map consists of importing the Maize
Database excel sheet and downloading the continental U.S. state map from ArcGIS

Online.
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the United States
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Figure 5 displays archaeological sites that contain instances of maize in the United States.
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Figure 6 depicts the same data seen in the map of archaeological sites in the
United States that contained maize. This map was created using the maps and ggplot
package in R. This map better allows us to view clusters of archaeological maize within

2.5 by 2.5 grid cells, which form the spatial units of my analysis.

Ot
4 5 | Maize_Sites
= 40 b
© 20
= 3 5 | . e 10
301 :
2y

120 -100 -80
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Figure 6 shows the clustering of archaeological maize sites in the United States among 2.5 x 2.5 grid

cells.

Independent Variables

My model assumes that geophyte abundance matters, therefore, to operationalize
my model, | use geophyte richness as a proxy for abundance. An ecological study
determining the relationship between geophyte species richness and abundance, or

productivity, when exposed to chronic nitrogen enrichment (Isbell and colleagues 2013),
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has revealed a link. To estimate geophyte abundance using species richness, I compiled
two lists of geophyte occurrences in the United States. The lists of geophytes consist of
entries found in the online Native American Ethnology Database (Moerman 2003), the
USDA’s manual for bulb identification (2011), and from Native American Food Plants:
An Ethnobotanical Dictionary (Moerman 2010). The first list consists of geophyte genus’
(named general geophyte list). A genus was added to the list if it matches key words (i.e.,
bulb, geophyte, corm, rhizome (rootstocks), root, taproot, or tuber) and if it was listed as
a certain type of food (i.e., dried food, food, staple, starvation, unspecified, vegetable, or
winter use food) in Moerman (2010). The second list is the consumable geophyte list,
which consists of species, subspecies, and varieties, found in Moerman’s book (2010)
and was searched in the Native American Ethnology Database (Moerman 2003), that
match the key words listed above (i.e., bulb, geophyte, corm, etc.) and is listed as a

certain type of food that is listed above as well (i.e., dried food, food, staple, etc.).

After compiling the lists, | downloaded modern location data for the geophytes,
narrowed down to the United States, from the Global Biodiversity Information Facility
(GBIF) of listed geophytes. The genus, species, subspecies, and varieties from the
consumable geophytes list were only downloaded from GBIF if their scientific names
(i.e., Hook, Pursh, Nutt., etc.) match two-thirds, or one half, of the entries listed on the
Native American Ethnology Database (Moerman 2003); this includes geophytes that have
multiple names, or synonyms, only the ones that were specifically named on the database
had their data downloaded. The number of Excel rows, for the all geophyte list, totals
around 1.29 million. The number of Excel rows, for the consumable geophyte list, is

smaller, numbering around 328,000 rows. Following this, | clipped the data (only kept



bare minimum data for location and scientific name) in Excel to a document that is
projected (WGS_1984) into ArcGIS on a basemap. Then, | merged the two different

geophyte Excel documents into one and then projected it using the same projection.

Historic environmental variables, for the United States, were also incorporated
into this research. These variables are growing season precipitation, annual
precipitation, and mean temperature. These data were incorporated because they could
possibly impact a person’s decision to adopt maize or intensify on geophytes. I expect
a higher number of geophytes to correlate with a lower number of archaeological sites
containing maize during, both, high and low precipitation years and growing seasons

and in cool and warm environments.

Data for these variables were downloaded as ASCII files from the PRISM
Database (Northwest Alliance for Computational Science and Engineering 2020). The
data were then added to a base map in ArcGIS. Maps depicting these independent
variables, compared to the dependent variable, are found below along with the
methods utilized to create them. A 2.5 by 2.5 decimal degree grid was created over the
United States to systematically divide the space and the variables located within them
(growing season precipitation, total annual rainfall, temperature, geophyte richness of
all/general geophytes, geophyte richness for consumable geophytes, and

archaeological sites containing maize).

Mapping Independent Variables

The first map created was the Frequency of All Geophyte Species in a Grid Cell
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Map. Following the steps mentioned above, I then created a grid using the “Grid Feature
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Index” tool based on the merged All Geophyte Data where species is the field and the cell
size is 2.5 by 2.5 decimal degrees. Then I utilized the “Tabulate Intersect” tool where the
input zone is the grid that was created based on page name and the input feature class is
the merged All Geophyte Data based on species. The resulting table shows a species
within a grid cell (Page name), the number of points of that species in that grid cell, and
the percentage of the points that make up the total number of species in that grid cell.
However, there are multiple species present in each grid cell. To count the number of
times each grid cell (Page Name) is named (one grid cell is named per species present), |
used the “Frequency” tool. This would show how many different species are present in
the table by counting the instances that grid cell (Page name) comes up. From there, the
resulting table was symbolized by going to “Properties” of that table and then clicked on
“Symbology”. Next, I went to “Quantities”, “Graduated Colors”, the “Value” was
changed to the frequency (the number of geophyte species in each grid cell) and then the
classification was changed to “Natural Breaks” and into 9 categories. This same process

was utilized to calculate and map the number of consumable geophytes in a grid cell.

Figure 7 illustrates the number of all geophyte species (n = 1,293,168) compared
to known archaeological sites in the United States that contains maize (n = 463). Also
present in this map is a map of the continental United States, states are outlined in black,
which was obtained from ArcGIS Online. This component was included in the map to
show where the grid cells are located within the country. This set of maps is included in
this analysis because they provide us with the opportunity to see the productivity of
geophytes in the area which is one of the variables in the regression equation found on

page eleven. The first map (Figure 6) shows the map with a legend for context.
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Figure 7 depicts the frequency of all geophyte species within a grid cell. As we can see, most archaeological sites

with maize occur in grid cells that contain a mid to high number of geophyte species.
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The map above illustrates the relationships between archaeological instances of
maize and the number of all geophyte species present in grid cells. Grid cells are colored
to represent the number of all geophyte species present; within the context of this visual
analysis, the grid cells are divided into lower (1-41, 42-93, 94-148), middle (149-200,
201-265, 266-348), and high (349-443, 444-565, 566-803) categories. There are few grids
in the lower frequency range that contain maize (n = 4). Most of the grids (n = 71) that
contain archaeological sites with maize fall into the middle (n = 30) and high (n = 41)

categories of number of species present.

The next map (Figure 8) depicts the frequency of consumable geophyte species (n
= 328,285) present in a grid cell. The steps that were utilized to create the previous map

were used here, as well.
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Figure 8 shows the frequency of consumable geophyte species within a grid cell. Most of the cells containing
maize are categorized as lower to mid-high numbers. The outlier being the red cell on the border between

Wyoming and Colorado.
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The categories for consumable geophyte species present in a grid cell are
different. The low category consists of the groupings 1-9, 10-18 and 19-28. The middle
category is composed of the groupings 29-40, 41-50 and 51-61. The high category is
made up of the groupings 62-75, 76-87 and 88-109. The map above, Figure 7, depicts
much of the same pattern seen in Figure 6 where most (n = 76) of the grid cells
containing maize sites fall into the middle (n = 63) to higher (n = 13) range of frequency
of consumable geophytes and few grid cells (n = 2) contain maize that are in the lower
category for species present. However, most of the grid cells containing maize fall into
the true middle category, colored yellow and darker yellow. There are fewer outliers to
this statement than the map before this one. There are, both, fewer low range grid cells

and fewer high range grid cells containing archaeological maize than in the previous map.

From Figure 3, we predicted that precipitation levels were linked to the
productivity of maize and is shown in the equation previously stated on page 11, hence
the reason for its inclusion. The data were accessed through the PRISM database
(Northwest Access for Computation Science and Engineering 2021a) by clicking on the
“Historical Past” tab on the website and clicking on the bubble next to the “Precipitation”
option for the years 1895 to, and including, 1950. Then, | downloaded the data as ASCI|I
files through the “Download All Data For Year (asc)” button. Following this, I dragged
the appropriate .asc files for each year into ArcGIS. From here, individual maps were
created based on their respective environmental variable; methods for creating those

maps are discussed below.

To make the Total Mean Precipitation map, depicted below (Figure 9), | imported

into the files into ArcGIS for each year rather than each month of the year. After this, I



used the “Cell Statistics” tool and chose every year’s file and used the “MEAN”

calculation option.
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Figure 9 shows the mean annual precipitation for the years 1895 to 1950 in millimeters.
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To make the Mean Growing Season Precipitation map, depicted below (Figure
10), I imported the precipitation files for the months of April, May, June, July, August,
and September (04-09) into ArcGIS. Following this, I combined the months of each year
by using the “Cell Statistics” tool with the calculation option set to “SUM”. Once that
was achieved for each year (from 1895 to 1950), those year files were then combined
using “Cell Statistics” tool with the calculation option set to “MEAN”. The resulting map

depicts the mean growing precipitation for the years of 1895 to, and including, 1950.
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Figure 10 shows the mean precipitation levels during the growing season between the years 1895 and 1950

compared to archaeological sites containing maize.
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The same steps that are listed above for the precipitation maps were utilized to
obtain mean temperature data from the PRISM website (Northwest Access for
Computation Science and Engineering 2021b). The only difference between that process
and this one was clicking the option “Mean Temperature”. Everything else was
conducted in the same manner. After downloading the .asc files for each year, | dragged
the year files into ArcGIS, not the individual months, and used the “Cell Statistic” tool
with the calculation set to “MEAN”. The resulting map (Figure 11) depicts the mean
temperature in the United States from the year 1895 to 1950 (Northwest Access for

Computation Science and Engineering 2021b).
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Figure 11 illustrates the mean temperature, in Celsius, for the years 1895 to 1950.
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When referring to all three maps, an interesting pattern emerges. They show a

curious grouping of archaeological sites containing maize in the West compared to the
Midwest and Northeast. In the West, archaeological sites with maize are, predominantly,
more scattered around each other with some overlap occurring. However, in the Midwest
and Northeast there is more overlapping of sites compared to the scatter pattern. Possible
explanations for this pattern could include varying access to reliable water sources,
difference in available land, differing demographic pressures, and differing biases in

archaeological excavation and reporting.

Final Data

To incorporate the “Historical Precipitation” and “Historical Mean Temperature”,
the “Project Raster” tool needed to be used to turn it into the “WGS_1984” geographic
coordinate system. Then, the “Int” tool was utilized to turn it into an integer type of data
rather than its original format (floating point). Following this, I used the “Build Raster
Attribute Table” tool for the datasets. Lastly, the “Raster to Polygon” tool was utilized in
order to make the data easier to work with when joining them with other data. All of the
historical environmental data were put through the same process to put the data in the
same data table. The environmental data was reported at a much finer resolution and were
combined to calculate a number that accurately represented the 2.5 by 2.5 decimal degree

grid cell.

To calculate the Total Annual Precipitation, | started by importing into ArcGIS
the files for each year, rather than each month of the year. After this, I used the “Cell

Statistics” tool and chose every year’s file and used the “SUM” calculation option. The
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“All Geophyte” dataset was imported to create a grid using the “Grid Index Feature” tool
with, both, the height and width of the cell set at 2.5 decimal degrees. The resulting grid
table was utilized as the input zone, based on page name, when using the “Tabulate
Intersection” tool with the resulting summed values (from the “Cell Statistics” tool) as
the input feature class, based on grid code. The resulting table shows multiple values
(precipitation readings) assigned to grid cells. Next, I ran the “Summary Statistics” tool
to obtain the mean of the summed values for each grid cell. Following this, | exported the
data into a spreadsheet and then divided those sums by fifty-five in order to find the total

precipitation mean for the years spanning 1895 through 1950.

To calculate the precipitation levels for Mean Growing Season Precipitation, |
dragged the precipitation files for the months of April, May, June, July, August, and
September (04-09) into ArcGIS. Following this, | combined the months of each year by
using the “Cell Statistics” tool with the calculation option set to “SUM”. Once that was
achieved for each year (from 1895 to 1950), those year files were then combined using
the same methods listed above. Then, | imported a grid index based on the all geophyte
data wherein the cells are 2.5 by 2.5 decimal degrees. Subsequently, | put that result into
the “Tabulate Intersection” tool as the input zone, based on page name, while the
summed precipitation level layer was utilized as the input feature, based on grid code.
The resulting table was then put into the “Summary Statistics” tool wherein the grid code
was utilized to calculate the mean level of those previously summed precipitation levels
while the page name was the input for the case field to get the mean growing
precipitation for the years of 1895 to, and including, 1950. Following this, the rows were

selected and exported into an Excel sheet and then divided by 6 (the number of months
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per year) and then fifty-five (the number of years over which these data were collected
and calculated). The concentration of precipitation during the growing season is simply

the mean growing season precipitation divided by total precipitation.

The same steps that are listed above for Mean Precipitation Maps were utilized to
obtain mean temperature data from the PRISM website (2021b). The only difference
between that process and this one was clicking the option “Mean Temperature”.
Everything else was conducted in the same manner. After downloading the .asc files for
each year, | dragged the year files into ArcGIS, not the individual months, and used the
“Cell Statistic” tool with the calculation set to “SUM”. Then I utilized the “Int” tool
again. Following this, the “Project” tool was used to change the coordinate system to
“GCS_WGS 1984”. A grid index was created from the same geophyte dataset that
created a grid for the total precipitation map (merged all geophyte dataset) using the
“Grid Index Tool” with the cell width and height set at 2.5 decimal degrees. Next, the
resulting grid index was utilized as the zone field, based on page name, for the “Tabulate
Intersection” tool with the resulting dataset from the “Project tool” as the feature class
based on grid code to assign those values to grid cells. The resulting table shows multiple
values tied to every grid cell. From here, the table was joined with the grid index that was
created. Then, the “Summary Statistics” tool was utilized to get the mean of those
summed values in the grid cell. The resulting table was then exported and turned into an
Excel spreadsheet. From there, the data were divided by fifty-five in order to show the
mean temperature in the United States from the years 1895-1950 (Northwest Access for

Computation Science and Engineering 2021b).
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Next, I imported the “Consumable Geophyte” point data in addition to the “All
Geophyte” data. Following this, I added a grid by using the “Grid Index Features™ tool
with the dimensions of the output polygon measuring at 2.5 by 2.5 decimal degrees.
Then, | added the maize database data (Archaeological Sites with Maize) to the resulting

grid by joining them based on spatial location.

To calculate the number of geophyte species for each 2.5 x 2.5 decimal degree
grid square, I had to use the “Tabulate Intersection” on the consumable geophyte data
based on the category “specific epithet” (the species category) and on the all geophyte
data based on the category “species”. The results split up the geophyte species into which
grid cell they fell in. Next, I utilized the “Frequency” tool on the results of the “Tabulate
Intersection” based on the page name (which is the grid cell name). This means that the
“Frequency” tool counted how many geophyte species fell into a grid cell based on the
occurrence of that grid cell name in the “Tabulate Intersection” results (the resulting table
from the Tabulate tool shows a grid cell name, geophyte species, how many points of that
species occur in that grid, as well as the percentage that species makes up in the total
number of species in that cell). After this, | did a join based on the table for both results
of the “Frequency” (“Consumable Geophyte” and “All Geophyte” data) so that ArcGIS
would include in the spreadsheet the number of occurrences in each grid cell. When all
categories were combined, I opened the attribute table and clicked on “Select All” then
exported them as a text file with .csv at the end of the name of the table. Within the Excel
spreadsheet, information not pertaining to the specific data was omitted. Lastly, about

two dozen grid cells were omitted from the spreadsheet utilized for the analysis in R due



to lower numbers in geophytes resulting from most of, if not the entire, grid cell being

located over water (touches land or shoreline) or touches a land border.
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Chapter 4: Results

In this chapter, I will discuss the results of my analysis. My results provide partial
support for my predictions. | first provide a reminder of the main predictions of my
model, then a summary of results and, finally, a description of the tables and figures that

illustrate the results.

In chapter 2, | predicted the possible importance of precipitation concentration (as
a variable that impacts the productivity of maize) and its interaction with geophyte
abundances in a given area (Figure 3). | predicted that in environments where high maize
and high geophyte productivity are present, people will intensify on maize. However, in
environments where maize productivity is lower (lower concentration of growing season
moisture) and geophyte productivity is high, people will intensify on geophytes. Lastly,
in environments where maize and geophyte productivity are low, people will most likely

intensify on maize.

In summary, | find that (1) temperature, the concentration of precipitation, and
geophyte richness all have statistically significant (at p<0.05) effects when regressed on
the number of maize sites among geographic areas. (2) The direction of effects, in part,
are consistent with my model. For example, as temperature increases, the number of
maize sites increases. Holding the richness of geophytes constant at a high value, a low
concentration of precipitation during the growing season predicts more maize sites.
Holding geophytes constant at low richness, maize sites are predicted to be more
abundant in environments with a lower concentration of precipitation. However, where

geophyte abundance is low and the centration of precipitation is high, few maize sites are
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predicted, which contradicts my prediction. Finally, when we control for spatial
autocorrelation, the direction of all of the above effects still hold, however, the statistical
significance of the predictor variables is marginal (i.e., not less than the arbitrary value of
p=0.05). Overall, the results of the spatial regression indicate that some unaccounted-for

spatial process has an important effect on the number of maize sites.
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Figure 12A shows the relationship between the occurrence of archaeological sites with maize
(Maize_Sites) and mean annual temperature for the years 1895-1950 (MAT). Figure 12B depicts the
relationship between the concentration of precipitation during the growing season (ZRainCon) and the
occurrence of archaeological maize sites (Maize_Sites) with various geophyte frequencies being held
level (lines of differing colors). The differing colors represent their number of standard deviations from
the mean.
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Table 2 provides calculations for each of the coefficients listed. The intercept is the point where all
geophyte standard deviations converge. The coefficient ZRainCon is the z-score for growing season
precipitation. MAT is the mean annual temperature. Z Geos represent the z-score for the frequency of
all geophytes. ZRainCon and ZGeos are the combined variables defined above.

Variable Coeff. Std. Error Z value Pr(>|z|)
Estimate

Intercept 0.820507 0.116426 7.047 <0.05

ZRainCon 0.435732 0.061196 7.120 <0.05

MAT 0.018256 0.008919 2.047 <0.05

ZGeos 0.499183 0.051300 9.731 <0.05

ZRainCon:ZGeos | 0.323358 0.052052 6.212 <0.05

Figure 12 and Table 2 present the results of a general linear model (equation 1)
that regresses the number of maize sites on temperature and the interaction of geophyte
richness and rainfall concentration. Figure 12A visually presents the effect of temperature
on the number of archaeological sites containing maize. Basically, it shows that when
temperature goes up, so does the number of archaeological sites that contain maize.
Figure 12B depicts the relationship between precipitation concentration during the
growing season and archaeological sites containing maize when geophyte levels are held
constant. The gold line represents grid cells containing the highest frequency of
geophytes (3 standard deviations above the mean of all grid cells). As we can see from
the graph, where geophyte richness is high and rainfall concentration low, very few
maize sites are predicted by the model. However, where geophyte richness is high and
rainfall concentration is high, maize sites are abundant. This result is consistent with my
model predictions. The blue line, in the same graph, represents grid cells that contain the
lowest frequencies of geophytes (-2 standard deviations from the mean). In environments

with a low concentration of precipitation, these geophyte depauperate environments are
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predicted to have few maize sites. In such environments, as the concentration of
precipitation during the growing season increases, fewer maize sites are predicted. This

result is inconsistent with my model and predictions.

Figure 12B displays patterns consistent with the idea that where there is less
rainfall during the growing season in an environment that possesses an abundance of
geophytes, people will intensify on geophytes limiting the number of archaeological sites
created containing maize. Figure 12B also shows that if the growing season contains a
greater concentration of precipitation, with abundant geophytes, then people will
intensify on maize. However, in dry growing season environments, if geophytes are less
abundant then people are more likely to intensify on maize; thus, increasing the number
of archaeological sites containing maize. Finally, where there is a smaller number of
geophytes and a high concentration of precipitation during the growing season, people

will intensify on geophytes.

Although Table 2 and Figure 12 illustrate patterns consistent with some of my
predictions, this analysis does not take into account the potential for spatial
autocorrelation of the residual deviances (errors) in the predicted abundance of maize
sites. This potentially biases the coefficients of a model. In this case, | used a global
Moran’s I test of spatial autocorrelation on the residual deviances and found a Moran’s |
of 0.018 compared to a simulated expected value of -0.006 (p<0.05). This indicates that
errors in the number of predicted maize sites weakly correlate in space (i.e., cluster

together).
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Figures 13A and 13B depict the same data but factors in the spatial component. Figure 13A illustrates
the relationship between archaeological sites containing maize (Maize_Sites) and mean annual
temperature for the years 1895-1950 (MAT) effect plot shows an increase in the confidence level
range, the light blue area surrounding the blue line. Figure 12B depicts the relationship between the
concentration of rainfall during the growing season ZRainCon) and the occurrence of archaeological
maize sites (Maize_Sites) with various geophyte frequencies being held level (lines of differing colors).
The differing colors represent their number of standard deviations from the mean.

Table 3 provides calculations for each of the coefficients listed. The intercept is the point where all
geophyte standard deviations converge. The coefficient ZRainCon is the z-score for growing season
precipitation. MAT is the mean annual temperature. Z Geos represent the z-score for the frequency of
all geophytes. ZRainCon and ZGeos are the combined variables defined above.

Variable Coeff. Estimate Cond. SE t-value
Intercept -1.13768 0.86744 -1.3115
ZRainCon 0.83178 0.43965 1.8919
MAT 0.02166 0.06397 0.3386
ZGeos 0.37815 0.23191 1.6306
ZRainCon:ZGeos 0.29922 0.26627 1.1238
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Figure 13 and Table 3 depict the results of a mixed effects regression model that

include latitude and longitude as a random predictor of differences in the number of
maize sites. Controlling for this variation in the spatial distribution of maize sites explains
a significant amount of the variation in the number of maize sites among grid cells.
Figure 13A and Figure 13B, depict the same data as Figure 12A and Figure 12B, but are
calculated factoring in the spatial component (latitude and longitude). Figure 13A shows
the significance between temperature and archaeological maize when factoring in the
spatial clustering of data points. The line in Figure 13A is less steep but still has a gradual
upwards trajectory and a much wider confidence range. It shows that the relationship
between temperature and number of maize sites is now very nearly random. Figure 13B

replicates the effects shown in Figure 12B.

Table 3 illustrates that the coefficients associated with the concentration of
precipitation and the number of geophyte species are now marginally significant. Their
lower estimates cross zero at the 95% confidence level, thus, at that level of confidence,
we cannot rule out that the coefficients in the table are due to chance. A Moran’s I test on
the residual deviances indicates a value of -0.02 against an expected value of -0.006
(p=0.07). This indicates that the spatial autocorrelation of the residual deviances is

marginally significant.
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Chapter 5: Discussion and Conclusion

In this final chapter, | restate the question that guided my research and then the
predictions. Following this, I discuss the results and limitations of my data. Lastly, | state

why my research is important and future avenues of research resulting from my thesis.

In the beginning of this thesis, | asked if regions of N. America where geophytes
are more diverse, and (in theory) abundant, display less evidence of prehistoric
agriculture than places where such resources were less abundant? Answering this
question furthers our understanding of when, or under which environmental conditions,
people will adopt or reject maize agriculture thereby enhancing our knowledge on the
transition to agriculture. | predicted that a higher productivity of geophytes, in any given
area, would correspond with a lower occurrence of archaeological maize sites while an
area with lower geophyte productivity would correspond with more occurrences of
archaeological maize. Furthermore, in high maize and high geophyte productivity
environments, | expected people to increase their dependence on maize; while in lower
maize productivity (due to lower concentration of growing season precipitation) and high
geophyte productivity environments, | expected people would intensify their exploitation
of geophytes. However, in areas where there is, both, low maize productivity and

geophyte productivity, people would intensify their efforts in maize agriculture.

The results show that the productivity of geophytes, alone, may not matter much.
However, the importance of the concentration of rainfall during the growing season does
seem important. It appears that the concentration of precipitation during the growing

season, in interaction with geophyte richness, impacts the presence of maize agriculture.
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One of the greatest limitations within this study is the need to use modern data for
both the identification of geophytes potentially consumed by prehistoric populations and
location data for the geophyte occurrences. The modern data for identification of
geophytes utilized for consumption comes from a book whereby the author draws from
Native American knowledge that has been handed down through generations. The
modern data for identifying geophyte occurrences comes from a database that identifies
where people have seen this species or if it is a preserved specimen. Since technology for
identifying traces of geophyte species has only recently developed within the past few
years, there has not been enough time, nor money, to run these tests on multiple
archaeological sites within the United States. It is possible that there are names of
geophyte species, that were consumed throughout prehistory, that are not on the list due

being forgotten over several generations or less to no access to them.

Another limitation on the data, specifically the maize database data, is that Google
scholar was utilized to find most of the archaeological sites that contain maize. The
reason for this is to make this study as accessible as possible. There could be biases in the
reports and articles collated by Google Scholar (systemic exclusion of gray literature in
some areas but not others) that could contribute to the patterns and correlations we see in
the data presented above. However, if we collected maize data from all archaeological
sites that have maize, in the United States, then the patterns seen in that data would more

accurately depict trends.

Yet another limitation on this data is the use of species richness as a proxy for

productivity. In my thesis, | assumed that species richness was a proxy for productivity
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since there was a precedent for this set by ecological researchers (Isbell and colleagues

2013). However, there is a possibility that they could be weakly linked.

This research could be used as a foundation for many research projects in the
future. This research could model other, additional, variables in future studies regarding
the adoption of maize agriculture in the United States to better understand the
biogeographical conditions under which the switch occurs from a hunter-gatherer diet to
a maize dependent diet. This research could also prove valuable for its ability to predict
other possible archaeological sites containing maize in addition to task-oriented sites

focused on processing geophytes.

Furthermore, the research could be expanded upon in the future when more
archaeological sites containing maize in the United States are found. We could also
expand the list of geophytes as the technology for identifying geophyte traces is utilized

on sites and their artifacts more consistently in the future.
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Appendix A

#READ FINAL
D AT AHBHIHHIHHH BB R

#Set working directory to the directory with your data
B R R
###H#Spatial Regression and testing for spatial autocorrelation

library(geoR)
library(viridis)
library(tidyverse)
library(gridExtra)
library(NLMR)
library(DHARMa)
library(spaMM)
library(ape)
library(pgirmess)
library(glpkAPI)
library(maps)

library(ggplot2)
library(effects)

##Load US State map

MainStates <- map_data("state™)

###Read in your data

keep3<-read.csv(file="Thesis_Data_V5.csv", header=T)

###Plot in space the presence of maize.
ggplot(keep3, aes(Long, Lat, colour = Maize_Sites)) +
geom_point(size = 3)+
scale_color_gradient2(low = "yellow", high = "darkgreen"”, na.value = NA) +
theme_bw() +

theme(axis.text.x = element_text(size=28, colour = "black"),
axis.title.x=element_text(size=24),
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axis.title.y=element_text(size=24), axis.text.y = element_text(
size=28))+
geom_polygon( data=MainStates, aes(x=long, y=lat, group=group),

color="gray70", fill="NA")

###Histogram of Maize Sites
hist((keep3$Maize_Sites), breaks=15)

#Step #1: Run GLM regression for count data on maize Poisson distribution

##mrean centered rainfall and geophyte variables

mylogit <- gim(Maize_Sites~ZRainCon+MAT+ZGeos+ZRainCon*ZGeos, data = keep3,
family = "poisson™)

summary(mylogit)

plot(allEffects(mylogit), multiline=TRUE)

###Check spatial autocrrelation of residuals at different spatial scales
nbc <- 20
cor_r <- pgirmess::correlog(coords=keep3[,c("Long", "Lat")],
z=mylogit$residuals,
method="Moran", nbclass=nbc)
cor_r
correlograms <- as.data.frame(cor _r)

correlograms$variable <- "mylogit$residuals"

# Plot correlogram of residual correlation at various distances
ggplot(subset(correlograms, variable=="mylogit$residuals"), aes(dist.class, coef)) +

geom_hline(yintercept = 0, col="grey") +
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geom_line(col="steelblue™) +

geom_point(col="steelblue™) +

xlab("distance") +

ylab("Moran's coefficient™)+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

panel.background = element_blank(), axis.line = element_line(colour = "black™))

##Conduct moran's | on residuals (not pooled by distance)
#Create distance matrix

GeophyteSpace<- as.matrix(dist(cbind(keep3$Long, keep3$Lat)))
#3lInverse distance matrix

GeophyteSpace.inv <- 1/GeophyteSpace

#3Set diagonals to 0

diag(GeophyteSpace.inv) <- 0

##Check matrix

GeophyteSpace.inv[1:5, 1:5]

###Claculate Moran's | for the residuals of mylogit
GeophyteResid<-resid(mylogit)
Moran.l(GeophyteResid, GeophyteSpace.inv)

###Plot Residuals of mylogit in space

keep33$mylogit_residuals <- residuals(mylogit)

ggplot(keep3, aes(Long, Lat, colour = mylogit_residuals)) +
theme_bw() +

theme(axis.text.x = element_text(size=28, colour = "black"),
axis.title.x=element_text(size=24),
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axis.title.y=element_text(size=24), axis.text.y = element_text(
size=28))+
scale_color_gradient2() +
geom_point(size = 3)+
geom_polygon( data=MainStates, aes(x=long, y=lat, group=group),

color="gray70", fill="NA")

# There is significant spatial autocorrelation at p<0.05, thus we run a spatial regression
model

###Poisson family model of environmental factors on number of maize sites

m_spamm?2 <- fitme(Maize_Sites~ZRainCon+MAT+ZGeos+ZRainCon*ZGeos +
Matern(1 |Lat + Long), data = keep3, poisson(link = "log")) # this may take a bit of time

# model summary

summary(m_spammz2)

##Plot the marginal effects of the spatial model
plot(allEffects(m_spammz2), multiline=TRUE)

###Test the residuals of the spatial model for spatial autocorrelation
GeophyteResid2<-resid(m_spammz2)
Moran.l(GeophyteResid2, GeophyteSpace.inv)

###Plot correlation as a function of distance
dd <- dist(keep3[,c("Lat","Long")])
mm <- MaternCorr(dd, nu = 2.21, rho = 1.14)

plot(as.numeric(dd), as.numeric(mm), xlab = "Distance between pairs of location", ylab =
"Estimated correlation™)

###Plot confidence intervals for coeffs in spatial model



coefs <- as.data.frame(summary(m_spammz2)$beta_table)
row <- row.names(coefs) %in% c('ZRainCon:ZGeos')

lower <- coefs[row,'Estimate’] - 1.96*coefs[row, 'Cond. SE']
upper <- coefs[row,'Estimate’] + 1.96*coefs[row, 'Cond. SE']

c(lower, upper)

coefs <- as.data.frame(summary(m_spammz2)$beta_table)
row <- row.names(coefs) %in% c('ZRainCon’)

lower <- coefs[row,'Estimate’] - 1.96*coefs[row, 'Cond. SE']
upper <- coefs[row,'Estimate’] + 1.96*coefs[row, 'Cond. SE']

c(lower, upper)

coefs <- as.data.frame(summary(m_spammz2)$beta_table)
row <- row.names(coefs) %in% c('ZGeos")

lower <- coefs[row, Estimate'] - 1.96*coefs[row, 'Cond. SE']
upper <- coefs[row,'Estimate’] + 1.96*coefs[row, 'Cond. SE']

c(lower, upper)

coefs <- as.data.frame(summary(m_spammz2)$beta_table)
row <- row.names(coefs) %in% c(MAT")

lower <- coefs[row,'Estimate’] - 1.96*coefs[row, 'Cond. SE']
upper <- coefs[row,'Estimate’] + 1.96*coefs[row, 'Cond. SE']

c(lower, upper)

###map predicted values from the spatial model

#save fitted values

56



57

m_spamm2_fitted <- fitted(m_spamm2)

#plot the fitted values
ggplot(keep3, aes(Long, Lat, colour = m_spamm?2_fitted)) +
theme_bw() +

theme(axis.text.x = element_text(size=28, colour = "black™),
axis.title.x=element_text(size=24),

axis.title.y=element_text(size=24), axis.text.y = element_text(
size=28))+
scale_color_gradient2(low = "yellow", high = "darkgreen", na.value = NA) +
geom_point(size = 3)+
geom_polygon( data=MainStates, aes(x=long, y=lat, group=group),

color="gray70", fill="NA")
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Appendix B

This appendix lists the sources from which archaeological sites containing maize
were collected. Most sources were collected from Google Scholar using the steps listed in
the “Dependent Variables” section in the Workflow Table. However, other sources
utilized were the Ancient Maize Map, CARD Database, and Utah State University’s
online academic library (peer-reviewed journal articles). Sources, and their information,
were collected if the article mentions the terms (maize) pollen, corn cob, corn cupule,

corn, maize, or osteological remains that show maize was part of the diet.

Ahler, Stanley A., David K. Davies, Carl R. Falk, and David M. Madsen

1974 Holocene Stratigraphy and Archeology in the Middle Missouri River
Trench, South Dakota. Science, New Series 184: 905-908.

Bass, William M. and Walter H. Birkby

1962 The First Human Skeletal Material from the Huff Site, 32MO11, and a
Summary of Putative Mandan Skeletal Material. Plains Anthropologist 7: 164-
177.

Bird, R.M., and C.A. Dobbs

1986 Archaeological Maize from the Vosburg Site (21Fa2), Fairbault
County, Minnesota. Missouri Archaeologist 47(Dec): 85-105.

Blake, M., B. Benz, D. Moreiras, L. Masur, N. Jakobsen, and R. Wallace

2017 Ancient Maize Map, Version 2.1: An Online Database and Mapping
Program for Studying the Archaeology of Maize in the Americas.
http://en.ancientmaize.com/. Laboratory of Archaeology, University of B.C.,
Vancouver.

Bozarth, Steven

1998 Maize (Zea mays) Cob Phytoliths From A Central Kansas Great Bend
Aspect Archaeological Site. Plains Anthropologist, 43:166, 279-286.

Brain, Jeffrey P.


http://en.ancientmaize.com/

1989 Winterville: Late Prehistoric Culture Contact in the Mississippi Valley.
Archaeological Report No. 25. Mississippi Department of Archives and History,
Jackson.

Braley, Chad O., L. D. O'Steen, and I. R. Quitmyer

1986 Archaeological Investigations at 9Mcl41, Harris Neck National
Wildlife Refuge, Mclntosh County, Georgia. Southeastern Archeological
Services, Inc., Athens, Georgia.

Brooks, Mark J., Veletta Canouts, Keith M. Derting, Helen W. Haskell, William H.
Marquart, and JoLee A. Pearson

1984 Modeling Subsistence Change in the Late Prehistoric Period in the
Interior Lower Coastal Plain of South Carolina. Anthropological Studies 7.

Brown, lan W.

2008 Culture Contact Along the 1-69 Corridor: Protohistoric and Historic
Use of the Northern Yazoo Basin, Mississippi. In Times River: Archaeological
Syntheses from the Lower Mississippi Valley, edited by Janet Rafferty and Evan
Peacock, pp. 357-394. University of Alabama Press, Tuscaloosa.

Buikstra, Jane E. and George R. Milner

1991 Isotopic and Archaeological Interpretations of Diet in the Central
Mississippi Valley. Journal of Archaeological Science 18: 319-329.

Bush, Leslie L.

2004 Boundary Conditions: Macrobotanical Remains and the Oliver Phase
of Central Indiana, A.D. 120-1450. University of Alabama Press, Tuscaloosa.

Byrd, Kathleen M., and Robert W. Neuman

1978 Archaeological Data Relative to Prehistoric Subsistence in the Lower
Mississippi Alluvial Valley. Geoscience and Man 19: 9-21.

Cobb, Charles R. and Patrick H. Garrow

1996 Woodstock Culture and the Question of Mississippian Emergence.
American Antiquity 61: 21-37.

Colburn, Mona L.

1987 Faunal Exploitation at the Ink Bayou Site. In Results of Final Testing
for Significance at the Ink Bayou Site (3PU252), Pulaski County, Arkansas, by
D. B. Waddell, J. H. House, F. B. King, M. L. Colburn, and M. K. Marks.
Submitted to the Arkansas Highway and Transportation Department.
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Connaway, John M.

1984 The Wilsford Site, Coahoma County, Mississippi. Archaeological
Report No. 14. Mississippi Department of Archives and History, Jackson.

1981 Archaeological Investigations in Mississippi: 1969-1977.
Archaeological Report No. 6. Mississippi Department of Archives and History,
Jackson.

Cutler, Hugh and George A. Agogino
1960 Analysis of Maize from the Four Bear Site and Two Other Arikara

Locations in South Dakota. Southwestern Journal of Anthropology 16: 312-316.

Drass, Richard R.

2008 Corn, Beans and Bison: Cultivated Plants and Changing Economies of
the Late Prehistoric Villagers on the Plains of Oklahoma and Northwest Texas.
Plains Anthropologist 53(205): 7-31.

Drass, Richard R. and Timothy G. Baugh

1997 The Wheeler Phase and Cultural Continuity in the Southern Plains.
Plains Anthropologist 42(160): 183-204.

Egloff, Keith and Deborah Woodward

2006 First People: The Early Indians of Virginia. University of Virginia
Press, Charlottesville.

Emerson, Thomas E., Dale L. McElrath, and Andrew C. Fortier

2002 Late Woodland Societies: Tradition and Transformation across the
Midcontinent. University of Nebraska Press, Lincoln.
Falk, Carl R.
1977 Analyses of Unmodified Vertebrate Fauna from Sites in the Middle

Missouri Subarea: A Review. Plains Anthropologist 22(78): 151-161.
Falk, C. R., D. Morey, and C. A. Angus

1980 Large Mammal and Other Vertebrate Remains from the White Buffalo
Robe Site (32MET7), Mercer County, North Dakota. In The Archeology of the
White Buffalo Robe Site, edited by Chung Ho Lee. University of North Dakota,
Grand Forks.

Fearn, Miriam L. and Kam-Biu Liu

1995 Maize Pollen of 3500 B.P. From Southern Alabama. American
Antiquity 60: 109-117.
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Fritz, Gayle J.

1990 Multiple Pathways to Farming in Precontact Eastern North America.
Journal of World Prehistory 4: 387-435.

Gadus, E. F., J. K. McWilliams, and R. C. Fields

2002 Data Recovery Excavations at the McGuire’s Garden Site (41FT425),
Jewett Mine, Freestone County, Texas. Report of Investigations No. 134. Prewitt
and Associates, Inc., Austin.

Gallagher, James P., Robert F. Boszhardt, Robert F. Sasso, and Katherine Stevenson

1985 Oneota Ridged Field Agriculture in Southwestern Wisconsin. American
Antiquity 50: 605-612.

Gibbon, Guy
1971 The Bornick Site: A Grand River Phase Oneota Site in Marquette County.
The Wisconsin Archeologist 52:85-137.

Gibbon, Guy E. and Christy A. H. Caine

1980 The Middle to Late Woodland Transition in Eastern Minnesota.
Midcontinental Journal of Archaeology 5: 57-72.

Green, William, Ronald C. Schirmer, and William T. Billeck

2020 Plant Remains and Associated Insects from the Millipede Site
(13ML361), a Burned Earthlodge in Southwest lowa. Plains Anthropologist 65:
43-76.

Hart, John P.

1999 Maize Agriculture Evolution in the Eastern Woodlands of North
America: A Darwinian Perspective. Journal of Archaeological Method and
Theory 6: 137-180.

Hart, John P., David L. Asch, C. Margaret Scarry, and Gary W. Crawford

2002 The Age of the Common Bean (Phaseolus vulgaris L.) in the Northern
Eastern Woodlands of North America. Antiquity 76: 377-383.

Hart, John P., Lisa M. Anderson, and Robert S. Feranec

2011 Additional Evidence for Cal. Seventh Century A.D. Maize
Consumption at the Kipp Island Site, New York. In Current Research in New
York Archaeology: A.D. 700-1300, edited by Christina B. Reith and John P.
Hart, pp. 27-40. The State Education Department, New York.

Helm, Thomas B.
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1880 History of Hamilton County. Kingman Brothers, Chicago.
Hall, Beth M.
2008 Differentiation of Charred Corn Samples via Processing Methods: An

Ethno-Archacological and Experimental Approach. Bachelor’s thesis,
Department of Archaeology and Anthropology, University of Wisconsin-La
Crosse, La Crosse.

Hoffman, Justin D., Hugh H. Genoways, and Rachel R. Jones

2011 Historical Biogeography of Nebraska Pronghorns (Antilocapra
Americana). Great Plains Research 21: 153-173.

Hutchinson, Dale L., Clark S. Larsen, Margaret J. Schoeninger and Lynette Norr

1998 Regional Variation in the Pattern of Maize Adoption and Use in Florida
and Georgia. American Antiquity 63; 397-416.

Indiana Department of Natural Resources Division of Historic Preservation and
Archaeology

2016a Facing the Final Millennium: Studies in the Late Prehistory of Indiana,
A.D. 700 to 1700, edited by Brian G. Redmond and James R. Jones IlI. Indiana
Department of Natural Resources, Indianapolis. Electronic document,
http://www.state.in.us/dnr/historic/files/hp-FinaMlillenium_9-08.pdf, accessed
March 22, 2020.

2016b Indiana Archaeology, edited by Amy L. Johnson, Vol. 11(1). Indiana
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2020a Glenn A. Black Laboratory of Archaeology: Angel Mounds. Electronic
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2020.
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Athyrium filix-femina (L.) Roth.
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Brodiaea coronaria (Salisb.) Engl.
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Calochortus amabilis Purdy
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Calochortus catalinae S.Watson
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Calochortus luteus Douglas ex Lindl.
Calochortus macrocarpus Dougl.
Calochortus nuttallii Torr. & A.Gray
Calochortus palmeri S.Watson
Calochortus tolmiei Hook. & Arn.
Calochortus venustus Douglas ex Benth.
Camassia quamash (Pursh) Greene
Camassia scilloides (Raf.) Cory
Cardamine concatenata (Michx.) O.Schwarz
Cardamine diphylla (Michx.) Alph.Wood
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Chamaesyce serpillifolia subsp. serpillifolia (Persoon) Small
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Cirsium edule Nutt.
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Cymopterus montanus (Nutt.) Torr. & Gray
Cymopterus multinervatus (Coult. & Rose) Tidestr.
Pseudocymopterus montanus (A.Gray) Coult. & Rose
Cynoglossum grande Dougl. ex Lehm.

Cyperus esculentus L.

Cyperus fendlerianus Boeckeler

Cyperus odoratus L.

Cyperus rotundus L.

Cyperus squarrosus L.

Dalea candida var. candida

Dalea candida var. oligophylla (Torr.) Shinners
Daucus carota L.

Daucus pusillus Michx.

Dichelostemma capitatum subsp. capitatum

Dichelostemma multiflorum A.Heller

Dichelostemma volubile (Kellogg) A.Heller Dioscorea pentaphylla L.

Dodecatheon hendersonii A.Gray

Dryopteris arguta (Kaulf.) Watt

Dryopteris campyloptera (Kunze) Clarkson
Dryopteris expansa (C.Presl) Fraser-Jenk. & Jermy
Dryopteris filix-mas (L.) Schott.

Equisetum arvense L.

Equisetum hyemale L.

Equisetum laevigatum A.Braun

Equisetum pratense Ehrh.

Equisetum telmateia Ehrh.
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Eriogonum alatum Torr.

Eriogonum flavum Nutt.

Eriogonum longifolium Nutt.

Eriophorum angustifolium Honck.
Erythronium grandiflorum Pursh
Erythronium grandiflorum subsp. grandiflorum
Erythronium oregonum Applegate
Erythronium revolutum Sm.

Frasera speciosa Douglas ex Griseb.
Fritillaria affinis var. affinis

Fritillaria camtschatcensis (L.) Ker Gawl.
Fritillaria pudica (Pursh) Spreng.
Fritillaria recurva Benth.

Gaura mollis E.James

Glycyrrhiza lepidota Pursh

Hedysarum alpinum L.

Hedysarum boreale Nutt.

Hedysarum boreale subsp. mackenzii (Richardson) S.L.Welsh

Helianthus annuus L.
Helianthus cusickii A.Gray
Helianthus maximiliani Schrad.
Helianthus tuberosus L.
Hesperocallis undulata A.Gray
Hydrophyllum tenuipes A.Heller
Ipomoea batatas (L.) Lam.
Ipomoea cairica (L.) Sweet
Ipomoea leptophylla Torr.

Ipomoea pandurata (L.) G.F.W.Mey.
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Juncus ensifolius Wikstr.

Lathyrus ochroleucus Hook.

Leucocrinum montanum Nutt. ex A.Gray

Lewisia columbiana (Howell) B.L.Rob.

Lewisia rediviva Pursh

Liatris punctata Hook.

Liatris punctata var. punctata

Ligusticum californicum J.M.Coult. & Rose

Lilium canadense L.

Lilium occidentale Purdy

Lilium pardalinum Kellogg

Lilium parvum Kellogg

Lilium philadelphicum L.

Lithospermum incisum Lehm.

Lomatium bicolor var. leptocarpum (Torr. & A.Gray) Schlessman
Lomatium californicum (Nutt. ex Torr. & A.Gray) Mathias & Constance
Lomatium canbyi J.M.Coult. & Rose

Lomatium cous J.M.Coult. & Rose

Lomatium dissectum (Nutt. ex Torr. & A.Gray) Mathias & Constance
Lomatium farinosum (Geyer ex Hook.) J.M.Coult. & Rose
Lomatium geyeri J.M.Coult. & Rose

Lomatium grayi J.M.Coult. & Rose

Lomatium nevadense J.M.Coult. & Rose

Lomatium orientale J.M.Coult. & Rose

Lomatium piperi J.M.Coult. & Rose

Lomatium simplex var. leptophyllum (Hook.) Mathias

Lomatium simplex var. simplex

Lomatium triternatum J.M.Coult. & Rose
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Lomatium watsonii J.M.Coult. & Rose

Lupinus nootkatensis Donn ex Sims

Lupinus nootkatensis var. nootkatensis

Lupinus nootkatensis var. fruticosus Sims

Lupinus polyphyllus Lindl.

Lycopus uniflorus Michx.

Maianthemum racemosum subsp. racemosum
Melica bulbosa Porter & J.M.Coult.

Menyanthes trifoliata L.

Monolepis nuttalliana (Roemer & Schult.) Greene
Musineon divaricatum var. divaricatum

Musineon divaricatum var. hookeri Torr. & A.Gray
Myriophyllum spicatum L.

Nuphar lutea subsp. polysepala (Engelm.) E.O.Beal
Nuphar lutea subsp. variegata (Engelm. ex Durand) E.O.Beal
Oenothera biennis L.

Oenothera triloba Nultt.

Orobanche cooperi (Gray) A.A.Heller

Osmorhiza berteroi DC.

Oxalis violacea L.

Oxypolis rigidior (L.) Raf.

Oxytropis maydelliana Trautv.

Oxytropis nigrescens Fisch. ex DC.

Parthenocissus quinquefolia (L.) Planch.
Pedicularis kanei Dur.

Pedicularis kanei subsp. kanei Durland
Pediomelum esculentum (Pursh) Rydb.

Pediomelum hypogaeum var. hypogaeum
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Perideridia bolanderi A.Nelson & J.F.Macbr.
Perideridia gairdneri (Hook. & Arn.) Mathias
Perideridia gairdneri subsp. gairdneri

Perideridia kelloggii (A.Gray) Mathias

Perideridia pringlei (J.M.Coult. & Rose) A.Nelson & J.F.Macbr.

Pholisma sonorae (Torr. ex A.Gray) Yatsk.
Phyllospadix scouleri Hook.

Phyllospadix serrulatus Rupr. ex Asch.
Phyllospadix torreyi S.Watson

Piperia elegans (Lindl.) Rydb.

Piperia unalascensis (Spreng.) Rydb.
Polypodium virginianum L.

Polystichum munitum (Kaulf.) C.Presl
Pteridium aquilinum (L.) Kuhn

Pteridium aquilinum var. pubescens Underw.
Ranunculus flammula var. filiformis (Michx.) Hook.
Ranunculus inamoenus Greene
Ranunculus pallasii Schlecht.

Rumex crispus L.

Sagittaria cuneata E.Sheld.

Sagittaria latifolia Willd.

Scirpus nevadensis S.Watson

Silene acaulis var. exscapa (All.) DC.
Smilax glauca Walter

Smilax herbacea L.

Smilax pseudochina L.

Smilax rotundifolia L.

Solanum fendleri A.Gray ex Torr.
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Solanum jamesii Torr.

Solanum tuberosum L.

Solidago canadensis L.
Sphaeralcea coccinea var. coccinea
Strophostyles helvula (L.) Elliott
Tacca leontopetaloides (L.) Kuntze
Trifolium wormskioldii Lehm.
Triteleia grandiflora Lindl.
Triteleia laxa Benth.

Triteleia peduncularis Lindl.
Typha domingensis Pers.

Typha latifolia L.

Valeriana edulis Torr. & Gray

Wyethia amplexicaulis Nultt.

Zigadenus paniculatus (Nutt.) S.Watson

Zigadenus venenosus S.Watson

Zostera marina L.
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Appendix E

The following references were referenced when discussing how coordinates
were found and collected. The website, Lat-Long.com, was utilized to provide
coordinates to archaeological sites containing maize in order to keep the location
secret (to protect the site from vandalism) when the site was not known by the public
(county, township, city). In cases where the archaeological site is promoted and widely
known, the more precise coordinates are utilized (for example if the site has a
museum) when available on the website. If the site was located within a state forest,
national forest, state park, national park, national monument, national wildlife refuge,
recreation area (lake, pond, or reservoir), or a canyon then those coordinates were
recorded. Furthermore, if the site was located closer to a city, or town, than the civil

seat of the county then that city’s coordinates were recorded.

2020 Lat-Long.com, Latitude Longitude Search - Maps of More Than 2 Million
GPS Coordinates (lat-long.com), accessed April 4, 2020.

http://www.lat-long.com/Latitude-Longitude-161526-Alabama-
Autauga County.html

http://www.lat-long.com/Latitude-Longitude-161527-Alabama-
Baldwin County.html

http://www.lat-long.com/Latitude-Longitude-161558-Alabama-Hale County.html

http://www.lat-long.com/Latitude-Longitude-153402-Alabama-
Shelby Lakes.html

http://www.lat-long.com/Latitude-Longitude-161585-Alabama-
Sumter County.html

http://www.lat-long.com/Latitude-Longitude-161588-Alabama-
Tuscaloosa County.html

http://www.lat-long.com/Latitude-Longitude-27632-Arizona-Cienega Creek.html

http://www.lat-long.com/Latitude-Longitude-3068-Arizona-Cochise.html



https://www.lat-long.com/
https://www.lat-long.com/
http://www.lat-long.com/Latitude-Longitude-161526-Alabama-Autauga_County.html
http://www.lat-long.com/Latitude-Longitude-161526-Alabama-Autauga_County.html
http://www.lat-long.com/Latitude-Longitude-161527-Alabama-Baldwin_County.html
http://www.lat-long.com/Latitude-Longitude-161527-Alabama-Baldwin_County.html
http://www.lat-long.com/Latitude-Longitude-161558-Alabama-Hale_County.html
http://www.lat-long.com/Latitude-Longitude-153402-Alabama-Shelby_Lakes.html
http://www.lat-long.com/Latitude-Longitude-153402-Alabama-Shelby_Lakes.html
http://www.lat-long.com/Latitude-Longitude-161585-Alabama-Sumter_County.html
http://www.lat-long.com/Latitude-Longitude-161585-Alabama-Sumter_County.html
http://www.lat-long.com/Latitude-Longitude-161588-Alabama-Tuscaloosa_County.html
http://www.lat-long.com/Latitude-Longitude-161588-Alabama-Tuscaloosa_County.html
http://www.lat-long.com/Latitude-Longitude-27632-Arizona-Cienega_Creek.html
http://www.lat-long.com/Latitude-Longitude-3068-Arizona-Cochise.html
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http://www.lat-long.com/dynamic-map-25298-Arizona-Graham.html

http://www.lat-long.com/Latitude-Longitude-2418954-Arizona-
Gu Achi District.html

http://www.lat-long.com/Latitude-Longitude-6627-Arizona-Kayenta.html

http://www.lat-long.com/Latitude-Longitude-7539-Arizona-Lukachukai.html

http://www.lat-long.com/Latitude-Longitude-37026-Arizona-
Maricopa County.html

http://www.lat-long.com/Latitude-Longitude-7725-Arizona-Marsh Pass.html

http://www.lat-long.com/Latitude-Longitude-9433-Arizona-Pima.html

http://www.lat-long.com/Latitude-Longitude-25446-Arizona-Pima County.html

http://www.lat-long.com/Latitude-Longitude-14958-Arizona-
Pueblo Grande Museum.html

http://www.lat-long.com/Latitude-Longitude-9922-Arizona-
Rainbow Plateau.html

http://www.lat-long.com/Latitude-Longitude-24621-Arizona-Snaketown.html

http://www.lat-long.com/Latitude-Longitude-12842-Arizona-Tumamoc Hill.html

http://www.lat-long.com/Latitude-Longitude-13212-Arizona-Ventana.html

http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-
Lonoke County.html

http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-
Mississippi County.html

http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-
Pulaski County.html

http://www.lat-long.com/Latitude-Longitude-198133-Colorado-
Douglas County.html

http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-
City of Rifle.html

http://www.lat-long.com/Latitude-Longitude-178793-Colorado-
Crow Canyon.html

http://www.lat-long.com/Latitude-Longitude-196483-Colorado-
McPhee Reservoir.html



http://www.lat-long.com/dynamic-map-25298-Arizona-Graham.html
http://www.lat-long.com/Latitude-Longitude-2418954-Arizona-Gu_Achi_District.html
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http://www.lat-long.com/Latitude-Longitude-6627-Arizona-Kayenta.html
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http://www.lat-long.com/Latitude-Longitude-37026-Arizona-Maricopa_County.html
http://www.lat-long.com/Latitude-Longitude-37026-Arizona-Maricopa_County.html
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http://www.lat-long.com/Latitude-Longitude-9433-Arizona-Pima.html
http://www.lat-long.com/Latitude-Longitude-25446-Arizona-Pima_County.html
http://www.lat-long.com/Latitude-Longitude-14958-Arizona-Pueblo_Grande_Museum.html
http://www.lat-long.com/Latitude-Longitude-14958-Arizona-Pueblo_Grande_Museum.html
http://www.lat-long.com/Latitude-Longitude-9922-Arizona-Rainbow_Plateau.html
http://www.lat-long.com/Latitude-Longitude-9922-Arizona-Rainbow_Plateau.html
http://www.lat-long.com/Latitude-Longitude-24621-Arizona-Snaketown.html
http://www.lat-long.com/Latitude-Longitude-12842-Arizona-Tumamoc_Hill.html
http://www.lat-long.com/Latitude-Longitude-13212-Arizona-Ventana.html
http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-Lonoke_County.html
http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-Lonoke_County.html
http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-Mississippi_County.html
http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-Mississippi_County.html
http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-Pulaski_County.html
http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-Pulaski_County.html
http://www.lat-long.com/Latitude-Longitude-198133-Colorado-Douglas_County.html
http://www.lat-long.com/Latitude-Longitude-198133-Colorado-Douglas_County.html
http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-City_of_Rifle.html
http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-City_of_Rifle.html
http://www.lat-long.com/Latitude-Longitude-178793-Colorado-Crow_Canyon.html
http://www.lat-long.com/Latitude-Longitude-178793-Colorado-Crow_Canyon.html
http://www.lat-long.com/Latitude-Longitude-196483-Colorado-McPhee_Reservoir.html
http://www.lat-long.com/Latitude-Longitude-196483-Colorado-McPhee_Reservoir.html
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http://www.lat-long.com/Latitude-Longitude-179042-Colorado-
Mesa Verde National Park.html

http://www.lat-long.com/Latitude-Longitude-183932-Colorado-Trimble.html

http://www.lat-long.com/Latitude-Longitude-2378290-Connecticut-
City of Shelton.html

http://www.lat-long.com/Latitude-Longitude-213509-Connecticut-
Town of South Windsor.html

http://www.lat-long.com/Latitude-Longitude-295743-Florida-
Glades County.html

http://www.lat-long.com/Latitude-Longitude-306916-Florida-Leon County.html

http://www.lat-long.com/Latitude-Longitude-351604-Georgia-
Bartow County.html

http://www.lat-long.com/Latitude-Longitude-348672-Georgia-
Greene County.html

http://www.lat-long.com/Latitude-Longitude-353662-Georgia-
The Flat Woods.html

http://www.lat-long.com/Latitude-Longitude-465253-lowa-Mills County.html

https://www.latlong.net/place/cahokia-il-usa-4791.html

http://www.lat-long.com/Latitude-Longitude-424209-Illinois-
Carroll County.html

http://www.lat-long.com/Latitude-Longitude-424232-1llinois-
Greene County.html

http://www.lat-long.com/Latitude-Longitude-424244-I1llinois-
Jo Daviess County.html

http://www.lat-long.com/Latitude-Longitude-422247-1llinois-
LaSalle County.html

http://www.lat-long.com/Latitude-Longitude-413862-1llinois-Morton.html

http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-
Moultrie County.html

http://www.lat-long.com/Latitude-Longitude-415490-I1llinois-Pearl.html

http://www.lat-long.com/Latitude-Longitude-428633-Illinois-
Township of Banner.html
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http://www.lat-long.com/Latitude-Longitude-353662-Georgia-The_Flat_Woods.html
http://www.lat-long.com/Latitude-Longitude-353662-Georgia-The_Flat_Woods.html
http://www.lat-long.com/Latitude-Longitude-465253-Iowa-Mills_County.html
https://www.latlong.net/place/cahokia-il-usa-4791.html
http://www.lat-long.com/Latitude-Longitude-424209-Illinois-Carroll_County.html
http://www.lat-long.com/Latitude-Longitude-424209-Illinois-Carroll_County.html
http://www.lat-long.com/Latitude-Longitude-424232-Illinois-Greene_County.html
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http://www.lat-long.com/Latitude-Longitude-413862-Illinois-Morton.html
http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-Moultrie_County.html
http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-Moultrie_County.html
http://www.lat-long.com/Latitude-Longitude-415490-Illinois-Pearl.html
http://www.lat-long.com/Latitude-Longitude-428633-Illinois-Township_of_Banner.html
http://www.lat-long.com/Latitude-Longitude-428633-Illinois-Township_of_Banner.html
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http://www.lat-long.com/Latitude-Longitude-415547-1llinois-
Pere Marguette State Park.html

http://www.lat-long.com/Latitude-Longitude-2400038-Illinois-
Village of Valley City.html

http://www.lat-long.com/Latitude-Longitude-451676-Indiana-
Greene County.html

http://www.lat-long.com/Latitude-Longitude-450356-Indiana-
Hamilton County.html

http://www.lat-long.com/Latitude-Longitude-450365-Indiana-
Johnson County.html

http://www.lat-long.com/Latitude-Longitude-451703-Indiana-
Lawrence County.html

http://www.lat-long.com/Latitude-Longitude-450375-Indiana-
Morgan County.html

http://www.lat-long.com/Latitude-Longitude-451681-Indiana-
Orange County.html

http://www.lat-long.com/Latitude-Longitude-450379-Indiana-Owen County.html

http://www.lat-long.com/Latitude-Longitude-450396-Indiana-
Vanderburgh County.html

http://www.lat-long.com/Latitude-Longitude-484983-Kansas-Clay County.html

http://www.lat-long.com/Latitude-Longitude-484986-Kansas-
Comanche County.html

http://www.lat-long.com/Latitude-Longitude-484999-Kansas-Geary County.html

http://www.lat-long.com/Latitude-Longitude-485004-Kansas-
Harper County.html

http://www.lat-long.com/Latitude-Longitude-485010-Kansas-
Johnson County.html

http://www.lat-long.com/Latitude-Longitude-485022-Kansas-
Marion County.html

http://www.lat-long.com/Latitude-Longitude-485024-Kansas-
Meade County.html

http://www.lat-long.com/Latitude-Longitude-485052-Kansas-
Sheridan County.html
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http://www.lat-long.com/Latitude-Longitude-488935-Kentucky-Carlisle.html

http://www.lat-long.com/Latitude-Longitude-558582-L ouisiana-
Iberville Parish.html

http://www.lat-long.com/Latitude-Longitude-606930-Massachusetts-
Dukes County.html

http://www.lat-long.com/Latitude-Longitude-606936-Massachusetts-
Nantucket County.html

http://www.lat-long.com/Latitude-Longitude-618249-Massachusetts-
Town of Brewster.html

http://www.lat-long.com/Latitude-Longitude-581293-Maine-
Lincoln County.html

http://www.lat-long.com/Latitude-Longitude-581301-Maine-York County.html

http://www.lat-long.com/Latitude-Longitude-1622951-Michigan-
Bay County.html

http://www.lat-long.com/Latitude-Longitude-1623015-Michigan-
Saginaw County.html

http://www.lat-long.com/Latitude-Longitude-659467-Minnesota-
Faribault County.html

http://www.lat-long.com/Latitude-Longitude-659470-Minnesota-
Goodhue County.html

http://www.lat-long.com/Latitude-Longitude-695738-Mississippi-
Coahoma County.html

http://www.lat-long.com/Latitude-Longitude-695788-Mississippi-
Tallahatchie County.html

http://www.lat-long.com/Latitude-Longitude-695792-Mississippi-
Tunica County.html

http://www.lat-long.com/Latitude-Longitude-695796-Mississippi-
Washington County.html

http://www.lat-long.com/Latitude-Longitude-695802-Mississippi-
Yazoo County.html

http://www.lat-long.com/Latitude-Longitude-758465-Missouri-
Buchanan County.html

http://www.lat-long.com/Latitude-Longitude-758478-Missouri-Clay County.html
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Appendix F

Attached in this appendix is the Excel sheet utilized to run the analyses in R.
More specifically, this Excel sheet was created using the methods from the “Final
Data” section of chapter 3. Grid cells containing so few numbers (double and single
digit data points) of geophytes, both all and consumable, skewed the results and were,

therefore, removed from the analysis.

PageNam(All_Geos ZGeos Consum_(ZConGeos GEO_Ratic Maize_Sit Maize_Sit MAIZEID

u40 168 -1.28211 15 -1.77213 0.089286 0 1
T33 186 -1.17102 31 -0.95829 0.166667 0 1
T39 319 -0.35018 31 -0.95829 0.097179 0 1
T40 232 -0.88712 19 -1.56867 0.081897 1 2
S30 141 -1.44874 22 -1.41607 0.156028 0 1
S31 182  -1.1957 28 -1.11089 0.153846 0 1
S32 158 -1.34383 29 -1.06002 0.183544 0 1
S33 372 -0.02308 53 0.160732 0.142473 0 1
S34 433 0.353391 51 0.059003 0.117783 0 1
S35 288 -0.5415 32 -0.90743 0.111111 0 1
S36 312 -0.39338 28 -1.11089 0.089744 1 2
S37 361 -0.09097 28 -1.11089 0.077562 2 3
S38 368 -0.04777 33 -0.85656 0.089674 4 5
S39 368 -0.04777 34 -0.8057 0.092391 0 1
S40 246 -0.80072 22 -1.41607 0.089431 0 1
R25 430 0.334876 50 0.008138 0.116279 0 1
R26 288 -0.5415 36 -0.70397 0.125 0 1
R27 208 -1.03524 28 -1.11089 0.134615 8 9

R28 458 0.507684 51 0.059003 0.111354

N
w
N
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Appendix G

Figure 14A depicts the relationship between two variables: archaeological sites
containing maize (Maize_Sites) and mean annual temperature (MAT). The figure,
14A, shows a drastic upward trajectory with a narrower confidence interval. This
shows a significant positive relationship between temperature and the number of
maize sites. Figure 14B examines the relationship between archaeological sites
containing maize (Maize_Sites) the z-score of the mean growing season rainfall
(ZMGSR) while holding consumable geophyte level (ZConGeos).
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Figure 14A shows the relationship between mean annual temperature (MAT) and the frequency of archaeological
sites containing maize (Maize_Sites). Figure 14B illustrates the relationship between archaeological maize sites
(Maize_Sites) and z-scores for the mean growing season rainfall (ZMGSR) while keeping the z-scores for
consumable geophytes (ZConGeos) level.
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Table 4 provides calculations for each of the coefficients listed. The intercept is the point where all
geophyte standard deviations converge. The coefficient ZMGSR is the z-score for mean growing
season precipitation. MAT is the mean annual temperature. ZConGeos represent the z-score for the
frequency of consumable geophytes. ZMGSR and ZConGeos are the combined variables defined
above.

Variable Coeff. Std. Error Z value Pr(>|z|)
Estimate

Intercept 0.81000 0.12683 6.386 <0.05

ZMGSR 0.21816 0.05598 3.897 <0.05

MAT 0.02760 0.01053 2.621 <0.05

ZConGeos 0.52162 0.05952 8.764 <0.05

ZMGSR:ZConGeos | 0.39523 0.05649 6.997 <0.05

Figure 14 and Table 4 depict the results of a general linear model (equation 1) that
regresses the number of maize sites on temperature and the interaction of geophyte
richness and rainfall concentration. Figure 14A plots the effect of temperature on the
number of archaeological sites containing maize. Furthermore, it illustrates a positive
relationship between temperature and the presence of archaeological sites containing
maize. In other words, as temperature increases so does the number of maize sites. The
figure beside it, Figure 14B, depicts the relationship between mean precipitation
concentration during the growing season and maize sites when geophyte levels are held
level. In Figure 14B, the gold line signifies grid cells containing the highest frequency of
geophytes (3 standard deviations above the mean) while the blue line signifies grid cells

containing the lowest frequency of geophytes (-2 standard deviations from the mean).

The graph, Figure 14B, depicts a strong positive relationship between the mean
growing season precipitation (ZMGSR) and the two highest standard deviations (gold
and red lines) for consumable geophytes (ZConGeo). This means that in an area where
there is a high abundance of geophytes and is rather rainy (higher concentration of

growing season precipitation), maize sites are more likely to be present. However, in an
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environment where geophyte frequency is low and the summer is drier (lower
concentration of growing season precipitation), people are less likely to adopt maize
(lowering the number of maize sites in that area). The next set of graphs depicts the same

data as above but considers the significance of data points based on their spatial

clustering.
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Figure 15A shows the relationship between mean annual temperature (MAT) and the frequency of archaeological
sites containing maize (Maize_Sites). Figure 15B illustrates the relationship between archaeological maize sites
(Maize_Sites) and z-scores for the mean growing season rainfall (ZMGSR) while keeping the z-scores for
consumable geophytes (ZConGeos) level.
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Table 5 provides calculations for each of the coefficients listed. The intercept is the point where all
geophyte standard deviations converge. The coefficient ZMGSR is the z-score for mean growing
season precipitation. MAT is the mean annual temperature. Z ConGeos represent the z-score for the
frequency of consumable geophytes. ZMGSR and ZConGeos are the combined variables defined
above.

Variable Coeff. Estimate Cond. SE t-value
Intercept -1.454235 1.23114 -1.18121
ZMGSR 0.422383 0.55535 0.76058
MAT 0.008297 0.08621 0.09624
ZConGeos 0.417019 0.25706 1.62227
ZMGSR:ZConGeos | 0.206149 0.26548 77652

Figure 15 and Table 5 depict the results of a mixed effects regression model that
incorporate latitude and longitude as a random predictor of differences in the number of
maize sites. Significant amounts of the variation in the number of maize sites among grid
cells can be explained when controlled for the variation in spatial distribution of maize
sites. Figure 15A and Figure 15B, depict the same data as the figures, Figure 14A and
Figure 14B, before but is calculated utilizing the spatial component (latitude and
longitude). Figure 15A shows the significance between temperature and archaeological
maize when factoring in the spatial clustering of data points. The line in Figure 15A is
level and possesses a much wider confidence range. It shows that there is now, possibly,
no relationship between the two meaning that their relationship is very nearly random.
Figure 15B, also, displays the same information as Figure 14B but factors in the
significance of spatial distribution of data points. We can see the Figure 15B exhibits the
same effects shown in Figure 14B but distributed a bit differently. Essentially, the figure
(Figure 15B) shows that in areas with higher abundances of geophytes with a higher

concentration of growing season rainfall, people will intensify on maize. However, in



102
areas with a low frequency of geophytes and a lower concentration of growing season
rainfall, people will intensify on geophytes (lowering the number of archaeological sites

containing maize present in that area).

Table 5 states the coefficients associated with the concentration of growing
season precipitation and the standard deviances of consumable geophyte species plot
(Figure 14B). The calculations lead me to reject the null hypothesis. However, | cannot
reject the alternative hypothesis. This means that there is a possibility of significant
clustering. A Moran’s I test on the residual deviances indicates a Moran’s I, or observed,
value of -0.02 against an expected value of -0.006 (p=0.04). The presence of a negative z-
score, resulting from this, indicates more clustering than can be realistically attributed to

chance alone.
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