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ABSTRACT 

Assessing the Relationship Between Geophytes and the Archaeological Presence of 

Maize in North America 

By 

Paige Dorsey, Master of Science 

Utah State University, 2021 

Major Professor: Dr. Jacob Freeman 

Department: Anthropology 

 This thesis attempts to understand the biogeography of maize cultivation in 

prehistoric North America. I ask: do regions of N. America where wild geophytes are 

more diverse, and (in theory) abundant, display less evidence of prehistoric agriculture 

than places where these potential resources were less abundant. To answer this question, 

first I create a stylized model of the effect of geophyte and maize production on the 

optimal allocation of labor to intensify the production of resources in various 

environments. The results from this allowed me to predict under which environmental 

conditions an intensification on maize would or would not occur. Following this, I 

collected data on geophytes as well as temperature and rainfall (variables that should 

affect the productivity of maize). Next, I used the data to statistically test the effects of 

geophyte species richness, temperature, and rainfall on the number of observed sites with 

evidence of maize. Results are as follows: the presence of archaeological evidence of 
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maize is potentially impacted by the productivity of geophytes in the area. The 

concentration of rainfall during the growing season has a consistent effect on the number 

of archaeological sites with maize, and an unaccounted for spatial process accounts for 

much variability in the number of archaeological sites with maize across the continent of 

N. America. These results help us better understand under which biogeographical 

conditions people may invest in the cultivation of maize.  

(113 pages) 
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PUBLIC ABSTRACT 

 

Assessing the Relationship Between Geophytes and the Archaeological Presence of 

Maize in North America 

Paige Dorsey 

 

  This thesis investigates the possible relationship between the 

archaeological presence of maize, in the United States, and historical environmental 

variables, rainfall and temperature, in addition to the number of underground plants that 

store energy and nutrients, in a given area.  The thought behind this is that where the 

abundance of these underground plant species is highest, the lower the number of 

archaeological sites containing maize because such resources were a more attractive 

alternative food than maize. Conversely, where geophytes are less abundant, 

archaeological instances of maize should be more abundant because maize is a better 

option in such environments for individuals who need to produce more food. My results 

indicate that the presence of archaeological maize is potentially impacted by the 

productivity of geophytes in the area along with climate variables that impact the 

productivity of maize. The concentration of precipitation during the growing season, in 

particular, has a consistently significant effect on the number of archaeological sites with 

maize. By better understanding the environmental conditions that make maize 

productivity more favorable, we can better understand the transition to agriculture.  
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Chapter 1: Introduction 

The goal of this chapter is to introduce the basic concepts upon which my thesis is 

built. In this chapter, I will discuss concepts and literature that provide the foundation of 

my thesis. Following this, I will pose the question that guided my research. Finally, I 

discuss the importance of my research.  

A large body of literature in Archaeology and Anthropology illustrates that 

geophytes played an important role in prehistoric people’s subsistence practices (Freeman 

2007, Herzog and colleagues 2018, Louderback and Pavlik 2017, McGuire and Stevens 

2016, Thoms 2009). Importantly, many authors propose that wild geophytes--species of 

tubers, bulbs, and corms with below ground, sugar rich storage organs (Brecht 2003)--

may have served as an important alternative to the cultivation of maize in North America 

(Black and colleagues 1997, Freeman 2007, Herzog and colleagues 2017, Thoms 2009). 

Yet, a formal statistical analysis of the biogeographic relationship between the abundance 

of geophytes and the presence of maize cultivation in North America has not been 

conducted to test this hypothesis. In this thesis, I model and statistically analyze the 

relationships between geophyte species richness, biophysical constraints on the 

cultivation of maize, and the presence of maize cultivation in prehistoric N. America. I 

ask: Do regions of N. America where wild geophytes are more diverse, and (in theory) 

abundant, display less evidence of prehistoric agriculture than places where such 

resources were less abundant? This is an important question to answer because 

understanding when people will adopt or reject maize agriculture contributes 

understanding the transition to agriculture.  
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Chapter 2: Background and Hypotheses 

 This chapter’s goal is to better understand the energetic gains of geophytes and 

maize in terms of energy gain per unit labor invested in production in various 

environments and use this knowledge to develop hypotheses for the biogeographic 

distribution of maize cultivation. First, I explore literature that informs my analysis by 

examining the importance of geophytes in ethnographically documented cultures. 

Subsequently, I model a comparison of production functions of the cultivation of maize 

and the harvest of geophytes. Following this, I discuss the possible importance of 

growing season rainfall and geophyte abundance and model their effects on the decision 

to adopt the cultivation of maize. Lastly, I state my expectations resulting from the 

model. 

The idea that wild geophytes served as an important alternative resource to maize 

agriculture in North America has been proposed by many authors (Bettinger 2015, Black 

and colleagues 1997, Dickau and colleagues 2007, Freeman 2007, Johnson and Hard 

2008, Madsen and Simms 1998, Simms 1999, Yu 2006). The basic idea is that when 

populations face a pressure to intensify their extraction of resources--whatever the 

complex set of causes--they will intensify on a resource set that optimizes an individual’s 

fitness in a given environment. In environments where geophytes are abundant, these 

resources may serve as an alternative to maize agriculture to intensify production. These 

resources may provide an attractive alternative because the rate of energy gain from 

many geophyte species is often quite high compared with maize among ethnographically 

documented societies (Couture and colleagues 1986, Kelly 2013, Rhode 2016, Simms 

1984). 
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 For example, Couture and colleagues (1986), Kelly (2013), and Simms (1984) all 

found that bitterroot could produce upwards of 1,374 kcals per hour when gathered at the 

right time. Importantly, return rates vary with the density of targeted species; more dense 

patches have much lower collection times, and, thus, much higher return rates (Couture 

and colleagues 1986). Rates for gathering biscuit root species vary between 134 kcals per 

hour (Kelly 2013) and 3,831 kcals per hour (Kelly 2013). Sego lilies have a return rate of 

about 207 kcals per hour (Kelly 2013, Rhode 2016, Smith and Martin 2001). Unlike sego 

lilies, camas bulbs can provide 5,479 kcals per hour before collection, processing, 

transport, and storage and 2,042 kcals after all steps have been taken (Rhode 2016). 

Cattails can provide between 128 kcals and 9,360 kcals depending on the season within 

which it is gathered as well as the portion of the plant is gathered (Kelly 2013). Bulrush 

roots can provide between 160 and 257 kcals per hour (Kelly 2013). Further, geophytes 

are often roasted in large earth ovens (Black and Thoms 2014, Gill 2016, Morgan 2015, 

Smith 2003, Thoms and colleagues 2018, Yu 2006); and group processing decreases the 

handling costs for multiple individuals, increasing the net return from such resources via 

the process of increasing returns to scale (Yu 2006).  

 The return rates of geophytes, thus, compare favorably, where they are highly 

productive, with those of maize agriculture. For instance, Barlow (2002:72-73), 

concludes that “In Latin America, maize agriculture using only simple hand tools 

produces a gross energetic gain of approximately 300-1,800 kcal/hr with average maize 

harvests of approximately 3-50 bushels per acre.” The return rates of maize may be 

higher using less labor-intensive strategies, such as planting and leaving maize (Barlow 

2006). However, planting and leaving maize trades off a higher return rate for a much 
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great risk of crop loss and a loss of seed corn (Freeman 2012, Huckell and colleagues 

2002). It is only practiced ethnographically where foragers and farmers have sustained 

interactions, with the strategy highly unstable from year-to-year for any given household 

(Freeman 2012).  
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Species Processing Strategy Return rate max 

Kcal/hr 

Return rate min 

Kcal/hr 

Mean return rate Reference 

Maize “Typical” 

Agriculture in 

Colorado 

1,800 700 1,250 Barlow 2002 

Balsamroot Fresh, Peeled 369 120.2 244.6 Mullin and 

colleagues 1998 

Bitter Root Peeled and boiled ~2,300 ~1,250 ~1,775 McGuire and 

Stevens 2017 

Bulrush Peeled, eaten raw, 

boiled, or roasted 

257 160 208.05 Kelly 2013 

Rhode 2016 

Camas Cooked then eaten 

or dried then stored 

5,479 kcals 2,042 kcals 3,760.5 Rhode 2016 

Canby’s Biscuit 

Root 

Peeled then 

prepared various 

ways 

1,219 143 681 Rhode 2016 

Cattails Peeled and eaten 

raw, boiled, 

roasted, or dried 

and ground into 

flour 

9,360 128 4,744 Kelly 2013 

Rhode 2016 

Epos/Yampah Raw or roasted 2,600 172 1,386 Rhode 2016 

Sego Lily Eaten fresh or pit 

roasted 

207 143 175 Rhode 2016 

Smith and 

Martin 2001 

Table 1 compares types of geophytes and maize by examining processing methods, maximum return rate, 

minimum return rate, mean return rate, and sources from which the information was collected.  
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Though the return rates above indicate that geophytes can provide equivalent or 

better return rates than maize for individuals, if a geophyte resource and maize are 

available at the same time, this does not give us the full picture. The return rate of a 

resource changes as a function of the amount of labor invested in that resource. Thus, to 

compare the net benefits of intensifying on maize vs. geophytes, we need to understand 

the net benefits of allocating time (labor) to these different carbohydrate sources in 

various environments. The intensification of production is a time allocation process that 

substitutes one set of activities for another. For example, a shift in time spent hunting 

toward time spent gathering and processing plants is a process of substitution, shifting 

time from hunting to more plant gathering activities to increase productivity per unit area. 

The question can be simplified to: When does an average individual choose to invest time 

(labor) in geophyte production under different return rate functions for these resources? I 

0
500

1,000
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2,000
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3,000
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Figure 1 visually compares kilocalorie mean return rates of the geophytes, listed above, in addition to 

maize.  
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use a microeconomic model that shares some similarities with a technological investment 

model (e.g., Bettinger et al 2006) to help answer this question and guide my analysis.  

First, I assume that the technologies used to cultivate maize and harvest and 

process geophytes are very similar (e.g., digging sticks, stone metates, and monos), 

though the production ceiling (gross production) for maize may be higher than for 

geophytes. Second, I assume that individuals attempt to meet a required level of food 

production in as little time as possible (i.e., minimized time spent in food production 

activities). Third, I assume that maize cultivation requires more initial investment in labor 

before the resource can provide a return. This means that, at minimum, gardens must be 

cleared, sown, and, potentially, weeded. The upfront costs of producing maize, the 

cultivation premium, of course will vary from environment to environment. I assume here 

that the farther a biophysical environment is, on average, from the optimal niche for 

conducting rainfed maize agriculture, the higher the cultivation premium. Fourth, 

geophytes require a negligible initial labor investment in order for them to grow (i.e., 

little to no field preparation, irrigation construction and so on), though while gathering 

individuals may engage in tending behaviors and low-cost burring activities that promote 

the growth of geophyte species (Anderson 2005). 

Given these assumptions, we can compare production functions of the cultivation 

of maize and the harvest of geophytes. Figure 2 graphically illustrates the interaction 

between a resource target and the gains from harvesting each respective resource type. In 

Figure 2, the resource target (m) simulates a pressure to intensify the production of 

resources for an average individual foraging in a fixed territory. In Figure 2A and 2B, at 

low resource targets, geophyte production is optimal in both low and high productivity 
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geophyte environments. This strategy would allow an average individual to achieve their 

resource target in the least amount of time, even though maize production has a much 

higher ceiling than geophyte production. In Figure 2C and 2D the resource target is high. 

In this case, geophyte production is still optimal in high geophyte productivity 

environments (2C), but maize cultivation is optimal where geophyte productivity is lower 

(2D), even if maize cultivation has a high upfront premium to transform a landscape prior 

to viable cultivation. 

2 
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 Holding the productivity of maize constant, the above model leads me to predict 

that the productivity of geophyte species will directly influence the likelihood that 

prehistoric populations adopted maize cultivation and, thus, the biogeography of maize 

production. In each area of North America, I would expect a higher geophyte 

productivity to correlate with a lower abundance of archaeological maize agriculture. 

Conversely, I expect a lower geophyte productivity to correlate with a higher abundance 

of evidence for maize agriculture, prehistorically.  

Similarly, if we hold m and geophyte productivity equal, then the steepness of the 

maize productivity curve should affect which option is optimal in any given environment. 

Two climate requirements may affect the optimal environment for growing maize at a 

biogeographic scale. The first factor that should be accounted for is the length of the 

growing season (temp). Bocinsky and Kohler (2014) estimated that the growing season 

should amount to 1800 F growing degree days from the month of May to September. The 

second requirement is “30 cm of precipitation for the previous October through the 

current September (the “water year” in most of the Southwest)” (Bocinsky and Kohler 

2014). This affects the amount of moisture available during the growing season that may 

be available for rainfed farming. However, the absolute amount of moisture may not be 

as relevant as the concentration of moisture during the growing season for the adoption of 

maize cultivation. If water pulses through an environment during the growing season, it is 

much more accessible for plants and for humans to modify landscape features to capture 

such pulses of water and cultivate maize.  

 Figure 3 illustrates, conceptually, the effect of growing season rainfall on the 

maize production function. R1 rainfall is concentrated during the growing season and this 
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leads to a steeper increase in productivity per unit labor than R2 and R3 where rainfall is 

less concentrated during the growing season. In Figure 3A, we observe that maize is the 

better intensification strategy for an average individual to reach m than geophytes in an 

R1 and R2 environment. However, in an R3 environment, geophytes provide the better 

intensification strategy. In Figure 3B, maize always provides the best intensification 

strategy. The insights from this set of relationships leads to the following predictions: 

Holding m equal, the interaction between the productivity of maize and the productivity 

of geophytes should determine the decision to intensify on maize cultivation. I predict 

that in high maize and high geophyte productivity environments, people will intensify on 

maize. In low maize productivity (lower concentration of growing season moisture) and 

high geophyte productivity environments, people will intensify on geophytes. Finally, in 

both low maize and geophyte productivity environments, people will intensify on maize. 

  

3 

 

Labor (time) 
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Chapter 3: Data and Methods 

 In this chapter I will describe the data and variables used to the predictions 

outlined in Chapter 2. This is accomplished by dividing this chapter into 6 sections. The 

first section focuses on the analysis in R and the variables utilized. The second section 

pertains to how maize data, the dependent variable, was collected. The third section 

depicts maps of the maize data and discusses the methods utilized in making them. In 

section 4, I discuss how lists of geophytes were created and gathered. Furthermore, I 

introduce the independent variables (geophyte richness, growing season precipitation, 

annual precipitation, and temperature) and how their data were collected. In the next 

section, section 5, I present the maps created from the data from section 4 in ArcGIS and 

how they were created. Finally, section 6 describes the final data set used for analysis. 

R Variables and Analysis Overview 

 To test my predictions, I needed to develop a dependent variable that tracks maize 

cultivation across the lower 48 US states and independent variables that estimate 

temperature, growing season precipitation (or the pulse of water through an environment 

during higher temperatures) and geophyte abundance. With these variables estimated 

(discussed below), I can test my predictions with the following general linear model 

zi=a+b1*temp+b2*rain+b3*geophyte+b4*(rain*geophyte)+ε (1) 

where zi is a count of sites containing evidence of maize in the prehistoric record of a 

given geographic area i. Temp is mean annual temperature, rain is either the 

concentration of precipitation during the growing season or total growing season 

precipitation, and geophyte is either geophyte species richness or consumable geophyte 
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species richness in a geographic area i. As discussed below, I assume that geophyte 

richness correlates positively with geophyte abundance. Finally, ε is the error or deviance 

in the count of maize sites not explained by the independent variables. Here, I use a 

poisson link function (see Appendix A) as I use count data to estimate the presence of 

maize cultivation (count of sites). Note the interaction between geophytes and rain. This 

interaction effect tests that maize cultivation is more frequent in high geophyte 

abundance and low growing season rainfall environments, but, as growing season 

precipitation increases, maize cultivation becomes less frequent, even in high geophyte 

abundance environments.  

The above equation assumes that ε is independent of spatial area. This is not 

always or is even rarely the case. Thus, we use a Moran’s I test of spatial autocorrelation 

in the ape package in R to test for spatial autocorrelation of residuals. Where we find 

significant spatial autocorrelation at p<0.05, we use the spam package in R to run a 

spatial regression, simply by adding latitude and longitude vectors for each spatial unit 

using a mixed effects model. Note, in all regression models I mean centered precipitation 

and geophyte variables using z-scores to avoid multicollinearity problems associated with 

variable interaction models. 

Dependent Variable 

I collected archaeological maize present in sites nationwide (based upon the terms 

pollen, cob, cupule, corn, maize, or osteological remains that show maize was part of the 

diet). These sites were collected from the Ancient Maize Map database, the CARD 

Database (Martindale and colleagues 2016), Utah State University’s online database, of 
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academic articles, as well as from sources available for free (which may bias the 

availability of information) from Google Scholar (searching state AND archaeology 

AND maize then searching archaeological sites that were named in those entries AND 

state). In total, 463 archaeological sites containing maize were gathered. Following this, I 

collected the civil coordinates of the county, found on Lat-Long.com, that the 

archaeological site is in (unless it has a designated museum or is located within a state or 

national forest or recreation area) so as to protect the site’s location. The methods utilized 

are presented in a workflow table below, Figure 4. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

Ancient Maize 

Map 

Maize sites were 

manually added to 

Maize Database  

CARD Database 

Site data were downloaded 

from site if it matched the 

words: Maize, Maize Cob, and 

Maize Kernel 

USU Online 

Library Search: 

Archaeology 

AND maize AND 

United States  

Step 1. Google Scholar Search: 

State AND archaeology AND maize 

State AND archaeological maize 

Name of archaeological site(s) named in an article AND state 

Step 2. Added to list if terms included in source are: corn/maize pollen, corn/maize 

cob, corn/maize cupule, corn, maize, or osteological remains exhibiting maize in their 

diet 

Step 3. Checked the source (body and citations) for the county of the site and for 

more sites mentioned that contain archaeological maize 

Step 4. If no county was listed in 

the source, then I searched on 

Google Scholar: 

Archaeological site name AND 

state AND the author’s name 

Step 5. If county for the 

archaeological site could not be 

found, then I searched landmarks 

mentioned in the article in Google 

Maps  

Step 6. Coordinates were added from Lat-Long.com. Coordinates are based upon: 

civil seat of the county (most cases), or townships/cities/towns, state or national 

parks, national monuments, or recreation areas (lakes, reservoirs, and ponds) (if closer 

to site than the civil seat of county), museums associated with the site, or the site if 

it’s well known (such as Cahokia)  

Figure 4 illustrates the steps taken to create the maize database utilized in my analysis. 



15 

 

Then, all of these data were recorded in an Excel sheet. Next, I imported the Excel 

sheet that contains the archaeological sites in the United States into ArcGIS along with 

the geophyte richness data and historic environmental variables. With these points 

projected (WGS_1984) together, I created maps to analyze possible relationships 

between the two. This allowed me to compare the presence of agriculture to geophyte 

species with the purpose of teasing out a possible correlation between the two.  

Mapping the Dependent Variable 

Figure 5 depicts the locations of archaeological sites with maize throughout the 

United States. The methods utilized in creating this map consists of importing the Maize 

Database excel sheet and downloading the continental U.S. state map from ArcGIS 

Online.  
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Figure 5 displays archaeological sites that contain instances of maize in the United States. 
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Figure 6 depicts the same data seen in the map of archaeological sites in the 

United States that contained maize. This map was created using the maps and ggplot 

package in R. This map better allows us to view clusters of archaeological maize within  

2.5 by 2.5 grid cells, which form the spatial units of my analysis.  

 

 

Independent Variables 

My model assumes that geophyte abundance matters, therefore, to operationalize 

my model, I use geophyte richness as a proxy for abundance. An ecological study 

determining the relationship between geophyte species richness and abundance, or 

productivity, when exposed to chronic nitrogen enrichment (Isbell and colleagues 2013), 

Figure 6 shows the clustering of archaeological maize sites in the United States among 2.5 x 2.5 grid 

cells.  
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has revealed a link. To estimate geophyte abundance using species richness, I compiled 

two lists of geophyte occurrences in the United States. The lists of geophytes consist of 

entries found in the online Native American Ethnology Database (Moerman 2003), the 

USDA’s manual for bulb identification (2011), and from Native American Food Plants: 

An Ethnobotanical Dictionary (Moerman 2010). The first list consists of geophyte genus’ 

(named general geophyte list). A genus was added to the list if it matches key words (i.e., 

bulb, geophyte, corm, rhizome (rootstocks), root, taproot, or tuber) and if it was listed as 

a certain type of food (i.e., dried food, food, staple, starvation, unspecified, vegetable, or 

winter use food) in Moerman (2010). The second list is the consumable geophyte list, 

which consists of species, subspecies, and varieties, found in Moerman’s book (2010) 

and was searched in the Native American Ethnology Database (Moerman 2003), that 

match the key words listed above (i.e., bulb, geophyte, corm, etc.) and is listed as a 

certain type of food that is listed above as well (i.e., dried food, food, staple, etc.). 

After compiling the lists, I downloaded modern location data for the geophytes, 

narrowed down to the United States, from the Global Biodiversity Information Facility 

(GBIF) of listed geophytes. The genus, species, subspecies, and varieties from the 

consumable geophytes list were only downloaded from GBIF if their scientific names 

(i.e., Hook, Pursh, Nutt., etc.) match two-thirds, or one half, of the entries listed on the 

Native American Ethnology Database (Moerman 2003); this includes geophytes that have 

multiple names, or synonyms, only the ones that were specifically named on the database 

had their data downloaded. The number of Excel rows, for the all geophyte list, totals 

around 1.29 million. The number of Excel rows, for the consumable geophyte list, is 

smaller, numbering around 328,000 rows. Following this, I clipped the data (only kept 
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bare minimum data for location and scientific name) in Excel to a document that is 

projected (WGS_1984) into ArcGIS on a basemap. Then, I merged the two different 

geophyte Excel documents into one and then projected it using the same projection. 

Historic environmental variables, for the United States, were also incorporated 

into this research. These variables are growing season precipitation, annual 

precipitation, and mean temperature. These data were incorporated because they could 

possibly impact a person’s decision to adopt maize or intensify on geophytes. I expect 

a higher number of geophytes to correlate with a lower number of archaeological sites 

containing maize during, both, high and low precipitation years and growing seasons 

and in cool and warm environments. 

Data for these variables were downloaded as ASCII files from the PRISM 

Database (Northwest Alliance for Computational Science and Engineering 2020). The 

data were then added to a base map in ArcGIS. Maps depicting these independent 

variables, compared to the dependent variable, are found below along with the 

methods utilized to create them. A 2.5 by 2.5 decimal degree grid was created over the 

United States to systematically divide the space and the variables located within them 

(growing season precipitation, total annual rainfall, temperature, geophyte richness of 

all/general geophytes, geophyte richness for consumable geophytes, and 

archaeological sites containing maize). 

Mapping Independent Variables 

The first map created was the Frequency of All Geophyte Species in a Grid Cell 

Map. Following the steps mentioned above, I then created a grid using the “Grid Feature 
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Index” tool based on the merged All Geophyte Data where species is the field and the cell 

size is 2.5 by 2.5 decimal degrees. Then I utilized the “Tabulate Intersect” tool where the 

input zone is the grid that was created based on page name and the input feature class is 

the merged All Geophyte Data based on species. The resulting table shows a species 

within a grid cell (Page name), the number of points of that species in that grid cell, and 

the percentage of the points that make up the total number of species in that grid cell. 

However, there are multiple species present in each grid cell. To count the number of 

times each grid cell (Page Name) is named (one grid cell is named per species present), I 

used the “Frequency” tool. This would show how many different species are present in 

the table by counting the instances that grid cell (Page name) comes up. From there, the 

resulting table was symbolized by going to “Properties” of that table and then clicked on 

“Symbology”. Next, I went to “Quantities”, “Graduated Colors”, the “Value” was 

changed to the frequency (the number of geophyte species in each grid cell) and then the 

classification was changed to “Natural Breaks” and into 9 categories. This same process 

was utilized to calculate and map the number of consumable geophytes in a grid cell.  

Figure 7 illustrates the number of all geophyte species (n = 1,293,168) compared 

to known archaeological sites in the United States that contains maize (n = 463). Also 

present in this map is a map of the continental United States, states are outlined in black, 

which was obtained from ArcGIS Online. This component was included in the map to 

show where the grid cells are located within the country. This set of maps is included in 

this analysis because they provide us with the opportunity to see the productivity of 

geophytes in the area which is one of the variables in the regression equation found on 

page eleven. The first map (Figure 6) shows the map with a legend for context. 
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Figure 7 depicts the frequency of all geophyte species within a grid cell. As we can see, most archaeological sites 

with maize occur in grid cells that contain a mid to high number of geophyte species.  
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The map above illustrates the relationships between archaeological instances of 

maize and the number of all geophyte species present in grid cells. Grid cells are colored 

to represent the number of all geophyte species present; within the context of this visual 

analysis, the grid cells are divided into lower (1-41, 42-93, 94-148), middle (149-200, 

201-265, 266-348), and high (349-443, 444-565, 566-803) categories. There are few grids 

in the lower frequency range that contain maize (n = 4). Most of the grids (n = 71) that 

contain archaeological sites with maize fall into the middle (n = 30) and high (n = 41) 

categories of number of species present.  

The next map (Figure 8) depicts the frequency of consumable geophyte species (n 

= 328,285) present in a grid cell. The steps that were utilized to create the previous map 

were used here, as well.  
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Figure 8 shows the frequency of consumable geophyte species within a grid cell. Most of the cells containing 

maize are categorized as lower to mid-high numbers. The outlier being the red cell on the border between 

Wyoming and Colorado. 
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The categories for consumable geophyte species present in a grid cell are 

different. The low category consists of the groupings 1-9, 10-18 and 19-28. The middle 

category is composed of the groupings 29-40, 41-50 and 51-61. The high category is 

made up of the groupings 62-75, 76-87 and 88-109. The map above, Figure 7, depicts 

much of the same pattern seen in Figure 6 where most (n = 76) of the grid cells 

containing maize sites fall into the middle (n = 63) to higher (n = 13) range of frequency 

of consumable geophytes and few grid cells (n = 2) contain maize that are in the lower 

category for species present. However, most of the grid cells containing maize fall into 

the true middle category, colored yellow and darker yellow. There are fewer outliers to 

this statement than the map before this one. There are, both, fewer low range grid cells 

and fewer high range grid cells containing archaeological maize than in the previous map.  

From Figure 3, we predicted that precipitation levels were linked to the 

productivity of maize and is shown in the equation previously stated on page 11, hence 

the reason for its inclusion. The data were accessed through the PRISM database 

(Northwest Access for Computation Science and Engineering 2021a) by clicking on the 

“Historical Past” tab on the website and clicking on the bubble next to the “Precipitation” 

option for the years 1895 to, and including, 1950. Then, I downloaded the data as ASCII 

files through the “Download All Data For Year (asc)” button. Following this, I dragged 

the appropriate .asc files for each year into ArcGIS. From here, individual maps were 

created based on their respective environmental variable; methods for creating those 

maps are discussed below.  

To make the Total Mean Precipitation map, depicted below (Figure 9), I imported 

into the files into ArcGIS for each year rather than each month of the year. After this, I 



25 

 

used the “Cell Statistics” tool and chose every year’s file and used the “MEAN” 

calculation option.  
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Figure 9 shows the mean annual precipitation for the years 1895 to 1950 in millimeters.  
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 To make the Mean Growing Season Precipitation map, depicted below (Figure 

10), I imported the precipitation files for the months of April, May, June, July, August, 

and September (04-09) into ArcGIS. Following this, I combined the months of each year 

by using the “Cell Statistics” tool with the calculation option set to “SUM”. Once that 

was achieved for each year (from 1895 to 1950), those year files were then combined 

using “Cell Statistics” tool with the calculation option set to “MEAN”. The resulting map 

depicts the mean growing precipitation for the years of 1895 to, and including, 1950.  
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Figure 10 shows the mean precipitation levels during the growing season between the years 1895 and 1950 

compared to archaeological sites containing maize.   
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The same steps that are listed above for the precipitation maps were utilized to 

obtain mean temperature data from the PRISM website (Northwest Access for 

Computation Science and Engineering 2021b). The only difference between that process 

and this one was clicking the option “Mean Temperature”. Everything else was 

conducted in the same manner. After downloading the .asc files for each year, I dragged 

the year files into ArcGIS, not the individual months, and used the “Cell Statistic” tool 

with the calculation set to “MEAN”. The resulting map (Figure 11) depicts the mean 

temperature in the United States from the year 1895 to 1950 (Northwest Access for 

Computation Science and Engineering 2021b). 
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Figure 11 illustrates the mean temperature, in Celsius, for the years 1895 to 1950. 
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When referring to all three maps, an interesting pattern emerges. They show a 

curious grouping of archaeological sites containing maize in the West compared to the 

Midwest and Northeast. In the West, archaeological sites with maize are, predominantly, 

more scattered around each other with some overlap occurring. However, in the Midwest 

and Northeast there is more overlapping of sites compared to the scatter pattern. Possible 

explanations for this pattern could include varying access to reliable water sources, 

difference in available land, differing demographic pressures, and differing biases in 

archaeological excavation and reporting. 

Final Data 

 To incorporate the “Historical Precipitation” and “Historical Mean Temperature”, 

the “Project Raster” tool needed to be used to turn it into the “WGS_1984” geographic 

coordinate system. Then, the “Int” tool was utilized to turn it into an integer type of data 

rather than its original format (floating point). Following this, I used the “Build Raster 

Attribute Table” tool for the datasets. Lastly, the “Raster to Polygon” tool was utilized in 

order to make the data easier to work with when joining them with other data. All of the 

historical environmental data were put through the same process to put the data in the 

same data table. The environmental data was reported at a much finer resolution and were 

combined to calculate a number that accurately represented the 2.5 by 2.5 decimal degree 

grid cell. 

To calculate the Total Annual Precipitation, I started by importing into ArcGIS 

the files for each year, rather than each month of the year. After this, I used the “Cell 

Statistics” tool and chose every year’s file and used the “SUM” calculation option.  The 



32 

 

“All Geophyte” dataset was imported to create a grid using the “Grid Index Feature” tool 

with, both, the height and width of the cell set at 2.5 decimal degrees. The resulting grid 

table was utilized as the input zone, based on page name, when using the “Tabulate 

Intersection” tool with the resulting summed values (from the “Cell Statistics” tool) as 

the input feature class, based on grid code. The resulting table shows multiple values 

(precipitation readings) assigned to grid cells. Next, I ran the “Summary Statistics” tool 

to obtain the mean of the summed values for each grid cell. Following this, I exported the 

data into a spreadsheet and then divided those sums by fifty-five in order to find the total 

precipitation mean for the years spanning 1895 through 1950. 

 To calculate the precipitation levels for Mean Growing Season Precipitation, I 

dragged the precipitation files for the months of April, May, June, July, August, and 

September (04-09) into ArcGIS. Following this, I combined the months of each year by 

using the “Cell Statistics” tool with the calculation option set to “SUM”. Once that was 

achieved for each year (from 1895 to 1950), those year files were then combined using 

the same methods listed above. Then, I imported a grid index based on the all geophyte 

data wherein the cells are 2.5 by 2.5 decimal degrees. Subsequently, I put that result into 

the “Tabulate Intersection” tool as the input zone, based on page name, while the 

summed precipitation level layer was utilized as the input feature, based on grid code. 

The resulting table was then put into the “Summary Statistics” tool wherein the grid code 

was utilized to calculate the mean level of those previously summed precipitation levels 

while the page name was the input for the case field to get the mean growing 

precipitation for the years of 1895 to, and including, 1950. Following this, the rows were 

selected and exported into an Excel sheet and then divided by 6 (the number of months 
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per year) and then fifty-five (the number of years over which these data were collected 

and calculated). The concentration of precipitation during the growing season is simply 

the mean growing season precipitation divided by total precipitation. 

The same steps that are listed above for Mean Precipitation Maps were utilized to 

obtain mean temperature data from the PRISM website (2021b). The only difference 

between that process and this one was clicking the option “Mean Temperature”. 

Everything else was conducted in the same manner. After downloading the .asc files for 

each year, I dragged the year files into ArcGIS, not the individual months, and used the 

“Cell Statistic” tool with the calculation set to “SUM”. Then I utilized the “Int” tool 

again. Following this, the “Project” tool was used to change the coordinate system to 

“GCS_WGS_1984”. A grid index was created from the same geophyte dataset that 

created a grid for the total precipitation map (merged all geophyte dataset) using the 

“Grid Index Tool” with the cell width and height set at 2.5 decimal degrees. Next, the 

resulting grid index was utilized as the zone field, based on page name, for the “Tabulate 

Intersection” tool with the resulting dataset from the “Project tool” as the feature class 

based on grid code to assign those values to grid cells. The resulting table shows multiple 

values tied to every grid cell. From here, the table was joined with the grid index that was 

created. Then, the “Summary Statistics” tool was utilized to get the mean of those 

summed values in the grid cell. The resulting table was then exported and turned into an 

Excel spreadsheet. From there, the data were divided by fifty-five in order to show the 

mean temperature in the United States from the years 1895-1950 (Northwest Access for 

Computation Science and Engineering 2021b). 
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Next, I imported the “Consumable Geophyte” point data in addition to the “All 

Geophyte” data. Following this, I added a grid by using the “Grid Index Features” tool 

with the dimensions of the output polygon measuring at 2.5 by 2.5 decimal degrees. 

Then, I added the maize database data (Archaeological Sites with Maize) to the resulting 

grid by joining them based on spatial location.  

To calculate the number of geophyte species for each 2.5 x 2.5 decimal degree 

grid square, I had to use the “Tabulate Intersection” on the consumable geophyte data 

based on the category “specific epithet” (the species category) and on the all geophyte 

data based on the category “species”. The results split up the geophyte species into which 

grid cell they fell in. Next, I utilized the “Frequency” tool on the results of the “Tabulate 

Intersection” based on the page name (which is the grid cell name). This means that the 

“Frequency” tool counted how many geophyte species fell into a grid cell based on the 

occurrence of that grid cell name in the “Tabulate Intersection” results (the resulting table 

from the Tabulate tool shows a grid cell name, geophyte species, how many points of that 

species occur in that grid, as well as the percentage that species makes up in the total 

number of species in that cell). After this, I did a join based on the table for both results 

of the “Frequency” (“Consumable Geophyte” and “All Geophyte” data) so that ArcGIS 

would include in the spreadsheet the number of occurrences in each grid cell. When all 

categories were combined, I opened the attribute table and clicked on “Select All” then 

exported them as a text file with .csv at the end of the name of the table. Within the Excel 

spreadsheet, information not pertaining to the specific data was omitted. Lastly, about 

two dozen grid cells were omitted from the spreadsheet utilized for the analysis in R due 
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to lower numbers in geophytes resulting from most of, if not the entire, grid cell being 

located over water (touches land or shoreline) or touches a land border.  
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Chapter 4: Results 

 In this chapter, I will discuss the results of my analysis. My results provide partial 

support for my predictions. I first provide a reminder of the main predictions of my 

model, then a summary of results and, finally, a description of the tables and figures that 

illustrate the results.  

In chapter 2, I predicted the possible importance of precipitation concentration (as 

a variable that impacts the productivity of maize) and its interaction with geophyte 

abundances in a given area (Figure 3). I predicted that in environments where high maize 

and high geophyte productivity are present, people will intensify on maize. However, in 

environments where maize productivity is lower (lower concentration of growing season 

moisture) and geophyte productivity is high, people will intensify on geophytes. Lastly, 

in environments where maize and geophyte productivity are low, people will most likely 

intensify on maize.  

In summary, I find that (1) temperature, the concentration of precipitation, and 

geophyte richness all have statistically significant (at p<0.05) effects when regressed on 

the number of maize sites among geographic areas. (2) The direction of effects, in part, 

are consistent with my model. For example, as temperature increases, the number of 

maize sites increases. Holding the richness of geophytes constant at a high value, a low 

concentration of precipitation during the growing season predicts more maize sites. 

Holding geophytes constant at low richness, maize sites are predicted to be more 

abundant in environments with a lower concentration of precipitation. However, where 

geophyte abundance is low and the centration of precipitation is high, few maize sites are 



37 

 

predicted, which contradicts my prediction. Finally, when we control for spatial 

autocorrelation, the direction of all of the above effects still hold, however, the statistical 

significance of the predictor variables is marginal (i.e., not less than the arbitrary value of 

p=0.05). Overall, the results of the spatial regression indicate that some unaccounted-for 

spatial process has an important effect on the number of maize sites.  

       

 

 

 

Figure 12A shows the relationship between the occurrence of archaeological sites with maize 

(Maize_Sites) and mean annual temperature for the years 1895-1950 (MAT). Figure 12B depicts the 

relationship between the concentration of precipitation during the growing season (ZRainCon) and the 

occurrence of archaeological maize sites (Maize_Sites) with various geophyte frequencies being held 

level (lines of differing colors). The differing colors represent their number of standard deviations from 

the mean. 
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Figure 12 and Table 2 present the results of a general linear model (equation 1) 

that regresses the number of maize sites on temperature and the interaction of geophyte 

richness and rainfall concentration. Figure 12A visually presents the effect of temperature 

on the number of archaeological sites containing maize. Basically, it shows that when 

temperature goes up, so does the number of archaeological sites that contain maize. 

Figure 12B depicts the relationship between precipitation concentration during the 

growing season and archaeological sites containing maize when geophyte levels are held 

constant. The gold line represents grid cells containing the highest frequency of 

geophytes (3 standard deviations above the mean of all grid cells).  As we can see from 

the graph, where geophyte richness is high and rainfall concentration low, very few 

maize sites are predicted by the model. However, where geophyte richness is high and 

rainfall concentration is high, maize sites are abundant. This result is consistent with my 

model predictions. The blue line, in the same graph, represents grid cells that contain the 

lowest frequencies of geophytes (-2 standard deviations from the mean). In environments 

with a low concentration of precipitation, these geophyte depauperate environments are 

Variable Coeff. 

Estimate 

Std. Error Z value Pr(>|z|) 

Intercept 0.820507 0.116426    7.047 <0.05  

ZRainCon 0.435732 0.061196    7.120 <0.05 

MAT 0.018256 0.008919    2.047    <0.05 

ZGeos 0.499183 0.051300    9.731   <0.05 

ZRainCon:ZGeos 0.323358 0.052052 6.212 <0.05 

Table 2 provides calculations for each of the coefficients listed. The intercept is the point where all 

geophyte standard deviations converge. The coefficient ZRainCon is the z-score for growing season 

precipitation. MAT is the mean annual temperature. Z Geos represent the z-score for the frequency of 

all geophytes. ZRainCon and ZGeos are the combined variables defined above. 
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predicted to have few maize sites. In such environments, as the concentration of 

precipitation during the growing season increases, fewer maize sites are predicted. This 

result is inconsistent with my model and predictions.   

Figure 12B displays patterns consistent with the idea that where there is less 

rainfall during the growing season in an environment that possesses an abundance of 

geophytes, people will intensify on geophytes limiting the number of archaeological sites 

created containing maize. Figure 12B also shows that if the growing season contains a 

greater concentration of precipitation, with abundant geophytes, then people will 

intensify on maize. However, in dry growing season environments, if geophytes are less 

abundant then people are more likely to intensify on maize; thus, increasing the number 

of archaeological sites containing maize. Finally, where there is a smaller number of 

geophytes and a high concentration of precipitation during the growing season, people 

will intensify on geophytes. 

Although Table 2 and Figure 12 illustrate patterns consistent with some of my 

predictions, this analysis does not take into account the potential for spatial 

autocorrelation of the residual deviances (errors) in the predicted abundance of maize 

sites. This potentially biases the coefficients of a model. In this case, I used a global 

Moran’s I test of spatial autocorrelation on the residual deviances and found a Moran’s I 

of 0.018 compared to a simulated expected value of -0.006 (p<0.05). This indicates that 

errors in the number of predicted maize sites weakly correlate in space (i.e., cluster 

together).  
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Variable Coeff. Estimate Cond. SE t-value 

Intercept -1.13768   0.86744 -1.3115 

ZRainCon 0.83178   0.43965   1.8919 

MAT 0.02166   0.06397   0.3386 

ZGeos 0.37815   0.23191   1.6306 

ZRainCon:ZGeos 0.29922   0.26627   1.1238 

 

Figures 13A and 13B depict the same data but factors in the spatial component. Figure 13A illustrates 

the relationship between archaeological sites containing maize (Maize_Sites) and mean annual 

temperature for the years 1895-1950 (MAT) effect plot shows an increase in the confidence level 

range, the light blue area surrounding the blue line. Figure 12B depicts the relationship between the 

concentration of rainfall during the growing season ZRainCon) and the occurrence of archaeological 

maize sites (Maize_Sites) with various geophyte frequencies being held level (lines of differing colors). 

The differing colors represent their number of standard deviations from the mean. 

Table 3 provides calculations for each of the coefficients listed. The intercept is the point where all 

geophyte standard deviations converge. The coefficient ZRainCon is the z-score for growing season 

precipitation. MAT is the mean annual temperature. Z Geos represent the z-score for the frequency of 

all geophytes. ZRainCon and ZGeos are the combined variables defined above. 
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Figure 13 and Table 3 depict the results of a mixed effects regression model that 

include latitude and longitude as a random predictor of differences in the number of 

maize sites. Controlling for this variation in the spatial distribution of maize sites explains 

a significant amount of the variation in the number of maize sites among grid cells. 

Figure 13A and Figure 13B, depict the same data as Figure 12A and Figure 12B, but are 

calculated factoring in the spatial component (latitude and longitude). Figure 13A shows 

the significance between temperature and archaeological maize when factoring in the 

spatial clustering of data points. The line in Figure 13A is less steep but still has a gradual 

upwards trajectory and a much wider confidence range. It shows that the relationship 

between temperature and number of maize sites is now very nearly random. Figure 13B 

replicates the effects shown in Figure 12B.  

Table 3 illustrates that the coefficients associated with the concentration of 

precipitation and the number of geophyte species are now marginally significant. Their 

lower estimates cross zero at the 95% confidence level, thus, at that level of confidence, 

we cannot rule out that the coefficients in the table are due to chance. A Moran’s I test on 

the residual deviances indicates a value of -0.02 against an expected value of -0.006 

(p=0.07). This indicates that the spatial autocorrelation of the residual deviances is 

marginally significant.  
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Chapter 5: Discussion and Conclusion 

 In this final chapter, I restate the question that guided my research and then the 

predictions. Following this, I discuss the results and limitations of my data. Lastly, I state 

why my research is important and future avenues of research resulting from my thesis.  

In the beginning of this thesis, I asked if regions of N. America where geophytes 

are more diverse, and (in theory) abundant, display less evidence of prehistoric 

agriculture than places where such resources were less abundant? Answering this 

question furthers our understanding of when, or under which environmental conditions, 

people will adopt or reject maize agriculture thereby enhancing our knowledge on the 

transition to agriculture. I predicted that a higher productivity of geophytes, in any given 

area, would correspond with a lower occurrence of archaeological maize sites while an 

area with lower geophyte productivity would correspond with more occurrences of 

archaeological maize. Furthermore, in high maize and high geophyte productivity 

environments, I expected people to increase their dependence on maize; while in lower 

maize productivity (due to lower concentration of growing season precipitation) and high 

geophyte productivity environments, I expected people would intensify their exploitation 

of geophytes. However, in areas where there is, both, low maize productivity and 

geophyte productivity, people would intensify their efforts in maize agriculture.  

 The results show that the productivity of geophytes, alone, may not matter much. 

However, the importance of the concentration of rainfall during the growing season does 

seem important. It appears that the concentration of precipitation during the growing 

season, in interaction with geophyte richness, impacts the presence of maize agriculture.  
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 One of the greatest limitations within this study is the need to use modern data for 

both the identification of geophytes potentially consumed by prehistoric populations and 

location data for the geophyte occurrences. The modern data for identification of 

geophytes utilized for consumption comes from a book whereby the author draws from 

Native American knowledge that has been handed down through generations. The 

modern data for identifying geophyte occurrences comes from a database that identifies 

where people have seen this species or if it is a preserved specimen. Since technology for 

identifying traces of geophyte species has only recently developed within the past few 

years, there has not been enough time, nor money, to run these tests on multiple 

archaeological sites within the United States. It is possible that there are names of 

geophyte species, that were consumed throughout prehistory, that are not on the list due 

being forgotten over several generations or less to no access to them.  

 Another limitation on the data, specifically the maize database data, is that Google 

scholar was utilized to find most of the archaeological sites that contain maize. The 

reason for this is to make this study as accessible as possible. There could be biases in the 

reports and articles collated by Google Scholar (systemic exclusion of gray literature in 

some areas but not others) that could contribute to the patterns and correlations we see in 

the data presented above. However, if we collected maize data from all archaeological 

sites that have maize, in the United States, then the patterns seen in that data would more 

accurately depict trends.  

 Yet another limitation on this data is the use of species richness as a proxy for 

productivity. In my thesis, I assumed that species richness was a proxy for productivity 
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since there was a precedent for this set by ecological researchers (Isbell and colleagues 

2013). However, there is a possibility that they could be weakly linked. 

 This research could be used as a foundation for many research projects in the 

future. This research could model other, additional, variables in future studies regarding 

the adoption of maize agriculture in the United States to better understand the 

biogeographical conditions under which the switch occurs from a hunter-gatherer diet to 

a maize dependent diet. This research could also prove valuable for its ability to predict 

other possible archaeological sites containing maize in addition to task-oriented sites 

focused on processing geophytes.  

Furthermore, the research could be expanded upon in the future when more 

archaeological sites containing maize in the United States are found. We could also 

expand the list of geophytes as the technology for identifying geophyte traces is utilized 

on sites and their artifacts more consistently in the future.  
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Appendix A 

#READ FINAL 

DATA################################################################## 

#Set working directory to the directory with your data 

######################################################################## 

######Spatial Regression and testing for spatial autocorrelation 

library(geoR) 

library(viridis) 

library(tidyverse) 

library(gridExtra) 

library(NLMR) 

library(DHARMa) 

library(spaMM) 

library(ape) 

library(pgirmess) 

library(glpkAPI) 

library(maps)  

library(ggplot2) 

library(effects) 

 

##Load US State map 

MainStates <- map_data("state") 

 

###Read in your data 

keep3<-read.csv(file="Thesis_Data_V5.csv", header=T) 

 

###Plot in space the presence of maize. 

  ggplot(keep3, aes(Long, Lat, colour = Maize_Sites)) + 

  geom_point(size = 3)+ 

  scale_color_gradient2(low = "yellow", high = "darkgreen", na.value = NA) + 

  theme_bw() + 

  theme(axis.text.x = element_text(size=28, colour = "black"), 

axis.title.x=element_text(size=24), 
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        axis.title.y=element_text(size=24), axis.text.y = element_text(  

          size=28))+ 

  geom_polygon( data=MainStates, aes(x=long, y=lat, group=group), 

                color="gray70", fill="NA" ) 

 

  ###Histogram of Maize Sites 

hist((keep3$Maize_Sites), breaks=15) 

 

#Step #1: Run GLM regression for count data on maize Poisson distribution 

##mrean centered rainfall and geophyte variables 

 

mylogit <- glm(Maize_Sites~ZRainCon+MAT+ZGeos+ZRainCon*ZGeos, data = keep3, 

family =  "poisson") 

summary(mylogit) 

plot(allEffects(mylogit), multiline=TRUE) 

 

###Check spatial autocrrelation of residuals at different spatial scales 

nbc <- 20 

cor_r <- pgirmess::correlog(coords=keep3[,c("Long", "Lat")], 

                            z=mylogit$residuals, 

                            method="Moran", nbclass=nbc) 

cor_r 

correlograms <- as.data.frame(cor_r) 

correlograms$variable <- "mylogit$residuals"  

 

# Plot correlogram of residual correlation at various distances 

ggplot(subset(correlograms, variable=="mylogit$residuals"), aes(dist.class, coef)) +  

  geom_hline(yintercept = 0, col="grey") + 
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  geom_line(col="steelblue") +  

  geom_point(col="steelblue") + 

  xlab("distance") +  

  ylab("Moran's coefficient")+ 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),  

        panel.background = element_blank(), axis.line = element_line(colour = "black")) 

 

##Conduct moran's I on residuals (not pooled by distance) 

#Create distance matrix 

GeophyteSpace<- as.matrix(dist(cbind(keep3$Long, keep3$Lat))) 

#3Inverse distance matrix 

GeophyteSpace.inv <- 1/GeophyteSpace 

#3Set diagonals to 0 

diag(GeophyteSpace.inv) <- 0 

##Check matrix 

GeophyteSpace.inv[1:5, 1:5] 

 

###Claculate Moran's I for the residuals of mylogit 

GeophyteResid<-resid(mylogit) 

Moran.I(GeophyteResid, GeophyteSpace.inv) 

 

###Plot Residuals of mylogit in space 

keep3$mylogit_residuals <- residuals(mylogit) 

 

ggplot(keep3, aes(Long, Lat, colour = mylogit_residuals)) + 

  theme_bw() + 

  theme(axis.text.x = element_text(size=28, colour = "black"), 

axis.title.x=element_text(size=24), 
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        axis.title.y=element_text(size=24), axis.text.y = element_text(  

          size=28))+ 

  scale_color_gradient2() + 

  geom_point(size = 3)+ 

  geom_polygon( data=MainStates, aes(x=long, y=lat, group=group), 

                color="gray70", fill="NA" ) 

 

# There is significant spatial autocorrelation at p<0.05, thus we run a spatial regression 

model 

 

###Poisson family model of environmental factors on number of maize sites 

m_spamm2 <- fitme(Maize_Sites~ZRainCon+MAT+ZGeos+ZRainCon*ZGeos + 

Matern(1 |Lat + Long), data = keep3, poisson(link = "log")) # this may take a bit of time 

# model summary 

summary(m_spamm2) 

##Plot the marginal effects of the spatial model 

plot(allEffects(m_spamm2), multiline=TRUE) 

 

###Test the residuals of the spatial model for spatial autocorrelation 

GeophyteResid2<-resid(m_spamm2) 

Moran.I(GeophyteResid2, GeophyteSpace.inv) 

 

###Plot correlation as a function of distance 

dd <- dist(keep3[,c("Lat","Long")]) 

mm <- MaternCorr(dd, nu = 2.21, rho = 1.14) 

plot(as.numeric(dd), as.numeric(mm), xlab = "Distance between pairs of location", ylab = 

"Estimated correlation") 

 

###Plot confidence intervals for coeffs in spatial model 
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coefs <- as.data.frame(summary(m_spamm2)$beta_table) 

row <- row.names(coefs) %in% c('ZRainCon:ZGeos') 

lower <- coefs[row,'Estimate'] - 1.96*coefs[row, 'Cond. SE'] 

upper <- coefs[row,'Estimate'] + 1.96*coefs[row, 'Cond. SE'] 

c(lower, upper) 

 

coefs <- as.data.frame(summary(m_spamm2)$beta_table) 

row <- row.names(coefs) %in% c('ZRainCon') 

lower <- coefs[row,'Estimate'] - 1.96*coefs[row, 'Cond. SE'] 

upper <- coefs[row,'Estimate'] + 1.96*coefs[row, 'Cond. SE'] 

c(lower, upper) 

 

coefs <- as.data.frame(summary(m_spamm2)$beta_table) 

row <- row.names(coefs) %in% c('ZGeos') 

lower <- coefs[row,'Estimate'] - 1.96*coefs[row, 'Cond. SE'] 

upper <- coefs[row,'Estimate'] + 1.96*coefs[row, 'Cond. SE'] 

c(lower, upper) 

 

coefs <- as.data.frame(summary(m_spamm2)$beta_table) 

row <- row.names(coefs) %in% c('MAT') 

lower <- coefs[row,'Estimate'] - 1.96*coefs[row, 'Cond. SE'] 

upper <- coefs[row,'Estimate'] + 1.96*coefs[row, 'Cond. SE'] 

c(lower, upper) 

 

 

###map predicted values from the spatial model 

 

#save fitted values 
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m_spamm2_fitted <- fitted(m_spamm2) 

 

#plot the fitted values 

ggplot(keep3, aes(Long, Lat, colour = m_spamm2_fitted)) + 

  theme_bw() + 

  theme(axis.text.x = element_text(size=28, colour = "black"), 

axis.title.x=element_text(size=24), 

        axis.title.y=element_text(size=24), axis.text.y = element_text(  

          size=28))+ 

  scale_color_gradient2(low = "yellow", high = "darkgreen", na.value = NA) + 

  geom_point(size = 3)+ 

  geom_polygon( data=MainStates, aes(x=long, y=lat, group=group), 

                color="gray70", fill="NA" ) 
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Appendix B 

 This appendix lists the sources from which archaeological sites containing maize 

were collected. Most sources were collected from Google Scholar using the steps listed in 

the “Dependent Variables” section in the Workflow Table. However, other sources 

utilized were the Ancient Maize Map, CARD Database, and Utah State University’s 

online academic library (peer-reviewed journal articles). Sources, and their information, 

were collected if the article mentions the terms (maize) pollen, corn cob, corn cupule, 

corn, maize, or osteological remains that show maize was part of the diet.  

Ahler, Stanley A., David K. Davies, Carl R. Falk, and David M. Madsen 

1974 Holocene Stratigraphy and Archeology in the Middle Missouri River 

Trench, South Dakota. Science, New Series 184: 905-908.  

Bass, William M. and Walter H. Birkby 

1962 The First Human Skeletal Material from the Huff Site, 32MO11, and a 

Summary of Putative Mandan Skeletal Material. Plains Anthropologist 7: 164-

177. 

Bird, R.M., and C.A. Dobbs  

1986  Archaeological Maize from the Vosburg Site (21Fa2), Fairbault 

County, Minnesota. Missouri Archaeologist 47(Dec): 85-105. 

Blake, M., B. Benz, D. Moreiras, L. Masur, N. Jakobsen, and R. Wallace 

2017 Ancient Maize Map, Version 2.1: An Online Database and Mapping 

Program for Studying the Archaeology of Maize in the Americas. 

http://en.ancientmaize.com/. Laboratory of Archaeology, University of B.C., 

Vancouver.  

Bozarth, Steven 

1998 Maize (Zea mays) Cob Phytoliths From A Central Kansas Great Bend 

Aspect Archaeological Site. Plains Anthropologist, 43:166, 279-286. 

Brain, Jeffrey P. 

http://en.ancientmaize.com/
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1989  Winterville: Late Prehistoric Culture Contact in the Mississippi Valley. 

Archaeological Report No. 25. Mississippi Department of Archives and History, 

Jackson. 

Braley, Chad O., L. D. O'Steen, and I. R. Quitmyer  

1986 Archaeological Investigations at 9Mcl41, Harris Neck National 

Wildlife Refuge, Mclntosh County, Georgia. Southeastern Archeological 

Services, Inc., Athens, Georgia. 

Brooks, Mark J., Veletta Canouts, Keith M. Derting, Helen W. Haskell, William H. 

Marquart, and JoLee A. Pearson 

1984 Modeling Subsistence Change in the Late Prehistoric Period in the 

Interior Lower Coastal Plain of South Carolina. Anthropological Studies 7.  

Brown, Ian W. 

2008 Culture Contact Along the I-69 Corridor: Protohistoric and Historic 

Use of the Northern Yazoo Basin, Mississippi. In Times River: Archaeological 

Syntheses from the Lower Mississippi Valley, edited by Janet Rafferty and Evan 

Peacock, pp. 357-394. University of Alabama Press, Tuscaloosa.  

Buikstra, Jane E. and George R. Milner 

1991 Isotopic and Archaeological Interpretations of Diet in the Central 

Mississippi Valley. Journal of Archaeological Science 18: 319-329.  

Bush, Leslie L.  

2004 Boundary Conditions: Macrobotanical Remains and the Oliver Phase 

of Central Indiana, A.D. 120-1450. University of Alabama Press, Tuscaloosa.  

Byrd, Kathleen M., and Robert W. Neuman 

1978 Archaeological Data Relative to Prehistoric Subsistence in the Lower 

Mississippi Alluvial Valley. Geoscience and Man 19: 9-21. 

Cobb, Charles R. and Patrick H. Garrow 

1996 Woodstock Culture and the Question of Mississippian Emergence. 

American Antiquity 61: 21-37. 

Colburn, Mona L.  

1987  Faunal Exploitation at the Ink Bayou Site. In Results of Final Testing 

for Significance at the Ink Bayou Site (3PU252), Pulaski County, Arkansas, by 

D. B. Waddell, J. H. House, F. B. King, M. L. Colburn, and M. K. Marks. 

Submitted to the Arkansas Highway and Transportation Department. 



60 

 

Connaway, John M. 
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Drass, Richard R. 
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Drass, Richard R. and Timothy G. Baugh 
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Boschniakia C.A.Mey. ex Bong. 

Brodiaea Sm.  

Caesalpinia L.  

Calochortus Pursh  

Camassia Lindl.  

Cardamine L. 

Carex L.  

Chamaesyce Rafinesque 

Chlorogalum Kunth  

Cirsium Mill.  

Claytonia L.  

Colocasia Schott  

Conioselinum Fisch. ex Hoffm.  

Cucumis L.  

Cymopterus Raf.  
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Cynoglossum L.  

Cyperus L.  

Dalea L.  

Dasylirion Zucc.  
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Dichelostemma Kunth  

Dioscorea Plum. ex L.  

Dodecatheon L.  

Dryopteris Adans.  

Equisetum L.  

Eriogonum Michx.  

Eriophorum L.  

Erythronium L.  

Ferula L.  

Frasera Walter  

Fritillaria L. 

Gaura L.  

Glycyrrhiza L.  

Hedysarum L.  

Helianthus L.  

Hesperocallis A.Gray 

Hoffmannseggia Cav.  

Hydrophyllum L.  

Ipomoea L.  

Juncus L.  

Lathyrus L.  

Leucocrinum Nutt. ex A.Gray  

Lewisia Pursh  
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Nuphar Sibth. & Sm.  
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Oxypolis Raf.  

Oxytropis DC.  

Parrya R.Br.  

Parthenocissus Planch.  

Pedicularis L.  

Pediomelum Rydb.  

Peniocereus (A.Berger) Britton & Rose  

Perideridia Rchb.  

Peucedanum L. 

Phegopteris (C.Presl) Fee  
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Pholisma Nutt. ex Hook.  

Phyllospadix Hook.  

Physocarpus (Cambess.) Raf.  

Piperia Rydb.  

Pluchea Cass.  
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Smilax L.  

Solanum L.  
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Yucca L.  

Zigadenus Michx.  

Zostera L.  
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Appendix D 

Global Biodiversity Information Facility 

2019 Occurrence Data. GBIF Backbone Taxonomy. Web page, Occurrence 

search (gbif.org), accessed November 19, 2020. 

List of Consumable Geophyte Species, Subspecies, and Varieties: 

Allium acuminatum Hook.  

Allium anceps Kellogg  

Allium bisceptrum S.Watson  

Allium bisceptrum var. palmeri (S.Watson) Cronquist  

Allium bolanderi S.Watson  

Allium canadense L.  

Allium canadense var. mobilense (Regel) Ownbey  

Allium cepa L.  

Allium cernuum Roth  

Allium cernuum var. obtusum Cockerell ex J.F.Macbr.  

Allium dichlamydeum Greene.  

Allium douglasii Hook.  

Allium drummondii Regel  

Allium geyeri S.Watson  

Allium macropetalum Rydb.  

Allium parvum Kellogg.  

Allium platycaule S.Watson  

Allium schoenoprasum L.  

Allium schoenoprasum var. sibiricum (L.) Hartm.  

Allium textile A.Nelson & J.F.Macbr.  

Allium tricoccum Aiton  

Allium unifolium Kellogg  

Allium validum S.Watson  

https://www.gbif.org/occurrence/search?occurrence_status=present&q=
https://www.gbif.org/occurrence/search?occurrence_status=present&q=
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Allium vineale L.  

Apios americana Medik.  

Argentina anserina Rydb.  

Argentina egedii subsp. egedii (Wormsk.) Rydb.   

Arisaema triphyllum (L.) Schott  

Astragalus australis (L.) Lam.  

Astragalus canadensis L.  

Astragalus canadensis var. canadensis  

Astragalus cyaneus A.Gray  

Asyneuma prenanthoides (Durand) McVaugh  

Athyrium filix-femina (L.) Roth.  

Balsamorhiza hookeri Nutt.  

Balsamorhiza incana Nutt.  

Balsamorhiza sagittata (Pursh) Nutt.  

Balsamorhiza terebinthacea (Hook.) Nutt.  

Bloomeria crocea var. aurea (Kellogg) J.W.Ingram  

Boschniakia hookeri Walp.  

Brodiaea coronaria (Salisb.) Engl.  

Brodiaea elegans subsp. hooveri T.F.Niehaus  

Brodiaea minor S.Watson  

Caesalpinia jamesii (Torr. & A.Gray) Fisher  

Calochortus amabilis Purdy  

Calochortus aureus S.Watson.  

Calochortus catalinae S.Watson  

Calochortus concolor Purdy  

Calochortus flexuosus S.Watson  

Calochortus gunnisonii S.Watson  

Calochortus leichtlinii Hook.f.  
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Calochortus luteus Douglas ex Lindl.  

Calochortus macrocarpus Dougl.  

Calochortus nuttallii Torr. & A.Gray  

Calochortus palmeri S.Watson  

Calochortus tolmiei Hook. & Arn.  

Calochortus venustus Douglas ex Benth.  

Camassia quamash (Pursh) Greene  

Camassia scilloides (Raf.) Cory  

Cardamine concatenata (Michx.) O.Schwarz  

Cardamine diphylla (Michx.) Alph.Wood  

Cardamine maxima Wood  

Carex rostrata Stokes  

Chamaesyce serpillifolia subsp. serpillifolia (Persoon) Small  

Chlorogalum parviflorum S.Watson  

Chlorogalum pomeridianum Kunth  

Cirsium brevistylum Cronquist  

Cirsium edule Nutt.  

Cirsium hookerianum Nutt.   

Cirsium ochrocentrum A.Gray  

Cirsium scariosum Nutt. 

Cirsium undulatum Spreng.  

Cirsium vulgare (Savi) Ten.  

Claytonia caroliniana Michx.  

Claytonia lanceolata Pall. ex Pursh  

Claytonia umbellata S.Watson  

Claytonia virginica L.  

Colocasia esculenta (L.) Schott  

Cymopterus acaulis Raf.  
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Cymopterus acaulis var. fendleri (A.Gray) S.Goodrich  

Cymopterus bulbosus A.Nels.  

Cymopterus montanus (Nutt.) Torr. & Gray   

Cymopterus multinervatus (Coult. & Rose) Tidestr.  

Pseudocymopterus montanus (A.Gray) Coult. & Rose  

Cynoglossum grande Dougl. ex Lehm.   

Cyperus esculentus L.  

Cyperus fendlerianus Boeckeler  

Cyperus odoratus L.  

Cyperus rotundus L.   

Cyperus squarrosus L.  

Dalea candida var. candida   

Dalea candida var. oligophylla (Torr.) Shinners  

Daucus carota L.  

Daucus pusillus Michx.  

Dichelostemma capitatum subsp. capitatum   

Dichelostemma multiflorum A.Heller  

Dichelostemma volubile (Kellogg) A.Heller Dioscorea pentaphylla L.  

Dodecatheon hendersonii A.Gray  

Dryopteris arguta (Kaulf.) Watt  

Dryopteris campyloptera (Kunze) Clarkson  

Dryopteris expansa (C.Presl) Fraser-Jenk. & Jermy  

Dryopteris filix-mas (L.) Schott.  

Equisetum arvense L. 

Equisetum hyemale L.   

Equisetum laevigatum A.Braun  

Equisetum pratense Ehrh.  

Equisetum telmateia Ehrh.  
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Eriogonum alatum Torr.  

Eriogonum flavum Nutt.   

Eriogonum longifolium Nutt.  

Eriophorum angustifolium Honck.   

Erythronium grandiflorum Pursh   

Erythronium grandiflorum subsp. grandiflorum  

Erythronium oregonum Applegate  

Erythronium revolutum Sm.  

Frasera speciosa Douglas ex Griseb.  

Fritillaria affinis var. affinis   

Fritillaria camtschatcensis (L.) Ker Gawl.  

Fritillaria pudica (Pursh) Spreng.   

Fritillaria recurva Benth.  

Gaura mollis E.James   

Glycyrrhiza lepidota Pursh  

Hedysarum alpinum L.  

Hedysarum boreale Nutt.  

Hedysarum boreale subsp. mackenzii (Richardson) S.L.Welsh   

Helianthus annuus L.  

Helianthus cusickii A.Gray  

Helianthus maximiliani Schrad.   

Helianthus tuberosus L.  

Hesperocallis undulata A.Gray  

Hydrophyllum tenuipes A.Heller  

Ipomoea batatas (L.) Lam.  

Ipomoea cairica (L.) Sweet   

Ipomoea leptophylla Torr.  

Ipomoea pandurata (L.) G.F.W.Mey.  
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Juncus ensifolius Wikstr.  

Lathyrus ochroleucus Hook.  

Leucocrinum montanum Nutt. ex A.Gray  

Lewisia columbiana (Howell) B.L.Rob.   

Lewisia rediviva Pursh  

Liatris punctata Hook.  

Liatris punctata var. punctata   

Ligusticum californicum J.M.Coult. & Rose  

Lilium canadense L.  

Lilium occidentale Purdy  

Lilium pardalinum Kellogg  

Lilium parvum Kellogg  

Lilium philadelphicum L.  

Lithospermum incisum Lehm.  

Lomatium bicolor var. leptocarpum (Torr. & A.Gray) Schlessman  

Lomatium californicum (Nutt. ex Torr. & A.Gray) Mathias & Constance  

Lomatium canbyi J.M.Coult. & Rose  

Lomatium cous J.M.Coult. & Rose  

Lomatium dissectum (Nutt. ex Torr. & A.Gray) Mathias & Constance  

Lomatium farinosum (Geyer ex Hook.) J.M.Coult. & Rose  

Lomatium geyeri J.M.Coult. & Rose  

Lomatium grayi J.M.Coult. & Rose  

Lomatium nevadense J.M.Coult. & Rose  

Lomatium orientale J.M.Coult. & Rose  

Lomatium piperi J.M.Coult. & Rose  

Lomatium simplex var. leptophyllum (Hook.) Mathias  

Lomatium simplex var. simplex  

Lomatium triternatum J.M.Coult. & Rose  
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Lomatium watsonii J.M.Coult. & Rose  

Lupinus nootkatensis Donn ex Sims   

Lupinus nootkatensis var. nootkatensis   

Lupinus nootkatensis var. fruticosus Sims  

Lupinus polyphyllus Lindl.   

Lycopus uniflorus Michx.  

Maianthemum racemosum subsp. racemosum  

Melica bulbosa Porter & J.M.Coult.  

Menyanthes trifoliata L.  

Monolepis nuttalliana (Roemer & Schult.) Greene  

Musineon divaricatum var. divaricatum  

Musineon divaricatum var. hookeri Torr. & A.Gray  

Myriophyllum spicatum L.  

Nuphar lutea subsp. polysepala (Engelm.) E.O.Beal   

Nuphar lutea subsp. variegata (Engelm. ex Durand) E.O.Beal  

Oenothera biennis L.  

Oenothera triloba Nutt.   

Orobanche cooperi (Gray) A.A.Heller   

Osmorhiza berteroi DC.  

Oxalis violacea L.  

Oxypolis rigidior (L.) Raf.  

Oxytropis maydelliana Trautv.   

Oxytropis nigrescens Fisch. ex DC.  

Parthenocissus quinquefolia (L.) Planch.  

Pedicularis kanei Dur.  

Pedicularis kanei subsp. kanei Durland   

Pediomelum esculentum (Pursh) Rydb.  

Pediomelum hypogaeum var. hypogaeum  
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Perideridia bolanderi A.Nelson & J.F.Macbr.  

Perideridia gairdneri (Hook. & Arn.) Mathias  

Perideridia gairdneri subsp. gairdneri  

Perideridia kelloggii (A.Gray) Mathias  

Perideridia pringlei (J.M.Coult. & Rose) A.Nelson & J.F.Macbr.   

Pholisma sonorae (Torr. ex A.Gray) Yatsk.  

Phyllospadix scouleri Hook.  

Phyllospadix serrulatus Rupr. ex Asch.  

Phyllospadix torreyi S.Watson  

Piperia elegans (Lindl.) Rydb.  

Piperia unalascensis (Spreng.) Rydb.   

Polypodium virginianum L.   

Polystichum munitum (Kaulf.) C.Presl  

Pteridium aquilinum (L.) Kuhn  

Pteridium aquilinum var. pubescens Underw.  

Ranunculus flammula var. filiformis (Michx.) Hook.   

Ranunculus inamoenus Greene  

Ranunculus pallasii Schlecht.  

Rumex crispus L.  

Sagittaria cuneata E.Sheld.   

Sagittaria latifolia Willd.  

Scirpus nevadensis S.Watson  

Silene acaulis var. exscapa (All.) DC.  

Smilax glauca Walter  

Smilax herbacea L.  

Smilax pseudochina L.  

Smilax rotundifolia L.  

Solanum fendleri A.Gray ex Torr.  
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Solanum jamesii Torr.   

Solanum tuberosum L.  

Solidago canadensis L.  

Sphaeralcea coccinea var. coccinea  

Strophostyles helvula (L.) Elliott   

Tacca leontopetaloides (L.) Kuntze  

Trifolium wormskioldii Lehm.  

Triteleia grandiflora Lindl.  

Triteleia laxa Benth.  

Triteleia peduncularis Lindl.  

Typha domingensis Pers.   

Typha latifolia L.  

Valeriana edulis Torr. & Gray  

Wyethia amplexicaulis Nutt.  

Zigadenus paniculatus (Nutt.) S.Watson   

Zigadenus venenosus S.Watson  

Zostera marina L.   
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Appendix E 

 The following references were referenced when discussing how coordinates 

were found and collected. The website, Lat-Long.com, was utilized to provide 

coordinates to archaeological sites containing maize in order to keep the location 

secret (to protect the site from vandalism) when the site was not known by the public 

(county, township, city). In cases where the archaeological site is promoted and widely 

known, the more precise coordinates are utilized (for example if the site has a 

museum) when available on the website. If the site was located within a state forest, 

national forest, state park, national park, national monument, national wildlife refuge, 

recreation area (lake, pond, or reservoir), or a canyon then those coordinates were 

recorded. Furthermore, if the site was located closer to a city, or town, than the civil 

seat of the county then that city’s coordinates were recorded.  

2020 Lat-Long.com, Latitude Longitude Search - Maps of More Than 2 Million 

GPS Coordinates (lat-long.com), accessed April 4, 2020. 

http://www.lat-long.com/Latitude-Longitude-161526-Alabama-

Autauga_County.html  

http://www.lat-long.com/Latitude-Longitude-161527-Alabama-

Baldwin_County.html  

http://www.lat-long.com/Latitude-Longitude-161558-Alabama-Hale_County.html  

http://www.lat-long.com/Latitude-Longitude-153402-Alabama-

Shelby_Lakes.html  

http://www.lat-long.com/Latitude-Longitude-161585-Alabama-

Sumter_County.html  

http://www.lat-long.com/Latitude-Longitude-161588-Alabama-

Tuscaloosa_County.html  

http://www.lat-long.com/Latitude-Longitude-27632-Arizona-Cienega_Creek.html  

http://www.lat-long.com/Latitude-Longitude-3068-Arizona-Cochise.html    

https://www.lat-long.com/
https://www.lat-long.com/
http://www.lat-long.com/Latitude-Longitude-161526-Alabama-Autauga_County.html
http://www.lat-long.com/Latitude-Longitude-161526-Alabama-Autauga_County.html
http://www.lat-long.com/Latitude-Longitude-161527-Alabama-Baldwin_County.html
http://www.lat-long.com/Latitude-Longitude-161527-Alabama-Baldwin_County.html
http://www.lat-long.com/Latitude-Longitude-161558-Alabama-Hale_County.html
http://www.lat-long.com/Latitude-Longitude-153402-Alabama-Shelby_Lakes.html
http://www.lat-long.com/Latitude-Longitude-153402-Alabama-Shelby_Lakes.html
http://www.lat-long.com/Latitude-Longitude-161585-Alabama-Sumter_County.html
http://www.lat-long.com/Latitude-Longitude-161585-Alabama-Sumter_County.html
http://www.lat-long.com/Latitude-Longitude-161588-Alabama-Tuscaloosa_County.html
http://www.lat-long.com/Latitude-Longitude-161588-Alabama-Tuscaloosa_County.html
http://www.lat-long.com/Latitude-Longitude-27632-Arizona-Cienega_Creek.html
http://www.lat-long.com/Latitude-Longitude-3068-Arizona-Cochise.html
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http://www.lat-long.com/dynamic-map-25298-Arizona-Graham.html  

http://www.lat-long.com/Latitude-Longitude-2418954-Arizona-

Gu_Achi_District.html  

 http://www.lat-long.com/Latitude-Longitude-6627-Arizona-Kayenta.html 

 http://www.lat-long.com/Latitude-Longitude-7539-Arizona-Lukachukai.html  

 http://www.lat-long.com/Latitude-Longitude-37026-Arizona-

Maricopa_County.html  

 http://www.lat-long.com/Latitude-Longitude-7725-Arizona-Marsh_Pass.html   

 http://www.lat-long.com/Latitude-Longitude-9433-Arizona-Pima.html  

 http://www.lat-long.com/Latitude-Longitude-25446-Arizona-Pima_County.html  

 http://www.lat-long.com/Latitude-Longitude-14958-Arizona-

Pueblo_Grande_Museum.html  

 http://www.lat-long.com/Latitude-Longitude-9922-Arizona-

Rainbow_Plateau.html  

 http://www.lat-long.com/Latitude-Longitude-24621-Arizona-Snaketown.html  

 http://www.lat-long.com/Latitude-Longitude-12842-Arizona-Tumamoc_Hill.html  

 http://www.lat-long.com/Latitude-Longitude-13212-Arizona-Ventana.html  

 http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-

Lonoke_County.html  

 http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-

Mississippi_County.html  

 http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-

Pulaski_County.html  

 http://www.lat-long.com/Latitude-Longitude-198133-Colorado-

Douglas_County.html 

 http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-

City_of_Rifle.html  

 http://www.lat-long.com/Latitude-Longitude-178793-Colorado-

Crow_Canyon.html  

 http://www.lat-long.com/Latitude-Longitude-196483-Colorado-

McPhee_Reservoir.html  

http://www.lat-long.com/dynamic-map-25298-Arizona-Graham.html
http://www.lat-long.com/Latitude-Longitude-2418954-Arizona-Gu_Achi_District.html
http://www.lat-long.com/Latitude-Longitude-2418954-Arizona-Gu_Achi_District.html
http://www.lat-long.com/Latitude-Longitude-6627-Arizona-Kayenta.html
http://www.lat-long.com/Latitude-Longitude-7539-Arizona-Lukachukai.html
http://www.lat-long.com/Latitude-Longitude-37026-Arizona-Maricopa_County.html
http://www.lat-long.com/Latitude-Longitude-37026-Arizona-Maricopa_County.html
http://www.lat-long.com/Latitude-Longitude-7725-Arizona-Marsh_Pass.html
http://www.lat-long.com/Latitude-Longitude-9433-Arizona-Pima.html
http://www.lat-long.com/Latitude-Longitude-25446-Arizona-Pima_County.html
http://www.lat-long.com/Latitude-Longitude-14958-Arizona-Pueblo_Grande_Museum.html
http://www.lat-long.com/Latitude-Longitude-14958-Arizona-Pueblo_Grande_Museum.html
http://www.lat-long.com/Latitude-Longitude-9922-Arizona-Rainbow_Plateau.html
http://www.lat-long.com/Latitude-Longitude-9922-Arizona-Rainbow_Plateau.html
http://www.lat-long.com/Latitude-Longitude-24621-Arizona-Snaketown.html
http://www.lat-long.com/Latitude-Longitude-12842-Arizona-Tumamoc_Hill.html
http://www.lat-long.com/Latitude-Longitude-13212-Arizona-Ventana.html
http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-Lonoke_County.html
http://www.lat-long.com/Latitude-Longitude-69164-Arkansas-Lonoke_County.html
http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-Mississippi_County.html
http://www.lat-long.com/Latitude-Longitude-69899-Arkansas-Mississippi_County.html
http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-Pulaski_County.html
http://www.lat-long.com/Latitude-Longitude-69177-Arkansas-Pulaski_County.html
http://www.lat-long.com/Latitude-Longitude-198133-Colorado-Douglas_County.html
http://www.lat-long.com/Latitude-Longitude-198133-Colorado-Douglas_County.html
http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-City_of_Rifle.html
http://www.lat-long.com/Latitude-Longitude-2410947-Colorado-City_of_Rifle.html
http://www.lat-long.com/Latitude-Longitude-178793-Colorado-Crow_Canyon.html
http://www.lat-long.com/Latitude-Longitude-178793-Colorado-Crow_Canyon.html
http://www.lat-long.com/Latitude-Longitude-196483-Colorado-McPhee_Reservoir.html
http://www.lat-long.com/Latitude-Longitude-196483-Colorado-McPhee_Reservoir.html
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 http://www.lat-long.com/Latitude-Longitude-179042-Colorado-

Mesa_Verde_National_Park.html 

 http://www.lat-long.com/Latitude-Longitude-183932-Colorado-Trimble.html  

 http://www.lat-long.com/Latitude-Longitude-2378290-Connecticut-

City_of_Shelton.html  

http://www.lat-long.com/Latitude-Longitude-213509-Connecticut-

Town_of_South_Windsor.html 

 http://www.lat-long.com/Latitude-Longitude-295743-Florida-

Glades_County.html  

 http://www.lat-long.com/Latitude-Longitude-306916-Florida-Leon_County.html  

 http://www.lat-long.com/Latitude-Longitude-351604-Georgia-

Bartow_County.html  

http://www.lat-long.com/Latitude-Longitude-348672-Georgia-

Greene_County.html  

http://www.lat-long.com/Latitude-Longitude-353662-Georgia-

The_Flat_Woods.html  

 http://www.lat-long.com/Latitude-Longitude-465253-Iowa-Mills_County.html  

https://www.latlong.net/place/cahokia-il-usa-4791.html  

http://www.lat-long.com/Latitude-Longitude-424209-Illinois-

Carroll_County.html  

http://www.lat-long.com/Latitude-Longitude-424232-Illinois-

Greene_County.html  

http://www.lat-long.com/Latitude-Longitude-424244-Illinois-

Jo_Daviess_County.html  

http://www.lat-long.com/Latitude-Longitude-422247-Illinois-

LaSalle_County.html  

http://www.lat-long.com/Latitude-Longitude-413862-Illinois-Morton.html  

http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-

Moultrie_County.html  

http://www.lat-long.com/Latitude-Longitude-415490-Illinois-Pearl.html  

http://www.lat-long.com/Latitude-Longitude-428633-Illinois-

Township_of_Banner.html  

http://www.lat-long.com/Latitude-Longitude-179042-Colorado-Mesa_Verde_National_Park.html
http://www.lat-long.com/Latitude-Longitude-179042-Colorado-Mesa_Verde_National_Park.html
http://www.lat-long.com/Latitude-Longitude-183932-Colorado-Trimble.html
http://www.lat-long.com/Latitude-Longitude-2378290-Connecticut-City_of_Shelton.html
http://www.lat-long.com/Latitude-Longitude-2378290-Connecticut-City_of_Shelton.html
http://www.lat-long.com/Latitude-Longitude-213509-Connecticut-Town_of_South_Windsor.html
http://www.lat-long.com/Latitude-Longitude-213509-Connecticut-Town_of_South_Windsor.html
http://www.lat-long.com/Latitude-Longitude-295743-Florida-Glades_County.html
http://www.lat-long.com/Latitude-Longitude-295743-Florida-Glades_County.html
http://www.lat-long.com/Latitude-Longitude-306916-Florida-Leon_County.html
http://www.lat-long.com/Latitude-Longitude-351604-Georgia-Bartow_County.html
http://www.lat-long.com/Latitude-Longitude-351604-Georgia-Bartow_County.html
http://www.lat-long.com/Latitude-Longitude-348672-Georgia-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-348672-Georgia-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-353662-Georgia-The_Flat_Woods.html
http://www.lat-long.com/Latitude-Longitude-353662-Georgia-The_Flat_Woods.html
http://www.lat-long.com/Latitude-Longitude-465253-Iowa-Mills_County.html
https://www.latlong.net/place/cahokia-il-usa-4791.html
http://www.lat-long.com/Latitude-Longitude-424209-Illinois-Carroll_County.html
http://www.lat-long.com/Latitude-Longitude-424209-Illinois-Carroll_County.html
http://www.lat-long.com/Latitude-Longitude-424232-Illinois-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-424232-Illinois-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-424244-Illinois-Jo_Daviess_County.html
http://www.lat-long.com/Latitude-Longitude-424244-Illinois-Jo_Daviess_County.html
http://www.lat-long.com/Latitude-Longitude-422247-Illinois-LaSalle_County.html
http://www.lat-long.com/Latitude-Longitude-422247-Illinois-LaSalle_County.html
http://www.lat-long.com/Latitude-Longitude-413862-Illinois-Morton.html
http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-Moultrie_County.html
http://www.lat-long.com/Latitude-Longitude-1784885-Illinois-Moultrie_County.html
http://www.lat-long.com/Latitude-Longitude-415490-Illinois-Pearl.html
http://www.lat-long.com/Latitude-Longitude-428633-Illinois-Township_of_Banner.html
http://www.lat-long.com/Latitude-Longitude-428633-Illinois-Township_of_Banner.html
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http://www.lat-long.com/Latitude-Longitude-415547-Illinois-

Pere_Marquette_State_Park.html 

 http://www.lat-long.com/Latitude-Longitude-2400038-Illinois-

Village_of_Valley_City.html  

 http://www.lat-long.com/Latitude-Longitude-451676-Indiana-

Greene_County.html  

http://www.lat-long.com/Latitude-Longitude-450356-Indiana-

Hamilton_County.html 

http://www.lat-long.com/Latitude-Longitude-450365-Indiana-

Johnson_County.html   

http://www.lat-long.com/Latitude-Longitude-451703-Indiana-

Lawrence_County.html 

http://www.lat-long.com/Latitude-Longitude-450375-Indiana-

Morgan_County.html   

http://www.lat-long.com/Latitude-Longitude-451681-Indiana-

Orange_County.html  

http://www.lat-long.com/Latitude-Longitude-450379-Indiana-Owen_County.html  

 http://www.lat-long.com/Latitude-Longitude-450396-Indiana-

Vanderburgh_County.html  

 http://www.lat-long.com/Latitude-Longitude-484983-Kansas-Clay_County.html  

 http://www.lat-long.com/Latitude-Longitude-484986-Kansas-

Comanche_County.html  

 http://www.lat-long.com/Latitude-Longitude-484999-Kansas-Geary_County.html  

 http://www.lat-long.com/Latitude-Longitude-485004-Kansas-

Harper_County.html  

 http://www.lat-long.com/Latitude-Longitude-485010-Kansas-

Johnson_County.html  

http://www.lat-long.com/Latitude-Longitude-485022-Kansas-

Marion_County.html  

http://www.lat-long.com/Latitude-Longitude-485024-Kansas-

Meade_County.html  

http://www.lat-long.com/Latitude-Longitude-485052-Kansas-

Sheridan_County.html  

http://www.lat-long.com/Latitude-Longitude-415547-Illinois-Pere_Marquette_State_Park.html
http://www.lat-long.com/Latitude-Longitude-415547-Illinois-Pere_Marquette_State_Park.html
http://www.lat-long.com/Latitude-Longitude-2400038-Illinois-Village_of_Valley_City.html
http://www.lat-long.com/Latitude-Longitude-2400038-Illinois-Village_of_Valley_City.html
http://www.lat-long.com/Latitude-Longitude-451676-Indiana-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-451676-Indiana-Greene_County.html
http://www.lat-long.com/Latitude-Longitude-450356-Indiana-Hamilton_County.html
http://www.lat-long.com/Latitude-Longitude-450356-Indiana-Hamilton_County.html
http://www.lat-long.com/Latitude-Longitude-450365-Indiana-Johnson_County.html
http://www.lat-long.com/Latitude-Longitude-450365-Indiana-Johnson_County.html
http://www.lat-long.com/Latitude-Longitude-451703-Indiana-Lawrence_County.html
http://www.lat-long.com/Latitude-Longitude-451703-Indiana-Lawrence_County.html
http://www.lat-long.com/Latitude-Longitude-450375-Indiana-Morgan_County.html
http://www.lat-long.com/Latitude-Longitude-450375-Indiana-Morgan_County.html
http://www.lat-long.com/Latitude-Longitude-451681-Indiana-Orange_County.html
http://www.lat-long.com/Latitude-Longitude-451681-Indiana-Orange_County.html
http://www.lat-long.com/Latitude-Longitude-450379-Indiana-Owen_County.html
http://www.lat-long.com/Latitude-Longitude-450396-Indiana-Vanderburgh_County.html
http://www.lat-long.com/Latitude-Longitude-450396-Indiana-Vanderburgh_County.html
http://www.lat-long.com/Latitude-Longitude-484983-Kansas-Clay_County.html
http://www.lat-long.com/Latitude-Longitude-484986-Kansas-Comanche_County.html
http://www.lat-long.com/Latitude-Longitude-484986-Kansas-Comanche_County.html
http://www.lat-long.com/Latitude-Longitude-484999-Kansas-Geary_County.html
http://www.lat-long.com/Latitude-Longitude-485004-Kansas-Harper_County.html
http://www.lat-long.com/Latitude-Longitude-485004-Kansas-Harper_County.html
http://www.lat-long.com/Latitude-Longitude-485010-Kansas-Johnson_County.html
http://www.lat-long.com/Latitude-Longitude-485010-Kansas-Johnson_County.html
http://www.lat-long.com/Latitude-Longitude-485022-Kansas-Marion_County.html
http://www.lat-long.com/Latitude-Longitude-485022-Kansas-Marion_County.html
http://www.lat-long.com/Latitude-Longitude-485024-Kansas-Meade_County.html
http://www.lat-long.com/Latitude-Longitude-485024-Kansas-Meade_County.html
http://www.lat-long.com/Latitude-Longitude-485052-Kansas-Sheridan_County.html
http://www.lat-long.com/Latitude-Longitude-485052-Kansas-Sheridan_County.html
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 http://www.lat-long.com/Latitude-Longitude-488935-Kentucky-Carlisle.html  

 http://www.lat-long.com/Latitude-Longitude-558582-Louisiana-

Iberville_Parish.html  

 http://www.lat-long.com/Latitude-Longitude-606930-Massachusetts-

Dukes_County.html 

 http://www.lat-long.com/Latitude-Longitude-606936-Massachusetts-

Nantucket_County.html  

 http://www.lat-long.com/Latitude-Longitude-618249-Massachusetts-

Town_of_Brewster.html  

 http://www.lat-long.com/Latitude-Longitude-581293-Maine-

Lincoln_County.html 

 http://www.lat-long.com/Latitude-Longitude-581301-Maine-York_County.html  

 http://www.lat-long.com/Latitude-Longitude-1622951-Michigan-

Bay_County.html  

 http://www.lat-long.com/Latitude-Longitude-1623015-Michigan-

Saginaw_County.html  

 http://www.lat-long.com/Latitude-Longitude-659467-Minnesota-

Faribault_County.html  

http://www.lat-long.com/Latitude-Longitude-659470-Minnesota-

Goodhue_County.html  

 http://www.lat-long.com/Latitude-Longitude-695738-Mississippi-

Coahoma_County.html  

 http://www.lat-long.com/Latitude-Longitude-695788-Mississippi-

Tallahatchie_County.html  

http://www.lat-long.com/Latitude-Longitude-695792-Mississippi-

Tunica_County.html  

http://www.lat-long.com/Latitude-Longitude-695796-Mississippi-

Washington_County.html  

http://www.lat-long.com/Latitude-Longitude-695802-Mississippi-

Yazoo_County.html  

 http://www.lat-long.com/Latitude-Longitude-758465-Missouri-

Buchanan_County.html 

 http://www.lat-long.com/Latitude-Longitude-758478-Missouri-Clay_County.html   

http://www.lat-long.com/Latitude-Longitude-488935-Kentucky-Carlisle.html
http://www.lat-long.com/Latitude-Longitude-558582-Louisiana-Iberville_Parish.html
http://www.lat-long.com/Latitude-Longitude-558582-Louisiana-Iberville_Parish.html
http://www.lat-long.com/Latitude-Longitude-606930-Massachusetts-Dukes_County.html
http://www.lat-long.com/Latitude-Longitude-606930-Massachusetts-Dukes_County.html
http://www.lat-long.com/Latitude-Longitude-606936-Massachusetts-Nantucket_County.html
http://www.lat-long.com/Latitude-Longitude-606936-Massachusetts-Nantucket_County.html
http://www.lat-long.com/Latitude-Longitude-618249-Massachusetts-Town_of_Brewster.html
http://www.lat-long.com/Latitude-Longitude-618249-Massachusetts-Town_of_Brewster.html
http://www.lat-long.com/Latitude-Longitude-581293-Maine-Lincoln_County.html
http://www.lat-long.com/Latitude-Longitude-581293-Maine-Lincoln_County.html
http://www.lat-long.com/Latitude-Longitude-581301-Maine-York_County.html
http://www.lat-long.com/Latitude-Longitude-1622951-Michigan-Bay_County.html
http://www.lat-long.com/Latitude-Longitude-1622951-Michigan-Bay_County.html
http://www.lat-long.com/Latitude-Longitude-1623015-Michigan-Saginaw_County.html
http://www.lat-long.com/Latitude-Longitude-1623015-Michigan-Saginaw_County.html
http://www.lat-long.com/Latitude-Longitude-659467-Minnesota-Faribault_County.html
http://www.lat-long.com/Latitude-Longitude-659467-Minnesota-Faribault_County.html
http://www.lat-long.com/Latitude-Longitude-659470-Minnesota-Goodhue_County.html
http://www.lat-long.com/Latitude-Longitude-659470-Minnesota-Goodhue_County.html
http://www.lat-long.com/Latitude-Longitude-695738-Mississippi-Coahoma_County.html
http://www.lat-long.com/Latitude-Longitude-695738-Mississippi-Coahoma_County.html
http://www.lat-long.com/Latitude-Longitude-695788-Mississippi-Tallahatchie_County.html
http://www.lat-long.com/Latitude-Longitude-695788-Mississippi-Tallahatchie_County.html
http://www.lat-long.com/Latitude-Longitude-695792-Mississippi-Tunica_County.html
http://www.lat-long.com/Latitude-Longitude-695792-Mississippi-Tunica_County.html
http://www.lat-long.com/Latitude-Longitude-695796-Mississippi-Washington_County.html
http://www.lat-long.com/Latitude-Longitude-695796-Mississippi-Washington_County.html
http://www.lat-long.com/Latitude-Longitude-695802-Mississippi-Yazoo_County.html
http://www.lat-long.com/Latitude-Longitude-695802-Mississippi-Yazoo_County.html
http://www.lat-long.com/Latitude-Longitude-758465-Missouri-Buchanan_County.html
http://www.lat-long.com/Latitude-Longitude-758465-Missouri-Buchanan_County.html
http://www.lat-long.com/Latitude-Longitude-758478-Missouri-Clay_County.html


90 

 

 http://www.lat-long.com/Latitude-Longitude-758509-Missouri-

Lawrence_County.html  

 http://www.lat-long.com/Latitude-Longitude-758537-Missouri-

Platte_County.html  

 http://www.lat-long.com/Latitude-Longitude-1026337-North_Carolina-

Carteret_County.html  

 http://www.lat-long.com/Latitude-Longitude-1008573-North_Carolina-

Moore_County.html  

 http://www.lat-long.com/Latitude-Longitude-1026341-North_Carolina-

Onslow_County.html  

 http://www.lat-long.com/Latitude-Longitude-1008586-North_Carolina-

Stokes_County.html  

 http://www.lat-long.com/Latitude-Longitude-835853-Nebraska-

Frontier_County.html  

 http://www.lat-long.com/Latitude-Longitude-835898-Nebraska-

Sarpy_County.html  

 http://www.lat-long.com/Latitude-Longitude-855961-Nevada-Baker.html  

 http://www.lat-long.com/Latitude-Longitude-1035614-North_Dakota-

Burleigh_County.html  

 http://www.lat-long.com/Latitude-Longitude-1034226-North_Dakota-

Cass_County.html  

http://www.lat-long.com/Latitude-Longitude-1036285-North_Dakota-

City_of_Stanton.html  

http://www.lat-long.com/Latitude-Longitude-1035623-North_Dakota-

Dunn_County.html  

 http://www.lat-long.com/Latitude-Longitude-1035615-North_Dakota-

Emmons_County.html  

 http://www.lat-long.com/Latitude-Longitude-1035621-North_Dakota-

LaMoure_County.html  

http://www.lat-long.com/Latitude-Longitude-1034233-North_Dakota-

Mercer_County.html  

http://www.lat-long.com/Latitude-Longitude-1034207-North_Dakota-

Morton_County.html  

http://www.lat-long.com/Latitude-Longitude-758509-Missouri-Lawrence_County.html
http://www.lat-long.com/Latitude-Longitude-758509-Missouri-Lawrence_County.html
http://www.lat-long.com/Latitude-Longitude-758537-Missouri-Platte_County.html
http://www.lat-long.com/Latitude-Longitude-758537-Missouri-Platte_County.html
http://www.lat-long.com/Latitude-Longitude-1026337-North_Carolina-Carteret_County.html
http://www.lat-long.com/Latitude-Longitude-1026337-North_Carolina-Carteret_County.html
http://www.lat-long.com/Latitude-Longitude-1008573-North_Carolina-Moore_County.html
http://www.lat-long.com/Latitude-Longitude-1008573-North_Carolina-Moore_County.html
http://www.lat-long.com/Latitude-Longitude-1026341-North_Carolina-Onslow_County.html
http://www.lat-long.com/Latitude-Longitude-1026341-North_Carolina-Onslow_County.html
http://www.lat-long.com/Latitude-Longitude-1008586-North_Carolina-Stokes_County.html
http://www.lat-long.com/Latitude-Longitude-1008586-North_Carolina-Stokes_County.html
http://www.lat-long.com/Latitude-Longitude-835853-Nebraska-Frontier_County.html
http://www.lat-long.com/Latitude-Longitude-835853-Nebraska-Frontier_County.html
http://www.lat-long.com/Latitude-Longitude-835898-Nebraska-Sarpy_County.html
http://www.lat-long.com/Latitude-Longitude-835898-Nebraska-Sarpy_County.html
http://www.lat-long.com/Latitude-Longitude-855961-Nevada-Baker.html
http://www.lat-long.com/Latitude-Longitude-1035614-North_Dakota-Burleigh_County.html
http://www.lat-long.com/Latitude-Longitude-1035614-North_Dakota-Burleigh_County.html
http://www.lat-long.com/Latitude-Longitude-1034226-North_Dakota-Cass_County.html
http://www.lat-long.com/Latitude-Longitude-1034226-North_Dakota-Cass_County.html
http://www.lat-long.com/Latitude-Longitude-1036285-North_Dakota-City_of_Stanton.html
http://www.lat-long.com/Latitude-Longitude-1036285-North_Dakota-City_of_Stanton.html
http://www.lat-long.com/Latitude-Longitude-1035623-North_Dakota-Dunn_County.html
http://www.lat-long.com/Latitude-Longitude-1035623-North_Dakota-Dunn_County.html
http://www.lat-long.com/Latitude-Longitude-1035615-North_Dakota-Emmons_County.html
http://www.lat-long.com/Latitude-Longitude-1035615-North_Dakota-Emmons_County.html
http://www.lat-long.com/Latitude-Longitude-1035621-North_Dakota-LaMoure_County.html
http://www.lat-long.com/Latitude-Longitude-1035621-North_Dakota-LaMoure_County.html
http://www.lat-long.com/Latitude-Longitude-1034233-North_Dakota-Mercer_County.html
http://www.lat-long.com/Latitude-Longitude-1034233-North_Dakota-Mercer_County.html
http://www.lat-long.com/Latitude-Longitude-1034207-North_Dakota-Morton_County.html
http://www.lat-long.com/Latitude-Longitude-1034207-North_Dakota-Morton_County.html


91 

 

http://www.lat-long.com/Latitude-Longitude-1034205-North_Dakota-

Oliver_County.html  

http://www.lat-long.com/Latitude-Longitude-1035303-North_Dakota-

Sargent_County.html  

http://www.lat-long.com/Latitude-Longitude-1034208-North_Dakota-

Sioux_County.html  

http://www.lat-long.com/Latitude-Longitude-1034224-North_Dakota-

Stutsman_County.html  

 http://www.lat-long.com/Latitude-Longitude-885278-New_Jersey-

City_of_Linden.html  

 http://www.lat-long.com/Latitude-Longitude-886108-New_Mexico-

Bat_Cave_Canyon.html  

http://www.lat-long.com/Latitude-Longitude-929108-New_Mexico-

Catron_County.html  

http://www.lat-long.com/Latitude-Longitude-887400-New_Mexico-

Chaco_Canyon.html  

http://www.lat-long.com/dynamic-map-902207-New_Mexico-Chama.html  

http://www.lat-long.com/Latitude-Longitude-887840-New_Mexico-

Cordova_Canyon.html  

 http://www.lat-long.com/Latitude-Longitude-923992-New_Mexico-

Dona_Ana_Site_Dam.html  

 http://www.lat-long.com/Latitude-Longitude-936782-New_Mexico-

Jemez_State_Monument.html  

 http://www.lat-long.com/Latitude-Longitude-908771-New_Mexico-

Mimbres_Canyon.html  

http://www.lat-long.com/Latitude-Longitude-929104-New_Mexico-

Otero_County.html  

 http://www.lat-long.com/Latitude-Longitude-932361-New_Mexico-

Salmon_Ruin_Historical_Marker.html  

 http://www.lat-long.com/Latitude-Longitude-929113-New_Mexico-

Sandoval_County.html 

 http://www.lat-long.com/Latitude-Longitude-936844-New_Mexico-

San_Juan_County.html 

http://www.lat-long.com/Latitude-Longitude-1034205-North_Dakota-Oliver_County.html
http://www.lat-long.com/Latitude-Longitude-1034205-North_Dakota-Oliver_County.html
http://www.lat-long.com/Latitude-Longitude-1035303-North_Dakota-Sargent_County.html
http://www.lat-long.com/Latitude-Longitude-1035303-North_Dakota-Sargent_County.html
http://www.lat-long.com/Latitude-Longitude-1034208-North_Dakota-Sioux_County.html
http://www.lat-long.com/Latitude-Longitude-1034208-North_Dakota-Sioux_County.html
http://www.lat-long.com/Latitude-Longitude-1034224-North_Dakota-Stutsman_County.html
http://www.lat-long.com/Latitude-Longitude-1034224-North_Dakota-Stutsman_County.html
http://www.lat-long.com/Latitude-Longitude-885278-New_Jersey-City_of_Linden.html
http://www.lat-long.com/Latitude-Longitude-885278-New_Jersey-City_of_Linden.html
http://www.lat-long.com/Latitude-Longitude-886108-New_Mexico-Bat_Cave_Canyon.html
http://www.lat-long.com/Latitude-Longitude-886108-New_Mexico-Bat_Cave_Canyon.html
http://www.lat-long.com/Latitude-Longitude-929108-New_Mexico-Catron_County.html
http://www.lat-long.com/Latitude-Longitude-929108-New_Mexico-Catron_County.html
http://www.lat-long.com/Latitude-Longitude-887400-New_Mexico-Chaco_Canyon.html
http://www.lat-long.com/Latitude-Longitude-887400-New_Mexico-Chaco_Canyon.html
http://www.lat-long.com/dynamic-map-902207-New_Mexico-Chama.html
http://www.lat-long.com/Latitude-Longitude-887840-New_Mexico-Cordova_Canyon.html
http://www.lat-long.com/Latitude-Longitude-887840-New_Mexico-Cordova_Canyon.html
http://www.lat-long.com/Latitude-Longitude-923992-New_Mexico-Dona_Ana_Site_Dam.html
http://www.lat-long.com/Latitude-Longitude-923992-New_Mexico-Dona_Ana_Site_Dam.html
http://www.lat-long.com/Latitude-Longitude-936782-New_Mexico-Jemez_State_Monument.html
http://www.lat-long.com/Latitude-Longitude-936782-New_Mexico-Jemez_State_Monument.html
http://www.lat-long.com/Latitude-Longitude-908771-New_Mexico-Mimbres_Canyon.html
http://www.lat-long.com/Latitude-Longitude-908771-New_Mexico-Mimbres_Canyon.html
http://www.lat-long.com/Latitude-Longitude-929104-New_Mexico-Otero_County.html
http://www.lat-long.com/Latitude-Longitude-929104-New_Mexico-Otero_County.html
http://www.lat-long.com/Latitude-Longitude-932361-New_Mexico-Salmon_Ruin_Historical_Marker.html
http://www.lat-long.com/Latitude-Longitude-932361-New_Mexico-Salmon_Ruin_Historical_Marker.html
http://www.lat-long.com/Latitude-Longitude-929113-New_Mexico-Sandoval_County.html
http://www.lat-long.com/Latitude-Longitude-929113-New_Mexico-Sandoval_County.html
http://www.lat-long.com/Latitude-Longitude-936844-New_Mexico-San_Juan_County.html
http://www.lat-long.com/Latitude-Longitude-936844-New_Mexico-San_Juan_County.html


92 

 

 http://www.lat-long.com/Latitude-Longitude-944698-New_York-Brewerton.html 

 http://www.lat-long.com/Latitude-Longitude-979110-New_York-

City_of_Johnstown.html  

 http://www.lat-long.com/Latitude-Longitude-948278-New_York-Delmar.html  

 http://www.lat-long.com/Latitude-Longitude-952249-New_York-

Harpersfield.html  

 http://www.lat-long.com/Latitude-Longitude-957170-New_York-Milan.html  

 http://www.lat-long.com/Latitude-Longitude-979227-New_York-

Town_of_Mohawk.html  

 http://www.lat-long.com/Latitude-Longitude-979572-New_York-

Town_of_Union.html  

http://www.lat-long.com/Latitude-Longitude-958460-New_York-

New_Suffolk.html  

http://www.lat-long.com/Latitude-Longitude-979223-New_York-

Town_of_Minden.html  

http://www.lat-long.com/Latitude-Longitude-2390842-New_York-

Village_of_Fonda.html  

http://www.lat-long.com/Latitude-Longitude-2390854-New_York-

Village_of_Fultonville.html  

 http://www.lat-long.com/Latitude-Longitude-969005-New_York-Weedsport.html 

 http://www.lat-long.com/Latitude-Longitude-971538-New_York-Wolcott.html  

 http://www.lat-long.com/Latitude-Longitude-1074052-Ohio-

Jackson_County.html 

 http://www.lat-long.com/Latitude-Longitude-1086900-Ohio-

Township_of_Liberty.html  

 http://www.lat-long.com/Latitude-Longitude-1074082-Ohio-

Richland_County.html 

http://www.lat-long.com/Latitude-Longitude-1074083-Ohio-Ross_County.html  

 http://www.lat-long.com/Latitude-Longitude-1074085-Ohio-Scioto_County.html  

 http://www.lat-long.com/Latitude-Longitude-1101791-Oklahoma-

Beaver_County.html  

http://www.lat-long.com/Latitude-Longitude-944698-New_York-Brewerton.html
http://www.lat-long.com/Latitude-Longitude-979110-New_York-City_of_Johnstown.html
http://www.lat-long.com/Latitude-Longitude-979110-New_York-City_of_Johnstown.html
http://www.lat-long.com/Latitude-Longitude-948278-New_York-Delmar.html
http://www.lat-long.com/Latitude-Longitude-952249-New_York-Harpersfield.html
http://www.lat-long.com/Latitude-Longitude-952249-New_York-Harpersfield.html
http://www.lat-long.com/Latitude-Longitude-957170-New_York-Milan.html
http://www.lat-long.com/Latitude-Longitude-979227-New_York-Town_of_Mohawk.html
http://www.lat-long.com/Latitude-Longitude-979227-New_York-Town_of_Mohawk.html
http://www.lat-long.com/Latitude-Longitude-979572-New_York-Town_of_Union.html
http://www.lat-long.com/Latitude-Longitude-979572-New_York-Town_of_Union.html
http://www.lat-long.com/Latitude-Longitude-958460-New_York-New_Suffolk.html
http://www.lat-long.com/Latitude-Longitude-958460-New_York-New_Suffolk.html
http://www.lat-long.com/Latitude-Longitude-979223-New_York-Town_of_Minden.html
http://www.lat-long.com/Latitude-Longitude-979223-New_York-Town_of_Minden.html
http://www.lat-long.com/Latitude-Longitude-2390842-New_York-Village_of_Fonda.html
http://www.lat-long.com/Latitude-Longitude-2390842-New_York-Village_of_Fonda.html
http://www.lat-long.com/Latitude-Longitude-2390854-New_York-Village_of_Fultonville.html
http://www.lat-long.com/Latitude-Longitude-2390854-New_York-Village_of_Fultonville.html
http://www.lat-long.com/Latitude-Longitude-969005-New_York-Weedsport.html
http://www.lat-long.com/Latitude-Longitude-971538-New_York-Wolcott.html
http://www.lat-long.com/Latitude-Longitude-1074052-Ohio-Jackson_County.html
http://www.lat-long.com/Latitude-Longitude-1074052-Ohio-Jackson_County.html
http://www.lat-long.com/Latitude-Longitude-1086900-Ohio-Township_of_Liberty.html
http://www.lat-long.com/Latitude-Longitude-1086900-Ohio-Township_of_Liberty.html
http://www.lat-long.com/Latitude-Longitude-1074082-Ohio-Richland_County.html
http://www.lat-long.com/Latitude-Longitude-1074082-Ohio-Richland_County.html
http://www.lat-long.com/Latitude-Longitude-1074083-Ohio-Ross_County.html
http://www.lat-long.com/Latitude-Longitude-1074085-Ohio-Scioto_County.html
http://www.lat-long.com/Latitude-Longitude-1101791-Oklahoma-Beaver_County.html
http://www.lat-long.com/Latitude-Longitude-1101791-Oklahoma-Beaver_County.html


93 

 

 http://www.lat-long.com/Latitude-Longitude-1101795-Oklahoma-

Caddo_County.html  

http://www.lat-long.com/Latitude-Longitude-1101807-Oklahoma-

Custer_County.html  

http://www.lat-long.com/Latitude-Longitude-1101810-Oklahoma-

Ellis_County.html  

http://www.lat-long.com/Latitude-Longitude-1101812-Oklahoma-

Garvin_County.html  

http://www.lat-long.com/Latitude-Longitude-1101813-Oklahoma-

Grady_County.html  

http://www.lat-long.com/Latitude-Longitude-1101817-Oklahoma-

Harper_County.html  

http://www.lat-long.com/Latitude-Longitude-1101819-Oklahoma-

Hughes_County.html  

http://www.lat-long.com/Latitude-Longitude-1101831-Oklahoma-

Major_County.html  

 http://www.lat-long.com/Latitude-Longitude-1101852-Oklahoma-

Roger_Mills_County.html  

http://www.lat-long.com/Latitude-Longitude-1101857-Oklahoma-

Texas_County.html  

http://www.lat-long.com/Latitude-Longitude-1101862-Oklahoma-

Washita_County.html  

http://www.lat-long.com/Latitude-Longitude-1101863-Oklahoma-

Woods_County.html  

http://www.lat-long.com/Latitude-Longitude-1101864-Oklahoma-

Woodward_County.html  

http://www.lat-long.com/Latitude-Longitude-1247985-South_Carolina-

Berkeley_County.html  

http://www.lat-long.com/Latitude-Longitude-1266974-South_Dakota-

Campbell_County.html  

http://www.lat-long.com/Latitude-Longitude-1266980-South_Dakota-

Davison_County.html  

http://www.lat-long.com/Latitude-Longitude-1266994-South_Dakota-

Dewey_County.html  

http://www.lat-long.com/Latitude-Longitude-1101795-Oklahoma-Caddo_County.html
http://www.lat-long.com/Latitude-Longitude-1101795-Oklahoma-Caddo_County.html
http://www.lat-long.com/Latitude-Longitude-1101807-Oklahoma-Custer_County.html
http://www.lat-long.com/Latitude-Longitude-1101807-Oklahoma-Custer_County.html
http://www.lat-long.com/Latitude-Longitude-1101810-Oklahoma-Ellis_County.html
http://www.lat-long.com/Latitude-Longitude-1101810-Oklahoma-Ellis_County.html
http://www.lat-long.com/Latitude-Longitude-1101812-Oklahoma-Garvin_County.html
http://www.lat-long.com/Latitude-Longitude-1101812-Oklahoma-Garvin_County.html
http://www.lat-long.com/Latitude-Longitude-1101813-Oklahoma-Grady_County.html
http://www.lat-long.com/Latitude-Longitude-1101813-Oklahoma-Grady_County.html
http://www.lat-long.com/Latitude-Longitude-1101817-Oklahoma-Harper_County.html
http://www.lat-long.com/Latitude-Longitude-1101817-Oklahoma-Harper_County.html
http://www.lat-long.com/Latitude-Longitude-1101819-Oklahoma-Hughes_County.html
http://www.lat-long.com/Latitude-Longitude-1101819-Oklahoma-Hughes_County.html
http://www.lat-long.com/Latitude-Longitude-1101831-Oklahoma-Major_County.html
http://www.lat-long.com/Latitude-Longitude-1101831-Oklahoma-Major_County.html
http://www.lat-long.com/Latitude-Longitude-1101852-Oklahoma-Roger_Mills_County.html
http://www.lat-long.com/Latitude-Longitude-1101852-Oklahoma-Roger_Mills_County.html
http://www.lat-long.com/Latitude-Longitude-1101857-Oklahoma-Texas_County.html
http://www.lat-long.com/Latitude-Longitude-1101857-Oklahoma-Texas_County.html
http://www.lat-long.com/Latitude-Longitude-1101862-Oklahoma-Washita_County.html
http://www.lat-long.com/Latitude-Longitude-1101862-Oklahoma-Washita_County.html
http://www.lat-long.com/Latitude-Longitude-1101863-Oklahoma-Woods_County.html
http://www.lat-long.com/Latitude-Longitude-1101863-Oklahoma-Woods_County.html
http://www.lat-long.com/Latitude-Longitude-1101864-Oklahoma-Woodward_County.html
http://www.lat-long.com/Latitude-Longitude-1101864-Oklahoma-Woodward_County.html
http://www.lat-long.com/Latitude-Longitude-1247985-South_Carolina-Berkeley_County.html
http://www.lat-long.com/Latitude-Longitude-1247985-South_Carolina-Berkeley_County.html
http://www.lat-long.com/Latitude-Longitude-1266974-South_Dakota-Campbell_County.html
http://www.lat-long.com/Latitude-Longitude-1266974-South_Dakota-Campbell_County.html
http://www.lat-long.com/Latitude-Longitude-1266980-South_Dakota-Davison_County.html
http://www.lat-long.com/Latitude-Longitude-1266980-South_Dakota-Davison_County.html
http://www.lat-long.com/Latitude-Longitude-1266994-South_Dakota-Dewey_County.html
http://www.lat-long.com/Latitude-Longitude-1266994-South_Dakota-Dewey_County.html


94 

 

http://www.lat-long.com/Latitude-Longitude-1267481-South_Dakota-

City_of_Mobridge.html   

http://www.lat-long.com/Latitude-Longitude-1265765-South_Dakota-

Gregory_County.html  

http://www.lat-long.com/Latitude-Longitude-1266998-South_Dakota-

Stanley_County.html  

http://www.lat-long.com/Latitude-Longitude-1266973-South_Dakota-

Walworth_County.html  

 http://www.lat-long.com/Latitude-Longitude-1277595-Tennessee-

Black_Pond.html  

 http://www.lat-long.com/Latitude-Longitude-1639770-Tennessee-

Marion_County.html  

http://www.lat-long.com/Latitude-Longitude-1639776-Tennessee-

Monroe_County.html  

 http://www.lat-long.com/Latitude-Longitude-1383786-Texas-

Anderson_County.html  

 http://www.lat-long.com/Latitude-Longitude-1383817-Texas-Camp_County.html  
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Appendix F 

 Attached in this appendix is the Excel sheet utilized to run the analyses in R. 

More specifically, this Excel sheet was created using the methods from the “Final 

Data” section of chapter 3. Grid cells containing so few numbers (double and single 

digit data points) of geophytes, both all and consumable, skewed the results and were, 

therefore, removed from the analysis. 

PageNameAll_Geos ZGeos Consum_GeosZConGeos GEO_RatioMaize_SitesMaize_Sites2MAIZEID

U40 168 -1.28211 15 -1.77213 0.089286 0 1 0

T33 186 -1.17102 31 -0.95829 0.166667 0 1 0

T39 319 -0.35018 31 -0.95829 0.097179 0 1 0

T40 232 -0.88712 19 -1.56867 0.081897 1 2 1

S30 141 -1.44874 22 -1.41607 0.156028 0 1 0

S31 182 -1.1957 28 -1.11089 0.153846 0 1 0

S32 158 -1.34383 29 -1.06002 0.183544 0 1 0

S33 372 -0.02308 53 0.160732 0.142473 0 1 0

S34 433 0.353391 51 0.059003 0.117783 0 1 0

S35 288 -0.5415 32 -0.90743 0.111111 0 1 0

S36 312 -0.39338 28 -1.11089 0.089744 1 2 1

S37 361 -0.09097 28 -1.11089 0.077562 2 3 1

S38 368 -0.04777 33 -0.85656 0.089674 4 5 1

S39 368 -0.04777 34 -0.8057 0.092391 0 1 0

S40 246 -0.80072 22 -1.41607 0.089431 0 1 0

R25 430 0.334876 50 0.008138 0.116279 0 1 0

R26 288 -0.5415 36 -0.70397 0.125 0 1 0

R27 208 -1.03524 28 -1.11089 0.134615 8 9 1

R28 458 0.507684 51 0.059003 0.111354 23 24 1  
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Appendix G 

 Figure 14A depicts the relationship between two variables: archaeological sites 

containing maize (Maize_Sites) and mean annual temperature (MAT). The figure, 

14A, shows a drastic upward trajectory with a narrower confidence interval. This 

shows a significant positive relationship between temperature and the number of 

maize sites. Figure 14B examines the relationship between archaeological sites 

containing maize (Maize_Sites) the z-score of the mean growing season rainfall 

(ZMGSR) while holding consumable geophyte level (ZConGeos).  

 

                     

 

 

Figure 14A shows the relationship between mean annual temperature (MAT) and the frequency of archaeological 

sites containing maize (Maize_Sites). Figure 14B illustrates the relationship between archaeological maize sites 

(Maize_Sites) and z-scores for the mean growing season rainfall (ZMGSR) while keeping the z-scores for 

consumable geophytes (ZConGeos) level.  
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 Figure 14 and Table 4 depict the results of a general linear model (equation 1) that 

regresses the number of maize sites on temperature and the interaction of geophyte 

richness and rainfall concentration. Figure 14A plots the effect of temperature on the 

number of archaeological sites containing maize. Furthermore, it illustrates a positive 

relationship between temperature and the presence of archaeological sites containing 

maize. In other words, as temperature increases so does the number of maize sites. The 

figure beside it, Figure 14B, depicts the relationship between mean precipitation 

concentration during the growing season and maize sites when geophyte levels are held 

level. In Figure 14B, the gold line signifies grid cells containing the highest frequency of 

geophytes (3 standard deviations above the mean) while the blue line signifies grid cells 

containing the lowest frequency of geophytes (-2 standard deviations from the mean).  

 The graph, Figure 14B, depicts a strong positive relationship between the mean 

growing season precipitation (ZMGSR) and the two highest standard deviations (gold 

and red lines) for consumable geophytes (ZConGeo). This means that in an area where 

there is a high abundance of geophytes and is rather rainy (higher concentration of 

growing season precipitation), maize sites are more likely to be present. However, in an 

Variable Coeff. 

Estimate 

Std. Error Z value Pr(>|z|) 

Intercept 0.81000 0.12683    6.386 <0.05  

ZMGSR 0.21816 0.05598    3.897 <0.05 

MAT 0.02760 0.01053    2.621   <0.05 

ZConGeos 0.52162 0.05952    8.764   <0.05 

ZMGSR:ZConGeos 0.39523 0.05649 6.997 <0.05 

Table 4 provides calculations for each of the coefficients listed. The intercept is the point where all 

geophyte standard deviations converge. The coefficient ZMGSR is the z-score for mean growing 

season precipitation. MAT is the mean annual temperature. ZConGeos represent the z-score for the 

frequency of consumable geophytes. ZMGSR and ZConGeos are the combined variables defined 

above. 
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environment where geophyte frequency is low and the summer is drier (lower 

concentration of growing season precipitation), people are less likely to adopt maize 

(lowering the number of maize sites in that area). The next set of graphs depicts the same 

data as above but considers the significance of data points based on their spatial 

clustering. 

                     

 

 

 

 

Figure 15A shows the relationship between mean annual temperature (MAT) and the frequency of archaeological 

sites containing maize (Maize_Sites). Figure 15B illustrates the relationship between archaeological maize sites 

(Maize_Sites) and z-scores for the mean growing season rainfall (ZMGSR) while keeping the z-scores for 

consumable geophytes (ZConGeos) level.  
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Variable Coeff. Estimate Cond. SE t-value 

Intercept -1.454235   1.23114 -1.18121 

ZMGSR 0.422383   0.55535   0.76058 

MAT 0.008297   0.08621   0.09624 

ZConGeos 0.417019   0.25706   1.62227 

ZMGSR:ZConGeos 0.206149   0.26548   .77652 

 

Figure 15 and Table 5 depict the results of a mixed effects regression model that 

incorporate latitude and longitude as a random predictor of differences in the number of 

maize sites. Significant amounts of the variation in the number of maize sites among grid 

cells can be explained when controlled for the variation in spatial distribution of maize 

sites. Figure 15A and Figure 15B, depict the same data as the figures, Figure 14A and 

Figure 14B, before but is calculated utilizing the spatial component (latitude and 

longitude). Figure 15A shows the significance between temperature and archaeological 

maize when factoring in the spatial clustering of data points. The line in Figure 15A is 

level and possesses a much wider confidence range. It shows that there is now, possibly, 

no relationship between the two meaning that their relationship is very nearly random. 

Figure 15B, also, displays the same information as Figure 14B but factors in the 

significance of spatial distribution of data points. We can see the Figure 15B exhibits the 

same effects shown in Figure 14B but distributed a bit differently. Essentially, the figure 

(Figure 15B) shows that in areas with higher abundances of geophytes with a higher 

concentration of growing season rainfall, people will intensify on maize. However, in 

Table 5 provides calculations for each of the coefficients listed. The intercept is the point where all 

geophyte standard deviations converge. The coefficient ZMGSR is the z-score for mean growing 

season precipitation. MAT is the mean annual temperature. Z ConGeos represent the z-score for the 

frequency of consumable geophytes. ZMGSR and ZConGeos are the combined variables defined 

above. 
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areas with a low frequency of geophytes and a lower concentration of growing season 

rainfall, people will intensify on geophytes (lowering the number of archaeological sites 

containing maize present in that area).  

Table 5 states the coefficients associated with the concentration of growing 

season precipitation and the standard deviances of consumable geophyte species plot 

(Figure 14B). The calculations lead me to reject the null hypothesis. However, I cannot 

reject the alternative hypothesis. This means that there is a possibility of significant 

clustering. A Moran’s I test on the residual deviances indicates a Moran’s I, or observed, 

value of -0.02 against an expected value of -0.006 (p=0.04). The presence of a negative z-

score, resulting from this, indicates more clustering than can be realistically attributed to 

chance alone.  
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