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ABSTRACT 

Comparison of Microbial Activity in Desert Soils 

of the Western United States 

by 

Patricia Ann Trujillo y Fulgham, Master of Science 

Utah State University, 1978 

Major Professor: John J. Skujins 
Department: Biology 

ix 

Soils from four regional deserts, Great Basin, Sonoran, Chihuahuan, 

and Mojave, were collected at times throughout the year which would 

best exhibit microbial response to moisture or vegetation. The soils 

were analyzed for several chemical and physical properties. Biologi

cal and biochemical characteristics, namely respiration, dehydrogenase 

activity, adenosine triphosphate concentration, proteolytic activity, 

nitrification potential, and microbial numbers, were measured. 

The soils exhibited fluctuations in microbial activity as measured 

by respiration, dehydrogenase activity, adenosine triphosphate concen

tration, proteolytic activity, and nitrification potential during dif-

ferent moisture seasons. 

Increase in soil moisture as modified by precipitation did not 

cause a significant difference in respiration or proteolysis between 

desert soils, however, an increase in moisture did cause a significant 

difference in nitrification potential of desert soils. Proteolytic 

activity was highest in soils collected when above-ground portions of 

desert plants were dormant. 



X 

Low nitrification potential of desert soils was found. Nitrite 

accumulation in perfusion experiments but not in the field was 

observed. 

Respiration, dehydrogenase activity and adenosine triphosphate 

concentration did not respond proportionally in desert soils adjusted 

to different moisture levels. These results suggest that respiration, 

dehydrogenase activity and ATP concentration each appear to represent 

a different phase of microbial metabolism in desert soils. 

(130 pages) 



INTRODUCTION 

Although microbial activity in desert soils is often taken for 

granted, it is an integral part of decomposition and nutrient trans

formation processes. Information pertaining to microbial activity of 

the soil is scanty, in spite of several recent reviews on desert 

ecosystems (Costello 1972, Dregne 1970, McGinnies et al. 1968, Brown 

1974, Noy-Meir 1973, Noy-Meir 1974, Noy-Meir 1978, Fuller 1975). 

In response to increasing population and advancing technology 

there is an accelerated interest in the desert as a potentially pro

ductive land form. Balogh (1970) speculates that significant desert 

areas will come under irrigation and thus play an important role in 

food production. It is therefore important to learn more about the 

microbial aspect of desert soils to aid in avoiding possible irreparable 

ecological damage. 

There are four distinct desert types or regional deserts found 

in the western United States (Shreve 1942, McGinnies et al. 1968). The 

southernmost deserts are the Sonoran and Chihuahuan. The northernmost 

desert is the Great Basin. The fourth desert, the Mojave, is sometimes 

considered as a transition between the Great Basin and Sonoran Deserts 

(see Figure 1). Vegetation suggests transitional character of the 

Mojave. Artemisia tridentata, one of the dominants of the Great Basin, 

mingles with Larrea divaricata, characteristic of southern deserts. 

On the other hand, the Chihuahuan desert may have been a part of a 



Figure 1. Deserts of the western United States and northern 
Mexico (Adapted from Shreve 1942, cited by 
Hastings and Turner 1965). 
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larger complex extending from the northernmost edge of the Mojave 

through the Sonoran since all these divisions are tied together by 

Larrea divaricata existing as several races adapted to widely varying 

conditions of temperature and moisture (McLeary 1968; Hastings and 

Turner 1972). 

3 

Climate, topography, and dominant vegetation differ in each of 

these deserts. For example, the average elevation of the Great Basin 

desert is above 1200 m, that of the Sonoran below 600 to 900 m, and 

that of the Chihuahuan 900 to 1200 m above sea level. In addition, 

temperatures in the Sonoran desert are generally higher than any other 

desert region of the United States. Rainfall in the interior portions 

of the Sonoran Desert are about equally divided between winter months 

(December-March) and summer months (July-September). Temperatures in 

the Chihuahuan are lower than in the Sonoran, but most of the precipi

tation is confined to late summer-early fall months. Both the Great 

Basin and the Mojave deserts are characterized by hot summers and com

paratively colder winters than the deserts to the south. Precipitation 

occurs primarily in the winter there (McLeary 1968). 

Dominant plants that characterize each of these deserts are: 

Chihuahuan--Larrea divaricata, Flourensia cernua, Acacia spp. and 

Mortonia scahrella; Sonoran--Larrea divaricata, Ambrosia deltiodea, 

Cereus spp., and Opuntia spp.; Mojave--Larrea divaricata, Lyciwn 

andersonii, and Krameria parvifolia; Great Basin--Artemisia tridentata, 

Atriplex confertifolia, and Ceratoides lanata (McGinnies 1968). 

Since little was known about soil microorganisms in these deserts, 

this study was undertaken to investigate certain aspects of microbial 



activity in several desert soils of the western United States. These 

aspects include decomposition and nitrogen transformation, especially 

nitrification. 

4 

The first objective of this study was to assess the effect of 

moisture season on microbial activity measured by respiration, dehy

drogenase activity, ATP concentration, proteolytic activity, nitrifi

cation potential, microbial numbers, and organic carbon and nitrogen 

content in desert soils, and to see what similarities existed between 

desert soils in the regional deserts, as characterized by these 

parameters. It was hypothesized that microbial activity as measured 

by dehydrogenase activity, respiration, and ATP concentration in des

ert soils of different desert regions collected during the wet seasons 

would not be significantly different. Furthermore, it was hypothe

sized that proteolytic activity and nitrification potential in desert 

soils of different desert regions would be significantly different 

during the wet seasons. It was hypothesized that parameters measuring 

decomposition, such as respiration and proteolysis, would be highest 

in soils collected during the seasons in which above-ground portions 

of higher plants were dormant. 

The second objective was to study effects of moisture on microbial 

activity of desert soils under laboratory-simulated field conditons. 

Soil microbial activity under these conditions was measured by three 

parameters: respiration, dehydrogenase activity, and ATP concentration. 

The laboratory experiments enabled simulation of wetting-drying cycles 

in the desert. It was also possible to adjust the moisture levels in 
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the soils and observe microbial response. It was hypothesized that 

respiration, dehydrogenase activity, and ATP concentration would 

increase significantly in desert soils moistened to less than -2 bars. 

In addition, it was hypothesized that microbial activity, as measured 

by respiration, dehydrogenase activity, and ATP concentration, would 

decrease initially upon desiccation of soil, but upon further desic

cation would not significantly decrease further. 

Soil samples were collected over one year during both the vegeta

tively active and vegetatively dormant seasons in the Chihuahuan, 

Sonoran, Mojave, and Great Basin deserts. The soils were brought to 

the laboratory and analyzed. Soils from two of the sampling dates 

were used to conduct additional experiments. 

Since only a one-year cycle of microbial activity was measured, 

the data does not indicate annual trends. It was impossible to sample 

soils within a period of one year at all moisture seasons at each des

ert site in all moisture conditions. 



LITERATURE REVIEW 

Soil microorganisms play a major role in the transfer of energy 

and transformation of nutrients in terrestrial ecosystems. In order 

to quantitatively characterize the microbial contribution to these 

processes, information is needed on the abundance and activity of the 

soil microbiota. 

Smith (1968) states that detailed characteristics of the desert 

environment are a function of the interaction of the bedrock geology 

and surface processes through time. Differences between different 

deserts and between different parts within the same desert represent 

divergent patterns of this interaction. Desert soil profiles are 

characterized by the limited extent to which parent materials have 

been altered by soil-forming processes. 

6 

In conditons of extreme moisture deficiency and heat, the produc

tion of the organic mass declines accordingly and the biological cycle 

becomes constricted (Rodin and Basilevich 1965). Miller and Johnson 

(1964) point out, however, that maximum biological activity can be 

expected to take place at the lowest moisture tension where aeration 

is sufficient. 

Charley (1972) states that community nutrition is determined by 

chemical status and biological activity of the surface soil. Accord

ing to Reichle (1975) depletion of the carbon pool decreases the pro

ductivity and stability of the ecosystem. Consequently, decomposition 

and mineralization processes control the nature of the nitrogen cycle. 



Dregne (1970) states that the desert is naturally rich in most essen

tial nutrient elements except nitrogen. 

The principal factor limiting bacterial growth in soil is scar

city of food or the lack of a suitable and available source of energy 

(Clark 1967), but overall functioning of arid ecosystems is limited 

more by the availability of water and mineral nutrients (West 1978). 

Cameron (1961) claims organisms can have little or no influence 

on the soil-forming process in extremely arid deserts, therefore 

little profile development may be observed. In most arid soils, a 

large proportion of nutrients in both organic and mineral forms is 

concentrated in the surface layer (0-5 cm) (Skujins 1972, Charley and 

Cowling 1968). 

7 

The relationship of desert shrubs to soil characteristics has 

been studied by several authors. Tiedmann and Klemmedson (1973) found 

striking differences in soils under mesquite and open areas, with more 

available nutrients under mesquite. Garcia-Moya and McKell (1970) 

state that the difference in nitrogen content under different shrubs 

appears to be dependent on the root system. In addition, Roberts 

(1950) indicated that shrubs such as greasewood and shadscale are 

directly responsible for significant changes in some of the chemical 

characteristics of the soil profile. 

Charley and West (1975) found significant concentration of nitro

gent under individual shrubs in the desert shrub communities studied. 

The contents of nitrogen, carbon and available organic phosphorus, and 

total phosphorus concentrated towards the top few centimeters of the 

soil profile. Rixon (1971) also found oxygen uptake and nitrification 
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if they required a pF of less than 4.2. He also noted that ammonifying 

organisms are prevalent and active in arid-zone soils whereas nitrite

and nitrate-producing organisms are frequently inactive. 

Clark and Kemper (1967) state that different microorganisms 

respond differently under conditions of dry soil and all microbial 

transformations are not stopped during drying out of soil. Ammonifi

cation can proceed under drier conditions than nitrification. Pauli 

(1964) suggested that the intensity of microbial action is dependent 

greatly on the hydrothermic conditions which prevail in the surface 

0-15 cm. Microorganisms show full activity when soil pF is about 3.0. 

He also found that temperatures of 30°c are optimum for stimulation of 

activity. 

Dommergues (1960, 1962) has demonstrated that certain microbial 

groups can function at soil moisture contents considerably lower than 

wilting point in soils of arid and semiarid parts of West Africa. 

McLaren and Skujins (1968) and Ekpete and Cornfield (1965) state that 

microbial activity increases with water content to about 60 to 80 

percent water holding capacity. Lowered biological activity at low 

water contents is principally a question of moisture stress. It is 

apparent that the longer a soil remains dry, the greater the decompo

sition activity following "wetting-up" (Charley 1972). 

Dommergues (1969) states that stimulation of organic matter min

eralization is very intense in semiarid and arid soils when desiccated 

soils are "rehumidified" either by rain or by irrigation, especially 

in a year where there are numerous cycles of wetting and drying. 

Birch (1958) suggests that low rainfall is usually associated with 



in soils underneath Atriplex vescaria were greater than those from 

the interspace. This was true only for the surface 7.5 cm. Charley 

and West (1977) showed similar differences for other desert shrubs in 

Utah. Nishita and Haug (1973) studied desert soils at the Nevada 

Test Site and found total nitrogen in soil under Krameria parvifolia 

to be greater than that under Larrea divaricata, indicating differen

ces due to plant species. 

9 

Edaphic factors which are prominent in arid zones operate almost 

always by modification of the water regime (Noy-Meir 1973). In a 

grassland site on the Arid Land Ecology Reserve in south central 

Washington, Wilding et al. (1973) found soil water to be a limiting 

factor in the late spring, summer, and early fall when soil tempera

tures were above 15°C. Similarly, Thayer (1974) found effects of 

extreme drought to be controlling factors in a grassland ecosystem 

since decomposition, respiration, and microbial biomass changes were 

all apparent responses to rainfall and available moisture. Franz 

(1971) made investigations of seasonal variation of microbial life in 

several natural and cultivated soils in three different climatic zones 

of Chile and found moisture to be a controlling factor. Birch and 

Friend (1956) studied East African soils and found rainfall to be the 

major influence on soil organic matter. 

Seasonal dynamics of enzymatic activity of soils in different 

climatic zones of Armenia have been determined (Galstian 1974). Soil 

enzymes were found to be the most active at the end of sping and begin

ning of summer and in the second half of summer activity decreases 

slightly but in autumn it increases again. O'Brien (1973) studied 
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proteolytic activity in a desert grassland site and found activity to 

increase after summer rains and remain at higher levels throughout the 

summer. 

Utter (1972) studied microbial activity in Curlew desert soil and 

found peak months for microbial populations to be January through 

April, whereas low counts occurred in July, August, and September. 

Soils collected in October and November had the highest concentration 

of ATP. 

Nitrification and ammonification rates in arid Southern Curlew 

Valley Utah soils were studied by Patel (1972). She found nitrifica

tion rates higher during the spring and early summer period than in 

the fall. 

Water is usually the most limiting factor for all life in desert 

environments. However, microorganisms seem to be able to survive the 

xeric conditions they encounter. For example, in studying the micro

flora of an Egyptian arid soil, Naguib and Mouchacca (1971) showed the 

presence of an active fungal flora in the desert soil and the density 

of the fungal population in the samples was related to its local micro

environment, edaphic, and climatic conditions as well as plant cover. 

Vela (1974) reported that viable Azobacter were detected in soils 

stored in the laboratory for more than ten years and suggested that 

these bacteria could exist in a dormant nature for prolonged periods 

of time. 

Dregne (1968) classified microbial groups in Mauritania soils as 

hyperxerophilic if they grew at a soil moisture pF greater than 4.9, 

xerophilic if they grew at a pF between 4.2 and 4.9, and hygrophilic 



greater frequency of wet and dry periods than high rainfall and that 

it should therefore be conducive to an accelerated carbon loss. 

11 

Sorensen (1974) found that repeated air drying and rewetting of 

three soils followed by incubation at 20°c resulted in an increase in 

the rate of decomposition of a fraction of 
14

c-labelled organic matter 

in soils. Birch (1958, 1959a, 1959b) also found increased decomposi

tion of organic matter following successive drying and wetting and 

concluded that the longer soils are dried, the greater is the subse

quent decomposition and nitrogen mineralization when they are 

remoistened. In a later publication, Birch (1960) suggests that the 

magnitude of decomposition on moistening a dry soil is largely a func

tion of carbon content of the soil. In addition, he found that the 

rate of nitrogen mineralization after moistening falls off more rap

idly than that of carbon mineralization. 

There have been several explanations for the phenomenon of 

increased activity in dry soil upon rewetting. Soulides and Allison 

(1961) indicate that decomposition of soil organic matter following 

intermittent drying is due primarily to the release of nutrients, espe

cially energy sources, that can be rapidly oxidized by microorganisms. 

Similarly Birch (1958) suggests that successive dryings effected the 

release of small amounts of decomposable material from within the clay 

lattice where it was protected from microbial attack. But, he states, 

the flush of decomposition following the wetting of a dry soil is not 

due to the effect of drying on the physical or chemical properties of 

the organic substrate, otherwise a cumulative effect would be expected. 

According to Stevenson (1956) air drying brings: a) small changes 
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the solubility of mineral substances; b) large increases in solubility 

of organic substrates; c) large increases in nitrogen and phosphorus; 

d) large increases in NH4 -N and amide N; and 3) sharp decreases in 

microbial numbers. McLaren and Skujins (1968) point out that in

creased microbial activity upon rewetting may be due to disruption of 

aggregates during drying and thereby making the organic substrates 

accessible to microorganisms when rewetted. Hayashi and Harada (1969) 

state that the magnitude of flush of decomposition depends on the water 

potential at which the soil is dried. The lower the water potential, 

the greater the flush. 

The microbial population in desert soils may vary more widely 

than in any other climatic zone (Fuller 1974). Low numbers are asso

ciated with extremely low and irregular rainfall and paucity of higher 

plant life. 

The microbial population of desert soils has been ranked in de

creasing order of abundance: aerobes plus actinomycetes, anaerobes, 

faculative anaerobes, algae and fungi (Cameron and Blank 1965). 

Pochon, de Barjas, and Lajudis (1957) found no Azotobacter, 

Clostridia, or nitrifying organisms under extreme arid Saharan condi

tions in the surface 10 cm of soils and the activity of ammonifying, 

denitrifying, cellulolytic, and amylolytic organisms was very low. 

High numbers of rhizosopore organisms were found as compared to low 

numbers in adjacent soil (Vargues 1953). Similar results were ob

tained by Elwan and Mahmoud (1950) in an Egyptian desert study in 

which Azotobacter and Clostridiwn species were isolated from the rhizo

sphere, but not from the surrounding soil. In the arid zones of 
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Morocco, aerobic cellulolytic bacteria were present but no Azotobacter 

(Sasson 1960). 

For many ecological studies it is necessary to know the biomass 

and rate of metabolic activity of various types of organisms. Adena

sine triphosphate is a ubiquitous component of living cells and is 

not present in dead cells. ATP has been suggested as a reasonably 

reliable microbial biomass indicator in soils, lake sediments, and 

aquatic environments (Holm-Hansen 1969, Lee et al. 1971a, 1971b, and 

Jassby 1975). The quantitative analysis for ATP in submicrogram quan

tities depends upon the measurement of the light emitted when ATP is 

added to an enzyme preparation containing luciferase and luciferin 

obtained from ground-up firefly (Photinus pyralis) lanterns. The ATP

firefly bioluminescence procedure as first described by Seliger and 

McElroy (1960) is outlined in the following reactions, 

where 

-I+ 
E + ATP + LH

2 
~--=M=g~= 

E-LH -AMP+ 0 2 2 
f' neutral 

pH 

E enzyme luciferase 

LH2 = luciferin (reduced) 

pp = pyrophosphate 

L dehydroluciferin 
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ATP analysis gives the total biomass only and gives no information 

about the number of kinds of cells present. 

Lee et al. (1971b) state that ATP data should also be useful as 

an index of total biomass for evaluating the effect of any environmental, 

nutritional, or toxic variable on the total microbial life flux in the 

system. Brezonic, Brown and Fox (1975) suggest that ATP activity is a 

relative indicator of nutrient deficiency due to rapid response of ATP 

in nutrient deficient cultures after additions of nutrients. ATP 

measurements combined with a knowledge of the total amount of nutrient 

present in the system should enable estimation of the relative amounts 

of nutrients present in the living compared with the nonliving phase of 

the system (Lee et al. 1971b). 

Doxtader (1969) and Sparrow and Doxtader (1973) found a direct 

relationship between bacterial numbers estimated from dilution plates 

and ATP concentration in grassland soils. Contrarily, Utter (1972) 

found poor correlation between ATP and CO
2 evolution and between ATP 

and in microbial numbers in his work with Curlew desert soils. Conklin 

and MacGregor (1972) examined several extraction methods for ATP in 

desert soil. They concluded that soil moisture level and texture appear 

to have little effect on recoverability of ATP from the desert soils 

examined. 

In a few desert environments direct oxidation of soil organic 

matter occurs to a small extent and some decomposition is carried out 

by extracellular enzymes from microorganisms (MacFayden 1971). A 

recent review of soil enzymes exists (Skujins 1976). 
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Measurements of carbon dioxide evolution or oxygen uptake are tech

niques employed to measure soil respiration. Organic matter degradation 

is a property of all heterotrophs and respiration is connnonly used to 

indicate the level of microbial activity. Respiration is a useful tool 

in studying the intensity of metabolism (Anderson and Domsch 1973, 

1974, 1975). Stotzky (1965) indicates that respiratory rates reflect 

the microbial activity rather than numbers, types, or growth of soil 

microbiota. 

Evolution of carbon dioxide is largely dependent on the biological 

life of the soil (activity of microorganisms, soil fauna, root respi

ration, etc.); however, most investigators believe that activity of 

microorganisms is the main source of co
2 

release (Artyushenko 1969). 

According to Lundegardh (1927), two-thirds of carbon dioxide present in 

soil air is formed as a results of microbial activity while one-third 

is released by plant roots. Similarly, Coleman (1973) reported that 

root respiration never exceeds 17 percent of the total in oak forest and 

old field soil cores. It has been difficult to measure exactly what 

contribution each type of organism makes to the total respiration of 

the soil, even though attempts have been made. 

One difficulty with using respiration to estimate biological ac

tivity is that respiration is an aerobic process and anaerobic condi

tions may exist frequently in soil crumbs because there is an uneven 

distribution of water and consequently a presence of anaerobic zones 

(Greenwood 1968). 

Dehydrogenase activity is another parameter thought to reflect 

the total biological activity of the soil (Skujins 1967). Stevenson 
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(1959) reported evidence for the reliability of the dehydrogenase test 

as a means of estimating total microbial activity in soils. He was 

able to show significant correlation between o
2 uptake and dehydro

genase activity. In addition, he also showed significant correlation 

between dehydrogenase and oxygen uptake in soils treated with fresh 

crop residues indicating that as microbial activity fluctuates due to 

decomposition of the organic material corresponding changes occur in 

dehydrogenase activity and oxygen uptake. Dehydrogenase enzymes play 

an essential role in the initial stages of the oxidation of soil organic 

matter by transferring hydrogen or electrons from substrates to accep

tors (Ross 1971). 

Dehydrogenation in the soil is associated with the active vital 

functions of its microorganisms. Peterson (1967) suggested that de

hydrogenase activity of the soil should be interpreted as dehydrogenase 

activity of the microflora in the soil sample since the dehydrogenases 

are not present in the soil prior to the beginning of the experiment. 

Moreover, experiments made by Peterson (1967) showed that nonsterile 

roots of all the plants used exhibited dehydrogenase activity wherease 

sterile roots of all plants tested except for clover did not. Thus, 

the dehydrogenase activity on the nonsterile roots was probably attri

buted to the rhizosphere organisms and not to the roots. 

Unfortunately, attempts to correlate dehydrogenase activity with 

other biological parameters in cultivated and well-irrigated soils 

generally have not been successful (Skujins 1967). Furthermore, Moore 

and Factors (1972) concluded that dehydrogenase activity was not useful 

as a general index of soil fertility. In arid soils, however, where 

activities are associated with certain horizons and change by order of 



17 

magnitudes in their vertical distribution, Skujins (1973) reports that 

dehydrogenase activity appears to be a useful criterion for the charac

terization of soil biological status and for the prediction of several 

biological activities such as proteolytic, nitrifying, and respiratory 

activities. 

The termination of the reactions involved in organic nitrogen 

mineralization occurs at the point where ammonium is formed (Alexander 

1961). Ammonium then serves as a starting point for a process known 

as nitrification, the biological oxidation of ammonium to nitrate. The 

process of nitrification has been extensively studied and reviewed by 

various investigators, for example, Aleem (1970), Broadbent et al. 

(1957), Dommergues (1960), Justice and Smith (1962), Lees and Quastel 

(1946) and Quastel and Scholefield (1951). The studies of these pro

cesses have dealt mostly with agricultural, forest, and grassland 

soils. Very few have dealt with desert soils (Patel 1972, Skujins 

and Trujillo y Fulgham, 1977). 

Nitrification rates vary among the different climates and types of 

soils examined. It is evident, therefore, that the environmental fac

tors which are characteristic of different climatic regions and/or soil 

types determine the rate or degree at which nitrification does occur. 

Such environmental factors include pH, oxygen supply, soil moisture 

regime, temperature, organic matter level or supply, co
2 

content, and 

the cation exchange capacity of the soil (Mahendrappa, Smith and 

Christiansen 1966, Skujins and Trujillo y Fulgham 1977). These factors 

may affect the nitrification by acting upon the initial bacterial popu

lation and/or their subsequent proliferation. 
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For example, Morrill and Dawson (1962) found that the rate of nitri

fication is closely or directly correlated with the pH of the soil and 

the optimum pH for most of the ammonium oxidizing organisms lies above 

neutrality while that for the nitrite oxidizers is close the neutral. 

Martin, Buehrer, and Caster (1942) report the existence of threshold pH 

value of 7.7 + 0.1 for nitrification of ammonia in alkaline desert soils. 

Mahendrappa et al. (1966) showed that soils from the northern 

section of the western United States nitrified more rapidly at cooler 

0 0 . 0 0 temperatures (20 to 25 C) than at higher temperatures (35 to 40 C) 

whereas the Southern region soils nitrify faster at temperatures above 

35°c. In addition, Mahendrappa (1963) found that when nitrifiers are 

transferred to another soil, they will function in the way they did in 

the original soil. That is, if they nitrified more rapidly at 25°C 

than at 35°c they will continue to show this temperature response. 

Dommergues (1969) states that arid and semiarid strains of soil micro-

organisms are thermotolerant. 

Maximum nitrate production was found to occur at moisture tensions 

of -0.5 to -0.15 bar (Dubey 1968, Miller and Johnson 1965, Sabey 1969). 

However, activity of nitrifying microorganisms continues at moisture 

levels much lower than wilting point, the lower limit for growth of 

higher plants (Dubey 1968), and even at moisture levels below that 

(Domergues 1960). 

Sims and Collins (1960) indicated that drought, high temperature, 

and other extensive variations in environmental conditions had a 

relatively minor effect on the numbers and distribution of nitrifying 

organisms. 
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MATERIALS AND METHODS 

Decomposition and mineralization in soils are microbial processes 

that are modified by the water regime. Seasonal fluctuations of mois

ture also modify the vegetation which in turn influences microbial 

processes. Soils from five desert sites were sampled at certain times 

throughout the year which would best exhibit microbial response to 

moisture or vegetation. 

Descriptions of Study Areas 

The four study sites used were established IBP Desert Biome Vali

dation Study sites at Las Cruces, New Mexico - Jornada; Tucson, Arizona -

Silvebell; Mercury, Nevada - Rock Valley; and Milford, Utah - Pine 

Valley (Desert Experimental Range). Another site was used in Curlew 

Valley, Utah, and is a research area maintained by the Department of 

Range Science, Utah State University, Logan. Sampling stations were 

randomly selected where the most dominant species were represented. 

Samples were collected from the interspaces between shrubs at a 0-5 cm 

depth. 

1) Jornada - The Jornada Validation area, representative of the 

Chihuahuan Desert, is located on the New Mexico State University 

Jornada Experimental Ranch. There are two designated sites within the 

area: playa and bajada. 

The playa site is characterized by being approximately 300 m lower 

than the bajada. The playa is a depression where standing water may 
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accumulate to a depth of 30-45 cm during the rainy season. This per

iodic inundation has produced a dense vegetal cover and a well-developed 

soil. 

Dominant species of vegetation of the playa bottom, where a 12 m2 

sampling station was located, include Panicwn obtuswn, Xanthiwn 

strwnariwn, and Hymenoxys oderata. Panicwn obtuswn contributes most 

to the standing crop, but there are other perennials such as Sida 

leprosa~ Cyperus exculentus, Hoffmanseggia densiflora, and Hilaria 

mutica which may dominate the playa bottom, depending on soil moisture 

recharge (Whitford et al. 1973). 

Playa soils initiated development in mid-Pleistocene (Hawley and 

Gile 1966, Gile et al. 1970, and Ruhe 1967, all cited by Whitford et 

al. 1973). These soils have strong genetic horizons with the carbon

ate accumulation horizons being most distinctive. In some areas, the 

argillic horizon has been partly or completely engulfed or has been 

mixed by soil fauna, or both (Whitford et al. 1973). 

The bajada site is described as an alluvial fan dissected by 

large arroyos (washes) and smaller arroyos which converge on the large 

arroyos. Areas between the arroyos are the upland areas. Station 1 

is less than 100 m from a small arroyo on an upland area. Station 2 

is on the edge of a large arroyo, and Station 3 is an upland area 200-

300 m from any arroyos. 

Principal plant species at Station 1 include Larrea divaricata, 

Flourensia cernua, Yucca elata and Yucca baccata. Station 2 dominants 

include Chilopsis linearis, Fallugia paradoxa, and Prosopis glandulosa 

var. torreyana; and the dominant shrub at Station 3 is Larrea divaricata. 
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Bajada soils are dated from mid- to late-Pleistocene (Hawley and 

Gile 1966, Gile et al. 1970, and Ruhe 1967, all cited by Whitford et 

al. 1973). They have prominent horizons of silicate clay accumula

tions and prominent carbonate accumulation horizons commonly within 

about 61 cm of the surface. The surface texture is typified as sandy 

loam. Station 1 soils are shallow, with a caliche layer 5-100 cm in 

the profile. Generally, along the arroyos, which is characterized by 

Station 2, there is no caliche layer. Station 3 soils are deep soils 

with a caliche layer beginning at 3 m (Whitford et al. 1973). 

The prevailing pattern of precipitation of the Jornada area is 

for the highest amount of precipitation to uccur during the months of 

July through October and the lowest rainfall to occur in April 

through early June. The long term average annual precipitation in 

the vicinity amounts to 200-250 mm. 

2) Silverbell - The Silverbell Validation Site, representative 

of the Sonoran Desert, is located near the Silverbell Mountains north

west of Tucson, Arizona. A 12 m
2 

sampling station was established in 

the southeast corner of the Silverbell Validation Site. 

Principal plant species of the area include Franseria deltoidea, 

Larrea divaricata, Cercidium microphyllwn, Acacia constricta, Olneya 

tesota, Cereus gigantea, and numerous species of Opuntia. 

The soils in the sampling station location are described to have 

been formed in calcareous alluvium. The primary rocks in the alluvium 

are andesite, basalt, granite, and quartzite. The soil profiles at 

this site are calcareous throughout. The maximum carbonate accumula

tion generally occurs at a depth of 30-50 cm. In some areas, the 
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carbonates form a weakly cemented layer at that depth. The soils are 

well drained and have moderate permeability. Yearly precipitation in 

the vicinity averages 200-400 mm, with largest amounts occurring dur

ing July, August, and December (Thames et al. 1973). This pattern of 

moisture results in a lesser spring peak of activity in the Sonoran 

Desert. 

3) Rock Valley - The Rock Valley Validation Site, representative 

of the Mojave Desert, is located at the southern portion of the ERDA 

Nevada Test Site in Nye County, Nevada. 

d f h h 12 2 1· . The ominant shrubs o t e area were a m samp ing station 

was located include Larrea divaricata, Ambrosia dwnosa, Krameria 

parvifolia, Lyciwn andersonii, Lyciwn pallidwn and Ephedx>a nevadensis 

with Bromus rubens and Vulpea octaflora being the dominant grass spe

cies (Turner et al. 1973). 

Soils of this site are derived from a heterogeneous, highly cal-

careous alluvium composed primarily of Cambrian limestones with some 

tuff and basalt. The soil's surface is a well-developed desert pave

ment underlain with a massive and strongly cemented petrocalcic hori

zon at depths ranging from 30-70 cm. The caliche is virtually imper-

vious to plant roots, but serves as a restrictive layer preventing 

moisture loss to greater depths in the soil. These soils also have 

considerable amounts of amorphous clays with a low cation exchange 

capacity (Turner et al. 1973). 

The general precipitation pattern at the Nevada Test Site has 

the greatest amounts occurring from August through November and least 
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occurring from April through early July. The annual average precipi

tation ranges from 200-250 mm per year (Turner et al. 1973). 

4) Pine Valley - Pine Valley Validation Site, representative of 

the southern Great Basin Desert, is located in the Desert Experimental 

Range in Millard County, Utah. 

Dominant shrubs of the area (where a 12 m2 sampling station was 

located) include Atriplex confertifolia, Ceratoides lanata, Artemisia 

spinescence, and Sphaeralcea grossulariafolia. The dominant perennial 

grass is Hilaria jamesii (Frischknecht 1975). 

Baseline data characterizing the soils of this validation site 

were not available at the time of this writing, although a soil survey 

does exist for the Desert Experimental Range (USDA Soil Conserv. Serv. 

and Forest Service). 

The greatest amounts of precipitation in Pine Valley usually 

occur during July through October with the least amount occurring in 

May. Average precipitation is 154 mm per year (Holmgren and Brewster 

1972). 

5) Curlew Valley - The area where soil samples were collected is 

about 36 km south of the Utah-Idaho border and 32 km southwest of 

Snowville, Utah. Curlew Valley, representative of the northern Great 

Basin Desert, is a broad, flat lacustrine valley extending northward 

into Idaho from the salt flats on the north edge of the Great Salt 

Lake. Zonation is typical of many valleys of the Great Basin Region. 

Three plant community types are located contiguous to each other 

within the research area. Samples were taken from within three exclo

sures with vegetation dominated by nearly pure stands of big sagebrush 
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(Artemisia tridentata), shadscale (Atriplex confertifolia)~ and win

terfat (Ceratoides lanata)~ respectively. Detailed soil descriptions 

are given by Mitchell et al. (1966) and Charley and West (1975). 

Annual precipitation in Southern Curlew Valley averages around 

300-350 mm, occurring mostly during the winter in the form of snow 

(Balph 1973). 

Sampling station designations are given in Table 1 and collection 

periods are given in Table 2. Total monthly precipitation records were 

obtained from weather stations at or near each site in order to com-

pare yearly precipitation patterns during the collection period with 

the long-term averages. For statistical comparison, seasons were 

assigned to each collection date based on the precipitation data for 

the year and on the growth or dormancy of above-ground portions of 

major vascular plants at that time of collection. 

Table 1. Sampling station designations 

Sampling station Designation Sampling station Designation 

Jornada Curlew Valley 
Playa p Artemisia tridentata 
Bajada 1 B-1 dominated (Curlew 5) CV-5 
Bajada 2 B-2 

Ceratoides lanata Bajada 3 B-3 
dominated (Curlew 6) CV-6 Sil verb ell s 

Rock Valley RV Atriplex confertifolia 
Pine Valley PV dominated (Curlew 7) CV-7 

Soil Analyses - Chemical and Physical Factors 

In order to chemically characterize the soils, the following 

analyses were performed. 



Table 2. Collection periods 

Site/Collection dates Season designation 
Jornada (playa and bajada): 

17 March 1975 Dry season, plants dormant 
27 June 1975 Dry season, plants active 
13 August 1975 Wet season, plants active 
16 December 1975 Wet season, plants dormant 

Silverbell: 
17 March 1975 Dry season, plants dormant 
28 June 1975 Dry season, plants active 
14 August 1975 Wet season, plants active 
15 December 1975 Wet season, plants dormant 

Rock Valley: 
4 April 1973 Wet season, plants active 
21 March 1975 Wet season, plants dormant 
29 July 1975 Dry season, plants active 
12 December 1975 Dry season, plants dormant 

Pine Valley: 
23 March 1974 Wet season, plants dormant 
31 July 1975 Wet season, plants active 
11 December 1975 Dry season, plants dormant 
15 May 1976 Dry season, plants active 

Curlew Valley 
2 January 1973 Wet season, plants dormant 
26 March 1973 Wet season, plants dormant 17 April 1973 Wet season, plants active 16 July 1973 Dry season, plants active 29 October 1973 Dry season, plants dormant 10 June 1975 Dry season, plants active 
15 March 1976 Dry season, plants dormant 
20 April 1976 Wet season, plants active 
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Ammonium Nitrogen (Bremner 1965) 

Total ammonium. Four grams of soil were weighed into a 500 ml 

round bottom boiling flask and 20 ml of 40 percent sodium hydroxide 

was added. This was then steam-distilled and the distillate collected 

in 5 ml of 2 percent boric acid solution to which two drops of 

Tashiro's indicator was added. The boric acid solution was then 

titrated to the end point with 0.01 N KH(I0
3

)
2

. 

Exchangeable ammonium. Ten grams of soil were placed in a 125 

ml Erlenmeyer flask and 50 ml 2 N KCl was added. After one hour on a 

shaker, the contents of this flask were filtered through No. 2 Whatman 

filter paper into a 100 ml volumetric flask. The contents of the 

second flask were then brought to volume with distilled water. An 

aliquot of this solution was pipetted into a Kjeldahl boiling flask 

and approximately 0.2 g MgO was added. This mixture was then steam

distilled and the distillate was collected in 5 ml of 2 percent boric 

acid solution to which two drops of Tashiro's indicator was added. 

The boric acid was then titrated with 0.01 N KH(I0
3

)
2

. 

Calculations: mg NH+ - N/g 
4 

normality 
titrated - blank x of acid x 14 

grams of soil 

Fixed ammonium. This value was obtained by subtracting exchange-

able ammonium from total ammonium. 

Soil Moisture Content 

Ten grams of each soil sample were placed into tared weighing 

bottles and placed in a drying oven at 100°c. After three days, the 
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samples were removed, allowed to cool, and reweighed. The amount of 

weight loss was calculated as the number of grams of water per 100 g 

of soil. 

Soil pH 

Five grams of each soil sample were weighed into a 10 ml beaker 

and 5 ml of distille water was added. The contents were stirred and 

then allowed to set for ten minutes. The contents were then stirred 

again and the pH measured with a Beckman pH meter, using small electrodes. 

Water Potential Measurement (Robinson and 
Stokes 1949, Lang 1967, Campbell and 
Gardner 1971, Wiebe et al. 1971, Brown 
and Van Haveren 1972) 

Soil water potential was measured during respiration measurements 

using a Wescor, Inc., Model MJSS psychrometric voltmeter with a Model 

COSl sample psychrometer, which operates on the principle of Peltier 

cooling. The instrument was calibrated with two salt solutions. A 

sodium chloride calibration curve was used for soils with water poten

tial between O and -40 bars. For measuring extremely low potentials 

(as low as -800 bars) a lithium chloride standard calibration curve 

was used. Standard curves are found in Appendix Tables 26 and 27. 

The temperature of the chamber was first read and then that of the 

solution. Cooling time was 1.5 minutes. 

Total Nitrogen, Organic Carbon, Nitrate, 
Salinity, and Soil Texture 

Analyses of soils for total nitrogen, organic matter, nitrate, 

salinity, and soil texture were done by the USU Soil Texting Labora

tory according to their prescribed methods. 



Soil Analyses - Biological-Biochemical Factors 

The following analyses were made to measure microbial biomass 

and activity in the soils. 

Microbial Numbers 
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The dilution plate count method was used to determine number of 

microorganisms. This technique is most frequently used to determine 

viable cells in soil and may be used as a method for isolating micro

organisms from soil. A 1 g soil sample was weighed into a flask con

taining 99 ml of sterile distilled water after which the flask was 

shaken vigorously. The suspension was diluted and a 1 ml aliquot of 

appropriate dilution was added to a plate and cooled agar poured onto 

it. The plate was rotated to mix and incubated at room temperature 5 

to 7 days. Plates were then examined for colonies of aerobic bacteria, 

fungi, proteolytic organisms, and chitinolytic organisms. Plates 

were incubated for four weeks and then examined for celluolytic 

organisms. 

Soil extract agar with glucose was used to culture total aerobic 

bacteria. The media contained the following ingredients: 

Bacto Agar 15.0 g 

K
2
HP0

4 0.5 g 

Soil Extract 100 ml 

Tap Water 800 ml 

Glucose(!% w/v) 100 ml 

The glucose solution was sterilized separately then added to the 

sterilized medium. The pH was adjusted to 6.8-7.2 before the medium 
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was autoclaved. Soil extract was prepared by autoclaving 1000 g of 

garden soil with 1000 ml of tap water for 60 minutes. Ten grams of 

Caco
3 

was added, the mixture was stirred, and then filtered through a 

Buchner funnel fitted with double Whatman No. 5 filter paper until a 

clear solution was obtained. The filtrate was sterilized and stored 

in the refrigerator at 4°c. 

Fungi were determined using Martin's Medium (Allen 1957) which 

is made up of the following ingredients: 

Peptone 5.0 g 

KH
2
Po

4 1.0 g 

MgS0
4

•7H
2
o 0.5 g 

Rose Bengal 0.33 g 

Bacto Agar 20.0 g 

Tap Water 900 ml 

Glucose (10% w/v) 100 ml 

The glucose solution was sterilized separately, then added to 

the medium after both were sterilized. The pH was adjusted to 6.8-7.2 

before the medium was autoclaved. Streptomycin was weighed out under 

aseptic conditions and 0.399 g was dissolved in 10 ml sterile dis

tilled water. This was stored in the refrigerator and 1.0 ml added 

to 1 liter of cooled media immediately before using. 

Proteolytic organisms were determined by counting colonies sur

rounded by clear areas on the agar. The agar was soil extract agar 

with 10 percent (v/v) skim milk added. 

Chitinolytic organisms were grown on soil extract agar in which 

the glucose was substituted with a volume of chitin suspension 
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containing 50 to 75 mg of chitin per 500 ml of media. Colonies sur-

rounded by clear zones were counted. 

The number of cellulolytic organisms was determined by counting 

clear zones around colonies grown on soil extract agar to which 50 ml 

of 10 percent sterile heavy cellulose suspension was added in place 

of glucose. 

Soil Respiration (Elkan and Moore 1962) 

Teng of soil sample was placed in a 125 ml screw-capped Erlen

meyer flask with center well. One ml of 0.05 N Ba(OH
2

) solution was 

added to the center well. A blank containing no soil but 1 ml of 

Ba(OH) 2 solution in the center well was also prepared. The flasks 

were tightly capped and incubated ·in a 30° shaking water bath for 90 

minutes. Titration was carried out with 0.02 N HCl using one drop of 

phenolphthalein indicator until a clear solution was obtained. One 

ml of the untreated Ba(OH)
2 

solution was also titrated to determine 

the normality of the standing solution. 

Calculations: 

starting meq = ml HCl for Ba(OH)
2 

x 0.02 meq/ml 

final meq ml HCl for sample x 0.02 meq/rnl 

blank meq = ml HCl for blank x 0.02 meq/ml 

Total meq CO2 evolved= (starting meq - final meq) - blank meq 

Before and at the end of each incubation, the water potential of 

each soil sample was measured. The average bar readings between the 



beginning and the end was the approximate bar pressure of the sample 

during the reaction time. Respiration measurements were done in 

duplicate. 

Dehydrogenase Activity (Casida et al. 1964) 

Each soil sample was weighed into three sterile screw-capped 

tubes, 6 g per tube. To two of the tubes 2.5 ml sterile distilled 

water and 1.0 ml of 3 percent aqueous solution of 2,3,5-triphenyl

tetrazolium chloride were added. To the third tube (control) 3.5 ml 

sterile distilled water was added. The tubes were mixed thoroughly 

with a Vortex mixer and then incubated in a 30°c incubator for 24 

hours. 

Following incubation, the reaction in the tubes was stopped by 

adding 5 ml of 90 percent methanol. The samples were then filtered 

into a 100 ml volumetric flask through a Buchner funnel fitted with 

Whatman No. 5 filter paper. During this procedure, it was necessary 

to keep the sample wet at all times until extraction was complete to 

avoid air being drawn through the soil. The filtrate was brought 
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up to volume and the absorbance was read on a Bausch and Lomb Spec

tronic 20 at 485 nm. The readings were referenced to a standard for

mazan curve which was prepared from serial dilutions of 2,3,5-tri

phenylformazan working standard solution containing 0.03 mg formazan/ 

ml methanol. 

Proteolytic Activity (Hoffman and Teicher 1957) 

Ten grams of soil sample were placed in each of three 100 ml 

screw-capped volumetric flasks and 500 mg of calcium carbonate was 



added to the soil and mixed in. The soil was then dampened with 1.5 

ml toluene and allowed to stand for 15 minutes, after which 20 ml of 
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a freshly prepared 2 percent solution of gelatin was added to two 

flasks and 20 ml distilled water to the other flask. After thoroughly 

shaking, the flasks were placed on a culture tube rotating apparatus 

in a 37°c incubator. 

After 20 hours incubation, the flasks were removed from the incu

bator and brought to volume (the toluene above the mark) with 37°c 

distilled water. The contents were mixed and gravity filtered through 

a double filter paper consisting of Whatman No. 5 on the outside and 

Whatman No. 2 on the inside. 

To assay for the amount of hydrolyzed gelatin, 5 ml of each fil

trate and 5 ml of cupric phosphate suspension were placed in a centri

fuge tube. This mixture was allowed to stand for 5 minutes with occa

sional shaking and then centrifuged at 7000 rpm for 5 minutes. The 

supernatant was decanted into photometer tubes and the absorbance read 

at 600 nm on a Bausch and Lomb Spectronic 20. Values obtained were 

refereneced to a standard curve. 

The standard curve was made with portions of a 2 percent solution 

diluted 1:5 containing the appropriate amino acids by weight that 

make up gelatin. The 1:5 dilution represented 100 percent hydrolysis 

of gelatin. 

The cupric phosphate suspension reagent was prepared as follows: 

Into 40 ml of sodium phosphate solution was stirred (68.5 g/£) 20 ml 

of cupric chloride solution (28.5 g/£). The mixture was centrifuged 

at 7000 rpm for 5 minutes. The supernatant was discarded and the 
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precipitate was washed twice by resuspending in 60 ml of sodium borate 

buffer (10.1 g/£ pH 8.9-9.2) and centrifuging after each washing. The 

washed precipitate was resuspended in 100 ml borate buffer. Six g 

of sodium chloride was added and the suspension mixed and stored in 

a glass-stoppered bottle. The suspension remained stable for 10 days. 

ATP Concentration (McElroy 1947, Stanley and 
Williams 1969, and Utter 1972) 

Two g of soil was placed in a 250 ml boiling flask and 25 ml of 

a 1:1 boiling solution of Tris buffer and 95 percent ethanol were 

added. The flask was placed on a high vacuum rotating evaporator so 

that it was partially submerged in a 55°c water bath. After 5 minutes, 

the contents of the flask were brought up to a 25 ml volume with ice 

cold Tris buffer. Then the soil extract was centrifuged for 10 min

utes at 10,000 rpm to remove the soil particles. Aliquots of the 

extract were dispensed into test tubes, capped, and placed in an ice 

0 bath for immediate assay or stored at -10 C. 

The luciferin-luciferase suspension was prepared by rehydrating 

a vial of firefly lantern extract (Sigma FLE-50 to 250) with distilled 

water. The vial was left to stand at room temperature for two hours 
0 

and then stored at 4 C. The suspension was centrifuged at 10,000 rpm 

for 10 minutes to remove insoluble debris before use. 

A standard stock solution was prepared initially by dissolving 

10 mg of crystalline disodium ATP (Sigma) in 1000 ml Tris buffer 

(0.02 M, pH 7.75). 0 The solution was capped and stored at -10 C and 

working standards were prepared by thawing and diluting stock solution 

with Tris buffer to the desired concentration. A standard curve of 



concentration versus an integral of count sequence was plotted on 

log paper and unknowns determined by such a curve. Standards were 

counted with each sample determination. 

A liquid scintillation spectometer, Packard Tri-carb Model 527, 

was used to determine light intensity. The settings included 1) one 

channel only, 2) amplification set at 10 percent, 3) discriminators 

set at 50-1000, 4) repeat mode used for 20 sequential counts, and 

5) spectrometer used out-of-coincidence. 
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For the light intensity measurement, 1.8 ml of standard or soil 

extract ATP solution was pipetted into a glass liquid scintillation 

counting vial. At zero time, 0.2 ml of reconstituted enzyme was added 

and shaken. Then the vial was placed on the elevator of a liquid 

scintillation counter and lowered into the counting chamber. The first 

count was begun 15 seconds after the enzyme additions for 6 seconds 

with a 2 second interval between counts for printout. 

A blank was made by adding 0.2 ml of enzyme to 1.8 ml of Tris 

buffer. In addition, a soil extract blank was made by counting 1.8 

ml of extract alone and the integral of sequential counts was sub

tracted from the integral of the luminated samples. 

Recovery of ATP from soil was determined by using ATP in the form 

of viable bacterial cells. A 1 x 10- 2 
dilution of soil was inoculated 

by the spread plate method onto a plate of solidified soil extract 

agar. After incubation overnight in a 30°c incubator, cultures were 

inoculated into a 10 percent nutrient broth shake culture and incu

bated overnight at room temperature. The cells were harvested by 

centrifugation and resuspended in 10 ml of sterile distilled water. 



ATP was determined by extracting 1 ml of cell suspension following 

extraction procedures for soil samples. Prior to extracting soil 

samples, 1 ml of cell suspension was added to each soil sample and 

percent recovery was calculated by the following formula: 

(Soil+ Internal Standard)ATP - Soil ATP x l00 
Internal Standard ATP 

Nitrification Potential (Lees and Quastrel 
1946, Collins and Sims 1956) 

% ATP recovery 
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Nitrification potential in vit~o was measured by a perfusion 

method as follows. Vinyl acetate maleic acid copolymer (VAMA), a soil 

conditioner, was added to a 70-80 g soil sample (0.2 percent per weight 

of dry soil). Enough distilled water was added to bring the mixture 

to a smooth paste consistency. The paste was then sieved to obtain 

2-5 rrnn crumblike particles and dried for two days. 

After drying, 30 g of stabilized soil was placed in a perfusion 

flask containing 250 ml of water. Each sample was done in triplicate 

in order to have two experimental units and one control for each 

sample. The samples were perfused for 24 hours, after which the 

water in the experimental flasks was discarded and replaced with 250 

+ ml of 0.01 M (NH4 ) 2so4 (2.333 mg NH4-N/g). The samples were then 

perfused for 20 days. The trials were run at 22°c in the dark with 

the soil under conditions of optimal aeration and water saturation, 

but not water logged. A 5 ml perfusate sample was collected every two 

+ days. The perfusates were than analyzed colorimetrically for NH
4

-N by 

Nesslerization (Allen 1957), for NO;-N by a sulfanilic acid-alpha-



naphtholamine reaction (Allen 1957), and for N0
3

-N by the 4-methyl

umbelliferone method (Skujins 1964). 

Microbial Activities Responses to Moisture Availability 

Adjusted Moisture Level Experiment 

This experiment was conducted to find the threshold moisture 

necessary to stimulate microbial activity in desert soils. 
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Soils collected in the months of June or July from all ten afore

mentioned sites were used in this experiment. The amount of added 

water necessary to bring these soils to field capacity (-0.3 bar) 

was determined. Respiration, dehydrogenase, and ATP concentration 

were measured at original field moisture. The soils were weighed into 

flasks or tubes in which the experiment was conducted and the soil 

moisture was adjusted to field capacity, 2/3 field capacity, 1/2 field 

capacity, 1/6 field capacity, and air dried. After adjusting each 

moisture level, the soil samples were allowed to incubate for 24 hours 

in the dark with the containers loosely capped. After the 24 hour 

incubation, the soils were analyzed for dehydrogenase activity, res-

piration, and ATP concentration. Respiration was run in triplicate 

and dehydrogenase and ATP concentration was run in duplicate. Water 

potential was measured one hour after respiration experiments to allow 

the soil temperatures to equilibrate to room temperature. 

Adjusted Moisture Level Plus Added 
Organic Matter Experiment 

This experiment was conducted to test the response of microorgan

isms to additions of readily utilizable organic matter in soil 



adjusted to different moisture levels. Soils collected from Playa, 

Bajada 1, Rock Valley, and Curlew 7 in June or July 1975 were used 
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in this experiment. These four soils were selected because of their 

organic carbon content. Playa and Curlew 7 were highest in organic 

carbon content and Bajada 1 and Rock Valley were lowest in organic 

carbon content. Selection of the soils from different deserts by 

these criteria was necessary in order to compare the response between 

soils high and low in organic carbon. 

A sufficient amount of soil to measure respiration and dehydro

genase at five moisture levels was weighed into 400 ml beakers and a 

1 percent w/w amount of glucose was added. The soil and glucose were 

well mixed and enough water added to completely moisten the mixture. 

The wet soils were quick-frozen in dry ice and acetone and then lyo

philized for 24 hours. The lyophilized soils were removed from the 

beakers and mixed in a mortar with pestle. Respiration and dehydro

genase were measured in the lyophilized soils. The amount of added 

water necessary to bring the soil moisture level to field capacity 

was also determined. The soils were then moistened to 1/2 field 

capacity, 1/4 field capacity, 1/6 field capacity, and 1/12 field 

capacity. Respiration and dehydrogenase were measured at each moisture 

level. Respiration was run in triplicate and dehydrogenase was measured 

in duplicate. Only half the amount of soil designated in the proce

dure above was used at the higher moisture levels. Water potential 

measurements were taken one hour after the respiration measurements. 
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Drying Experiment 

The purpose of this experiment was to observe the effect of drying 

on microbial activity in desert soils. 

Soils collected in March 1975 or March 1976 from all ten sampling 

stations within the five desert sites were used in this experiment. 

Enough soil to measure respiration, dehydrogenase and ATP concentra

tion at 6 drying intervals was weighed out and the soil was spread 

1-2 cm deep in a 22. 5 cm aluminum pan. The amount of added water 

necessary to bring the soils to field capacity was determined. Res

piration, dehydrogenase, and ATP concentration were measured in the 

soil at original field moisture. The soils in the aluminum pan were 

moistened to field capacity and then allowed to air dry. Respiration, 

dehydrogenase, and ATP concentration were measured at field capacity, 

24 hours after drying, 96 hours after drying, and 192 hours after 

drying. After the 192-hour drying period the soils were placed in a 

30°c incubator for 24 hours and respiration, dehydrogenase, and ATP 

concentration were again measured. The soils were then placed in a 

37°c incubator for 24 hours and respiration, dehydrogenase, and ATP 

concentration were then measured. Water potential at each interval 

was measured before and one after after respiration measurements. In 

order to determine nonbiological CO
2 

evolution at each interval, soil 

was weighed into a respiration flask and the open flask placed in a 

desiccator with an open petri dish containing 20 ml propylene oxide. 

The desiccator was sealed and evacuated and the propylene oxide was 

allowed to saturate the soil for 22 hours. This was the predetermined 

time which resulted in sterilization of the soil. 



Wetting-Drying Experiment 

This experiment sought to simulate wetting and drying cycles in 

the desert and observe their effect on microbial activity. 
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Soils collected from all ten stations at the five desert sites 

during June or July 1975 were used in this experiment. Enough soil 

to measure respiration, dehydrogenase, ATP concentration, and total 

ammonium at four intervals was weighed into a 400 ml beaker. Casein 

(1% w/w) was added and mixed into the soil. Enough water was added 

to wet the soils thoroughly. The soils were quick-frozen in dry ice 

and acetone and then lyophilized for 24 hours. The lyophilized soil 

was analyzed for respiration, dehydrogenase, and ATP concentration. 

The amount of added water necessary to bring the soil moisture to 

field capacity was determined. The soils were moistened to field 

capacity and spread out 1-2 cm deep on a double thickness paper towel. 

The soils were analyzed at once for the aforementioned activities at 

field capacity and after eight days of air drying. The soil, air

dried for 8 days, was rewetted and analyzed for respiration, dehydro

genase, and ATP concentration. 

Statistical Analysis 

The field data collected in 1975 and the laboratory experiments 

were analyzed using analysis of variance, cluster analysis, and prin

cipal components techniques (Sneath and Sokal 1973). A correlation 

analysis between the activities was also run. 

A three-way factorial analysis of variance (FCTCVR) program 

(found in STATPAC Library prepared by Rex Hurst, Department of Applied 
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Statistics and Computer Science, Utah State University, Logan) with a 

single replication was used to find significant differences between 

stations and between stations at different moisture seasons or 

moisture levels. The variables used to characterize the stations in 

the field analysis were respiration, dehydrogenase activity, ATP con

centration, proteolytic activity, moisture content, nitrification 

potential, exchangeable ammonium, and nitrate content. The variables 

used the characterize the soils in the laboratory experiments were 

respiration, dehydrogenase activity, and ATP concentration. 

Correlation analysis between selected pairs of activities was 

run using the revised multivariate data collection procedure (MDCR) 

program found in STATPAC Library prepared by Rex Hurst, Department of 

Applied Statistics and Computer Science, Utah State University, Logan. 

The cluster analysis was run using the MINT numerical taxonomy 

computer written by F. James Rohlf (Department of Ecology and Evolu

tion, SUNY, Stonybrook, New York). The options used in the cluster 

analysis were: 1) similarity index: average Euclidean distance, 

and 2) clustering method: unweighted pair-group arithmetic average 

clustering (UPGMA). The attributes of the ten sampling stations being 

clustered included respiration, dehydrogenase activity, proteolytic 

activity, ATP concentration, moisture content, water potential, salin

ity, pH, total ammonium, exchangeable ammonium, nitrate, nitrifica

tion potential, number of aerobic bacteria, number of fungi, total 

nitrogen, and organic carbon. Clustering where all attributes were 

used is referred to as the "All Attributes Cluster." These same attri

butes were used to run the principal components analysis. The purpose 



of running these analyses was to determine similarities and dissimi

larities between sampling stations based on these attributes. 

4i 

Two other cluster analyses were run with different combinations 

of the aforementioned attributes. One combination included activities 

such as respiration, dehydrogenase, proteolytic activity, ATP concen

tration, water potential, and nitrification potential. This is refer

red to as the "Potential Activities Cluster." Another clustering 

approach used such attributes as soil status measurements which 

included organic carbon, total nitrogen, nitrate, total ammonium, 

salinity, and pH. This is referred to as the "Soil Status Cluster." 
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RESULTS 

Soil Analysis at Differe~t Collection Periods 

The soils collected from four geographically separated deserts 

of the western United States during different moisture seasons exhi

bited fluctuations in microbial activity as measured by respiration, 

dehydrogenase activity, ATP concentration, proteolytic activity, and 

nitrification potential. Increases in microbial activity were a func

tion of moisture fluctuations as modified by precipitation (see Fig

ure 2). Microbial activity was also influenced by vegetation. 

Table 3 gives the chemical analysis of soils collected from ten 

sampling stations located within five desert sites. Moisture content 

varied between sampling dates for each station; however, water content 

was not above 10.3 percent in any one soil at any collection time. 

Playa, Curlew 5, Curlew 6, and Curlew 7 had highest nitrogen and or

ganic carbon content. Salinity of all soils was below 1.0 mmhos/cm 

and pH of all soils was less than 8.7. Curlew and Pine Valley soils 

were more alkaline than soils from other desert sites. All soils ana

lyzed are sandy loams except Playa and Curlew soils which are clay 

loam and silt loam, respectively. 

Microbial numbers are given in Table 4. For most collection 

dates, there are 10 6 aerobic bacteria per gram in all soils except 

Bajada 2 soils. There are 10- to 100-fold smaller numbers of fungi 

5 than aerobic bacteria in all soils. However, there are at least 10 



Figure 2. Precipitation patterns given as monthly totals during 
years when soils were collected and analyzed for this 
study (Balph et al. 1974, MacMahon 1976, Turner 1976, 
Thames 1976, Whitford 1976). 

JA - January JU - July 
FE - February AU - August 
MA - March SE - September 
AP - April oc - October 
MA - May NO - November 
JU - June DE - December 
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Table 3. Chemical analysis of soils 

Sample/Sampling Date Moisture 

NHt 
+ Texture Analysis Content Total N Org. C C/N NO- ECe Fixed Exchang. NH4 pH Soil Hech,,--nlcal Soil Type % Water % % Ratio µg'g nnhos/cm µg/g µg/g Analysis 

Playa - 3/75 10.0 0.17 I. 53 9.0 11.0 0.7 98.3 2.6 7.6 p ·21 4 7 32 Clay loam 6/7 5 5.1 0.1.6 1.36 8.5 14.9 0.9 102.4 4.2 7. 7 8/75 9.6 0.13 1.22 9.4 9.8 0.6 73.3 3.2 7.3 12/7 5 7.6 0.10 0.82 8.2 3.6 0.6 75.7 2.9 8.l 
Bajada 1 - 3/75 0.8 0.04 0. 24 6.0 0.8 0.5 13. 7 0.8 7.5 B-1 77 ll 12 Sandy loam 6/75 1.0 0.04 0.40 10.0 0.9 0.5 13.8 0.9 7. 7 8/75 1.5 0.03 o. 30 10.0 0.9 0.3 11. 7 1.5 6.5 12/75 2.2 0.04 o. 10 7.5 0.9 0.4 12.8 o. 7 8.1 
Bajada 2 - 3/75 0.8 0.04 0.30 7. 5 0.4 0.5 20.0 0.9 7.8 B-2 73 11, 13 Sandy loam 6/75 0.9 0.04 0.41 10.3 0.8 0.4 11.6 1.5 8.1 8/75 1.4 0.05 0.41 8.2 1.1 0.3 21.4 2.0 7.4 12/75 3.1 0.04 0.35 8.8 1.6 0.4 20.2 1.5 8.0 
Bajada 3 - 3/75 1.4 0.05 0.40 8.0 0.6 0.5 17.9 0.9 7.5 B-3 7 3 15 12 Sandy loam 6/75 0.9 0.05 0.46 9.2 1.2 0.4 15.9 1.8 8.2 8/75 1.4 0.04 0.34 8.5 1.2 0.3 12.3 2.0 7.9 12/75 1.9 0.04 0.21 5.3 0.5 0.4 12.4 0.9 7.S 
Sil verbel l - 3/75 3.1 0.08 0.58 7.3 1.9 0.4 40.3 2.1 7.6 s 62 28 10 Sandy loam 6/75 0.8 0.05 0.52 10.4 2.0 0.4 23.2 3.2 6.5 8/75 7.1 0.10 0.97 9.7 4.8 0.6 75.4 1.3 7. 7 12/75 6.5 0.12 1.14 9.5 18.3 0.9 56.4 2.4 7.7 
Rock Valley - 3/75 4.3 0.04 0.23 5.8 0.6 0.3 27.0 1.2 8.3 RV 70 28 l 0 Sandy loam 7 /75 1.2 0.03 0.36 12.0 0.4 0.2 14.9 1.5 8.2 12/75 2.3 0.04 o. 30 7.5 1.6 0.3 13.2 0.8 8.1 

Pine Valley - 3/75 10.3 0.05 0.41 8.2 2.4 0.5 18. 7 0.8 8.1 PV 23 28 l 0 S:mdy Joam 7/75 4.0 0.05 0.48 9.6 1.1 0.4 22.9 0.9 8.4 12/75 2.1 0.06 0.60 10.0 1.8 0.4 23.6 0.9 8.3 5/76 1.8 0.05 0.48 9.6 0.2 0.4 13.5 1.2 8.4 

Curlew 5 - 6/75 4.3 0.10 o. 78 7.8 0.9 o. 5 39.8 14.1 8.0 cs 32 55 13 S ii l loam 3/76 5.3 0.11 1.08 9.8 o. 5 0. 5 36.2 1. 2 8.2 4/76 4.5 0.16 1.49 9.3 0.4 0.6 47.4 2.4 8.0 



Table 3. Continued 

Sample/Sampling Date Moisture 
+ + Texture An~lysis Content Total N Org. C C/N N03 ECe Fixed NH4 Exchang. NH4 pH Soil Hechankal Soil Type % Water % % Ratio µg/g mmhos/cm µg/g µg/g Analysis 

Curlew 6 - 6/75 2.5 0.11 0.90 8.2 0.8 0.7 22. 3 1.8 8.1 C6 33 51 11 Silt loam 3/76 6.9 0.12 0.87 7.3 0.2 0.5 45. 5 0.9 8.3 4/76 4.3 0.14 1.11 8.0 0.2 1.2 32.8 2.4 8.0 

Curlew 7 - 6/75 5.J 0.10 0.98 9.8 0.7 1.0 32. 7 1.3 8.1 
J/76 8.0 0.13 1.32 10.2 0.1 0.5 83.5 1.4 8.7 
4/76 4.5 0.15 1.54 10.3 0.5 3.4 58.1 2.5 8.0 



Table 4. Plate counts of aerobic bacteria, fungi, proteolytic organisms, chitinolytic organisms, 
and celluloytic organisms (coefficient of variation (C. V.) given for replicate plate 
counts) 

Sample/Sampling Date Aerobic Fungi Proteolytic Chit inolyt ic Cellulolytic 
Bacteria Organisms Organisms Organisms 

II orgs/g c.v. I orgs/ g c.v. # orgs/g c.v. D orgs/g c.v. # orgs/g c.v. 
-----------~-----

6 5 7 7 4 Playa - )/75 8.5xl0 7 
. )7 1. )xl04 .17 l.8xl0 6 .24 l.lxl0 6 .22 1. 3xl0

6 6/75 4. 6xl0 7 .24 2.4xl0 4 .26 2 .1x10
5 

.17 2.5xl0 6 .37 4.lxl0 5 .22 
8/75 1. lxl0 5 .09 5. 9xl0 5 .16 4.2xl0 5 . 27 l.2xl0 6 .14 8.3xl0 5 .37 

12/75 4.6xl0 .09 l. lxlO .25 4. 9xl0 . 30 1. 4xl0 .ll 2.lxlO .11 

5 4 5 5 
.48 

4 Ba_jacla - )/75 5.0xl0
6 

.10 l.lxl0 4 .31 l.8xl0 6 .16 1. 3xl0 4 4.8xl0 6 6/75 l.9xl0 5 .20 l. 9xl0 4 .25 3.3xl0 4 .34 9.lx!0 5 .26 l.4xl0 6 .24 
8/75 9.lxl0 5 .08 l.8xl0 4 .31 2.0xl0 5 .35 l.Ox10 5 .n l.4xl0 5 .20 

12/75 6.0xlO .14 2.8xl0 .11 1. 2xl0 .25 l .8xl0 .16 l.lxlO .30 

5 ) 4 4 5 Bajada 2 - 3/75 2.7xl0
5 

.18 6.4xl0 3 .42 9.3xl0 4 .24 3.8xl0 4 . 51 l.Oxl0 5 6/75 7.2xl0
5 

.20 7 .8xl0
3 

.52 2.5xl0 3 .94 8.5xl0 4 .14 l. 2xl0 5 .50 
8/75 8.lxl0 5 .16 5.5xl0 3 .45 2.0xl0 5 . 79 1.9xl0 5 .46 l.9xl0 4 .15 

12/75 4.4xl0 .18 9.5xl0 .36 l.5xl0 .24 l.3xl0 .17 7.3xl0 .11 

6 4 5 4 5 Bajada 3 - 3/75 2.3xl0 6 .34 l .Oxl0 3 .17 1. 5xl0 4 .38 2.0xl0 5 .79 l.lxl0 6 6/75 2.3xl0 6 .05 5.2xl0 4 .50 9.2xl0 4 .33 l.5xl0 4 .18 2. lxl0 5 
. )1 

8/75 1. Oxl0 5 .12 2.0xl0 4 .48 2.6xl0 4 .89 7.3xl0 4 .39 l.6xl0 5 
.44 

12/75 3. 7xl0 .15 l.4xl0 .35 7. 9xl0 .25 7.6xl0 .35 l.lxlO .16 

- )/75 6 4 5 4 
.25 4 Silverbcll 3. 3xl0 6 .31 l.4xl0 4 .20 2.9xl0 4 .42 l.4xl0 5 

l. lxl0 6 6/75 2.9xl0
6 .24 l.Oxl0

4 
.07 9.7xl0 4 .4 7 3.8xl0

5 
. 57 l.8xl0

5 
.42 

8/75 2.4xl0 6 .19 l.8xl0 4 .16 9. 7xl0 5 .50 2. 5xl0 5 .17 7.0xl0 4 .16 
12/75 1. 4xl0 .34 2.0xlO .07 3.6xl0 .13 1. lxlO .22 7.6xl0 .38 

- 3/75 5 3 5 3 .29 4 Rock Valley 4. 7xl0 6 .05 6.3xl0 3 .63 4.9xl0 5 .56 6.3xl0 4 
l. 5xl0 5 7/75 l.Oxl0 5 .12 5.4xl0 3 

.81 1. 6xl0 5 .37 5.9xl0 5 
.35 5.3xl0 4 .16 

12/75 5.2xl0 .17 7.7xl0 .53 l.9xl0 .24 2.lxlO .13 6.4xl0 .23 

6 3 5 3 5 Pine Valley - 3/75 l.Oxl0 5 .56 5.lxl0 3 .25 2. 7xl0 5 .21 5.lxl0 5 .23 3.6xl0
5 7 I 7 5 9.5xl0 5 .10 3.Sxl0 3 .26 2.0xl0 5 .46 l.3xl0 5 .19 6.3xl0
4 

.26 
12/75 7. 5xl0 6 .09 9.5xl0 3 .35 1. 9xl0 5 .30 2.0xl0 5 .35 9. 3xl0 5 .10 

5/76 1.0xlO .07 4 .8xl0 .39 4.6xl0 .08 3.7xl0 .12 2. lxlO .19 

6 5 5 Curlew 5 - 6/75 --6 --4 l.4xl0 6 
5.)xl0

5 
5.6xl0

5 )/76 2.0xl0
5 

.09 2.)x104 .17 l.lxl0 5 .09 5.9xl0 5 .15 3.lxl0
5 

.15 
4/76 7.)xlO .06 1. 9xl0 .43 6. 2xl0 .25 7.3xl0 .14 3.5xl0 .09 

-i:---

°' 



Table 4. Continued 

Sample/Sampling Date 

Curlew 6 - 6/75 
3/76 
4/76 

Curlew 7 - 6/75 
3/76 
4/76 

Aerobic 
Bacteria 

fl orgs/g 

--6 
l. 6xl0 6 6.BxlO 

--6 
5.5xl0 6 
7. 9xl0 

Fungi 

c.v. n orgs/g c.v. 

--4 
.19 1. 6xl0 4 .31 
.47 l.2xl0 .87 

.17 
--4 

.22 2.3xl0 4 . 16 2.8xl0 .24 

Proteolyt 1c Chitinolytic 
Organisms Organisms 

n orgs/g c.v. H orgs/g c.v. 

6 5 l.8xl0 6 2.Sxl0
5 l. 8xl0 5 .14 5.5xl0 5 .18 

5. 7xl0 .14 4.4xl0 .13 

6 5 l .1xl0 6 
.29 

3.2xl0 5 .09 l.lxl0
5 8.2xl0 5 5.3xl0 .09 4. 9xl0 . 14 

f.ellulolytic 
Organisms 

N orgs/g c.v. 

4 3.8xl0 5 2.4xl0
5 .39 

3.SxlO .11 

5 7.8xl0
5 .12 4.8xl0 5 2.cxlO .17 

~ 
-.J 
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chitinolytic, proteolytic and cellulolytic organisms per gram in all 

soils except Bajada stations. 

Raw data for dehydrogenase activity, respiration, ATP concentra

tion, and proteolysis in soils collected for this study are given in 

Table 5. 

The analysis of variance for eight soil parameters is given in 

Table 6 including those parameters indexing microbial activity, and 

two soil chemical constituents, exchangeable ammonium and nitrate, 

tested for ten soils and four dates combined. The significance level 

used in all the statistical comparisons in P = 0.10. 

The analysis of variance shows that there is a significant dif

ference among sampling stations for all parameters tested except ATP 

concentration, moisture content, and exchangeable ammonium. There is 

also a significant difference between seasons of active plant growth 

(designated "vegetative") and plant dormancy (designated "dormant") in 

re$piration and proteolytic activity. Both proteolytic activity and 

respiration are significantly higher during the dormant seasons in 

all soils tested. Proteolytic activity and dehydrogenase activity 

are significantly higher during wet seasons. Seasonal moisture pat

terns were the major source of variation for nitrification potential. 

Greatest nitrification potential was found in soils collected during 

the dry season. 

Table 7 gives mean and least significant difference (LSD) values 

for eight soil parameters for ten different soils. Playa, and Curlew 

5, 6, and 7 soils are significantly higher than other soils tested in 

respiration for four dates combined, whereas Bajada 1, 2, and 3, 



Table 5. Dehydrogenase activity, respiration ATP concentration and proteolysis in soils collected 
for this study (coefficient of variation (C. V.) given for replications) 

Sample/Sampling Date Dehyd rogenase ATPt Proteolytic Activity c.v. Respiration c.v. Concentration c.v. Activity c.v. (mg formazan/ g) (µmoles/ g/ min) (µg/g) (% hydrolysis) 

Playa - 3/75 .075 .03 26.7 .22 .0140 . 24 7 .o .20 6/75 .056 .19 11.6 .23 . 0190 .oo 3.5 .00 8/75 .044 .22 9.7 .06 .0120 . 23 s.o . 24 12/75 .049 31.4 .oo .0240 .03 6.1 . 00 
Bajada 1 - 3/75 .036 .06 10.1 .03 .0440 .18 3.0 . 23 6/75 .037 .09 2.6 .0300 .02 4.0 .05 8/75 .021 .19 4.4 .22 .0380 .13 3.0 . 22 12/75 .026 .09 15.3 .41 .0350 .18 8.2 .20 
Bajada 2 - 3/75 .051 .oo 10.5 .03 .0290 .19 7.0 .07 6/75 .038 .25 1.6 .23 .0230 . 21 3.5 . 23 8/75 .009 .03 8.3 .23 .0510 .23 3.0 . 24 12/75 .014 .00 11.4 .OS .0360 .13 3.9 .00 
Bajada 3 - 3/7 5 .024 .00 5.6 .23 .0240 .02 7.0 .00 6/75 .051 .00 6.7 .08 .0330 .24 5.5 .25 8/75 .010 .16 8.6 .02 .0270 .22 5.1 .25 12/75 .012 .06 6.3 .23 .0360 .22 12.5 .13 
Silverbell - 3/75 .088 .08 7.6 .23 .0460 .21 8.0 .07 6/75 .061 .06 10.4 .00 .0240 .05 12.0 .07 8/75 .562 .23 6.7 .oo .5450 .21 22.0 . l 5 12/75 .030 .03 16.4 .16 1.1740 .10 21.0 .0) 
Rock Valley - 4/73 .101 .13 14.3 12 .o 3/75 .047 .23 12.3 .06 .0390 .02 10.0 . 18 7/75 .095 .04 5.6 .23 .0150 . 05 11. 6 . I 3 12/75 .078 .03 11.0 .03 .0560 .16 l 7. I .It 
Pine Valley - 3/75 .062 .23 18.3 .04 . 1370 .15 J.O .00 7/75 .081 .14 5.3 .22 .0120 .on 2 I . 5 .04 12/75 .071 .19 4.1 .00 .051,0 .05 14.2 .00 5/76 .034 .00 6.6 .44 .l.010 .22 J 4. "J .08 
Curlew 5 - 1/73 .413 .Ol 29.7 .11 Jl .0 6/75 .099 .01 11.4 .03 .0240 .14 18.R .o~ 3/76 .072 .09 40.8 .02 . 7330 . 22 17.5 .00 4/76 .207 .01 7 .o .22 .0550 .23 2'i. J .Ofi 

..,.. 
\0 



Table 5. Continued 

Sample/Sampling Date 

Curlew 6 - 1/73 
6/75 
3/76 
4/76 

Curlew 7 - 1/7 3 
6/75 
3/76 
4/76 

Dehydrogenase 
Activity 

(mg formazan/ g) 

.032 

.192 

.068 

.191 

.423 

.164 

.208 

.436 

t ATP recovery ranged from 28 to 82 percent. 

c.v. Respiration 
(µmoles/ g/idn) 

. 23 26.0 

.04 5.2 

.23 51.) 

.14 7.5 

.19 33.6 

.08 9.1 

.23 36. 5 

.03 7.6 

ATPt 
c.v. Concentration c.v. 

(µg/ g) 

.10 

.07 .0380 .14 

.00 .4140 .17 

.41 .0480 . 23 

.10 

.18 .0540 .13 

.11 .4180 . 23 

.22 .0430 .22 

Proteolytic 
Activity 

(5 hydrolysis) 

20.0 
17.5 
29.0 
23.8 

39.5 
20.0 
33.0 
41.5 

c.v. 

. 25 

.oo 

. 07 

.25 

.oo 

. 12 

\Jl 
0 



Table 6. Factorial analysis of variance for eight soil parameters tested for ten sampling stations and four dates combined 

Source of Exeected Mean Sguare Variation df Resp. 1 De hydro. 2 Protea. 

Sampling sta- 9 179. 73* .039* 424.12* tion (S) 

Moisture (M) 1 12.21 .055* 116.62* 
Season of Higher 1 726.76* .002 122.85* Plant Growth (V) 
s X M Interaction 9 31.99 .014 29. 97 
s X V Interaction 9 200. 71* .008 20.65 
M X V Interaction 1 86.73 .0003 21. 26 
s X M X V Inter- 9 73.50 .009 25.50 action 

Total 39 

lYRespiration (Resp.) units= moles co
2

/g/min. 2 Dehydrogenase (Dehydro.) units= mg formazan/g 3 Proteolysis (Proteo.) units=% hydrolysis 4 ATP concentration (ATP) units= µg/g 5 Percent moisture(% Moist.) units=% water 6 Nitrate (No;) uiits = mg/g 

3 ATP4 

.070 

.001 

.077 

.099* 

.020 

.016 

.037 

and Significance 

% 5 _6 +7 
Moist. N0

3 NH4 
94.57 .430* 5 .013 

248.00* .006 5.919 
204. 30* .007 9.604 

51.96 .147 4.576 
77.30 .056 5.985 

290.52* .000 .025 
39.83 .079 3.419 

7 Exchangeable NH
4 (Ex. NH

4
) units= ~/g 8 

Nitrification Potential (Nitrif.) = total amount of nitrate accumulated per 20 days perfusion * Significant at Alpha= 0.10 

8 
Nitrif. 

97269.9* 

10800.8* 

202. 6 

40743.8* 

681.l 

7.0 

2563.2 

V, 
I-' 



Table 7. Mean and LSD values for eight soil parameters tested for ten sampling stations and 
four dates combined 

Stations Resp. Dehydro. Protea. ATP % N0
3 

+ Nitrif. Ex. NH4 Moist. 

p 19.85 0.056 5.40 0.017 8.1 0.98 3.3 512.4 

B-1 8.10 0.036 4.55 0.038 1. 4 0.09 1.0 5.3 

B-2 7.95 0.028 4.35 0.035 1. 6 0.10 1.8 4.1 

B-3 6.80 0.024 7.53 0.030 1.4 0.09 1.6 16.4 

s 10.80 0.198 16.25 0.447 4.4 0.68 2.5 142.5 

RV 10.80 0.080 12.68 0.028 3.8 0.07 1. 2 9.5 

PV 8.58 0.062 13. 25 0.077 4.6 0.14 1.2 7.0 

C 5 22.53 0.200 28.20 0.203 12.7 0.05 4.5 79.1 

C 6 22.38 0.188 22.58 0.125 12.4 0.03 1.3 36.6 

C 7 21. 70 0.308 33.50 0.129 13.2 0.04 1.6 51.1 

LSD:0.10 Respiration (Resp.) 11.11 
Dehydrogenase (Dehydro.) = 0.123 
Proteolysis (Protea.) = 6.55 
Nitrate (No3-) = 0.36 
Nitrification Potential (Nitrif.) = 65.6 

V, 
N 
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Silverbell, Rock Valley, and Pine Valley are similar to each other in 

respiration for four dates combined. Dehydrogenase activity is sig

nificantly higher in Curlew 5, 6, and 7 and Silverbell soils than in 

other six soils but dehydrogenase activity is not significantly dif

ferent between Curlew and Silverbell soils. Nitrate content and nitri

fication potential are highest in Playa soils. Curlew soils have sig

nificantly higher moisture content than soils from other stations for 

four dates combined. Table 8 gives mean and LSD values for ATP con

centration tested for wet and dry seasons and ten sampling stations 

combined. 

Table 9 gives mean and LSD values for nitrification tested for 

wet and dry seasons and ten sampling stations combined. Table 10 

gives mean and LSD values for respiration tested for vegetative and 

dormant seasons and ten sampling stations combined. During the wet 

seasons, nitrification is highest in Playa soil and there is no sig

nificant difference in nitrification potential between the other nine 

soils. During the dry season, however, Playa and Silverbell soils are 

significantly different in nitrification potential from the other 

eight soils but are not significantly different from each other. 

Respiration does not differ significantly among sampling stations 

during the "vegetative" season (Table 10). However, respiration dif

fers significantly among stations in the "dormant" season. 

Selected paired activities that showed significant correlation 

are given in Table 11. Nitrate and nitrification potential showed 

the strongest correlation. 



Table 8. Mean and LSD values for ATP concentration tested for wet 
and dry seasons and ten sampling stations combined 

ATP concentration t 
Sampling stations Dry Wet 

p 0.017 0.018 

B-1 0.037 0.037 

B-2 0.026 0.044 

B-3 0.029 0.032 

s 0.035 0.860 

RV 0.027 0.028 

PV 0.075 0.079 

cs 0.379 0.028 

C6 0.226 -.024 

C7 0.236 0.022 

LSDO.lO =- 0.351 

tATP concentration units µg/g 
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Table 9. Mean and LSD values for nitrification potential tested 
for wet and dry seasons and ten sampling stations 
combined 

Sampling Stations Nitrification Potential 
Wet Dry 

p 797.91 226.86 

B-1 3.30 1.20 

B-2 1.30 2.60 

B-3 18.41 14.38 

s 35. 77 249.27 

RV 17.14 1. 90 

PV 7.54 6.51 

C 5 43.29 115. 05 

C 6 46.30 26.83 

C 7 53.17 49.03 

LSD0.10 92.80 

tNitrification expressed as total amount of nitrate accumulation 
per 20 days incubation. 
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Table 10. Mean and LSD values of respiration for vegetative and 
dormant seasons across ten stations combined 

Sampling Stations Respirationt 
Vegetative Dormant 

p 18.20 21.50 

B-1 7.25 8.95 

B-2 9.40 6.50 

B-3 7.10 6.50 

s 8.10 13.50 

RV 11. 65 9.95 

PV 11.20 5.95 

C 5 9.20 35.25 

C 6 6.10 38. 65 

C 7 8.35 35.05 

LSD0.10 15. 72 

tRespiration expressed as rate of co
2 evolution. 



Table 11. Correlation coefficients between selected paired 
activities measured in collected soils 

Activities Correlated 

Respiration - ATP 

Respiration - Proteolysis 

Respiration - Moisture Content 

Dehydrogenase - Proteolysis 

Dehydrogenase - Moisture 

Proteolysis - ATP 

ATP - Nitrate 

Proteolysis - Moisture Content 

Nitrate - Nitrification Potential 

r = 
I (x-x) (y-y) t 

h(x-x) 2I(y-y) 2 

.38 

.50 

.54 

.69 

.61 

.39 

.45 

.45 

.79 

t 
Significant at alpha= 0.05, from Snedecor and Cochran (1967). 
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The cluster analysis phenograms are shown in Figure 3. The bot

tom of the tree corresponds to the start (first clustering cycle) 

where each individual is a separate cluster. The formation of clus

ters is defined by horizontal lines within the tree. The individuals 

contained within a cluster are defined by locating a horizontal line 

and then tracing all connected lines back to the bottom of the tree. 

The greater the height of the horizontal line as measured from the 

bottom of the tree--given by a similarity index scale with larger 

values denoting less similarity--the less is the similarity between 

the two joining clusters. 

From the "All Attributes Cluster" it can be concluded that playa 

(Jornada) is the most distinct station and Bajada 2 and Bajada 3 are 

most similar. HAwever, two clusters can be picked out, with playa 

being by itself. The clusters seem to be Bajada 1, 2, and 3, Rock 

Valley, and Pine Valley, and Curlew 5, 6, and 7 and Silverbell. The 

same clusters are discerned in the "Soil Status Cluster" and the 

"Potential Activities Cluster." These conclusions are based on the 

location of the horizontal line chosen on the tree and the attributes 

used to characterize each individual being clustered. 

The principal components analysis using the attributes in 

the "All Attributes Cluster" showed that 89 percent of the variability 

between sampling stations was due to respiration, dehydrogenase acti

vity, and ATP concentration. 



Figure 3. Phenograms of three cluster analyses, All Attributes 
Cluster, Potential Activities Cluster, and Soil 
Status Cluster. 

Code: Number on tree Sameling station 
1 Playa 
2 Bajada 1 
3 Bajada 2 
4 Bajada 2 
5 Curlew 5 
6 Curlew 6 
7 Curlew 7 
8 Silverbell 
9 Rock Valley 

10 Pine Valley 
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Nitrification Potential 

The analysis of variance for the soil analysis reported in the 

previous section included nitrification potential and summarized the 

comparison of seasons and sampling stations. When increase of nitrite 

and nitrate are plotted graphically against time the growth rate of 

the nitrifying bacteria and the response of nitrifying organisms to 

added ammonium are exhibited. 

Figures 4, 5, and 6 show the nitrification potential of added 

ammonium substrate in ten different soils. (Raw data are found in 

Appendix Table 28). Playa soil shows the highest accumulation of 

nitrate although nitrite level rises quite high before it begins to 

decrease. Curlew 5, 6, and 7 soils behave similarly, all showing 

high nitrite accumulation above that of nitrate (Figures 4 and 6). 

Bajada 1, Bajada 2, and Pine Valley soils show no nitrate accu

mulation in 20 days of incubation (Figures 4 and 5). Only Silverbell 

soils have a higher nitrate accumulation than nitrite. 

Figures, 7 through 14 show seasonal comparison of nitrification 

potential for each sampling station (raw data are found in Appendix 

Tables 28 through 35). Playa soils have the highest accumulation of 

nitrate in March and August soils (Figure 7). Nitrite level is higher 

than nitrate in soils collected at all dates. Bajada 1 soils show 

very little nitrification potential (Figure 8). August and December 

samples show a lag period of 16 to 20 dayi for any nitrate increase. 

Similarly, Bajada 2 soils show little if any nitrate increase 

(Figure 9). Of the Bajada stations, Bajada 3 is the only one which shows 

any nitrate accumulation, although it is relatively low (Figure 10). 



Figure 4. Nitrification potential of Playa, Bajada 1, Bajada 2, 
and Bajada 3 samples (March, June, August, and 
December averaged). 
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Figure 5. Nitrification potential of Silverbell samples 
(March, June, August, and December averaged), 
Rock Valley samples (March, July, and December 
averaged) and Pine Valley samples (March, July, 
December and May averaged). 
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Figure 6. Nitrification potential of Curlew 5, Curlew 6, and 
Curlew 7 stations, all months averaged. 
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Figure 7. Date comparison of nitrification potential in playa 
soils average of duplicate samples. 
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Figure 8. Date comparison of nitrification potential in Bajada 1 
soils, average of duplicate samples 
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Figure 9. Date comparison of nitrification potential in Bajada 2 
soils, average of duplicate samples. 
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Figure 10. Date comparison of nitrification potential in Bajada 3 
soils, average of duplicate samples. 
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Figure 11 shows nitrification potential of Silverbell soils. In 

March and August samples there is no nitrite accumulation and December 

samples have the greatest nitrification potential whereas June samples 

have the lowest. 

Rock Valley soils have little nitrification potential (Figure 12). 

Both ammonium and nitrite oxidizers show little if any potential activ

ity in July samples. 

Nitrification potential for Pine Valley soils is shown in Figure 

13. Both July and December soils show negligible nitrate accumulation 

and March and May soils show some nitrification potential. 

Finally, Figure 14 shows average nitrification potential of Curlew 

soils, stations 5, 6, and 7. March and April samples show the 

greatest nitrification potential and October samples show the lowest. 

July samples have the greatest nitrite accumulation. 

Adjusted Moisture Level Experiment 

This experiment was carried out to find what minimum moisture level 

is necessary to significantly stimulate microbial activity in desert 

soils. Raw data on the findings are given in Table 12. The analysis 

of variance for respiration, dehydrogenase activity, and ATP concen

tration tested for ten soils and six moisture levels combined is given 

in Table 13. There was no significant difference in respiration be

tween moisture levels nor soils. Mean and LSD values for dehydrogenase 

activity and ATP concentration tested for adjusted moisture levels 

are given in Table 14. Dehydrogenase activity was not significantly 

increased when soils were adjusted to -3, -14, and -23 bars, but was 



Figure 11. Date comparison of nitrification potential in Silverbell 
soils, average of duplicate samples. 

f:,_ - NH+-N 
4 . - NO -N 
2 
-

0- NO -N 
3 



·;; .. .. 
' 
C 

! 
:, 

0 .. 
.!: 
z .. 
E 

i .. .. 
' 
C 

~ 
:, 

0 .. 
.!: 
z .. 
E 

Morch 
2.0 

1.0 ~ 
0.!! 

0.1 

0.0!! 

oa,, 

2.0 
Aueuet 

~ 

1.0 

0.!! 

0.1 

0.0!! 

0 ·01-=0~~4~~8--'-12 _ _.16--2 .... 0-

Da,, 

~ .. .. 
' 
C 

! 
:, 

0 .. 
.!: 
z 
D 
E 

'i . 
D 

' 
C 

~ 
:, 
0 .. 
.!: 
z 
D 
E 

2.0 

1.0 

0.!! 

0.1 

0.0!! 

0.01 0 

2.0 

1.0 

0.!! 

0.1 

0.0!! 

Jun• 

~ 

4 • 12 

D••• 

Dn•111ller 

~ 

0.0l~0'----'4'----'8-~12-~16--2~0-

Da,, 

69 



Figure 12. Date comparison of nitrification potential in Rock Valley 
soils, average of duplicate samples. 
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Figure 13. Date comparison of nitrification potential in Pine Valley 
soils, average of duplicate samples. 
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Figure 14. Date comparison of nitrification potential in Curlew 
soils, stations 5, 6, and 7 averaged. 
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Table 12. Adjusted moisture experiment--respiration (Resp.)*, dehydrogenase activity (Dehydro)*, 
ATP concentration (ATP)*, and water potential (- bars) in ten soils at original 
moisture and five adjusted moisture levels 

Original Moisture f'leld Capac! ty 2/ 3 Field Capacity 
Sampl.e Resp. Dehydro ATP Bars Resp. Dehy<lro ATP Rars Resp. Dehydro ATP Rars 

p 22.3 .182 .009(, <-100 31.0 .508 .0319 -0.3 36. 7 .362 .0303 -I. 5 
8-1 4.1 .054 .0091 <-100 3.8 .125 .0260 -0. 3 8.7 .ll5 .0212 -2.U 
B-2 4.3 .038 .0077 <-100 2. 5 .150 .0248 -0.3 21.0 .246 .0169 -1 .8 
B-3 2.4 .044 .0095 <-100 3.6 .226 .0171 -0.3 19.6 . 277 .0188 -3.2 
s 2.9 .077 .0084 <-100 8.5 .458 .0639 -0.3 15.3 .403 .0194 -2.0 
RV 8.8 .049 .0077 <-JOO 6.0 .353 .0198 -0.3 9.6 .438 .0271 -2 .o 
PV 9.8 . 586 .0069 <-100 4.4 .473 .0344 -0.1 l 3.0 .464 -1.0 
C 5 14.4 .523 .0090 <-100 9.3 .446 .1049 -0.3 14. 2 . 518 .0695 -1. 0 
C 6 l7.J .892 .0064 <-100 19.l 1.116 .0875 -0.3 30.6 .621 .0938 _, .0 

C 7 19.9 . 716 .01 34 <-100 15.2 1.135 0.752 -0.3 17.2 .883 .0654 -3.0 

* Respiration t1nits = 11moles CO
2 

evolved/g/min 
llehydrogenase unlt" = mg form;,zan formed/g 
ATP units• µg/g 



Table 12 Continued 

1/2 Field Capacity Air Dried 1/6 Field Capacity Sample Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars 
p 26.6 .498 .0429 4.3 19.0 .551 .0548 17.l 22.6 .667 .1301 21.0 
B-l 2.4 .084 .0578 4.3 10. 7 .130 .1058 23.0 3.8 .089 .1656 24.3 
B-2 5.4 .099 .0332 4.0 8.2 . 129 .0668 8.7 7.0 .114 .0483 28. 2 
B-3 7.6 .135 .1324 J.8 8.9 .130 .0923 13,5 8.6 .104 .1566 J.1.0 
s 6.2 . 272 .1972 3.5 6.1 .206 .0237 9.8 8.7 . 231 .0971 21.9 
RV 8.5 .185 .1039 2.J 5.1 .191 .1113 11. 3 f,, 7 .140 .0826 24. l 
PV 10.2 .269 .0777 1.5 8.8 .228 .0941 9.J 8.4 .232 .1224 25. 0 
C 5 14.2 .354 .1779 2.1 12.0 .620 .1550 14.l 9.0 .564 .1454 25.6 
C 6 19.9 .944 . 2433 2.1 15.3 1.004 .2697 20.8 15.3 1.044 .2124 23.1 
C 7 25.6 .548 .0334 3.0 14 .9 .506 .0341 16.7 21. 2 . 11,3 . l912 20.2 



Table 13. Analysis of variance for respiration, dehydrogenase activity, and ATP concentration tested 
for ten soils and six moisture levels combined in Adjusted Moisture Level Experiment 

Source of Variation 

Soils (S) 

Moisture Level (M) 

S x M Interaction t 

Sampling 

Total 

*Alpha= 

t S X M 

.10 

error 

df 

9 

5 

45 

120 

179 

Expected Mean Square and Significance 
Respiration Dehydrogenase ATP 

(µmoles co
2

/g/min) (mg formazan/ g) µg/g 

4890.9 . 931*· .014* 

5988.9 .090* .048* 

5437.9 .033 .003 

5518.8 .007 .001 

5480.0 .090 .005 

-.J 
\J1 



Table 14. Mean and LSD values for dehydrogenase activity and ATP 
concentration tested at five moisture levels in 
Adjusted Moisture Level Experiment 

Moisture 

- 100 bars 
(original moisture) 

-0.3 bar 
(field capacity) 

-2. 0 bars 
(2/3 field capacity) 

-3.0 bars 
(1/2 field capacity) 

-14 bars 
(1/6 field capacity) 

-23 bars 
(air dried) 

Dehydrogenase 
(mg formazan/s) 

0.3162 

0.4988 

0.4365 

0.3386 

0.3708 

0.3932 

LSD
0

_
10

: Dehydrogenase - 0.1158 
ATP - 0.0349 

ATP 
(µg/ g) 

0.0085 

0.0499 

0.0391 

0.1126 

0.1023 

0.1347 

76 
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significantly increased at -0.3 bars and -2 bars. On the other hand, 

ATP concentration was not significantly increased at -0.3 cars, -2 

bars, and -3 bars, but was increased at -14 and -23 bars. 

Mean and LSD values for dehydrogenase activity and ATP concen

tration in ten different soils are given in Table 15. Curlew 6 and 7 

soils had highest dehydrogenase activity and Curlew 5 and 6 had high

est ATP concentration. 

Correlation coefficients between dehydrogenase activity, respira

tion and ATP are given in Table 16. Correlation between activities 

are similar at -0.3 bars and -14 bars. Dehydrogenase and ATP are 

negatively correlated at <-100 bars. Negative correlations also 

existed between dehydrogenase and respiration and between respiration 

and ATP at -3.0 bars. 

Drying Experiment 

This experiment was conducted to demonstrate the effect of drying 

on microbial activity in desert soils. Raw data on the findings are 

given in Table 17. Table 18 gives the analysis of variance for res

piration, dehydrogenase activity, and ATP concentration tested for 

ten soils and seven drying intervals combined. There was no significant 

difference between drying intervals in dehydrogenase activity. Mean 

and LSD values for respiration and ATP concentration tested in seven 

drying intervals and ten soils combined are given in Table 19. Respi

ration is lowest in soil after 192 hours drying at 22°c but with fur

ther drying at higher temperatures respiration increases. 



Table 15. Mean and LSD values for dehydrogenase activity and 
ATP concentration in ten soils tested in the 
Adjusted Moisture Level Experiment 

Sampling Station Dehydrogenase ATP 
(mg formazan/g) (µg/ g) 

p 0.461 0.0499 

B-1 0.106 0.0647 

B-2 0.129 0.0319 

B-3 0.152 0.0739 

s 0.275 0.0682 

RV 0.226 0.0616 

PV 0.375 0.0624 

C 5 0.504 0 .1115 

C 6 0.937 0.1524 

C 7 0. 758 0.0687 

LSD0.10: Dehydrogenase = 0.224 
ATP= 0.0529 



Table 16. Correlation between dehydrogenase activity, respiration, 
and ATP in Adjusted Moisture Level Experiment 

Moisture level/Activities 

Original Moisture (ave. bars= <-100) 

Dehydrogenase - Respiration 
Respiration - ATP 
Dehydrogenase - ATP 

Field Capacity (ave. bars= -0.3) 

Dehydrogenase - Respiration 
Respiration - ATP 
Dehydrogenase - ATP 

2/3 Field Capacity (ave. bars= -2.0) 

Dehydrogenase - Respiration 
Respiration - ATP 
Dehydrogenase - ATP 

1/2 Field Capacity (ave. bars= -3.0) 

Dehydrogenase - Respiration 
Respiration - ATP 
Dehydrogenase - ATP 

Air Dried (ave. bars= -23) 

Dehydrogenase - Respiration 
Respiration -ATP 
Dehydrogenase - ATP 

1/6 Field Capacity (ave. bars= -14) 

Dehydrogenase - Respiration 
Respiration - ATP 
Dehydrogenase - ATP 

r = L(x - x)(y - y) 

.65 

.19 
-.37 

.58 

.24 

.63 

.11 

.33 

.63 

-.20 
-.62 

.37 

.73 

.33 

.59 

.59 

.17 

.63 

79 



Table 17. Respiration (Resp.)*, dehydrogenase activity (Dehydro)*, ATP concentration (ATP)*, 
and water potential (- bars) in ten soils at different drying intervals during 
drying experiment 

Original Moisture Wetted Air Dried 24 hrs at 22°C Air Dried 96 hrs at 22°C 
Sample Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars Resp. Dehydro ATP liars 

p 37 .6 .110 .0114 <-100 29.7 .113 .0739 -10 18.8 .118 .0162 <-100 16.0 .081 .0159 <-300 

B-1 9.2 .017 .0287 <-100 6.5 .021 .0694 - 6 3.6 .019 .0368 <-100 8.1 .014 .0283 <-300 

8-2 9.5 .027 .0160 <-100 11.0 .029 .0842 - 5 6.5 .022 .0184 <-100 9.1 .022 .0187 <-300 

8-3 7.5 .073 .0188 <-100 5.4 .012 .1136 - 4 7.2 .008 .0130 <-100 7.2 .009 .0182 <-300 

s 7.6 .054 .0196 <-100 11. 7 .059 . 2180 - 4 5.6 .051 .0267 <-100 7.9 .042 .0385 <-300 

RV 11.0 .029 .0186 <-100 8.9 .028 .0731 - 4 9.0 .027 .0192 <-100 11.9 . 011, .0147 <-300 

PV 20.6 .016 .0340 - 5 9.2 .018 .0549 - 6 11.2 .016 .0048 <-100 10.8 .012 .0069 <-300 

C 5 31.9 .079 .0639 - 17 17_.7 .047 .1398 - 6 15.5 .057 .0336 <-100 11.1 .053 . 017 7 <-)00 

C 6 28.5 .048 .1054 - 19 17.5 .040 .1874 - 4 15.1 .031 .0372 <-100 17.l .068 .0217 <-)00 

C 7 24.9 .106 .0690 - 48 22.0 .172 .2141 - 5 13.3 .158 .0317 <-100 9.4 .134 .02[4 <-)00 

* Respiration units= µmoles co
2 

evolved/g/min 
Oehydrogenase units = mg formazan formed/g 
ATP units 2 µg/g 



Table 17. Continued 

Air Dried 192 hrs at 22"C + 24 hrs Air Dried 192 hrs at 22°C Air Dried 192 hrs+ 24 hrs at )0°C at J8°C + 24 hrs at )7"C Sample Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars Resp. Dehydro ATP Bars 
p 10.0 .105 .0275 <-)00 19.8 .110 .0250 <-)00 11.0 .095 .026) <-)00 
B-1 6.1 .024 .0410 <-)00 7.4 .017 .0478 <-300 8.8 .027 .0415 <-300 
B-2 6.5 .OJ6 .0226 <-300 10.1 .020 .0280 <-)00 11.0 .028 .0190 <-JOO 
B-3 6.5 .011 .0))2 <-JOO 8.7 .009 ,0)8) <-JOO 9.2 .016 .0)4) <-)00 
s 11. 7 .066 .OJ08 <-300 10.3 .058 .0680 <-300 14.6 .074 .0479 <-300 
RV 6.6 .022 .0218 <-300 13.5 .023 .0286 <-300 13. 2 .022 .0231 <-300 
PV 11.0 .014 .0101 <-300 11.2 .011 .0355 <-300 12.5 .04) .0188 <-)00 
C 5 9.8 .042 .0266 <-300 12.7 .079 .0512 <-300 15.5 .062 .0442 <-)00 
C 6 5.9 .023 .0251 <-JOO 11.7 .094 .0295 <-300 16.1 .088 .0290 <-300 
C 7 5.5 ,118 .0237 <-JOO 10. J .161 .0298 <-300 14.8 . 140 .0535 <-300 



Table 18. Analysis of variance for respiration, dehydrogenase activity, and ATP concentration tested for ten soils and seven drying intervals combined in Drying Experiment. 

Source of Variation df 

Soils (S) 9 

Drying Intervals (D) 6 

S X Dt 54 

Sampling 70 

Total 139 

*Significant at Alpha~ 0.10 

ts x D = error 

Expected Mean Square and Significance 
Respiration Dehydrogenase ATP 
(µmoles co

2/g/min) (mg formazan/ g) (µg/ g) 

263.872* .0205* .0037* 

232.400* .0016 .0264* 

38.446 .0008 .0013 

5.616 .0006_ .0002 

CXl 
N 
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Table 19. Mean and LSD values for respiration and ATP concentration 
in seven drying intervals tested in Drying Experiment 

Moisture Levels Respiration ATP 
(µmoles co

2
/g/min) (µg/g) 

Original moisture 18.80 0.0385 

Wetted soil 13.94 0.1228 

Soil after 24 hrs drying 10.54 0.0226 

Soil after 96 hrs drying 10.88 0.0173 

Soil after 192 hrs drying 7.93 0.2623 

Soil after 192 hrs drying 
plus 24 hrs at 30 C 11.565 0.0354 

Soil after 24 hrs at 30 C 
plus 24 hrs at 37 C 12.65 0.0381 

LSD
0

_
10

: Respiration= 3.810 
ATP= 0.0221 



There was no abiotic CO
2 

evolution measured in soils treated 

with propylene oxide at intervals of drying at room temperature. 
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0 However, 8 percent abiotic co
2 

was measured after drying at 30 C. No 

abiotic CO
2 evolution measured in soil after drying 0 was at 37 C but 

abiotic CO
2 evolution of lyophilized soil was 6 percent of the total 

CO
2 evolved. 

ATP concentration is highest after 192 hours drying at 22°c and 

with further drying at higher temperatures ATP decreases to approxi

mately the same levels as in the original moisture. ATP concentra

tion fluctuates erratically between drying intervals. 

Adjusted Moisture Level Plus Organic Matter Experiment 

This experiment was conducted to examine the effect of added 

organic matter on soils adjusted to different moisture levels and to 

compare the influence of added organic matter on soils with high and 

low organic carbon content. 

Raw data for this experiment are given in Table 20. Table 21 

gives the analysis of variance for respiration and dehydrogenase acti

vity tested for four soils and five moisture levels combined. The 

four soils used were playa and Curlew 7 soils (relative high in 

organic carbon), and Bajada 1 and Rock Valley soils (relatively low 

in organic carbon). There was no significant difference in respira

tion in the four soils and five moisture levels combined but there 

was a significant difference in dehydrogenase activity between soils 

and moisture levels. 



Table 20. Adiusted Moisture Levels Plus Organic Matter Experiment--respiration (Resp.)t, 
dehydrogenase activity (Dehydro.), water potential (-bars) in glucose amended 
Playa, Bajada 1, Rock V lley, and Curlew 7 soils at original moisture and four 
adjusted moisture levels 

Playa Bajada 1 Rock Valley Curlew 7 

Moisture Levels Resp. Dehydro Bars Resp. Dehydro Bars Resp. Dehydro Bars Resp. Dehydro Bars 

Original Moisture 11. 2 .111 -300 4.4 .017 -300 3.9 .032 -300 0.4 .098 -300 

1/2 Field Capacity 81.5 .136 3 21.1 .028 4 27.4 .071 4 67.l .121 3 

1/4 Field Capacity 141.4 .099 14 22.9 .028 17 21. 5 .048 18 53.4 .112 16 

1/6 Field Capacity 83.4 .102 -130 0.5 .014 -160 17.5 .032 -175 48.7 .092 -153 

1/12 Field Capacity 31.4 .108 -275 3.7 .034 -280 5.8 .040 -265 10.4 .096 259 

tRespiration units= µmoles co2 evolved/g/min 
Dehydrogenase units= mg formazan formed/g 

CX) 
V, 



Table 21. Analysis of variance for respiration and dehydrogenase activity tested for four 
soils and five moisture levels combined in Adjusted Moisture Level Plus Organic 
Matter Experiment 

Expected Mean Square and Significance 
Source of Variation 

Soils (S) 

Moisture level (M) 

S x Mt Interaction 

Sampling 

Total 

*Significant at Alpha~ 0.10 

t 
S x M = error 

df Respiration Dehydrogenase 

3 2956.516 • 0187*-

4 47690.10 .0010* 

12 45018.05 .00014 

40 49797. 21 .0008 

59 46300.59 .0016 

CP 
0\ 
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Mean and LSD values of dehydrogenase activity for five moisture 

levels is given in Table 22. There was no significant difference in 

dehydrogenase activity when moisture was increased from lyophilized 

soil at <-300 bars to -270 and -154 bars even with addition of glucose, 

a readily utilizable organic matter source. 

Soils with relatively high organic carbon content had higher 

dehydrogenase activity than those with lower organic carbon content 

(see Table 23). 

Wetting-Drying Experiment 

This experiment was conducted to demonstrate the effect on micro

bial activity in desert soils of wetting a dry soil, allowing it to 

air dry for several days, and then rewetting it. 

Raw data on respiration, dehydrogenase activity, and ATP concen

tration at four moisture intervals in ten soils with added organic 

matter are given in Table 24. 

Respiraticn increases an average of 20-fold in lyophilized soil 

which was wetted, whereas dehydrogenase only increased an average of 

2.7-fold and ATP concentration increased a trace on the average. An 

air dry soil which was rewetted increased in respiration by 36-fold 

and dehydrogenase increased by 5-fold. ATP concentration decreased 

slightly. 

Since the added organic matter was casein, both a carbon and a 

nitrogen source, it is possible to examine the anunonification in the 

soils as affected by wetting and drying. Table 25 gives the total 

ammonium in the soils after moistening, subsequent air drying, and 
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then remoistening the air-dry soil. Ammonification increases in soils 

in the air-dry state and even more when soils are rewetted. 



Table 22. Mean and LSD values of dehydrogenase activity for five 
moisture levels tested in Adjusted Moisture Plus 
Organic Matter Experiment 

Moisture Level 

-3.5 bars 
(1/2 field capacity) 

-16 bars 
(1/4 field capacity) 

-154 bars 
(1/6 field capacity) 

-270 bars 
(1/12 field capacity) 

< -300 bars 
(Lyophilized - original moisture) 

LSDO.lO"' 0.0126 

Dehydrogenase 
(mg formazan/ g) 

0.0894 

0.0714 

0.0603 

0.0693 

0.0644 

89 



Table 23. Mean and LSD values of dehydrogenase activity for 
four sampling stations tested in Adjusted Moisture 
Plus Organic Matter Experiment 

Sampling Station 

Playa 

Bajada 1 

Rock Valley 

Curlew 7 

LSDO.lO = 0.0125 

Dehydrogenase 
(mg formazan/ g) 

0.112 

0.0238 

0.0448 

0.1039 

90 



Table 24. Wetting-drying experiment--respiration (Resp.), dehydrogenase (Dehydro.), and ATP concentration for soils at different moisture intervals 

Stations Lyophilized Soil Soil Moistened to Field Capacity Air Dry Soil Rewet ted Soil 
Res~. Dehidro, __E!'._ Res~. Deh;r:dro. ATP -~ Deh;r:dro. ATP Res~. Deh;r:dro. ATP (µmoles/g/ (mg (lJIDOles/g/ (mg (µmoles/g (mg (µmoles/g (mg min) formazan/g) (µg/g) min) formazan/g) (µg/g) min) formazan/g) (JJg/g) min) formazan/ g) (µg/g) 

p 13.4 .063 .0195 143.8 .382 .0359 15. 7 .049 .0213 185.2 .685 .0241 
B-1 3.4 .015 .0145 82.8 .052 .0299 5.6 .012 .0231 140.3 .196 .0337 
8-2 3.6 ,015 .0122 72. 2 .043 .0118 6.4 .025 .0130 135.9 .196 .0119 
B-3 6.0 .025 .0187 72.0 .057 .0165 5.7 .029 .0193 146.6 .070 .0092 
s 4.3 ,029 .0151 121.9 ,070 .0101 3.8 .034 .0268 169.9 . 233 .0065 
RV 5.0 .040 .0082 136.1 .091 .0053 5.3 .090 .0104 226.6 .247 .0029 
PV 4.2 .085 .0156 106.2 .132 .0090 8.1 .092 .0073 192.4 .321 
C 5 3,7 .067 .0211 100.2 .230 .0278 8.9 .121 .0147 248.6 .431 .Ofl37 
C 6 5.2 .113 .0210 132. 5 .181 .0293 8.9 .196 .0356 229.9 1.058 .0034 
C 7 4.5 .148 .0155 117. 7 .401 .0104 16.5 .225 .0118 207.3 l. 117 .0049 



Table 25. Wetting-drying experiment--total ammonium in soils 
at moistened, air-drY, and remoistened intervals 
with 1% w/w caseint 

mg 

92 

Soil Sample Moistened Air Dry Remoistened 

p 0.511 0.495 0.747 

B-1 0.194 0.247 0.450 

B-2 0.101 0.299 0.479 

B-3 0.204 0.391 0.384 

s 0.125 0.298 0.424 

RV 0.144 0.310 0.467 
PV 0.137 0.238 0.326 

C 5 0.164 0.466 0. 513 

C 6 0.206 0.376 0.570 
C 7 0.189 0.352 0.690 

Average and S.D. 0.198±.115 0.347±.086 0.505±.131 

t2.759 mgN/g added. 
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DISCUSSION 

Soil Analysis at Different Collection Periods 

Chemical analysis of soils, given in Table 3, indicates that 

Curlew and Playa (Jornada) soils have the highest organic matter 

content. The physical nature of the sites from which these soils 

were collected explains the higher carbon and nitrogen content. 

Panicum obtUBum covers the playa bottom where Playa soils were 

collected. The amount of residue available for oganic matter produc

tion is increased by the density of vegetation. Also, Playa soils 

were found to have high heterotrophic nitrogen fixation potential 

(Skujins 1977). Heterotrophic nitrogen fixing organisms such as 

Azobacter and Clostridium have been isolated from the rhizosphere in 

desert soils and play an important role in nitrogen input (Elwan and 

Mahmoud 1950). 

Lynn and Cameron (1973) have reported that algal lichen crusts 

cover approximately 70 percent of the desert soil surface in Curlew. 

The blue-green algal components of the soil cryptogramic crusts have 

been found to fix high amounts of nitrogen (Rychert and Skujins 1974, 

West and Skujins 1977) and add organic matter to the system (Mayland, 

McIntosh, and Fuller 1966). 

The pH of the soils is slightly alkaline. This influences the 

types of organisms which can proliferate under conditions of both 

drought and alkalinity. Thorton (1953) has stated that alkaline 



soils have little diversification in microbial flora, consisting of 

mostly Actinomycetes. 
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According to Brock (1966) bacterial numbers must be at least 10
6 

per gram before it can be concluded that they are making any signifi

cant contribution to the ecosystem. Table 4 gives microbial counts. 

If Brock's criterion is used, only aerobic bacteria make a significant 

contribution to the soils. The use of skim milk as the protein sub

strate in the media used to culture proteolytic organisms limited the 

growth to colonies which could utilize casein. Other protein sub

strates were not used and consequently other types of proteolytic 

organisms were not enumerated. Not all organisms present in the soil 

were cultured on the plates since microorganisms vary greatly in their 

nutritional requirements, and consequently no single medium and set 

of growth conditions will permit the growth of all microorganisms 

present in a natural population. 

Seasonal patterns of soil moisture were a source of variation 

for dehydrogenase, ATP concentration, proteolytic activity, and nitri

fication potential tested for four dates (Table 6). However, the 

seasonal pattern of soil moisture was not a source of variation for 

respiration, dehydrogenase, and proteolysis for ten soils and four 

dates combined. The following hypothesis is thus rejected: that 

microbial activity as measured by respiration, dehydrogenase activity, 

and ATP concentration would not be significantly different between 

desert soils during the wet season. 

Respiration, dehydrogenase activity, and ATP concentration each 

index total microbial activity. However, results suggest that each 
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one represents only a portion of the microbial metabolism which can 

be measured. They do not respond proportionally to each other as 

expected because of their close relationship in the ultimate pathway 

of metabolism. Correlation analysis, reported in Table 11, indicates 

significant correlation between respiration and ATP and not between 

respiration and dehydrogenase activity, nor dehydrogenase and ATP. 

Dommergues (1973) states that a positive or negative correlation 

between variables does not necessarily imply a cause-effect relation. 

He also contends that the absence of correlations between activities 

such as co
2 

evolution and dehydrogenase activity of a soil system 

should not be surprising when different experimental conditions are 

used to obtain results for each activity. 

Thayer (1974) found no correlation between moisture and number 

of viable bacteria. Environmental conditions such as moisture are 

less apt to cause significant changes in total activity since several 

types of organisms contribute to the activity measured and each group 

responds differently. For example, Casida, Klein, and Santoro (1964) 

found that numbers of soil fungi and actinomycetes did not increase 

with nutrient addition and with moistening and drying of the soil. 

Respiration was not significantly different between soils col

lected during the wet season. One difficulty with using respiration 

to estimate "biological activity" is that it is an aerobic process 

and anaerobic conditions may exist frequently in soil crumbs because 

there is an uneven distribution of water and, consequently, a presence 

of anaerobic zones (Greenwood 1968). The lowest respiration was 

measured in soils with a sandy loam texture. Since the soils are 
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coarse textured they have greater water infiltration capacity and 

better drainage and, consequently, have less occurrence of anaerobic 

zones. The finer textured soils, on the other hand, have more anero

bic zones occurring when water is added to them, with a consequent 

lowering of respiration rates. This results in no net difference in 

respiration among soils collected during the wet season. 

Proteolytic activity in soils of different desert regions was 

not significantly different during wet seasons. Nitrification poten

tial in different desert soils was significantly different during wet 

seasons. Therefore, the hypothesis that both proteolytic activity 

and nitrification potential in desert soils would be significantly 

different is rejected. On the other hand, proteolytic activity was 

significantly higher in soils collected during the wet season although 

there were no significant differences between soils of different 

sampling stations. Proteolytic activity has been correlated with 

moisture content (Skujins 1967). Pieper et al. (1972) found decompo

sition to be closely associated with the amount of water being added 

to the soil. 

Season of above-ground plant activity was associated with respi

ration rates for the various sampling stations. There were significant 

differences in respiration among soils collected in the season when 

above-ground plant activity took place. Proteolytic activity was 

found to be highest during the time that above-ground portions of 

higher plants were dormant. The following hypothesis is thus accepted: 

that parameters measuring decomposition would be highest during the 

seasons in which above-ground portions of higher plants were dormant. 



This is confirmed in Comaner and Staffeldt's (1977) review of decom

position in deserts. 
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Proteolysis is the first step in the degradation of protein and 

has been found to vary during the season that higher plants showed 

above-ground growth. It follows then that hydrolysis of proteins 

would be potentially higher in a soil collected in a season when 

above-ground portions of higher plants are dormant and there is more 

dead plant material available for microbial degradation in the sur

face soil, the site where most microbial activity occurs (Charley and 

West 1977). 

Differences in respiration among soils collected in seasons of 

plant dormancy could be due to different organic matter mineralization 

capacity of each soil. Lengkeek and Pengra (1973) found seasonal fluctua

tion in rate of mineralization as measured by co
2 

evolution to be 

related to temperature and soil water variations. The texture of 

soils in this study varies from a clay loam to silt and sandy loams. 

The organic carbon content varies proportionally with the amount of 

clay in the soil (see Table 3). Both clay and organic matter increase 

water holding capacity, consequently differences in co
2 

evaluation 

among soils may be due to differences in mineralization capacity, 

which in turn is influenced by soil water variations due to soil tex-

ture and organic matter content. Furthermore, Fuller (1975) states 

that the rate of decomposition in desert soils is controlled primarily 

by availability of substrate. Therefore, differences among soils in 

respiration would be more prominent during seasons where there is 
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more available substrate as ground litter such as seasons when above

ground portions of the plant are dormant. 

Similarities were found among desert soils collected within the 

same region and from different regions. The analysis of variance 

(Table 7) gives means for eight soil parameters measured in ten dif

ferent desert soils. There were no significant differences between 

Curlew stations 5, 6, and 7 for most parameters measured. Bajada 

stations 1, 2, and 3 are also similar to each other in parameters 

measured. Silvebell appears to be most similar to the Curlew soils. 

The cluster analysis shown in Figure 3 also suggests this similarity. 

Anomalously, the texture of Silverbell soils is sandy loam, whereas 

the texture of the Curlew soils is silt loam. Also, there is a geo

graphical difference in the location of the desert sites where these 

soils were collected. Curlew sampling stations, as mentioned above, 

are located in the Great Basin Desert, the northernmost desert, and 

Si1verbell is located in the Sonoran Desert, a southern desert extend

ing into Mexico. 

Principal components analysis indicated that variations between 

the desert soils tested were due mostly to respiration, dehydrogenase 

activity, and ATP concentration. Of the parameters measured, respi

ration, dehydrogenase activity, and ATP concentration explained 89 percent 

of the variability between desert soils. This may be because respi

ration, dehydrogenase activity, and ATP concentration in desert soils 

are dependent on organic substrate availibility. Organic substrate 

availability is dependent on environmental conditions and soil physi-

cal properties. Soils with different physical properties and weather 
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patterns will have different levels of substrate availability. Con

sequently, differences will be exhibited in respiration, dehydrogenase 

activity and ATP concentration. 

The similarity between microbial activity of Silverbell and 

Curlew soils could be due to similar levels of available substrate. 

Although these deserts are from geographically distinct regions, simi

lar precipitation patterns prevail and similarities in microbial acti

vity could be due to similar moisture patterns which in turn affect 

substrate availability. Both deserts receive high amounts of precip

itation during winter months (December to February). Also, there is 

only a 0.81 cm difference in precipitation between Silverbell and 

Curlew sites for months in which soils were collected. 

Similarities in microbial activity among Bajada 1, 2, and 3 soils 

and among Curlew 5, 6, and 7 soils are due to similar soil properties 

and similar moisture patterns occurring within the site. 

Nitrificati0n Potential 

Nitrification potential activity was found to be significantly 

different among ten soils collected during the wet season. The nitri

fying population in desert soils appears to be active in desert soils 

which have a higher moisture content. It was found that the nitrifi

cation potential was highest in Playa and Curlew soils. These soils 

are classified as clay loam and silt loams, respectively. They con

sequently have a higher water-holding capacity and would tend to have 

greater moisture throughout the year. The higher moisture content is 

more conducive to proliferation of nitrifying organisms. 
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Nitrification has been shown to be a function of pH and moisture 

(Morrill and Dawson 1962, Mahendrappa et al. 1966). Maximum nitrate 

production was found to occur at moisture tensions of -0.5 to -0.15 

bar (Dubey 1968, Miller and Johnson 1964, Sabey 1969). Greaves and 

Jones (1941) found that armnonifying bacteria could survive long per

iods of dehydration but nitrite- and nitrate-producting bacteria did 

not. The results of this study, however, showed that greatest nitri

fication potential occurred during the dry seasons. 

Dehydrogenase activity and proteolytic activity were highest in 

soils collected during the wet season, suggesting more decompositional 

activity during the wet seasons. However, ammonium substrate may be 

more available to nitrifyers following the wet periods, increasing 

the nitrifying population and the nitrification potential during the 

dry seasons. 

Several soils exhibited nitrite accumulation (Playa, Figure 5; 

Curlew, Figure 12). This is anomalous since the turnover rate for 

nitrite oxidizers is faster than that of ammonium oxidizers. The 

classic nitrification curve shows little if any nitrite accumulation. 

Stojanovic and Alexander (1968) demonstrated that at soil pH greater 

than 7.0 free ammonium is injurious to Nitrobacter and it acts as an 

inhibitor. They also observed the accumulation of nitrite in soils 

having high pH values. Martin, Buehrer, and Caster (1942) obtained 

similar results. This may explain the nitrite accumulation in these 

nitrification potential experiments, since the pH of most of the soils 

tested was above 7.0. 
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On the other hand, Neal (1969) found substances present in root 

extracts of plants that increase or invade grassland soils to inhibit 
~ 

nitrifying bacteria. West and Sjukins (1977) report that Atriplex 

and Artemisia litter inhibit nitrification and N-fixation. This may 

be an important mechanism among plants for conserving the low amount 

of available nitrogen present in desert soils. Rice (1974) suggested 

that inhibition of nitrification would also conserve energy the plant 

needs to reduce nitrate. Went (1970) states that allelopathic effects 

are more common in arid regions. 

The nitrification experiments in this study show only potential 

nitrification activity. Since the soils were not enriched, the 

results are dependent on the existing nitrifying population and on 

the conditions during the experiment. If inhibition of nitrification 

is due to the allelopathic effect of the vegetation, it could be 

revealed in these potential experiments by reduced activity of the 

nitrite oxidizing population due to its underdevelopment. 

Biochemical-Microbial Activities at Lowered Water Potentials 

Respiration was not significantly different between moisture 

levels and dehydrogenase activity increases significantly when adjusted 

to -0.3 bars and -2.0 only. ATP concentration, however, increases 

significantly when adjusted to -14 and -23 bars. Therefore the hypo

thesis that respiration, dehydrogenase activity and ATP concentration 

increase significantly in desert soils moistened to less than -2 bars 

is rejected. The hypothesis can be accepted for ATP concentration 

alone, but rejected for both respiration and dehydrogenase activity. 
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More ATP is generated from aerobic respiration (Stanier et al. 

1976). The increase of ATP at lower moisture levels could be due to 

more aerobic respiration because of fewer anaerobic zones in the soil 

pores. Water barriers to oxygen movement become limiting for bacterial 

respiration (Clark 1967). On the other hand, the higher dehydrogen

ase activity measured at the higher moisture levels could be due to 

the occurrence of processes such a denitrification or another anaero

bic process which contributes to the oxidoreductase activity. 

Respiration, dehydrogenase activity, and ATP concentration do 

not maintain the same correlation to each other at different adjusted 

moisture levels. These results suggest that microorganisms in desert 

soils have other metabolic pathways which they may use when environ

mental conditions change. 

The adjusted moisture level plus organic matter experiments 

demonstrated that soils of higher organic matter content have higher 

microbial activity. Cameron (1961) found that the numbers of micro

organisms in desert soils appear to be closely associated with the 

abundance of carbonaceous food material available for degradation and 

synthesis. The soils with a higher organic matter content may contain 

a larger zymogenous bacterial population than the soils with low 

organic matter content, and therefore could respond more markedly to 

added organic matter. Sorensen (1974) found that addition of decom

posable organic material to a soil resulted in an increased decompo

sition of native soil organic matter as compared to the controls 

without addition. This is known as a "priming effect," the cause of 

which could be an abundant production of enzymes or a development of 
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special groups of microorganisms as a result of the addition of decom

posable organic material (Sorensen 1974). 

There was no significant decrease in dehydrogenase between dry

ing intervals in the drying experiment. Respiration, on the other 

hand, increased with further drying at temperatures higher than room 

temperature. ATP concentration fluctuated between drying intervals 

too much to show any trend. The following hypothesis is thus rejected: 

that respiration, dehydrogenase activity, and ATP concentration 

decrease initially upon desiccation of soil but upon further desicca

tion do not significantly decrease. There was no significant decrease 

in dehydrogenase between drying intervals. 

Waksman (1952) has stated that heating a soil seems to improve it 

as a medium for bacterial growth. Oien et al. (1974) found increased 

temperatures applied during drying temporarily stimulated the micro

bial population. This may explain the increased respiration upon 

temperature increase during the drying experiment. 

There was no significant decrease in dehydrogenase activity dur

ing drying intervals. None of the activities measured in the drying 

experiment responded alike. The results of this experiment suggest 

that respiration, dehydrogenase activity, and ATP concentration each 

represent a different phase of microbial activity or different groups 

of microorganisms in desert soils since they each behave differently 

under different moisture conditions. Binet (1973) has stated that 

dryness could favor certain categories of microorganisms and reduce 

activity of other microorganisms. He adds that the activity of 



different microorganisms does not decrease at the same rate as des

iccation of the soil. 
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The wetting-drying experiment demonstrated that there is defi

nitely an increase in activity after a soil has been dried and is 

rewetted. The results are similar to those described by Birch (1958). 

Arnrnonification increased in soils in the air dry state and even more 

when soils were rewetted. Ammonifying bacteria have been found to be 

resistant to desiccation (Greaves and Jones 1941). The results of 

wetting and drying a soil is known as the Birch Effect and is probably 

responsible for the major portion of organic matter decomposition and 

subsequent mineralization taking place in desert soils (Charley 1972). 

The results of this study indicate that desert soil has a spe

cialized microbial population. Microorganisms in desert soils are 

able to function the same as microorganisms from other environments 

but have evolved tolerances to extreme conditions. Metabolic path

ways may have also changed in order to conserve energy which instead 

can be used for survival mechanisms. There is evidence for the 

increasing order of complexity of electron transport chains in bacteria 

which may relate to the evoluationary development of more efficient 

pathways for the conservation of energy (Haddock and Jones 1977). 

Because of the moisture limitation, decomposition in surface 

desert soils is limited to short periods after rain or dew; however, 

as is shown in this study, activity can be considerable even under 

dry conditions. 
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CONCLUSIONS 

Soils collected from four geographically separated deserts of 

the western United States (Great Basin, Sonoran, Chihuahuan, and 

Mojave) during different moisture seasons exhibited fluctuations in 

microbial activity as measured by respiration, dehydrogenase activity, 

ATP concentration, proteolytic activity and nitrification potential. 

Increase in soil moisture as modified by precipitation, did not 

cause a significant difference in respiration or proteolysis between 

desert soils, however, an increase in moisture did cause a significant 

difference in nitrification potential in different desert soils. 

Therefore, moisture availability appears to be a major influencing 

factor regulating nitrification potential of desert soils. 

Low nitrification potential of desert soils was found. Nitrite 

accumulation in perfusion experiments, but not in field, was noted. 

Proteolytic activity was highest in soils collected when above-ground 

portions of desert plants were dormant. 

Respiration, dehydrogenase activity, and ATP concentration did 

not respond proportionally in desert soils adjusted to different 

moisture levels. These results sugggest that respiration, dehydrogen

ase activity, and ATP concentration each appear to represent a dif

ferent phase of mic-robial metabolism in desert soils. 
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APPENDIX 



Table 26. NaCl standard calibration curve used to determine 
water potential at 25°C 

Molality of NaClt 

0.05 

0.10 

0.20 

0.50 

o. 70 

0.90 

1.00 

1.10 

1.30 

1.50 

1. 70 

1.90 

2.00 

]J 

** Average 
volt readings 

3.5 

14.5 

18.5 

35.0 

44.0 

49.0 

56.0 

66.0 

70.0 

80.0 

96.0 

ll0.0 

120.0 

Water Potential 
bars 

-2.3 

-4.6 

-9.2 

-22.8 

-32.1 

-41.6 

-46.4 

-51.3 

-61.2 

-71. 3 

-81.7 

-92.4 

-97.8 

twater potentials of NaCl solutions determined by Lang (1967). 

** f . 1 · d. Average o trip 1cate rea 1ngs. 
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Table 27. LiC1
2 standard calibration curve used to determine 

water potential at 25°C 

of LiC1
2

t ** Molality Average Water Potential 
µvolt reading bars 

1.81 40.0 -100 

3.10 7 3. 0 -200 

4.12 112.0 -300 

5.00 123.0 -400 

5. 77 158.0 -500 

6.49 180.0 -600 

7.00 205.0 -700 

7.73 230.0 -800 

8.30 255.0 -900 

8.85 280.0 -1000 

tWater potentials of LiC1 2 solutions determined by Robinson and 
Stokes (1949). 

** Average of triplicate readings. 

120 



Table 28. Nitrification potential station comparison (all collection dates averaged for 
each sample--standard error given) 

Pla:t:a 
Bajada l 

Bajada 2 
Bajada 3 

Silverbell 

+ - - + - + - + 
+ 

NH
4 No

2 N0
3 NH4 N0

2 N0
3 NH4 N02 N0

3 Nll4 N0
2 N0

3 111!4 N0
2 N0

3 

Day 
µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g pg/g µg/g 

Perfusion 

2 1.194 0.005 0.005 1.749 0.001 0.001 1.721 0.001 0.001 1. 743 0.001 0 1.821 0.001 0.003 

±.05 ±.001 ±.002 ±.020 0 ±.001 ±.058 0 ±.001 ±.062 ±.001 ±.117 0 ±.001 

4 
0.026 0.021 0.001 0 0.001 0.003 0.001 0 0.001 0.008 

±.007 ±.005 0 
±.001 ±.001 0 

0 ±.003 

6 1.020 0.082 0.037 1.637 0.001 0.001 1.618 0.002 0.001 1.663 0.001 0 l.886 0.004 0.020 

±.08 ±.082 ±.011 ±.064 ±.001 ±.001 ±.093 ±.002 ±.001 ±.063 0 ±.107 0 ±.002 
8 0. 238 0.103 0.002 0.002 0.005 0.001 0.001 0.006 0.012 0.042 

±.050 ±.021 ±.001 ±.001 ±.004 ±.001 0 ±.002 ±.004 ! .014 
10 0.888 0.446 0.147 1.525 0.003 0.002 1.362 0.164 0.004 1.561 0.001 0.005 1.651 0.018 0.067 

±.08 ±.135 ±.034 ±.083 ±.002 ±.001 ±.092 ±.013 ±.002 ±.058 0 ±.001 ±.069 ±.007 ±.019 
12 0.645 0.200 0.005 0.002 0.044 0.001 0.003 0.009 0.019 0.075 

±.080 ±.040 ±.002 ±.001 ±.038 ±.002 ±.001 ±.003 t.010 ±.022 
14 

0.860 0.511 0.005 0.004 0.108 0 0.014 0.011 0 0.092 

±.123 ±.136 ±.003 ±.001 ±.097 
±.009 ±.004 

t.036 
16 0.404 0.920 0.424 1.494 0.015 0.005 l.103 0.144 0.002 1.686 0.021 0.014 1. 551 0.032 0.141 

±.13 ±.088 ±.088 ±.065 ±.002 ±.001 ±.085 ±.066 ±.002 ±.117 ±.012 ±.003 ±.llO ! . OJ 7 t .038 
18 

0.943 0.518 0.010 0.004 0.225 0.003 0.033 0.020 
0.110 

±.145 ±.097 ±.005 ±.003 ±.085 ±.001 ±.018 !.003 
t.041 

20 0.168 0.733 0.608 l.t,71 0.028 0.008 0.861 0.248 0.003 1.024 0.045 0.019 l. 333 0.048 0.154 

±.08 ±.136 ±.124 ±.207 ±.015 ±.003 ±.134 ±.108 ±.002 ±.187 ±.018 !.004 ±.197 ±.025 ±. 047 



Table 29. Nitrification potential in playa soils collected in March, June, August, and December (standard error given) 

March 
June 

August 
December 

Day NH + 
11()2 

- - + - + 
+ 

4 N0
3 NH4 N0

2 11()3 NH4 N0
2 N0

3 NH4 N0
2 NO) 

ug/g ug/g lJg/g µg/g ug/g lJg/g µg/g lJg/g µg/g µg/g lJg/g µg/g 2 1.118 0.009 0.011 1.248 0.006 0.006 1.087 0.002 0.004 1.323 0.003 0 

±.064 ±.001 ±0 ±.092 ±.002 ±.006 ±.018 ±0 ±.004 ±.]13 ±.001 
4 

0.036 0.035 0.052 0.030 0.009 0.014 0.009 0.004 
±.OOJ ±.002 ±.004 ±.011 ±.001 ±.003 ±.003 ±0 

6 0.875 0.147 0.043 0.876 0.129 0.076 0.932 0.015 0.013 1.399 0.039 0.016 

±.023 ±.018 ±.003 ±.018 ±.052 ±.022 ±.055 ±.002 ±0 ±.001 ±.008 ±.003 
8 

0.377 0.132 0.354 0.167 0.083 0.053 0.138 0.062 
±.054 ±.049 ±.012 ±.020 ±.008 ±.007 ±.024 !.012 

10 0.669 0.688 0.243 0.745 0.196 0.221 1.197 0.155 0.067 0.942 0.747 0.056 

±0 ±.019 ±.015 ±.132 ±.136 ±.041 ±.019 ±.055 ±.002 ±.027 ±.438 ±.02) 
12 

0.880 0.227 o. 749 0.329 0.490 0.103 0.463 0.091 
±.119 ±.014 ±.057 ±.006 ±.187 ±.017 ±.041 :!:.016 

14 
1.155 0.482 0.920 0.890 0.505 0.161 
±.110 ±.022 ±.079 ±.08) ±.135 ±.044 16 0.004 1.017 0.647 0.261 1.064 0.666 0.831 0. 776 0.214 0.520 0.824 0.169 

±0 ±.110 ±.029 ±.204 ±.031 ±0 ±.146 ±.118 ±.023 ±.108 ±.361 ±.014 
18 

0.559 0.802 0.902 0.736 1.123 0.285 1.187 0.250 
±.101 ±.029 ±.035 ±.053 ±.201 ±.046 ±.543 ±.033 

20 0.001 0.245 0.810 0.034 0. 784 0.955 0.147 0. 748 0.452 0.489 1.157 0.215 

±0 ±.233 ±.041 ±.007 ±.022 ±.272 ±.037 ±.017 ±.120 ± .086 ± .198 ±.055 



Table 30. 

Day 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

Nitrification potential in Bajada 1 soils collected in March, June, August, and 
December (standard error given) 

Karch June August December + NH+ + - + IIH4 N0
2 N0

3 4 N02 NOJ IIH4 N0
2 NO) IIH4 N0

2 µg/g µg/g µg/g µg/g µg/g \Jg/g µg/g µg/g µg/g µg/g µg/g 

1.702 0 0.005 1.763 0.001 0 1.717 0.001 0.001 1.814 0 ±.013 ±.005 ±.021 ±0 ±.051 ±0 ±.001 ±.017 

0 0 0.001 0.002 0 0.001 
±0 ±.001 ±0 

1.525 0 0.005 1.658 0 0 1.467 0.003 0.001 1.899 0.001 ±.038 ±.005 ±.017 ±.055 ±.002 ±.001 ±0 ±0 

0.001 0.002 0 0.001 0.004 0.004 0.003 ±.001 ±.002 ±.001 ±.004 ±.004 ±.001 

1.777 0.001 0 1.659 0 0 1.123 0.007 0.006 1.444 0.005 ±.072 ±.001 ±.051 ±.064 ±.007 ±.006 ±.056 ±.001 

0.002 0.003 0 0 0.005 0.006 0.011 ±.002 ±.003 ±.005 ±.006 ±.002 

0.007 0.003 0 0.007 0.007 0.004 ±.007 ±.003 ±.002' :!..007 ±0 

1. 357 0.008 0.004 1.646 0 0.005 1.455 0.012 0.008 1.499 0.040 ±.206 ±.008 ±.003 ±.047 ±.005 ±0 ±.012 ±.001 ±.017 ±.019 

0.013 0 0 0 0.011 0.016 0.018 ±.013 ±.Oll ±.033 ±.012 

1.298 0.020 0 1.296 0.001 0.005 1.3955 0.013 0.017 1.895 0.080 ±.214 ±.020 ±.034 ±.001 ±0 ±.948 ±.013 ±.003 ±.090 ±.042 

N0
3 

µg/g 

0 

0.001 
±.001 

0.001 
±.001 

0 

0.002 
±.002 

0.002 
±.002 

0.002 
±.002 

0.002 
±.002 

0.012 
LOO) 



Table 31. Nitrification potential in Bajada 2 December (standard error given) 

March 
June + 

+ -
Day 

NH4 N02 N0
3 NH

4 N02 
Perfusion 

µg/g lJg/g JJg/g JJg/g JJg/g 
2 

1. 714 0.001 0.004 1.694 0.002 ±.034 ±.001 ±0 ±.088 ±.002 4 
0.001 0.007 0.003 ±0 ±.003 ±.003 6 

1.378 0.001 0.004 1.673 0.007 ±.076 ±.001 ±0 ±.210 ±.007 8 
0.001 0.006 0.017 ±.001 ±.003 ±.017 10 

1.080 0.002 0.010 1.480 0.055 ±.240 ±.002 ±.003 ±.126 ±.055 12 
0.005 0 0.153 ±.005 

±.153 14 
0.027 0 0.296 ±.024 

±.294 16 
1.076 0.105 0 0.892 0.271 ±.009 ±.093 ±.017 ±.260 18 

0.281 0 0.304 ±.251 
±.269 20 

0.685 0.031 0 0.690 0.381 ±.609 ±.01) ±.009 ±.283 

soils collected in March, 

August 
+ NO) NH

4 N02 NOJ JJg/g JJg/g JJg/g µg/g 

0.001 1.576 0 0.001 ±.001 ±.123 ±.001 
0.001 

0 ±.001 0 

0 1.543 0 0 ±.216 

0 0.001 0 
±.001 

0 1.530 0.001 0 ±.144 ±0 

0 0.001 0 
:!O 

0 0.002 0 
±0 

0.007 1.314 0.002 0 ±.006 ±.300 ±0 

0.008 0.002 0.003 ±.003 ±0 ±.003 
0.011 1.044 0.003 0 ±.001 ±.005 ±.001 

June, August, and 

December 
NH + 

4 N0
2 N0

3 lJg/g µg/g µg/g 

1.902 0 0 ±.129 

0.001 0.004 
±0 ±.004 

1.829 0.002 0 
±.202 ±.001 

0.004 0 
±.001 

1.360 0.008 0.007 
±.146 :':.002 ±.006 

0.018 0.004 
±.002 :! .003 

1.132 0.120 0 ±.142 :':.061 

o. 313 0 
i.033 

1.024 0.579 0.001 
±.112 ± .119 ~o 

1--' 
N 
V, 



Table 32. Nitrification potential in Bajada 3 soils collected in March, June, August, and December (standard error given) 

March June August December + - + + + 
Day 

NH4 N0
2 N0

3 NH4 N0
2 N03 NH4 N02 N0

3 NH4 N0
2 NOJ 

Perfusion 
µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g 

2 1.593 0 0 1.854 0 0 1.610 0.004 0 1.915 0 0 ±.097 ±.072 ±.089 ±.003 ±.055 
4 0.001 0 0.001 0 0.002 0.001 0.001 0 ±0 ±0 ±.001 ±.001 ±0 
6 1.517 0.001 0 1.585 0.001 0 1.665 0.002 0 1.885 0.001 0 ±.021 ±0 ±.088 ±.001 ±.144 ±.001 ±.085 ±0 8 0.001 0.004 0.001 0.004 0.002 0.010 0.001 0.007 ±.001 ±0 ±.001 ±0 ±.001 ±.007 ±0 ±.OOJ 10 1.394 0.001 O.OOJ 1.552 0.002 0.006 1. 747 0.001 0.007 1.563 0.001 0.007 ±0 ±0 ±0 ±.089 ±.001 ±.003 ±.072 ±0 ±.002 ±.145 ±0 ±.003 

12 0.001 0.005 0.005 0.017 0.004 0.011 0.001 0.004 ±.001 ±.005 ±.001 ±.008 ±.004 ±.006 ±.001 ±.004 
14 0.002 0.020 0.038 0.005 0.002 0.008 0 0 ±.002 ±.003 ±.015 ±0 ±.002 ±.008 
16 1.394 0.002 0.023 1.552 0.078 0.020 2.028 0 0.011 1.367 0.006 0.004 ±.017 ±.002 ±.006 ±.013 ±0010 ±.005 ±.194 ±.006 ±.246 ±.002 :'-0 
18 0.002 0.023 0.116 0.021 0 0.025 0.016 0.012 ±0 ±.011 ±.018 ±0 ±.006 ±.006 ±.OOJ 20 0.267 0.028 0.013 1.182 0.121 0.023 1.154 0 0.020 1.495 0.031 0.020 ±.199 ±.028 ±.013 ±.030 ±.006 ±.002 ±.250 ±.011 ±.200 ± .009 ±.006 



Table 33. Nitrification potential in Sil verb ell soils collected in March, June, August, and December (standard error given) 

March June August December Day NH+ N0
2 N0

3 
+ + + Perfusion 4 NH4 N02 NO) Nll4 N02 NO) NH4 N02 NO) 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 1.Jg/g 

2 1.641 0.001 0.004 1.562 0 0.005 2.066 0.001 0.003 2.015 0 0.001 ±0 ±0 ±.00) ±.)86 ±.005 ±.057 ±0 ±.00) ±.187 ±.001 
4 0 0.005 0.001 0.002 0.003 0.008 0.001 0.015 ±.005 ±0 ±.002 ±.001 ±.008 ±0 ±.004 
6 1.641 0 0 1. 701 0.001 0.005 2.201 0.007 0.0)8 2.001 0.007 0.036 ±0 ±.214 ±0 ±.005 ±.201 ±.003 ±.011 ±.173 ±.001 ±.009 
8 0 0.015 0.017 0 0.008 0.079 0.025 0.07) ±.010 ±.002 ±.005 ±.014 ±.005 ±.014 

10 1.590 0 0.023 1.546 0.0)1 0.014 1.957 0.006 0.132 1.514 0.0)7 0.098 ±.009 ±.00) ±.017 ±.0)1 ±.004 ±.018 ±.005 ±.017 ±.076 ±.023 ±.009 
12 0 0.021 0.031 0.013 0.001 0.137 0.043 0.131 ±0 ±.001 ±.003 ±.001 ±.003 ±.038 ±.020 
14 0 0.030 0 0 0.001 0.153 ±.003 

±.001 ±.005 
16 1.414 0 0.038 1.600 0.065 0.029 1.816 0.001 0.216 1.509 0.062 o. 227 ±.065 ±.003 ±.424 ±.007 ±0 ±0 ±.001 ±.003 ±.098 ±.060 ±.022 
18 0 0.042 0.095 0.013 0.001 0.186 0.072 0.282 ±.004 ±.017 ±.009 ±.001 ±.028 ±.070 !.050 
20 o. 546 0 0.051 1.407 0.101 0.034 1.511 0.001 0.196 1.368 0.091 o. 336 ±.0)1 ±.008 ±.231 ±.002 ±.008 ±.211 ±.001 ±.044 ±.226 !.089 ±.011 



Table 34. Nitrification po ten tail in Rock Valley 
(standard error given) 

March 
+ - + Day NH

4 No
2 N0

3 NH
4 Perfusion 

µg/g ug/g µg/g IJg/g 

2 1.512 0.002 0 1.797 
±0 ±.001 ±.017 

4 0.005 0.001 
±.003 ±.001 

6 1.400 0.016 0.006 1.324 
±.035 ±.013 ±.006 ±.034 

8 0.055 0.019 
±.050 ±.015 

10 1.295 0.129 0.002 1.164 
±.156 ±.117 ±.002 ±.017 

12 0.336 0.009 
±.290 ±.OOll 

14 0. 758 0.022 
±.634 ±.006 

16 0.513 0.912 0.014 1.413 
±.435 ±. 713 ±.003 ±.300 

18 1.216 0.023 
±.826 ±.010 

20 0.287 1.088 0.008 1.063 
±.278 ±.459 !O ±.203 

soils collected in March, 

Jul 

N02 N0
3 NH

4 
+ 

µg/g µg/g µg/g 

0.002 0 1. 616 
!.001 ±.073 

0.002 0 
±0 

0.002 0 1.577 
±.001 ±.034 

0.002 0 
±.001 

0.002 0 o. 797 
±.001 ±.294 

0.001 0 
±.001 

0 

0.001 0 1.040 
±.001 ±.026 

0.001 0 
±.001 

0 0 1.015 
±.111 

July, 

December 

N02 
µg/g 

0.00) 
±.002 

0.002 
±.001 

0.002 
±0 

0.002 
±.001 

0.002 
±0 

0.002 
±.001 

0.001 
±.001 

0.004 
±.003 

0.013 
±.012 

and December 

NO) 

pg/g 

0 

0 

0.001 
±0 

0.003 
±.003 

0 

0 

0.003 
±.003 

0.006 
±.006 

0.008 
±.008 

I-' 
N 
CXl 



Table 35. Nitrification potential in Pine Valley soil collected in March, July, December, and May (standard error given) 

March Jul December Ma + - + + - + 
Day NH

4 N02 N0
3 NH

4 N0
2 N0

3 NH
4 N0

2 N0
3 NH4 N0

2 N0
3 

Perfusion 
µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/~ µg/g µg/g pg/g 

2 l. 751 0.001 0 1.863 0.001 0 1.919 0.002 0 1. 255 0.002 0.003 ±.041 ±0 ±0 ±0 ±.234 ±.001 ±0 ±.002 ±.003 
4 0.001 0 0.001 0 0.003 0.001 0 0 ±0 ±0 ±0 ±.001 
6 1.521 0.002 0.001 1.599 0.001 0 1.613 0.005 0.003 1.124 0.004 0.007 ±.041 ±0 ±.001 ±.091 ±0 ±.107 ±.001 ±.003 ±.131 ±.001 ±.004 
8 0.002 0.017 0.001 0 0.004 0 0.003 ±0 ±.017 ±0 ±0 ±0 

10 1.420 0.003 0.005 1.231 0.001 0 1.174 0.003 0.007 1.341 0.001 0.005 ±.078 ±.001 ±.005 ±.052 ±.001 ±.034 ±0 ±.003 ±.128 ±0 ~.005 
12 0.004 0 0.001 0 0.004 0.007 0.002 0.015 ±.001 ±.001 ±.001 ±.003 ±0 ±.003 
14 0.004 0 0 0 0.015 0.016 ±.002 

±.008 ±0 
16 1.195 0.013 0.009 1.837 0.001 0 1.085 0.001 0 o. 760 0.185 0.003 ±.019 ±.008 ±.006 ±.182 ±.001 ±.107 ±0 ±.132 ±.038 ±.003 
18 0.069 0.023 0.001 0 0.005 0 0.678 0.003 ±.050 ±.005 ±.001 ±.003 !.031 !..003 
20 0.427 0.199 0.017 0.958 0.002 0 1.030 0.004 0.002 0.123 0.725 0 ±.069 ±.149 ±.011 ±.343 ±.002 ±.094 ±.002 ±.002 ±.064 ±.156 



Table 36. 

Day 
Perfusion 

2 

4 

6 

8 

10 

12 

14 

16 

lR 

20 

Nitrification potential in January, March and April, July, and October Curlew 
0-5 cm surface samples. Stations 5, 6, and 7 averaged (standard error giyen) 

Januari March-Aeril Jul October + + + + NH4 N02 N0
3 NH4 N02 N0

3 NH4 N02 N0
3 NH4 N02 µg/g µg/g µg/g µg/g µg/g µg/r, µg/g µg/g µg/g µg/11 ,,g/g 

1.663 0.002 0 1.55) 0.431 0.054 1.350 0.393 0.037 1. 569 0.014 ±.163 ±.002 ±.099 ±.142 ±.035 ±.094 ±.189 ±0.25 ±.185 ±.008 
1.628 0.010 0 1.495 0.844 0.120 1.374 0.998 0.065 0.008 ±.140 ±.001 ±.123 ±.269 ±.081 :!..003 ±.550 ±.045 ±0 
1.423 0.013 0 0.681 0.660 0.110 0.502 1.065 0.090 1.266 0.276 ±.220 ±.003 ±.171 ±.185 ±.069 ±.147 ±.654 ±.053 ±.087 ±.170 
1. 231 0.022 0 1.277 0.859 0.122 1.143 0.910 0.199 0.416 ±.107 ±.003 ±.073 ±.221 ±.065 ±.057 ±.559 ±.118 ±.260 
0.799 0.001 0.004 0.373 0.889 0.149 0.859 0.283 0.981 0.624 ±.135 ±.004 ±.004 ±.131 ±.220 ±.070 ±.515 ±.168 ±.071 ±.389 
0.694 0.105 0.065 o. 983 0.568 0.072 0.412 1.611 0.520 0.656 0.340 ±.089 ±.005 ±.062 ±.068 ±.167 ±.047 ±.183 ±.826 :!.. 341 ±.347 ±.297 
o. 771 0.218 0.046 0.185 0.801 0.250 1.241 1.149 1.195 1.021 ±.148 ±.041 ±.036 ±.118 ±.155 ±.112 ±.473 ±.589 ±.306 ±.587 
0.203 0.290 0.019 0. 383 o. 742 o. 375 0.188 1.456 1.309 0.)46 o. 927 ±.068 ±.115 ±.013 ±.075 ±.124 ±.118 ±.087 ±.435 ±.592 ±.204 t.479 
0.143 0.474 0.007 0.062 3.851 1.155 1.134 0.660 0.973 ±.080 ±.216 ±.007 ±.056 ±.009 ±.072 ±.383 ±.363 ±.492 
0.108 0. 788 0.018 0.089 0.901 0.577 0.052 1.076 0.647 0.602 0.681 ±.081 ±.334 ±.004 ±.027 ±.167 ±.166 ±.036 ±.259 ±.293 t.212 :!.624 

----

N03 
µg/g 

0 

0.001 
±.001 

0.002 
±.002 

0.001 
±.001 

0.002 
±.002 

0.003 
±.OOJ 

0 

0 

0.004 
~.002 

0.012 
±.007 

r-' 
w 
0 
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