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ABTRACT 

Classical Venturi Meter Performance Downstream of the Through Leg of a Tee Junction 

by 

Matthew P. Day, Master of Science 

Utah State University, 2021 

 

 

 

Major Professor: Dr. Michael C. Johnson 

Department: Civil and Environmental Engineering 

 

The purpose of this research was to analyze the measurement accuracy of a 

Classical Venturi meter installed at various distances downstream on the through leg of a 

tee junction in a pipeline. Inaccurate readings from the Classical Venturi meter may cause 

revenue loss for companies or organizations involved in extraction, transportation, 

production, or purchasing of fluid resources and products.  

One source of inaccurate flowmeter performance is improper meter installation 

according to published industry standards. These standards, however, cannot always be 

followed due to insufficient space or limited economic resources for meter placement. In 

these circumstances it is critical to understand how upstream flow disturbances, such as a 

tee junction, will affect the accuracy of a Classical Venturi meter. 

This research compared the discharge coefficients of a Classical Venturi meter 

from a straight-line calibration to the discharge coefficients of the meter installed on the 

through leg of a bifurcating tee junction using numerical methods. The ratio of the two 

discharge coefficients is then used as a correction factor. The numerical models were 

calibrated and verified with physical data collected from a 6-inch Universal Venturi 

Tube. 
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Results show that a Classical Venturi meter is most accurate in this installation 

when more than 40% of the flow entering the tee junction is directed through the straight 

leg to the meter. As a larger portion of the water is drawn through the branch of the tee 

junction, the accuracy of the Classical Venturi meter decreases. Although physical 

laboratory calibrations remain the most effective way to ensure best metering capabilities, 

correction factors may be used to account for deviations due to such installation if 

laboratory testing is not possible. 

 (75 pages) 
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PUBLIC ABSTRACT 

 

Classical Venturi Meter Performance Downstream of the Through Leg of a Tee Junction 

Matthew P. Day 

 The purpose of this research was to analyze the accuracy of a Classical Venturi 

meter installed downstream of the through leg of a tee junction. A flowmeter that 

functions inaccurately due to improper installation may cause revenue loss for any 

company or organization involved in extraction, transportation, production, or purchasing 

of fluid resources and products. This research used physical data coupled with data 

produced by numerical models to determine how to correct the Classical Venturi meter’s 

inaccuracies created by this particular installation.  

 Results show the capability of measuring the flow rate accurately was greatly 

affected when most of the flow was directed through the branch of the tee junction. As a 

greater ratio of water is directed through the meter, the accuracy increases.  While 

physical laboratory calibrations remain the most effective way to ensure best metering 

accuracy, correction factors may be used to account for such installations if laboratory 

testing is not possible. 
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NOTATION 

Definition 

Beta – Ratio of throat diameter to inlet diameter of a flowmeter 

CFD – Computation Fluid Dynamics 

GCI – Grid Convergence Index 

RANS – Reynolds Average-Navier Stokes turbulence model 

UVT – Universal Venturi Tube 

UWRL – Utah Water Research Laboratory 

0D – The meter is installed zero diameters downstream of the tee junction on the through 

          leg 

5D – The meter is installed five diameters downstream of the tee junction on the through 

          leg   

  



 
 

CHAPTER I 

INTRODUCTION 

Purpose 

 The ability to accurately measure flow rate in pressurized pipelines is a critical 

aspect of many companies and organizations that extract, transport, or produce fluid 

resources such as crude oil, or products like drinking water or gasoline. Miscalculations 

in flow rate at any point throughout these processes may reduce overall revenue, result in 

over billing, and jeopardize product quality. Along with analyzing current operating 

conditions, accurate flow rate measurements also help guide future planning and 

construction. Flow rate data collected over many years is an indicator to determine if 

existing infrastructure has adequate capacity to meet projected demands or if the 

infrastructure needs to be improved or replaced. 

 There are many different types and styles of flowmeters, each unique in form, 

mechanisms, accuracy, and cost to meet varying project constraints. Pereira provides a 

list of many types of meters and how they function, some of which include: differential 

pressure producing meters, turbine meters, positive displacement meters, and ultrasonic 

meters (Pereira 2009). 

 Classical Venturi meters are simple, reliable, cost effective and commonly used 

throughout the industry. These meters are highly accurate when properly installed 

following established standards, created by the American Society of Mechanical 

Engineers (ASME), the International Organization for Standardization (ISO), and even 

certain meter manufacturers, that require a number of nominal lengths of straight pipe 

upstream and downstream of the meter (ASME 2007; ISO 2003). When these standards 

are not fulfilled and a meter is installed too close to upstream flow disturbances, like 
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elbows and tee junctions, flow rate accuracy may be compromised. To avoid decreased 

accuracy in these types of installations, the meter must be calibrated in a water research 

facility using the same pipe configuration and flow conditions. Laboratory calibrations 

require additional costs and time but remain the best alternative for assessing a 

flowmeter’s performance.  

 There is some research available covering how metering capabilities for Classical 

Venturi meters, Halmi Venturi tubes, Wedge meters, Venturi Cone meters, HBX-1 

meters, electromagnetic flowmeters, and ultrasonic meters are directly influenced by 

certain upstream flow disturbances such as pipe offsets and elbows. However, there is 

little research done that analyzes metering capabilities of a Classical Venturi meter 

downstream of a tee junction on the through leg. 

The purpose of this research is to use computation fluid dynamics (CFD) to 

produce a cost effective alternate approach to mathematically improve a flowmeter’s 

capabilities when industry standards of meter installation cannot be met due to space 

constraints or limited economic resources which prevent a laboratory or adequate field 

calibration.  

The Utah Water Research Laboratory (UWRL) at Utah State University provided 

the resources needed to perform this research including instrumentation, pipes, meters, 

valves, computers, and software. 
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Objectives 

 The main objective of this research is to investigate the relationship between a 

differential pressure producing flowmeter’s change in performance from a straight-line 

calibration to the calibration performed downstream of a tee junction installed on the 

through leg and the ratio of the meter’s Reynold’s number to the Reynold’s number 

entering the tee junction. Collecting all of the data for this research in a laboratory setting 

was not possible because of time, space, cost and scheduling constraints. CFD methods 

were used to produce the data that were not obtainable in the laboratory. The use of CFD 

to identify trends in performance and its power as a predictive tool makes it a valuable 

resource in practice, as it is not feasible to physically model every possible permutation 

of pipe associate with flowmeter installation. 

 CFD is becoming a powerful engineering tool as numerical methods and 

computing technology have advanced. Although CFD has many applications and can be 

used to model setups difficult to achieve in the lab, it is important to understand how to 

get reliable results and reasonably interpret the data collected. For this reason, this 

research has a supporting objective to produce reliable CFD data by verifying and 

validating the CFD models used with limited physical data collected in the laboratory. 

These same CFD models are then applied to the rest of the simulations to collect the 

remaining data needed. 
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Scope of Work 

With the wide variety of differential pressure producing flowmeters available and 

the numerous types of flow disturbances, an exhaustive study on this topic would surpass 

the available time for this research.  

The scope of work for physical data is limited to analyzing a 6-inch Universal 

Venturi Tube (UVT) installed downstream on the through leg of a round cornered tee 

junction as seen in Figure 1. CFD analysis was then completed on the same 6-inch UVT 

and rounded corner tee junction to verify and validate the CFD models with the physical 

data. The same meter was then examined downstream of a sharp corner tee junction to  

compare the differences. In this same installation two 6-inch Classical Venturi meters, 

one with a beta value of 0.5 and the other having a beta value of 0.7, were tested.  

 

Figure 1. Classical venturi meter installed 0D of the through leg of a rounded corner 

bifurcating tee junction. 
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The remaining CFD work was narrowed down to investigate two 24-in. Classical 

Venturi meters, one with a beta value of 0.7 and the other with a beta value of 0.5. These 

meters were examined downstream of a sharp corner bifurcating tee junction on the 

through leg.  

 This scope of work allowed for accurate analyzation of the affects between 

rounded and sharp corner tee junctions, different flow rates and flow splits, changes in 

flowmeter size, the effects of a Classical Venturi meter and a UVT, and varying beta 

values for both meter types on metering accuracy. Appendix A provides a comprehensive 

list of installation setups, flow rates, and flow split ratios completed for this research. 
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CHAPTER II 

LITERATURE REVIEW 

Differential Pressure Meters 

Differential pressure producing flowmeters are widely used around the world, 

especially the Classical Venturi meter. With the extent this product is used, the American 

Society of Mechanical Engineers (ASME 2005, ASME 2007) and International 

Organization for Standardization (ISO 2003) developed standards of installation and use. 

These standards outline that the required length of upstream pipe from a Classical 

Venturi meter is dependent on the meter’s beta ratio. When these standards cannot be met 

and a meter must be installed closer to an upstream disturbance than prescribed by code, 

the meter performance may be compromised. The following section provides a summary 

of research relating to flowmeter performance installed downstream of flow disturbances. 

 

Differential Pressure Meters with Upstream Disturbances 

S.N. Singh et al. examined the performance of a V-cone meter installed at various 

downstream distances from a gate valve at opening conditions (Singh 2005). He 

concluded that the discharge coefficient of the meter is unaffected when the gate valve is 

installed at or more than 10 diameters upstream. 

Bradford et al. researched the effects that a single elbow has on the accuracy of a 

Classical Venturi meter (Bradford 2006). Bradford’s studies proved that meter accuracy 

in adverse installation conditions is largely dependent on the beta ratio of the meter. In 

addition, Bradford demonstrated that Classical Venturi flowmeters perform well when 

installed in conditions contrary to those suggest by ASME and ISO. 
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Radle investigated the performance of a Wedge flowmeter installed with different 

orientations at varying distances downstream from a double elbow out of plane (DEOP) 

disturbance. Radle found that the Wedge meter performance is not only controlled by 

distance of upstream pipe but also the orientation of the wedge. The results showed that 

the effect of the DEOP is reduced when the wedge is installed in plane with the second 

elbow (Radle 2016). 

Day et al. supplemented the information in Radle’s research by further examining 

the effects that the DEOP has on other meters such as a Halmi Venturi tube, Venturi 

Cone meter, Classical Venturi meter, and a HBX-1 meter. Day showed that the DEOP 

disturbance effects each meter in a unique manner and that some of those meters perform 

well in this installation (Day 2019). 

Stauffer viewed this topic differently. Instead of looking at how disturbances 

directly effect a meter, Stauffer et al. investigated the possibility of mitigating errors 

caused by upstream disturbances by using multiple tap sets on a Classical Venturi meter 

instead of the industry standard of a single tap set. By doing so, Stauffer decreased the 

uncertainty and inconsistency of using one tap set by half when using the average of 

multiple tap sets (Stauffer 2019). 

Sandberg conducted a study examining the effects that a bifurcating tee junction 

has on a 24-inch Classical Venturi meter installed on the branch leg. This research proved 

CFD is an effective tool to model flow and that creating contour plots of correction 

factors for overall flows against flow split ratios mathematically improves the meter’s 

accuracy in those installations (Sandberg 2019). 
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Further research is needed to evaluate the effects that a bifurcating tee junction 

has on a Classical Venturi meter installed downstream of the through leg. The procedures 

and tools used in Sandberg’s research will be used for this research due to the conditional 

similarities. 
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CHAPTER III 

EXPERIMENTAL METHODS 

Overview 

 The purpose of the experimental methods chapter is to make this research 

reproducible by providing procedural details for physical laboratory testing, numerical 

modeling, and graphical representations of results. The details provided in laboratory 

methods include descriptions of installation setups, a list of test instrumentation and an 

explanation of their purpose, a step by step procedure of how data points were collected, 

and pertinent equations. The numerical modeling methods describes the software package 

used to perform CFD for this research, outlines the setup for simulations, and explains 

how results are collected and verified. Lastly, the procedure for creating correction 

factors for the discharge coefficient using contour plots is provided in the final section of 

this chapter. 

 There are several common reference points for both the laboratory methods and 

numerical modeling methods presented here rather than in their respective sections. 

 For the remainder of this paper it important to know that straight-line installation 

means that there is more upstream pipe from the Venturi than required by ASME and 

ISO standards. Noteworthy is that these standards apply to the Classical Venturi meter 

design and do not apply to the short-form Venturi designs which include the Universal 

Venturi Tube (UVT) and Halmi Venturi Tube (HVT). It is also assumed that the 

reference of Venturi means Classical Venturi meter and when a reference is made to the 

Venturi being installed downstream of the tee junction, it is assumed to be installed 

downstream of the through leg. When this research mentions how far downstream the 
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Venturi is installed from the tee junction it will be called out with a number followed by 

the capital letter “D” to show how many pipe diameters separate the Venturi from the tee 

junction. For example, 2D means the Venturi is installed 2 nominal pipe diameters 

downstream from the tee junction.  

 For both the laboratory testing and numerical modeling, the static pressure 

readings at both the inlet, where high pressures occur, and in the throat, where there is 

low pressure, through what is called a tap. A pair of taps, one from the inlet and one from 

the throat on the same plane and side of the meter, is referred to as a “tap set”. 

Consistency in tap set location through both the laboratory testing and numerical 

modeling is critical to this research. Figure 2 demonstrates the locations of the 4 different 

tap sets used for this research. It is important to note that tap set 1 is always on the side of 

the tee junction. Tap set locations for the straight-line tests are similar omitting the tee 

junction. 

 

Figure 2. Determined locations for tap sets 1-4. 

 

The data points collected during the laboratory testing and numerical modeling 

were differential pressure readings, total flow rates, and flow rates through the Venturi. 
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Methods for collecting these data points for each type of testing is described in detail in 

their respective sections. 

When collecting data for an experiment there is always some degree of 

uncertainty. There are two main types of uncertainty that exist, systematic uncertainty 

and random uncertainty. Systematic uncertainty is a reoccurring error in measurements 

that causes a shift in the overall collection of data from the actual measurement. Random 

uncertainty happens when repeated measurements are taken but different values are 

produced causing variation in the data. Systematic and random uncertainty are prevalent 

in both the laboratory testing and numerical modeling. A discussion about how 

uncertainty is handled in each testing method is included in the following sections. 

 

Laboratory Methods 

 The physical testing for this research was conducted at the UWRL. Over the 

years, the UWRL has accumulated a large inventory of pipes, connections, valves, 

meters, and much more. For the purposes of this study the UWRL had available a 6-inch 

UVT, a 6-inch rounded corner tee junction, and the required lengths of 6-inch steel pipe 

to complete the straight-line calibration and tee junction installations. 

 Before further discussing the methods used in the laboratory, it is important to 

explain the principals and equations that govern flow rate measurement with a Venturi. 

The design of the Venturi is such that the inlet portion of the meter is equal to or very 

close to the same diameter of the approaching upstream pipe. The inlet is followed by a 

converging section that reduces the diameter of the flow down to the throat of the meter. 

After the throat there is a diverging section that expands the diameter of the flow back to  
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the diameter of the pipe. Figure 3 shows the geometry of a 6-inch Venturi design 

according to ASME standards in ASME PTC 19.5-2004 with dimensions shown in 

inches or degrees, respectively. 

 

Figure 3. 6-inch 0.7 beta Classical Venturi meter design following ASME standards. 

 

 The following principals are based on the assumptions that the fluid is 

incompressible and that flow is fully developed at the meter inlet. The basic principal of 

conservation of mass provides an understanding to how the Venturi works. Equation 1 is 

the basic form of conservation of mass simply showing that what goes into a meter must 

come out. Since the flow rate must remain constant through the entire meter, as the cross 

sectional area decreases at the throat the velocity of the flow increases. According to 

Bernouli’s principal when the velocity of a fluid increases, the static pressure decreases 

(Finnemore 2002). These two basic principles show how low pressures are created in the 

throat of the Classical Venturi meter. 

𝑄 = 𝐴𝑖𝑛𝑙𝑒𝑡 ∗ 𝑉𝑖𝑛𝑙𝑒𝑡 = 𝐴𝑡ℎ𝑟𝑜𝑎𝑡 ∗ 𝑉𝑡ℎ𝑟𝑜𝑎𝑡   (1) 

 Equation 2 is derived from Bernoulli’s Equation coupled with the conservation of 

mass and is used to calculate the theoretical flow rate of a Venturi. 
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𝑄𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝐴𝑡ℎ𝑟𝑜𝑎𝑡 ∗ √
2∗𝑔∗∆𝑃∗𝜌𝑓𝑙𝑢𝑖𝑑

1−β4
   (2) 

 Where 𝑄𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is the calculated flow rate in pounds per second, 𝐴𝑡ℎ𝑟𝑜𝑎𝑡 is the 

area in feet squared of the throat, 𝑔 is the dimensional conversion factor depending on 

units used, ∆𝑃 is the differential pressure reading between a high tap and a low tap, 𝜌𝑓𝑙𝑢𝑖𝑑 

is the density of the fluid flowing through the meter, and 𝛽 is the ratio of the throat 

diameter to the inlet diameter. 

 Equation 2 is based on ideal assumptions that do not exist in the real world, 

meaning that the equation will not calculate the true flow rate through a Venturi unless it 

is adjusted by a discharge coefficient. A discharge coefficient is the ratio of the actual 

flow rate over the theoretical or calculated flow rate as demonstrated in equation 3.  

𝐶𝑑 =
𝑄𝑎𝑐𝑡𝑢𝑎𝑙

𝑄𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
             (3) 

 This means that the actual mass flow rate is calculated using equation (4) 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑 ∗ 𝐴𝑡ℎ𝑟𝑜𝑎𝑡 ∗ √
2∗𝑔∗∆𝑃∗𝜌𝑓𝑙𝑢𝑖𝑑

1−β4
   (4) 

 When both sides of the equation are dividing by the density of the fluid, equation 

5 is produced which calculates volumetric flow. 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑 ∗ 𝐴𝑡ℎ𝑟𝑜𝑎𝑡 ∗ √
2∗𝑔∗∆𝑃

(1−β4)∗𝜌𝑓𝑙𝑢𝑖𝑑
   (5) 

 Laboratory calibrations of meters are critical in determining discharge coefficients 

and ultimately having a reliable meter. Accurately measuring the actual flow rate in the 

laboratory is one of the most important steps of the calibration. For this research 25,000 

pound and 250,000 pound NIST traceable weigh tanks were used to measure actual flow 

rate. The National Institute of Standards and Technology (NIST) is a non-regulatory 
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agency of the United Stated Department of Commerce that ensures instrumentation 

accuracy. This research calculated actual flow rate using equation 6.  

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑊𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝜌𝑓𝑙𝑢𝑖𝑑∗𝑇𝑡𝑒𝑠𝑡
     (6) 

Where 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 is the actual flow rate in cfs, 𝑊𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 is the weight of the water 

collected during the test, 𝜌𝑓𝑙𝑢𝑖𝑑is the density of the fluid in the weight tank, and 𝑇𝑡𝑒𝑠𝑡 is 

the time that the water was collected in the tank. The temperature of the water was taken 

to determine density of the fluid by interpolating values on a table provided in “Flow 

Measurement Engineering Handbook” (Miller 1996). 

 A diagram for the physical straight-line testing is shown in Figures 4 with an 

image of the actual straight-line setup in Figure 5. In Figure 4 the total flow enters from 

left to right, passing through the reference flowmeter. The flow is then redirected through 

a series of 90-degree elbow connections to redirect the flow from right to left. More than 

sufficient pipe lengths were installed downstream from the second elbow to meet AMSE 

installations standards for a Classical Venturi meter of this beta value although the meter 

tested was a UVT. Flow then passes through the UVT downstream to a control valve and 

eventually into one of the two NIST traceable weight tanks depending on the magnitude 

of the flow rate. 

 The second set of installations, where the meter is placed downstream of the tee 

junction is depicted by the rendering in Figure 6 and Figure 7 demonstrates what the 

physical setup for this test looked like in the laboratory. 
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Figure 4. Laboratory setup for a straight-line calibration. 

 

 

Figure 5. Laboratory straight-line calibration. 

 

It is important to note that the reference flowmeter had been verified against the 

weight tank to accurately measure flow within ±0.25% for the flow rates used in this 

research. This is important because the next set of physical testing placed the UVT 

downstream of a tee junction, as seen in Figure 5, where some of the flow is wasted into a 

channel. In order to know the percentage of the total flow entering the UVT, an accurate 

measurement of the total flow rate is needed. 



16 
 

For this testing the reference flowmeter was wired to a multi-meter. The multi-

meter reads a hertz output from the reference flowmeter to indicate the flow rate reading. 

Multi-meters were used because of the real-time averaging capabilities that they have. 

The differential pressure across the pressure taps of the UVT was measure using a 

differential pressure transmitter. The differential pressure transmitter was wired to a 

multi-meter so that the differential pressure of the UVT could be averaged in real-time as 

a voltage output from the transducer. Diagrams demonstrating the multi-meter 

connections to the reference flowmeter and the pressure transducer are provided in 

Appendix B. 

The procedure for conducting a physical straight-line calibration for the UVT is 

listed below: 

1) Set the desired flow rate with the control valve 

2) Start averaging the multi-meter wired to the reference flowmeter 

3) Simultaneously average the multi-meter wired to the pressure transducer 

4) Let averaging values stabilize 

5) Record the stabilized averaged values for flow rate and differential pressure 

6) Record the temperature of the water from temperature probe 

A similar setup was used for the physical tee junction testing of the UVT. Figure 

6 presents a diagram of the general setup, however, the UVT was tested both at 0D, or 

directly bolted to the through leg of the tee junction, and also 5D downstream from the 

tee junction as seen in Figure 7 and Figure 8. 
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Figure 6. Laboratory setup for a 0D tee junction calibration. 

 

 

Figure 7. UVT with taps at positions 1 and 2 installed 0D on the through leg of a round 

cornered tee junction. 
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Figure 8. UVT with taps at positions 1 and 2 installed 5D on the through leg of a round 

cornered tee junction. 

 

The procedure followed for conducting the tee junction calibrations for the UVT is listed 

below: 

1) Use both control valves to set desired total flow rate based on reference 

flowmeter reading and desired flow through the UVT based on the UVT flow 

rate reading from the straight-line calibration 

2) Start filling the weight tank while simultaneously 

a. Start the stop watch 

b. Note the beginning weight of the tank 

c. Average the multi-meter wired to the reference flowmeter. 



19 
 

d. Average the multi-meter wired to the pressure transducer. 

e. Let the desired time for the test pass 

3) Stop filling the tank while simultaneously  

a. Stop the stop watch 

b. Note final weight of tank and record the temperature of the water 

4) Record the averaged values from the multi-meters 

For these tests the author utilized two different weight tanks, one with the 

capacity to hold 25,000 pounds and the other with a capacity of 250,000 pounds. The 

smaller weigh tank requires the use of a stop-watch as mentioned in the above steps. The 

larger weight tank has a programmed control that starts and stops the flow over a 

specified time period. For all of the data collected with the 250,000 lb. weight tank, the 

author followed the same steps as listed above without the use of a stopwatch. 

 Understanding how to properly use the instrumentation to take measurements is a 

fundamental part of this research. In the laboratory there are five measurements taken for 

each data point. For each one of these measurements, there is a specific instrument or 

series of instruments used. Each instrument is described and the procedure followed for 

taking measurements outlined in the following paragraphs. 

  The first measurement to be taken is the total flow rate through the reference 

meter. Before the testing for this research began, the reference meter was calibrated in 

line with an accuracy of ±0.25%. The reference meter is wired to a multimeter, seen in 

Figure 9, where a voltage output is read and converted back to flow in gallons per minute 

by dividing the voltage by the quantity 4. The multimeter is used in this scenario for the 

averaging capabilities that it has. The flow from the reference meter is averaged over the 
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entire run using the multimeter, where once the run is complete, the flow is recorded as a 

voltage to the nearest whole number and then converted back into the flow rate. The 

accuracy of this method of measurement is a half a volt or 0.25 gallons per minute for 

each reading. This means that the actual flow rate could be ±0.25 gallons per minute 

which when referencing the lowest total flow rate measured in the lab is ±0.05%.  

 

Figure 9. Multimeter used to average total flow and differential pressure. 

 

 The second measurement for this research is the differential pressure across the 

UVT. The differential pressure is measured using a pressure transmitter, as seen in Figure 

10, wired to a multimeter for the averaging capabilities. The setup allows the user to 

measure the differential pressure in terms of voltage to three decimal places when the 
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voltage is 2 or higher and four decimal places when the voltage is between 1 and 2. These 

means that when the voltage is between 1 and 2 this method of measurement has an 

accuracy of ±0.0001 volts, which converts to ±0.07%, and ±0.001 volts when the output 

is greater than 2 representing an accuracy of ±0.08% in differential pressure reading of 

head in inches. 

 

Figure 10. Pressure transmitters used to measure differential pressure. 

 

 The third measurement recorded is the temperature of the water in the pipeline. 

This measurement is taken using a temperature probe, shown in Figure 11, inserted into 

the pipeline where the temperature is read directly in degree Fahrenheit to one decimal 

place. The temperature is then used to calculate the density, in pounds per cubic foot, and 

kinematic viscosity, in squared feet per second, of the water. A ±0.1 degree Fahrenheit 
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change in temperature gives a density accuracy within ±0.0005% and an accuracy for the 

kinematic viscosity of ±0.16% 

  

 

Figure 11. Temperature probe installed on the test pipeline. 

 

The fourth measurement for this research is the weight of the water collected in 

the NIST traceable weight tanks during the run time. There are two different instruments 

used for this measurement based on the quantity of water being collected during the run. 

When less than 10,000 pounds of water is collected, the small weight tank, as seen in 

Figure 12, with a capacity of 25,000 pound is used. This tank has the ability to read 

weight to ±5 pounds which for the lowest amount of weight collected for this study is 

±0.17%. For weights above 10,000 pounds, the large weight tank with a capacity of 
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250,000 pounds is used as depicted in Figure 13. The large weight tank reads the weight 

to ±20 pounds which for the lowest weight collected in this tank is ±0.21%.  

 

Figure 12. 25,000 pound NIST traceable weight tank 
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Figure 13. 250,000 pound NIST traceable weight tank 

 

 The final measurement recorded is time, in seconds, of the duration of the run. 

When using the small weight tank, the time is measured using a certified traceable 

stopwatch, as shown in Figure 14, that reads the time to ±0.01 seconds. The shortest time 

used for a run is 200 seconds which gives the stop watch an accuracy of ±0.005%. When 

the large weight tank is used for collecting water, there is an automatic control set to a 

user defined time. This control has an accuracy of ±0.082% for runs that are 200 seconds 

long which was used for this research. 
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Figure 14. Certified traceable stopwatch. 

 

To quantitatively determine the uncertainty combining all 5 physical 

measurements the author followed the guidelines in ASME PTC 19.1 2005 test 

uncertainty national standard. At a 95% confidence interval the maximum calculated 

uncertainty for the physical data in this research is 0.78% with an overall average 

uncertainty of 0.21%. The largest uncertainties were for cases in which the meter was 

installed at 0D with flow splits of 20%, where high flow turbulence existed within the 

meter. 

 

Numerical Modeling Methods 

 CFD modeling is emerging as a cost-effective and time saving alternative to 

physical models as the complexity of engineering problems increase and the solutions 

rely more heavily on robust and accurate research data. This research in particular 
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requires data to be collected from setups with different flowmeter types and sizes, 

installation placements, and beta ratios. Collecting all of this data in the laboratory would 

be costly due to the need to acquire the physical components and require a large amount 

of time and manpower. CFD software, however, provides the author with the ability to 

collect nearly all of this data with no added costs and no extra manpower. The author 

used Star CCM+ version 13.06.012-R8, a CFD software package from Siemens, to run 

simulations for this research. 

Developing a simulation with Star CCM+ is a complex process and requires 

substantial experience with the software. The general procedure for developing a 

simulation and extracting results will be outlined within this section. Any details not 

provided regarding specific software details are found in the user manual for Star CCM+ 

(Siemens, 2020). The general outline for creating a CFD simulation is: 

1. Create geometry of the three-dimensional flow volume. 

2. Produce a part from completed geometry and properly label part surfaces. 

3. Define a region for each part surface and select the correct boundary conditions. 

4. Select the mesh and physics models to be used in the simulation. 

5. Create the volume mesh. 

6. Make scenes and plots to monitor simulation conditions. 

7. Run simulation until the solution has converged. 

8. Analyze scenes and plots with engineering judgement to ensure the correct 

solution has been reached. 

9. Record data. 
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The author chose to use the surface remesher, polyhedral mesher, and prism layer 

mesher for the meshing models. The physics models used for simulations were three 

dimensional, steady, liquid, constant density, segregated flow, turbulent, exact wall 

distance, gradients, k-epsilon turbulence, realizable k-epsilon two-layer, Reynold-

averaged navier-stokes (RANS), and two-layer all y+ wall treatment. With these models 

selected, the simulation software will simultaneously solve the continuity equation, 

momentum equation in each direction, turbulent dissipation rate, and turbulent kinetic 

energy for each iteration. 

Each time the simulation completes an iteration, it calculates and plots the 

maximum difference in the solution for each of the equations listed above from the 

previous iteration. This plot is known as the residuals. With each iteration, the simulation 

approaches the solution, meaning that the difference in answers between iterations, or the 

residuals, of each governing equation gets closer to zero. Each simulation was run until 

all the residuals were below 10−5, which is well past the threshold where the change in 

solution from iteration to iteration affects the data. In addition to monitoring the 

residuals, the author closely checked other aspects of the model to ensure quality data 

was taken. 

In turbulent flow a viscous sublayer develops near boundaries, like a pipe wall, 

where the magnitude of velocity approaches zero. To determine how well this viscous 

sublayer is modeled the wall y+ value, a dimensionless distance that describes the 

fineness of mesh at a given flow rate, is calculated according to equations 7 and 8 and 

should be below 5 and optimally close to the value of 1 (Salim 2009).  

𝑤𝑎𝑙𝑙 𝑦+ =
𝑦∗𝑢𝑡

𝜈
    (7) 
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𝑢𝑡 = √
𝜏𝑤

𝜌
     (8) 

Where in equation 7, 𝑦 is the distance from the cell centroid to the nearest wall, 

𝑢𝑡 is the shear velocity, and 𝜈 is the kinematic viscosity. Equation 8 is used to calculate 

the shear velocity with 𝜏𝑤 being the wall shear stress and 𝜌 is the fluid density. 

To analyze the conditions of the simulation as it ran, the author created scalar 

scenes to monitor velocity, pressure, and wall y+ values throughout the flow volume.  

These scenes were used to visually represent the solutions that the computer produced. 

With these visual scenes, the author checked each simulation to make sure that flow fully 

developed before enter the tee junction, that pressure decreased adequately from 

upstream to downstream, and that the wall y+ values were around 1. 

Once the residuals drop below 10−5, the mesh has been adjusted so that the wall 

y+ values are correct, and the velocity and pressure scenes look accurate the data point is 

collected. Pressure probes located where the pressure taps would be were used to extract 

differential pressure data from the meter. Sectional planes located at the tee junction inlet 

and at the meter were also used to get mass flow rates to calculate the flow split through 

the tee junction and the meter Reynolds number for each simulation. 

Once a simulation has been developed properly, it is important to run a grid or 

mesh independence study to eliminate, if possible, or reduce any influence that varying 

mesh sizes have on the results. The procedure for running a grid independence study is 

outline by Celik (Celik et al. 2008). This procedure allows the user to calculate the 

overall uncertainty in the solution between simulations run with two different base sizes 

to determine if the solution is independent of the mesh cell’s base size.  
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Following this procedure for the 6-inch simulations on each tap set the maximum 

uncertain with a base size of 0.35-inches was 0.87%. Another grid convergence study 

was conducted for the 24-inch simulations and concluded that the maximum uncertainty 

for any one of the four tap sets with a base size of 2-inches was 0.82%. For the purposes 

of this research these are acceptable bounds of uncertainty. Simulations could be 

conducted with a smaller base size to reduce the level of uncertainty, consequently  

reducing the base size drastically increase the time to run a simulation. For this reason 

these cell base sizes were selected for this research. 

 

Graphical Representation of Results 

 Graphical representation of the CFD simulation results is a key component to 

proper analyzation and use of the results by readers. Contour plots of discharge 

coefficient ratios plotted against flow splits and meter Reynolds number were created 

using code created by Ben Sandberg and Taylor Vaughn. Ben Sandberg previously used 

this code to successfully create contour plots of discharge coefficient ratios for a 

Classical Venturi meter installed on the branch leg of a tee junction. Due to the 

similarities between Sandberg’s and this research, those interested in further researching 

this topic or those using this research for professional matters will be benefitted by a 

consistent methodology for producing these contour plots. Specifics concerning this 

methodology are provided in Appendix C of Sandberg’s thesis (Sandberg, 2019). All 

contour plots for this research are found in Appendix A. Note that the Meter Reynolds 

number does not converge to zero for the data collected. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

CFD Verification and Validation 

 To verify CFD as a useful modeling tool for this research, it needs to be validated 

with the physical data collected. The first data to validate is the 6 inch straight-line 

calibration performed on the UVT. The laboratory results for this calibration show that 

Tap Set 1 and Tap Set 2 had average Cd values of 0.9818 and 0.9794 respectively over a 

Reynolds Number range of 80,000 to 660,000. Over the same Reynolds Number interval, 

the CFD results showed that Tap Set 1 and Tap Set 2 had average Cd values of 0.9676 

and 0.9675 which are 1.44% and 1.21% lower than the physical data. Figure 8 is a plot of 

the physical and CFD data interpolated at similar Reynolds Numbers. The nature of the 

plot for Tap Set 1 using CFD is similar for Tap Set 2, Tap Set 3, and Tap Set 4 using 

CFD. 
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Figure 15. Plot of discharge coefficient, Cd, versus Reynolds number for the physical and 

CFD straight-line UVT calibration. These are typical values for all tap sets. 

 

This research is not focused on the CFD results matching the physical data 

exactly, but rather that the CFD functions as an accurate tool to predict trends as variables 

are changed. Figure 9 demonstrates that the CFD results at a 0D installation over the 

entire range of flow splits follows a similar trend as the physical data. It is important to 

note that each point at each flow split is directly compared to the straight line discharge 

coefficient having the same Reynolds number at the meter and not to an averaged value. 

It is observed that the CFD data is shifted down consistently for Tap Sets 1, 2, and 3.  

This shift could be a result of the limited modeling capabilities of the physical 

models used for the simulations. However, since the same physical models are used 

throughout the research, the same shift is introduced into every simulation. Since the 

analysis of the data is focused on how the 𝐶𝑑values change from the straight-line 

calibration to the specific tee junction installations, this shift is not important. It is 
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important to note that for all data collected Tap Set 3 is typical of Tap Set 4 due to 

symmetry, for this reason Tap Set 4 is not plotted. 

 

Figure 16. Plot of discharge coefficient deviation from straight versus flow split for the 6-

inch UVT installed 0D from a round cornered tee junction.  

 

Similarly, when the UVT meter is modeled at 5D downstream from the tee 

junction, represented by the data in Figure10, CFD again closely follows the trends 

developed by the physical data. For both Tap Set 1 and 2 at the 40% and 20% flow splits 

the CFD trends slightly different from the physical data, however, the scale on the 

independent axis is so narrow compared to Figure 9 above that this change is trend is 

negligible. 
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Figure 17. Plot of discharge coefficient deviation from straight versus flow split for the 6-

inch UVT installed 5D from a round cornered tee junction. 

 

The data presented in Figures 9 and 10 validates CFD’s capability to accurately 

model both the discharge coefficient of a flowmeter in a straight-line calibration over a 

range of Reynolds numbers and the trend of the discharge coefficient deviation from 

straight over the entire range of flow splits at the specified distances downstream from 

the tee junction. 

Figures 9 and 10 along with Figures B1 and B2, showing data for a 24-inch 

Classical Ventrui meter with a beta value of 0.7 installed at 0D and 5D respectively at 

four different main Reynolds Number, prove that the data for each tap set with varying 

setup configurations is tightly grouped together. These tight groupings prove that the 

discharge coefficient deviation from the straight-line calibration is not dependent on the 

total flow rate entering the system, but rather dependent on the actual flow split occurring 

in the tee junction. 
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Tee Junction Geometry 

 Now that CFD has been verified and validated as a viable tool to model these 

hydraulic setups, the effects of the proposed variables will be examined commencing 

with the geometry of the tee junction. The two tee junctions used for this analysis were a 

typical round cornered tee junction and a sharp cornered tee junction, for which 

dimensions are found in Appendix B. 

 The data presented in Figure 11 shows a comparison of the 6-inch UVT meter 

installed 0D from both a sharp and round cornered tee junction to the data collected on 

the 6-inch UVT meter in the lab. There is little variance in meter performance for Tap Set 

1 between the round and sharp cornered tee junction installation apart from the 20% flow 

split where the sharp cornered tee junction installation follows the physical data more 

closely than the round cornered tee junction installation.  

For Tap Sets 2 and 3 the data for the sharp cornered tee junction follows the 

physical data within ±1.5% for flow splits between 40% and 100%.  Neither the sharp nor  

round cornered tee junction installations modeled the 20% flow split very well with a 

minimum variation of 12% from the physical data. Although the data does not match at 

the 20% flow split, it does follow a similar trend meaning that the modeling capabilities 

of physical models selected in Star CCM+ do not fully accommodate the turbulence in 

the flow under these conditions, but performs well enough for this analysis. 
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Figure 18. Plot of discharge coefficient deviation from straight versus flow split for the 6-

inch UVT physical data and 6-inch UVT CFD models 0D from a round cornered and 

sharp cornered tee junctions. 

 

 Figure 12 presents the data for the same conditions as mentioned above with the 

UVT meter installed at 5D. It is clear that by 5 diameters downstream of the tee junction, 

both round and sharp cornered, metering accuracy improves drastically. All data points in 

Figure 12 fall within +2.8% and -4.8% deviation from the straight-line calibration. Under 

these conditions, Tap Set 1 is modeled more closely by the round cornered tee junction, 

the physical data for Tap Set 2 is modeled more accurately by the sharp cornered tee 

junction, and Tap Set 3 demonstrates that both the round and sharp cornered tee junction 

produce the same results falling 0.5% to 2.0% below the physical data over the range of 

flow splits. 
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Figure 19. Plot of discharge coefficient deviation from straight versus flow split for the 6-

inch UVT physical data and 6-inch UVT CFD models 5D from a round cornered and 

sharp cornered tee junctions. 

 

 Both the round and sharp cornered tee junctions accurately model the trends 

developed by the physical data. Although the change in tee junction geometry does cause 

a slight shift in the results, it does not change the overall trend. This analysis concludes 

that tee junction geometry contributes a minor role in the results and but is considered an 

independent variable for this research. 

 

Pipe Size 

 Another variable to consider for this research is the size of pipe being used for the 

installation. For this analysis, a Classical Venturi meter with 0.7 beta value was modeled  

in both a 6-inch and a 24-inch line 5D from a sharp cornered tee junction. Figure 13 

presents the data from these simulations. 
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 Figure 13 shows that there is at most a 0.6% shift in deviation from the straight-

line calibration between the 6-inch and 24-inch pipe sizes. Another observation to be 

made is that the trends developed by the larger pipe size tend to be smoother and less 

susceptible to variations in results from one flow split to the next. It is also important to 

note the scale on this graph and realize just how close these data points really are over the 

entire range of flow splits. This analysis concludes that the change in results due to 

varying pipes sizes is negligible for this research.  

 

Figure 20. Plot of discharge coefficient deviation from straight versus flow split for a     

6-inch and 24-inch Classical Venturi with 0.7 beta installed 5D from a sharp cornered 

tee junction. 

 

Meter Type 

 Another variable to analyze for this research is how different meters perform 

under the same installation conditions. For this analysis a 6-inch UVT meter and a 6-inch 
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Classical Venturi meter, both with a beta value of 0.7, were simulated at 5D from a round 

cornered tee junction with a main inlet Reynolds Number of 700,000. 

 The results from these simulations is presented in Figure 14. The information in 

this graph shows that each type of meter has specific benefits and challenges. The 6-inch 

UVT meter has well developed trends for each tap set over the entire range of flow splits 

with one exception, Tap Set 2 at 60% flow split. However, the spread in deviation from 

the straight-line calibration between each tap set is 2.5-4% over most of the flow splits. 

This shows that which tap set you choose to use is critical to the overall metering 

capabilities.  

 The 6-inch Classical Venturi meter, on the other hand, has a spread of at most 

1.5% between data points at the same flow split, with most points falling within 0.5% of 

one another. The challenge that the Classical Venturi meter faces is the unpredictability 

in the trend line at the 60% flow split. If the trend were stable, then the points at a flow 

split of 60% would be around -2.6% deviation from straight, however, these points land 

up between -0.2% and +1.5% deviation from straight. 

 This analysis shows that each meter type has benefits and challenges that the user 

needs to understand and approach correctly for their unique metering application. Meter 

type is a very important variable in this research having a substantial impact on the 

overall trends of the data. 
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Figure 21. Plot of discharge coefficient deviation from straight versus flow split for a     

6-inch UVT and 6-inch Classical Venturi both with 0.7 beta installed 5D from a round 

cornered tee junction. 

 

Meter Beta Value 

 For this analysis two 6-inch UVT meters are modeled at 5D, one with a beta value 

of 0.7 and the other having a beta value of 0.5 with Reynolds Number 700,000 in the pipe 

entering the tee junction. These are typical high and low beta values for Classical Venturi 

flowmeters. Figure 15 demonstrates that as the beta value of the meter decreases, or in 

other words the diameter of the throat relative to the inlet gets smaller, meter accuracy 

increases over the entire range of flow splits for every tap set. Tap Set 1 shows 60% 

improvement in accuracy for flow splits between 20% and 60%, a 50% improvement for 

the 80% flow split, and an 80% improvement when all flow is directed through the meter. 

Tap Set 2 has varying magnitudes of improvement over the entire flow range, but most 
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notably, the peak at 60% flow split is improved by 65%. Tap Set 3 on average has 65% 

greater accuracy with a beta value of 0.5 than with a beta value of 0.7.  

 

Figure 22. Plot of discharge coefficient deviation from straight versus flow split for two 

6-inch UVT meters one with 0.7 beta and the other with 0.5 beta installed 5D from a 

sharp cornered tee junction. 

 

 It is important to consider for this analysis that at 5D all data points still land 

between +2.8% and -4.8% of the straight-line calibration. The trends from the 0.7 beta 

and 0.5 beta do not change much, however, the increase in accuracy for every tap over 

the entire flow range proves that a meter’s beta value is a critical factor for metering 

accuracy when installed downstream of a tee junction on the through leg.  

 With an understanding about how each of these variables discussed in this chapter 

affect metering accuracy, it is clear where to focus when performing CFD simulations. 

The author ran additional simulations to provide the reader with 16 contour plots of 

correction factors for discharge coefficients found in Appendix A. The provided contour 
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plots were created from simulations using 0D and 5D installations from a round cornered 

tee junction for a 6-inch UVT meter, and 0D and 5D installation from a sharp cornered 

tee junction for a 24-inch Classical Venturi meter both with a beta value of 0.7.  

 

Engineering Judgements 

 One major aspect of performing research is conducting a deep analysis of the data 

and understanding the limitations of the tools used. This section is intended to help those 

reading this paper know under what circumstances that these results are valid, what parts 

of the results may need additional clarification or research, or even when the results 

should not even be considered. 

 The first engineering judgement to be made for this research is the software’s 

capability of modeling reality. In the results it was concluded that CFD is a valid tool to 

predict the trends of flow metering as certain variables are altered. This means that not 

every data point collected with CFD absolutely represents reality, rather it is predicting a 

trend. With the physical models used in CFD for this research, the accuracy of CFD as a 

predictive tool decreases when there is turbulence or swirling in the flow within the 

metering range of the flow volume. This is particularly true for the 0D installations with 

flow splits of 40% or less where flow swirls occur around the high tap of Tap Set 2 as 

seen in figure 16.  

 With this in mind, when modeling difficult flow regimes as these, it is important 

to choose physical models that better account for turbulence and flow swirls. However, in 

real world applications looking at a different Tap Set location may be what is needed to 

get the desired metering accuracy. 
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Figure 23. Vector scene of CFD model with 0D installation and 20% flow split. 

 

 Looking back at Figure 17 provides several insights into how the data needs to be 

approached. Starting with Tap Set 1 it is clear to see that the CFD does in fact predict 

close to the exact percent deviation from the straight line test for flow splits 60% and 

greater. Below this point at 40% and 20% flow splits however, when using just the CFD 

data as to calculate correction factors, the flow rate would be over corrected and read  

about 3 – 3.5% lower than the actual flow rate and the discharge coefficient from the 

straight-line calibration would perform better over this range of flow splits. 



43 
 

 Now examining Tap Set 2, one sees that the CFD data doesn’t exactly match the 

physical data over the entire range of flow splits, in fact it is shifted down about 1 – 

1.5%. In this case, if CFD was the only way to calculate correction factors, it wouldn’t 

perform as well as laboratory calibrations of the tee junction installation, but it would 

perform better than just using the discharge coefficient from the straight-line calibration. 

 Lastly, the data in figure 17 presents a very intriguing aspect. The physical data 

for Tap Set 3 hardly shifts from the straight-line calibration at all over the entire range of 

flow splits. Additionally, the CFD data is shifted down anywhere from 1-2%. This 

indicates that using CFD to calculate correction coefficients in this case would produce 

flow rates 1-2% lower than the actual flow rate, where if the discharge coefficient from 

the straight-line calibration were used, the flow would read accurately to within 0.15% 

over the entire range of flow splits. 

 Similar judgement calls need to be made about every set of data collected for this 

research and any data produced by someone venturing to reproduce or use a similar 

procedure to correct flow rate measurement on a Classical Venturi flowmeter. 

 

Example for Using Contour Plots 

 Once all the data has been collected and the contour plots created, knowing how 

to properly use implement it is crucial. This section provides a detailed example on how 

to use the contour plots generated with the CFD simulations to adjust the flow equation 

for a physical meter installed downstream of a tee junction on the through leg. 

 This example shows this process by using the physical and CFD data collected on 

the 6-inch UVT meter with 0.7 beta ratio on Tap Set 1 installed 0D. The data point 
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selected to analyze for this example was at a total flow rate of 1745.0 gpm and a 

differential pressure across the UVT of 0.261 psi. From the data collected, it is known 

that 349 gpm is flowing through the UVT. The meter has a straight-line calibration Cd of 

0.981 provided by the manufacturer. This means that under these conditions, the 

indicated flow would be calculated as follows. 

 First convert the differential pressure from units of pound per square inch to 

pounds per square foot. 

0.261
𝑙𝑏

𝑖𝑛2
∗ 144

𝑖𝑛2

𝑓𝑡2
= 37.584

𝑙𝑏

𝑓𝑡
 

 Now calculate the flow rate in gallons per minute. 

𝑄 = 𝐶𝑑 ∗ 𝐴𝑡 ∗ √
2 ∗ ∆𝑃 ∗ 𝑔𝑐
𝜌(1 − (β)4)

 

𝑄 = 448.831
𝑔𝑝𝑚

𝑐𝑓𝑠
∗  0.981 ∗ 0.0983 𝑓𝑡2 ∗ √

2 ∗ 37.584
𝑙𝑏
𝑓𝑡2

∗ 32.17405
𝑓𝑡
𝑠2

62.4034
𝑙𝑏

𝑓𝑡3 𝑓𝑡2
∗ (1 − (0.6962)4 )

 

 Consolidate the units. 

𝑄 =  448.831
𝑔𝑝𝑚

𝑐𝑓𝑠
∗  0.981 ∗ 0.0983 𝑓𝑡2 ∗ √50.66 

𝑓𝑡2

𝑠2
 

𝑄 = 448.831
𝑔𝑝𝑚

𝑐𝑓𝑠
∗  0.981 ∗ 0.0983 𝑓𝑡2 ∗ 7.12 

𝑓𝑡

𝑠
 

𝑄 = 308.05 𝑔𝑝𝑚 

 The meter indicates that the flow is 308.05 gpm which is 11.73% lower than the 

actual flow rate. To start the flow rate adjustment process, the meter Reynolds number 

and the flow split must be calculated as follows. 
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𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 =

(

 
 
 
 
 
 

308.05 𝑔𝑝𝑚 
448.831𝑔𝑝𝑚

𝑓𝑡3

𝑠𝑒𝑐

0.25 ∗ 𝜋 ∗ (
6.097 𝑖𝑛

12
𝑖𝑛
𝑓𝑡

)

2

)

 
 
 
 
 
 

∗

(
6.097 𝑖𝑛

12
𝑖𝑛
𝑓𝑡

)

. 0000137 
𝑓𝑡2

𝑠𝑒𝑐

≈ 125543.1 

𝑆𝑝𝑙𝑖𝑡 =
308.05

1745.0
= 0.177  

 Once these values are obtained, the Cd adjustment value can be extracted from the 

contour plot as seen in Figure 16. In this case, a flow split of 0.2 will be used because 

there is no data below this point. 

 

Figure 24. Contour plot for Tap Set 1 of the CFD 6-inch UVT 0.7 beta 0D installation. 

 

From Figure 16 the adjustment factor 1.23 is extracted and used in the following 

calculation to find a new indicated flow rate. 
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𝑄𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝐶𝑑

𝐶𝑑 𝑠𝑡𝑟𝑎𝑖𝑡
∗ 𝐶𝑑 ∗ 𝐴𝑡 ∗ √

2 ∗ ∆𝑃 ∗ 𝑔𝑐
𝜌(1 − (β)4)

 

𝑄 = 1.23 ∗ 448.831
𝑔𝑝𝑚

𝑐𝑓𝑠
∗  0.981 ∗ 0.0983 𝑓𝑡2 ∗ √

2 ∗ 37.584
𝑙𝑏

𝑓𝑡2
∗ 32.17405

𝑓𝑡

𝑠2

62.4034
𝑙𝑏

𝑓𝑡3 𝑓𝑡2
∗ (1 − (0.6962)4 )

 

𝑄 = 378.9 𝑔𝑝𝑚 

After one iteration of this process, the meter shows an adjusted flow rate of 378.9 

gpm which is 8.56% higher than the actual flow going through the meter. This process is 

meant to be iterated until the change in adjusted flow rate from one iteration to the next 

does not change. To fulfill the purpose of this example one more iteration will be needed. 

Start the next iteration by calculating the new Meter Reynolds number. 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 =

(

 
 
 
 
 
 

378.9 𝑔𝑝𝑚 
448.831𝑔𝑝𝑚

𝑓𝑡3

𝑠𝑒𝑐

0.25 ∗ 𝜋 ∗ (
6.097 𝑖𝑛

12
𝑖𝑛
𝑓𝑡

)

2

)

 
 
 
 
 
 

∗

(
6.097 𝑖𝑛

12
𝑖𝑛
𝑓𝑡

)

. 0000137 
𝑓𝑡2

𝑠𝑒𝑐

≈ 154417.4 

𝑆𝑝𝑙𝑖𝑡 =
378.9

1745.0
= 0.217  

 Once these values are obtained, the Cd adjustment value can be extracted from the 

contour plot as seen in Figure 16.  
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Figure 25. Contour plot for Tap Set 1 of the CFD 6-inch UVT 0.7 beta 0D installation. 

 

From Figure 16 the adjustment factor 1.175 is extracted and used in the following 

calculation to find a new indicated flow rate. 

𝑄𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝐶𝑑

𝐶𝑑 𝑠𝑡𝑟𝑎𝑖𝑡
∗ 𝐶𝑑 ∗ 𝐴𝑡 ∗ √

2 ∗ ∆𝑃 ∗ 𝑔𝑐
𝜌(1 − (β)4)

 

𝑄 = 1.175 ∗ 448.831
𝑔𝑝𝑚

𝑐𝑓𝑠
∗  0.981 ∗ 0.0983 𝑓𝑡2 ∗ √

2 ∗ 37.584
𝑙𝑏
𝑓𝑡2

∗ 32.17405
𝑓𝑡
𝑠2

62.4034
𝑙𝑏

𝑓𝑡3 𝑓𝑡2
∗ (1 − (0.6962)4 )

 

𝑄 = 361.96 𝑔𝑝𝑚 

After the second iteration of this process, the meter shows an adjusted flow rate of 

361.96 gpm which is 3.7% higher than the actual flow going through the meter. This 

example shows that within two iterations of applying correction factors, there is a 68.3% 

improvement in flow rate accuracy. 
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CHAPTER V 

CONCLUSION 

 Differential pressure producing flowmeters are used in many industrial and 

municipal applications. Ensuring that these meters accurately measure flow rate is of high 

importance in these instances to provide processes and consumers with high quality 

products and services. There is so much importance placed on accurate flow 

measurement that standards of installation and use have been created to guide proper 

hydraulic design both upstream and downstream of the meter. However, meeting these 

standards is not always practical due to space or fiscal constraints. 

 When pipe systems are designed that place flowmeters in installation contrary to 

those established by industry or manufacturer standards the best solution is to perform a 

laboratory calibration of the meter with the same installation specifications as the design. 

Laboratory calibrations, like those performed at the Utah Water Research Laboratory, are 

typically cost effective and timely. However, when setup for a calibration requires large 

sizes needing extra space, manpower, and run time, these calibrations can become 

expensive. In these cases performing CFD models, although not as accurate as a 

laboratory calibrations, may be sufficiently accurate. 

 This research develops a process which readers may use as a template to simulate 

reasonably similar flowmeters and installation setups. For the case studied in this 

research, a flowmeter installed downstream of a tee junction on the through leg, three 

variables, pipe size, tee junction geometry, and the main Reynolds Number entering the 

tee junction, were all found to have little to no impact on the results.  
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On the other hand, there are three variables that require more attention in order to 

get accurate results from the simulations. First, the meter geometry, including the length 

of the inlet section, angles of contraction and expansion, and the length of the throat must 

be modeled as close to the physical dimensions possible. Second, the flow splits that are 

going to be ran through the tee junction in the field must match those flow splits in the 

simulations. If this cannot be achieved it is important to run enough flow splits to 

understand the trend of data over the range of flow splits needed. Lastly, modeling the 

meter beta ratio as close to the physical dimensions is important to understand how that 

particular meter will perform. Once the volume is meshed, the diameter of the inlet and 

throat will not be exactly as drawn in the geometry. Adjustments may need to be made to 

the throat diameter after the first mesh is created. 

Once simulations are completed, the data is used to create a contour plot of 

correctional discharge coefficients that can be used to accurately adjust the flow 

measurement on the meter. Applying the contour plot to real life systems could then be 

digitized to reflect real-time accurate readings on the meter. 

It is important to note that this research has limitations and proper engineering 

judgement must be used when applying the findings. These limitations include the 

modeling capabilities of the software used for simulations, the scope of work only 

includes an analysis of two meter types, two beta values, and incompressible fluid flow. 

Further research is needed to more fully understand the complexities of installing 

a differential pressure producing flowmeter downstream of a tee junction on the through 

leg. There are many more types of meters, including wedge meters and Venturi tubes to  
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list a few, that could be studied. Further research could explore how compressible fluids 

or even the viscosity of an incompressible fluid changes the results. Additional work 

could also be done to look at how cavitation above a certain flow rate affects the results. 

This research topic is far from being completely covered.  
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APPEDENDIX A 

CONTOUR PLOTS 

Figure A1. Contour plot for Tap Set 1 of the CFD 6-inch UVT 0.7 beta 0D installation. 

 

Figure A2. Contour plot for Tap Set 2 of the CFD 6-inch UVT 0.7 beta 0D installation. 
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Figure A3. Contour plot for Tap Set 3 of the CFD 6-inch UVT 0.7 beta 0D installation. 

 

Figure A4. Contour plot for Tap Set 4 of the CFD 6-inch UVT 0.7 beta 0D installation. 
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Figure A5. Contour plot for Tap Set 1 of the CFD 6-inch UVT 0.7 beta 5D installation. 

 

Figure A6. Contour plot for Tap Set 2 of the CFD 6-inch UVT 0.7 beta 5D installation. 
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Figure A7. Contour plot for Tap Set 2 of the CFD 6-inch UVT 0.7 beta 5D installation. 

 

Figure A8. Contour plot for Tap Set 3 of the CFD 6-inch UVT 0.7 beta 5D installation. 
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Figure A9. Contour plot for Tap Set 1 of the CFD 24-inch Classical 0.7 beta 0D 

installation. 

 

Figure A10. Contour plot for Tap Set 2 of the CFD 24-inch Classical 0.7 beta 0D 

installation. 
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Figure A11. Contour plot for Tap Set 3 of the CFD 24-inch Classical 0.7 beta 0D 

installation. 

 

Figure A12. Contour plot for Tap Set 4 of the CFD 24-inch Classical 0.7 beta 0D 

installation. 
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Figure A13. Contour plot for Tap Set 1 of the CFD 24-inch Classical 0.7 beta 5D 

installation. 

 

Figure A14. Contour plot for Tap Set 2 of the CFD 24-inch Classical 0.7 beta 5D 

installation. 
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Figure A15. Contour plot for Tap Set 3 of the CFD 24-inch Classical 0.7 beta 5D 

installation. 

 

Figure A16. Contour plot for Tap Set 4 of the CFD 24-inch Classical 0.7 beta 5D 

installation. 
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APPENDIX B 

ADDITIONAL GRAPHS AND DIMENSIONAL DRAWINGS 

 

Figure B1. Plot of discharge coefficient deviation from straight versus flow split for a   

24-inch Classical Venturi with 0.7 beta installed 0D from a sharp tee junction. 

 

Figure B2. Plot of discharge coefficient deviation from straight versus flow split for a  

24-inch Classical Venturi with 0.7 beta installed 5D from a sharp tee junction. 
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