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ABSTRACT 

The Charac t erization of Carbamate Resistance in the 

Colorado Potato Beetle , Leptinota r sa decemlineata 

(Say) , in Comparison with the House 

Fly, Musca domes ti ca (L) 

by 

Randy L. Rose, Master of Science 

Utah S t ate University, 1982 

Majo r Professor : Dr . William A. Brindley 
Department : Biology 

vi 

Resis t ant and susceptible populations of the Colorado potato 

beetle , Leptinotarsa decemlineata (Say), and t he house fly , Musca 

domestica (L), were compared with resp e ct to carbofuran and carbaryl 

toxicity in the presence and absence of the synergist, piperonyl 

butoxide . Resistance levels of the New Jersey population when 

compared with the susceptible Logan population by topical application 

of carbary l and carbofur an we r e> 833 and 820 , respectively . A 

resistance level of 583 was de t ermined from carbofuran bioassays of 

Rutger s and NAIDM hous e f lies . Si milar levels of resistance develop­

ment between thes e spec ies s u gges ts the possibili t y that s i milar 

res i stance mechanisms may be involved . 

Utilization of t he synerg i st difference approach fo r eva luating 

syner g ism of t hese carbamates by piperonyl bu t oxide indic a t ed that 



vii 

th e r esistant st rains depe11c!e:d to ,1 r·ucl 1 grea t er extent upon det o x-

ic c1 tion by monoo ::y f,c nases than did their susceptibl e counterpart s . 

1.-;h ile piperonyJ buto:dcle syne r gism resulted in con;pletdy r es tol'i. ng 

th (: Ru t g c r s s tr a in o l ho u se f 1 i es t o l e v L l s o f s us c e p t i b i 1 i t y , N t>,-: 

J e rsey Colorado oot :1to beetles we r e ah]c to retain a si gnifi c2 n t 

µort i on of the ir r cs ist a nc e . Th e pu rp o ~; e of th is s tudy was r o 

cor~firm th 0' r ol e that mo no oxygen;:i s es pliiyc-cl in Co lora do po t at o 

1·- ee tl e resi s t ance an d to invest ig a t e th e possibility that dec r eas ed 

ab s orption was responsible for the de gree of r es istance ret ained 

following p ip e ronyl but oxide pr e tr eatment . 

Mi c rosomal prepa r a tions from Colorado pota t o be e tl e gut a nd fa t 

bo dy we re· devoid of mE:a s ur abl e monoo xy ge na se ac tivity as determined 

from Q- demethyl a ti on of r_- nitr oa nisole, in spit e of a tt empts t o 

clear gut contents a nd optimiz e techniques. In contrast, mi c r osomal 

pr e par a tions fru1,1 l~utge r :0 one! NAIUi'l house flie s demonstra t ed clea r 

di ffere nc es in oxida tiv e potential be t we en s tr a ins. 

An an,llysi s of t he d i s tributiun o f NADPH-cyto chrome c r ed uct a sc: 

in Col o r ado po tato b e e t le mic r osorncs r evealed a los s o f enzyme 

nctivity [ ro m tlw micr oso m.,l pel l et int o th e so.lub l0 fr ;:c ti on . The 

solub i li za ti o n of thio, co mro n en t of th e e l ec tr on t n,nsp o rt chain 

i s sugges u ~d a:-. a possibl e limiting f actor for in vi tro charac t e r-

iz a tions of the involvf:mcnt of cy t o c hrome P·- 450 i n xenobiotic 

TI!P t a bo l ism. 

Dl:' termin.'.ltio n s of ~ADPH o:<ic!at ion from micros omal p r epa r ations 

from hous e fl y a bdo me n s and Co l orado p o tato beetle g u t a nd fa t body 

did n o t demon s trat e quan tit a tive d:i f f e r C>nccs b e t\,ecn ti ss ue sour c es 

nor b e tw ee n populat ion s o f eithe r s peci es . In a simil a r m;:inn c r, 



NADPH-cytochrome c reduct ase did no t vary between house fly strains 

nor between tiss ue sources of the Colorado potato beetle. Ther e 

viii 

was, however, app roximately a t wo-fo ld difference in NADPH-cytochrome 

c r educt ase activity between r esistant a n d suscep tible populations 

of Colorado potato b eet le larvae . 

The in vivo distribution of 1-naph thyl-li- me thy l (14
c) carbamate 

in r es istant and susceptible Colorado po t a to beetle larvae demons trated 

tha t a lthough significant quantitative differences did not exist 

between populations with res pect to the r a t e of pen e tration, excretion 

o f th e radiocarbon was significant ly gr eate r in the r es istan t New 

Jersey population. 

This s tudy has been successful in es t ablishing that rno n ooxygenases 

play a chief role in Colorado po t ato beetle r esis t a n ce to carbamate 

insecticides . This role was confirmed in part by an i ncr eased 

rate of NADPH-cyto c hrome c r eductase ac t ivity in the resistant 

population, however, traditional xenobiotic me tab olism cou ld not 

be confirmed by other me thod ology examined. This may be a result 

of the apparent solubilization of NADPH cytochrome P-450 reductase 

from microsmal preparations due t o th e unconfirmed presence of 

a n e ndo genous inhibitor. Further characterizations of r esis tance 

mechanisms need to be examined for this d es tructive ag ricultural 

pes t. 

(103 pages) 



I NTRODUCTION 

The Colorado potato beetle , Leptinotarsa decemlineata (Say), 

has been reported as a se rio us pest of po t atoes and tomatoes in 

several states and provinces of the Eastern United States and Canada. 

Because heavy reliance has been placed on the use of pesticides 

for control of this and other pes t s of potato , resistance development 

has recently progressed to t he point where few insecticides are 

capable of adeq uate control (Hare 1980, Harris and Svec 1981). 

Although the potato beetle has l ong been known to be r e sistant to 

DDT and other chlorina t ed hydrocarbons, there have been few at t empts 

to quan tit a te resistance levels (Hofmaster and Dunt on 1961 , Harris 

and Svec 1976 , 19 81, Hofmaster et al . 196 7) or understand their 

mechan i sms . Few cases of resistance to o r ganophophates or carbama t es 

have been reported as such , although two r ecent eval ua tion s of 

seve r a l insec ticides in Connecticut and Quebec are indicative that 

high res i s t ance l evels have deve lo ped agains t p r evious ly recommended 

insecticides including carbaryl, carbofuran , phosmet , methamidophos, 

azinphosme t hyl, and malathion (Hare 1980 , Harris and Svec 1981). 

Since t he recen t development of resistance to these insecticides is 

ex tr emely detrimental to both potato and tomato i ndus tri es it is 

impera tiv e t ha t l eve l s of r es i s t a nc e be quant itated and that mechan isms 

and genetics of resistance be un de r stood for t h i s pes t. 

Several methods are used to quantitate resistance levels between 

insect populations including biologica l assays, in vivo and in vitro 

metabolism of xenobiotics, penetration of r adiolabeled s ub s trates, 



and determinations of various biochemical parameters including 

cytochrome P-450, NADPH- cytochrome P-450 reductase, and NADPH 

oxidation. Although in vitro methodology provides a better 

und erstanding of the role of various body tissues and enzymes it 

often does not correlate well with in vivo work (Schonbrod et al. 

1968, Benke and Wilkinson 1971a, Benke et al. 1972). Therefore, 

it becomes important when attempting to quantitate resistance or 

tolerance that one examines several pa r ameters in an at t empt to 

correlate in vitro and in vivo r esults . 

Resistance in insects is often the result of an increased 

capacity for insec ticide detoxication and is generally due to 

oxidation by monooxygenases althou gh other metabolic routes are 

also implicated (Brattsten and Metcalf 1970, Oppenoorth 1971, 

Fukuto 1973, Plapp 1976). The use of methylenedioxyphenyl 

2 

syne r gists such as piperonyl butoxide, known t o enhance the toxicity 

of many organophosphate and carbamate insecticides , results in 

overcoming resistance mechanisms involving oxidative enzymes to 

the extent that the LD50 values of res istant populations often 

approach susceptible levels (Casida 1970) . This characteristic 

response to synergists resulted in the development of the synergist 

ratio as a means for quantitation of in vivo monooxygenase activity 

(Brattsten and Metcalf 1970, 1973b, Metcalf et al . 1971). Although 

the synergist ratio has been widely used to demonstrate oxidative 

differences between insect populations and species, it has failed 

in some instances to explain fine differences as may occur with age 

related changes in oxidative ability (Lee and Brindley 1974) or 



differences in the me t abol i sm of insec ticide a nalogs (Kiso et a l . 

1977, Kurihara e t al . 1977). The syne r gist difference has been 

suggested as an a lternative estimate which can be used to d e t ermine 

the ex t en t t o which a popula tion depends upon rnonooxygenases for 

detoxication (Brindley 1977). 

3 

Th i s s tudy exami nes a kn own resistant and two suscep tibl e 

pop ulations of Colorado potato beetles to es t ablish base line mortality 

data for the insec t i cides carbaryl and carbofuran. The synergist , 

piperonyl butoxide, was included in the study t o gene r ate synergis t 

differences wh i ch can be used to estimate the degree t o which t he 

potato beetles depend u pon rnonooxygenase enzymes . Resul ts presented 

here s uggest that resistance development in the Colorado potato 

beetle is du e , at least in part , to increased ox i dative po t ential 

in t he resistant pop u lation . 

In an a tt empt t o correlate in vivo da t a with in vitro data and 

c l early establ i sh that monooxygenases ar e involved in t he resistance 

mechanism for pota t o beetles, ~ -nit roanisole- Q-d erne t hylation was 

investigated in microsomes from both gu t and fat body. When the 

alteration of a variety of conditions failed t o r esult in the 

produc tion of the oxidative product, ~-nitropheno l , othe r biochemical 

parameters we r e inves ti ga ted. 

Ac tiv ity of mo nooxygenase enzymes is dependent upo n t he transfer 

of electrons from NADPH to the t erminal e l e ctron acceptor , cytochrome 

P- 450. The principle component of the elec tron transf e r chain is 

considered to be NADPH-cytochrome P-450 r edu c t ase (Goldberg 19 80, 

Naka tsugawa a nd Morelli 1976, Yang 1977). The induction of cy t ochrome 
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P- 450 by xenobiotics has been assoc i ated with increased levels of 

nearly all enzymes associa ted with th e microsomal fraction (Goldber g 

1980, Ernster and Orrenius 1973). Since r es istance development is, 

in essence, the genetically induced state of a popula tion, Folsom and 

Hodgson ( 19 70) hypothesized that the increased oxidative metabo li sm 

of xenobiotics would be accompan i ed by increased levels of cytochrome 

P-450, oxygen uptake , and NADPH oxidation . Since increases in NADPH­

cytochrome c reductase and NADPH oxidation have subsequently been 

associa t ed wi th increased levels of cytochrome P- 450 in both resistant 

and induced ins ects (Folsom and Hodgson 1970, Ahmad and Forgash 1978 , 

Gil et al. 19 74 , \✓ ilkin son and Brattsten 1973), th ese component s were 

examined to demonstrat e differences be tween the oxidative potential 

of resistant and s usceptible Colorado potato b ee tle larvae . 

Although re s istance in insects is generally the result of 

increased detoxication capability , in highly resistant populations 

it may often be accompanied by other factors such as reduced nerve 

sensitivity or abso rption (Plapp and Hoyer 1968, Plapp and Casida 

1969, Plap p 1973, Voss 1980). Inclusion of the synergist , piperonyl 

butoxide, in bioassays with carbaryl or carbofuran failed to restore 

the resistan t popula t ion of potato beetles to levels approxima tin g 

the suscept ible level , s ugges ting t hat fact o rs other than detoxication 

may be involved. As a result, the possibility t hat decreased absorp ti on 

was a factor in resistance was examined in vivo by following th e 

distribution of radiolabeled carba r yl over several time periods. The 

effect o f synergism by piper onyl butoxide was also obse r ved . 

As a result of difficulties experienced in the Q-demethylation 



of .E_-nitroanisole in Colorado potato beetles, Rutgers and NAIDM 

house flies were incorporated into the study to verify procedural 

efforts as well as to serve as reference strains to which po t a t o 

beetles could be compared . Carbofuran biological assays with and 

without piperonyl butoxide and in vitro detenninations of .E_-nitro­

anisole-_Q_- demethylation , NADPH oxidation, and NADPH-cytoch r ome c 

reductase were all detennined for both populations of house flies, 

and results reported here in conjunction with those of the Colorado 

potato beetle . 

5 

The initial goal of this study was to demonstrate that synergist 

differences can be used to provide reasonable hypotheses about the 

role of monooxygenases which could be confirmed in vivo by carbaryl 

metabolism and in vitro by techniques commonly used for the 

quantitation of monooxygenases . Difficulties encountered due to a 

lack of developed methodology for the in vitro determination of 

monooxygenase activity in the Colorado potato beetle led to the 

inclusion of biochemical parameters which have been shown to be 

involved with resistance. Results of this study p r ovide a broad 

base from which further research will benefit in its at t emp t to 

identify resis t ance mechanisms for the Colorado pota t o beetle . 
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REVIEW OF LITERATURE 

Insecticide resistance is an international problem which 

currently plagues entomolog i sts not only because of increased 

restrictions placed upon chemical use and development , but also 

because of the ever increasing numbers of resistant species combined 

with the advanced degree of resistance development within these 

species . An understanding of such development in various species 

can be helpful in providing alternative methods of insect suppression 

using chemical means currently available. Part of gaining this 

understanding involves the determination of the mechanisms for 

resistance. These mechanisms can be diverse, but most commonly 

resistance is due to an increased ability of an insect population 

to withstand chemical pressure as a result of enhanced monooxygenase 

capability. 

This literature review includes discussions of insecticide 

resistance, the development of resistance in the Colorado potato 

beetle, the use of carbamate insecticides together with synergists 

to estimate detoxication potential in insects, the role of monooxy-

genases , phsiological factors influencing the determination of 

insecticide resistance , and some of the problems encoutered during 

th e in vitro characterization of monooxygenase ac tivity. 

Insecticide Resistance 

Resistance is defined as 'the developed ab ility in a strain of 

ins ec ts to tolerate doses of toxicants which would prove lethal to 



the major ity of individuals in a normal population of the same 

species ' (Oppenoorth and Welling 1976) . Although resistance 

generally develops as a resul t of repeated exposu r e t o a given 

chemica l over a period of time, evidence exists that it may 

sometimes develop in t he absence of chemical contact as a result 

of other selection p r essure (Mar gham 1975) . 

The development of resistance to one chemical often resul t s 

in cross resistance, defined as 'the type of protection against 

several compounds resulting f r om the discrete action of one and 

the same mechanism ' (Georghiou and Hawley 1971) . Cross resistance 

can also give rise to multiple resistance whi ch is a n extension of 

r esistance to include other mechanisms of resistance . 

The gene tic, biological, and operational influences in the 

evolution of resistance have been extensively reviewed by Georghiou 

and Taylor (1977a , 1977b) , Georgh iou (1980), Plapp et al . (1979), 
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a nd Davidson and Zahar (1974). The speed with wh ich selection occurs 

depends upon several factors including the frequency, number, and 

dominance of resistant al l eles , the mode of reproduction, number of 

offspring , gen eration time , the presence of refugia and immigration, 

the life stage(s) selected , chemical persistence and relationship to 

other chemicals, the level of selection pres s ure, and the mode of 

applica tion among others (Georgh iou and Taylor 1977a , 1977 b) . Of 

these factors, only th e l as t five are considered as op er a tiona l factors , 

or facto r s wh i ch can be manipulated by man . The ex t en t t o which 

these fac t ors and the ir interactions with other factors are understood 

and u til ized in the field for cont r ol of a given pes t wi ll determine 
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the rate at which resistance selection will occur. 

Once resistance is attained, a reduction of selection pressure 

r esu lt s in a leveling off of resist ance to l evels slightly below its 

maximum state wh e re it can remain for several generations at what 

may be considered a heterozygous l evel (Keiding 1967, Devonshire and 

Sawicki 1979). However, in some c ases , the absence of selection 

pressure results in complete reversions to former levels of 

susceptibility (McDonald 1976). Regardles s of the level of resistanc e 

found in a once resistant population, the genet ic background is 

retained and with a renewal of selec tion pressure former levels of 

resistance are rapidly restored (Keiding 1967). 

The biochemic a l genetics of resistance have been reviewed by 

Oppenoorth (1965), Brown (1967), Tsukamoto et al. (1968), Plapp and 

Casida (1967), Plapp (1976), and Ge orghiou a nd Taylor (1977a). The 

inheritance of resistonce is primarily the result of al.lelism in 

one pr inciple gene al.though multiple resistance genes ar~ often 

implicated (Brown 1967), esp ec ially in cnses of high resistance 

levels attained in the house fly (Pl.app 1976). Genes conferring 

resistance to DDT and pyrethroids tend to be recessive while those 

involved in carbamate and organophosphate resistance have always 

proved to be semidominant in inheritance (Pl app 1976). 

Detoxication of insecticides occurs in both resistant and 

s usceptibl e insects but generally occurs at a more rapid rate in 

resistant strains due to increased enzyme activity. Oppenoorth 

and Welling (1976) suggested two ways in which selection affects 

enzyme activity leading to resistanc e . The most important is the 



selection for an aber ran t gene resulting in an enzyme possessing 

different properties due to an altered amino acid sequence . In 

a gene ti c stu dy by Terr iere et al . (1971) the offspr i ng f r om a 

r esis t a nt and a s uscep t ible s t rain of house flies possessed ox i dase 

levels of intermed i a t e act i vity . These results were interp r e t ed 

to mean that ' the high oxidase strain differed from the low ox i dase 

strain i n the regu l a t ion of enzyme level , possibly by possessing 

more genes or gene sequences for increased production of detoxifying 

enzymes .' In a s i milar study , Plapp and Casida (1969) showed that 

an inter mediate strain of house flies possessed oxidation levels 

closely approximating those of the parent resistant strain yet 
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lacked the resistance ability possessed by that parent strain , 

indicating that the ability t o oxidize insecticides is only partially 

responsible fo r the resistance levels in the strains tes t ed. 

The second manner in which sele ction affects enzyme activity 

is the selec t ion of regula t ory factors affecting the amount o f enzyme 

produced ( Oppenoo r th a n d Welling 1976) . Fewer examples exist for 

t his app r oach , one of which invo l ves t he duplica t ion of a s t r u c t ural 

gene wh i ch occurs i n the peach potato aphid, Myzus persicae , res ulting 

in the geome trical inc r ease of one esterase cor r espondin g t o s i mi l ar 

geome t r i ca l i ncreases in resis t a nc e levels (Devon shire a nd Sa wi cki 

1979 ). 

Othe r mech a n isms fo r r esis t a n ce i n clud e a ltered behav iora l 

pa t tern s , s t o r age of t oxins , a ltered t a r get si t e sens itiv ity , a n d 

differ ential pen e tra t ion (Mar gham 19 75 , P l app 19 76 , Voss 1 980 ). 

Since t he pr i mary mode of ac t ion for mos t carbamates a nd o r ganophospha t es 



is the inhibition of ace t ylcholinesterase, altered target site 

sensitivity was proposed as a major resistance mechanism (Oppenoorth 

1971). Although changes in acetylcholinesterase sensitivity to 

inhibition by carbamates and organophosphates are capable of 

conferring high levels of resistance (Voss 1980), demonstrating 

that such inhibition is a major factor in their toxic action, this 

mechan i sm is not as biologically preferred as is r es istanc e due to 

metabolism and changes in the rate of absorption. 

10 

Decreased rates of absorption have been reported for malathion 

resistance in the yellow fever mosquito, Aedes aegypti (L) (Matsumura 

and Brown 1963), for DDT (Pate and Vinson 1968), endrin (Polles and 

Vinson 1972), and fenitrothion (Plapp 1973) resistance in larvae of 

the tobacco budworrn, Heliothis virescens (F); for DDT resistance of 

the spotted root maggot, Euresta notata (Weidemann) (Hooper 1965); 

and for DDT (Grigo l o and Oppenoorth 1966), organo tin (Plapp and 

Hoyer 1968), and organophosphate resistance in house flies, Musca 

domestica (L) (Forgash e t al . 1962, Farnham et al. 1965, Hollingworth 

et al. 1967, Sawicki 1970, Plapp and Hoyer 1967, 1968). 

Often a decreased rate of absorption does not, by itself, result 

in a substantial increase in resistance but when accompanied by a 

detoxication factor results in an increase of at least 5 to 10 times 

that caused by either factor alone (Sawicki 1970, Grigolo and 

Oppenoorth 1966, Plapp and Hoyer 1968). In addition to providing 

the insect with more time for detoxication, more opportunity is 

afforded the insect to rid itself of the toxicant by volatilization 

and rub-off (Forgash e t al. 1962). 
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Plapp and Hoyer (1968) we r e abl e to demonst rate tha t the tin 

gene in the hous e fly confers resistance via de creased absorpt ion 

to not only orga notin compounds, for which it s name was de rived, 

but a l so to organophosphate and orga nochlorine insecti c ide s. Th us 

decr eased absorption may be a nons pecific mechanism which may readi ly 

extend to include several class es of insec ticides . 

Resistance Deve locment i n the 
Colorado Potato Beetle 

Th e Colorado potato bee tle, Leptinotarsa deceml i neata (Say), 

is economically t he most important of a complt:x of ins ect pests o f 

potato es which includes pota to fle .::i beetles (_Epitr ix cucume ris 

(Han )), aphids, l e afho ppe r s , wirewonns , white grubs , .::ind c utworms 

(llofmaster ;rnd Dunton 1961). If not: cont:ro]led, potato beetle 

popula tions alone can comple t ely defoliat e a nd kill po t atoes prior 

to tub e r initi~tion (M oo r e a nd Hare 1979). ln addition, Colorado 

pota to bee tl e in fes tations on tomato es have necessitated r eplanting 

in some instanc es and yield reduct ions o f up t o 90 % in others 

(M cCl.::inahan 1975, Schalk and Ston e r 197 6a). Beca use hea vy reliance 

ha s bee n placed up on pes ti cide use f o r cont rol of thi s and o th e r 

11est: s of potat o an d tomato, resista nce development has r ecently 

progre s:3ed to the po int where few insecticides provide adequate 

control (Har e 198 0, Harris and Svec 1981). 

The general pattern of resist an ce development in Colorado 

potato beet les was most recently reviewed by Harris and Svec (19 81) . 

DDT resistance wa s first r epo rted in 1949 in the state of New York, 

only three ye a r s a fter its in troducti on , and by 1954 had spread to 



several states inc luding North Dakota, Minnesota, and Virginia 

(Brown 1971, Harris and Svec 1976). The s ubseq uent sp read of 

resistance to other chlorinated hydrocarbons was relatively r ap id, 

res ulting in their replacement by organophosphates and carbamates 
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by the early 1960's. The principle carbamates recommended for 

Colorado potato bee tle control have included carbaryl and ca rbof uran ; 

the fo rmer for regular foilage appl ica tion s and the la tter for use 

as a sys temic (Scha lk and Stoner 1976b, Lind uska 1978, Hofmaster 

et al . 1967, Hofmaster and Waterfield 1972 , Mcclanahan 19 75, McDonald 

1976). In sp ite of constant se l ection pressure by these and o th er 

insect icides a l ong with the fact that DDT resistant beetles were 

shown to be cross r esis t ant t o some organophophates (Hofmas t er and 

Dunton 1961), res i stance deve l opment has been relatively slow with 

the f irs t documented reports appearing wi thin the las t two years 

(Har e 1980, Harris and Svec 1981 ). 

The slow development of r es i s t ance t o organophophates and 

carbama t es is especially surprising in v i ew of the fact that heavy 

r eliance had been placed upon sys t emic ap plica tions of these insec t­

icides in areas where the potato beetle is mult ivoltine. However, 

where the po tato beetle is univoltine , such as in Alberta, Canada; 

carefully timed ins ecticide applications have r es ulted in less 

selec tion pressure and r es i s t ance deve lopmen t has been significantly 

slower as evidenced by continual use of DDT until as late as 1962 

(McDonald 1976). 

The reports by Ha re (1980) a nd Harris and Svec (1981) indica te 

tha t r es istance levels for previously labeled ca rbamates and 
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organophosphates including carbofuran, carbaryl, azinphosmethyl , 

phosme t , pho r a t e, malathion , methamidophos, and methidathion are 

s ubstan t ially great enough as to necessitate replacement . Insec t­

ic i des cu r rently recommended for control of these resistant populations 

inc l ude only aldicarb and those pyrethroids currently registered for 

use . However , DDT resistance in potato beetles is known to confer 

cross res i stance to pyrethroids with the possible result being that 

resistance to these insecticides may be expected soon. 

The evaluation of resistance development in the Colorado potato 

beetle has been hampered somewhat by the fact that, with the exception 

of the two most recent studies (Hare 1980 , Harris and Svec 1981), 

there has been no attempt to establish susceptible levels or to use 

standard i zed methods established by the FAO for the determination of 

Colorado potato beetle toxicity data (Anon. 1974) . It i s possible 

that had such measures been incorporated, detection of carbamate 

and organophosphate resistance may have occurred as early as 1975 

since several reports indicated increased diff i culty in obtaining 

satisfactory potato beetle control , resulting i n severa l evalua t ions 

of insec ticide efficacy (Mcc l anahan 1975, McDonald 1976 , Harris and 

Svec 1976, Linduska 1978) . 

For example , the study by Harris and Svec (1976 ) evalua t ed four 

populat i ons of potato beetles reveal ing two stra i ns wh i ch had 

deve l oped res i stance t o e ndosul fan , al dr i n , endrin , and DDT . They 

made t he o bservation tha t in a previous study by McClanahan (1975) 

there had been an ind i cation of resistance developmen t to endosulfan 

but it had gone unde t ected, p r esumably due to a lack of comparisons 



with earlier literature. Had there been t oxicity data for a 

susceptible strain , however , such a comparison would not have been 

necessary. 

In addit i on to t he problems caused by the lack of reference 

susceptible strains is the absence of standardization of t echnique . 

Of the four reports c it ed above , one used oral toxicity in 

combination with simulated field trials and microplot testing, 

two used the Potter spray tower, one in combination wi th systemic 

field trials; and the last used only systemic field tria l s . 

Although all the above t est ing happened to involve larvae, none 

used larvae of the same instar. Such conflic t s in methodology 

make comparisons be t ween studies difficult although each method 

provides useful data under given condi tions . 
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The careful quantitation of resistance for several i nsecticides 

in both susceptible and resistant populations using standardized 

methodo l ogy provides valuable information which can be used to 

detect and monitor resistance . It can also be used to p r ovide clues 

for possible steps which can be taken to avoid the development of 

such resistance . Since naturally oc c urring e nemie s of the Colorado 

potato beetle are generally ineffective as control agents and 

resistan ce developmen t to insecticides can occur in a shor t time, 

it is i mpera tive that levels of resistance for vario u s insecticides 

be qua ntit a ted and that mechanisms of r es i s t a nce be understood for 

thi s pest. 

Carbamate Insecticides 

Carbamates a r e structurally r elated to physostigmine , the 



principle alkaloid from the plant Physostigma venonosum, which 

was known to be an inhibitor of cholinesterase (Matsumura 1975) . 
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Chemical analogs of physostigmine were generally ineffective as 

insecticides due to their low lipoid solubility . However, those 

which were lipoid soluble were highly toxic to house flies and thrips 

(Kolbezen e t al. 1954) . 

Carbamate insecticides currently used are esters of carbamic 

acid of the general structure 

0 

ll 
R-0-C-

Their general characteristics , mode of action, and metabolism have 

been extensively reviewed by Casida (1963), O' Br ien (1963, 1976), 

Dorough (1970), Wilkinson (1968), Matsumura (19 75), Kuhr (1970), 

Wustner et al. (1978), and Brooks (1972). 

Carbamates tend to be very selective agains t the cholinester­

ases of various species; gene rally having low mammalian toxicity, 

but not always, and possessing a large range of speci ficity against 

insect species as well (Brooks 1972). 

The reversible mode of action of carbamates is described by 

the equation 

HX COH 
EH + ex-->- (EHCX) f • EC----- EH+ H20 

where EH represents the esteratic site , CX represents the carbamate 

and leaving group, and EHCX and EC represent the complex between 

the esteratic site and the carbamate (Matsumura 1975). It is 

generally believed that the binding of the carbamate to the es t eratic 



site is the most important factor in determining the toxicity of a 

particula r ca rbamate since the affinity for the acetylcho lin­

esterase rec ep tor site appears to be the most important factor in 

determining toxicity (O'Brien 1976, Matsumura 1975). Unlike 

organophosphate inhibition, the carbamylation step is relatively 

easy, regenerating recovered enzyme when carbamate complexing is 

no longer possible. 
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Carbamate metabolism in plants, animals, and insects has been 

extensively reviewed by Dorough (1970), Kuhr (1970), Fukuto (1973), 

and Matsumura (1975). Metabolism of carbamates was long considered to 

be the result of hydrolysis of the carbamate moiety and side chains 

r esulting in the accumulation of a great deal of evidence in support 

of this hypothesis p rior to the discovery of other me tabolic pathways 

(Casida 1963). It is now known that metabolism of carbamates occurs 

primarily as a result of oxidative processes with hydrolysis and 

conjugation playing secondary roles. Carbamate metabolism generally 

results in products which are less toxic than their parent compound . 

Oxidative reactions in carbamates are generally of two types; 

ring hydroxylation and side chain oxidation, although !'!_-dealkylations 

and thioether oxidations also occur. In mammals, hydrolysis is 

considered a major pathway for most carbamates (Hurst and Dorough 

1978) but its importance declines progressively for plants and 

insects. Patterns of metabolism for mammals, insects, and plants 

are very similar with major differences occurring in the nature of 

conjugation. While insect conjugates are composed of a combination 

of sulfa te, phosphate, and sugar conjugates which are readily 



elimina t ed, mammals are lacking in sugar conjugates while plant 

conjugates are predominantly composed of sugar conjugates which are 

stored (Kuh r 1970, Devonshir e 1973). 

The Use of Synergists as a Means for 
Estimating Detoxica tion Potential 

A synergist is a compound which , ' when applied in combination 

wi th an ins ec t icide is able to enhance the activi t y of the insec t­

icidal component of the formulation' (Wilkinson 1966) . Synergists 

t herefore , are used to limit the ability of an o r ganism to wi thst and 

chemica l pressure by blocking the site at which detoxi cation of that 
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compo und occurs. Thus, more of t he insecticidal component is enabled 

to reach the site of intoxication resulting in the enhancement of 

the chemi ca l effect at that site. 

The methylenedioxyphenyl compounds , such as piperonyl but oxid e , 

sesamex , ~ - propylisome , a nd sulfoxide have long been known for their 

synergisti c effects upon pyrethroids. The discovery by Moorefield 

(1958) that these compounds exerted a powerf ul effec t upon t he 

t oxi c ity of methy l and dime thyl carbamates resulted in several 

studies in an attemp t to elucida t e their mode of action. Sun and 

Johnson (1960) first suggested that the mode of action of these 

syner gists was through inhibition of me t abol i sm . Several stud i es 

have since confirmed that me thylened i oxyphenyl compounds exer t the ir 

syn e r g istic effect by acting as non- compe titive substra t es for the 

monooxygena se enzymes (Hodgson and Philpot 1974, Kulka rni and 

Hodgson 1978 ). 

The role of synergists on me t abolic transformations has been 



elucidated in several insect species (Georghiou and Me tcalf 1961, 

Shrivastava et al . 1969, Kuhr 1970, Guirguis and Brindley 1975, 
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Ahmad e t al. 1980, Osman and Brindley 1981). Georghiou and Metcalf 

(1961) demonstrated very early that both the absorption and excretion 

of carbamates i n a resistant s train of house flies was s i gnificantly 

reduced by pretrea t ment with piperonyl butoxide, resulting in a 

seventeen-fold internal accumula tion of the insecticide . The 

formation and excretion of insecticide metabolites has been shown 

to be sever ely inhibited by piperonyl butoxide and related synergists 

in house flies (Shrivastava et al . 1969, Kuhr 1970), in alfalfa 

leafcutting bees , Megachile pacifica (Guirguis and Brind l ey 1975), 

in the gypsy mo t h , Lyman tria dispar (L) (Ahmad e t al . 1980 ) and in 

three species of grass bugs, Labops ~ (Osman and Brind l ey 1981). 

Since gene ti cally acq uir ed r esistance is often associated with 

enhanced monooxygenase activity and synergists effectively inhibit 

these enzymes, synergists are often used in the char acteriza t ion of 

resistance levels. Synergist treatments of susceptible insect 

populations as we ll as some t olerant insect spec ies often have 

negligible effects upon insecticide toxicity due t o low levels of 

mo nooxygenase enzymes . The same trea tments applied to r es istant 

insects, however , result in large synergistic effects , often 

increasing t he toxicity of the select ing compound several-fold. 

When this occurs , the susceptibility of the resistant strain often 

re t urns t o levels approaching those of the s usceptible strain 

(Casida 1970). 

Observations of these and similar r ela tionship s led to the 



development of the synergis t ratio, defined as ~he ratio of the 

topica l LD
50 

of the insecticide alone to the LD
50 

of the insecticide 

plus the synergist. The synergist r a tio was first suggested as a 

measurement for detoxication potential in the house fly by Fukuto 

et al. (1962), but was developed more thoroughly for several insect 

species as a quantitative measure of in vivo detoxication rates by 

Brattsten and Metcalf (1970, 1973b). 
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Although the synergist ratio has been widely used to demonstrate 

oxidative differences between insect populations and species, it 

has failed, in some instances to explain fine differences as may 

occur with age rela ted changes in oxidative ability (Brattsten and 

Me tca lf 1973a, Lee and Brindley 1974) or differences in the metabolism 

of insecticide analogs (Kiso et al. 1977, Kurihara et al. 1977). 

In addition, the low synergist ratio observed for the honey bee was 

interpr eted by Metcalf et al. (1966) and Brattsten and Me tcalf (1970) 

to mean that the honey bee was withou t the protection of a detoxifying 

sys t em. A subsequent study by Gilbert and Wilkinson (1974), however, 

provides ev idenc e that the honey bee possesses a monooxygenase system 

capable of metabolizing aldrin in vivo to levels nearly equivalent 

to those of the house fly . 

Guirguis and Brindley (1975) demonstrated that in the alfalfa 

leafcutting bee, Megachile pacifica, carbaryl metabolism by 1-day-old 

males or 4-day-old females was greater than in 4-day-old males, yet 

the synergist ratio for the former two was less than for the latter. 

This observation led to the use of the difference between synergized 

and unsynergized LD
50 

doses. Similar differences were obtained from 



1-day-old males and 4-day-old females corresponding to similar 

carbaryl persistance, while 4-day-old males had the smallest 

difference and the greatest internal persistance of carbaryl. 

In addition, Lee and Brindley (1974) had demonstrated that as 

male leafcutting bees aged, carbaryl toxicity decreased due to 

decreasing detoxication by monooxygenases as measured by EPN 

detoxication in vitro, while synergist ratios actually increased. 

When the regression line for male leafcutting bees was calculated 

from the synergist ratios plotted against Ln50 values and compared 
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to that calculated from female leafcutting bees (Figure 1) it was 

found that the regression lines had slopes of opposite sign (Brindley 

1977). The addition of 73 other synergist ratios taken from 

Brattsten and Metcalf (1970, 1973b) did not establish a clear 

distribution of points. These observations led to a reconsideration 

of the physiological interpretation of synergism. Since a synergist 

acts by inhibiting the detoxication of an insecticide an alternative 

approach to the synergist ratio might be viewed as a difference. 

As a consequence, Brindley (1977) proposed that the synergist differ­

ence, defined as the difference between the Ln
50 

of the insecticide 

alone and the Ln
50 

of the insecticide when in combination with the 

synergist, be used as an alternative interpretation of insecticide­

synergist toxicity data. When a regression line was calculated 

from synergist differences plotted against carbaryl LD
50 

values from 

alfalfa leafcutting bees and combined with data points taken from 

Brattsten and Metcalf (1970, 1973b) the points formed an orderly 

pattern relative to the line (Figure 2) given by the equation 
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(1) Log LD
50 

= 1 . 014 log SD+ 0.01 

Table 1 illustrat es , using data taken from Brattsten and 

Metcalf (1970), the possible advantages which may be obtained by 

use of the synergist difference versus t he synergist ratio. Two 

species,~- yuccae and~- eugenii , were selected from the family 

Curculionidae; both of which possess very different levels of 

tolerance yet have similar synergist ratios. Clearly, the larger 

synergist difference calculated for~- yuccae appears to better 

correlate with the tremendous tolerance of this species when compared 

to that of~- eugenii. Two species selec t ed from the order Hemipt e ra, 

however, possessed very similar LD
50 

values yet very different 

synergist ratios. Again, the synergist difference seems to better 

account for differences in the me tabolic capacity of these insects. 

Finally,~- pulicaria and B:· aeneus possess very different l evels 

of s usceptibility to carbaryl, yet are synergized t o an equal extent 

resulting in identical synergist ratios. The synergist differences 

for these two spec ies demonstrate a 10-fold difference which is 

more indicative of the 10-fold difference in tolerance to carbaryl. 

These data, and other comparisons which could be taken from Table 1 

poignantly illustrate the potential of the synergist difference 

in detecting fine differences not only between insect species and 

populations but also between ages, sexes, and possibly nutritional 

status. 

Brattsten and Metcalf (1973a) examined three species of 

fleshflies, one blowfly, and two muscid flies for age related changes 

in carbaryl tolerance with and without the synergist , piperonyl 



Table 1. Toxicity (µ g /g) of carbaryl alone and with piperonyl 
butoxide to various insects: A comparison of t he 
syner gist ratio (SR) with the synergist differ ence (SD) . 

Insect Species LD50 SLD50 SR SD 

Coleoptera 

Curculionidae 

Scyphophorus yuccae 2200 365 6.0 1835 

Anthonomus eugenii 68 12 . 5 5 . 4 55 . 5 

Hemiptera 

Ly ga eida e 

Oncopeltus fasciatus 32 .5 1.5 21. 7 31 

Corimelaenidae 

Allocoris pulicaria 30 9 3.3 21 

Coleopter a 

Curculionidae 

Rhynchi tes aeneus 3 0 . 9 3. 3 2 . 1 

(Adap t ed f r om Br a ttst en and Metcalf (1970)) 
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butoxide. Although gr ea t f luc tuations in tolerance were found to 

occur with age within a given species , the synerg ized LD50 values 

for tha t species wer e found to lie within a fair l y narrow r ange . 

The synergized value , therefore, may represen t the 'innate ' 

toxicity of the ins ec ti c ide . Cons eq uently, if a synergist is 

completely effec tiv e in inhibiting the monooxygenase en zyme s , 

Equation 1 can be used to calculate a 'theoretical' syner gist 

difference from the unsynergized LD
50 

va lue (Brindley 1977, Osman 
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a nd Br indley 1981). This theoretical difference may then be compared 

with the actual synerg i s t difference obtained from biological 

assays to determ ine the degree to which an insect depends upo~ 

monooxygenases for de toxication ; or percen t dependency . 

(2 ) % Dependency Ac tual Synergist Difference X 100 
Theoretical Synergi st Difference 

Therefo r e, if the obse r ved synergist differ ence is roughly comparahle 

to the calculated syner gist difference , the percent dependency 

sho uld be close to 100% . 

In a study of thr ee species of grassbugs , Labops hesperius, 

1=_ . hirt us , and 1=_ . ut ahensis (Osman and Brindley 1981), a correlation 

between the syne rgist difference and t he relatve t olerances of 

these t hree spec ies to ca rbary l was observed ; 1=_. hespe rius being 

the most tolerant (Lc 50 = 0.65 g/vial) and possessing the grea tes t 

synergist differenc e (SD= 0.38) and L. utahensis having the least 

tole r ance (Lc50 = 0 . 013 g/vial) and possessing the smallest synergist 

diff erenc e (SD= 0.004). Thus, the decrease in susceptibility between 

the three species was associated wi t h an increased pe rcent dependency 



upon monooxygenases for carba r yl detoxica ti on , wi t h.!:_. hesperius 

being highly dependent upon monooxygenases (approximately 60%) and 

L . u tahensis havin g a decreased dependency upon monooxygenases 

(approximately 30%). 

In compar i son with othe r insects grassbugs are extremel y 

suscep tible to carbaryl as a r e honeybees, ye t the calculated percent 

depen dencies for both species can be as h i gh as 60 % in the former, 

and 65-85% in the latter (Osman and Brindley 1981). The percen t 

dependency values, therefore, are not necessarily an i ndica ti on of 

the s uscep tibility or tolerance of an insect species , but rather 

r eflec t the extent t o which a species relies upon monooxygenases 

for insecticide detoxication . If resi s tance is due to increased 

monooxygenase activity, the calculation of percent dependency should 

demonstrat e an increased reliance of resistant insects upon mono­

oxygenases in compar i son wi t h their suscep tible counterparts. 

The Monooxygenase System 

By far , the mos t impor t ant method of protec t ion aga inst 

xenobiotics for bo th mammals and insects involves the utiliza t ion 
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of the mixed function oxidase or monooxygenase system . Monooxygenases 

are characterized by a dependen cy upon molecular oxygen and NADPH 

for activity , wh il e they are inhibited by carbon monoxid e and 

benzodioxazole syner g ists. Although their basic role is the me t abol ism 

of e ndo genous subs trates including cholesterol, fatty acids, and 

s t eroid s (Blumberg , 1978) their function in xenob iotic metabolism 

has received much g reat e r a ttention . 

The reactions and characteristics of th e monooxygenase system 



have been thoroughly reviewed by Nakatsugawa and Morelli (1976), 

Fukuto (1973), Kuhr (1970), Sato and Omura (1978), Brooks (1972), 

Wilkinson (1968), and Matsumura (197 5). The reactions are very 

diverse including deamination, demethyla tion, dealkylation, aromatic 

hydroxylation, alkyl and B_-hydroxylation, ester bond cleavage, 

epoxidation, oxidation of sulfides to sulfoxides and sulfones, 

conversion of phosphorothioates to phospha t es , conversion of 

methylenedioxyphenyls to catechols, and oxidation of alcohols and 

aldehydes to acids (Matsumura 1975). The role of oxidation is th e 

conversion of nonpolar molecules to more reactive polar molecules 

which can either be excreted directly or und ergo conjugation in 

preparation for excretion. This conversion generally results in 

detoxication of the molecule but toxication can also occur. The 

principle component of the monooxygenase enzyme system is a group 
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of ubiquitous enzymes with a characteristic carbon monoxide difference 

spectrum at 450 ?m, kno,~1 collectively as cy tochrome P-450. 

The role of cy to chrome P-450 in xenobiotic transformations 

and steroid metabolism has been most recently reviewed by Blumberg 

(1978 ), Ullrich (1979), Mitani (1979), and Sato and Omura (1978). 

Other reviews, particularly of insect cytochrome P-450, include 

those by Agosin (1976) , Hodgson et al. (1974), Hodgson and Tate 

(1976), Kulkarni and Hodgson (1976), Wilkinson and Brattsten (1973), 

Yu and Terriere (1979), and Terriere and Yu (1979) . Cytochrome 

P-450 has been described as the site of oxygen activation and 

substrate interaction in the oxidative tr ansformation of xenobiotic 

compounds (Wilkinson and Brattsten 1973) . Cytochrome P-450 has been 



characterized , ~ith respect to its spec tral proper ties , to some 

ex t ent in nearly all species exam i ned; including vertebrates, 

invertebrat es , marine or ganisms , bac t eria , bacteroids and yeast 

(Blumberg 1978, Kulkarni et al. 1976, Hodgson and Tate 1976). In 
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all of these organisms, with the excep tion of bacteria, mo noo xygenase 

activity has been assoc i a t ed with either the endoplasmic re ticulm 

or the inner mitochondrial memb r anes (Ul lrich 1979). 

The ca t aly tic even ts i nvolved in xenobio ti c oxida ti on have 

been reviewed by Mitani (1979), Nakatsugawa and Mo r elli (1976), 

Blumberg (1 978 ), and Ull rich (1979), and are schemat ically illustrated 

in Figure 3. 
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Fi gur e 3 . Hypothetical mechanism of xenobiotic metabolism by 
cytochrome P-450. S: substrate, Fp : flavoprotein . 
(Adapted from Mitani, 1979) 
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The initial step is the binding of the substrate to th e oxidized 

fonn of cytochrome P-450. This is followed by what has been proposed 

as the rate limiting step of the reaction sequence (Gillette and 

Gram 1969, Masters et al. 1973, Ullrich 1979); the reduction of the 

cytochrome P-450-substrate complex by the transfer of an electron 

from NADPH by NADPH-cytochrome P-450 reductase in microsomes, or by 

NADPH-adrenodoxin reductase in mitochondria. The third step involves 

the addition of molecul a r oxygen to form an oxygenated-cytochrome 

P-450-substrate complex which is activated by a second electron, 

resulting in the rapid release of the hydroxylated product, water, 

and cytochrome P-450. The transfer of the second electron is 

thought to be media t ed by NADPH-cytochrome P-450 reductase but also 

may involve NADH-cytochrome t 5 reductase (Nakatsugawa and Morelli 

1976, Ullrich 1979). 

The oxidations catalyzed by cytochrome P-450, although often 

broad in spec trum, can be very specific ; especially those involving 

steroid metabolism. This observation has led to th e hypothesis 

that several forms of cytochrom e P-450 exist (Blumberg 1978), many 

of which possess 'slightly different, but overlapping substrate 

specificities ' (Ullrich 1979). In insects, differences in the nature 

of cytochrome P-450 have been associated with induction and 

resistance. Thus, induced insects have been shown to have a maximum 

absorbance at 448 nm while the absorbance of controls occurs at 

L1SO nm . Similarly, cytochromes P-4Lr8 and P-450 (regulated in house 

flies by genes on chromosomes IV and II, respectively) a re involved in 

resistance, while cytochrome P-452 is characteristic of susceptible 
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strains (Agosin 1976, Hodgson e t a l. 1974). 

The reduction of the cytochrome P-450- s ubst rat e complex by 

NADPH- cy tochrome P- 450 r educ t ase has been demonstrated by Gillette and 

Gram (1969), Ernster and Orrenius (1965), and Orrenius et al. (1969). 

Stripp et al. (1972) demons tr ated the existence of a 1:1 ratio for 

substrate oxidation and NADPH oxidation. Thus, th e addition of 

cy tochrome c to microsomes r esults in the inhibition of xenobioti c 

oxidation due t o a loss of electron transfe r to cytochrome P- 450 

(Gillette and Gram 1969). 

A grea t deal of evid ence indicates tha t the reduction of the 

cytoch r ome P-450-substrate complex is the rate limiting st ep for 

mo no oxygenase ac tivi t y . Gi ll e tt e and Gram (1969) showe d that assays 

of NADPH- cy to chrome c r educ t ase ac tivity were r oughly proportional 

to _!i-demethylase ac tivity in several mammalian species . Masters 

et al. (1973) demonstrated th;:it antibodies inhibiting NADPH - cytochrome 

c reductase activity also inhibited _ti-demethylation of e thylmorphine 

to an equal ex t ent , demonstrat ing th at the metabolism of e t hylmo r phine 

was ' absolutely dependent upon electron transfer via NADPH- cy to chrome 

c reductase. ' 

Both NADPH-cy to chrome P-450 r educ tas e a nd cy to chrome b
5 

are 

readily so l ubilized by the addition of trypsi n to the mi crosomal 

fr action . The addition of increasin g amounts of trypsin results in 

a s t epwis e solubilizat ion of NADPH-cy tochrome c reductase (measured 

by observing the ra t e of reduction of cytochrome c , an exogenous 

source) wh i ch parellels the inactivation of NADPH- cy to chrome P-450 

redu c tas e (assayed by mea suring the rat e of forma tion of t he reduced 
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cytochrome P- 450-CO complex at 450-457 nm following the addition of 

NADPH ) as well as the associated NADPH- linked monooxygenase and lipid 

peroxidation activities (Orrenius et al . 1969). While NADPH­

cytochrome P- 450 reductase and cytochrome b 5 are so lubilized by the 

addition of tryp s in the major portion of cytochrome P-450 and NADH­

cytochrome b
5 

reductase remain in the membrane bound state . Because 

of this inter act ion Ito and Sato (1969) proposed that the former two 

enzymes are located on the outer layer of the microsomal vesicles. 

It is currently believed that when cytochrome P-450 reductase is 

c l eaved off th e mic rosomal membranes that it loses the hydrophobic 

portion of the molecule which is necessary for the interaction with 

cytochrome P-450 but not for cytochrome c (Ullrich 1979) . 

Resistance in insec ts has been described by Folsom et al. (1970) 

as a gene tically determined "fully induced" state. I nduct ion by 

many insecticides, phenobarbital, and other xenobio tics is preceded 

by an increase in mRNA and protein synthes i s , resulting in an 

increase in the quantities of several microsomal monooxyge nase 

enzymes (Agos in 1976 , Blumberg 197 8 , Ernster and Orren ius 1973) 

including cy to chrome P-450 and NADPH-cy to chrorne c reductase. 

Although induction has been shown to be ' accompanied by an increase 

in the level of cytochrome P-450, the corresponding increas e in 

monooxygenase is not always proportional ' (Agosin 1976, Hodgson and 

Tate 1976, Yu and Terriere 1979). Hence, the study by Folsom et al . 

(1970) demonstrated that metabolism of xenobiotics in resistant 

house flies was approximately 5-fold greater than in suscep t ible 

house flies while differences in meas urements of cytochrome p.:.450, 



NADPH oxidation, and oxygen consumption never exceeded 2.5-fold. 

As a result, Yu and Terriere (1979) suggest that qualitative 

differences such as the variability in the types of cytochromes 

and the presence of high and low spin states may be more important 

than the quantitative differences in cytochrome P-450 content in 

determining the resistance or susceptibility of a given strain of 

insects . 

The Influence of Physiological Factors 
Upon Monooxygenase Activity 
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The influence of physiological factors upon monooxygenase 

act ivity has been reviewed by El Aziz e t al. (1969), Ma tthews and 

Casida (1970), Perry and Buckner (1970), and Wilkinson and Brattsten 

(1973). Factors of most importance include sex, age, life stage, 

and nutritional status. 

Females are known for their greater detoxication poten tial 

and correspondingly greater levels of enzyme activity and cytochrome 

P-450 than their male counterparts. Osman and Brindley (1981) 

demonstrated that in three species of grass bugs (Labops ~ . ), males 

were more susceptib le to carbaryl and had less overall metabolic 

capacity than did females. Similar findings were reported in the 

American cockroach, Periplanta americana (Turnquist and Brindley 

1975) , house flies and German cockroaches, Blatella germanica (El-Aziz 

e t al. 196 9) , and in house crickets, Acheta domesticus (L) (Benke 

and Wilkinson , 1971a). Perry and Buckner (1970) demonstrated that 

observed differences between sexes in monooxygenase activity and 

insecticide toxicity could be explained by increased levels of 
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cytochrome P-450 in female house flies. 

Age has a profound influence upon both in vitro and in vivo 

experiments with insects. Benke and Wilkinson (1971a) demonstrated 

that in adult house crickets epoxidase activity in vitro increased 

with age to peak at two weeks corresponding to a maximal tolerance 

for carbaryl which was attained at three weeks . In a similar study, 

Turnquist and Brindley (1975) showed that in the American cockroach 

carbaryl toxicity was ex tremely age dependent; correla ting well with 

levels of cytochrome P-450, EPN detoxication, and .E_-nitroanisole-.Q_­

demethylation. 

Several reports deal with the influence of life stage upon 

monooxygenase activity in insects (Ahmad and Forgash 1975, Gould and 

Hodgson 1980, Benke et al. 1972, Krieger and Wilkinson 1969, 

Wilkinson and Bratts t en 1973, El-Aziz et al. 1969). Generally, 

activity is lowest following ecdysis, increases to a maximum at mid­

stadium, and rapidly decreases preceding ecdysis (Benke et al. 1972, 

Ahmad and Forgash 1975, Wilkinson and Bratts t en 1973). In addition, 

monooxy genase activi ty in the final instar is often many times 

gr ea ter than in previous instars (Krieger and Wilkinson 1969, Ahmad 

and Forgash 197 8 , Ahmad et al. 1980). Even within a single instar 

monooxygenase activity has been known to increase by as much as 28-

fold (Gould and Hodgson 1980). 

Nutrition has long been known to be an important factor influencing 

monooxygenase activity but its full importance is yet to be understood . 

El-Aziz et al. (1969) noted that house flies given a diet of milk 

were more tolerant of carbamates than thos e fed on sucrose. Perry 



and Buckner (1970) confirmed this and associated it with an increase 

in cytochrome P-450. Ahmad and Forgash (1975) observed that boll-

fed boll weevils were more tolerant to insecticides than bloom-fed 

boll weevils. The same relationship was shown by them to be true 

of monooxygenase activity in gypsy moths fed an artificial diet 

instead of their regular host plant . In a similar study, Yu et al . 

(1979) showed that cutworm larvae fed mint leaves and mint constit-

uents were more tolerant to carbaryl than those fed on beans and 
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that corresponding increases in oxidase activity and cytochrome P-450 

also occurred . Classic studies by Krieger et al. (1971) and Brattsten 

et al. (1977) demonstrate that in lepidopterans greater monooxygenase 

activity is associated with polyphagy and that secondary plant 

chemicals are capable of inducing monooxygena se levels sufficiently 

to provide for incr eased protection while feedin g . 

Several Considerations Relating 
to In Vitro Studies 

The use of in vivo biological assays provides valuable information 

with respect to the ability of a given insect population to withstand 

insecticide selection pressure and can suggest mechanisms which may 

be involved in the metabolic processes. However, in order to gain 

an understanding of the biochemical nature and mechanism of the enzyme 

system or systems involved, in vitro studies are generally considered 

to be necessary. In vitro studies are also used to provide more 

precise information as to the metabolic pathways which may have been 

suggested by corresponding in vivo studies (Wilkinson 1979). Although 

in vitro studies provide for a better understanding of the role of 
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various body tissues and enzymes they oft(:n do no t necessar i ly 

correlate with in vivo work (Sch onbrod et Rl . 1968, Be nke and 

Wilkinson 1971a, Benke et al . 1972, Gould and Hodgson 1980) . 

Several prob l ems are associated with tl1e in vitro quan titation 

of rnonooxygenases in insect tissues . Chief among t hese is the fact 

tli :1 t insect tissul? sour ces are severely limited, not only by their 

sma ll size but a lso because of the numbers of insects which need t o 

be processed a t one time for analy s is. The, us e of whole insect 

preparations i s gener a lly p rohibitive not only due to the he teroge neous 

nature of such a prt•p:!ra tion but c11~;o because of the presence of 

endogenous inhibitors . As a res ult , much in vitro methodology 

dE.·pends upon i.nsec L s pecies wh i ch ,'.:tre not on 1 y large enough to 

be amenable for simple dissections but which ca n also be reared in 

large enough numbers to p r ov ide, within a s mall time fr ame, 

:~ufficient ti.ss u E' fro1r. i.ns ec ts of :t p :irti c uL1r physiologic:il 

condit ion to allow for ass:iy s. 

The pr esence o f endogenous inhibitors has been noted with many 

insect species. Gilbert and Wil kinson (197 4) found that in th e 

honeybee, Apis me llifera (L), at least 90% of the nctivity of tlte 

int:1ct rnidgut l·.'i:1S lost when thi s organ was opened by longitudinal 

incision. Potent inhibitors of monooxygenase ac t ivity have been 

associated with the gut contents of sou th e rn armyworrn Spodoptera 

~ridania (Cramer) (Krieger and '.~ ilki.nson 1970), cabbage loopers 

Trichoplusia .:12. (H ubner) (Kuhr 1971); the house cricket Acheta 

dornesticus (L) (Brat ts t en and Wilkin son 1973), and a caddisfly 

larva, limneph_:i)us ~ - (Brat ts ten and Wilkinson 1973). Other 

inhib itors have bee n found to be associa t ed with the ey e pigment 



xanthommatin, in house fl ies, Musca domestica (L) (Schonbrod and 

Terriere 1971a , 1971b), fruit flies, Drosophila melamogaster, 

35 

and honeybees, Apis mellifera (Brattsten and Wilkinson 1973) . 

Tyrosinase is still another inhibitor which is found both in 

preparations f rom prepupal lepidopterans and in house fly preparations . 

Several of the endogenous inhibitors assoc iat ed with insect 

tissues have been associated with the inhibition of electron transfer 

from NADPH to cytochrome P-450 either by acting as an electron 

sink at the flavoprotein NADPH-cytochrome P-450 reductase or by its 

solubilization from the microsomal membranes (Wilkinson 1979) . The 

insect eye pigment, xanthommatin, causes a marked enhancement of 

NADPH oxidation at concentrations as low as 4Xl0- 7M, due to its 

abil ity to receive electrons from NADPH- cytochrome P-450 reductase 

thereby impeding the flow of electrons to cytochrome P-450 (Wilkinson 

1979, Schonbrod and Terriere 1971b, Wilson and Hodgson 1972, 

Brat tsten and Wilkinson 1973). 

The mode of action of the tyrosinase inhibitors associated with 

preparations from late last-instar lepidopterous larvae and with 

house flies is also fel t to be associated wi th the inhibition of 

elec tron flow to cy tochrome P-450. Tyrosinase is involved with the 

oxida tion of a variety of or tho-dihyd roxy compounds which are later 

incorporated into the insect cuticle during the t a nning process 

(Wilkinson 1979) . Additions of l-phenyl-2-thiourea and cyanide 

(both tyrosinase inhibitors) to microsomal preparations from 

lepidopterous larvae and house flies, respectively, are reported to 

have a marked stabilizing effect (Crankshaw e t al. 1977, Krieger 
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and Wilkinson 1970). 

The inhibitory properties associated with the gut contents of 

the southern armyworm, Spodoptera eridania (Cramer), and the house 

cricket, Ache t a domes t icus (L) have been shown to be due to the 

solubilization of NADPH-cy to chrome c reductase (Orrenius et al. 1971, 

Brattsten and Wilkinson 1973). Orrenius et al . (1971) demonstrated 

that the presence of low concentrations of partially purified 

inhibitor isolated from gut contents of the southern armyworm 

caused a substantial inhibition of monooxygenase activity in rat 

liver. This was accompanied by a parallel decrease in the activity 

of NADPH-cytochrome P-450 reductase as NADPH-cytochrome c was 

solubilized . The release of less than 5% of the microsomal protein 

due to the action of this inhibitor resulted in 90-100% inhibition 

of both monooxygenase and NADPH-cytochrome P-450 reductase activity, 

providing further support for the assumption that this enzyme is 

superficially located on microsomal membranes. Solubilization of 

cytochrome P-450 was not found to be a factor in the inhibitory 

properties of these trypsin-like inhibitors although very high 

concentrations of trypsin do eventually result in the conversion 

of cytochrome P-450 to cytochrome P-420 (Orrenius et al . 1969). 

Brattsten and Wilkinson (1973) also demonstrated that gut 

contents isolated from the house cricket were poten t inhibitors of 

monooxygenase activity in preparations from armyworm gut and r at 

liver microsomes . In contrast to armyworm gut contents, those 

isolated from crickets exhibited substantially gr eater inhibitory 

action (40-fold) against insect monooxygenases than rat liver 



monooxy genases . A decrease of NADPH- cy tochrome c reductase ac tivity 

in armyworm gut microsomes in the p r esen ce of partially purified 

gu t contents inhibitor was associ a t e d with an increase in the 

soluble (100 , 000 g supernatant) f r a ction. 

The inclusion of phenylmethanesulfonyl fluoride and Soy trypsin 

inhibitor in th e wash ing medium and homogenizin g medium result e d in 
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a siginificant r eduction of inhibition by h ouse cricket gut contents. 

However , in the southern armyworm the inclusion of Soy trypsin inhib ito r 

produced little effect. The addition of bovine serum a lbumin was 

shown to diminish the i nhibitory effect of southern a r myworm gut 

cont en t s but reversed inhibition by house cricket gu t c ont en ts only 

at ext r eme l y high concentrations. Crankshaw et a l. (1979) demonstrated 

that in microsomes prepared from c l eaned southern armyworm gu t tissues 

the inclusion of ph eny l me thanes ulfonyl fluoride, polyvinylpyrrolidone 

a n d EDTA increased the y i e ld of r e du ctase 1. 7-fold . 

Although adult honey bees readily metabolize aldrin in vivo to 

levels similar in magnitude to thos e r eported for the house fly, 

homogenization of whole a dult honeybees as well as various tis sue 

sources yielded preparations comp l e t e ly devoid of measurable oxidase 

activity (Gilbert and Wilkinson 1 974) . Incubation of in t act tissue 

sour ces , however, resulted in preparations exhibiting s i milar 

oxida tive potential a s have been reported for several other insect 

species . When it was found that simpl y making a longitudinal 

inc i sion of the midgu t result ed in a 90% r e duction of monooxygenase 

ac tivity the presen ce of an intracellular inhibitor was suspected. 

Subsequent studies established t hat this inhibitor was associated with 



a ribonucl e ic acid moiety of a ma~romolecule and that inhibition 

should be reversed by digestion with ribonuclease (Wilkinson 1979). 

Other commercially c1vailable nuc leic ;1cids have since been shov:n tc 

possess inhibitory properties a gai nst insect monooxygenases but 

had little or no eff c,c t upon mammalian tissues (Ibid). 

In addition to the presence of inhibitors, other difficulties 

have been encountered in the prepa rc1 tion of ins ec t rnicrosomes. 

Benke and Wilk inson (1971b) reported that in the house cricket, 

Acheta domesticus (l), nearly all enzyme ac tivity of the whole 

homogenate wcis found to '.i ediment at 12,000 g. This resulted in the 

u se of a sucrose density gradient t o ohtain microsornes, a procedure 
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which has since been used with the r,radagascar cockroach, Gromphadorhin,~ 

~ortcntosa (Benke et al. 1972), and the hon e ybee (Gilbert and Wilkinson 

197!+). 

In or der to obtain max imal activity from in vitro studies 

several procedural factors require optimization. These include 

homogenization U,chniques, homogenization media, temperature, and pH. 

The add:i. tion of cofactors such as 1,ovine serum albumin and potassium 

cy:midt• s hould alsu be considered. More detail ed discusi;ions with 

re s pect to these :1nc! 0Ui12r factors is [ffDvicled by 1,Hlkinson and 

Brc1ttstt,n (1'373), Kulkarni and Hodgson (1975) and \hlkinson (1979). 
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MATERIALS AND METHODS 

Chemicals 

The insecticides carbar yl (1-naph thyl-~ - methy lcarbama te) 

(ana lytical gr ade , 99.9%) and carbofuran (2 . 3-dihydro- 2.2-dime t hyl-

7-benyofuranyl ~-me t hy l carbama t e) (technical grade, 99 %) were 

pr ov ided by t he Un i on Carbide Corporat i on, ~ew Yo rk, New Yo rk. The 

synergist , p i peronyl butoxide (a-(2-( 2- butoxye t hoxy) ethoxy) -4. 5 

methylenedioxy-2-propyltoluene) (technical gr ade , 80%) , was pur chased 

from Kand K Laboratories, Incorporated , Plain View , New York . 

The 1-naph t hyl-~-methyl c14 c)-carbaryl, with a specific ac tivity of 

2lmc/ n@o l e was purchased fr om the California Bi onuclear Corporation, 

San Fernando, Cali fo rni a . Its r adi ochemical purity wa s 98%. 

Nlco tinomide - adenine dinuc l oe t ide phosphate NADP ), r educed 

nicotenamide-adenine dinu cleo ti de pho sphate (NADPH), isocitric 

dehydrogenase, DL-isocitric acid, cytochrome c, Coomassie Brilli an t 

Blue G-2 5O , bovine ser um a lbumin, and tris-(hydroxgmethyl)-aminomethane 

(Tris, pH 7.7) wer e pur chased from Sigma Chemical Company, St. Louis, MO . 

Insects 

Colorado potato bee tle adults, Leptinotarsa decemlineata 

(Say) , which had been recently es tablished from New Jersey and a 

labora t ory population from Wa geningen, Netherlands which has been 

rear ed continuously in the labora tory for more than 25 years were 

kindly provided by T. H. Hsiao (Utah Stat e University) as r es istant 

and s uscep tible populations, r e spectively. Adults, eggs, and first 



instar larvae from the Logan, Utah area , where pota to es are not a 

major cr op , wer e col l ec t ed directly from the field at various 

times throughout the study as a second suscept i ble population. 

Larvae and adults were r eared on detached potato leaves , Sol anum 

tuberosum, obtained f r om gr eenhous e facilities or co llect ed from an 

untreated field provided by the Utah State Agricultural Experiment 

Sta tion. Common nightsh ade , Solanum dulcarnara, also was used as an 

a lt e rnate food source . All re aring took place in a 16:8 (light: 
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da rk) photoperiod a t 25 + 1 C with 65% r elative humidity in fac ilities 

separate from the labora tory . Fourth insta r l a rvae which had reached 

mid-stadium (80-100 mg) were used in a l l procedures . 

NAIDM and Rutgers house fli es , Musca domestica (L), were 

kindly provided by L. C. Terriere (O regon State Unive rsity, Corvallis, 

Oregon) a nd maintained on a CSMA diet (Ralston Purina, Kansas City, 

Mi ssouri). Emerging adults were r emoved from holding cages at 

approximately 12 hour intervals and provided with a milk source, 

sugar , and water . In all expe riments , 4 day old adults (~6 hours) 

were remov ed from th e holding cages, sexed, and weighed prior to 

experimental use . 

Biol og i cal Assays 

Fourth inst a r Colorado potato bee tle larvae were utilized 

in groups of 5 and 10 per dose. Each group was weighed separately 

in order t o ensure a uniform weight distribution between groups. 

A minimum of 5 doses were used per assay, each of which was replicated 

a minimum of 3 times . Fresh insecti c ide solutions of carbaryl and 

carbofuran dissolved in technical grade acetone wer e prepared on a 
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regular basis throughout the testing period. Doses of both toxicant 

and the synergist, when used, were deliver ed topically to the dorsal 

abdomen by means of an electrically driven microapplicator calibrated 

to deliver 1 µl through a Hamilton 250- µl syringe (Hamilton Co.,Inc., 

Whittier California). When the applied do se exceeded the amount 

which could be applied in 1 µl, t wo simultaneous applications of 1 µl 

each to the dorsal abdomen and a third application to the ventral 

sclerites was utilized. Controls we re treate d in a similar manner 

with acetone. Treated larvae were hous ed in plastic con taine rs 

lined with absorbant paper and were p rovide d with fresh l ea f a t 24 

hour intervals. Death was defined as a n inabil ity to crawl when 

disturbed and was determined 48 hours af t e r treatment. 

Four-day old house flies were anesth e tized using a combination 

of car bon dioxide and cold treatment. A minimum of 10 flies were 

used for each of th e 5 or more doses. The applied dose was d e livered 

t opica lly t o the dorsal thorax in the same manne r as described 

p revio u s l y. Following tr ea tment, the flies we re housed in small 

screen cages a nd provided with s ugar a nd wate r for 24 hours. 

Mor t a lity was defined as a total absenc e of movement. 

In order to inhibit as much monooxy gen ase activity as possible 

the maximum concentration of piperonyl butoxide resulting in no 

mortality to either population of each sp ec ies was utilized (Brindley 

1977). This dose, 10 µg piperonyl butoxide/g fo r potato beetles and 

5 µg piperonyl butox id e / g for hous e flies, was applied 1 hour prior 

to carbamate treatment. Piperonyl b utoxide-treated controls were 

also treated with acetone at the time of insecticide tr eatment. 
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Application~. o f both carba r y l ~ind c;1 rbo f ur a n a t concen tra ti ons 

as l ow as 10 i1g /i:l resul t ed in th e: appearance of a barely dis cern ib le 

r e sidue . i\t th e con cen tr a tion of 100 f1g/11l (the n,axirnum amount 

which co u l d be dissolved in ace tone ) both carbama t es ha d c r ys talliz e d 

to t he ex t ent that they appea r ed as a c;:iked powde r y residue . A 

ma ;-:imum of trff CLi ar,pliu·, t ions we r e ap plied to the dors al a nd ven tr ;:i l 

a bdomen to avoid plac ing th em on e o~ t op of ano ther in t he potato 

beetle . In the hou se fly, clue to th e l ack of s ufficient su rf ace 

a c ea , a]l three ,1pplic a tions were appl ie d to the same a r ea o f th e 

clcrsal t ho rax. 

Bioas say dat;:i from seve ral replica t es we r e pooled and a na lyz ed 

by means of computeriz e d pro f it 2naly s is (unpubli shed procc, cl ur v) . 

The results were plotted as percent mor t a lity rela tive to the 

lo ga rithms of insec ti c ide concentration . Sy nergist differences and 

pe rcent dependen cies \,.' e r e also ca.lcu L1t e d fo r each popula t ion an d 

insec ticide . 

Enzvrne P r e:1i ara tion s 

The gut and fa t bodies from i'. r oup s n f 20 to L10 pot;:i t o beetle 

larvae were used in the prepa r a t ion of pot a t o b ee t le micro s ornes . 

Larv a e were collectively weighed prior t o dissec tion for gut and 

fa t bo dy . The poster i o r s cleritcs we r e cl i pped with a fi ne pair 

o f s cissors and the l a rv2 e -.,,ere clipped alon g the dorso-lon gi.t udin ~1 l 

midline to expose g ut and fa t body . Th e g ut was then g r asped ;:i t 

the ,::rn terio r end with forceps and the en tire g ut carefully withdrawn 

;:in cl p l aced in a plc.1s ti c pe tri d ish whe r e it was covered with i ce 

cold 0 .1 r! Tr is buffer (pll 7.7). fa t bo dy wa s next extracted by 



sliding the forceps from the head t o the posterio r abdomen along 

the length of the carcass . It to o was covered with ice co ld buff er. 

Gu t contents were elimina ted wi th a gentle rolling motion of the 

forefinger across t he gut which was immers ed in buffer . The gu ts 

and fat bodies from several insects were combined , dr i ed on fil t er 

paper , weighed , and homogeniz ed in 2 . 5 mls of 0 .1 M Tris buffer 

(pH 7 . 7) per g original body weight . Homogenization was performed 

with a motor driven Potter-Elvehjern homogeniz er with a Teflon pestle 

for 30 seconds . The homogenate was centrifuged on a Beckman L5- 6SB 

ultracentrifuge at 15,000 g f or 10 min to remove mitochondri a and 

43 

heavier par t icles. The pos t-mi t ochondrial supernatan t was centrifuged 

at 100 ,000 g for 1 hour to sedi ment a microsomal fraction . The 

r esulting pellet was resuspended by hand and homogeni zed in 1 . 5 ml 

of 0.1 M Tris buffer (pH 7. 7) per g original body weight . All 

procedures were per fo rmed on i ce . 

House fly male and female adults were separately weighed prior 

to hav ing their abdomens exc is ed by a fine pair of sc i ssor s or by 

vigorous shaking after being frozen on dry ice. The homogenizat ion 

and centrifuga t ion scheme was similar to that of Folsom a nd Hodgs on 

(1970) with some modif i cations . The flies were homogenized in 2 . 5 
✓ ( 

ml of 0.1 M phospha t e buffe r (pH 7.4) or 0.1 M Tris buffer (pH 7.7) 

per g o r iginal body weight. Homogeniza tion was performed in a Potter­

Elvehj em homogeniz er with a Tef lon pestle for 60 seconds . The 

homo gena te was f ilte r ed through two layers of cheese cloth prior to 

centrifuging at 15,000 g fo r 10 min to r emove the mitochrondria and 

heavier particles . The pos t-mito chondria l supernatant was cen trifuged 



at 100,000 g for 1 hour to sediment the microsomal fraction . For 

experiments involving the addition of bovine serlllI\ albumin to the 

microsomes for the determination of .E_-nitroanisole-Q-demethylat ion, 

v 
the microsomal pellet was resuspended in 0 . 75 M phosphate buffer 

(pH 7.4) per g original body weight for protein determinat ions. 

✓ 
Following the determination of protein an equal volume of phosphate 

buffer containing 4% bovine serum albumin was added. The resulting 

microsomal s uspension consisted of 2% bovine serum album in in 1.5 

ml 0.2 M phosphate buffer (pH 7.4) per g original body weight. 

For the determination of NADPH-cytochrome c reductase, NADPH 

oxidation, and p~nitroanisole-_Q-demethylation in which bovine 

serum albumin was not added, the microsomal pe llet was resuspended 

in 3 times th e original volume of phosphate buffer and resediment ed 

at 90,000 g for 1 hr in order to remove a soluble diaphorase which 

interferes with NADPH determinations. The final microsomal pellet 

was resuspended in 1.5 ml of 0.1 M Tris buffer (pH 7 .7 ) per g 

original body weight. 
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When determinations of cytochrome c oxidase and NADPH- cytochrome 

c reductase were necessary from the various centrifugation fractions 

the following procedure was utilized. After homogenization of the 

tis s ue source, 2 ml of whole homogenate were set aside for assay 

determinations. Following each centrifugation step , 2 ml of buffer 

were added t o the supernatant prior to withdrawing 2 ml for the assays. 

The mitochondrial pellet was resuspended in 5 ml per g original body 

weight , while the microsomal pellet was resuspended as previously 

described. 



Protein Detenuination 

The determination of protein was performed as described by 
V 

Bradford (1976). One hundred milligrams of Coomassie Brilliant 

Blue G-250 were dissolved in 50 ml of 95% ethanol. This wa s 

followed by the addition of 100 ml 85% (w/v) phosphoric acid . 

The resulting solution was diluted with distilled water to a final 

volume of 1 liter and stored for future use. 

Aliquots of protein solutions were pipetted into test tubes 

and brought up to 0.1 ml with buffer. After filtering the reagent, 

5 ml aliquo ts were added to each tube and the resulting solut ions 

mixed with a vortex mixer. Absorbance was measured against a 

cuvette containing 0.1 ml of buffer a nd 5 ml of reagent at 595 nm 

with a slit width of 0.1 on a Zeiss PMQ-II spectrophotometer. The 

resulting optical densities were compared directly with a standard 

curve prepared with known concentrations of bovine serum albumin. 

All in vitro enzyme assays with the exception of NADPH 

oxidation were performed in triplicat e utilizing a range of protein 

concentrations in order to ensure linearity within replicates. 

Since the amo unt of protein in potato beetle gut and fat body 

microsomes was nearly always identical for a given group, amounts 
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of protein utilized in a given assay varied from 20-250 µg depending 

upon the aliquot volume . The amount of protein utilized from house 

fly microsomes varied from 100-1200 µg per assay . In the case of 

NADPH oxidation the amount of protein utilized from potato beetle 

microsomes was the maximum amount possible from the resuspension, 

varying from 100-250 µg . All assays were replicated a minimum of 



three times for statis tical analys is unless otherwise stated . 

..2.- Nitroanisole-O-Demethylation 

The determina tion of ..2.-nitroanisole- _Q_-demethylation utilized 

the procedure of Kinoshita e t al . (1966). A stock so lutio n was 
1,---

prepared consisting of 7 mg/ml of ..2.-nitroanisole was dissolved in 

a solution of 20% ethano l and 20% ethylene glycol . Each incubation 

cons i s ted of a mi crosomal a liquot brought up to 0.5 ml with 0.1 M 
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Tris buffer (pH 7.7) and 0.1 ml of an NADPH generating system composed 

V V 
of 20 µmo les MgC1 2, 35 µmoles sodium isocitrate, 2 .5 units of 

sodium isocitrate dehydrogenase, and 2 µmo l es NADP . Immediately 

prior to initiating the incubation 0.5ml of the stock so lu tion of 

E_:-nitroaniso l e were made up to 5 ml with 0.1 M phosphate buffer 

(pH 7 . 8) or 0 .1 M Tris buffer (pH 7 .7) . Initiation of the reac tion 

was accomplished by the addition of 0.2 ml aliquots of the diluted 

prepa ration of £-nitroanisole at va rious timed interva l s . The 

reaction tubes were placed in a shaking water bath at a t emperatur e 

of 30° C. Te rmination was by the addi tion of 2.5 ml of cold ace t one 

at various timed intervals. Prote in was sedimented by centrifuging 

V 
on a Triac Centrifuge for five minutes, after wh ich 0.2 ml of 0.5 

M glycine titrated to pH 9.4 with saturated NaOH was added. The 

optical density was read on a Zeiss PMQ-II spectrophotometer at 

410 nm and the amount of ..2.-nitrophenol produced was calculated 

from a standard curve . 

NADPH Oxidation 

The s t andard incubat ion p rocedur e f or NADPH oxidation was 



modified slightly from that described hy Fo lsom and Hodgson (1970). 

~!icrosomal enzyrne levels vari("d fr om O. l t o O. 2 1:1 g protein in th e 

case of po t ato beetles a nd from 0 . 1 t o J. 2 n,g rnicrosomo.l protein in 

the case of house flies in a tot a J vo l u□ c o f 2 . 5 ml of 0 . 1 M Tri s 

buffer (pll 7 . 7) . Concent rat i ons of NADl'H and cy t och r ome c were 

!,7 

0 . 3, and 0.114 11 mol e -; , respectively . Ra t es of oxidat ion we r e 

measured at 340 nm on a Ze iss PHO- I I sp e c tr opl1otometer and dete rmined 

from the extinction col'ff i c ient (6 . 22 X 1.0 6 c m/mole . 

Cytochrome C Oxid a ti~J..!:_'. 

The proc edur e of Cooperstein and Lazarow (1951) was f ol l owed , 

in part, f or determinations of cytochrome c oxidation . A soluti on 

of 1 . 7 X 10- S M cytochrome c in 0 . 1 M Tris buffer (pH7 . 7) or 0.1 M 

phosph a t e buff e.r (pH 7 . <'i), was sha ken for 2 minu t es after redu c ti on 

with dithionite . Rea ction initiati on was ac complished hy addit i on 

ur 2 ml of rl'. <lu ccd c: yto c: h1-o mc c t o cnz yn'. c aliquo t s . The rate of 

oxid a tion of cyloch r ome c: 1,:1s delerr;Jin c d fr om th e extinction 

coe ffi cien t (2 . 1 X 10 7 ,:m/mulc) ,1fter r eading t he decreas e in 

extinction at 550 nm. 

NADPH- Cvtochrome C Redu c t a se 

Th e incubation mixture for NA DPH- cy t ochrome c reductas e was 

mo dified from tha t described by Dallncr (l ':HiJ) . The tis sue 

source was brought up to 0 . 5 ml with 0.1 ti Tris buffe r (pH 7 . 7) 

or 0.1 M phosphate buffer (pH 7 . 4) and incubat ed at room t em perature 

fo r 2 minutes with 0 . 5 ml . 0 . 66 n~ KCN . The reac tion was initia t ed 

by th e addition of 1 ml of cy t ochrome c and the NADPH generating 
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system making final concentrations of 0.05 and 0.1 mM, respectively. 

The rate of reduction of cytochrome c was determined by observing the 

increase in extinction a t 550 nm and calculated from the extinction 

coefficient (2.1 X 10 7 c m/mol e) . 

Dat a analyses for all in vitro methodology were performed by 

analysis of variance and stepwise multiple regression. 

In Vivo Distribution Of Carbar yl 

14 
1-Naphthyl-_!i-methyl- f-carbaryl with a specific activity of 

21 mCi/mmole was purchased from the California Bionuclear Corporation, 

San Fernando , California . Its radiochemical purity was grea ter than 

98 %. 0.5 mCi was dissolved in 1 ml benzene from which small aliquots 

were redissolved in acetone to give a concentration of 0.01 µg 

carbaryl/µl with a final specific activity of 2.1 mC i/mmole or 

2770 dpm. In experiments where the concentration of 
14

f - carbaryl 

was increased from 0 . 01 µ g carbaryl/µ 1 to 10 µ g carbaryl/µ 1 , the 

same a liquot of 14f-carbaryl was added to the same volume of 

acetone containing 10 µg unlabeled carbaryl, thereby retaining the 

same specjfic activi ty. 

Groups o f 5 and 10 fourth instar larva e weighing between 90 

and 100 mg were selected from both populations. Each was treated 

topically on the dorsal abdomen with 1 µl of labeled carbaryl in 

acetone delivered from a motor-driven microapplicator bearing a 

Hamilton 250- µl syringe (Hamilton Co., Inc., Whittier, California). 

In order to eliminate the possible mechanical loss of radiolabel ed 

carbaryl the acetone solution was allowed to evaporate prior to 

placing th e beetles into the metabolism chamber. Pretreatment 



with the synergist, piperonyl butoxide, was performed 1 hr prior to 

treatment with radiolabeled carbaryl. The maximum non-lethal dose 

of piperonyl butoxide , 10 µg/g was applied to the dorsal abdomen as 

in the biological assays. 

Ten time periods were selected for study , including 0, 1, 3, 

5, 10, 20, 30, 60, 120, and 240 minutes . For each of the 7 time 

periods of 5 minutes duration and above, beetles were treated as 

quickly as possible and timing began from the median treatment time. 

For 0, 1, and 3 minutes, groups of 5 larvae were treated and timed 

individually to ensure uniformity of results but were combined as 

a group after the external rinse . The effect of the synergist, 

piperonyl butoxide, was observed only at 240 minutes. 

Prior to treatment of the larvae, 5 1-µl aliquots of radio­

labeled carbaryl were delivered directly into a scintillation 

vial for determination of the quantity of labeled carbaryl applied 

to the replicates. The percent radioactivity of the various 

samples was determined by direct comparison with the activity of 

this sample. A minimum of three replicates was determined for each 

time period examined . 

Each group of treated larvae was removed from the metabolism 

chamber and rinsed by dipping t he larvae i ndividually through ~o 

success ive 5 ml aliquots of acetone:methanol (1:1) to remove 

unabsorbed insecticide. The two rinses were combined and an a liquot 

of 1 ml placed into a scintillation vial containing 10 ml of 

scintillation cocktail. The rinsed beetles were transferred into 

a Potter-Elvehjern homogenizer and homogenized in 5 ml of an 
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acetone : methanol mixture (1 : 1) fo r two minutes with the variable 

resistor set at 60 rpm. The resulting brei was centr i fuged for 

3 minutes on a Triac Centrifuge and the supe rnatant decanted and 

saved . A 5 ml aliquot of the acetone :methanol mixture was added to 

the residue and homogenized a second time for 1 minute. The two-

s ml portions of supernatant were retained from which 0 . 2 ml 

aliquots were removed for counting into sc intillation vials . Fecal 

extrac t s were obtained by the addition of two-5 ml portions of the 

acetone-methanol solvent to the metabolism chambe r s and sc raping 

the bottom of the chambers vi goro usly with a spatula. Both portions 

were combined and aliquots of 0.5 ml retained for radio-analysis . 

The scintillation cocktail utilized for each aliquot was composed 

of 4 g PPO and 0 . 5 g POPOP in 1 liter of toluene in a volume of 

10 ml per aliquot . 

The r Ad ioactivity of the various samples was determined with 

a Packard Tricarb liquid scintillation spectrometer (model 2660) . 

Quench corrections were made by using external standards ratio. 

The total percentage r adiocarbon was calculated from the total 

disintegration ions per minute (dpm) for the various fractions. 

Statistical analyses of the various interactions between 

populations, time periods , and tissue sources were performed by 

stepwise multiple regression analysis . 

so 

The efficiency of the external , internal, and feca l procedures 

was verified in the following manner . Larvae which had been treated 

at an early time period were dipped through three consecu tiv e 5 ml 

rinses of the ace tone : methanol solven t system. Of the activity 



recovered approximately 97% was recovered in the first two rinses. 

The remaining 3% recovered in the third rinse was considered 

negligible especially since the amount of recovered radiocarbon 

declined very significantly in later time periods . Larvae which 
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had been treated in later time periods were homogenized in three 

consecutive 5 ml portions of the acetone:methanol solvent system. 

Again , recovery from the third homogenization was considered insigni­

ficant. The same procedure was repeated for the fecal extract, 

resulting in greater than 99 % recovery from the first two rinses. 



RESULTS AND DISCUSSION 

Biological Assays 

The population of Colorado potato beetles from New Jersey was 

suspected of being highly resistant to most insecticides due to 

intense selection pressure in the field over several generations. 

In contrast, the population from Wageningen, Netherlands, was 

consid ered as a r eferenc e suscep tible population since it has been 

reared continuously in the laboratory for a period of greater than 

25 years. Because potatoes are not a major crop in the state of 

Utah, it was suspected that a field population collected from Logan, 

Utah would also be susceptible to carbamates. In an effort to 

confirm this, topical bioassays were conducted with carbofuran 

following recommended procedures for the detection and measurement 

of resistance (Anon. 1974). 

A comparison of the toxicity of carbofuran to the Wageningen 
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and Logan populations (Table 2) r eveals a small, insignificant 

difference between LD
50 

values obtained from these populations; 

confirming that the Logan population could be considered to be 

susceptible to carbama t es. Al though the Lo gan population does 

exhibit a slightly greate r tolerance to carbofuran, it is interesting 

to note that this level of tolerance is completely obliterated by 

pretreatment with the synergist, piperonyl butoxide. The fact that 

monooxygenases may be playing a somewhat greater role in detoxication 

of carbofuran for the Logan population is indicated not only by a 

greater synergist difference but also by the calculation of a greater 



Table 2. Toxicity (µg/g) of carbofuran alone and wi th piperony l butoxide (p.b . ) to Netherland 
and Utah populations of fourth instar Colorado potato beetle larvae . 

Population Insecticide LD50 95% Fiducial Limits Slope Percent 
Dependency 

Netherland Carbofuran . 47 . 43 .5 2 2.8 12.9 
Carbofuran + p . b. . 41 .33 .45 3.2 

Utah Carbofuran .58 . 50 . 64 4.1 26.3 
Carbofuran + p .b. . 43 . 30 .67 1. 6 

V, 

w 



percent dependency upon monooxygenases. 

Since the Wageningen population i s well adapted to laboratory 

conditions , thereby possessing a physiological advantage over newly 

established laboratory popula tions, it was considered to be more 

desirable in a comparative study to compare two field populations 

rather than a field versus a laboratory popula tion. The Logan 

population was found to be essentially identical to the Wageningen 

population with respect to its suscep tibility to carbofuran . As a 

result, all subsequent assays were performed utilizing the New 
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Jersey and Logan populations as resistant and susceptible, respectively. 

Table 3 and Figures 3 and 4 compare the toxicities of the 

carbamates , carbofuran and carbaryl, alone and in combination with 

piperonyl butoxide among resistant and susceptible populations of 

Colorado potato beetle larvae and four -day old adul t female house flies. 

Both the resistant and susceptible strains of house flies were more 

tolerant to these carbamates than were their respective potato beetle 

coun terpar ts. Levels of resistance development, as indicated by 

resistant factors (calculated by dividing the LD
50 

of the resistant 

population by the LD
50 

of the susceptible population) , were exceed­

ingly high for popula tions of both species , indicating the possibility 

of a similar r es istance mechanism. 

The Rutgers strain of hous e flies is the result of intens e 

selection pressure by diazinon. Resistance is conferred primarily 

by gene(s) associated with the sth chromosome which has also been 

shown to be associated in vitro with high levels of oxidative 

activity (Tsukamoto e t al . 1968, Perry et al . 1972) . As a result , 



Table 3. Toxicity (µg/g) of carbofuran and carbaryl alone and with piperonyl bu t oxide (p . b .) 
to four - day old adu lt female Rutgers and NAIDM house flies and t o fourth instar 
populations of New Jersey and Logan Colorado potato beetle larvae . 

Population Insecticide 

M. domestica 

Rutgers Ca r bofuran 6584 
Carbofuran + p . b. 13 . 5 

NAIDM Carbo f ur an 11. 3 
Carbofuran + p . b . 4 . 3 

L. decemlineata 

New Jersey Carbofur an 492 
Ca rbofuran + p . b. 80 

Lo gan Carbofuran 0 . 58 
Carbofuran + p. b. 0.4 3 

95% Fiducial Limits 

5194 8117 
-9 . 1 30 .4 

9.1 14 . 6 
3 . 4 6.1 

261 817 
29 209 

0 . 50 - 0 . 64 
0 . 30 - 0.67 

Slope 

2 . 8 
1. 8 

Percent 
a 

Dependency 

115 

4.2 66 
4.7 

1.0 93 
0 . 8 

4 .1 26 
1. 6 

583 
3 

820 
186 

New Jers ey Carbaryl >4000 
Carbaryl + p. b . 1851 

undetermined 
1598 2780 

78c 
0 . 3 

>833 
974 

Logan Carbaryl 4.8 3 . 0 7.0 4.1 63 
Carbaryl + p . b . 1. 9 1.0 3.7 L1. 0 

aCalculated by dividing the actual synergis t difference by the th eore t ical syner gis t difference. 
bRF (Resis t ance Factor) defined as the resistant LD 50 divided by the susceptible LD 50 . 
cDeterrnined from LD 30 values from syne r gized and unsynergi zed carbaryl . 

Vl 
Vl 
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four - day old house flies , µg/f ly. 
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pretreatment with t he monooxygenase inhibitor , piperonyl butoxide, 

has been shown to minimize the importance of the resistance factor(s) 

associa ted with the sth chromosome (Tsukamoto et al . 1968) . 

Concentrations of carbaryl as great as 14,000 µg / g resulted i n 

no mortality to the Rutgers s tra in and in less than 40% mortality 

t o th e s uscept i ble strain . A hi gh de gree of resis tance to carbofuran 

was a lso exhibited by the Rutgers s train (LD50 = 6584 µg/g) r e l a tive 

to NAIDM house flies (LD 50 = 11.3 µg / g) . Pret r eatment of t he Rutgers 

strain with the synergist , piperonyl b utoxide , resul t ed in a dramat ic 

increase in carbofuran toxicity. Hence, the level of resistance was 

r educed from 583- fold to only 3-fold by piperonyl butoxide pretreat ­

ment . Calculation of the percent dependency upon monooxygenases is 

consistent with the fact that resistance in the Rutgers strain is 

primarily oxidative in nature. 

The New Jersey population was so highly r esistan t to both 

carbofuran and carbaryl tha t LD
50 

values, especia lly for the latter, 

were difficult to obtain . The LD
50 

for carbofuran was 492 µg/g . 

However , for carbaryl the max imum concentration which could be 

applied (4 , 000 µg/g ) resulted in only 30% mortal ity . Since carbaryl 

synerg i sm was possib l e to some extent , t his infor mat i on was utilized 

solely for compara tive purposes in order to dete r mine an app ro ximate 

percen t dependency va lue and r esis t ance fac t or for this insecticide. 

In sharp contrast with the New J ersey population, Logan potato 

beetles were extremely suscep tible to both carbofuran and carbaryl; 

possessing LD 50 values of 0.58 and 4.8 µg/g , respectively. The 

l arge differences in carbamate toxi city fo r these popula tions are 



reflected by resistance factors of 820 and > 833 for carbofuran and 

carbaryl , resp ec tively. 
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Several fact ors are suggestive that r esistance in the Colorado 

potato bee tle may be linked with high levels of monooxygenase enzymes , 

Studies of resistance factors in house flies indicate that strains 

exhibiting the gr ea test r esistance l evels gene rally possess the 

gr eatest monooxygenase po t en tial . This, coup l ed with the fact that 

carb ama te me t abol ism in insec t s i s primarily oxidative in nature is 

supported in this study by the effec tive reduction of ca rbofuran 

r esis tance to l evels of suscep tibility by p ip eronyl butoxide. 

Since resistance factors f or the Colorado po tato beetl e are very 

similar to those of th e house fly, one can hypothesize tha t mono­

oxygenases a re a predominant fac t or in carbamate r es istance. 

Pr e treatment of t he New Jersey population with piperonyl 

butoxide prior to treatment wit h both carbofuran and carbary l resulted 

in large increas es in their t oxicity . Smaller increases we r e note d 

with the Logan population . Calculations of the percent dependency 

upon monooxygenases are s up portive of the hypothesis that h i gh 

resistance l evels are a ttri bu t ab l e to high monooxygenase activity . 

In contrast with the effec t observed with Rutgers house flies, 

piperonyl butoxide pre tr ea tment of New Jersey Colorado pot a to beetles 

did not comp letely el i minate r es istance . Such high synergized 

resistance factors for carofuran and carbaryl (186 and 974, 

respectively) may be ind i cative that other r es i s t ance factors are 

involved. Often, the presence of t wo or more resist ance factors 

pr ovide much grea ter resistance potential than either factor by 



itself (S;:iwicki 1970 , Crigo lo and Oppe noort h 196 6 , Plapp and Hoyer 

196 8 ) . 

Othe r pos :, ibili ties may be invoked t o e xp l ain the apparent 

failur e of piperony l butox ide t o comp l e t ely sy ner gize carbofuran 

t o th e susceptible level s exh i bited by the Log an population. It 

may be that th e dose of piperony l butoxidc was no t subs t antially 

great e nough to result in the complete i nhib iti on of t he metabolism 

of these ca rb ama tes. However , an at t emp t wa c; made in this study t o 

elimina t e this po s sibility by us in g the maxi ma l dose of pipe r onyl 

butoxide which produced no mo rt c1l i ty j n the con trols. Thi s would 

hopeful l y ensure t hat th e dose ,wuld be a sa turating dose, r equiring 

the f ull att enti on o f monooxygenases involved in detox i ca tion . 

Al t e r na tiv ely , it is poss ible that biological diffe r ences a t th e 

l eve l of t he rno non xygena se l' - 1+50 r ecep tor s:i. te ex ist: be tween hous e 

fli es and Co lo rado po tato Lc ctl es , res ult i ng in a mo r e efficient 

bindin g of the syner gis t for the house flies th an for the potato 

bee t les . 
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Forgash (1981 ) also recently indicated tha t carbama te synergism 

by p iperonyl butoxide was almos t none xistent . Since a t wo hou r 

nr e t rea tment time resulted in a slight ly grea ter synergis t ic eff e c t 

it was pro pos ed that th e l ack of syne r gi sm may be du e t o slowe r 

pene tra t ion of the syn e r gist th an for th e ca r bama t e. Prelimina ry 

experiments conducted during tlte course of this s tu dy were not 

indicative that longe r pretreatment times we r e neces sary f or greate r 

syne r g ism fo r pota to bee tle larvae . Fu r th e r comparative work between 

larvae and adult Color a do potato beetles may b e useful in e lucidating 

I 



possible explanations for this effect. 

p-Nitroanisole-0-Demethylation 

Due to its relative ease of handling, 12_-nitroanisole-Q­

demethylation was selected as an in vitro means for confirmation 

of the hypothesis that resistance in the Colorado potato beetle 

was the result of oxidative me tabolism. Microsomal preparations 

from whole larvae, isolated fat bodies, and isolated gut tissues 

with and without gut contents resulted in preparations which were 

devoid of activity. Several conditions were altered in an attempt 

to verify that a procedural problem did not exist. Some of these 

included the use of a phosphate buffer with variations in pH from 

6 . 5 to 8.0, variations in molarity from 0.1 to 0.2 M, homogenization 

of tissues in a Waring blender versus the Potter-Elvehjem tissue 

grinder, variable centrifugation speeds, and additions of various 

cofactors including bovine serum albumin (BSA), 0.33 mM KCN, and 

0.02 mM MgC1 2 ; all failing to result in a measureable response. 

When methodology utilizing microsomal preparations were 

exhausted other parameters were investigated. Incubations of intact 

gut tissues with and without gut contents were tried without success 

as were whole homogenates of gut tissues and fat bodies. Had 

activity been present, however, it may have been precluded in these 

preparations since they were highly turbid , exhibiting an absorption 

spectrum very similar to that of the product, p_-nitrophenol, likely 

due to the presence of carotenoids or similar products. 

As a result of the insurmountable difficulties associated with 

p_-nitroanisole-Q-demethylation in the Colorado potato beetles, 
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Rutgers and NAIDM house flies were incorporated into the study, 

primarily for the verification of procedural efforts. An examination 

of ..e_-nitrophenol production in microsomes from the house fly 

demonstrated large oxidative differences between strains and sexes . 
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The ability of both male and female Rutgers house flies to demethylate 

..e_- nitroanisole was approximately four times that of NAIDM house flies, 

based on both protein levels and a per fly basis (Table 4). Similar 

diff erences between these strains were also reported by Folsom et 

al . (1970). Although sex differences were not immediately apparent 

based upon protein levels, they became evident when compa red on a 

per fly basis a s others have reported (Matthews and Casida 1970) . 

In both strains, the ability of females to demethylate ..e_-nitroanisole 

was approximately 3 .7- fold greater than that of males, presumably 

because females pos sess greater protein levels due to egg production . 

The addition of bovine serum albumin to microsomes prepared 

from male and female house flies of both strains did not result in 

a significant enhancement of activity ove r that obtained from 

microsomes incubated in its absence. Results reported herein are 

the means of at least two replicates incubated with bovine serum 

albumin since it is normally included in determinations of in vitro 

xenob ioti c house fly metabolism . There are indications, however , 

that its effect upon homogenates prepared from house flies of 

four days and older is minimal (Terriere et al. 1980). 

Distribution of Cytochrome Oxidase and 
NADPH-Cytochrome C Reductase in 
Relation to the Centrifugation Scheme 

In an attempt to understand why microsomal activity could not 



Table 4 . .E_-Nitroanisole-Q- demethylation in four - day old adult male 
and female Rutgers and NAI DM house flies . 

Strain Sex nmoles/hr/mg proteina nmoles/h r/25 abdomens 

Ru t gers 'i' 48 . 3 ± 11. 2 57.9 ± 10 . 5 

cf 29 . 9 ± 8.5 15.5 ± 8.4 

NAIDM 'i' 11. 6 ± 11. 2 15.2 ± 10. 5 

d 5 . 4 ± 8.3 4.1 ± 7.1 

'i' 4.2 3.8 

cf 5.5 3.8 

aResul ts are means± SD of at l east two determinations using 2% BSA 
wi t h the exception of NAI DM cf which is based upon 1 de t ermination 
wi t h and 2 dete r mina tions without BSA. Results of incub a tions 

wwithout BSA are , from left to right; 32 . 1 ± 7 . 9, 52 . 5 ± 11.6 , 
47.1 ± 3 . 8, 15.3 ± 1.9, 5 . 2 ± 11.2, 6 . 7 ± 16.5, 9 . 2 ± 4.7, 
6 . 9 ± 2.3 . 

bR/S def ined as the ratio of activity from the resistant Rutgers and 
the susceptible NAIDM s tr ains . 
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be determined by means of .r_-nitroanisole-2._-d eme thylati on for the 

Colorado potato beetle the relative distribution of the enzymes 

cytochrome oxidase and NADPH cytochrome c reductase were examine d 

with relation to the centrifugation procedure. 

As is shown in the distribution of cytochrome oxidase (Table 5), 

the first centrifugation was effective in removing the bulk of t he 

mitochondria into the mi t ochondrial pelle t. NADPH-cytochr ome c 

r eductase, which no rmal ly sedimen t s into the microsomal pellet as 
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a memb r a ne bound en tity of the electron tr a nspor t chain, was 

partially sedimented into the mitochondrial pellet. Of th e r ema ining 

activity found in the mitochondrial s upern atant at least 90% should 

have sedimented i nto the mi c r osoma l pellet . The microsomal 

centrifugation, however, sedimented less t han 33% of the activity 

from the mitochondrial supernatant, releasing the bulk of the 

ac tivity in t o th e microsomal supernatant . 

Si milar centrifugation p ro ce dure s examining the distributions 

o f NADPH- cytochrome c r eductase and _!i-demethy l a tion in southern 

a rmywo r m and house f lies (Crankshaw e t al . 1 9 79, Hansen and Hodgso n 

1971) reveal that a nywhere from 70 - 95% of the oxida tive potential 

of t he mitochondrial supernatant is sedimen t ed into the microsomal 

pelle t, dependant to some extent upon the homogenization media 

utilized. This contrasts sharply wi t h result s obs erved in this study 

for the Colorado potato beetle, s ince only 30% of the activity from 

the mitochondr ia l supernatant was sedimented into the microsomal 

pellet . The remaining 70% was lost into t he microsomal supernatant. 

Such a loss o f activity from the mi crosomal pel l e t provides a 



Table 5. Distribution of cy to chrome oxidase and NADPH-cytochrome c 
reductase in New Jers ey Colorado potato beetle larvae . a 

Oxidase 
%b 

Reductase 
Frac tion nmoles/min nmoles/min 

Whole Ho mogenate 1245 100 7 67 

Mitochondria 1263 101 274 
(P- 15 ,00Q) C 

Mitochondria 16 1 392 
(S-15 , 000 ) 

Microsomes 21 2 116 
(P-100 , 000) 

Soluble 0 0 277 
(S -100,000) 

aResul t s a re the means of at least five sepe rat e replications. 
bPer cent of total ac tivity observed in the whole homogena t es . 
cDefini t ions: P = pellet, S = supernatant. 

% 

100 

36 

51 

15 

36 
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possible clue for the obvious lack of microsomal monooxygenase 

activity from gut and fat body preparations of, the Colorado 

potato beetle. 

The tremendous lo ss of NADPH-cytochrome c reductase from the 
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microsoma l pellet indicates that at some point during the preparation 

procedure, solubilization of NADPH- cy t ochrome c reductase may be 

occurring. Thi s r esults in a loss of the ability to pass electrons 

on to cytochrome P-450, which is necessary for the oxidative process 

to occur. Although some reductase activity r emains in the microsomal 

pellet, it is most likely not interacting with cytochrome P-450 

since it is suspected tha t the hydrophobic portion of the enzyme, 

necessary for interaction with cytochrome P-450, is not necessary 

fo r interaction with cytochrome c (Ullrich 1979). 

Several endogenous inhibitors associated with insect tissues 

have been linked wi th the solubil ization of NADPH-cy t ochrome c 

reductase from microsomal membranes (Wilkinson 1979). Inhibition 

is primarily associated with gut contents and has been found in 

southern armyworm, cabbage loopers, house crickets, and caddisfly 

larvae (Wilkinson 1979). The fact that in the cabbage looper, the 

addition of 1/10 of the contents from one gut results in 60 - 90% 

inhibition of bo th gut and fat body homogenates (Kuhr 1971) indicates 

the potential power of such inhibitors. During the isolation of 

gut and fat bodies from as many as 20 - 30 potato beetle larvae, 

contamination by at least this much of the gut contents is unavo id­

able. 

In one single, unreplicated experiment, an attempt was made to 



demonstra te t he poss ible exis t ence o f an endogenous inhibitor 

associa t ed with pota t o beetle microsomes . The, add ition of a 

smal l aliquot of po tato bee tle microsomes obtained from th e gu t 

to house fly mic r osomes resulted in a slight increase in the 

Q-demethylation of E-nitroanisole . This enhanc ement of activi t y , 

however, was r educed by the addition of large r aliquots. Perhaps 

the increase in house fly mo nooxygenase act ivity following the 

addit i on of potato beetle mi crosomes is due to gr ea t e r access of 

potato beetle mi crosomes to house fly NADPH-cytochrome P-450 

reductase enzymes or vic e ve r sa. The fact that enhancement was 

grea t er by smal l er aliquots than by large r may be indica tiv e of 

either a be tter integration of smaller aliquots into house fly 

microsomes or an indica tion of the presen ce of some inhibitory 

property of potato beetle microsomes . 

NADPH-Cytochrome C Reductase and 
NADPH Oxidation 

NADPH- cy toch rome P- 450 reductase is close l y assoc i a t ed with 

cy t ochrome P-450 an d is t hough t t o be invo l ve d in t he reduction of 

th e cytochrome P-45 0 s ub s trate comp l ex . Fol som and Hodgson (1970) 

and Ahma d and Forgash (1973 ) d emonstra te d that the oxida tion of 

NADPH can be inhibited by CO a nd s ulfhydry l inhibitors, indica tin g 

t ha t electron flow to cytochrome P-450 is through NADPH-cytochrome 

P-450 reductase. Ernster and Orrenius (1965) showed t ha t induction 

of mo noo xygenases generally res ults in the assoc iated induction of 

NADPH-cy t ochrome P-450 reductase. While measurements of NADPH­

cytochrome P-4 50 r e ductase have be en s hown to rou ghly coincide 
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with differences between resistant and susceptible monooxygenase 

activity, NADPH-cy tochrome c reductas e determinations do not correlate 

to the same extent , although their act ivity is enhanced (Gillette 

a n d Gram 1969). Similarly, Folsom et al. (1970) and Ahmad and Forgash 

(1978) demonstrated that NADPH oxidation and NADPH-cytochrome c 

reductase activity was incr eased significantly in resistant house 

flies and in induced gypsy moth larvae, respectively . However, 

these increases did not reflec t th e total levels of resistance and 

induction which could be d emonstrat e d by xenobiotic metabolism . 

Ra ther than p ursue other xenobio tic r out es of me tabolism in 

th e Colorado pota to b ee tl e , a n examination of NADPH oxidation and 

NADPH-cytochrome c r ed uc tion was considered as an alternate rout e 

to demonstrate quantitative dif ferences between popu l a tion s of 

Colorado potato bee tles . The ac tivities of these components of the 

elec tr on transport chain were also brief l y examined i n Rut ge r s and 

NAIDM house fli es . 

NADPH oxidation a nd NADPH-cy to chr ome c red uctase activities 

we re examined in b o th the g u t and fa t body of both populations 

of Co l or ado pota t o beetle larvae (Tab l e 6) . Ne ithe r componen t of 

the electron tra nsport cha in was f oun d t o di ffe r s i gnificantly 

between tissue sources on the basis of protein determinations . 

Since both weigh t and protein were app roximately equal in both 

tissues, the specif i c ac t ivi t ies reported probably reflect relative 

differ ences between t i ssues . 

The e n do genous rate of NADPH oxida t ion wa s extremely low and 

sometimes diffi c ult t o measure in potato beetle microsomes when 



Table 6. NADPH oxida t ion and NADPH-cytoch r ome c reductase act i v i ties (runoles / mi n/mg pro t ein± SE) 
of mi c r osomal preparations from New Jersey and Logan populations of the Co l o r ado po t a t o 
bee t le . a 

New Je r sey Logan 
R/Sb Assay 

Gut Fa t Body Gu t Fat Body 

NADPH Oxidation 

-cy t ochrome C 5 . 7 ± 7. 2 8 . 2 ± 7 . 1 5.4 ± 4 . 2 6.8 ± 2 . 9 1.1 

+ cy t ochrome C 57 . 8 ± 30 . 2 44 . 6 ± 21. 5 39.2 ± 12 . 3 47 . 6 ± 20 . 4 1. 2 

NADPH- Cy t ochrome C Reductase 61.5 ± 31. 5 60 . 1 ± 30 . 6 32 . 6 ± 11. 7 35 . 1 ± 3.1 1. 8 

~Res ult s a r e mean s of a t leas t four r eplications . 
R/S defin ed as the ratio of ac t ivi t y from the resistant Rutgers and the susceptible NAIDM strains . 



compared wi th that obtained from house fly preparati ons (Tables 

6 and 7). The addition of cytochrome c to the, incubation as an 

electron acceptor, however, significantly enhanced activity of 

NADPH oxidation (approximately 7.5-fold in potato bee tles and 

4.4-fold in house flies). Although the New Jersey population had 

slightly greater activity in most cases , population differences 

were no t statistically different due to high variability between 

groups of larvae. Especially surprising was the result obtained 

from NADPH oxidation in the house flies, since it too was not found 

to vary significantly between strains. This was in sharp disagree­

ment with results obtained by Folsom et al. (1970) who demonstrated 

2-fold differences in NADPH oxidation, oxygen consumption, and 

cytochrome P-450 con t ent in Rutgers and NAIDM house flies using 

similar techniques. 

NADPH-cytochrome c reductase was found to vary significantly 

between New Jersey and Utah populations of Colorado potato beetle 

larvae to levels similar to those reported for NADPH oxidation and 

NADPH-cytochrome c reductase in insect and liver microsomes which 

are either genetically or chemically induced (Folsom et al. 1970, 

Ahmad and Forgash 1973, Gillette and Gram 1969). In contrast, 

differences in NADPH-cytochrome c reductase between resistant and 

susceptible house flies failed to be demonstrated. 

Results reported here for resistant and susceptible Rutgers 

and NAIDM house flies contradict those reported for the same strains 

utilizing approximately the same techniques for NADPH oxidation 

(Folsom et al. 1970). Although determinations of NADPH-cyto chrome 
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Table 7. NADPH oxida tion and NADPH-cytochrome c reductase activities 
(nmoles/min/mg protein± SE) of microsomal p repa r ations 
from Ru t gers and NAIDM house flies . 

Assay 

NADPH Oxidationb 

-cy t ochrome c 

+cytoch r ome c 

Rutgers 

14.6 ± 2 . 7 

58 . 5 ± 13.6 

NAIDM 

16.7 ± 3 .0 

78 . 8 ± 15 . 2 

. 87 

. 74 

71 

C NADPH- Cytoch r ome C Reductase 65.1 ± 5.8 64.7 1.00 

aR/S defined as the mean ratio obtained from gut and fa t body activit i es 
bfrom the resistant Rutgers and susceptible NAIDM s trains of house flies . 
cResul t s are means of at least four replications. 

Results are means of two and one replica t es for Rutgers and NAIDM, 
respectively. 



c reductase were not replicated sufficiently in this study for 

statistical analysis, r eplicates of NADPH oxidation demons trat e no 

quan titative differences between strains. Discrepencies between 

these studies may be due to simple variability which occurs between 

laboratories but is more likely to be the result of differences in 

sexing and aging of house flies since in this study only four-day 

old females± 8 hours were used while in the previous study both 

males and females of between five and eight days of age were used . 

The relative endogenous rates for both strains in this study are very 

similar to the endogenous rate reported for the Rutgers strain , 
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but the addition of cytochrome c resulted in the elevation of activity 

by more than 3-fold above that reported by Folsom et al. (1970). 

The results of in vitro methodology suggest that resistance 

in Colorado potato beetle larvae is associated with a general increase 

in activity of at least one component of the e lectron transport chain , 

NADPH-cytochrome P-450 reductase. The interaction of t his component 

with cytochrome P-450 presumably results in the in vivo detoxication 

of carbarnate insecticides but this cannot be confirmed at present 

by the in vitro determination of J2_-nitroanisole-_Q_-demethylation. 

Since NADPH-cytochrome c reductase is known to be lost during the 

process of homogenization and/or centrifugation from the microsomes 

into the microsomal supernatant it is possible that the lack of 

xenobiotic metabolism as measured by _Q_-demethylation is due to its 

lack of interaction with cytochrome P-450. Other xenobiotic oxidations 

need to be examined to further characterize resistance in the Colorado 

potato beetle in vitro. 



In Vivo Distribution of 
Radiolabeled Carbaryl 

Pretreatment of the New Jers ey population of Colorado potato 

beetle larvae with the monooxygenase synergist, piperonyl butoxide, 

resulted in a significant increase in the toxicity of carbofuran . 
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This implicated a high degree of dependence upon monooxygenase enzymes 

for carbamate detoxication, however, since piperonyl but oxide 

pretreatment did not restore the New Jersey population to levels 

app r oximating the susceptible Logan population it was suggested that 

mo re than one factor may be involved in the resistance mechanism of 

th e New Jersey population. Since decreased absorption is often a 

preferred mechanism of resitance in insects, especially for DDT and 

other chlo rinated hydrocarbons to which the New Jersey population is 

most likely resistant, an examination of possible differences between 

the two populations in rates of penet ration and excretion was 

performed utilizing radiolabeled carbaryl. 

The results of the in vivo distribution of r adiolabe led carbaryl 

over ten time periods and at t wo dos e levels with and without 

piperonyl butoxide are shown in Table 8. 

The cumulative rates of penetration, calculated from the data 

presented in Table 8 , were used to transform the data into the rate 

of pene tration per minute (Table 9) according to methods of cal­

culation published by Sun (1968). The rate of penetration per 

minute was calculated from the observed values according to (P 2-P1)/ 

(t 2-t1) where P1 is equal to the percent penetrated at time t 1 . 

Graphical presentations of this dat a revealed the presence of three 

rates of penetration, the first of which was exceedingly rapid, 



Table 8 . In vivo distribution of --- radiolabeled carbaryl alone and with piperonyl butoxide (p. b.) in the 
New Jersey and Logan populations of Colorado potato beetles at various time intervals and dose 
levels.a 

Dose Time After % Penetrated % Excreted % Internal 

Level Treatment 
(min) New Jersey Logan New Jersey Logan New Jersey Logan 

0.01 \Jg/ larva 

0 3. 7 ± 8.9 15.9 ± 46. 7 13.1 ± 8.6 10. 8 ± 11.4 

3 82.9 ± 6.8 93.7 ± 2.2 32.1 ± 5.4 29.3 ± 15. 8 60 .5 ± 9.9 65.8 ± 20.2 

5 qo.4 ± 4.6 95.1 ± 0.2 27 . 3 ± 19.0 13. 2 ± 6. 9 61. 4 ± 12.3 72.8 ± 9.7 

10 94.8 ± 2.9 98.5 ± 1.1 31. 8 ± 13.4 14.9 ± 4.2 65.5 ± 16.5 70.6 ± 12.3 

20 97.2 ± 2.0 98.9 ± 0.5 25.8 ± 13.2 8.9 ± 5 . 6 68 . 2 ± 14.5 76 . 6 ± 5.1 

30 97.3 ± 1.8 96. 2 ± 3.7 29.4 ± 9 . 2 11. 3 ± 2. 3 58.9 ± 14.0 75.0 ± 5.8 

60 97.5 ± 3.0 99.1 ± 0.1 39 . 0 ± 7.5 2 7 .0 ± 7.6 46 . 4 ± 0.9 59 .6 ± 14.8 

120 97.5 ± 3 .6 98.8 ± 0 . 4 42.9 ± 2.6 24.8 ± 7 . 4 4 2. 4 ± 0 . 9 58.6 ± 28 . 9 

240 98 . 7 ± 1.1 99.2 ± 0 .2 42.8 ± 11.1 31. 8 ± 7 . 0 27 . 6 ± 6. 3 35 . 2 ± 4.2 

240b 99.1 ± 0.1 98.6 ± 1. 2 41.0 ± 3.6 27. 5 ± 6.3 29.9 ± 10.6 34. 8 ± 11. 3 

10 \Jg/larvae 

240 76.3 ± 10 . 5 54.4 ± 5 . 0 24.2 ± 2.1 

240b 69.6 ± 4.1 54.4 ± 5.0 24.2 ± 2 .1 

a SE of least three replications. bResults are means ± at 
Larvae were pretreated with 10 )Jg/g piperonyl butoxide 1 hour before treatment with radiolabeled carbaryl. 
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Table 9 . Percentage of radiolabeled carbaryl penetrated , and the 
penetration rate per minute, in Colorado potato beetle 
popula tions at various time periods following topical 
treatment a t 0 . 01 µg/beetle. 

Time after New Jersey a Logan 
Treatment penetrated rate/min penetrated rate/min 

(min) % % % % 

0 3 . 7 15.9 

1 65 . 0 61. 3 80 . 9 65 . 0 

3 82 . 9 9 . 0 93.7 6.4 

5 90 . 4 3 . 8 95 . 1 6 . 4 

10 94 . 8 0.9 98 . 5 0 . 7 

20 97.2 0.2 98 . 9 0 . 8 

30 97 . 3 0.0 96. 2 0.0 

60 97.5 0.0 99 . 1 0 . 0 

120 97.5 0.0 98 . 8 0.0 

240 98 . 7 0.0 99 . 2 0 . 0 

a 
of penetration Pz - P1 Rate where Pi = percen t penetrated at 

time tl (Sun 1968). t2 - tl 
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occurring within the first 5 minutes after application, resulting 

in approximately 90% of the applied dose being, absorbed by both 

populations. This was followed by a second phase of penetration 

which also was very rapid up until 20 minutes had elapsed. A third 

period followed in which a slow steady state of penetration continued 

for the duration of the experiment . 

In nearly all time per iods examined, the Logan population had 

absorbed a greater percentage of the radiolabeled carbaryl than had 

the New Jersey population. Statistical analysis, however, did not 

r evea l significant differences in penetration between populations . 
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Excretion of radiolabeled carbaryl and metabolites began almost 

immediately but was relatively stable during the first 30 minutes 

(Table 8, Figure 6). This was followed by a rapid phase of excretion 

occurring in both populations up until 1 hour, after which it remained 

at relatively stable levels throughout the remaining testing period. 

Excre tion of the New Jersey population was consisten tly at levels 

approximately t wice those of the Logan populat i on . 

The amount of internal carbar yl and metabolites peaked at 20 

minutes for both populations and began a rapid decline up to 1 hour. 

This was followed by a more gradual decline throughout the r emaining 

time periods. Increases in fecal excretion corresponded very closely 

with decreases in internal activity for both populations,producing 

a mirror image effec t (Figure 6). 

Statistical analyses of external, fecal, and internal fractions 

for the ten time periods did not demonstrate an overall statistical 

difference between the Logan and New Jersey populations . However, 
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time periods, sources, and interactions between time and sources, 

and populations and sources were all significaRt at the 99 % level. 
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Of most i mportance is the significant interaction between populations 

and sources since this is indicative of the variabili ty seen between 

the populations and the levels of excretion and internal accumulation 

within the beetles. 

Addition of the synerg ist, p iperonyl butoxide, appeared to show 

no effect on the amount of radioa ctivity r ecove red from any tissue 

af ter 240 minutes. Because the dose of radiolabeled carbaryl used 

in this study was very l ow (0.01 µg/larva) t o avo id the possibility 

of ki lling the Logan popula tion when synergized, it was f e lt tha t 

although the synerg i st may have been effec tively blocking the 

monooxygenases, - that the dose of toxicant may have not been sufficient 

to challenge th e si t e . Therefore, applica tio n of th e toxicant a t 

10 µg/larva t o th e New Jersey populat ion was examined with a n d 

without piperony l butoxide pretreatment. This dose generally resulted 

in a 20% mortality of the New Jersey population. However, even at 

this dose, piperonyl butoxide could not be shown to have a n effect 

o n penetration, excretion, or internal accumulation; even though 

greater than 20% of the applied dos e r emained on the cut i cle due to 

the residual effect of the high concentration applied (Table 9). 

In resistant and susceptible house flies, pretreatment with a 

synerg i st s uch as piperonyl butoxide generally does not alter the 

rate of penetration for most carbamates but does 'reduce the amount 

of metabolit e excretion by resistant strains' (Kuhr 1970). This 

reduction in metabolism results in the accumulation of the parent 
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compound to levels high enough that death results. In both the 

bollworm, Heliothis zea, and the tobacco budwo~ , Heliothis virescens, 

the majority of material excreted was found to be unchanged carbaryl 

(66 and 54%, respectively) (Plapp 1973). Similar results have been 

reported for the gypsy moth , Lymantria dispar (L) (Ahmad et al. 1980). 

Metabolism of carbaryl by resistant and susceptible strains of th e 

cabbage looper, Trichoplusia ni (Hubner), was significantly reduced 

by piperonyl butoxide , with t he reduction in the resistant strain 

closely paralleling the magnitude of the increased metabolic capacity 

of that strain (Kuhr 1971). 

The puzzling results of pretreatment with piperonyl butoxide 

in resistant Colorado potato beetle larvae are difficult to inter­

pret without additional information. The dose level at which the 

synergist was applied (O . lµg/g) had been determined by bioassays 

to be nontoxic for both populations . Dose levels as high as 100 

µg / g only occasionally produced mortality, with no obvious difference 

occurring between populations. Perhaps for this portion of the 

study it would have been wise to have used this higher dose to ensure 

maximum inhibition, however, biological assays utilizing the l esser 

dose level had been very effective in blocking the site of detoxication 

of both carbamates to a certain ex t ent . Increasing the dose level 

of radiolabeled carbaryl also did not seem to have any effect. An 

examination of the metabolic products in the resistant New Jersey 

population would have been useful in interpreting these results since 

piperonyl butoxide may have resulted in blocking metabolism of carbaryl 

while exerting no effect upon its excretion. 



Although differences in the rate of penetration are present, they 

alone are not sufficient to account for differences in toxicity 

observed between resistant and susceptible Colorado potato beetles. 

The rate of excretion in the resistant New Jersey population, 

however, is nearly twice that of tl1e Lo g an population, accounting 
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for a significant reduction of radiolabeled carbaryl and its metabolites 

from the internal fraction of the New Jersey beetles. 111is, combined 

with a slightly decreased absorption rate may account for a great 

deal of the difference observed between populations. A likely 

resistance mechanism for carbaryl may simply be an increased capacity 

for excretion of toxic chemicals as suggested by the fact that 

piperonyl butoxide did not seem to exert a visible effect upon 

levels of radiolabeled materials in the internal fraction. ~!ucl1 

more work is needed to elucidate fully mechanisms of resistance in 

this pest. 



SUMMARY 

Resistant and susceptible populations of the Colorado potato 

beetle , Leptinotarsa decemlineata (Say) , and the house fly, Mus ca 

domestica (L), were compared with respect to carbofuran and carb ary l 

toxicity in the presence and absence of th e synergist, piperonyl 

bu t oxide . Resistance levels of t he New Jersey population when 

compared with the susceptible Lo gan population by topical appl ication 

of carbaryl and carbofuran were > 833 and 82 0, respectively. A 

resistance level of 583 was determined from carbofuran bi oassays of 

Rutge r s and NAIDM house fl i es. Similar levels of resistance devel­

opment between these species suggested the possibili t y that similar 

resistance mechanisms may be involved . 

App li ca tions of the synergist , piperonyl bu t oxide , result ed in 

dr amatic increases in carbamate toxicity for bo th r esistant strains , 

while lesser increases were obse rved in the susceptible s tra ins. 

Uti lization of the synergist di f fere nce app roach fo r evalua ting 

synerg i st data indicated that the resistant s trains depended to a 

much gr ea ter extent upon de t oxication by monooxygenases than did 
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thei r susceptible coun t erparts . This was a lso reflected by calcu­

lations of percent dependency upon monooxygenases as given by the 

equa tion, Log LD 50 = 1.014 log SD - 0.01. The New Jersey popula tion 

of po tato bee tles, like the Rutgers s train of house flies showed a 

high degr ee of dependency upon monooxygenases (93 and 115% dependency, 

r espectively) for carbofuran det oxication. Logan potato beetles and 



NAIDH house flies showed a lesser dependency upon monooxygenases for 

detoxication (26 and 66% dependency, r espectiv€ly ) as is evidenced 

by their grea t e r susceptibility. Synergism by piperonyl butoxide 

resulted in the restoration of the Hutgers strain of house flies to 

lev e ls of susceptibility but fa i led to increase carbarnate toxi city 

to such an extent for the Ne\,; Jerf:;ey population of potato beetles . 

This re su lted in the f ormula tion of the hypothesis that for the 

New Jersey population, resistance mechanisms other than monooxygenase 

detoxication may be inv eJ.ved . 

An attempt to conclusively demonstr:.ite tl1 a t r e sistance in 

Colorado potato beetles wa s associated with increa sed monooxygenase 

activity involved the use of in vitro __ p_-nitroDnisole-Q- demethylation 

ass;:iys . Microsor:1al preparations from whole larvae, i s olated fat 
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body, and isolated gut tissues with and without gut contents resulted 

in preparations which were devoid of activity. In contrast, microsomal 

preparations from Rutgers and NAIDM house flies demonstrated a f our­

fold oxidative difference between strains . 

i'ete rmination s of tl1e distribution of NADl'H-cytochrome c 

reductaHe between frac t ions obtained during centrifugation revealed 

that less than 15 !'. of the total activity of this enzyme was sedimented 

into the microsomal pellet with the ffia j ority of activity occurring 

in th e microsomal supernatant. Since th e solub ilization of KADPH­

cytochrome c r cductase has been associated with specific inhibitors 

isolated from insect preparations it is likely that this was also 

occurring in Colorado potato beetles due to contamination by gut 

contents . 



NADPH oxidation and NADPH-cyto chrome c reductase were examined 

for quantitative differences which may be associated with increased 

levels of cytochrome P- 450 in resistant potato beetles and house 

flies. NADPH oxidation in gut and fat body from Colorado potato 

beetles and from abdomens of house flies was not found to differ 

significantly between resistant and susceptible populations of a 

given species nor between tis s ue sources. This result was contra­

dictory to a previous study performed with house flies, perhaps due 

to age and sex differences between the studies. In a similar manner, 

NADPH-cytochrome c reductase did not vary between house f ly strains 

nor between tissue sources from the Colorado potato beetle. There 
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was, however, nearly a two-fold diff erence observed between popu l a tions 

of the Colorado potato beetl e . This is consistent with the idea 

that resistance of the New Jersey population is associated with 

cytochrome P-450. 

The in vivo distribution of l-naphthyl-_!i-methyl- ( 14c)-carbamate 

was examined in an attempt to explain why biological assays involving 

piperonyl butoxide did not restore resistant beetles to levels 

approximating those of the susceptible population. Results indicated 

that decreased penetration in resistant potato beetles is probably 

not a significant factor. However , the excretion of radioactivity 

in the New Jersey population was app roximately twice that of the 

Logan population, confirming that quantitative differences do exist 

between these populations. 

This study has been successful in establishing that monooxygen­

ases play a chief role in Colorado potato beetle resistance to 

carbamate insecticides. However, the in vitro characterization of 



resistance in this insect is difficult, possibly due to the presence 

of an inhibitor which solubilizes NADPH- cytoc~rome c reductase and 

is likely to be assoc iated with the gut contents. The results of 

biological studies indicate t hat either piperonyl butoxide is not 

as effective in inhibiting monooxygenases in po tato beetles as in 

house flies or that another mechanism of resistance may be involved 

which could not be confirmed by this study. Further work with this 

ins ec t needs to be done to confirm the presence of monooxygenases 

further and to demonstrate the existence of a monooxygenase inhibitor 

more conclusively. 
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