
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2021

Intelligent Traffic Management: From Practical Stochastic Path Intelligent Traffic Management: From Practical Stochastic Path

Planning to Reinforcement Learning Based City-Wide Traffic Planning to Reinforcement Learning Based City-Wide Traffic

Optimization Optimization

Kamilia Ahmadi
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ahmadi, Kamilia, "Intelligent Traffic Management: From Practical Stochastic Path Planning to
Reinforcement Learning Based City-Wide Traffic Optimization" (2021). All Graduate Theses and
Dissertations. 8327.
https://digitalcommons.usu.edu/etd/8327

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8327?utm_source=digitalcommons.usu.edu%2Fetd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

INTELLIGENT TRAFFIC MANAGEMENT: FROM PRACTICAL STOCHASTIC

PATH PLANNING TO REINFORCEMENT LEARNING BASED CITY-WIDE

TRAFFIC OPTIMIZATION

by

Kamilia Ahmadi

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Vicki H. Allan, Ph.D. Curtis Dyreson, Ph.D.
Major Professor Committee Member

David Paper, Ph.D. Mario Harper, Ph.D.
Committee Member Committee Member

Chad Mano, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2021

ii

Copyright © Kamilia Ahmadi 2021

All Rights Reserved

iii

ABSTRACT

Intelligent Traffic Management: From Practical Stochastic Path Planning to

Reinforcement learning Based City-Wide Traffic Optimization

by

Kamilia Ahmadi, Doctor of Philosophy

Utah State University, 2021

Major Professor: Vicki H. Allan, Ph.D.
Department: Computer Science

This research focuses on two main areas of intelligent traffic management: a) stochastic

path planning and b) city-wide traffic optimization. Stochastic path planning copes with

the uncertainty of road traffic conditions by stochastic modeling of travel delay on road

networks and helps individuals pursue specific goals and avoid congested areas. Next, we

expand the model to make it applicable to city scale by utilizing pre-computation and

approximation. The city graph is partitioned to smaller groups of nodes and each group

is represented by its exemplar. For path planning queries, source and destination pair are

connected to the respective exemplars corresponding to the travel direction and the path

between those exemplars is found. Approximation provides paths with mean and variance

which are not exact but clearly close to that exact paths, while the solution is space and

time efficient.

City-wide traffic management focuses on optimizing traffic through structural changes

of the city graph such as modifying lane direction, ramp metering, speed limits, and signal

timings on road segments. Under these assumptions, we propose a multi agent reinforcement

learning (RL) framework which the goal of RL agents is to interact with the environment

to learn the optimal modification for each road segment with the goal of maximizing the

iv

cumulative reward over the set of possible actions in the state space. Our proposed method

has two level learning. In the first level, a single agent is the only modifier of the traffic

system so it directly learns an initial policy. In the next level, we have multiple agents

changing the environment at the same time, each based on the initial policy learned in

the previous step while updating their policy based on the interaction with the dynamic

environment and in agreement with other agents.

(126 pages)

v

PUBLIC ABSTRACT

Intelligent Traffic Management: From Practical Stochastic Path Planning to

Reinforcement learning Based City-Wide Traffic Optimization

Kamilia Ahmadi

This research focuses on intelligent traffic management including stochastic path planning

and city scale traffic optimization. Stochastic path planning focuses on finding paths when

edge weights are not fixed and change depending on the time of day/week. Then we fo-

cus on minimizing the running time of the overall procedure at query time utilizing pre-

computation and approximation. The city graph is partitioned into smaller groups of nodes

and represented by its exemplar. In query time, source and destination pairs are connected

to their respective exemplars and the path between those exemplars is found. After this,

we move toward minimizing the city wide traffic congestion by making structural changes

include changing the number of lanes, using ramp metering, varying speed limit, and mod-

ifying signal timing is possible. We propose a multi agent reinforcement learning (RL)

framework for improving traffic flow in city networks. Our framework utilizes two level

learning: a) each single agent learns the initial policy and b) multiple agents (changing

the environment at the same time) update their policy based on the interaction with the

dynamic environment and in agreement with other agents. The goal of RL agents is to inter-

act with the environment to learn the optimal modification for each road segment through

maximizing the cumulative reward over the set of possible actions in state space.

vi

To my better half, Farzin
and my wonderful angels Eva and Navah.

vii

ACKNOWLEDGMENTS

There are many people whom I want to mention their names here. Those who have

helped me in numerous ways not only on my path through the completion of my Ph.D,

but also in the other aspects of my life. First and foremost, I want to thank my major

professor, Dr. Vicki Allan, for granting me the freedom to develop and pursue my research

ideas, for constructive feedback about my ideas, and for scholarly guidance and support

throughout my PhD candidature. Her deep insights and positive manner have always been

helpful and encouraging. Next, special thanks go to my committee members, Dr. Dyreson,

Dr. Harper, Dr. Mano, and Dr. Paper for their support, help, valuable comments, and

particularly for their patience during my Ph.D journey. Using this space, I should specially

thank Dr. Paper for his consistent support, encouragement and guidance specifically in the

deep learning domain. I used the state of the art concepts explained in his deep learning

books in developing my DQN architecture.

I also would like to express my gratitude to the Utah State University, as I enjoyed

studying over there and I learned a lot during my graduate studies.

Finally and most importantly, I am grateful for my parents, Batoul and Golmurad, and

my siblings Pouria and Pedram for enriching my life beyond my scientific endeavours. I am

so grateful for my two sweet angels, Eva and Navah, which are the source of inspiration for

me from the time they came to this world. Words fail me to express my gratitude to my

wonderful loving husband Farzin for believing in me, his love, constant support, a great deal

of patience, and comforting me by his own subtle blend of wit and charm in this stressful

period. Farzin, Eva and Navah your love and encouragement are what carried me through

this work and made it attainable.

Kamilia Ahmadi

viii

CONTENTS

Page

ABSTRACT .. iii

PUBLIC ABSTRACT ... v

ACKNOWLEDGMENTS ... vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

1 Introduction .. 1

2 Congestion-Aware Stochastic Path Planning and Its Applications in Real World
Navigation .. 6

2.1 Abstract . 6
2.2 Introduction . 6
2.3 Previous Work . 8

2.3.1 Contribution of This Work ... 10
2.4 Model Description .. 11

2.4.1 City .. 11
2.4.2 Open Street Map Data .. 13
2.4.3 Agents .. 14
2.4.4 Pruning Heuristic in Path Finding ... 14
2.4.5 Cost Function ... 18
2.4.6 Modelling Agents’ goals ... 21

2.5 Experiments and Results ... 23
2.5.1 Path Finding based on users’ goals .. 23
2.5.2 Compare paths with shortest-length path .. 27

2.6 Conclusion .. 31

3 Practical City Scale Stochastic Path Planning with Pre-Computation 33
3.1 Abstract .. 33
3.2 Introduction ... 34
3.3 Previous Work ... 35
3.4 Framework ... 38

3.4.1 City and Edge Weights .. 38
3.4.2 Traffic Data ... 40
3.4.3 Open Street Map .. 40
3.4.4 Agents .. 41
3.4.5 City Graph Partitioning .. 41
3.4.6 Exemplar Assignment .. 50
3.4.7 Base Path planning framework ... 52

ix

3.4.8 Pre-processing: Building distance oracles .. 55
3.4.9 Scalable Algorithm ... 55

3.5 Experiments and Results .. 56
3.5.1 How Many Partitions Are Needed to Represent The City Graph? 57
3.5.2 Which Partitioning Method We Picked? .. 58
3.5.3 Which Exemplar Assignment Approach is The Best? 59
3.5.4 How is The Quality of Approximate Paths? .. 60
3.5.5 What is the Time and Space Complexity of Scalable Algorithm? 64

3.6 Conclusion and future work ... 65

4 Dynamic Reinforcement Learning Based Traffic Optimization in Smart City Paradigm
. 67

4.1 Abstract . 67
4.2 Introduction ... 68
4.3 Previous Work ... 71
4.4 Model Framework ... 74

4.4.1 Time discretization ... 75
4.4.2 Space discretization .. 75
4.4.3 Learning Agents.. 76
4.4.4 State ... 77
4.4.5 Action .. 78
4.4.6 Reward .. 80
4.4.7 Learning Algorithm .. 81
4.4.8 DQN Architecture ... 83
4.4.9 Parameters ... 85
4.4.10 Training ... 87

4.5 Experiments and Results .. 88
4.5.1 Single vs Multi-agent Impact ... 88
4.5.2 Agent’s Decisions .. 90
4.5.3 Patterns of traffic signals ... 92
4.5.4 Effect of lane change penalty .. 94
4.5.5 Importance of two-stage learning .. 95

4.6 Conclusion and Future works .. 95

5 Conclusion ... 97

REFERENCES .. 100

CURRICULUM VITAE ... 109

x

 LIST OF TABLES

Table

Page

4.1 Summary of the parameters used in this work. 86

4.2 Summary of the impact lane change penalty in non-smooth lane changes. . 95

4.3 Comparison of two stage learning pre-train and main train with only main
train without pre-train step .

96

xi

LIST OF FIGURES

Figure Page

2.1 PSN is the part of the path from source to node N and it is retrieved from the
history of previous expansion steps. PND is the approximate shortest-length
path from node N to destination. If the summation of mean of PSN and
PND is greater than the provided deadline, node N is not getting expanded. 15

2.2 Left: Distribution of main nodes in each partition. We have the total of 150
partitions. Right: Visualization of partitions on Salt Lake City. Each color
represents one partition. ... 16

2.3 Finding an approximate shortest-length path from N to destination using
A∗ algorithm through centroids. .. 17

2.4 Paths from a specific origin (O) to a target (T) are presented as nodes (mp,vp)
in the mean-variance plane. ... 18

2.5 Selected paths for different query times of Friday for Source node=83590367
and Destination node=352876209 based on each cost function. Query times
from left to right the times are: a) 8:00, b) 15:00, and c) 18:10 PM. Deadline
is set as 1200 seconds after start time .. 25

2.6 Selected paths for different query times of Tuesday for Source node=358207657
and Destination node=384734324 based on each cost function. Query times
from left to right the times are: a) 7:30, b) 11:40, and d) 17:45. Deadline is
set as 1400 seconds ... 26

2.7 Selected paths for different query times of Monday for Source node=2053542172
and Destination node=352883524. Query times from left to right are: a) 6:40,
b) 8:10, and d) 18:00. Desired arrival time is within the 1600 seconds after
query time. Best time for start the trip to have the smallest travel time is as
follow: a) 6:40, b) 8:23, and c) 18:21. ... 28

2.8 Selected paths for different query times of Wednesday for Source node=1218569178
and Destination node=2421320748. Query times from left to right are: a)
7:40, b) 11:10, and d) 17:30. Desired arrival time is within the 2000 seconds
after query time. Best time for start the trip to have the smallest travel time
is as follow: a) 8:01, b) 11:10, and c) 18:09. .. 29

2.9 Comparison of mean and variance of highest probability path, smallest travel
time path and shortest-length path in 17:20 PM of Tuesday for 10 different
source and destinations (A to J). ... 30

xii

2.10 Comparison of mean and variance of highest probability path, smallest travel
time path and shortest-length path in 17:20 PM of Wednesday for 10 different
source and destinations (A to J). ... 30

2.11 Comparison of mean and variance of highest probability path, smallest travel
time path and shortest-length path in 17:20 PM of Friday for 10 different
source and destinations (A to J). ... 30

2.12 Comparison of average mean and variance of highest probability path, small-
est travel time path and shortest-length path in 8:00 AM of Weekdays for
100 different source and destinations. ... 31

3.1 Paths from a specific origin (O) to a target (T) are presented as nodes (mp,vp)
in the mean-variance plane. ... 39

3.2 Distribution of main nodes in each cluster and visualization of them on Salt
Lake City for K-means clustering. Each color represents one cluster. 45

3.3 Left: Distribution of cluster sizes in Mean Shift. Right: Visualization of
clusters on Salt Lake City. Each color represents one cluster. 46

3.4 Distribution of communities on Salt Lake City in Leading Eigenvector approach. 48

3.5 Distribution of communities in Walktrap approach for the clusters with node

size less than 300 nodes along with representation of all of the communities.
Each red dot represent a community. The edge between communities shows
the relationship between one community to another. .. 49

3.6 Left: Distribution of communities in Label Propagation approach. Right:

Representation of communities. Each red dot represent a community. The
edge between communities shows the relationship between one community to
another. .. 50

3.7 Left: Distribution of communities in Multilevel approach and representation

of them. Each red dot represent a community ... 51

3.8 (a): For finding a path from n1 to n2, successor nodes of n1 (orange circles)
are explored. Among the successor, the marked ones meet the deadline and
rest are discarded. Dotted paths are heuristics paths from the successor
nodes to n2 and they are used as a pruning criteria for the successor nodes
of n1. (b): Finding the heuristic path from m (a middle node in expansion
shown as green circles) to n2 uses A∗ algorithm through exemplars of
graph (green triangles). (c): From current exemplar to the neighboring
exemplar the one with with the least g(n) + h(n) is selected (green
triangle). Figure
shows the selected exemplar in each step of A∗ on exemplars for heuristic path. 53

xiii

3.9 Red rectangles are exemplars of each region. Green circles are the typical
source and destination. ... 56

3.10 Number of partitions vs the mean difference of travel time of exact and
approximate path. .. 58

3.11 Left: Distribution of nodes in each partition. Right: Visualization of parti-
tions on Salt Lake City. Each color represents one partition. 58

3.12 Comparison of four methods of exemplar selection a) highest traffic, b) high-
est reach, c) closeness centrality and d)random walk centrality 60

3.13 Y axis is the relative difference percentage of mean and variance of travel
time of paths for exact and approximate approach for peak and non-peak
hours for the agent’s goal of highest probability path ... 61

3.14 Ratio of paths with the closest mean-variance to the exact path in peak and
non-peak hour for the agent’s goal of highest probability path 62

3.15 Relative difference of travel time of mean and variance of paths for exact and
approximate approach for rush and non-rush hours for the agent’s goal of
shortest en-route time. ... 63

3.16 Ratio of paths with the closest mean-variance to the exact path for the agent’s
goal of shortest en-route time. ... 64

4.1 Allocating one lane from right side to left side may decrease the congestion. 69

4.2 Delaying cars from entering the freeway using a ramp metering. 70

4.3 Implementation of variable speed limit. Variable speed limit allows speed
limits to be changed based on current road conditions and the level of con-
gestion (original image from PennDOT [1]) ... 71

4.4 Sample of state discretization. Road segments are shown with different colors
(original image cropped from Google Maps TM). .. 76

4.5 The 8 possible phases of a signal at each junction. .. 77

4.6 Main segment and extra segments that have been considered for a) lane, b)
signal, c) ramp and d) speed agents. .. 79

4.7 Architecture of Deep Q-Network (DQN) using experience replay and target
network .. 85

4.8 The graphs compares the improvement we got over the baseline traffic with
different groups of agents modifying the city during rush hour and non-rush
hour time. .. 89

xiv

4.9 Summary of modifications that our agents made during the three traffic pro-
files: a) low traffic, b) medium traffic and c) high traffic 91

4.10 Distribution of speed limit changes in low traffic and lane changes in high
traffic .. 93

4.11 Possible signal phases for a north-south direction. .. 93

4.12 Signal Pattern for base, none rush hour and rush hour. .. 94

CHAPTER 1

Introduction

Intelligent agents can be used in simulation of real-world domain applications. A

simulation is an imitation of the operation of a real-world process or system. Simulation has

the following advantages: a) one can study the behavior of a system without building it, b)

results are accurate in comparison to analytical model, c) can find unexpected phenomenon

and the behavior of the system, d) easy to perform ”What-If” analysis and e) experiments

on a real system may be impossible or impractical, often because of cost or time. Hence,

multi-agent systems with the power of mimicking the intelligence of interacting humans are a

suitable paradigm to facilitate the experimentation in a real world domain. In this research,

we utilize the capability of multi-agent systems in order to propose models for intelligent

traffic management. Also we want to assess how effective our proposed algorithms work in

a real world domain setting [2].

A recent survey [3] estimates that the annual nationwide cost of traffic congestion is

78 billion, including 4.2 billion hours in lost time and 2.9 billion gallons in wasted fuel. In

modeling a city scale graph, congestion changes throughout the day which results in having

uncertain costs on the road segments [4–8]. Congestion is affected both by the total traffic

and by the path selection of drivers in the network. In addition, there are many factors

that affect the congestion pattern such as road conditions, drivers’ path choice, time of the

day, weather conditions, and events throughout the city [4, 6, 9–11].

One aspect of an intelligent traffic management system is to enable users to make more

coordinated, efficient, and smarter decisions through a path planning paradigm. Our path

planning framework defines edge weights based on the mean and variance of travel time on

them and edge weights change depending on the time of day/week. Such path planning

system is a useful addition to on-board navigation systems to provide the paths that meet

desired travel goals. It is also a worthwhile addition to Web-based mapping services. The

2

other aspect of traffic management is to improve the traffic flow and reduce the traffic load

on highly congested areas by minimizing overall city congestion. Recently, more attention

has been paid to leveraging operational techniques in traffic management like widening

roads, variable speed limits, and modifying signal timing [12–20]. Our traffic optimization

framework focuses on making structural changes to the city graph such as dynamically

changing the direction of lanes, ramp metering, modifying the speed limits, and modifying

the signal timing in order to manage the traffic in congested areas. Reducing congestion

throughout the city has the benefits of decreased pollution, fewer accidents, less wasted

time, and less fuel costs ([6, 8, 21–23].

The main questions we want to address in this research are as follow:

• In the stochastic domain, where edge weights are not fixed and they stochastically chang-

ing during the day, can we propose a path planning algorithm that models different

agents’ goals and satisfies their desired characteristics? How is the proposed path

planning algorithm impacted by agents’ goals?

• In the domain that the primary goal of agents is to pick the path with minimum cost,

how do we realistically model paths’ costs in order to mimic the real world domain

path planning?

• How can we make the proposed path planning algorithm applicable to real world do-

mains where there are thousands of path planning requests at the same time and the

characteristics of the domain is changing over time?

• In the case of a futuristic smart city that is making structural changes to the city graph,

what are the set of changes that can efficiently reduce the overall traffic?

• Is it possible to learn the structural changes dynamically and have trained agents that

can make decision dynamically to reduce overall traffic?

A scalable path planning framework finds a path from a specific origin to a destination

over a network of road segments. Path planning algorithms use the road segment costs in

3

order to come up with the best path. If the road segments’ costs are fixed, planning the

best path through the network is a well understood task via algorithms like Dijkstra and

A* algorithms [24, 25]. However, in real world navigation problems, depending on the level

of congestion on the road segments, the cost associated with the legs of the trip changes

over time. The challenge is to find the best paths under uncertainty and the constraints of

a real-world domain. The definition of best path differs based on the goal of the agents.

For finding the best path, queries have an origin, a destination and the desired arrival time

(deadline) along with the agents’ goals. Inspired by time-dependent traffic situation, we

parameterize travel time distributions by time, which allows us to speak of time-dependent

path costs and study the problems of reaching a goal by a deadline and delaying departure

to minimize traversal-to-goal time. The best path is the path with lowest cost, and the cost

is mainly based on travel time which depends on the level of congestion at different times

of the day/week. For modelling cost functions, we consider three possible cost functions

(linear, exponential, and step cost functions) in order to model the main classes of realistic

goals, but any cost function can be incorporated in the model. Since the graph is large,

optimizing for lowest cost on all possible paths between any source destination pairs is

not feasible. Therefore, we propose a pruning technique to shrink the search domain. For

finding the candidate paths between nodes pair of nodes, we start from first node and

explore the successor nodes (expanding) until we reach the second node. When exploring

each node, the heuristic estimates a path from that node to destination and if the expected

estimated arrival time when using the heuristic path is greater than the provided deadline,

the node is not expanded (pruned). We continue this process until we find the candidate

paths between a source and a destination. Then candidate paths are passed to the path

selection part which picks the path with minimum cost which satisfies agents’ goals.

We build on the top of proposed path planning framework and make it practical to be

used in large scale path planning applications. For expediting the path planning process, the

city is partitioned, and each part is represented with an exemplar location. The exemplar

of each partition is decided based on random walk centrality concept which tries to find the

4

center of a partition based on the expected length of a random walk. Two approaches have

been used for partitioning the city graph: 1) community detection, and 2) graph clustering.

In response to a path planning request, source and destination nodes are connected to their

nearest exemplars (with respect to the path direction) and the path between exemplars

is retrieved. The paths between exemplars are stored in distance oracles based on the

preceding year data at the time of update. The oracles are updated every week to reflect

the recent changes in the network. Approximation provides paths with mean and variance

which are not exact but clearly close to the exact paths, while the solution is space and

time efficient.

City-wide traffic optimization focuses on optimizing the traffic congestion on the whole

city network through a smart city paradigm. A smart city provides the capability of mod-

ifying the structure of the city graph and gathering information from the sensors to learn

the best possible modification for each condition of the traffic. These changes include mod-

ifying lane direction, ramp metering, speed limits, and signal timings on road segments.

For this reason, we propose a multi agent reinforcement learning system (RL Agents) that

finds the best structural changes based on multiple dynamic factors such as current traffic

condition, dependent road segment structures, and recent structural modifications. These

structural changes not only impact the flow in both directions of the road segment but also

the flow at surrounding road segments. Therefore, we need to consider the impact of struc-

tural changes not only on each road segment, but also on dependent road segments and the

whole network. RL agents interact with the environment in the training phase and learn

the optimal modification for each road segment considering the current road segment and

the impact on the dependent segments. We proposed the process of learning the optimal

policy as a two step process. In the first step, a single agent is the only modifier of the

traffic system so it directly learns the initial policy. In the second step, there are multiple

agents changing the environment, each based on the initial policy learned in the previous

step while still updating their policy. The goal of RL agents is to maximize the cumulative

reward over the set of possible actions in state space. First step is critical to reduce the

5

noise in the reward system and be able to converge to a stable policy. Then, in the second

step, the agents update their policy to take into account the indirect interaction with the

other agents.

The following chapters are published or submitted articles.

6

CHAPTER 2

Congestion-Aware Stochastic Path Planning and Its Applications in Real World

Navigation

2.1 Abstract

One1 of the main applications of path finding is in real world vehicle navigation. Most

of the algorithms use edge weights in order to select the best path for navigation from an

origin point to a specific target. This research focuses on the case where the edge weights

are not fixed. Depending on the time of day/week, edge weights may change due to the

congestion through the network. The best path is the path with minimum expected cost.

The interpretation of best path depends on the point of view of car drivers. We model two

different goals: 1) drivers who look for the path with the highest probability of reaching the

destination before the deadline and 2) the drivers who look for the best time slot to leave

in order to have a smallest travel time while they meet the deadline. Both of the goals are

modelled based on the cost of the path which is highly dependent on the level of congestion

in the network. Minimizing the paths’ cost helps in reducing traffic in the city, alleviates air

pollution, and reduces fuel consumption. Findings show that using our proposed intelligent

path planning algorithm which satisfies users’ goals and picks the least congested path is

more cost efficient than picking the shortest-length path. Also, we show how agents’ goals

and selection of cost function impacts paths’ choice.

2.2 Introduction

Path planning finds a path from a specific origin to a destination over a network of road

segments. Path planning algorithms use the road segment costs (travel time, distance, and

1The first version of this work is presented and published in proceedings of IEEE International Confer-
ence on Computational Science and Computational Intelligence (CSCI 2017). DOI: 10.1109/CSCI.2017.22
The current version (extended) is presented and published in proceeding of 13th International Conference
of Agents and Artificial Intelligence (ICAART 2021) DOI:10.5220/0010267009470956

7

congestion) in order to come up with the best path. If the road segments’ costs are fixed,

finding the best path through the network is a well understood task. Many algorithms have

been proposed either to find a shortest length path between nodes of a graph or to find the

optimized path by considering fixed edge weights like Dijkstra and A* algorithms [21,24,25].

However, in real world navigation problems, it is more complex to find a best path for

routing. Depending on the level of congestion on the road segments, the cost associated

with the legs of the trip changes over time. Also, it is not feasible to use an adaptive

algorithm due to the urgency in having a quick response to the queries and hesitancy of

drivers to change their route frequently.

In modeling a city scale graph, congestion changes throughout the day which results

in having uncertain costs on the road segments [6, 8, 26, 27]. Congestion is highly affected

by the path selection of drivers in the network. In addition, patterns of the congestion on

the road segments of a city graph are not always predictable. There are many factors that

affect the congestion pattern such as road conditions, drivers’ path choice, time of the day,

weather conditions, and events throughout the city [4, 6, 10, 11, 23, 27].

We consider expected travel time on the road segments as the cost of that segment. The

variability of congestion level on road segments implies that the real world navigation is a

problem of finding a path through a stochastic network. One prominent step toward having

a minimum cost path through a stochastic network is to understand traffic conditions and

use them for planning drivers’ paths. Being able to minimize the paths costs, ultimately

results in reducing the city scale congestion by picking less congested paths. Reducing

congestion throughout the city has the benefits of decreased pollution, fewer accidents, less

wasted time, and less fuel costs [6, 8, 21–23, 28].

This paper focuses on path planning over a stochastic network which is a graph of a

city. The challenge is to find the best paths under uncertainty and the constraints of real

world domain. Agents are car drivers which can pursue different goals: First, the ones

who are not willing to take risk and look for the path with highest probability of reaching

destination before a desired arrival time, even if it may take them longer. Secondly, the

8

agents who are open to take a riskier decision if it helps them in having the smallest en-route

time. These agents are flexible in leaving anytime while they still need to make the trip.

To make it clearer, one good example of these kind of agents’ goals is in the context of a

package delivery system. For example, suppose that we guarantee the delivery of a package

by 4 PM, otherwise the customer doesn’t accept the delivery and we lose the shipping costs.

In that case, we are interested in picking a path that has the highest chance of reaching

destination before the deadline to avoid losing the shipping cost. The other possible case

is delivering perishable products. For example, if we promised the delivery of perishable

products before 6 PM to the customers, we are interested to pick a path that has the

smallest en-route time due to the nature of our package. In this case, we are flexible in

leaving anytime, but we do need to have the smallest en-route path while still making the

destination before 6 PM.

As mentioned earlier, the definition of best path differs based on the goal of the agents.

For finding the best path, queries have an origin, a destination and the desired arrival time

(deadline) along with the agents’ goals. Then, intelligent path planner finds the least cost

path corresponding to the path finding queries and send it to the agents.

2.3 Previous Work

Miller-Hooks and Mahmassani [29] consider travel costs as edge weights of a navigation

graph in their model. Costs depend on travel times, and their goal is to find the least

expected travel time path by setting each arc’s weight to its expected value for peak and non-

peak time of the day. Then they solve an equivalent deterministic problem. This model

considers some extent of uncertainty in path finding. However, there has been little work on

decision theoretic models which directly consider uncertainty, congestion awareness and time

dependency of edge weights and which find the optimal path on the basis of the

distributional information of the stochastic edge weights.

Fan, Kalaba and Moore [22] consider a special monotone increasing cost based on

the probability of arriving late and suggests that the Gamma distribution is natural for

modelling stochastic edge travel times. The probability calculation requires computing a

9

continuous-time convolution product. Therefore, it makes the path finding a computation-

ally expensive and time consuming task.

Niknami et al [4], present an efficient technique for computing the route that maximizes

the probability of on-time arrival in stochastic networks. Their method uses a heuristic for

the optimal path that chooses the direction at every intersection based on the current state.

The solution for this problem can be obtained by evaluating zero-delay convolution on the

path probability and expected travel time. They made three major assumptions that travel

time distributions are 1) time invariant, (2) exogenous (not impacted by individuals routing

choices), and (3) independent. These assumptions make it not desirable for us as we look for

a model that considers changing the edge weights through the day and the routes’ choices

are affected by other driver’s decision as it is the major source of congestion on stochastic

networks.

Zhiguang [30], proposed the Probability Tail model based on stochastic shortest path

problem to find the most reliable path. They formulated the problem as a cardinality

minimization problem by directly utilizing travel time data on each road link. Then, the

minimization problem is approximately solved via relaxing the cardinality by L1-norm and

its variants, and formulating it as a mixed integer linear programming (MILP) problem.

Their model uses a data driven approach for path finding and assumes that the traffic

pattern on the edge links are invariant. For extracting the edge weights, it uses travel time

samples on each arc as input and adopts some random distributions to generate the weights.

As the result, this model doesn’t consider traffic patterns for different times of a day.

Some stochastic path planning methods utilize pruning techniques in order to shrink the

path finding search region. Some of the famous ones are ’reach’ and ’arc-flags’. Lots of other

pruning techniques are based on either reach or arc-flag. In reach-based pruning [31, 32], a

node is expanded if it lie on a shortest path that extends a long distance in both directions

from the vertex. The idea of pruning in arc-flag [33] is to divide the graph into a set of

regions. Then, each edge has an associated vector of Booleans with one value for each

region where each Boolean is true if the edge is used by at least one path ending in the

10

corresponding region. Then any edge without the Boolean corresponding to the region that

the destination belongs to is pruned from the graph. One of the major limitations of both

mentioned methods is the long time takes to reflect any possible changes of the network

due to the vast amount of computation.

Lim [6] proposes stochastic path finding where edge weights are represented as linear

combination of mean and variance of travel time (mean+ λ * variance) controlled by a

λ parameter. They used GPS traces of roughly 500 million anonymized GPS points to

model the city graph. Then, extracted GPS traces from individual vehicles and, using map

matching techniques, they build the city graph. In their model, the key property is the fact

that the optimal path occurs among the extreme points of the convex hull containing all

the path points. The λ is used to prune the search regions and selects only a small number

of λ values. Then best path is found by Dijkstra [24] based on minimizing the cost function

of two modelled goals: 1) maximizing the probability of reaching a destination before a

deadline and 2) identifying the latest departure guaranteeing arrival before the deadline.

2.3.1 Contribution of This Work

Firstly, in this research, we used Open Street Map (OSM) data for modelling the city

graph [34]. OSM data is an open source collaborative map and is widely accessible to model

any city of interest.

Secondly, in our model, we consider travel costs in intervals of 10 minutes for each day

of a week in order to extract the typical mean and variance on that edge for the specific time

slots. Means and variance of each edge, does not need to be combined and they present

the variation in any given point of day/time. Time steps are as short as 10 minutes to

reflect the changes throughout the day accurately. Considering different days of a week is

also important because the traffic pattern of Monday 8 : 00 AM is different from Saturday

8 : 00 AM. In our model, mean and variance of edge e at 3 : 25 PM of Monday is the

mean and variance of travel time on edge e for all Mondays of a year in the time segment

of [3 : 20, 3 : 30]. In this way, we model the behavior of traffic flow more realistically.

Also, we study three options of cost functions to have an understanding of main classes

11

of cost modelling: 1) linear cost function in which the cost of the path linearly increases by

travel time, 2) exponential cost function which represents the case where the cost rapidly

increases by travel time and 3) step cost where there is no cost if the user arrives before the

deadline while the paths that arrive after the deadline are penalized.

In addition, our path finding has two main steps: a) pruning search region to select

few paths among all possible paths, and b) finding optimal path from the selected ones in

step a. In pruning phase, a node is expanded if expected mean of the travel time of the

approximate path through the node is less then the user’s deadline. (The process explained

in 3.4.7). This pruning technique which is easily adaptable to the changes of network, helps

in reducing the search region and hence makes the path finding process applicable to real

world domain. As in city graphs, because of interconnected nature of the graph, there are

large number of paths to be considered between any source and destination.

The last contribution of this paper focuses on agents’ goals. First group of agents are

looking for the path that maximizes the probability of reaching a destination before the

deadline. Second group, look for the best departure time slot in order to have the least

travel time and arrive at the destination before deadline, these agents are interested to take

riskier decision if it provides them shorter en-route time.

2.4 Model Description

2.4.1 City

The city is modelled as a directed graph consisting a set of vertices, V , which represent

road intersections and edges, E, that represent road segments between vertices as shown in

Equation 3.1.

E ⊂ V 2 (2.1)

We consider the city graph to be planar (i.e., edges intersect only at their end points).

If we consider the number of nodes in the planar graph as n and the number of edges as

m, the relationship between them is m << n2 [6, 26, 35]. Associated with each edge of

12

the graph is a travel cost used as the edge weight in our directed graph. We use expected

travel time as the cost of an edge. Edge costs are not fixed, and they are represented by an

expected travel time random variable. The travel time random variable, W , is represented

as a tuple of mean and variance of the delay on that edge at the specific travel time interval

shown in Equation 2.2.

Wedge(t) = (medge(t), vedge(t)) (2.2)

We compute time segments in the intervals of 10 minutes for each day of a week. For

finding the mean and variance of each edge in time segments of a week, we summarized

yearlong traffic data based on 10 minutes time segments for each day of a week. The target

city in this model is Salt Lake City, Utah, and we use monitored traffic data from Utah

Department of Transportation (UDOT) [36] to extract edge weights of the city graph.

Travel time of each edge is an independent Gaussian random variable [6, 10, 11, 22, 26,

28,37]. Since the sum of independent Gaussian random variables is also a Gaussian random

variable, the travel time for the whole path is also Gaussian (shown in Equation 2.3).

tpath ∼ Normal(mpath, vpath) (2.3)

Stochastic dependency between adjacent edges can be considered by transforming the

graph in a way to add a new edge between two dependent edges with mean equals to 0 and

variance equals to covariance of the weights of two dependent edges. Note that correlation

of two consecutive edges is always positive as they have similar traffic directions. This new

edge captures the correlation between the two correlated distributions [6, 22, 26, 37]. We

consider edge weights to be independent from each other as the time dependent variance on

edges represents the dependency of the congestion on adjacent edges [4, 6, 10, 11, 26, 38, 39].

For example, suppose that edge e takes 30 percent longer than when congestion free in a

specific time slot, an adjoining edge is likely to take 30 percent longer than when congestion

free in the same time slot. Then for the specific edge and its adjoining edge, the variance

reflects all of these changes throughout different time slots of the day.

13

i=

i=

i=

i=

i=1 j=1 i=

i=

The mean of a path is the sum of the means of all edges included in the path (Equa-

tion 2.4).

mpath(t) =
e∈path

me(t + δ) (2.4)

Variance of the path is the sum of variance values of all edges included in the path from

an origin O to destination D (Equation 3.7) [6, 21, 26, 38, 39]. If we consider each edge as

an independent random variable, then the sum of variances is derived from (Equation 2.5).

Since we assume edge weights are independent from each other, then cov(Xi, Xj)=0 for

i ̸= j and Equation 2.6 is the result. Based on Equation 2.6, the variance of a path is the

sum of variance of all edges included in the path shown in Equation 2.7.

n n n

var(

Xi) = E([

Xi]2) − [E(

Xi)]2 (2.5)

n n n n n

var(

Xi) =

cov(Xi, Xj) =

cov(Xi, Xj) =

var(Xi) (2.6)

vpath(t) =
v∈pat
h

ve(t + δ) (2.7)

While we could use the mean and variance of a path, using the sum of means and

variances of its constituent parts yields the same results. Computing mean and variance of

a path based on its including edges helps in storing less data for the whole city, because

each edge might be used in multiple paths. For finding the mean and variance of a path,

a sliding time window has been considered. A sliding time window implies that the cost of

each edge in the path depends on the amount of time that took to reach it, not just the

initial departure time. For example each me(t) is actually me(t + δ) in which delta is the

estimated arrival time from source node to edge e.

2.4.2 Open Street Map Data

For building the city graph, we used Open Street Map data [34]. Open Street Map

is a collaborative open source project which creates a free editable map that can be used

widely. Open Street Map represents physical entities on the ground like buildings, roads,

14

intersections, bridges and so on. It uses the basic data structure of entities and tags for

describing the characteristics of that entity. The data structure includes nodes, ways, and

relations. A node is a single point in space defined by its latitude, longitude, and node id.

A way is a list of nodes used to represent linear features such as a series of roads. A relation

is a multi-purpose data structure that relates two or more data elements like a route, turn

restriction, traffic signal or an area. Entities in Open Street Map have tags which specify

the characteristics of the entity. Each tag describes a geographic attribute of the feature

of the specific node, way or relation. Most features can be described using only a small

number of tags, such as a path with a classification tag such as highway or foot way.

2.4.3 Agents

We consider drivers as agents. Agents get suggested directions from a central path

planner by entering source, destination, deadline and their goal. Definition of best path

may be different from the point of view of one agent to another. Having the origin (O),

target (T), and deadline (D), here are the two main questions that clarifies agents’ goals in

this model.

• What is the path with the maximum probability of reaching destination before the dead-

line? (the most secure path, hence might be longer)

• What is the best time to leave in order to have the smallest travel time and reach the

target before the deadline? (riskier decision, while getting smallest travel time path)

2.4.4 Pruning Heuristic in Path Finding

In a city scale graph with interconnected nodes, there are many possible paths between a

source node (S) to a destination node (D). Considering all of those paths is computationally

intractable and lots of them are not aligned with the query’s deadline and goal. Thus, we

need to prune the search region in order to consider the paths with the closest characteristics

to the desired path. For finding the candidate paths between a source (S) to a destination

(D), we start from S and explore the successor nodes (expanding) until we reach D. When

15

exploring each node, the heuristic estimates a path from that node to destination and if the

expected estimated arrival time when using the heuristic path is greater than the provided

deadline, the node is not expanded (pruned).

The path from source to destination through node N is the combination of the path

from source to the node (PSN) and the approximate shortest-length path from the node

to destination (PND). For each node in expansion phase, PSN is known from the history

of previous expansion steps. For finding PND, we consider an approximate shortest-length

path from that node to destination as finding the actual shortest-length path from N to

destination is also computationally intractable due to the large branching factor in each

step of the city scale graph.

Fig. 2.1: PSN is the part of the path from source to node N and it is retrieved from the
history of previous expansion steps. PND is the approximate shortest-length path from
node N to destination. If the summation of mean of PSN and PND is greater than the
provided deadline, node N is not getting expanded.

For approximating the PND, we use grid-based city partitioning. We partition the

city based on a simple gird of 10 ∗ 15 to have 150 partitions. 150 partitions has been

selected based on the shape of Salt Lake City. Each partition includes a set of nodes and

it is represented by its centroid. Centorid of each partition is one of the main nodes in

16

the center of the partition. Figure 2.2 shows the grid of Salt Lake City along with the

distribution of nodes in each partition.

Fig. 2.2: Left: Distribution of main nodes in each partition. We have the total of 150
partitions. Right: Visualization of partitions on Salt Lake City. Each color represents one
partition.

Approximate shortest-length path (PND) is found by using A* algorithm on centroids,

i.e. instead of considering all the nodes from N to D, only centroids are considered. In

each step of A*, the next centroid is picked based on the smallest g(n) + h(n) value, where

g(n) is the shortest-length path from current centroid to the neighboring centroid and

h(n) is the direct path from the neighboring centroid to the destination. Shortest-length

paths between adjacent centroids are pre-computed and they are retrieved to build the

approximate shortest-length path.

As it can be seen from Figure 2.2, Salt Lake City has 150 partitions, therefore, pre-

computing and storing the shortest-length paths between the adjacent centroids is not a

complex task. Also pre-computation of shortest-length path between centroids is a one time

task as the shortest-length path between centroids doesn’t change over time.

After finding the approximate shortest-length path, expected mean of travel time for

both PSN) and PND are found considering the query time and if the summation of their

means is greater than the provided deadline, the node is not expanded. This heuristic helps

17

Fig. 2.3: Finding an approximate shortest-length path from N to destination using A∗
algorithm through centroids.

us to prune the path finding search region. Using this heuristic, we find the potential paths

which have the mean of the path in the reasonable range aligned with provided deadline.

As mentioned earlier, edge weights are represented based on mean and variance of the

traffic flow on that edge at the query time. Also, each path is the finite sequence of edges.

Therefore, paths from a specific source (C) to a destination (D) are presented as nodes

(mp,vp) in the mean-variance plane (Figure 2.4).

In the mean-variance plane, the horizontal axis represents the mean and the vertical

axis represents the variance. Each small rectangle represents one of the candidate paths for

a specific source, destination pair.

Paths may vary from the one with highest variance and lowest mean (marked as b) to

a path with highest mean and lowest variance (marked as a)in the mean variance domain

shown in Figure 2.4. Paths are in a convex hull and the best path is somewhere in the

convex hull between the extreme points. Convexity certifies that in the search region, there

can be only one optimal solution which is globally optimal [4,6,26]. Then based on the cost

function and agent’s goal, one of these paths is selected as the best path which we explain

in further sections.

18

Fig. 2.4: Paths from a specific origin (O) to a target (T) are presented as nodes (mp,vp) in
the mean-variance plane.

2.4.5 Cost Function

As explained before, there may be more than one path between two nodes and each

path has specific characteristics (paths are found based on 3.4.7). The main objective is to

find a path with minimum expected cost when agents have more than one option. In order

to minimize the paths’ expected cost, we need to have a function which models each path’s

cost Cost(t) along with the probability of arriving by that time fpath(t). Expected cost of

a path is found using Equation 2.8.

ExpectedCost(t) = cost(t) ∗ fpath(t) (2.8)

For modelling paths’ cost Cost(t), we studied three main classes of cost functions: a)

linear, b) exponential, and c) step cost function and we discuss the characteristics of each

one in the subsequent sections. Obviously, modelling paths’ cost is not limited to the cost

functions we discuss here and any cost function can be applied either by combining linear,

exponential, and step function or by directly putting Cost(t) in Equation 2.8.

19

ExpectedCost(t) = cost(t) ∗ fpath(tpath|mpath, vpath)
=

tfpath(t)dt = mpath

For finding the probability of each path fpath(t), we considered travel time on edges

as a continuous random variable which follows a normal distribution [6, 11, 22, 40]. The

Probability Density Function (PDF) is used [41] to define the probability of travel time

random variable at each specific time (described in Equation 2.9). The Probability Density

Function is normally used to specify the probability of the continuous random variable

falling within a particular range of values [41, 42].

 1 − (t−mpath)2

2vpath fpath(t|mpath, vpath) =
✓

2πv
e

path
(2.9)

Linear Cost Function

In the linear cost function model, the cost of the path increases linearly by travel time

(Equation 2.10). The longer the travel time (t), the more expensive the path is. In this

model, agents provide the origin and destination of their trip, and the goal is finding a path

with minimum cost. The expected cost is calculated using Equation 2.11. The amount for

fpath (tpath) comes from Equation 2.9 which is PDF of travel time random variable (t).

cost(t) = t (2.10)

- +∞

Therefore, if we model cost as linear, expected cost of the paths are equal to average

travel time of those paths. In that case, neither deadline and nor agent’s goal plays a role

here. All matter is mean of the path. It even removes the effect of variance of travel time

of paths.

Exponential Cost Function

Exponential cost function refers to the case where the cost of a path increases rapidly

by travel time. Equation 2.12 shows the exponential cost model based on travel time (t),

and Equation 2.13 is used for calculating the expected cost. In Equation 2.12, k is the

steepness of the exponential cost increase.

−
∞

20


−

cost(t) = ek∗t (2.12)

ExpectedCost(t) = cost(t) ∗ fpath(tpath|tpath|mpath, vpath)
=

+∞
ek∗tfpath(t)dt = ek(mpath+

−∞

vpath

2

(2.13)

Based on the result of Equation 2.13, minimizing the expected cost depends on min-

imizing the linear combination of mean and variance in accordance with cost steepness

parameter k.

Even though modelling cost as exponential considers the effect of variance in path

planning, hence it always picks the path with minimum mpath, vpath at query time and

other parameters such as deadline and agents’ goals are not in the picture of decision

making.

Step Cost Function

Another way of modeling the cost function is to penalize the paths which reach the

destination after the deadline. In this case, a step function is used to model the cost

(Equation 2.14). In Equation 2.14, u represents a step function [41], d stands for the

desired arrival time, and t is travel time random variable which is shown in Equation 2.15.

Then expected cost of each path is calculated using a step function and the probability of

reaching deadline using Equation 2.16.

cost(t, d) = u(t − d) (2.14)

u(t d) =


1 if t > d

0 if t < d

ExpectedCost(t) = cost(t, d) ∗ fpath(tpath|mpath, vpath)
=

(2.15)

+∞
u(t − d)fpath(t)dt (2.16)

−∞

Since the step function does not consider any penalty if the agent reaches the destination

before deadline, the cost in the interval of [−∞, d] is zero and Equation 2.16 is re-written as

Equation 2.17. Equation 2.17 is equal to Cumulative Density Function (CDF) of Standard

-
)

-

21

−

√

−

Normal Distribution [41, 42]. Based on Equation 2.17, when there is a set of paths from

a specific origin to a destination the path with minimum expected cost is the path that

maximizes Equation 2.18.

ExpectedCost(t) =

+∞
fpath(t)dt = 1 Φ(

d

d mp
√v

p

) (2.17)

Φ(path) = deadline −
mpath

vpath

(2.18)

In the step cost model, mpath and vpath are not linearly related to each other. In order

to select the best path, we need to consider deadline, users’ goals and query time in the

objective function as shown in Equation 2.18.

2.4.6 Modelling Agents’ goals

As mentioned in 2.4.3, two agents’ goals have been considered in this work and per the

discussion in 2.4.5, if we model agents’ cost as linear and exponential, agents’ goals are not

considered in expected cost minimization. Therefore, we focus on step cost function as one

of the possible cost functions to study the agents’ goals.

Highest Probability Path

If we model the cost as step function and expected cost as Equation 2.17, in order

to minimize the expected cost we need to maximize Equation 2.18 which is equal to the

Cumulative Distribution Function (CDF) of Standard Normal Distribution [42]. CDF

generates a probability of the random variable (travel time in this case) when distribution

is normal to be less than a specific value which is d (deadline) here. Then the user’s goal is

to select a path that maximizes Equation 2.18 which is the path with highest probability

of reaching the destination before deadline [4, 6, 30]. For finding the best path, we need to

consider the set of candidate paths from origin (O) to destination (D) in the mean-variance

domain based on the approach explained in 2.4.4 in order to select the path which maximizes

Equation 2.18.

-

22

Smallest Travel Time

In this model, cost function is modelled as the step cost. Then having the desired

arrival time τ 2, the possible departure time τ 1, and the probability of making the trip

before τ 2, we are looking for the specific time tG for departure which results in the smallest

travel time. Therefore, the departure time is not fixed and it is a specific time tG bounded

in the interval of [τ 1, τ 2]. For simplicity of referral, we call [τ 1, τ 2] interval as the trip

interval.

For this model, we modify the deadline variable in Equation 2.18 as the difference of

desired arrival time and departure time which is equal to travel duration and rewrite it in

the objective function for this model as shown in Equation 2.19. The goal is to minimize

the travel duration if departure time is in [τ 1, τ 2]. In Equation 2.19, ϕ is the argument

of the Cumulative Distribution Function (CDF) that makes the CDF equal to the given

probability of making the trip before τ 2 and it is fixed here.

desired arrival time − departure time = mpath + Φ(path) ∗ √vpath

if departure time ⊂ [τ 1, τ 2] (2.19)

For finding the best departure time, first we find the latest possible time (τL) that

the agent can reach destination before deadline. Then we divide the interval of [τ 1, τL]

to sub-intervals in accordance with weekly 10 minute time segments. As we mentioned

earlier, mean and variance of the edges vary from one time segment to another. For each

time segment in trip interval [τ 1, τL], we select the path that minimizes the Equation 2.19

for that time segment. Afterward, we pick the time segment which has the minimum cost

path in comparison to other time segments. This ultimately results in having the path in a

specific time segment which has the smallest travel time. Here is the summary of the work

need to be done for this scenario.

• Find the latest time (τL) that agent can arrives destination before deadline

23

• Divide trip interval [τ 1, τL] to sub-intervals of [t1, t2, t3, t4, t5, . . . , tn] in accordance

with time segment definition.

• For each of the sub-intervals k which is [t(k−1), tk]:

− Find the paths from an origin (O) to destination (D) in a case that if they

start their trip in [t(k−1), tk], they can make the trip before deadline.

− From the set of paths found in last step, select the one which minimizes the

expected cost of the objective function described in Equation 2.19.

• Now for each time segment k we have one path which is the best for that time segment.

Then, select the interval which has the path with minimum travel time.

2.5 Experiments and Results

2.5.1 Path Finding based on users’ goals

In this experiment, we study how agents’ goals in path finding affect the paths selection

in different times of the day. For this reason, we pick some source, destination pairs to show

the path finding effect. As mentioned in 2.4.2, nodes have latitude and longitude associated

to them and the distance between source and destination of sets are in the range of seven

to ten miles. Then we find possible candidate paths between each source and destination

based on 2.4.4. Two main user’s goals are modelled in picking the best path which are

the path with highest probability of reaching destination before deadline and the path with

smallest travel time using step cost function. Best path based on linear cost function and

exponential cost function are also shown for comparing different path finding options. As

mentioned in 2.4.5 (Linear) and 2.4.5 (Exponential), best path based on linear cost function

is the path with minimum mean and best path based on exponential cost function is the

path that minimizes the linear combination of mean of variance of the path.

24

Highest Probability Path

Given the deadline (set as the expected amount of time after starting the trip) and

cost function to model the paths’ costs, in this experiment we aim to see the path selection

for each cost function (linear, exponential and step cost function).

Figure 2.5 and Figure 2.6 show the results of this experiment for three different time

slots of Friday and Tuesday for two sets of randomly picked nodes. Each circle represents

one of the possible paths between the source and destination. Considering the set of paths

between a specific source and destination, we want to find the highest probability path based

on the linear cost function, the exponential cost function, and step cost function. A red

triangle identifies the path with the least mean to satisfy the linear cost function criteria.

A green trapezoid is the best path based on exponential cost model which considers the

both mean and variance of the path. A black rectangle identifies the path with highest

probability and considers mean, variance and deadline.

The results of Figure 2.5 and Figure 2.6 show that the characteristics of paths for the

same source and destination nodes changes in different times of the day. It indicates that

how traffic on the paths changes the characteristics of those paths during different times of

the day.

An interesting pattern in both Figure 2.5 and Figure 2.6 shows us that when we query

for best paths in rush hours, the difference between linear, exponential and highest proba-

bility path is large. While in non-rush hour times, these paths are closer to each other and

there is not a significant difference between them. This means that having a realistic cost

function model along with considering the deadline helps in finding better paths in rush

hour. In non-peak times, since traffic is low, paths are similar to each other and navigation

might not be that crucial. Having a good cost function modeling and a wise criteria of

picking the best path is crucial when paths are congested.

Another interesting point is the way different models pick the best path. Linear model

focuses on picking the path with minimum mean, while in some cases like Fig2.(a) the path

might have a high variance. Exponential model considers mean and variance but it does

25

(a) (b)

(c)

Fig. 2.5: Selected paths for different query times of Friday for Source node=83590367 and
Destination node=352876209 based on each cost function. Query times from left to right
the times are: a) 8:00, b) 15:00, and c) 18:10 PM. Deadline is set as 1200 seconds after start
time.

not consider the deadline. Therefore, in Figure 2.5.(a), Figure 2.6.(a), and Figure 2.6.(c)

the paths selected by exponential model all violate the deadline. Highest probability path,

pick the least risky path which makes the deadline without a high variance which is what

we are expecting.

Smallest Travel Time

In this experiment, we consider an agent who wants to have the smallest travel time

26

(a) (b)

(c)

Fig. 2.6: Selected paths for different query times of Tuesday for Source node=358207657
and Destination node=384734324 based on each cost function. Query times from left to
right the times are: a) 7:30, b) 11:40, and d) 17:45. Deadline is set as 1400 seconds

within a desired arrival interval. We determine the best time to start the trip and which

path yields the smallest travel time. Figure 2.7 and Figure 2.8, show the results of this

experiment for three different time slots of Monday and Wednesday for two different sets

of nodes with all three mentioned cost functions. Each circle represents one of the paths

between the source and destination. In each figure, pink rectangle represents the path with

smallest travel time, green trapezoid is the best paths if cost function is exponential, and

red triangle is the best path based on linear cost function model.

Similar to the findings in the previous section, Figure 2.7 and Figure 2.8 shows that

27

in rush hours selected paths for different models differ from each other significantly, while

in non-peak hours they are almost the same. It emphasizes the effect of congestion in

busy hours and how it can change the weights on edges of the graphs. As in the previous

experiment, the linear model picks the path with smallest mean, while that path might

have a high variance like Figure 2.7.(b). Exponential path does not consider deadline and

it may pick a path which does not make the trip within the desired arrival. Smallest travel

time path considers mean, variance, desired arrival time and probability which user likes

to consider in order to make the best decision in path finding. Desired probability for this

experiment is considered as 85 percent. This means that we are interested to find the paths

that have the smallest travel time and within the chance of 85 percent can make the trip

before deadline (85 percent is a number we picked to keep the experiments consistent here,

it can be any probability).

Another finding, indicates that smallest travel time path sometimes is a risky decision

as it has a high variance of reaching destination before deadline. For example, in Figure 2.7,

Figure 2.8 the smallest travel time path has the higher variance in comparison with the path

exponential path.

2.5.2 Compare paths with shortest-length path

In the realm of path planning, shortest-length path is always a practical option and for

most of the users, it is the primary choice for path finding between two points. Hence in our

context, it can be used as a baseline to see how our paths are different from the shortest-

length path. In this experiment, we compare means and variances of shortest-length path

with highest probability path and smallest travel time path. The experiment has been

done for departure times of 17 : 20 on Tuesday, Wednesday and Friday for 10 different

sources and destinations in the range of [7, 10] mile (A to J) to compare the changes across

different days. The time is considered to be in the peak time, therefore it is a good case

for comparison as the traffic is high. For highest probability path deadline is considered as

1400 seconds (based on the average time takes to get from a source to destination with the

distance for 7 to 10 miles in rush hour) and probability for smallest travel time path is 85

28

(a) (b)

(c)

Fig. 2.7: Selected paths for different query times of Monday for Source node=2053542172
and Destination node=352883524. Query times from left to right are: a) 6:40, b) 8:10, and
d) 18:00. Desired arrival time is within the 1600 seconds after query time. Best time for
start the trip to have the smallest travel time is as follow: a) 6:40, b) 8:23, and c) 18:21.

percent.

As it can be seen from Figure 2.9, Figure 2.10 and Figure 2.11, Figure 2.12 shortest-

length paths have the higher mean in comparison with highest probability paths and smallest

travel time paths. This is obvious as shortest-length path mostly is the first choice of the

majority of drivers for reaching their destination regardless of how congested the path might

be. Therefore, it is more congested and has higher mean in comparison with other paths.

Another interesting finding is that the results show that in all of the cases smallest travel

29

(a) (b)

(c)

Fig. 2.8: Selected paths for different query times of Wednesday for Source node=1218569178
and Destination node=2421320748. Query times from left to right are: a) 7:40, b) 11:10,
and d) 17:30. Desired arrival time is within the 2000 seconds after query time. Best time
for start the trip to have the smallest travel time is as follow: a) 8:01, b) 11:10, and c)
18:09.

time paths have shorter mean and larger variance in comparison with highest probability

paths. It is clear that highest probability path is the least risky path while smallest travel

time optimizes for the path with smallest travel time. We note that the smallest travel

time path might have high variance and ultimately have a high risk (sample use case of this

explained in 2.2).

After the above experiment, we repeat the experiment for the bigger sample size in a

different time slot and compare the highest probability, smallest travel time with shortest-

30

(a) (b)

Fig. 2.9: Comparison of mean and variance of highest probability path, smallest travel
time path and shortest-length path in 17:20 PM of Tuesday for 10 different source and
destinations (A to J).

(a) (b)

Fig. 2.10: Comparison of mean and variance of highest probability path, smallest travel
time path and shortest-length path in 17:20 PM of Wednesday for 10 different source and
destinations (A to J).

(a) (b)

Fig. 2.11: Comparison of mean and variance of highest probability path, smallest travel time
path and shortest-length path in 17:20 PM of Friday for 10 different source and destinations
(A to J).

31

length path. We considered 100 random pairs of source and destinations that are in the

distance of 10 to 12 miles in different areas of Salt Lake City. As we learned earlier, the

two main rush hours (morning and evening) have the similar pattern, thus we just pick

the morning rush hour. The result for each of the goals is averaged over all 100 pairs in

weekdays (Monday through Friday). Desired travel time for the pairs is considered as 2200

seconds (again based on the average time takes to get from a source to destination with

the distance for 10 to 12 miles in rush hour) and desired probability for this experiment is

considered as 85 percent. The following is the demonstration of means and variances for

each day of the week.

(a) (b)

Fig. 2.12: Comparison of average mean and variance of highest probability path, smallest
travel time path and shortest-length path in 8:00 AM of Weekdays for 100 different source
and destinations.

As it can be seen from the graphs, we have the same pattern as the previous test.

Shortest-length path is not performing well as it just tries to pick the minimized length

path even if it is congested. Smallest travel time paths have less mean in comparison to

highest probability paths while they have higher variance which makes highest probability

paths more secure option but longer. Even though shortest-length paths have reasonable

variance, their high mean value makes them not a good option to pick.

2.6 Conclusion

This research represents path finding in the real world domain in which edge weights

32

are not fixed but are stochastically affected by the time of the day/week. Stochastic edge

costs are considered as independent Gaussian random variables, whose distributions are

extracted from data monitored by the Utah Department of Transportation. Inspired by time-

dependent traffic situation, we parameterize these distributions by time, which allows us to

speak of time-dependent path costs and study the problems of reaching a goal by a deadline,

and delaying departure to minimise traversal-to-goal time. The best path is the path with

lowest cost. The cost is based on travel time which highly depends on the level of

congestion in the network and congestion highly related to the time of the day/week.

Three different cost functions (linear, exponential, and step cost function) are investigated.

The best path is the path with lowest cost with respect to agents goals. Since the graph is

interconnected, optimizing for lowest cost on all possible paths is not feasible, therefore, we

prune the search region to do cost minimization on the subsets of paths. In pruning phase,

for any node N to be expanded we consider an approximate path from source to destination

through node N and if the mean of that path is more than the provided deadline, we don’t

expand that node. Users can pursue two main goals: 1) picking the least risky path and

2) picking the smallest travel time along with awareness of when to start the trip. Results

show that in rush hour time when the congestion is high, using a smart/realistic method

of path finding is crucial while in non-peak hours paths are almost the same. In addition,

we demonstrate that a suitable path finding approach must consider different aspects such

as path’s mean, path’s variance and the deadline to provide optimal options. Removing

any of these factors may result in having a path which either violates the deadline or has

a very high variance. We compare the mean and variance of highest probability paths

and smallest travel time paths with shortest-length paths at the same query time. This

experiment proves that the shortest-length path is not always the best path due to the fact

that it is highly congested in rush hour times as it is traditionally the first choice of most

drivers. Highest probability path has less variance because it takes the most secure path,

while the smallest travel time has the lowest mean and might have a high variance.

33

CHAPTER 3

Practical City Scale Stochastic Path Planning with Pre-Computation

3.1 Abstract

This work 1 prescribes a practical city scale path planning in the presence of traffic

delays. Edge weights are not fixed and are stochastically defined based on the mean and

variance of travel time on them. One main objective is to minimize the running time of the

overall procedure at query time, and hence the response time to the shortest-path queries

are crucial. Agents are car drivers who are moving from one point to another point at

different times of the day/night. Agents pursue two types of goal. The first group desires

the path with the highest probability of reaching their destination before their desired

arrival time. They look for the most secure route. The second group are the agents who are

open to take a riskier decision if it helps them in having the shortest en-route time. Pre-

computation and approximation has been used in order to scale the path planning process

and make it practical in city scale route planning. The city graph is partitioned to smaller

groups of nodes using community detection and clustering methods, and each partition is

represented by its exemplar. In query time, source and destination pairs are connected to

their respective exemplars and the path between those exemplars is found. Paths are stored

in distance oracles for different time slots of day/week in order to expedite the query time.

Distance oracles are updated weekly in order to capture the recent changes in traffic. The

proposed framework handles queries in real time while the approximate paths are 3 to 5

percent longer than exact paths.

1The first version of this work is presented and published in proceedings of 13th International Conference
of Agents and Artificial Intelligence (ICAART 2021) as a full paper. DOI: 10.5220/0010394104540463
The extended version has been submitted to the journal of Lecture Notes in Artificial Intelligence (LNAI),
Springer

34

3.2 Introduction

When the volume of traffic is greater than the capacity of the streets congestion is likely

to happen. In the era of accelerated urbanization around the world, practical path planning

approaches considering the level of congestion are more critical than ever before [43, 44]. In

modeling city scale traffic, congestion changes throughout the day which results in having

uncertain travel time on the road segments [6, 7]. One of the main approaches is stochastic

path planning framework which city is modelled as a graph and the graph’s edge weights

are the mean and variance of the travel time on each edge during the given time interval.

Travel time is defined as a random variable as its value depends on the time of the day and

day of the week. Travel time variability is one of the most useful indicators to measure the

performance and reliability of a transportation systems [45].

In this work we adopted stochastic path planning framework and modelled agents as

car drivers which pursue different goals. Two types of agents have been modelled for a given

origin, destination pair: a) the agents that look for a path that maximizes the probability of

reaching the destination within a given deadline and b) the agents who look for the shortest

en-route time while the probability of making the deadline is at least a given threshold. A

path planner satisfies the agents’ goals by minimizing the path costs over the travel time

random variable toward the agents’ goals. Edge weights are defined as mean and variances

of travel time for each time slot. While the mean shows the average traffic on the edge,

variance reflects how far the values are spread out from their average value with respect to

all of the changes and uncertainties in network congestion. The data for extracting edge

weights is the historical traffic logged data of the preceding 12 months.

This paper focuses on a scalable algorithm for stochastic path planning under conges-

tion. The main objective of this work is to minimize the query time in order to handle the

large number of requests in the real world domain. The approach uses a stochastic path

planning framework and improves the query time utilizing pruning, graph partitioning, pre-

processing and approximation techniques. A key part is to find region-based partitions in

the city graph and represent each region with an exemplar. Instead of planning a path

35

from a source node to the destination node, we connect each node to the closest exemplar

considering the direction to the destination and find a path between exemplars. This en-

ables responding to path finding queries in real time with an approximate path instead of

an exact path. In the pre-processing phase, all of the paths from every pair of exemplars for

every time slot of each day of the week is stored by the distance oracles. An approximate

distance oracle is a data structure that efficiently answers path planning queries in graphs.

Therefore, in the query time, a source and destination are connected to their corresponding

exemplar, and the path from two exemplars is retrieved. Distance oracles are updated every

week with respect to the data of the preceding 12 months in order to reflect the recent traffic

pattern changes such as seasonality, events, and weather conditions on the congestion of

each edge.

3.3 Previous Work

Stochastic path planning in scale is challenging in real time due to the high volume

of queries and dynamic nature of traffic. Fan et al. [46] determine the optimal route by

selecting the best next direction at each junction using stochastic dynamic programming

problem. Their approach uses a standard successive approximation algorithm. The problem

is their algorithm has no finite bound on the maximum number of iterations to converge on

cyclic road networks.

Nie and Wu [47] proposed a framework which calculates the optimal a-priori path in

query time using a multi-criteria label-correcting algorithm by generating all non-dominated

paths based on the first-order stochastic dominance condition (FSD). The proposed algo-

rithm provides an approximate solution in pseudo-polynomial time in the best case, but

since the number of FSD non-dominated paths grows exponentially with network size; the

run time of the solution is exponential in the worst-case.

Nikolova et. al. [26] presented a framework for reliable stochastic combinatorial opti-

mization that includes mean-risk minimization and probability tail model. Their algorithm

is independent of the feasible set structure and uses solutions for the underlying linear

(deterministic) problems as oracles for solving the corresponding stochastic models. They

36

showed the problem can be solved in nlog(n) time if we assume distribution of the travel

time random variable is Gaussian. The solution utilizes pre-computation in path planning

but still the time complexity of their provided solution are nlog(n) which is not practical in

real world domain.

Samaranayake et al. [48] presented a label-setting approach to speed up the computa-

tion of stochastic path finding based on zero-delay convolution, and localization techniques

for determining an optimal order of policy computation. Their proposed approach is still

too slow to be implemented in scalable navigation systems.

Gutman, et. al. [32] used pruning as a technique to speed up the stochastic planning

process. In their model, a node is expanded if its reach value is larger than some threshold.

A node with higher reach is a node that appears the most in the shortest paths between

pairs of nodes. Reach values are obtained in a pre-processing step. Arc-flag acceleration

method [49] also uses pruning to tackle the stochastic path planning at scale. They divide

the the graph into a set of regions and a Boolean vector representing roads. For each region,

the corresponding road value is true if the edge is used by at least one path ending in the

corresponding region. Then, any edge without the Boolean corresponding to the region is

pruned. One of the major limitations of both mentioned methods is it takes a long time

to respond to changes in the network due to the vast amount of computation, even in

pre-processing phase.

Contraction hierarchies [7] and arc-flags [49] use bidirectional search in pre-processing.

However, speedup techniques that rely on bidirectional search are not applicable to the

stochastic path planning problem, because the final and intermediate solutions are a func-

tion of the remaining time budget and remaining time budget is not deterministic. When

performing a bidirectional search, the reverse search needs to stochastically estimate the

time budget at each step, hence there are cases where bi-directional search might not con-

verge.

PACE [50] is a path centric stochastic path planning which estimates the cost of paths

instead of edges. Their path finding builds upon the ’path + another edge’ pattern to find

37

paths for each source, destination pairs. They store the paths between possible pairs from

trajectory data and retrieve in query time. Their approach has the following shortcomings

for use in the real world domain: a) estimating the costs of paths highly depends on trajec-

tory data which may suffer from sparsity [51], b) best path is picked after finding candidate

paths and estimating the joint cost distribution of the paths which is not real time, and c)

their only model finds high probability path.

Lim et. al. [6] showed how to solve the scalable stochastic path finding in Θ(nlogn) time

where n is number of nodes in the network. They assume edge weights in the city graph are

independent and distribution of travel time is Gaussian. Their approach is quasi-polynomial

with a rate of growth between polynomial and exponential and use a data structure that

occupies space roughly proportional to the size of the network for storing distance oracles.

Ahmadi et. al. [43] proposed a framework that can answer large scale stochastic path

planning queries in real time using graph clustering, pruning, pre-computation, and approx-

imation with two agent goals of highest probability path and shortest en-route time. They

used historical traffic data and consider the changes of traffic at different time slots of a day

in each day of the week. They reduce the city graph to partitions and pre-compute paths

for representative of partitions. Pre-computed paths are updated every week in order to

reflect the recent changes. Current work extends Ahmadi et. al.’s work and enriches the

framework in the following ways:

• Expanding graph partitioning methods by adding meanshift clustering and Walktrap

community detection methods to cover variations of graph partitioning methods on

the Salt Lake City graph.

• Adding direct (elbow) and statistical (gap statistics) methods for deciding the optimal

number of clusters on the city graph which is crucial for clustering algorithms.

• Studying the effect of four exemplar selection methods on approximate paths: a)

highest traffic, b) highest reach, c) closeness centrality and d) random walk centrality.

38

• studying the impact of the following additions on the overall performance of the

framework.

3.4 Framework

The main idea behind scaling of the path planning process is to partition the city to

smaller parts and get an exemplar for each cluster that can represent the nodes of the

cluster. Then instead of planning a path from each source node to a destination node,

we connect each node to one of the neighboring exemplars and find a path between the

exemplars. The paths between exemplars are pre-computed for faster response in query

time.

3.4.1 City and Edge Weights

The city is modelled as a directed graph consisting of a set of vertices, V , which

represent road intersections and edges, E, that represent road segments between vertices.

We consider the city graph to be planar (i.e., edges intersect only at their end points). If

we consider the number of nodes in the planar graph as |V | and the number of edges

as

|E|, the relationship between them is |E| << |V |2 [6, 26]. Associated with each edge of the

graph is a travel cost used as the edge weight in our directed graph.

We use expected travel time as the cost of an edge. Edge costs are not fixed and are

represented as mean and variance of expected travel time random variable.

E ⊂ V 2 (3.1)

We(t) = (me(t), ve(t)) (3.2)

Edge weights are represented as a probability distribution of travel time rather than a

fixed value. Travel time random variable is a tuple of mean and variance of the expected

travel time on each edge. We assume travel time on edges are independent and follow

Gaussian random variable shown in Equation 3.3 [6, 52]. The mean of a path is the sum

of the means of all edges included in the path (Equation 3.4) in which t is query time and

39

i=

i=

i=

i=

i=1 j=1 i=

i=

δ is the time takes to reach to any edge from the query time. Equation 3.5 shows how to

calculate the variance of the path. Since we assume edge weights are independent from each

other, then cov(Xi, Xj)=0 for i ≠ j and Equation 3.6 is the result. Based on Equation 3.6,

the variance of a path is the sum of variance of all edges included in the path as shown in

Equation 3.7 [6, 26].

te ∼ N (me, ve) (3.3)

mpath(t) =
e∈path

n n

me(t + δ) (3.4)

n

var(

Xi) = E([

Xi]2) − [E(

Xi)]2 (3.5)

n n n n n

var(

Xi) =

cov(Xi, Xj) =

cov(Xi, Xj) =

var(Xi) (3.6)

vpath(t) =

e∈path

ve(t + δ) (3.7)

Once mean and variance of a path is known, we can plot possible paths between any source

destination in a mean-variance plane (shown in Figure 3.1).

Fig. 3.1: Paths from a specific origin (O) to a target (T) are presented as nodes (mp,vp) in
the mean-variance plane.

40

Stochastic dependency between adjacent edges can be modelled by adding extra edges

between dependent edges. This new edge captures the correlation between the two corre-

lated distributions, maintaining the property that the variance of a path is the sum of the

variances of all the edges in the path. Suppose that adjacent edges Xi and Xj are depen-

dent. Based on Equation 3.8, if we want to sum the variance of Xi and Xj, Cov(Xi, Xj is

non-zero as edges are dependent. Therefore, we add one edge with mean 0 and variance of

2 ∗ Cov(Xi, Xj. The number of nodes and edges grows by one for each pair of

correlation.

In our model, we do not transform the graph, and the assumption is that the dependence

between edges affects the variance of the consecutive edges. For example, if edge A, has

a strong dependency with edge B and congestion on edge A causes congestion on edge B,

then the variance on edge B is high enough to represent this dependence [4, 6, 26, 53].

var(Xi + Xj) = var(Xi) + var(Xj) + 2 ∗ Cov(Xi, Xj) (3.8)

For finding the mean and variance of a path, a sliding time window is used to imply

the cost of each edge in the path depends on the amount of time that took to reach it, not

just the initial departure time. For example, if we look at the path at time a and take δ to

reach the 4th edge, the cost of the 4th edge is considered at the time of a + δ.

3.4.2 Traffic Data

Edge weights are based on mean and variance of the expected travel time on them. In

order to extract edge weights, yearlong traffic data from Utah Department of Transportation

(UDOT) [36] has been used which is logged in 10 minute intervals for each day of a week

on Salt Lake City, Utah.

3.4.3 Open Street Map

For building the city graph, we used Open Street Map data [54]. Open Street Map is

a free editable geographic map of the city. Open street map data data structure has three

main components: a) nodes which is a single point defined by latitude and longitude, b)

41

ways which is a list of nodes, and c) relations which relates two or more data elements like a

route, turn restriction, traffic signal or an area. Open Street Map represents physical entities

on the ground like buildings, roads, intersections, and bridges. The data structure it uses is

based on entities and for each entity there are multiple tags describing the characteristics

of that entity.

3.4.4 Agents

In this framework, agents are car drivers, capable of pursuing different goals. We can

technically model any type of agents’ goals and incorporate it in the path finding framework.

We modelled two following goals as they have interesting characteristics in the path planning

domain.

• Risk seeking agents: the agents who are open to take a riskier route if has the shortest

en-route time. These agents are flexible in leaving time.

• Risk averse agents: agents who are not willing to take risk and look for the path with

highest probability of reaching destination before a desired arrival time, even if travel

time is increased.

To make these two goals clearer, one example is in the context of a package delivery system.

Suppose that we guarantee the delivery of a package by 4 PM, otherwise the customer

doesn’t accept the delivery, and we pay the shipping costs. In that case, we are interested

in picking a path that has the highest chance of reaching destination before the deadline to

avoid losing the shipping cost. The other possible case is delivering perishable products. If

the product needs to be kept hot or cold, we desire a path that has the shortest en-route

time. We are flexible in leaving anytime, but need to have the shortest en-route path while

still making the target delivery time.

3.4.5 City Graph Partitioning

In dealing with large scale graphs, one of the possible approaches is to reduce the node

set. The reduction process happens through partitioning the graph to a group of nodes

42

in a way that the group can be represented by one node. For this work, we investigated

1) unsupervised learning (clustering methods), and 2) community detection methods for

partitioning the city. After partitioning phase, an exemplar for each partition is selected.

One can argue that community detection is similar to clustering. Clustering is a machine

learning unsupervised technique in which similar data points are grouped into the same

cluster based on their attributes. So in networks, clustering is merely based on the position

of the nodes. On the other side, community detection methods are focused on partitioning

the graph based on edges as communities are a group of well-connected nodes that are more

strongly connected among themselves than the others.

Unsupervised Learning

A cluster refers to a collection of data points aggregated together due to the certain

similarities using unsupervised methods. Given a set of data points, clustering puts each

data point into a specific group. In theory, data points that are in the same group should

have similar properties, while data points in different groups should have highly dissimilar

properties. There are various clustering methods to be used on graphs and in this work, we

used k-means [55] and meanshift clustering methods [56]. In our clustering a node has the

following attributes: a) latitude, b)longitude, and c) traffic profile which is historical traffic

level on the node (low, medium and high).

Optimal number of clusters Most of the common clustering methods including k-means

and meanshift require the number of clusters (k) to be defined ahead of time. There are

various methods for deciding the optimal number of clusters in data including direct and

statistical methods. Direct methods like elbow method [55] usually optimize a criterion such

as the within cluster sums of square distance. Statistical methods such as gap statistics

[57] compare evidence against expectation under random sample of data under uniform

distribution.

Elbow method looks at the total within-cluster sum of square distances (WSS) as a

function of the number of clusters. WSS is the sum of the squared deviations from each

43

k

observation and the cluster centroid (Equation 3.9).

n

min(∥xi − µi∥) (3.9)
i=1

In general, a cluster that has a small sum of squares is more compact than a cluster that

has a large sum of squares. The number of clusters is increased until adding another cluster

does not improve the total WSS significantly. Steps of elbow method are as follows:

• Run clustering algorithm on varying values of k.

• For each k, calculate WSS.

• Plot the curve of WSS against number of clusters k.

• The location of a bend (knee) in the plot is considered an indicator of the appropriate

number of clusters.

Gap statistic compares the total within intra-cluster variation (Wk) for different

values of k and compare it with their expected values under null reference distribution of the

data. Null reference distribution of data is the samples of data under uniform distribution

which we consider to reject the null hypothesis. Null hypothesis here states that our clusters

of the data is same as the clusters of a uniform distribution of the data. Wk is the within-

cluster sum of squared distances from the cluster means and can be found using Equation

3.10. Dr is the some of pairwise distances for all of the points in the cluster and dii′

represents the distance between every i and i′ pairs.

k
W =

1
D

r=1
2nr

(3.10)

Dr =

i,i′ ∈Cr

dii′ (3.11)

The optimal number of clusters is the value of k that yields the largest gap statistic. The

largest gap means that the clustering structure is far away from the random uniform dis-

tribution of points. For gap statistics, we first cluster the data by varying the number of k

r

44

B

B k
 1

and compute the corresponding Wk. Then, we generate B reference data sets with uniform

random distribution and cluster each of them with varying number of clusters. Compute

the estimated gap statistic as the deviation of the observed Wk value from its expected

value Wk
∗
b shown in Equation 3.12. Afterward, we choose the number of clusters as the

smallest value of k such that the gap statistic is within one standard deviation of the gap

at k+1 using Equation 3.13. In Equation 3.13 where sk is the simulation error calculated

from standard deviation of B replicas and found using Equation 3.14.

Gap(k) =
 1

log(W∗) − log(W

) (3.12)

Gap(k) ≥ Gap(k) − sk+1 (3.13)

s = sd(k) + 1 +
1

k B (3.14)

K-means Clustering K-means is a very popular clustering algorithm because it easily

scales to large data sets, guarantees the convergence and easily adapts to the new data

points. The k-means clustering aims to partition n observations into k clusters. Clusters

are formed to minimize within cluster variance. The centroid (used as the exemplar) is

the arithmetic mean position of all the points in the cluster. The k-means algorithm starts

with a first group of randomly selected centroids, which are used as the beginning points

for every cluster, and then performs iterative calculations to optimize the positions of the

centroids. It ends when there is no change in the value of centroids or the defined number

of iterations has been achieved. As k needs to be defined ahead of time, we use both elbow

and gap statistics methods to get optimal number of clusters on the graph of Salt Lake

City before using k-means. The optimal number of clusters using the elbow method is 157

and for gap statistics is 172. Therefore, we set the value of k as the average of these two

and set the number of k as 162. Figure 3.2 (top) shows the distribution of 162 clusters and

the visualization of the clusters on Salt Lake City. As distribution shows, the majority of

clusters have 70 to 400 nodes and few large clusters with node size larger than 1000 nodes.

k

45

Fig. 3.2: Distribution of main nodes in each cluster and visualization of them on Salt Lake
City for K-means clustering. Each color represents one cluster.

MeanShift Meanshift [56] clustering is a non-parametric centroid-based algorithm, which

works by updating candidates for centroids to be the mean of the points within a given

region. Unlike other clustering algorithms which assigns the data points to the clusters

iteratively, meanshift tends groups points towards the mode. Hence, it is also called a

mode seeking algorithm. In the context of meanshift, mode is the highest density of data

points in the region. Meanshift uses the concept of kernel density estimation (KDE) [58]

which is a method to estimate the probability density function of the data. It works by

applying a Gaussian kernel on each point in the data set. Adding up all of the individual

kernels generates a probability surface example density function. Meanshift is a model free

approach which doesn’t assume any distribution of the data. It is robust to outliers as

it uses kernel density functions. Similar to k-means, the number of clusters needs to be

defined ahead of time. We run elbow method and gap statistics method on the graph of

Salt Lake City with meanshift clustering. Elbow method provided 211 and gap statistics’s

optimal number of clusters were 247. Then we set the average as 229. Figure 3.2 (bottom)

shows the distribution and the visualization of the clusters on Salt Lake City. It provided

229 clusters with majority of clusters had the size in the range of 50 to 700 and few large

clusters.

46

Fig. 3.3: Left: Distribution of cluster sizes in Mean Shift. Right: Visualization of clusters
on Salt Lake City. Each color represents one cluster.

Community detection methods

A community, with respect to graphs, is defined as a subset of nodes that are densely

connected to each other and loosely connected to the nodes in the other communities in

the same graph. Depending on the type of the community detection methods, the city

graph can be partitioned differently. Major community detection methods are divided into

three main categories: a) divisive methods, b) agglomerative methods and c) optimization

based methods [59]. Divisive algorithms begin with a complete network and iteratively

divide the network into smaller communities. An example of divisive methods is Leading

Eigenvector [60]. Agglomerative based methods begin by considering each node as its own

community and then iteratively combine nodes into larger communities. Walktrap [61] and

label propagation [62] are the examples of agglomerative methods. Optimization based

methods find the optimal set of communities based on an objective function. Multilevel [63]

is an example of optimization based method. There are a few important definitions which

is common in community detection algorithms:

• Modularity measures the strength of division of a network into communities and

reflects the concentration of edges within modules compared with random distribution

47

Aij is adjacency matrix, ki, kj are degrees of the vertices and m is 1
 n

ki.

of links between all nodes regardless of modules. If the number of edges within groups

exceeds the number expected on the basis of chance, then modularity is positive. If

modularity value is zero, then edges are randomly distributed and negative value of

modularity indicates the absence of a community in the graph.

• A random walk is a path between two nodes where each step is randomly chosen.

• Path lengths for walks between two nodes are the number of edges one would have to

use to walk from one node to another.

Leading Eigenvector Leading Eigenvector [60] is a divisive community detection ap-

proach which is built on maximizing modularity over possible divisions of the graph utilizing

the properties of adjacency matrix of the city graph. Based on the adjacency matrix, the

modularity matrix is defined. Modularity matrix is defined using the Equation 3.15 where

Bij

= Aij

kikj −

2m

2 i

(3.15)

Then, the eigenvector corresponding to the leading eignevector of the modularity matrix is

considered. Utilizing the signs of elements in this vector we decide the group. The elements

of the leading eigenvector measure how firmly each vertex belongs to its assigned community.

In the maximization process, the division of the graph with maximum modularity value is

the best distribution of communities. We run the same algorithm over the newly formed

communities and continue unless all the communities obtained are indivisible. Running

Leading Eigenvector on the graph of Salt Lake City produces 21 communities with 48398

nodes in one community. The big community includes the main downtown area of the Salt

Lake City.

Walktrap Walktrap [61] method is an agglomerative method for community detection

based on random walks in which distance between vertices are measured through random

walks in the network. The basic intuition of the algorithm is that random walks on a graph

48

Fig. 3.4: Distribution of communities on Salt Lake City in Leading Eigenvector approach.

gets trapped into densely connected parts corresponding to communities. Walktrap uses the

result of random walks to iteratively merge separate communities in a bottom-up manner

by minimizing the overall random walk distance between nodes and communities defined by

random walks. The algorithm continues until no more merge is possible. Figure 3.5 (top)

shows the results of running Running Walktrap on Salt Lake City. Walktrap provided 2751

communities with majority in the range of 20 to 40 nodes and few large communities in the

range of 3000 to 4000 nodes.

Label propagation The Label Propagation algorithm [62] is a another agglomerative al-

gorithm which detects communities using network structure without a pre-defined objective

function. The intuition behind the algorithm is that a single label quickly becomes dom-

inant in a densely connected group of nodes as it get trapped inside a densely connected

group of nodes. In the beginning, every node is initialized with a unique community label.

Then, the labels propagate through the network and at every iteration of propagation, each

node updates its label based on the maximum numbers of its neighbours’ labels and the

communities are formed this way. Label Propagation stops if he user-defined maximum

49

Fig. 3.5: Distribution of communities in Walktrap approach for the clusters with node size
less than 300 nodes along with representation of all of the communities. Each red dot
represent a community. The edge between communities shows the relationship between one
community to another.

number of iterations is achieved or algorithm converges. Convergence occurs when each

node has the majority label of its neighbours or no merge happens in further iterations.

Running Label Propagation on the graph of Salt Lake City provides 2007 communities with

the distribution similar to truncated normal distribution depicted in Figure 3.5 (bottom).

In the distribution most of the community sizes are in the range of 10 to 40.

Multilevel Multilevel [63] method is built on modularity optimization and creates com-

munities in a way that the edges inside of the community are significantly denser than

between communities. Multi-level is a two step iterative algorithm which stops when no

improvement is gained. In step 1, every node is assigned to a random community, then

in step 2 each node is removed from its own community and assigned to its neighboring

community if the gain of modularity is positive. Applying multilevel community detection

method on the city of Salt Lake City provides 157 communities on the graph of Salt Lake

City which is shown in Figure 3.7.

50

Fig. 3.6: Left: Distribution of communities in Label Propagation approach. Right: Repre-
sentation of communities. Each red dot represent a community. The edge between commu-
nities shows the relationship between one community to another.

3.4.6 Exemplar Assignment

After partitioning the city, we need to find a node (termed the exemplar) that represents

each partition of the graph. There are few possible ways of finding exemplars.

• The node with highest historical traffic. The idea is the node which historically has

the highest traffic is the node that should represent the partition as historically lots

of paths went through it.

• Node with highest reach. Reach is a concept introduced by Gutman et, al. [32] and

basically measures the use of a node. A node with higher reach is a node that appears

the most in the shortest paths between pairs of the partition. For finding the node

with highest reach, we run Floyd-Warshall [64] algorithm on all of the nodes of the

partition which gives us shortest path for all pairs of vertices in the partition. The

node that appears in the maximum number of paths is the exemplar of the partition.

• Center of the partition based on closeness centrality. Closeness centrality [65] of a node

is calculated as the reciprocal of the sum of the lengths of the shortest paths between

the node and all other nodes in the partition. Thus, the more central a node is, the

closer it is to all other nodes in that partition. Equation 3.16 shows the normalized

51

Fig. 3.7: Left: Distribution of communities in Multilevel approach and representation of
them. Each red dot represent a community.

value of closeness centrality as normalization allows comparisons of centrality value

between nodes. In Equation 3.16 d(i, j) represents the distance between node i and

j. Distance is defined based on shortest path between the pair of nodes.

 n − 1
C(i) =

j ∈ nodes
(3.16)

d(j, i)

• Center of the partition based on Random walk closeness centrality. Random walk

closeness centrality also called Markov centrality is very similar to the closeness cen-

trality but here closeness is measured by the expected length of a random walk rather

than by the shortest path. A node is considered to be close to other nodes if the

random walk process initiated from any node of the network arrives to this particular

node in relatively few steps on average. The random walk closeness centrality of each

node is the inverse of the average mean first passage time to that node. In order

to calculate the centrality of each node, the inverse of the mean first passage time

between every pair of nodes is taken. Nodes with higher centrality scores indicating

that they occupy a more central position within the partition. The mean first-passage

time (MFPT) defines an average timescale for a stochastic event to first occur. The

mean first passage time from node i to node j is the expected number of steps it

takes to reach node j from node i for the first time. Equation 3.17 shows how to

52

calculate mean first passage time for each node. In Equation 3.17, P (i, j, r) denotes

the probability that it takes exactly r steps to reach j from i for the first time.

n

MFP (i, j) = rP (i, j, r) (3.17)
r=1

3.4.7 Base Path planning framework

The goal of base path planning framework is to find paths align with agents’ goals

and deadline between every pair of nodes. The base path planning framework is extended

from [43]. The first step is to find the candidate paths that can possibly satisfy the agents’

goals. As it is computationally intractable to consider all of the paths between any pair

of nodes. Then, among those candidates we select the one which has a minimum cost and

matches the agents’ goals.

Finding Candidate Paths

Considering all of the paths between any source, destination pair is computationally

intractable; hence a primary step is needed to reduce the number of paths to the ones

that have the highest similarity to the query. The goal of the pruning is to reduce the

number of candidate paths to only explore the paths that meet the agent’s goals and query

deadline. For finding the candidate paths between nodes (n1 and n2), we start from n1

and explore the successor nodes (expanding) until we reach n2. When exploring each node,

the heuristic estimates a path from that node to destination and if the expected estimated

arrival time when using the heuristic path is greater than the provided deadline, the node

is not expanded (pruned). Figure 3.8 (left) shows the pruning step.

The heuristic path from a node m (a middle node in expansion) to node n2 is obtained

by running A∗ [66] on the exemplars instead of all the nodes of the graph (Figure 3.8

(middle)). In each step of A∗, the next exemplar is picked based on the smallest g(n) + h(n)

value, where g(n) is the shortest-length path from current node to the connecting exemplar

and h(n) is the direct distance heuristic from the connecting exemplar to n2. Shortest-length

53

(a) (b)

(c)

Fig. 3.8: (a): For finding a path from n1 to n2, successor nodes of n1 (orange circles) are
explored. Among the successor, the marked ones meet the deadline and rest are discarded.
Dotted paths are heuristics paths from the successor nodes to n2 and they are used as a
pruning criteria for the successor nodes of n1. (b): Finding the heuristic path from m (a
middle node in expansion shown as green circles) to n2 uses A∗ algorithm through exemplars
of graph (green triangles). (c): From current exemplar to the neighboring exemplar the
one with with the least g(n) + h(n) is selected (green triangle). Figure shows the selected
exemplar in each step of A∗ on exemplars for heuristic path.

paths between nodes and their exemplars and also the adjacent exemplars are pre-computed

and they are retrieved to build the heuristic path. Figure 3.8 (right) shows the approach.

Paths Cost Definition and Selecting Best Path

The goal of the path planning is to pick a path with minimum cost which matches

the agents’ goals among the candidate paths. Expected cost of a path can be found using

Equation 3.18. In 3.18, tpath is the expected arrival time of the path and d is the deadline

the agent has to make.

54

pat

√

expected cost = Cost(tpath, d) ∗ fpath(tpath|m, δ2)
-

+∞

- +∞

= u(t − d)fpath(tpath)dtpath =
−∞ d

fpath(tpath)dtpath (3.18)

Path cost is modelled using a step cost function, but generally any type of cost function

can be used in Equation 3.18. The step cost function only penalizes the agent if it reaches

the destination after the deadline. Based on Equation 3.18, the whole cost is equal to the

Cumulative Density Function (CDF) of Standard Normal Distribution. CDF generates a

probability of the random variable (travel time in this case) when distribution is normal

to be less than a specific value which is d (deadline) here. Then, maximizing the Θ value

(Equation 3.19), ultimately results in having a path that maximizes the probability of

reaching the destination before deadline which matches the first agent goal.

Θ(path) = deadline −
mpath

vpath

(3.19)

The second type of agent goal seeks the path with shortest en-route time that can make

the deadline while they are flexible on departure time. We can modify Equation 3.19 to

Equation 3.20 by replacing deadline as the difference of desired arrival time and departure

time. Deadline is the amount of time the agent needs to reach the destination from query

time. In this case, desired arrival time is fixed but departure time is flexible. In Equation

3.20, ϕ is the argument of Gaussian CDF that makes the CDF equal to the probability of

making the trip before deadline which in our case is 90 percent.

desired arrival time − departure time = mpath + Φ(path) ∗ √vpath

if departure time ⊂ [τ 1, τ 2] (3.20)

To find the best departure time, the first step is to find what is the latest possible departure

55

time (τ2) to make the trip before the deadline. Then, considering the query time as the

earliest possible departure time as τ1, the interval of [τ1, τ2] is the time frame that includes

the best departure time. Divide the interval into 10-minute segments. For each segment, the

path that minimizes the trip duration (Eequation 3.20) is selected. Afterward, we pick the

”time segment” which has the minimum cost path (based on Equation 3.20) in comparison

to other time segments. The found minimum cost path with this approach, is the path that

has the least en-route time.

3.4.8 Pre-processing: Building distance oracles

In city scale path planning, the volume of path finding requests is high and, hence,

calculating a path which satisfies the agents’ goals and abides the deadline at query time

is not a practical approach. Techniques such as pre-processing and approximation help in

expediting the path finding process. For a graph of n vertices, one way is to simply store

an n × n-distance matrix for a n-vertex graph. In that case, each query can be answered in

constant time, but the space requirement is large and updating the n × n-distance matrix

is very time consuming. Approximation is a way of making distance oracles more compact.

Their aim is to find solutions which are not exact but clearly close. For example, in our

case we don’t need to store an n × n-distance matrix, but we can store the paths between

exemplars in our city graph which helps in reducing the path finding time. Distance oracles

store the best path between every two exemplars for each agent goal for different time slots

of each day of week. Time slots are every 10 minutes of every day of the week. Building

distance oracles is an offline task and distance oracles are updated weekly to reflect recent

traffic patterns on the edges of the city. In each update, the traffic data for the preceding

year is used. Stored paths between exemplars help us to quickly answering the path finding

requests by connecting the source-destination pair to their respective exemplars and provide

the path. Details of the approximate path finding is explained in section 3.4.9). The solution

is space and time efficient.

3.4.9 Scalable Algorithm

56

Each path finding query contains source, destination, agent’s goal and deadline. The

first step is to connect the source and destination to their respective exemplar. Each node

may have up to nine exemplars around it, one candidate is the exemplar of the region it

is located and the others are the exemplars of neighboring regions. For selecting the right

exemplars, a hypothetical direct path between source and destination is considered and the

exemplars with the most similarity to the direction of the hypothetical path are selected.

The connecting paths that connects the source, destination to the exemplars are calculated

based on shortest length path. Then, the path between exemplars that matches the agent’s

goals in the query is retrieved from distance oracles. Afterward, connecting paths are added

to the retrieved path from distance oracle and the final path is constructed and sent as the

result of the query. The path between exemplars does not necessarily need to go through

other exemplars. Figure 3.9 illustrates a path between source and destination.

Fig. 3.9: Red rectangles are exemplars of each region. Green circles are the typical source
and destination.

3.5 Experiments and Results

We experimented multiple methods of city graph partitioning. Each partitioning

method provided various partitions. The key question is, ”How many partitions are needed

to represent Salt Lake City with reasonable approximation?” This question is answered in

section 3.5.1. We discuss which community and clustering approach is picked for parti-

57

tioning the city in section 3.5.2. In section 3.5.3 we show which node in each partition

should be used as exemplar to represent all of the nodes in the partition. We run exact and

approximate path finding algorithms to compare the approximate paths to exact paths in

section 3.5.4. Lastly, we analyze the space and time complexity of our proposed framework

in section 3.5.5.

3.5.1 How Many Partitions Are Needed to Represent The City Graph?

City partitioning is used to reduce the large scale city graph to the set of exemplars.

We ran multiple clustering and community detection approaches on the city graph and

discussed the provided distribution of each in section 3.4.5. It is obvious that, the more

the partitions the more approximate paths get closer to the exact paths as we increase the

number of partitions. However, our goal is to reduce the number of nodes of city graph as

it impacts the storage required by distance oracles. Also, we want to keep the accuracy of

approximate paths in the acceptable range. Accuracy is measured based on the deviation of

travel time of generated approximate paths from exact path for each source and destination

for the 5000 source destination samples in various time slots of different days of a week.

Travel time basically tells us how much longer the paths will be due to approximation. For

picking the right number of partitions, we divide the city based on a variety of partition

numbers and look at the percentage of travel time deviation of approximate paths from

exact paths for both of the agents’ goals. If the point of inflection on the curve is seen,

then it is a good indication that the underlying number of partitions fits best at that point.

For measuring the deviation, grid-based city partitioning is used as baseline of the city

partitioning in approximate path planning. Grid based partitioning is a simple method to

partition the city in a grid.

Figure 3.10 shows the percentage deviation of travel time of exact and approximate paths

for the both agents’ goals for variation of partitions. As it shows, the more the partitions

the more accurate the paths are. However, having more partitions increases the node size

which leads to more storage and time to update distance oracles. Based on figure 3.10,

having 150 to 170 partitions looks reasonable with the mean difference of travel time of

58

Fig. 3.10: Number of partitions vs the mean difference of travel time of exact and approxi-
mate path.

exact and approximate paths around 7 percent. Inspired by the findings of Figure 3.10,

we defined a grid based partitioning which partitions Salt Lake City to 150 partitions to

be used as the baseline of the other experiments. Figure 3.11 demonstrates the grid based

partitions.

Fig. 3.11: Left: Distribution of nodes in each partition. Right: Visualization of partitions
on Salt Lake City. Each color represents one partition.

3.5.2 Which Partitioning Method We Picked?

Clustering For the clustering approach, we tried k-means and meanshift methods. K-

means provided 162 clusters and meanshift produced 229 clusters. Both of the methods

59

i

provides clusters in the accepted range of number of partitions. Hence, we need to look at

the quality of clusters in order to pick best choice. One widely used metric for measuring

the quality of clustering algorithms is Silhouette Index [67]. This metric uses concepts of

cohesion and separation to evaluate clusters, using the distance between nodes to measure

their similarity found using Equation 3.21.

S(C) = v∈Ci
Sv

|Ci|

where Sv = bv − av

max(av, bv)

(3.21)

where av is the average distance between vertex v and all the other vertices in the same

cluster and bv is the average distance between v and all the vertices in the nearest cluster.

The silhouette index for a given cluster is the average value of silhouette for all its member

vertices. Comparing silhouette index of k-means and meanshift shows that k-means has a

better index, therefore we picked k-means as our clustering algorithm.

Community detection Among the community detection methods that we used, Leading

Eigenvector provided 21 partitions with majority of the area in one partition. Hence,

this is not a good method for us. Among the Label Propagation 3.4.5, Multilevel 3.4.5

and Walktrap 3.5, Multilevel divides the city to 157 communities which is aligned with

our findings in section 3.5.1, hence we select this approach for community-based graph

partitioning.

3.5.3 Which Exemplar Assignment Approach is The Best?

After selecting the partitioning method, the next step is to select the exemplar of each

partition. In section 3.4.6 we discussed four possible exemplar selection methods: a) highest

traffic, b) highest reach, c) closeness centrality and d) random walk centrality. To determine

which is best, we picked 5000 source destination pairs in various time slots of different days

of a week. We use grid based city partitioning as a baseline. Then we find approximate

paths for the 5000 source destination pairs each time with one exemplar selection method

for each agents’ goal. Then, we look at the percent of times the approximate path planning

60

approach has the closest (mean, variance) of travel time to the exact path. Then the method

with highest number of similarity is selected as the exemplar selection method.

Fig. 3.12: Comparison of four methods of exemplar selection a) highest traffic, b) highest
reach, c) closeness centrality and d)random walk centrality.

As Figure 3.12 shows, random walk centrality provides a better representation of ex-

emplars in comparison to the other three methods for the both agent goals as the paths

using random walk centrality are more similar to exact paths.

3.5.4 How is The Quality of Approximate Paths?

For the purpose of experiments, we choose 5000 source, destination pairs randomly

among all of the possible source-destination pairs to represent the path planning universe.

Path planning queries are distributed across the traffic profiles at different time slots of

weekdays. Each path planning query has the following inputs: a) source, b) destination, c)

time of query, d) deadline and e) agent’s goal. Then, for all of the queries we compare the

approximate path generated from our proposed algorithm and the exact path.

Highest Probability Path

In order to compare the quality of our proposed approximate paths, we considered

the relative difference of mean and variance of travel time of paths between exact and

approximate path. For partitioning part of the approximate paths we used community

detection (multi-level method), clustering (k-means) and grid based. Grid based is used as

61

Fig. 3.13: Y axis is the relative difference percentage of mean and variance of travel time
of paths for exact and approximate approach for peak and non-peak hours for the agent’s
goal of highest probability path.

a baseline as it doesn’t have an intelligent way of partitioning the city graph and it is only

based on a grid. Gird-based method help us to compare the effectiveness of community

and clustering method. Figure 3.13 shows the relative difference of mean and variance of

travel time of paths between exact and approximate path planning approaches for rush and

non-rush hours.

Here are the finding from Figure 3.13:

• Multi-level approach has the least relative difference to exact paths in comparison to

clustering and grid-based method partitioning.

• The relative difference of travel time of all of the approximate methods is more sig-

nificant in rush hour in comparison to non-rush hour. As in non-rush hour, the traffic

is not high, hence both approximate and exact approach are almost the same.

• The mean of travel time of community approach is 5 percent longer than the exact

path in rush hour and this percentage is 3 percent longer in non-rush hour.

62

• The variance of travel time of community approach is 8 percent longer than the exact

path in rush hour and this percentage is 4 percent longer in non-rush hour.

• in both rush and non-rush hour community and clustering method outperform grid-

based method and this shows the impact of an intelligent graph partitioning on the

quality of approximate paths.

After looking at the relative difference of travel time of community, clustering and grid

based approximate paths, now we want to see among the 5000 source, destination samples

of the experiment, what is the ratio of each method in terms of having the closest mean,

variance of travel time to exact paths. Figure 3.14 shows this ratio and based on it in rush

hour, 54 percent of the closest paths to the exact were from the community approach with

37 percent clustering and a small fraction of grid approach (8%). In non-rush hour traffic

the differences are less but still the pattern is the same. This emphasizes the fact that

having an accurate graph clustering approach is more important during high traffic.

Fig. 3.14: Ratio of paths with the closest mean-variance to the exact path in peak and
non-peak hour for the agent’s goal of highest probability path.

Shortest Travel Time

In this section we repeat the experiments in section 3.5.4 for the agent goal of shortest

en-route time. Figure 3.15 and Figure 3.16 illustrates the results.

63

Fig. 3.15: Relative difference of travel time of mean and variance of paths for exact and
approximate approach for rush and non-rush hours for the agent’s goal of shortest en-route
time.

Here are the findings from Figure 3.15 and Figure 3.16 and also the comparison of the

results with section 3.5.4.

• Similar to the previous section, community method outperforms other approximate

approaches in terms of closeness of relative difference from approximate and exact

paths.

• Approximate path planning methods in rush hour have larger travel time difference

than non-rush time and in rush hour the mean of community method is 4 percent and

its variance is 9 percent higher than the exact path.

• In highest probability paths, paths have higher mean and lower variance in comparison

with shortest travel time paths which is aligned with their goals’ definitions. The

agents with highest probability path look for the most secure path hence their variance

is lower. Agents with the goal of shortest travel time are willing to risk if the risk

64

Fig. 3.16: Ratio of paths with the closest mean-variance to the exact path for the agent’s
goal of shortest en-route time.

provides them the paths with shorter travel time, hence their variance is higher and

the mean of their found paths are shorter.

• In rush hour, community and clustering partitioning outperform the grid based method

in both agents’ goals. In non-rush hour, the difference is less significant.

3.5.5 What is the Time and Space Complexity of Scalable Algorithm?

The previous experiments show that our proposed algorithm is at least 95 percent as

good as the exact paths while it responds to the queries in real time. When a path finding

query comes, source and destination nodes are connected to their respective exemplars.

Then, the stored path between exemplars for that time of the day, day of the week and

type of agents’ goal is retrieved. The retrieved path along with the sub-paths that connect

source, destination pairs to the respective exemplars construct the path and send it to the

agent. The real time response to the path finding queries are possible utilizing the distance

oracles. Now one of the concerns here is the size of the distance oracles and the effort to

update them. If we consider nodes of the city as N , and the number of exemplars as M ,

utilizing the approximate path finding instead of N ∗N paths, we are storing N ∗M +M

∗M paths which in our case M is 157. We store one distance oracles for each time slot of a

day, for 7 days of a week for each of the agent’s goals. Updating the distance oracles is an

offline

65

process, and it happens weekly. Every week, the traffic data of the preceding 12 months is

used for updating the distance oracles.

3.6 Conclusion and future work

In this paper, we propose a scalable algorithm that is practical in large scale path

planning applications for the use cases where agents have goals, and the planner aims to

satisfies agents’ goals rather than just providing a path which can move agents from a

source node to a destination node. The city is modelled as a large scale graph. Agents

have two types of goals: 1) those who look for the path with highest probability of reaching

destination before deadline, and 2) the agents who are interested to have the shortest travel

duration while they are flexible on the time they can leave. Associated with each path is

a defined cost and the goal of the path planner is to find a path that satisfies the agents’

goals. For expediting the path planning process, the city is partitioned and each partition is

represented with an exemplar. The exemplar of each partition is decided based on random

walk centrality. For partitioning the city graph, we used community detection methods and

clustering methods. When a path planning request comes, source and destination nodes

are connected to their corresponding exemplars with respect to the path direction and the

path between exemplars is retrieved. The paths between exemplars are stored in distance

oracles based on the preceding year data at the time of update and the oracles are updated

every week to reflect the recent changes on the network. Results show that among all of the

graph clustering approaches, community-based approaches produce closer results to exact

path planning approach. Approximation provides paths with mean and variance which are

not exact but close to that exact paths, while the solution is space and time efficient.

The main contribution of current work is providing a paradigm to handle large scale

path planning requests utilizing pre-computation and approximation while satisfying agents’

goals. Graph partitioning reduces the graph size; pre-computation helps in answering the

queries in real time and approximation helps in reducing the space needed for storing the

paths. Even though the approximate paths are not as accurate as exact paths, but they have

acceptable accuracy in comparison to the actual paths given the fact that they saved time

66

and space in the whole process. Possible future work of this research includes: a) adding

new agents goals to the domain and b) considering traffic data prediction to enhance the

decision making process which is currently based on historical data.

67

CHAPTER 4

Dynamic Reinforcement Learning Based Traffic Optimization in Smart City Paradigm

4.1 Abstract
1 Traffic congestion on urban road networks has increased substantially during the last

decade, characterized by slower speeds, longer travel times, increased vehicular queuing,

and increased pollution. The main pain point in traffic management is the static nature

of our city structures that cannot adapt to the traffic dynamics changing throughout the

day. This work focuses on a futuristic smart city design where making structural changes to

the city graph is possible. These changes include modifying lane direction, ramp metering,

speed limits, and signal timings on road segments. We also assume local observability of

the system where sensors can provide all the data needed for decision making. Under these

assumptions, we propose a multi agent reinforcement learning (RL) framework for improving

traffic flow in city networks. Our learning agents observe their assigned environment and

find the best structural changes based on a set of features that represent the recent traffic

conditions, dependent road segment characteristics, and recent structural modifications.

The goal of RL agents is to interact with the environment to learn what is the optimal

modification for each road segment with the goal of maximizing the cumulative reward over

the set of possible actions in state space. Then, once the RL agents are fully trained, they

can easily adapt to the dynamic changes of the traffic. Our proposed method has two level

learning. In the first level, a single agent is the only modifier of the traffic system so it

directly learns the initial policy. In the next level, we have multiple agents changing the

environment at the same time, each based on the initial policy learned in the previous step

while still updating their policy based on the interaction with the dynamic environment and
1The first version of this work is presented and published in proceedings of IEEE Interna-

tional Conference on Computational Science and Computational Intelligence (CSCI 2017). DOI:
10.1109/ISC253183.2021.9562951
The current version (extended) is submitted to the journal of IEEE Intelligent Systems.

68

in agreement with other agents. Our results show that the proposed framework improves

the total travel time (TTT) of the city by 36.2% during rush hours in the Salt Lake City

area.

4.2 Introduction

Traffic congestion occurs when the volume of traffic is greater than the available street

capacity. In an era of accelerated urbanization around the world, the ability to travel freely

is more critical than ever before [3, 4, 18, 43, 44, 68]. The cost of traffic congestion is large

and solutions to reduce the congestion save time and money and reduce environmental

pollution [3, 18, 44]. The main goal of traffic management is to improve the traffic flow and

reduce the traffic load on highly congested areas. To solve the traffic congestion problem,

numerous methods and approaches have been implemented. Most of the traditional traffic

management approaches assume the city structure is fixed and concentrate on re-routing

the traffic to alleviate the traffic on highly congested areas [3, 52, 69–73]. While this is a

practical approach in traffic management, re-routing might not be favorable for most of

the car drivers, and hence it might create a situation in which drivers decline the routing

directions. Several types of dynamic control methods based on traffic flow theory have been

developed and deployed in real-world applications. They prove that traffic control is a way

to prevent, or at least relieve traffic congestion, hence improving traffic conditions. Recently,

more attention has been paid to leveraging operational techniques in traffic management

like widening roads, variable speed limits, and modifying signal timing [12–19].

In this research, we focus on making structural changes to the city graph such as

dynamically changing the direction of lanes, ramp metering, modifying the speed limits, and

modifying the signal timing in order to manage the traffic in congested areas. For example,

if a road has three southbound and three northbound lanes and the southbound lanes are

overly congested, one of the possible modifications is to allocate one of the northbound

lanes to the southbound direction for a specific period of time (Figure 4.1 illustrates the

process). Thus, the road capacity for the southbound traffic is increased as we leverage the

underused lanes from the northbound side.

69

Fig. 4.1: Allocating one lane from right side to left side may decrease the congestion.

Modifying signal timing by dynamically changing the phase duration of the signals

can also improve congestion. If one segment of the road is highly congested, then we can

increase the signal timing in order to manage the congestion. Ramp meters are stop-and-go

traffic signals that control the frequency with which vehicles enter the flow of traffic on the

freeway. Ramp meters are used to improve traffic flow. Most ramp meters create a delay

between cars entering the highway. This delay helps reduce disruptions to freeway traffic

and reduces accidents that occur when vehicles merge onto the highway. We can leverage

the capability of modifying the delay time of ramps in order to reduce congestion. Figure

4.2 shows the process.

Modifying speed limits are also used when traffic volumes are building and congestion

is likely. When traffic volumes exceed a predetermined threshold, one strategy is to handle

more traffic volume at a slower, but not stop-and-go speed. Variable speed limit allows

speed limits to be changed based on current road conditions and the level of congestion.

The system’s goal is to slow traffic uniformly in a way that allows smooth traffic flow. In

both cases, the speed limit decrease is intended to alert drivers of conditions downstream.

Also, when congestion is low, we might be able to move the traffic faster, in this case the

speed limit of road segments will increase to move more vehicles. Ideally, the speed limit

70

Fig. 4.2: Delaying cars from entering the freeway using a ramp metering.

and message alerts are automated and do not require intervention from any operator [74].

Figure 4.3 shows the implementation of variable speed limit.

The focus of this work is on optimizing the traffic congestion on the whole city network

through a smart city paradigm. A smart city provides the capability of modifying the

structure of the city graph and gathering information from the sensors to learn the best

possible modification for each condition of the traffic. For this reason, we propose a multi

agent reinforcement learning system (RL Agents) that finds the best structural changes

based on multiple dynamic factors such as current traffic condition, dependent road segment

structures, and recent structural modifications. These structural changes not only impact

the flow in both directions of the road segment but also the flow at surrounding road

segments. Therefore, we need to consider the impact of structural changes not only on each

road segment, but also on dependent road segments and the whole network. RL agents

interact with the environment in the training phase and learn the optimal modification for

each road segment considering the current road segment and the impact on the dependent

segments. We proposed the process of learning the optimal policy as a two step process. In

the first step, a single agent is the only modifier of the traffic system so it directly learns

the initial policy. In the second step, there are multiple agents changing the environment,

71

Fig. 4.3: Implementation of variable speed limit. Variable speed limit allows speed limits
to be changed based on current road conditions and the level of congestion (original image
from PennDOT [1])

each based on the initial policy learned in the previous step while still updating their policy.

The goal of RL agents is to maximize the cumulative reward over the set of possible actions

in state space. First step is critical to reduce the noise in the reward system and be able

to converge to a stable policy. Then, in the second step, the agents update their policy to

take into account the indirect interaction with the other agents.

4.3 Previous Work

In the domain of city traffic optimization, there are two main approaches. One group

of models use linear programming to optimize the city congestion [13–15]. This set of ap-

proaches define the overall city congestion as affected by decision variables such as direction

72

of lanes, signal timing, and the speed limit of the roads. The main objective is to min-

imize the overall congestion via finding the best values of the decision variables. Since,

the domain of traffic optimization is a highly dynamic domain, traditional linear program-

ming approaches are not suitable in this situation. Linear programming approaches assume

the impact of structural changes on further road segments are known at the beginning of

the calculation which is an unrealistic assumption in practical applications. Also, in lin-

ear programming approaches, the problem is solved from scratch every single time. Hence

the computational complexity is high, and these models are not adaptive to the traffic

changes [3, 13–16, 75].

The second group of approaches use reinforcement learning for traffic optimization

[16, 17, 76–79]. In this set of approaches, the RL agents interact with the environment and

through maximizing the cumulative reward, they learn the best possible actions for each

specific state of the world.

Aslani et al. [17] proposed an RL based framework for traffic signal optimization.

They model the behavior of car drivers and their reaction toward system disturbance such

as jaywalking and sensor noise. Since they study a microscopic view of traffic (at drivers

level), the state space of their model becomes large. Therefore, they leverage linear function

approximation and state space reduction to reduce the size of the problem which may lead

to undesired results if the reduction process is ineffective. Our goal is to focus on optimizing

the whole city traffic optimization and having a realistic view of traffic; hence microscopic

traffic models, linear function approximation, and state space reduction is not applicable

for our use case.

Paul et al. [80] proposed a framework where single deep reinforcement learning agent

manages the traffic signal of multiple intersections using policy gradient algorithm. In par-

ticular, the agent is trained with spatio-temporal data of the environment that allows it to

perform action in different deep neural network models. Their proposed model outperforms

the baseline results which is fixed signal duration systems for few intersections. While this

approach focuses on optimizing traffic through modifying signal timings, since our focus is

73

on city wide traffic optimization, single agent modelling is not practical for our use case.

Walraven at, al. [77] proposed a model to find a method that defines the speed limits for

the road segments in order to minimize the global delay of car drivers in the city network.

The model learns the best speed limit for each road segment among the possible speed limits

of 60, 80, 100, and 120. Their RL model’s reward function is only built based on penalty

rather than actual reward in order to discourage unnecessary modification of speed. For our

proposed framework, our goal is to have a model that interactively learns the best speed

limit to proactively move the system toward minimizing the traffic flow by motivating agents

with reward. Also, our speed agents have a larger set of actions and a higher flexibility of

modifying speed limits rather than only limited to few options.

Zhou, et al. [81] proposed a model which develops a coordinated dynamic traffic con-

trol system that integrates variable speed limit information using a reinforcement learning

technique. Their ultimate goal is to build a model that enables traffic scenario analysis,

such as time-of-day, freeway trajectory, future demand assessment, and special event traffic

conditions. They used q-learning to decide optimized variable speed limit on one freeway

with a limited state space. Therefore, it is not applicable to our use case which is a high

dimensional state space simulating the whole city traffic.

Gunarathna et al. [18] presented a dynamic lane configuration solution for improving

traffic flow using a two-layer, multi-agent architecture. At the bottom-layer, a set of RL

agents find the best number of lanes for each side of the road. Then the lane-direction

changes proposed by the reinforcement learning agents are coordinated by another layer of

agents in order to evaluate the global impact of the proposed lane-direction changes. The

coordinating agents try to predict the impact of the decision proposed by RL agents on the

nearby road segments and accept/decline the change based on some rules. Their framework

only focuses on dynamically changing number of lanes for traffic management and also the

rule based coordination process can be replaced by a learning agents which can easily adopt

to the dynamic changes of the traffic environment.

74

In our proposed model, we focus on a futuristic smart city design where making struc-

tural changes to the city graph such as modifying number of lanes, opening or closing the

ramps, and changing signal timings on road segments are possible, sensors can provide all

the data we need, and traffic data is easily measurable. All of the mentioned RL frame-

works only focus on one aspect of active traffic management such as signal timing, lane

modification, or variable speed limit, while our proposed framework focuses on all possi-

ble modifications. The main advantage of reinforcement learning methods is, with proper

training, they can easily adapt to the changes of the domain without the need of the re-

computation. However, there are two challenges with reinforcement learning agents. First,

an RL agent finds the rules to achieve an objective by repeatedly interacting with an envi-

ronment. In order to be able to have a proper action at prediction time, the agent needs

to have seen a similar situation in the training phase through an action/reaction paradigm

to be able to estimate the reward of the situation [79, 82–84]. The second challenge with

reinforcement learning agents is that the state space can grow exponentially when the di-

mension of the state grows linearly. This problem is known in literature as the curse of

dimensionality [83, 85, 86]. Any model that uses RL needs to consider the two mentioned

challenges. In order to tackle the first challenge of RL based models, we train our agents

on a myriad of changes through a traffic simulator which is calibrated by real traffic data.

To tackle the curse of dimensionality, we considered a set of distributed agents at each

road segment. Each agent makes decisions independently for a specific road segment using

the features of the current road segment and the dependent segments. This independent

decision making prevents the state space from getting so large.

4.4 Model Framework

In the model framework, we first discuss time and space discretization (4.4.1 and 4.4.2).

Then, we define learning agents (4.4.3), state (4.4.4), action (4.4.5), and reward (4.4.6).

Then we explain the learning algorithm (4.4.7). All of the parameters used in this framework

are listed in section 4.4.9.

75

4.4.1 Time discretization

In order to represent the state space, we need to discretize the time. We divide the

time into the intervals of length m minutes and use each interval as a time step. In each

of these time steps, agents make structural changes to their assigned road segment. Each

agent can take just one action at each time step. It is important that m is chosen carefully

as a small m may increase the system noise and make both training and simulation slow,

while a large m will decrease the adaptivity of the system to the changes [79, 82].

4.4.2 Space discretization

In a reinforcement learning approach, states are a representation of the current world

or environment. Defining states for complex environments is not a straightforward task

due to the limitation of fixed-size representation of learning systems [79, 82, 87]. In learning

systems, we are bounded by the set of features and have to fit our problem in the feature

space. Also, in RL, we need to be concerned with the Markov Property, where each state

should provide enough information to accurately predict the expected reward and the next

state given an action, without the need for any additional information [79, 82, 86].

Agents in our model make decisions considering the impact of the decisions on the

current road segment and the dependent road segments as well. Therefore, they need to

have information about the environment around them. For example, an agent may need

to know the time value of all the signals in its proximity with radius r. For one location,

there might be 5 signals but for another location there might be no signals around the

agent. To work around this problem, we discretized the space based on the fixed segment

lengths. Figure 4.4 shows an example of segments. Each road segment might have different

properties. Those properties can be number of signals, number of lanes, speed limit, ramp,

type of road segment, and existence of landmarks. When we define road segments based on

equal lengths, we can compare the properties of road segments. Also, it helps in consistent

tabular representation of state space. Length of the segments (l) is a parameter that can

be tuned. Note that traffic signals can be located anywhere in a road segment and not

necessarily at the endpoints of the road segment.

76

Fig. 4.4: Sample of state discretization. Road segments are shown with different colors
(original image cropped from Google Maps TM).

4.4.3 Learning Agents

We define four types of agents, namely, lane agent, signal agent, ramp agent, and speed

agent.

• The lane agent controls the number of the lanes for each side of a road segment

containing multiple lanes. The lane agent decides the optimal number of lanes for

each direction of the road segment. Note that the total number of lanes over both

directions of a road segment is a fixed number.

• The ramp agent uses traffic signals (ramp meter) to control the rate at which vehicles

enter a freeway by modifying the entrance delay to the freeway.

• The signal agent is responsible for controlling a traffic signal at an intersection. It is

known that a phase scheduling decision at one intersection largely impacts the traffic

conditions in its neighbouring intersections. The traffic signals considered in this

work have 8 phases and the signal agent controls timing for each phase by learning

the appropriate phase timing based on traffic patterns. Figure 4.5 shows the 8 phases

on the traffic signal.

• The speed agent is responsible for modifying the speed limits on each direction of a

road segment in order to reduce the congestion.

77

Fig. 4.5: The 8 possible phases of a signal at each junction.

4.4.4 State

There are a set of features that we can measure for each direction of a road segment

during the time step t: number of lanes, number of vehicles, posted speed limit, average

speed of vehicles, number of traffic signals in the road segment, time of traffic signals for

each phase, and number of connecting roads (intersections without a traffic light measured

by number of lanes). Using these features, we represent the state for each of our learning

agent types as follows. Figure 4.6 illustrates the features for each type of road segments.

• Lane agent: the road segment features for the last Tl time steps for a) the assigned

segment, b) nb segments before the assigned segment, and c) na segments after the l l

assigned segment.

• Speed agent: the road segment features for the last Tv time steps for each direction of
a) the assigned segment, b) nb segments before the assigned segment, c) na segments

v v

after the assigned segment.

• Signal agent: a) distance of the signal to the beginning and end of the road segments

in which it is located, in both north-south and east-west directions; b) features for

the road segment where the traffic signal is present for the last Ts time steps in both

78

north-south and east-west directions; c) the timing for each signal phase for the last
Ts time steps; d) road segment features for the nb and na road segments before and

s s

after the road segment in which the signal is located for the last Ts time steps in both

north-south and east-west directions.

• Ramp agent: the road segment features for the last Tr time steps for: a) the road

segment in which the ramp is initiated from (Sri), b) the road segment in which the
ramp enters to (Sr); c) nb road segments before Sr , d) na road segments after Sr ,

e ri i ri i

e) nb road segments before Sr , f) na road segments after Sr , and g) timing of the
re

meter.

4.4.5 Action

e re e

In a RL paradigm, the action set is the set of all possible moves the agent can make.

Agents usually choose from a list of possible actions. Here we define the set of possible

actions for each agent.

• Lane agent: The actions for the lane agent consist of increase-by-2, decrease-by-2,

increase-by-1, decrease-by-1, or no-change at each time step. Since the total number of

lanes is fixed for a road segment, increase-by-1 action in one direction means decrease-

by-1 in another direction. We can also consider other actions such as increase-by-3

and decrease-by-3, but for our use case (Salt Lake City), those were not applicable.

However, the model is easily adaptable to those actions.

• Signal agent: Since there are eight time values that the signal agent can change (see

Figure 4.5), and for each value the agent can take one of the actions (increase-s-

seconds, don’t-change, decrease-s-seconds), we will have 38 possible actions. We have

set a maximum tSmax and a minimum value tSmin for each phase of the signal to

prevent extreme changes.

• Ramp agent: The action for ramp agent is similar to signal agent. The goal of the

ramp agent is to modify the rate of cars entering the freeway. Therefore, ramp agent

79

(a)

(b)

(c)

(d)

Fig. 4.6: Main segment and extra segments that have been considered for a) lane, b) signal,
c) ramp and d) speed agents.

80

max

can take any of the following actions: a) increase-r-seconds, b) don’t-change, and c)

decrease-r-seconds. We have set a maximum trmax and a minimum value trmin on the

ramp meter to prevent the problem of infinite wait for the vehicles in a ramp.

• Speed agent: For this type of agent, possible actions are a)increase-m-mph, b) decrease-

m-mph and c) no-change. Since we have 2 directions, the total number of actions is

32 actions. There is a maximum Vmph and minimum Vmph defined here to abide

the traffic rules.

4.4.6 Reward

We use the same reward metric for all our 4 agent types as their same goal is to

minimize traffic. There are multiple metrics that we can use as a reward for an action in

traffic systems. Total travel time, the amount of CO2 emission, total vehicle delay time, and

vehicle throughput are examples of these metrics [3, 44, 88]. Out of all the possible metrics,

the ones that directly measure the throughput of traffic are expected to work slightly better

as they provide a more clear reward signal tied to the taken action [16,18,77,79,88]. Traffic

throughput is the number of cars that pass a road segment during the time interval tau.

In this work, we use total vehicle hour (TVH) to measure the throughput in our road

segments as the reward. TVH measures the number of vehicles that pass the road segment

in an hour [88].

• The lane agent considers the TVH for the segment it controls and one additional road

segment before and after the target road segment.

• The signal agent adds the TVH for both segments on north-south and east-west

directions and one additional dependent road segment in north-south and east-west

directions.

• Reward for the ramp agent is calculated by adding the TVH for the segment that it

initiates from to the segment it feeds to and one additional dependent road segment

from each side.

81

k

• Similar to the lane agent, reward for speed agent is the TVH for the road segment

and one additional road segment before and after the target road segment.

In addition to the throughput feedback, we need to discourage agents from making un-

necessary lane changes as too frequent changes can cause traffic issues. We introduce a

penalty for lane change as pl which is in terms of TVH for the assigned and dependent road

segments. The impact of penalty of the agents’ decision making is studied in Section 4.5.4.

4.4.7 Learning Algorithm

As mentioned earlier, this work employs reinforcement learning (RL) to interactively

learn how to minimize the traffic. In RL problems, an agent interacts with the environment

by taking an action and receives feedback through a reward mechanism. An RL problem is

generally formalized in the form of a Markov Decision Process (MDP) using the notation

of < S, A, Pa(s, s′), Ra(s, s′), γ > where S represents the environment and agent states, A

is the set of actions that the agent can take, Pa(s, s′) is the transition probability between

state s and s′ under action a, Ra(s, s′) is the reward of transitioning from state s to s′ under

action a, and γ is the reward discount factor to denote that rewards for the events in the

immediate future are weighted more than events in the distant future [79, 82, 86, 87].

In this setting, the agent’s goal is to find the policy π = A × S → [0, 1], that will

maximize the discounted cumulative reward (Rt) from each state st:

∞
Rt = γ rt+k (4.1)

k=0

The expected value of this cumulative reward at state s when taking action a under

policy π is called action value function and is defined as:

Qπ(s, a) = E(Rt|st = s, at = a, π) (4.2)

82

θ a′

To overcome the challenge of convergence due to the noisy reward system in a multi-

Consequently, we can define the optimal action value Q∗(s, a) as the action value under

the optimal policy π∗:

Q∗(s, a) = max Qπ∗ (s, a) (4.3)
π∗

The ultimate goal here is to find the optimal policy π∗ for the agents via Q-learning.

In Q-learning, if we can accurately estimate the action value function (Q function), then a

greedy policy can be used to perform the best action. However, if the state space is huge,

then it is difficult to infer the Q-value of new states from already explored states because,

the amount of memory required to save and update that Q-table increases as the number

of states increases. Also, the amount of time required to explore each state to create the

required Q-table is huge. Since in our case we are dealing with a large state space, it is

difficult to directly estimate the Q function; therefore we need to approximate it using a

deep Q-learning method [79, 82, 86, 89]. For most problems, it is impractical to represent

the Q-function as a table containing values for each combination of s and a. Instead, we

train a function approximator, such as a neural network with parameters θ, to estimate

the Q-values, i.e. Q(s, a; θ) ≈ Q∗(s, a). The state is given as input and next action is

determined by the maximum output of the Q-network based on the objective value in 4.4

where the tuple (s, a, r, s’) representing (state, action, reward, new state) in a training

example [79, 82, 86, 89, 90]. Architecture of the DQN is explained in 4.4.8.

min
('

1r + γ max Q(s′, a′; θ) − Q(s, a; θ)1 + λ ∥θ∥
)

(4.4)

agent system where each agent is independently changing the environment [79, 82, 89], we

propose a 2-step learning process, pre-train and main train. In pre-train, for each episode, a

single agent is the only modifier of the traffic system so it directly learns the initial policy π0,

hence the noise is minimal. In main train, the episodes have multiple agents changing the

environment at the same time, each based on the initial policy learned in the previous step

while still updating their policy based on the interaction with the dynamic environment.

83

For example, in the case of the lane agent, in the pre-train step, the single lane agent learns

to change the number of lanes on a road segment on a series of episodes while no other

agent is making any change on the city structure. Then, in the main train step, there are

all the other agents (lane, signal, speed, and ramp agents) that are also making changes

to the environment at the same time. In main train, the agents learn what is the best

structural modification knowing that other agents are making changes to the city structure

at the same time.

Pre-train step is critical to help agents not get lost by the noise in the reward system

and be able to converge to a stable policy. We used an ϵ-greedy approach with a rather high

exploration rate (ϵ1), and an (ϵ2)-decreasing approach for the main train step to balance

the exploration and exploitation when choosing actions. Exploration allows an agent to

improve its knowledge about the domain in order to maximize the reward in long term

and take more informed decisions while exploitation chooses the greedy action to get the

most reward by exploiting the agent’s current action value estimates. If an agent always

takes greedy actions, it may not actually get the most reward and end up with a sub-

optimal solution. The ϵ-greedy approach is a simple method to balance exploration and

exploitation by choosing between exploration and exploitation randomly by having ϵ refers

to the probability of choosing to explore and exploits the rest of the time. The ϵ-decreasing

strategy is an extension of the ϵ-greedy strategy. Instead of selecting a fixed value of ϵ like

in ϵ-greedy, the ϵ-decreasing strategy chooses an initial ϵ value that gradually decreases over

time typically with an exponential decay rate. Using (ϵ)-decreasing approach ensures that

exploration occurs in the early stages, but as time progresses fewer iterations are spent on

exploration.

4.4.8 DQN Architecture

Deep Q-Learning replaces the regular Q-table with a neural network (NN). Rather than

mapping a state-action pair to a q-value, a neural network maps input states to (action,

Q-value) pairs. Figure 4.7 shows the illustration of the DQN. Here are the main components

of the DQN we used:

84

• Experience Replay: Deep Q-Learning uses experience replay to learn in small batches

in order to avoid skewing the data set distribution of different states, actions, rewards,

and next states. [82]. Importantly, the agent doesn’t need to train after each step. In

our implementation, we use Experience Replay to train on small batches once every

b steps rather than every single step. We found this approach really helps speed up

our Deep Q-Learning implementation.

• Target Network: To make training more stable, there is an approach, called target

network, by which we keep a copy of our main neural network and use it in the Bellman

equation. These networks have the same architecture but different weights. Every nt

steps, the weights from the main network are copied to the target network. Using two

networks leads to more stability in the learning process and helps the algorithm to

learn more effectively.

• Huber loss function: Using the Huber loss function rather than the Mean Squared

Error loss function also helps the agent to learn more efficiently. Huber loss function

is the combination of Mean Square Error (MSE) and Mean Absolute Error (MAE)

means it is quadratic (MSE) when the error is small else MAE. The Huber loss function

weighs outliers less than the Mean Squared Error loss function [91, 92].

• Architecture: We use a multilayered NN to estimate the Q-function. The neurons of

the input layer are equal to the number of features we consider to represent a state

and the output layer size is equal to the number of actions we have. The input layer

is followed by three hidden fully-connected layers. The nonlinear approximation is

exploited by Rectified Linear Unit (ReLU) for activation in our NN setup. The NN

takes data mini-batches of size mb. We use Adam optimization with learning rate

γ. Adam optimization maintains a per-parameter learning rate that improves perfor-

mance on problems with sparse gradients as opposed to stochastic gradient descent

which maintains a single learning rate for all weight updates and the learning rate

does not change during training. Adam optimization also maintains per-parameter

85

Fig. 4.7: Architecture of Deep Q-Network (DQN) using experience replay and target net-
work

learning rates that are adapted based on the average of recent magnitudes of the

gradients for the weight [93].

4.4.9 Parameters

Table 4.1 shows the parameters and the values that have been used in this work. The

values are obtained through hyper-parameter tuning. Hyper-parameter tuning objectively

searches different values for model hyper-parameters and chooses a subset that results in

a model which achieves the best performance. The result of a hyper-parameter optimiza-

tion is a single set of well-performing hyper-parameters that can be used to configure the

model. In this work, we use random search for hyper-parameter tuning [82, 84, 86, 94].

Random search does not check all different hyper-parameter combinations when finding an

optimal combination. Instead, it checks a randomly selected fixed number of combinations

in multiple iterations. Random search has a very high probability of finding the optimal

hyper-parameter combination within the randomly selected combinations. This method is

useful to find the optimal hyper-parameter combination quickly and efficiently when the

search space is higher dimensional and contains many combinations of values.

86

Table 4.1: Summary of the parameters used in this work.

Parameters Definition Value
m Duration of time steps 6 min
s Number of seconds that the signal agent can change at

any time step
15

tSmax Max duration of signal for a phase 3 min
tSmin Min duration of signal for a phase 0 sec
r Number of seconds that the ramp agent can change at

any time step
10

γ Discount factor 0.98
δ Learning rate 0.001
b Number of steps the main network select the batches 4
nt Number of steps in which we copy the weights from

main network to the target network
8

trmax Maximum value of ramp meter 30
trmin Minimum value of ramp meter 0
l Length of each road segment. For setting this we fol-

lowed the convention in [81]
0.5 mile

nb, na
l l Number of road segments before and after of a lane

agent that considered the feature set
3

nb , na
ri ri Number of road segments before and after of the seg-

ment in which the ramp initiates
3

nb , na
re re Number of road segments before and after of the seg-

ment in which the ramp ends into
3

nb, na
s s road segments before and after the road segment in

which the signal is located
4

nb ,na
v v Number of road segments before and after of the seg-

ment in which the speed limit is changing for
5

Tr, Ts, Tl,Tv Number of the time steps we keep track of the road
segment features for the ramp agent, signal agent, and
lane agent

5

ϵ1 Exploration rate for pre-train 0.25
ϵ2 Exploration rate for main-train 0.5-0.0
m Number of miles the agent can change in each time step 5
Vmphmax Maximum of speed limit on the road segments +20%
Vmphmin Minimum of speed limit on the road segments -20%
mb Size of mini-batches 64 data

points
pl Penalty for lane changes 4% of

the road
TVH

87

4.4.10 Training

We needed a traffic simulator to generate data for training our agents and also to

measure the impact of the proposed method on the traffic. We used SMARTS (Scalable

Microscopic Adaptive Road Traffic Simulator) [95] traffic simulator. For training, we created

10 synthetic city areas and made random perturbations to each to make 5000 different areas.

Perturbations consists of changing the timing of the ramp, changing the lanes of a segment,

changing the speed limit and changes made to the signal timings. For each area we generated

15 different traffic profiles where 3 are low traffic, 4 are normal traffic, and the rest are high

traffic profiles. High, medium and low traffic are defined based on the capacity of the roads.

In that sense, we considered low traffic as the road capacity of 40 percent or less; medium

is the traffic between 40 to 80 percent and high traffic is the traffic above the 80 percent

of the road capacity. These traffic profiles are calibrated based on real logged data from

Utah Department of Transportation (UDOT) [36] on the selected area of Salt Lake City for

the preceding 12 months. The traffic profiles are used to create different possibilities and

provide the opportunity for the agents to see various city/traffic configuration in training

phase.

After the scenario generation step, we have 5000 * 15 scenarios. For pre-train, we

assigned one agent to a random road segment in each of these scenarios. Then each of these

scenarios is passed to the simulator and simulator runs for 5000 * 15 scenarios where each

run of the simulation is 15 step and the duration of each step takes m minute. In each time

step the agent can take an action that changes the configuration of the area. When each

scenario finished, we use the data of the last 10 steps to make sure that our historical road

segment features have stable values as at the first steps, we might not have stable values.

In the main train, we randomly sub-sampled the number of city area configurations

to 500, and we consider the 15 traffic profiles. For each scenario, We assign all types of

agents to all road segments and let them make modifications at the same time. Similar

to the pre-train step, the simulator runs 500 * 15 times where each run is 15 steps and

each step takes m minutes where we only use the data of the last 10 step of each scenario.

88

Random sub-sampling of city area configurations is done because of the high computation

time needed for running each configuration with multiple assigned agents in the main-train

step.

4.5 Experiments and Results

To evaluate the effectiveness of the proposed algorithm, we designed multiple experi-

ments that we are going to discuss here. For these experiments, we used the map of Salt

Lake City area using Open Street Map [34] and imported that to SMARTS traffic simula-

tor [95]. Experiments are designed to study a) single versus multi-agent impact on traffic

4.5.1, b) agents’ decisions in different traffic situations 4.5.2, c) patterns of traffic signals

4.5.3, d) effect of lane change penalty 4.5.4 and e) impact of two stage learning 4.3. Each

of the experiments is repeated 20 times simulating 20 random days of a year to make sure

the results that we are getting is reproducible. Our training step was based on synthetic

data (snapshot of the city with random perturbations) in order to provide variation of op-

portunities for agents to learn. Hence, testing on Salt Lake City is an unseen case for the

agents. The outcome of each experiment is compared against the baseline, defined as the

evaluation metric for the city without any assigned agent (normal traffic flow) in terms of

Total Traveling Time (TTT) of the all generated traffic. The metric TTT is defined on the

whole city and it is used as a measure of overall congestion improvement in the city while

TVH measures the throughput of the road segment and it is used as a reward mechanism

for the agents that are assigned to each road segment to pick the best action.

4.5.1 Single vs Multi-agent Impact

This experiment studies the impact of multi-agent versus single agent in improving

TTT in rush and non-rush hour time.

Single agent type

This experiment aims to understand the effect of having a single agent type without

the confounding effect of the other types. To do this, for each of the simulations, we just

89

keep one of the agent types enabled. The results show that the ramp agent alone does not

have any significant effect in non-rush hour, the lane agent improves TTT by 2.2% in non-

rush hour, speed agent improves TTT by 8.8% and the signal agent has 4.7% improvement

over TTT when compared to the baseline. As one can expect, the true power of the agents

become visible during the rush hours where lane agents alone can make 23.0% improvement

of the TTT metric. During this time, signal agents have 14.4% better TTT while ramp

agents didn’t show any statistically significant improvement. Speed agent is able to improve

the TTT by 4.4% (the effect of speed agent is higher in non-rush hour). These numbers

are important because they allow city planners to do a proper cost-benefit analysis when

choosing what smart city feature to include in their design. Figure 4.8 summarizes these

results.

Fig. 4.8: The graphs compares the improvement we got over the baseline traffic with different
groups of agents modifying the city during rush hour and non-rush hour time.

90

Multi-agent with multiple agent types

This is the full-scale experiment in which all the agents are enabled and are changing

the environment dynamically. The results show that we got about 13.2% improvement of

TTT during non-rush hours implying that the current city designs seem to be good enough

for handling the regular traffic. However, during the rush hours, our agents could collab-

oratively improve the traffic by 36.2%. The interesting point here is that the aggregated

effect of all the agents is smaller than the summation of individual agent type’s effects in

the previous experiment (see Figure 4.8). This can be explained by the fact that the effect

of the agents is not independent: changes one agent makes on the traffic pattern can overlap

with another agent’s effect so the aggregated effect will be smaller than the summation of

the two.

In the first experiment, the ramp agent did not show any significant improvement over

the traffic flow when it was the only modifier of the system. However, this agent type

could potentially help the traffic flow when working with the other agent types. To better

understand this, we run the same simulation as above but with ramp agents disabled.

As Figure 4.8 shows, disabling the ramp agents reduced the improvement of the traffic

compared to when all the agent types are enabled for about 1.5% percentage points in rush

hour. This well demonstrates how the ramp agents can help in managing the traffic flow

when interacting with the other agent types. However, the ramp impact is not that large

as we have the total of 41 ramps in the city area. The number of signals are 1178 and we

have 13967 road segments.

4.5.2 Agent’s Decisions

In our work, improvement of TTT is the main focus. However, we are also interested

in understanding the decisions that agents made in different traffic situations. For this,

we look at the distribution of actions per agent type in three different traffic profiles (low,

medium and high). The percentage values in Figure 4.9 are defined for each traffic profile

and each decision type. The percentages are obtained by dividing the number of the road

segments (or directions in case of speed agent) experienced that type of the decision (like

91

Fig. 4.9: Summary of modifications that our agents made during the three traffic profiles:
a) low traffic, b) medium traffic and c) high traffic

lane change or speed change) by all of the road segments/directions in the same traffic

profile. For example, the value of ”Road segment directions with increased speed limit” in

low traffic is 73% which means 73% of the road segment directions with low traffic went

through increase speed limit. Here are multiple interesting observations from Figure 4.9.

• In low traffic we didn’t have signals with maxed out phase and a very low number

of signals maxed out in medium traffic. Even in high traffic, only 19% experienced

maxed out. This tells that even in high traffic, increasing the time of a phase to maxed

out (180 seconds) is not the best solution. Section 4.5.3 provides a detailed analysis

of signal timing patterns.

• In low traffic, there is a high number of road directions with increased speed limit.

The percentage is smaller in medium traffic and it is much smaller in high traffic.

As expected, the results show that the increase in speed limit is an intuitive way

of moving the traffic faster. One takeaway from this observation is, time-dependent

variable speed limit can be a good leverage in managing traffic more effectively.

• We see that there are a low percentage of road directions with decreased speed limit

in all traffic profiles. The percentage is higher in medium traffic in order to handle

more traffic volume at a slower speed while in high traffic the flow is already slowed

92

down. These results confirm that speed limit reduction might not be the best leverage

for improving the traffic flow.

• The results of lane changes show that in high traffic, we had 71% of lane changes which

shows this is a very useful action in managing traffic as it increases the capacity of

roads which independently improved the overall TTT by 23% in rush hour based on

Figure 4.8.

• Non-smooth lane changes defined as road segments that their previous and next seg-

ments have the same number of the lanes which is different from their own number

of lanes. The high value for the changed lanes combined with the small value of the

non-smooth lane changes show the smooth adaptiveness of lane agents to different

traffic situations.

• In Figure 4.8, we saw that ramp agent didn’t have a significant impact independently

and in the multi-agent phase it was able to improve the traffic by 1.5 percentage point

in rush hour. Figure 4.9 shows that we had meter timing increase in 24% of the ramps

in high traffic while this percentage is very low in medium and low traffic.

The two major changes that we see in Figure 4.9 are increasing the speed limit in low

traffic by 73% and changing number of lanes in high traffic by 71%. Figure 4.10 shows the

distribution of the magnitude of the changes in each case. As it can be seen, the majority

of speed limit increases is 5 mph and the majority of lane changes are changing by 1 lane.

4.5.3 Patterns of traffic signals

In order to have a better understanding of changes of signals, we look at the pattern

of signal phase timings in rush and non-rush hour. Figure 4.11 shows possible states of a

signal in a north-south direction. The duration of each signal phase can vary from 0 seconds

to 180 seconds which is the maxed out state [44]. In this experiment, we look at the phase

timing pattern to see how signal agent modifies the base phase timing in rush and non-rush

hour.

93

Fig. 4.10: Distribution of speed limit changes in low traffic and lane changes in high traffic

Fig. 4.11: Possible signal phases for a north-south direction.

Figure 4.12 shows the pattern of phase timing in baseline, rush hour and non rush hour for

all of the signals used in the simulation. Followings are the findings from the patterns:

• Comparison of the patterns in non-rush and rush hour shows how dynamically our

signal agents responds to the traffic situation and modifies the phase timings to adjust

to the traffic situation.

• In non-rush hour, number of zeros are expanded in comparison to baseline which due

to the elimination of lots of state (b) and (c) because of the low congestion.

• Phase timing in non-rush hour is distributed to the range of 10 to 80 seconds. In this

distribution, the timings between 10 to 40 are majorly state (a),(b) and (c) with few

state (d) and the timings after 40 are majorly state (d).

94

• In rush hour, we have a long tail along with an increased number of maxed outs which

indicates that our algorithm modifies signal timings to optimize the traffic. Hence,

some phases need to be longer and some need to get maxed out to manage the traffic.

• In rush hour, phase timings greater than 80 second is all state (d) which shows that

the signal agent increased the timing of state (d) to manage the congestion.

Fig. 4.12: Signal Pattern for base, none rush hour and rush hour.

4.5.4 Effect of lane change penalty

One of our concerns during the design phase of this project was the possibility of

unnecessary actions by the lane agents; for example, the periodic actions of the lane agent,

i.e. to increase number of the lanes at time t, and decrease it at t + 1, and then increase it

again at t + 2. For changing the number of lanes in SMART simulator [95], the target lanes

are blocked from one side and get allocated to the other side of the road segment. In this

95

process the simulator allocates the traffic of the target lane(s) to the other active lanes of the

same direction. The simulator also re-routs part of the traffic which their travel time will be

impacted significantly from the precedent road segments. To prevent the unnecessary lane

changes, we introduced a penalty for the changes by lane agents (pl) in the reward function.

Non-smooth lane changes is one of the indicators of unnecessary lane changes which causes

inconsistency of lanes in consequent road segments. Table 4.2 summarizes the impact of

lane change penalty on the percentage of non-smooth lane changes.

Table 4.2: Summary of the impact lane change penalty in non-smooth lane changes.

 Non-rush hour Rush hour
Non-smooth lane change - No Penalty 14.4% 3.6%
Non-smooth lane change - Penalty 0.5% 0.9%

4.5.5 Importance of two-stage learning

As mentioned previously, we have proposed a two-stage training process to prevent the

problem of non-convergence often seen in the RL systems with many different actors. Our

system is an extreme case of uncertainty in the reward outcome as the observed reward

might be due to the direct and indirect actions of many agents. Table 4.3 summarized the

comparison of two stage learning (pre-train and main train) with only main train without pre-

train. Convergence is defined as the number of simulations that all agents converged to a

stable policy. Improvement of TTT is defined based on the improvement the converged

simulations made in comparison to baseline. Baseline is defined as the city without any

assigned agent. The model with converged solutions in main train only significantly under-

performed the model trained with pre-train and main train (11.3% improvement over the

baseline compared to 36.2% in 2-stage).

4.6 Conclusion and Future works

In this research, we proposed a dynamic traffic management framework in a smart

96

Table 4.3: Comparison of two stage learning pre-train and main train with only main train
without pre-train step

Learning type Convergence Improvement of TTT
Main train only 3% 11.3%
Pre-train and Main train 100% 36.2%

city paradigm. In the proposed model, we utilize the structural modifications of the city

network such as changing the number of lanes, ramp metering, changing the speed limit of

road segments, and modifying signal timing to alleviate the traffic congestion in the overall

city network. The proposed framework uses a multi-agent reinforcement learning with

the goal of finding the best structural changes based on multiple dynamic factors through

maximizing the cumulative reward over the set of possible actions in state space. Once the

RL agents are trained on all possible features, they can easily adopt to the dynamic changes

of the traffic. Our results shows that the proposed framework improves the total travel time

(TTT) by 36.2% during rush hours in Salt Lake City area. There are few directions that we

can improve upon the current work. First, in this work, we did not deal with the problem

of agents’ connectivity. We assume that agents can easily get the information from any

dependent road segment. This is a separate line of work that can be further expanded

with the consideration of all the uncertainties and sensitivity of agents to the lost or invalid

inputs. Also, we assumed that the road segments have equal lengths. One can potentially

consider variable length road segments based on specific features and study the impact of

different lengths for road segments.

97

CHAPTER 5

Conclusion

Traffic congestion occurs when the volume of traffic is greater than the available street

capacity. In an era of accelerated urbanization around the world, the ability to travel freely

is more critical than ever before. The cost of traffic congestion is large, and solutions to

reduce the congestion save time, money, and environmental pollution. The traditional traffic

management system was designed when the number of vehicles were lower, and they were

able to efficiently manage the traffic. Now, due to the massive increase in transportation

needs in many cities, there is a need for smarter traffic management solution. The main

goals of intelligent traffic management systems are to improve the traffic flow and reduce

the traffic load in highly congested areas. In this research, we look at the applications of

multi agent systems in intelligent traffic management. Since multi-agent systems are built

on the concept of cooperation between intelligent agents, it is a powerful paradigm to test

and analyze the real world domain scenarios. Our intelligent traffic management framework

has two main parts: a) scalable stochastic path planning and b) intelligent city-wide traffic

optimization.

Stochastic path planning focuses on path finding in the real-world domain in which edge

weights are not fixed but are stochastically affected by the time of the day/week. Stochastic

edge costs are considered as independent Gaussian random variables, whose distributions

are extracted from data monitored by the Utah Department of Transportation. Inspired by

time-dependent traffic situation, we parameterize these distributions by time, which allows

us to speak of time-dependent path costs and study the problems of reaching a goal by

a deadline and delaying departure to minimize traversal-to-goal time. The best path is

the path with lowest cost. The cost is based on travel time which depends on the level

of congestion in the network and congestion highly related to the time of the day/week.

Three different cost functions (linear, exponential, and step cost function) are investigated.

98

Users can pursue two main goals: 1) picking the least risky path and 2) picking the shortest

travel time while still meeting the deadline. In the path planning domain, we first focus on

finding a path that satisfies the domain constraints and agents ’goals. Results show that in

rush hour time when the congestion is high, using a smart/realistic method of path finding

is crucial while in non-peak hours paths are almost the same. In addition, the findings

show that a suitable path finding approach must consider different aspects such as path’s

mean, path’s variance and the deadline to provide optimal options. Removing any of these

factors may result in having a path which either violates the deadline or has a very high

travel time variance. Also, the comparison of the two agents’ goals with shortest length

path proves that the shortest-length path is not always the best path due to the fact that it

is highly congested in rush hour times as it is traditionally the first choice of most drivers.

Highest probability paths have less variance because it takes the most secure path, while

the smallest travel time paths have the lowest mean and might have a high variance.

Then, we built on top of the stochastic path planning and propose a scalable algorithm

that is practical in large scale path planning applications for the use cases where agents have

goals, and the planner aims to satisfies agents’ goals rather than just providing a path which

can move agents from a source node to a destination node. The city is modelled as a large

scale graph. Agents have two types of goals: 1) seekingr the path with highest probability of

reaching destination before deadline, and 2) seeking the shortest travel duration while they

are flexible on the time they can leave. Associated with each path is a defined cost. The goal

of the path planner is to find a path that satisfies the agents’ goals. For expediting the path

planning process, the city is partitioned and each partition is represented with an exemplar.

The exemplar of each partition is decided based on random walk centrality. For partitioning

the city graph, we used community detection and clustering approaches. When a path

planning request comes, source and destination nodes are connected to their corresponding

exemplars with respect to the path direction and the path between exemplars is retrieved.

The paths between exemplars are stored in distance oracles based on the preceding year data

at the time of update and the oracles are updated every week to reflect the recent changes on

99

the network. Results show that among all of the graph clustering approaches, community-

based approaches produce closer results to exact path planning approach. Approximation

provides paths with mean and variance which are not exact but close to that exact paths,

while the solution is space and time efficient. The proposed framework handles queries in

real time while the approximate paths are 3 to 5 percent longer than exact paths

Our intelligent city wide traffic optimization framework is a dynamic model based on

a smart city paradigm. In the proposed model, we utilize the structural modifications of

the city network such as changing the number of lanes, ramp metering, changing the speed

limit of road segments, and modifying signal timing to alleviate the traffic congestion in the

overall city network. These structural changes not only impact the flow in both directions

of the road segment but also the flow at surrounding road segments. Therefore, we need

to consider the impact of structural changes not only on each road segment, but also on

dependent road segments and the whole network. The proposed framework uses a multi-

agent reinforcement learning with the goal of finding the best structural changes based on

multiple dynamic factors through maximizing the cumulative reward over the set of possible

actions in state space. Once the RL agents are trained on all possible features, they can

easily adopt to the dynamic changes of the traffic. The learning process has two steps: a)

single agent is the only modifier and learns the initial policy, b) agents update their policy

by interacting by other agents. First step is critical to reduce the noise in the reward system

and be able to converge to a stable policy. Then, in the second step, the agents update

their policy to take into account the indirect interaction with the other agents. The main

advantage of reinforcement learning methods is, with proper training, they can easily adapt

to the changes of the domain without the need of the re-computation. Our results shows

that the proposed framework improves the total travel time (TTT) by 36.2% during rush

hours in Salt Lake City area. Also, the biggest changes were either in modifying speed limit

or changing number of lanes. In addition, we showed that using two-stage learning we had

100 percent coverage with 36.2 TTT improvement in oppose to 3 percent coverage in one

stage learning.

100

REFERENCES

[1] PennDOT, “Pennsylvania Department of Transportation,” Harrisburg, PA, 2021.
[Online]. Available: https://www.penndot.gov/Pages/default.aspx

[2] K. Ahmadi, “Decision making using trust and risk in self-adaptive agent organization,”
MS. Thesis, All Graduate Theses and Dissertations, Utah State University, 2014.
[Online]. Available: digitalcommons.usu.edu/etd/2159

[3] M. Shahgholian and D. Gharavian, “Advanced traffic management systems: An
overview and a development strategy,” arXiv: Signal Processing, 2018.

[4] M. Niknami and S. Samaranayake, “Tractable Pathfinding for the Stochastic On-Time
Arrival Problem.” Springer, Cham, June 2016, pp. 231–245. [Online]. Available:
https://arxiv.org/abs/1408.4490

[5] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher, “Stochastic
shortest paths via quasi-convex maximization,” ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 552–563. [Online]. Available:
https://link.springer.com/chapter/10.1007/11841036 50

[6] S. Lim, H. Balakrishnan, D. Kenneth, G. Samuel, R. Madden, and D. Rus, “Method
and apparatus for traffic-aware stochastic routing and navigation,” 2020. [Online].
Available: https://patents.google.com/patent/US10535256B1/en

[7] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact Routing in Large Road
Networks Using Contraction Hierarchies,” Transportation Science, vol. 46, no. 3, pp.
388–404, Aug. 2012. [Online]. Available: http://dx.doi.org/10.1287/trsc.1110.0401

[8] Yaoxin Wu, Wei Chen, Xuexi Zhang, and Guangjun Liao, “Improving the performance
of arrival on time in stochastic shortest path problem.” 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), nov 2016, pp. 2346–2353.
[Online]. Available: http://ieeexplore.ieee.org/document/7795934/

[9] S. Lim and D. Rus, “Congestion-Aware Multi-Agent Path Planning: Distributed
Algorithm and Applications,” The Computer Journal, vol. 57, no. 6, pp. 825–839, Jun.
2014. [Online]. Available: https://academic.oup.com/comjnl/article/57/6/825/378655

[10] D. Wilkie, J. v. d. Berg, M. Lin, and D. Manocha, “Self-aware traffic route planning,”
in Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, ser.
AAAI’11. AAAI Press, 2011, p. 1521–1527.

[11] C. E. Sigal, A. Pritsker, and J. Solberg, “The stochastic shortest route problem,”
Operation Research, vol. 28, pp. 1122–1129, 1980.

[12] D. Pérez-Méndez, C. Gershenson, M. E. Lárraga, and J. L. Mateos, “Modeling
adaptive reversible lanes: A cellular automata approach.” PlOS ONE, vol. 16, pp. 1–16,
January 2021. [Online]. Available: https://doi.org/10.1371/journal.pone.0244326

https://www.penndot.gov/Pages/default.aspx
https://arxiv.org/abs/1408.4490
https://link.springer.com/chapter/10.1007/11841036_50
https://patents.google.com/patent/US10535256B1/en
http://dx.doi.org/10.1287/trsc.1110.0401
http://ieeexplore.ieee.org/document/7795934/
https://academic.oup.com/comjnl/article/57/6/825/378655
https://doi.org/10.1371/journal.pone.0244326

101

[13] J. Wu, H. Sun, Z. Gao, and H. Zhang, “Reversible lane-based traffic network opti-
mization with an advanced traveller information system,” Engineering Optimization,
vol. 41, no. 1, pp. 87–97, 2009.

[14] M. Hausknecht, T.-C. Au, P. Stone, D. Fajardo, and T. Waller, “Dynamic lane reversal
in traffic management,” in 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), 2011, pp. 1929–1934.

[15] K. F. Chu, A. Y. Lam, and V. O. Li, “Dynamic lane reversal routing and scheduling
for connected autonomous vehicles,” in 2017 International Smart Cities Conference
(ISC2), 2017, pp. 1–6.

[16] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learning
for integrated network of adaptive traffic signal controllers (marlin-atsc): Methodology
and large-scale application on downtown toronto,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[17] M. Aslani, S. Seipel, M. S. Mesgari, and M. Wiering, “Traffic signal optimization
through discrete and continuous reinforcement learning with robustness analysis
in downtown tehran,” Advanced Engineering Informatics, vol. 38, pp. 639–
655, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474034617302598

[18] U. Gunarathna, H. Xie, E. Tanin, S. Karunasekara, and R. Borovica-Gajic, “Real-time
lane configuration with coordinated reinforcement learning,” in Machine Learning and
Knowledge Discovery in Databases: Applied Data Science Track, Y. Dong, D. Mladenić,
and C. Saunders, Eds. Cham: Springer International Publishing, 2021, pp. 291–307.

[19] E. R. Müller, R. C. Carlson, W. Kraus, and M. Papageorgiou, “Microsimulation analy-
sis of practical aspects of traffic control with variable speed limits,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 1, pp. 512–523, 2015.

[20] K. Ahmadi and V. H. Allan, “Trust-based decision making in a self-adaptive agent
organization,” ACM Trans. Auton. Adapt. Syst., vol. 11, no. 2, jun 2016. [Online].
Available: https://doi.org/10.1145/2839302

[21] N. Chiabaut, C. Buisson, and L. Leclercq, “Fundamental Diagram Estimation
Through Passing Rate Measurements in Congestion,” IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 2, pp. 355–359, jun 2009. [Online].
Available: http://ieeexplore.ieee.org/document/4914846/

[22] Y. Y. Fan, R. E. Kalaba, and J. E. Moore, “Arriving on Time,” Journal of
Optimization Theory and Applications, vol. 127, no. 3, pp. 497–513, dec 2005. [Online].
Available: http://link.springer.com/10.1007/s10957-005-7498-5

[23] X. Pi and Z. S. Qian, “A stochastic optimal control approach for real-time
traffic routing considering demand uncertainties and travelers’ choice heterogeneity,”
Transportation Research Part B: Methodological, vol. 104, no. Supplement C, pp. 710
– 732, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0191261516309924

https://www.sciencedirect.com/science/article/pii/S1474034617302598
https://www.sciencedirect.com/science/article/pii/S1474034617302598
https://doi.org/10.1145/2839302
http://ieeexplore.ieee.org/document/4914846/
http://link.springer.com/10.1007/s10957-005-7498-5
http://www.sciencedirect.com/science/article/pii/S0191261516309924
http://www.sciencedirect.com/science/article/pii/S0191261516309924

102

[24] E. W. Dijkstra and E. W., “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, December 1959. [Online].
Available: http://link.springer.com/10.1007/BF01386390

[25] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. [Online]. Available: http:
//ieeexplore.ieee.org/document/4082128/

[26] E. Nikolova, “Approximation algorithms for reliable stochastic combinatorial optimiza-
tion,” in Proceedings of the 13th International Conference on Approximation: Algo-
rithms and Techniques, ser. APPROX/RANDOM’10. Berlin, Heidelberg: Springer-
Verlag, 2010, p. 338–351.

[27] R. Geisberger, M. Kobitzsch, and P. Sanders, “Route planning with flexible objective
functions,” in Proceedings of the Meeting on Algorithm Engineering and Expermiments,
ser. ALENEX ’10. USA: Society for Industrial and Applied Mathematics, 2010, p. 124–
137.

[28] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham,
“Traffic Flow Modeling of Large-Scale Motorway Networks Using the Macroscopic
Modeling Tool METANET,” IEEE Transaction on Intelligent Transportation Systems,
vol. 3, no. 4, 2002. [Online]. Available: https://ai2-s2-pdfs.s3.amazonaws.com/491b/
caedeb5f14c0e2bf41756120f0da9d8e3477.pdf

[29] E. D. Miller-Hooks and H. S. Mahmassani, “Least Expected Time Paths in Stochastic,
Time-Varying Transportation Networks,” Transportation Science, vol. 34, no. 2, pp.
198–215, may 2000. [Online]. Available: http://pubsonline.informs.org/doi/abs/10.
1287/trsc.34.2.198.12304

[30] Z. Cao, H. Guo, J. Zhang, F. Oliehoek, and U. Fastenrath, “Maximizing the probability
of arriving on time: A practical q-learning method,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press, 2017, p. 4481–
4487.

[31] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a: Efficient point-to-point
shortest path algorithms,” in Workshop on Algorithm Engineering and Experiments,
2006, pp. 129–143.

[32] R. J. Gutman, “Reach-based routing: A new approach to shortest path algorithms
optimized for road networks.” in Proceedings of the Sixth Workshop on Algorithm En-
gineering and Experiments. SIAM, 2004, pp. 100–111.

[33] R. Bauer, M. Baum, I. Rutter, and D. Wagner, On the Complexity of Partitioning
Graphs for Arc-Flags. Journal of Graph Algorithms and Applications, January 2013.

[34] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street Maps,” IEEE
Pervasive Computing, vol. 7, no. 4, pp. 12–18, oct 2008. [Online]. Available:
http://ieeexplore.ieee.org/document/4653466/

http://link.springer.com/10.1007/BF01386390
http://ieeexplore.ieee.org/document/4082128/
http://ieeexplore.ieee.org/document/4082128/
https://ai2-s2-pdfs.s3.amazonaws.com/491b/caedeb5f14c0e2bf41756120f0da9d8e3477.pdf
https://ai2-s2-pdfs.s3.amazonaws.com/491b/caedeb5f14c0e2bf41756120f0da9d8e3477.pdf
http://pubsonline.informs.org/doi/abs/10.1287/trsc.34.2.198.12304
http://pubsonline.informs.org/doi/abs/10.1287/trsc.34.2.198.12304
http://ieeexplore.ieee.org/document/4653466/

103

[35] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact algorithm for the
elementary shortest path problem with resource constraints: Application to some
vehicle routing problems,” Networks, vol. 44, no. 3, pp. 216–229, oct 2004. [Online].
Available: http://doi.wiley.com/10.1002/net.20033

[36] UDOT, “UDOT: Utah Department of Transportation,” SLC, UTA, 2020. [Online].
Available: https://www.udot.utah.gov/main/f?p=100:6:0::::V,T:,1

[37] D. Long, U. ICAPS 2006 (16 2006.06.06-10 Windermere, and U. International
Conference on Automated Planning and Scheduling (16 2006.06.06-10 Windermere,
Optimal route planning under uncertainty. AAAI Press, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3037122

[38] A. M. Campbell, M. Gendreau, and B. W. Thomas, “The orienteering
problem with stochastic travel and service times,” Annals of Operations
Research, vol. 186, no. 1, pp. 61–81, jun 2011. [Online]. Available: http:
//link.springer.com/10.1007/s10479-011-0895-2

[39] H. C. LAU, W. YEOH, P. VARAKANTHAM, and D. T. NGUYEN, “Dynamic
Stochastic Orienteering Problems for Risk-Aware Applications,” Uncertainty in
Artificial Intelligence: Proceedings of the Twenty-Eighth Conference: August 15-
17 2012, Catalina Island, United States, aug 2012. [Online]. Available:
http://ink.library.smu.edu.sg/sis{ }research/1610

[40] P. Besnard, S. Hanks, and K. Larson, Uncertainty in artificial intelligence :
proceedings of the Eleventh Conference (1995) : August 18-20, 1995. Morgan
Kaufmann Publishers, 1995. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2074158.2074219

[41] G. Bachman, L. Narici, and E. Beckenstein, Fourier and Wavelet Analysis, ser.
Universitext. New York, NY: Springer New York, 2000. [Online]. Available:
http://link.springer.com/10.1007/978-1-4612-0505-0

[42] D. Basu and R. G. Laha, “On Some Characterizations of the Normal Distribution,”
Sankhya: The Indian Journal of Statistics(1954), vol. 13, pp. 359–362, 1954. [Online].
Available: https://www.jstor.org/stable/25048183

[43] K. Ahmadi and V. H. Allan, “Scalable stochastic path planning under
congestion,” in Proceedings of the 13th International Conference on Agents and
Artificial Intelligence. SCITEPRESS, 2021, pp. 454–463. [Online]. Available:
https://doi.org/10.5220/0010394104540463

[44] A. Loder, L. Ambühl, M. Menendez, and K. W. Axhausen, “Understanding traffic
capacity of urban networks,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[45] B. Büchel and F. Corman, “Review on statistical modeling of travel time variability
for road-based public transport,” Frontiers in Built Environment, vol. 6, p. 70, 2020.
[Online]. Available: https://www.frontiersin.org/article/10.3389/fbuil.2020.00070

http://doi.wiley.com/10.1002/net.20033
https://www.udot.utah.gov/main/f?p=100%3A6%3A0%3A%3A%3A%3AV%2CT%3A%2C1
http://dl.acm.org/citation.cfm?id=3037122
http://link.springer.com/10.1007/s10479-011-0895-2
http://link.springer.com/10.1007/s10479-011-0895-2
http://ink.library.smu.edu.sg/sis%7B_%7Dresearch/1610
http://dl.acm.org/citation.cfm?id=2074158.2074219
http://dl.acm.org/citation.cfm?id=2074158.2074219
http://link.springer.com/10.1007/978-1-4612-0505-0
https://www.jstor.org/stable/25048183
https://doi.org/10.5220/0010394104540463
https://www.frontiersin.org/article/10.3389/fbuil.2020.00070

104

[46] Y. Fan and Y. Nie, “Optimal Routing for Maximizing the Travel Time Reliability,”
Networks and Spatial Economics, vol. 6, no. 3, pp. 333–344, Sep. 2006. [Online].
Available: https://doi.org/10.1007/s11067-006-9287-6

[47] Y. M. Nie and X. Wu, “Shortest path problem considering on-time arrival
probability,” Transportation Research Part B: Methodological, vol. 43, no. 6,
pp. 597–613, Jul. 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0191261509000174

[48] S. Samaranayake, S. Blandin, and A. M. Bayen, “Speedup Techniques for the Stochastic
on-time Arrival Problem,” in ATMOS, 2012.

[49] R. Bauer, T. Columbus, I. Rutter, and D. Wagner, “Search-space size in contraction
hierarchies,” Theoretical Computer Science, vol. 645, Jul. 2016.

[50] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu, “Pace: A path-centric paradigm for
stochastic path finding,” The VLDB Journal, vol. 27, no. 2, p. 153–178, Apr. 2018.
[Online]. Available: https://doi.org/10.1007/s00778-017-0491-4

[51] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic weight completion for road
networks using graph convolutional networks,” in 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), 2019, pp. 1274–1285.

[52] K. Ahmadi and V. H. Allan, “Congestion-aware stochastic path planning and its
applications in real world navigation,” in Proceedings of the 13th International
Conference on Agents and Artificial Intelligence, ICAART 2021. SCITEPRESS,
2021, pp. 947–956. [Online]. Available: https://doi.org/10.5220/0010267009470956

[53] K. Ahmadi and V. Allan, “Stochastic path finding under congestion,” in
2017 International Conference on Computational Science and Computational
Intelligence (CSCI). SCITEPRESS, 2017, pp. 135–140. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8560774

[54] S. C. Frederik Lardinois, Jochen Topf, “OpenStreetMap,” UIT Cam-
bridge, 2011. [Online]. Available: https://www.goodreads.com/work/best book/
9555000-openstreetmap-die-freie-weltkarte-nutzen-und-mitgestalten

[55] J. Macqueen, “Some methods for classification and analysis of multivariate
observations,” in 5-th Berkeley Symposium on Mathematical Statistics and Probability,
1967, pp. 281–297. [Online]. Available: https://digitalassets.lib.berkeley.edu/math/
ucb/text/math s5 v1 article-17.pdf

[56] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[57] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a
dataset via the gap statistic,” vol. 63, pp. 411–423, 2000.

[58] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals
of Mathematical Statistics, vol. 33, no. 3, pp. 1065 – 1076, 1962. [Online]. Available:
https://doi.org/10.1214/aoms/1177704472

https://doi.org/10.1007/s11067-006-9287-6
http://www.sciencedirect.com/science/article/pii/S0191261509000174
http://www.sciencedirect.com/science/article/pii/S0191261509000174
https://doi.org/10.1007/s00778-017-0491-4
https://doi.org/10.5220/0010267009470956
https://ieeexplore.ieee.org/abstract/document/8560774
https://www.goodreads.com/work/best_book/9555000-openstreetmap-die-freie-weltkarte-nutzen-und-mitgestalten
https://www.goodreads.com/work/best_book/9555000-openstreetmap-die-freie-weltkarte-nutzen-und-mitgestalten
https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s5_v1_article-17.pdf
https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s5_v1_article-17.pdf
https://doi.org/10.1214/aoms/1177704472

105

[59] N. R. Smith, P. N. Zivich, L. M. Frerichs, J. Moody, and A. E. Aiello,
“A guide for choosing community detection algorithms in social network
studies: The question alignment approach,” American Journal of Preventive
Medicine, vol. 59, no. 4, pp. 597–605, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0749379720302166

[60] R. Clark and M. Macdonald, “Eigenvector-based community detection for identifying
information hubs in neuronal networks,” bioRxiv, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/10/30/457143

[61] P. Pons and M. Latapy, “Computing communities in large networks using random
walks,” Journal of Graph Algorithms and Applications, pp. 191–218, 2006. [Online].
Available: https://link.springer.com/chapter/10.1007/11569596 31

[62] S. E. Garza and S. E. Schaeffer, “Community detection with the Label
Propagation Algorithm: A survey,” Physica A: Statistical Mechanics and
its Applications, vol. 534, p. 122058, Nov. 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0378437119312026

[63] Z. Yang, R. Algesheimer, and C. Tessone, “A Comparative Analysis of Community
Detection Algorithms on Artificial Networks,” Scientific Reports, vol. 6, Aug. 2016.

[64] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, p. 345,
Jun. 1962. [Online]. Available: https://doi.org/10.1145/367766.368168

[65] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31, pp. 581–603,
1966. [Online]. Available: https://link.springer.com/article/10.1007/BF02289527#
citeas

[66] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[67] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp.
53–65, 1987. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0377042787901257

[68] K. Ahmadi and V. H. Allan, “Smart city: Application of multi-agent
reinforcement learning systems in adaptive traffic management,” in 2021 IEEE
International Smart Cities Conference (ISC2), 2021, pp. 1–7. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9562951

[69] C. Simon and M. Tagliabue, “Feeding the behavioral revolution: Contributions of
behavior analysis to nudging and vice versa,” Journal of Behavioral Economics
for Policy, vol. 2, no. 1, pp. 91–97, March 2018. [Online]. Available:
https://ideas.repec.org/a/beh/jbepv1/v2y2018i1p91-97.html

[70] J. Li and A. Deshpande, “Maximizing expected utility for stochastic combinatorial
optimization problems,” 2011 IEEE 52nd Annual Symposium on Foundations of

https://www.sciencedirect.com/science/article/pii/S0749379720302166
https://www.sciencedirect.com/science/article/pii/S0749379720302166
https://www.biorxiv.org/content/early/2018/10/30/457143
https://link.springer.com/chapter/10.1007/11569596_31
http://www.sciencedirect.com/science/article/pii/S0378437119312026
http://www.sciencedirect.com/science/article/pii/S0378437119312026
https://doi.org/10.1145/367766.368168
https://link.springer.com/article/10.1007/BF02289527#citeas
https://link.springer.com/article/10.1007/BF02289527#citeas
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://ieeexplore.ieee.org/abstract/document/9562951
https://ideas.repec.org/a/beh/jbepv1/v2y2018i1p91-97.html

106

Computer Science, Oct 2011. [Online]. Available: http://dx.doi.org/10.1109/FOCS.
2011.33

[71] B. C. R. Rota and M. Simic, “Traffic flow optimization on freeways,”
Procedia Computer Science, vol. 96, pp. 1637–1646, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705091632021X

[72] Y. Liu, S. Blandin, and S. Samaranayake, “Stochastic on-time arrival problem in
transit networks,” Transportation Research Part B: Methodological, vol. 119, pp. 122
– 138, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0191261518306702

[73] J. Pan, I. S. Popa, K. Zeitouni, and C. Borcea, “Proactive vehicular traffic rerouting
for lower travel time,” IEEE Transactions on Vehicular Technology, vol. 62, no. 8, pp.
3551–3568, 2013.

[74] E. F. Grumert and A. Tapani, “Bottleneck mitigation through a variable
speed limit system using connected vehicles,” Transportmetrica A: Transport
Science, vol. 16, no. 2, pp. 213–233, 2020. [Online]. Available: https:
//doi.org/10.1080/23249935.2018.1547332

[75] L. R. Ford and D. R. Fulkerson, “Constructing maximal dynamic flows from static
flows,” Operations Research, vol. 6, no. 3, pp. 419–433, 1958. [Online]. Available:
http://www.jstor.org/stable/167028

[76] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[77] E. Walraven, M. T. Spaan, and B. Bakker, “Traffic flow optimization: A reinforcement
learning approach,” Engineering Applications of Artificial Intelligence, vol. 52, pp.
203–212, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0952197616000038

[78] S. Padakandla, “A survey of reinforcement learning algorithms for dynamically
varying environments,” ACM Computing Surveys, vol. 54, no. 6, july 2021. [Online].
Available: https://doi.org/10.1145/3459991

[79] K. Yau, J. Qadir, H. Khoo, M. Ling, and P. Komisarczuk, “A survey on reinforcement
learning models and algorithms for traffic signal control,” ACM Computing Surveys,
vol. 50, no. 3, Jun. 2017.

[80] A. Paul and S. Mitra, “Deep reinforcement learning based traffic signal optimization
for multiple intersections in its,” in 2020 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), 2020, pp. 1–6.

[81] W. Zhou, M. Yang, M. Lee, and L. Zhang, “Q-learning-based coordinated variable
speed limit and hard shoulder running control strategy to reduce travel time at
freeway corridor,” Transportation Research Record, vol. 2674, no. 11, pp. 915–925,
2020. [Online]. Available: https://doi.org/10.1177/0361198120949875

http://dx.doi.org/10.1109/FOCS.2011.33
http://dx.doi.org/10.1109/FOCS.2011.33
https://www.sciencedirect.com/science/article/pii/S187705091632021X
http://www.sciencedirect.com/science/article/pii/S0191261518306702
http://www.sciencedirect.com/science/article/pii/S0191261518306702
https://doi.org/10.1080/23249935.2018.1547332
https://doi.org/10.1080/23249935.2018.1547332
http://www.jstor.org/stable/167028
https://www.sciencedirect.com/science/article/pii/S0952197616000038
https://www.sciencedirect.com/science/article/pii/S0952197616000038
https://doi.org/10.1145/3459991
https://doi.org/10.1177/0361198120949875

107

[82] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The
MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/the-book-2nd.
html

[83] C. Boutilier, “Planning, learning and coordination in multiagent decision processes,” in
Proceedings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge,
ser. TARK ’96. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1996,
p. 195–210.

[84] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[85] R. Bellman, “On the theory of dynamic programming,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 38, no. 8, p. 716, 1952.

[86] Y. Chen, P. Mehrotra, N. K. S. Samala, K. Ahmadi, V. Jivane, L. Pang, M. Shrivastav,
N. Lyman, and S. Pleiman, “A multiobjective optimization for clearance in walmart
brick-and-mortar stores,” INFORMS Journal on Applied Analytics, vol. 51, no. 1, pp.
76–89, feb 2021.

[87] A. Nowé and T. Brys, “A gentle introduction to reinforcement learning,” in Scalable
Uncertainty Management, S. Schockaert and P. Senellart, Eds. Cham: Springer In-
ternational Publishing, 2016, pp. 18–32.

[88] J. Zhang, H. Chang, and P. Ioannou, “A simple roadway control system for freeway
traffic,” in 2006 American Control Conference, 2006, pp. 6 pp.–.

[89] H. van Hasselt, Reinforcement Learning in Continuous State and Action Spaces.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 207–251.

[90] D. Ma, B. Zhou, X. Song, and H. Dai, “A deep reinforcement learning approach to
traffic signal control with temporal traffic pattern mining,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–12, 2021.

[91] P. J. Huber, Robust Estimation of a Location Parameter. New York, NY:
Springer New York, 1992, pp. 492–518. [Online]. Available: https://doi.org/10.1007/
978-1-4612-4380-9 35

[92] K. Ahmadi and V. H. Allan, “Checking the reliability of information sources in rec-
ommendation based trust decision making,” in PRIMA 2015: Principles and Practice
of Multi-Agent Systems, Q. Chen, P. Torroni, S. Villata, J. Hsu, and A. Omicini, Eds.
Cham: Springer International Publishing, 2015, pp. 367–382.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.1007/978-1-4612-4380-9_35
http://arxiv.org/abs/1412.6980

108

[94] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J.
Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb. 2012.

[95] K. Ramamohanarao, H. Xie, L. Kulik, S. Karunasekera, E. Tanin, R. Zhang, and
E. B. Khunayn, “Smarts: Scalable microscopic adaptive road traffic simulator,”
ACM Trans. Intell. Syst. Technol., vol. 8, no. 2, Dec. 2016. [Online]. Available:
https://doi.org/10.1145/2898363

https://doi.org/10.1145/2898363

109

CURRICULUM VITAE

Kamilia Ahmadi

Education

• PhD: Computer Science, Artificial Intelligence, (2014, 2021), Utah State University,

GPA: 4/4

• Management Essentials, Business administration and management – General, Harvard

Business School Online, 2020.

• MS: Computer Science, Artificial Intelligence (2011, 2014), Utah State University,

GPA: 3.87/4.

• BS: Computer Engineering, (2002-2007), Shiraz University, Shiraz, Iran.

Professional Skills

• Management skills: team leadership, strategic thinking, conflict resolution, delegation,

data-driven decision making.

• Data Analysis and Machine Learning: Classical machine learning, reinforcement learn-

ing, deep learning, causal inference, experiment design, information retrieval.

• Programming languages: Python , C, Java, SQL and BigQuery.

Selected Projects

• Developing speed elasticity engine to measure the demand elasticity of Walmart items

due to the change in delivery channel.

110

• Causal inference to measure the impact of main drivers of sale.

• Personalizing product selection for targeting customers via push notification

• Hyperlocal modelling: Personalized product offerings to the particular preferences of

customers of each store.

• Enhancing the ranking of search results based on store sales data in Walmart Search

Engine

• Query clustering for enhancing the results of search engine (Thomson Reuters Summer

Internship).

• Simulation for modelling Smart City: Intelligent stochastic path planning simulation

for large scale multi agent systems (PhD project).

Work Experience

• Senior Data Science Manager II / Principal Data Scientist (X6)/ Walmart Labs -

Personalization, (Dec 2020 present)

• Staff Data Scientist (X5) – Technical Lead Manager of multiple projects, Walmart

Labs, (Jan 2019 Dec 2020)

• Senior Statistical Analyst (X4), Walmart Labs, (May 2017 Dec 2018)

• Data Scientist Intern, Thomson Reuters Corporation, NLP Group, (April 2016 Septem-

ber 2016)

• NLP/Data Engineer, Pardazeshgaran Pardis Corporation, Tehran, Iran. (Jan 2007 –

August 2010).

Accomplishments and Awards

• Semifinalist of Frantz Edelman Award, Informs 2019.

111

• Walmart Labs iD8 2018 (the Associate Incubation Bootcamp), Semifinalist

• Utah State University Merit-based Graduate Senate Enhancement Award, April 2015,

given to the top students of the program.

• Best Poster Award, Semi-annual graduate reception, CS Department, USU, Spring

2016.

• Best Graduate Research Assistant Award, Semi-annual graduate reception, CS De-

partment, USU, Fall 2015.

Publications

• K. Ahmadi and V. H. Allan, “Practical City Scale Stochastic Path Planning with

Pre-Computation”, in journal of Lecture Notes in Artificial Intelligence, Springer,

October, 2021

• K. Ahmadi and V. H. Allan, “Smart City: Application of Multi-agent Reinforcement

Learning Systems in adaptive Traffic Management”, IEEE International Smart Cities

Conference 2021, September, 2021

• Y. Chen, P. Mehrotra, K. Ahmadi, M. Shrivastav, and S. Pleiman, “A Multi-objective

Optimization for Clearance in Walmart Brick-and-Mortar Stores”, Informs Journal of

Advanced Analytics, Feb 2021.

• K. Ahmadi and V. H. Allan, “Scalable Stochastic Path Planning for City Scale

Graphs”, 13th International Conference on Agents and Multi-Agents Systems, Feb

2021.

• K. Ahmadi and V. H. Allan, “Congestion-aware Stochastic Path Planning and its

Applications in Real World Navigation” 13th International Conference on Agents and

Multi-Agent Systems, Feb 2021.

112

• K. Ahmadi and V. H. Allan, “Trust-Based Decision Making in A Self-Adaptive Agent

Organization”, in journal of ACM Transaction on Autonomous and Adaptive Systems

(TAAS), April 2016

• K. Ahmadi, and V. H. Allan, “Checking the Reliability of Information Sources in

Recommendation-Based Trust Decision Making”, in Principles and Practices of Multi-

Agent Systems (PRIMA 2015), October 2015, Bertinoro, Italy.

	Intelligent Traffic Management: From Practical Stochastic Path Planning to Reinforcement Learning Based City-Wide Traffic Optimization
	Recommended Citation

	2.1 Abstract
	2.2 Introduction
	2.3 Previous Work
	2.3.1 Contribution of This Work
	2.4 Model Description
	2.4.1 City
	2.4.2 Open Street Map Data
	2.4.3 Agents
	2.4.4 Pruning Heuristic in Path Finding
	2.4.5 Cost Function
	Linear Cost Function
	Exponential Cost Function
	Step Cost Function
	2.4.6 Modelling Agents’ goals
	Highest Probability Path
	Smallest Travel Time
	2.5 Experiments and Results
	2.5.1 Path Finding based on users’ goals
	Highest Probability Path
	Smallest Travel Time
	2.5.2 Compare paths with shortest-length path
	2.6 Conclusion
	3.1 Abstract
	3.2 Introduction
	3.3 Previous Work
	3.4 Framework
	3.4.1 City and Edge Weights
	3.4.2 Traffic Data
	3.4.3 Open Street Map
	3.4.4 Agents
	3.4.5 City Graph Partitioning
	Unsupervised Learning
	Community detection methods
	3.4.6 Exemplar Assignment
	3.4.7 Base Path planning framework
	Finding Candidate Paths
	Paths Cost Definition and Selecting Best Path
	3.4.8 Pre-processing: Building distance oracles
	3.4.9 Scalable Algorithm
	3.5 Experiments and Results
	3.5.1 How Many Partitions Are Needed to Represent The City Graph?
	3.5.2 Which Partitioning Method We Picked?
	3.5.3 Which Exemplar Assignment Approach is The Best?
	3.5.4 How is The Quality of Approximate Paths?
	Highest Probability Path
	Shortest Travel Time
	3.5.5 What is the Time and Space Complexity of Scalable Algorithm?
	3.6 Conclusion and future work
	4.1 Abstract
	4.2 Introduction
	4.3 Previous Work
	4.4 Model Framework
	4.4.1 Time discretization
	4.4.2 Space discretization
	4.4.3 Learning Agents
	4.4.4 State
	4.4.5 Action
	4.4.6 Reward
	4.4.7 Learning Algorithm
	4.4.8 DQN Architecture
	4.4.9 Parameters
	4.4.10 Training
	4.5 Experiments and Results
	4.5.1 Single vs Multi-agent Impact
	Single agent type
	Multi-agent with multiple agent types
	4.5.2 Agent’s Decisions
	4.5.3 Patterns of traffic signals
	4.5.4 Effect of lane change penalty
	4.5.5 Importance of two-stage learning
	4.6 Conclusion and Future works
	Education
	Professional Skills
	Selected Projects
	Work Experience
	Accomplishments and Awards
	Publications

