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ABSTRACT

Geometrization of Perfect Fluids, Scalar Fields, and (2+1)-dimensional Electromagnetic

Fields

by

Dionisios Sotirios Krongos, Master of Science

Utah State University, 2021

Major Professor: Charles Torre, Ph.D.
Department: Physics

Rainich-type conditions giving a spacetime “geometrization” of matter fields in general

relativity are reviewed and extended. Three types of matter are considered: perfect fluids,

scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime

metric for it to be part of a perfect fluid solution of the Einstein equations are given. For-

mulas for constructing the fluid from the metric are obtained. All fluid results hold for any

spacetime dimension. Geometric conditions on a metric which are necessary and sufficient

for it to define a solution of the Einstein-scalar field equations and formulas for constructing

the scalar field from the metric are unified and extended to arbitrary dimensions, to include

a cosmological constant, and to include any self-interaction potential. Necessary and suffi-

cient conditions on a (2 + 1)-dimensional spacetime metric for it to be an electrovacuum

and formulas for constructing the electromagnetic field from the metric are obtained. Both

null and non-null electromagnetic fields are treated. A number of examples and applications

of these results are presented. Software implementations of these results are also included.

(52 pages)
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PUBLIC ABSTRACT

Geometrization of Perfect Fluids, Scalar Fields, and (2+1)-dimensional Electromagnetic

Fields

Dionisios Sotirios Krongos

The Rainich equations provide a purely geometrical interpretation of matter in terms of

the gravitational field it generates. All this takes place within the geometrical formulation

of gravity provided by Einstein’s General Theory of Relativity. Rainich-type conditions

giving spacetime ”goemetrizations” are reviewed and extended. Three types of matter are

considered: perfect fluids, scalar fields, and electromagnetic fields.
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NOTATION

In this thesis we’ll use the mostly positive metric signature (− + · · ·+). Lowercase

latin letters will run over the dimension of the spacetime 0 to (n− 1). We’ll also work with

geometrized units such that G = c = 1.

Symbols

M Manifold.

xa Coordinates on manifold M.

gab Metric tensor on manifold M.

g = gabdx
a ⊗ dxb Metric in a coordinate basis.

R d
abc Riemann curvature tensor.

Rab = R d
adc Ricci tensor.

Gab = Rab − 1
2Rgab Einstein tensor.

T = T aa Trace of tensor T .

Tab = Tba Symmetric tensor.

Tab = −Tba Antisymmetric tensor.

Tµ1···µk ν1···νl Tensor of type (k, l).

T(a1···al) =
1

l!

∑
π

Taπ(1)···aπ(l) Symmetrization of tensor of type (0, l).

δπ +1 for even permutations, −1 for odd permutations.

T[a1···al] =
1

l!

∑
π

δπTaπ(1)···aπ(l) Antisymmetrization of tensor of type (0, l).

ψ,a = ∂aψ Partial differentiation with respect to xa.

∇ Metric compatible derivative operator.

T a;b = ∇bT a Covariant differentiation.

ds2 Line element.



CHAPTER 1

INTRODUCTION

In the general theory of relativity it is often possible to eliminate the matter fields from

the Einstein-matter field equations and express the equations as local geometric conditions

on the spacetime metric alone. This possibility was discovered by Rainich [1], who showed

how to eliminate the Maxwell field from the Einstein-Maxwell equations, arriving at the

“Rainich conditions”, which give necessary and sufficient conditions on a spacetime metric

for it to be a non-null electrovacuum. Rainich’s work was made prominent by Misner and

Wheeler [2], who advanced the “geometrization” program in which all matter was to be

modeled as a manifestation of spacetime geometry. Over the subsequent years a variety

of additional geometrization results have been found pertaining to electromagnetic fields,

scalar fields, spinor fields, fluids, and so forth. See, e.g., references [3–14]. Results such as

these provide, at least in principle, a new way to analyze field equations and their solutions

from a purely geometric point of view, just involving the metric.

The geometrization conditions which have been obtained over the years, while con-

ceptually elegant, are generally more complicated than the original Einstein-matter field

equations. For example, the Einstein-Maxwell equations are a system of variational second-

order PDEs, while the Rainich conditions involve a system of non-variational fourth-order

PDEs. For this reason one can understand why geometrization results have seen relatively

little practical use in relativity and field theory. The current abilities of symbolic computa-

tional systems have, however, made the use of geometrization conditions viable for various

applications. Indeed, the bulk of the non-null electrovacuum solutions presented in the trea-

tise of reference [15] were verified using a symbolic computational implementation of the

classical Rainich conditions. The purpose of this thesis is to compile a set of geometrization

results for the Einstein field equations which involve the most commonly used matter fields
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and which are as comprehensive and as general as possible while at the same time in a form

suitable for symbolic computational applications.

This last point requires some elaboration as it significantly constrains the type of geo-

metric conditions which we shall deem suitable for our purposes. A suitable geometrization

condition for our purposes will define an algorithm which takes as input a given spacetime

metric and which determines, solely through algebraic and differentiation operations on the

metric, whether the metric defines a solution of the Einstein equations with a given matter

content. When the metric does define a solution, the matter fields shall be constructed

directly from the metric via algebraic operations, differentiation, and integration.

We summarize our treatment for each of three types of matter fields and compare to

existing results as follows.

Perfect Fluids

We give necessary and sufficient conditions on a spacetime metric for it to be part

of a perfect fluid solution of the Einstein equations. Formulas for constructing the fluid

from the metric are obtained. These results apply to spacetimes of any dimension greater

than two and allow for a cosmological constant. No energy conditions or equations of state

are imposed. Existing geometrization conditions for fluids can be found in [13], which

generalize those found in four spacetime dimension in [12]. The conditions given in [13]

and [12], while elegant, involve the existence of certain unspecified functions and so do not

satisfy the computational criteria listed above. The results of [12] also include conditions

which enforce equations of state, while the results of [13] enforce the dominant energy

condition. Our conditions enforce neither of these since we are interested in geometrization

conditions which characterize any type of fluid solutions. The geometrization conditions we

obtain are built algebraically from the Einstein tensor and so involve up to two derivatives

of the metric.
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Scalar Fields

Geometric conditions on a metric which are necessary and sufficient for it to define a

solution of the Einstein-scalar field equations and formulas for constructing the scalar field

from the metric have been obtained by Kuchař for free fields in four spacetime dimensions

without a cosmological constant [4]. These results apply to massless and massive fields.

The results of [4] subsume related results in [3] and [6]. More recently, conditions for a

symmetric tensor to be algebraically that of a free massless scalar field in any dimension,

without cosmological constant, have been given in [13]. These conditions are necessary

algebraically but are not sufficient for geometrization since additional differential conditions

are required. Here we give necessary and sufficient conditions for a metric to define a solution

of the Einstein-scalar field equations which generalize all these results. In particular, the

results we obtain here hold in arbitrary dimensions, they allow for a cosmological constant,

they allow for a mass, and they allow for a freely specifiable self-interaction potential. Null

and non-null fields are treated. The geometrization conditions we have found for a scalar

field necessarily involve both algebraic and differential conditions on the Einstein tensor;

they involve up to three derivatives of the spacetime metric.

Electromagnetic Fields

Necessary and sufficient conditions on a four-dimensional spacetime metric for it to

be a non-null electrovacuum were given by Rainich [1] and Misner, Wheeler [2]. The null

case has been investigated by Misner, Wheeler [2], Peres [7], Geroch [8], Bartrum [9], and

Ludwig [10]. Building upon Ludwig’s results, a set of geometrization conditions for null

electrovacua has been given by Torre [14] via the Newman-Penrose formalism.

All these results took advantage of special features of four dimensions, e.g., the Hodge

dual of a 2-form is again a 2-form. To our knowledge, for the electromagnetic field in

dimensions other than four only partial geometrization results have been obtained, limited

to the “algebraic” part of the Rainich conditions [13]. As we shall show, in (2+1) dimensions

it is possible to complete the geometrization process for the electromagnetic field for non-

null fields and for null fields [?]. The simplifying feature of three spacetime dimensions is
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that the problem of geometrization of an electromagnetic field can be reduced to that of a

scalar field, whose solution is known [4,16].

Besides proving various geometrization theorems, we provide a number of modest il-

lustrations of the theorems which hopefully serve to clarify their structure and usage. All

these illustrations were accomplished using the DifferentialGeometry package in Maple, am-

ply demonstrating the amenability of our results to symbolic computation.

The thesis will conclude with a chapter of software implementations of the results

presented. There will be a section for code on perfect fluids which consists of geometrization

conditions and reconstruction of the fluid. There will be a section for code on scalar fields

and (2 + 1)-dimensional electromagnetic fields which consists of geometrization conditions

and reconstruction of the field. Since the case of (2 + 1)-dimensional electromagnetic fields

is reduced to that of scalar fields, the code for scalar fields covers the (2 + 1)-dimensional

electromagnetic field case.

This code has been used to find and verify solutions to various field equations. Due

to the limited required input to find solutions to the field equations, it is quite simple to

explore certain cases. As an example, this code has been used to systematically go through

three dimensional metrics to uncover solutions in topologically massive gravity with an

electromagnetic field. An additional feature of these geometrization procedures is that it

facilitates the study of solutions with non-inheriting matter fields. As far as we know new

solutions to the various field equations have been obtained.

The results from this thesis are from the two papers published in the Journal of Math-

ematical Physics by Krongos and Torre [16], [17], and this work has already been cited.
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CHAPTER 2

PERFECT FLUIDS

2.1 Conditions on Perfect Fluids

Let (M, g) be an n-dimensional spacetime, n > 2, with signature (− + + · · ·+). Let

µ : M → R and p : M → R be functions on M . Let u be a unit timelike vector field on M ,

that is, gabu
aub = −1. The Einstein equations for a perfect fluid are

Rab −
1

2
Rgab + Λgab = q

{
(µ+ p)uaub + pgab

}
. (2.1)

Here Rab is the Ricci tensor of gab, R = gabRab is the Ricci scalar, Λ is the cosmological

constant, and q = 8πG/c4 with G being Newton’s constant. We note that the cosmological

and Newton constants can be absorbed into the definition of the fluid. With

µ̃ = qµ+ Λ, p̃ = qp− Λ, (2.2)

the Einstein equations take the form

Rab −
1

2
Rgab = (µ̃+ p̃)uaub + p̃gab. (2.3)

If there exist functions µ̃ and p̃ and a timelike unit vector field u on M such that (2.3)

holds, we say that (M, g) is a perfect fluid spacetime. Note that if µ̃ + p̃ = 0 in some

open set U ⊂ M then the spacetime is actually an Einstein space on U . In what follows,

when we speak of perfect fluid spacetimes we assume that µ̃ + p̃ 6= 0 at each point of the

spacetime. Note also that we have not imposed any energy conditions, equations of state,

or thermodynamic properties. These additional considerations are examined, for example,

in reference [12].
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In the following we will use the trace-free Ricci (or trace-free Einstein) tensor Sab:

Sab = Rab −
1

n
Rgab = Gab −

1

n
Ggab. (2.4)

We will also need the following elementary result.

Proposition 1. Let Qab be a covariant, symmetric, rank-2 tensor on an n-dimensional

vector space V . Qab satisfies

Qa[bQc]d = 0 (2.5)

if and only if there exists a covector va ∈ V ∗ such that

Qab = ±vavb. (2.6)

Proof. Eq. (2.6) clearly implies (2.5). We now show that (2.5) implies (2.6). From

Sylvester’s law of inertia there exists a basis for V ∗, denoted by βi, i = 1, 2, . . . , n, in which

Qab is diagonal with components given by ±1, 0. In this basis, using index-free notation,

Q takes the form:

Q =
n∑
i=1

aiβi ⊗ βi, (2.7)

where ai ∈ {−1, 0, 1}. In this basis, eq. (2.5) takes the form

n∑
i,j=1

aiaj(βi ⊗ βi ⊗ βj ⊗ βj − βi ⊗ βj ⊗ βi ⊗ βj) = 0. (2.8)

Consequently, aiaj = 0 for all i 6= j, from which it follows that all but one of the {ai} are

zero (assuming Q 6= 0). If the basis is labeled so that a1 is the non-zero component then

v =
√
|a1|β1, and (2.6) follows.

The following theorem gives a simple set of Rainich-type conditions for a perfect fluid

spacetime.
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Theorem 1. Let (M, g) be an n-dimensional spacetime, n > 2. Define

α = −
[

n2

(n− 1)(n− 2)
SbaS

c
bS

a
c

]1/3
. (2.9)

The metric g defines a perfect fluid spacetime if and only if

(1) α 6= 0, (2.10)

(2) Ka[bKc]d = 0, (2.11)

(3) Kabv
avb > 0, for some va, (2.12)

where

Kab =
1

α
Sab −

1

n
gab. (2.13)

Proof. We begin by showing the conditions are necessary. Suppose the Einstein equations

(2.3) are satisfied for some (g, µ̃, p̃, u). The trace-free Einstein tensor takes the form

Sab = (µ̃+ p̃)

(
uaub +

1

n
gab

)
. (2.14)

Equations (2.14) and (2.9) yield

α = µ̃+ p̃, (2.15)

which implies condition (1) since we are always assuming that µ̃ + p̃ 6= 0. From (2.15),

(2.13), and (2.3) we have that

Kab = uaub, (2.16)

which implies conditions (2) and (3).

We now check that conditions (1)–(3) are sufficient. Condition (1) permits Kab to be

defined. From Proposition 1, condition (2) implies there exists a covector field ua such

that Kab = ±uaub, while condition (3) picks out the positive sign, Kab = uaub. From the
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definition (2.13) of Kab it follows that gabu
aub = −1. Defining µ̃ and p̃ via

µ̃+ p̃ = α, p̃ =
1

n
(G+ α), (2.17)

it follows the perfect fluid Einstein equations (2.3) are satisfied.

From the proof of this theorem we obtain a prescription for construction of the fluid

variables from a metric satisfying the conditions (1)–(3).

Corollary 1. If (M, g) is an n-dimensional spacetime satisfying the conditions of Theorem

1 then it is a perfect fluid spacetime with energy density µ̃ and pressure p̃ given by

µ̃ =
1

n
[(n− 1)α−G], p̃ =

1

n
(α+G), (2.18)

and fluid velocity ua determined (up to an overall sign) from the quadratic condition

uaub = Kab. (2.19)

2.2 Examples

2.2.1 Example: A static, spherically symmetric perfect fluid

Here we use Theorem 1 to find fluid solutions. Consider the following simple ansatz

for a class of static, spherically symmetric spacetimes:

g = −r2dt⊗ dt+ f(r)dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdφ⊗ dφ). (2.20)

Here f is a function to be determined. Computation of the tensor field K and imposition

the quadratic condition Ka[bKc]d = 0 leads to a system of non-linear ordinary differential
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equations for f(r) which can be reduced to:

rf ′ + 2f − f2 = 0. (2.21)

This has the 1-parameter family of solutions:

f(r) =
2

1 + λr2
, (2.22)

where λ and r are restricted by 1+λr2 > 0 to give the metric Lorentz signature. With f(r)

so determined, the scalar α and the tensor K are computed to be

α =
1

r2
, K = r2dt⊗ dt, (2.23)

from which it immediately follows that all 3 conditions of Theorem 1 are satisfied.

From Corollary 1 the energy density, µ̃, pressure p̃ and 4-velocity u are given by

µ̃ =
1

2
[

1

r2
− 3λ], p̃ =

1

2
[

1

r2
+ 3λ], u =

1

r
∂t. (2.24)

If desired, one can interpret this solution as admitting a cosmological constant Λ = −3
2λ

and a stiff equation of state, µ = p = 1/(2qr2).

2.2.2 Example: A class of 5-dimensional cosmological fluid solutions

In this example we use Theorem 1 to construct a class of cosmological perfect fluid

solutions on a 5-dimensional spacetime (M, g) where M = R×Σ4 with Σ4 = R3×R being

homogeneous and anisotropic. We start from a 4-parameter family of metrics of the form

g = −dt⊗ dt+ r20t
2b(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) +R2

0t
2βdw ⊗ dw, (2.25)

where r0, R0, b, and β are parameters to be determined. This metric defines a family of

spatially flat 3+1 dimensional FRW-type universes with (x, y, z) coordinates, each with an
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extra dimension w described with its own scale factor. Using Theorem 1 we select metrics

from this set which solve the perfect fluid Einstein equations.

Condition (2) of Theorem 1 leads to a system of algebraic equations for b and β from

which we have found 3 solutions:

(i) b =
β(β − 1)

β + 2
, (ii) b = −1

3
(β − 1), (iii) b = β. (2.26)

Case (i) can be eliminated from consideration since

b =
β(β − 1)

β + 2
=⇒ K = −R2

0t
2βdw ⊗ dw, (2.27)

which violates condition (3) of Theorem 1. Cases (ii) and (iii) satisfy all the conditions of

Theorem 1. Using Corollary 1 we obtain solutions of the Einstein equations as follows:

(ii) b = −1

3
(β − 1) =⇒ K = dt⊗ dt, u = ∂t, µ̃ = p̃ = −1

3

2β2 − β − 1

t2
(2.28)

(iii) b = β =⇒ K = dt⊗ dt, u = ∂t µ̃ =
6β2

t2
, p̃ = −3β(2β − 1)

t2
. (2.29)

Case (ii) is anisotropic (except when b = β = 1
4) and allows for any combination of expansion

and contraction for the (x, y, z) and w dimensions. Case (iii) is isotropic in all four spatial

dimensions. Both cases are singular as t→ 0.
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CHAPTER 3

SCALAR FIELDS

3.1 Conditions on Scalar Fields

Kuchař has given Rainich-type geometrization conditions for a minimally-coupled, free

scalar field in four spacetime dimensions without a cosmological constant [4]. Here we

generalize his treatment to a real scalar field with any self-interaction, in any dimension,

and including the possibility of a cosmological constant.

The Einstein-scalar field equations for a spacetime (M, g) with a minimally coupled

real scalar field ψ, with self interaction potential V (ψ), and with cosmological constant Λ

are given by

Rab −
1

2
Rgab + Λgab = q

{
ψ;aψ;b −

1

2
glmψ;lψ;mgab − V (ψ)gab

}
, (3.1)

glmψ;lm − V ′(ψ) = 0, (3.2)

where q = 8πG/c4 and we use a semicolon to denote the usual torsion-free, metric-compatible

covariant derivative.

We distinguish two classes of solutions to the Einstein-scalar field equations. If a

solution has ψ;aψ;
a 6= 0 everywhere we say that the solution is non-null. If the solution has

ψ;aψ;
a = 0 everywhere we say that the solution is null.

The Rainich-type conditions we shall obtain require the following extension of Propo-

sition 1 (c.f. [4]).
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Proposition 2. Let Qab be a symmetric tensor field on a manifold M . Then (locally on

M) there exists a function φ such that

Qab = ±φ;aφ;b (3.3)

if and only if Qab satisfies

(1) Qa[bQc]d = 0, (3.4)

(2) QabQc[d;e] +QacQb[d;e] +Qbc;[dQe]a = 0. (3.5)

Proof. Using Proposition 1, condition (1) is necessary and sufficient for the existence of a

1-form va such that Qab = ±vavb. We then have

Qbc;[dQe]a = vavbvc;[dve] + vavcvb;[dve], (3.6)

and

Qc[d;e] = ±(vc;[evd] + vcv[d;e]), (3.7)

and hence

QabQc[d;e] +QacQb[d;e] +Qbc;[dQe]a = 2vavbvcv[d;e]. (3.8)

Consequently, if (3.3) holds then condition (2) holds and, conversely, condition (2) implies

the 1-form va is closed, hence locally exact.

We shall use the following notation:

Gab = Rab −
1

2
Rgab, G = Gaa, 2Gab = GcaGcb, 2G = GabG

ab, (3.9)

3Gab = GcaG
d
cGdb, 3G = GcaG

d
cG

a
d. (3.10)
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3.2 Free Massless Scalar Fields

3.2.1 Non-Null Scalar Fields

The geometrization theorems we shall obtain will depend upon whether the self-interaction

potential V (ψ) is present. We begin with a free, massless, non-null scalar field.

Theorem 2. Let (M, g) be an n-dimensional spacetime, n > 2. The following are necessary

and sufficient conditions on g such that there exists a scalar field ψ with (g, ψ) defining a

local, non-null solution to the Einstein-scalar equations (3.1), (3.2) with V (ψ) = 0:

2G−
1

n
G2 6= 0, (3.11)

A;i = 0, (3.12)

Ha[bHc]d = 0, (3.13)

HabHc[d;e] +HacHb[d;e] +Hbc;[dHe]a = 0, (3.14)

Habw
awb > 0, for some wa, (3.15)

where we define

A =
1

2

1
nG 2G− 3G

2G− 1
nG

2
, (3.16)

and

Hab = Gab +
1

2− n
(G+ 2A) gab. (3.17)

Proof. We begin by showing the conditions are necessary. Suppose (g, ψ) define a non-null

solution to the Einstein-scalar field equations with V (ψ) = 0. From the Einstein equations
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(3.1) we have

Gab −
1

n
Ggab = q

(
ψ;aψ;b −

1

n
glmψ;lψ;mgab

)
, (3.18)

and

2Gab −
1

n
2Ggab = −2qΛ

(
ψ;aψ;b −

1

n
glmψ;lψ;mgab

)
. (3.19)

These two equations imply

2Gab −
1

n
2Ggab = −2Λ(Gab −

1

n
Ggab). (3.20)

Now multiplying (3.20) by Gab we get

3G−
1

n
G 2G = −2Λ(2G−

1

n
G2), (3.21)

while contracting (3.18) with Gab gives

2G−
1

n
G2 =

n− 1

n
q2
(
gabψ;aψ;b

)2
6= 0. (3.22)

Equation (3.21) then implies

A ≡ 1

2

1
nG 2G− 3G

2G− 1
nG

2
= Λ. (3.23)

It follows that A;i = 0 and then, from the Einstein equations, we have that

Hab = qψ;aψ;b, (3.24)

from which follow the rest of the conditions, (3.13), (3.14), (3.15).

Conversely, suppose the conditions (3.11)–(3.15) are satisfied. From Proposition 2,

equations (3.13), (3.14), (3.15) imply that there exists a function ψ such that Hab = qψ;aψ;b,
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while (3.12) implies that A = const. ≡ Λ. Together, these results imply that:

Gab = q

(
ψ;aψ;b −

1

2
gabg

mnψ;mψ;n

)
− Λgab (3.25)

so that the Einstein equations are satisfied by (g, ψ). The contracted Bianchi identity now

implies

ψ;cg
abψ;ab = 0, (3.26)

and the non-null condition (3.11) yields gabψ;aψ;b 6= 0, which enforces the scalar field equa-

tion (3.2).

From the proof just given it is clear the scalar field is determined from the metric by

solving a system of quadratic equations followed by a simple integration.

Corollary 2. Let (M, g) satisfy the conditions of Theorem 2. Then (g, ψ) satisfy the

Einstein-scalar field equations, with V = 0, with Λ = A, and with ψ determined up to

an additive constant and up to a sign by

ψ;aψ;b =
1

q
Hab. (3.27)

3.2.2 Null Scalar Fields

We turn to the special case of free, massless, null solutions, that is, solutions in which

gabψ;aψ;b = 0.

Theorem 3. Let (M, g) be an n-dimensional spacetime, n > 2. The following are necessary

and sufficient conditions on g such that there exists a scalar field ψ with (g, ψ) defining a

local, null solution of the Einstein-scalar field equations with V (ψ) = 0:

R =
2n

n− 2
Λ, (3.28)
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Sa[bSc]d = 0, (3.29)

SabSc[d;e] + SacSb[d;e] + Sbc;[dSe]a = 0, (3.30)

Sabw
awb > 0 for some wa, (3.31)

where Sab is the trace-free Ricci tensor.

Proof. Suppose the Einstein equations (3.1) with V (ψ) = 0 are satisfied for some (g, ψ)

where glmψ;lψ;m = 0. Taking the trace of (3.1) leads to (3.28) and the trace-free part yields

Sab = qψ;aψ;b, (3.32)

from which (3.29), (3.30), and (3.31) follow.

Conversely, using Proposition 2, conditions (3.29), (3.30), and (3.31) imply that locally

there exists a function ψ such that

Sab = qψ;aψ;b. (3.33)

Note that this implies glmψ;lψ;m = 0. Using (3.28) and Sab to construct the Einstein tensor

leads to the free, massless, null field Einstein equations:

Gab = qψ;aψ;b − Λgab. (3.34)

The contracted Bianchi identity, along with glmψ;lψ;m = 0, then implies the field equation

gabψ;ab = 0. (3.35)
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Corollary 3. Let (M, g) satisfy the conditions of Theorem 3. Then (g, ψ) satisfy the

Einstein-scalar field equations with V = 0, and ψ is determined up to an additive con-

stant and up to a sign by

ψ;aψ;b =
1

q
Sab. (3.36)

3.3 Real Massless Scalar Fields with Potential

We now turn to geometrization conditions which describe the case with V (ψ) 6= 0. We

define Ṽ = qV (ψ) + Λ. We always assume that V (ψ) has been specified such that there

exists an inverse function W : R→ R with W (Ṽ (ψ)) = ψ, and Ṽ (W (x)) = x.

3.3.1 Non-Null Scalar Field with Potential

Theorem 4. Let (M, g) be an n-dimensional spacetime, n > 2. The following are necessary

and sufficient conditions on g such that there exists a scalar field ψ with (g, ψ) defining a

non-null solution to the Einstein-scalar equations (3.1), (3.2), where Ṽ = qV +Λ has inverse

W :

2G−
1

n
G2 6= 0, (3.37)

Hab = qW ′2(A)A;aA;b, (3.38)

where we define

A =
1

2

1
nG 2G− 3G

2G− 1
nG

2
. (3.39)

and

Hab = Gab +
1

2− n
(G+ 2A) gab. (3.40)

Proof. The proof is along the same lines as the proof of Theorem 2. To see that the

conditions (3.37), (3.38) are necessary, we start from the Einstein equations (3.1), from
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which it follows that the scalar field is non-null only if

2G−
1

n
G2 6= 0. (3.41)

It also follows from (3.1) that

A ≡ 1

2

1
nG 2G− 3G

2G− 1
nG

2
= Ṽ (ψ), (3.42)

so that

ψ = W (A), (3.43)

and

Hab = qψ;aψ;b = qW ′2(A)A;aA;b. (3.44)

Conversely, assuming the metric satisfies conditions (3.37) and (3.38), if we set

ψ ≡W (A), (3.45)

so that A = Ṽ (ψ), then from (3.37), (3.38) the scalar field is not null and the Einstein

equations are satisfied. The contracted Bianchi identity then implies the scalar field equation

(3.2) is satisfied as before.

Corollary 4. If a metric g satisfies the conditions of Theorem 4, then there exists a non-

null solution (g, ψ) to the Einstein-scalar field equations (3.1), (3.2) where

ψ = Ṽ −1(A). (3.46)

3.3.2 Null Scalar Field with Potential

Finally we consider the null case with a given self-interaction potential, invertible as

before.
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Theorem 5. Let (M, g) be an n-dimensional spacetime, n > 2. There exists a scalar field ψ

with (g, ψ) defining a local, null solution to the Einstein-scalar equations (3.1), (3.2) (with

potential described by Ṽ = qV + Λ and W = Ṽ −1) if and only if either

Sab = qW ′2(B)B;aB;b 6= 0, (3.47)

or

Sab = 0, B;a = 0, V ′(W (B)) = 0, (3.48)

where

B =
n− 2

2n
R. (3.49)

Proof. To see that this condition is necessary, assume the Einstein-scalar field equations

hold for a metric g and a null scalar field ψ. It follows that

Ṽ =
n− 2

2n
R, Sab = qψ;aψ;b, (3.50)

so that ψ = W (B) and condition (3.47) or condition (3.48) follows, depending upon whether

ψ;a vanishes or not. Conversely, defining ψ = W (B), it follows that R = 2n
n−2 Ṽ (ψ) and,

using (3.47) if Sab 6= 0, the Einstein equations (3.1) are satisfied and the scalar field is null.

The contracted Bianchi identity implies

ψ;b

[
ψ;a

a − V ′(ψ)
]

= 0, (3.51)

which implies (3.2) if Sab 6= 0 since ψ;b 6= 0 by (3.47). If Sab = 0, and B;a = 0, the scalar

field equation follows from V ′(W (B)) = 0.

Corollary 5. If a metric g satisfies the conditions of Theorem 5, then there exists a null

solution (g, ψ) to the Einstein-scalar field equations (3.1), (3.2) where

ψ = Ṽ −1(B). (3.52)
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3.4 Examples

3.4.1 Example: A non-inheriting scalar field solution

The static, spherically symmetric fluid spacetime (2.20), (2.22) also satisfies the ge-

ometrization conditions for a massless free scalar field contained in Theorem 2. Starting

with the metric

g = −r2dt⊗ dt+
2

1 + λr2
dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdφ⊗ dφ). (3.53)

and calculating A and H from (3.16) and (3.17) gives

A = −3

2
λ, Habdx

a ⊗ dxb = dt⊗ dt, (3.54)

so that, according to Corollary 2, the scalar field is given by

ψ = ± 1
√
q
t+ constant, (3.55)

and the cosmological constant is given by Λ = −3
2λ. This solution (with λ = 0) was

exhibited in ref. [18]. We remark that while the spacetime is static the scalar field is clearly

not static and so represents an example of a “non-inheriting” solution to the Einstein-scalar

field equations. Non-inheriting solutions of the Einstein-Maxwell equations are well-known

[15]. Geometrization conditions, which depend solely upon the metric, treat inheriting and

non-inheriting matter fields on the same footing.

We have been able to find an analogous family of non-inheriting solutions in 2+1

dimensions from an analysis of the geometrization conditions in Theorem 2. In coordinates

(t, r, θ) the spacetime metric takes the form:

g = − 1

2Λ
dt⊗ dt+

1

b− 2Λr2
dr ⊗ dr + r2dθ, (3.56)
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where b is a constant. This metric yields A = Λ and

H = dt⊗ dt, (3.57)

so that from Corollary 2 the scalar field is given by

ψ = ± 1
√
q
t+ constant. (3.58)

It is straightforward to verify that the metric and scalar field so-defined satisfy the Einstein-

scalar field equations (3.1) and (3.2) with V = 0.

3.4.2 Example: No-go results for spherically symmetric null scalar field solu-

tions

We use Theorem 3 to show that there are no null solutions to the free, massless Einstein-

scalar field equations if the spacetime is static and spherically symmetric, provided the

spherical symmetry orbits are not null. We also show that there are no spherically symmetric

null solutions with null spherical symmetry orbits. Both results hold with or without a

cosmological constant. Since these results follow directly from the geometrization conditions

they apply whether or not the scalar field inherits the spacetime symmetries.

We first consider a static, spherically symmetric spacetime in which the spherical sym-

metry orbits are not null. We use coordinates chosen such that the metric takes the form:

g = −f(r)dt⊗ dt+ h(r)dr ⊗ dr +R2(r)(dθ ⊗ dθ + sin2 θdφ⊗ dφ), (3.59)

for some non-zero functions f, h,R. The condition (3.29) applied to (3.59) yields:

R′′ =
1

2

(
1

h
h′ +

1

f
f ′
)
R′, (3.60)

f ′′ = 2f

(
R′

R

)2

+
1

2h
h′f ′ +

1

2f
f ′2 − 2

fh

R2
. (3.61)
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These conditions force the trace-free Ricci tensor to vanish, whence the scalar field vanishes

and we have an Einstein space. Consequently there are no non-trivial null solutions to the

Einstein-scalar field equations in which the spacetime is static and spherically symmetric

with non-null spherical symmetry orbits.

Next we consider a spherically symmetric spacetime in which the spherical symmetry

orbits are null. In this case there exist coordinates (v, r, θ, φ) such that the metric takes the

form:

g = w(v, r)(dv ⊗ dr + dr ⊗ dv) + u(v, r)dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdφ⊗ dφ), (3.62)

for some functions w 6= 0 and u. Calculation of conditions (3.28), (3.29) for metrics (3.62)

reveals they are are incompatible. Consequently there are no null solutions to the Einstein-

scalar field equations in this case. Since (3.62) is not actually static, but merely spherically

symmetric, this proves that there are no Einstein-free-scalar field null solutions for space-

times which are spherically symmetric with null symmetry orbits.

3.4.3 Example: Self-interacting scalar fields

Fonarev [19] has found a 1-parameter family of non-null spherically symmetric solu-

tions to the Einstein-scalar field equations with a potential energy function which is an

exponential function of the scalar field. Here we verify these solutions directly from the

metric using Theorem 4.

In coordinates (t, r, θ, φ) and with q = 1 the metric in reference [19] takes the form:

g = −e8α2βt(1− 2m

r
)δdt⊗ dt+ e2βt(1− 2m

r
)−δdr ⊗ dr

+e2βt(1− 2m

r
)1−δr2(dθ ⊗ dθ + sin2 θdφ⊗ dφ), (3.63)

where m > 0 is a free parameter,

δ =
2α√

4α2 + 1
, (3.64)



23

and α and β parametrize the scalar field potential and cosmological constant via

Ṽ (ψ) = β2(3− 4α2) exp
(
−
√

8αψ
)
. (3.65)

The inverse of the potential function is given by

W (x) = −
√

2

4α
ln

(
x

β2(3− 4α2)

)
. (3.66)

Using the metric (3.63) to calculate A in (3.42) gives

A = (3− 4α2)β2e−8α
2βt

(
1− 2m

r

) 2α√
4α2+1

. (3.67)

Calculating the tensor H in (3.40) yields

H =8β2α2dt⊗ dt+
4αmβ√

4α2 + 1r(r − 2m)
(dt⊗ dr + dr ⊗ dt)

+
2m2

(4α2 + 1)r2(r − 2m)2
dr ⊗ dr, (3.68)

and it follows that (3.38) is satisfied. Therefore, from Theorem 4, the metric (3.63) does

indeed define a scalar field solution with the potential (3.65). Using Corollary 4, the scalar

field is calculated to be

ψ =
√

2

{
2αβt+

1

2
√

4α2 + 1
ln

(
1− 2m

r

)}
, (3.69)

in agreement with Fonarev [19].
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CHAPTER 4

ELECTROMAGNETIC FIELDS

4.1 Conditions on Electromagnetic Fields in (2+1) dimensions

Let (M, g) be a (2 + 1)-dimensional spacetime with signature (−+ +). The Einstein-

Maxwell equations with electromagnetic 2-form F and cosmological constant Λ are given

by Einstein’s equations

Gab + Λgab = q

(
FacF

c
b −

1

4
gabFdeF

de

)
(4.1)

along with the source-free Maxwell equations

Fab ;
a = 0, F[ab ; c] = 0. (4.2)

Here a semi-colon denotes covariant differentiation with respect to the Christoffel connec-

tion, Gab is the Einstein tensor, and q > 0 represents Newton’s constant. All fields on M

will be assumed to be smooth.

We note that the Einstein-Maxwell equations admit a discrete symmetry: if (g, F ) is

a solution to these equations then so is (g,−F ). For this reason the electromagnetic field

can be recovered from the geometry only up to a sign.

We say an electromagnetic field is null in a given region U ⊂ M if FabF
ab = 0 on U ,

and the field is non-null in a region U ⊂ M if FabF
ab 6= 0 on U . As in (3+1) dimensions,

the null and non-null cases must be treated separately.

Define

G = Gaa, 2G = GabG
b
a, 3G = GabG

b
cG

c
a. (4.3)
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The (2+1)-dimensional version of the Rainich geometrization of non-null electromagnetic

fields is as follows.

4.1.1 Non-Null Electromagnetic Fields

Theorem 6. Let (M, g) be a (2+1)-dimensional spacetime. The following are necessary

and sufficient conditions on g such that on U ⊂ M there exists a non-null electromagnetic

field F with (g, F ) being a solution of the Einstein-Maxwell equations (4.1)–(4.2):

2G−
1

3
G2 6= 0, (4.4)

Habw
awb > 0, for some wa, (4.5)

B = Λ, (4.6)

Ha[bHc]d = 0, (4.7)

HabHc[d;e] +HacHb[d;e] +Hbc;[dHe]a = 0, (4.8)

where

B =
1

2

1
3G 2G− 3G

2G− 1
3G

2
, (4.9)

and

Hab = Gab − (G+ 2B)gab. (4.10)

These conditions hold everywhere on U .

Corollary 6. Let a metric g satisfy the conditions of Theorem 6. Then (g, F ) satisfy the

Einstein-Maxwell equations on U with the non-null electromagnetic field F determined up
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to a sign from

Fab = εabcv
c, vavb =

1

q
Hab. (4.11)

4.1.2 Null Electromagnetic Fields

The geometrization in the null case is as follows.

Theorem 7. Let (M, g) be a (2+1)-dimensional spacetime. The following are necessary

and sufficient conditions on g such that on U ⊂M there exists a null electromagnetic field

F with (g, F ) being a solution of the Einstein-Maxwell equations (4.1)–(4.2):

G = −3Λ, (4.12)

Sabw
awb > 0 for some wa, (4.13)

Sa[bSc]d = 0, (4.14)

SabSc[d;e] + SacSb[d;e] + Sbc;[dSe]a = 0, (4.15)

where Sab = Gab − 1
3G

c
c gab is the trace-free Einstein (or Ricci) tensor. These conditions

hold everywhere on U .

Corollary 7. Let a metric g satisfy the conditions of Theorem 7. Then (g, F ) satisfy the

Einstein-Maxwell equations on U with a null electromagnetic field F determined up to a

sign from

Fab = εabcv
c, vavb =

1

q
Sab. (4.16)
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As also happens in (3+1) dimensions, for both the null and non-null cases the Rainich

conditions split into conditions which are algebraic in the Einstein (or Ricci) tensor and

conditions which involve derivatives of the Einstein tensor. In (3+1) dimensions the non-

null Rainich conditions involve up to 4 derivatives of the metric, while the null Rainich

conditions can involve as many as 5 derivatives [14]. From the above theorems, in (2+1)

dimensions both the null and non-null conditions involve up to 3 derivatives of the metric.

4.1.3 Proofs

We now prove the results stated in the previous section. The electromagnetic field F

is a two-form in three spacetime dimensions, so (at least locally) we can express it as the

Hodge dual of a one-form v,

Fab = ε c
ab vc, va = −1

2
εabcF

bc, (4.17)

where εabc is the volume form defined by the Lorentz signature metric, and which satisfies

εabcεdef = −3!δ
[a
d δ

b
eδ
c]
f . (4.18)

The Einstein-Maxwell equations (4.1)–(4.2) can then be rewritten as

Gab + Λgab = q

(
vavb −

1

2
gabvcv

c

)
, (4.19)

v[a;b] = 0 = va;a. (4.20)

These equations are locally equivalent to gravity coupled to a scalar field, where the scalar

field φ is massless and minimally-coupled. The correspondence is via va = ∇aφ. Conse-

quently, the geometrization runs along the same lines as the scalar field case, found in the

previous chapter.

We begin with Theorem 6. To see that the conditions are necessary, we consider a
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metric g and non-null electromagnetic field F satisfying the Einstein-Maxwell equations.

From (4.19) it follows that

2G−
1

3
G2 =

2

3
q2 (vcv

c)2 6= 0, (4.21)

B = Λ, Hab = qvavb, (4.22)

and

HabHc[d;e] +HacHb[d;e] +Hbc;[dHe]a = 2q2vavbvcv[d;e] = 0, (4.23)

from which it follows that the conditions (4.4)–(4.8) in Theorem 6 are necessary.

Conversely, suppose equations (4.4)–(4.8) are satisfied. From Eqs. (4.5) and (4.7) there

exists a one-form va such that

Hab = qvavb. (4.24)

(See the previous chapter for a proof.) Equation (4.4) implies vav
a 6= 0. Equation (4.8)

becomes 2vavbvcv[d;e] = 0, so that v[a;b] = 0. Taking account of condition (4.6), we now have

Gab =q

(
vavb −

1

2
gabvcv

c

)
− Λgab, (4.25)

v[a;b] = 0, vav
a 6= 0. (4.26)

From the contracted Bianchi identity, ∇bGab = 0, we get

vbv
a
;a = 0, (4.27)

so that the Einstein-Maxwell equations are satisfied. The construction of the electromag-

netic field from the metric described in Corollary 6 follows from solving the algebraic rela-

tions (4.24) for va and then using (4.17).

The null case, described in Theorem 7 and Corollary 7, is established as follows. As

before, begin by assuming the Einstein-Maxwell equations are satisfied in the null case,
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that is, with vav
a = 0. The trace and trace-free parts of the Einstein equations yield,

respectively,

G = −3Λ, Sab = qvavb, (4.28)

These equations and the Maxwell equations v[a;b] = 0 imply the necessity of the conditions

listed in Theorem 7. Conversely, granted the conditions of Theorem 7, it follows in a similar

fashion as in the proof of Theorem 6 that equations (4.28) hold with vav
a = 0, and that the

Maxwell equations v[a;b] = 0 are satisfied. The contracted Bianchi identity again implies

va;a = 0. The construction of the electromagnetic field from the metric described in Corollary

7 follows from solving the algebraic relations (4.28) for va and then using (4.17).

4.2 Example: BTZ Black Hole

As an illustration of these geometrization conditions we investigate static, rotationally

symmetric solutions to the Einstein-Maxwell equations. Begin with the following ansatz for

the metric:

g = −f(r) dt⊗ dt+
1

f(r)
dr ⊗ dr + r2dθ ⊗ dθ, (4.29)

where f(r) is to be determined by the geometrization conditions. The algebraic condition

(4.14) from Theorem 7 would imply the metric (4.29) is Einstein, so there can be no elec-

tromagnetic field in the null case. In the non-null case the conditions of Theorem 6 reduce

to a remarkably simple linear third-order differential equation

f ′′′(r) +
1

r
f ′′(r)− 1

r2
f ′(r) = 0, (4.30)

which has the solution

f(r) = c1 + c2 ln r + c3r
2, (4.31)

where c1, c2, and c3 are constants of integration. Eq. (4.5) requires c2 < 0. From equation

(4.6) the form of f(r) given in (4.31) corresponds to a cosmological constant

Λ = −c3, (4.32)
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and, from Corollary 6, to an electromagnetic field

F = ±
√
−c2
r

dt ∧ dr. (4.33)

With the identifications

c1 = −M, c2 = −1

2
Q2, c3 =

1

`2
(4.34)

we obtain the static charged BTZ solution [20].

4.3 Extension to other metric theories of gravity

The geometrization conditions obtained here can be extended to other metric theories

of (2 + 1)-dimensional gravity coupled to electromagnetism provided the action functional

S for the system takes the form

S = S1[g]− 2

q
ΛV [g] + S2[g, F ], (4.35)

where S1 is diffeomorphism invariant, S2 is the usual action for the electromagnetic field on

a three-dimensional spacetime with metric g, and V is the volume functional. In the field

equations, theorems, and corollaries given above one simply makes the replacement

Gab −→ Eab = − 1√
|g|

δS1
δgab

. (4.36)

The identity Eab;b = 0 still holds because of the diffeomorphism invariance of S1; all the

proofs remain unchanged.

4.3.1 Example: Topologically Massive Gravity

As a simple application of this result, we suppose the action S1 is a linear combination

of the Einstein-Hilbert action and the Chern-Simons action constructed from the metric-

compatible connection. The field equations are the Maxwell equations (4.2) along with
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αGab + βYab + Λgab = q

(
FacF

c
b −

1

4
gabFdeF

de

)
, (4.37)

where Yab is the Cotton-York tensor [?] and α, β are constants. These are the equations

of topologically massive gravity [21] coupled to the electromagnetic field. We ask whether

there are any solutions of the pp-wave type, admitting a covariantly constant null vector

field. Using the usual metric ansatz

g = −2du� dv + dx⊗ dx+ f(u, x) du⊗ du, (4.38)

it follows that condition (4.4) in Theorem 6 is not satisfied, so only null solutions are

possible. For this metric Eaa = 0; (4.12) then implies we can only get a solution for Λ = 0.

The conditions (4.13) – (4.15) of Theorem 7 reduce to

α
∂3f

∂x3
+ β

∂4f

∂x4
= 0, (4.39)

with solution (assuming β 6= 0)

f(u, x) = a0(u) + a1(u)x− a2(u)x2 + b(u)e
−α
β
x
, (4.40)

where αa2(u) > 0, and a0(u), a1(u), a2(u), b(u) are otherwise arbitrary. From Corollary 7

the electromagnetic field is given by

F =
√
αa2(u)/q du ∧ dx. (4.41)

Evidently, the term in f(u, x) quadratic in x determines (or is determined by) the electro-

magnetic field. The York tensor vanishes, i.e., the metric is conformally flat, if and only if

b(u) = 0.
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CHAPTER 5

SOFTWARE IMPLEMENTATIONS OF RESULTS

One of the major goals of our project was to create geometrization conditions on some

of the most common matter fields in such a way that the conditions could be implemented

on the computer. For this to work we needed to write the geometrization conditions where

the corresponding computational algorithms could accept the minimal input for the problem

and make minimal decisions. The code is split into two parts. First are the geometrization

conditions for the various matter fields. Second are the functions which reconstruct the field

given a metric which satisfies the conditions. The input for these algorithms is a metric

tensor g. The output of the geometrization condition functions is verification whether the

given metric is a solution to Einstein’s equations with the corresponding matter field. In the

case that the metric fails to satisfy the geometrization conditions, a set of equations which

the metric must satisfy for it to be a solution to Einstein’s equations can be requested. These

algorithms neglect various physical properties (such as energy conditions) and only examine

the problem mathematically. For the functions which reconstruct the field associated with

the solution the input is a metric tensor which satisfies the geometrization conditions, and

the output is the desired field. This code was used to test the theorems and calculate the

examples throughout the text.

The code included below is for perfect fluids, real scalar fields, and (2 + 1)-dimensional

electromagnetic fields. In the case of (2 + 1)-dimensional electromagnetic fields, the problem

was reduced to that of scalar fields, so the same code is used.

5.1 Perfect Fluids

5.1.1 Perfect Fluid Conditions

The PerfectFluidCondition function corresponds to Theorem 1 and verifies whether a
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metric corresponds to a perfect fluid solution of Einstein’s equations. Optionally, it returns

a set of equations which a metric must satisfy to be a perfect fluid solution.

PerfectFluidCondition := proc(g, {output := "TF"})

local dim, S, alpha, H, condition1, Z;

dim := nops( DGinfo("FrameBaseVectors")):

S := TraceFreeRicciTensor(g):

# alpha is defined in Eq. (2.9)

S2 := TensorInnerProduct(g, S, S, tensorindices = [2]):

S3 := TensorInnerProduct(g, S, S2):

alpha := -(dim^2 / ((dim - 1)*(dim - 2))*S3)^(1/3):

# H is defined as K in Eq. (2.13)

H := evalDG( 1/alpha*S - 1/dim*g):

# condition1 is defined in Eq. (2.11)

condition1 := SymmetrizeIndices( H &t H, [2, 3], "SkewSymmetric"):

if (output = "TF") then

Z := DGinfo( condition1, "CoefficientSet"):

if (Z <> {0}) then

return false;

end if;

end if;

if (output = "TF") then

return true:

else

condition1;

end if;
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end proc:

5.1.2 Perfect Fluid Reconstruction

The PerfectFluidData function is given a perfect fluid spacetime metric and returns

the four velocity u, the energy-density µ, and the pressure p corresponding to the metric.

PerfectFluidData := proc(g)

local dim, S, R, alpha, beta, u, m, a, H, frameVectors, manifoldName,

frameForms;

dim := nops( DGinfo("FrameBaseVectors")):

manifoldName := DGinfo( "CurrentFrame"):

frameForms := DGinfo(manifoldName, "FrameBaseForms"):

frameVectors := DGinfo( manifoldName, "FrameBaseVectors"):

S := TraceFreeRicciTensor(g):

R := RicciScalar(g):

# alpha is defined in Eq. (2.9)

S2 := TensorInnerProduct(g, S, S, tensorindices = [2]):

S3 := TensorInnerProduct(g, S, S2):

alpha := -(dim^2 / ((dim - 1)*(dim - 2))*S3)^(1/3):

# beta corresponds to the pressure as defined in Eq. (2.18)

beta := 1/dim*(R*(1 - dim/2) + alpha);

# H is defined as K in Eq. (2.13)

H := evalDG( 1/alpha*S - 1/dim*g):

for m from 1 by 1 to dim do

if (Hook( [frameVectors[m], frameVectors[m]], H) <> 0) then

a[m] := sqrt( Hook( [frameVectors[m], frameVectors[m]], H)):
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else

a[m] := 0:

end if;

end do;

u := RaiseLowerIndices(InverseMetric(g), DGzip( a, frameForms, "plus"), [1]);

# four velocity, energy-density, and pressure are returned in this order

u, simplify(alpha - beta), simplify(beta);

end proc:
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5.2 Scalar Fields and Electromagnetic Fields

5.2.1 Scalar Field Conditions

The SFC function corresponds to Theorem 2 and Theorem 3, and verifies whether a

metric corresponds to a non-null or null scalar field solution, respectively. Optionally, it

returns a set of equations which a metric must satisfy to be a scalar field solution.

SFC := proc(g, {output := "TF"})

local G, Gtrace, Gtwo, Gthree, Gdown, Lambda, H, test, C, dim, HHS, covH, p1,

p2, p3, condition1, condition2, condition3, Z;

dim := nops( DGinfo("FrameBaseVectors")):

G := DGsimplify( EinsteinTensor(g)):

Gdown := RaiseLowerIndices(g, G, [1, 2]):

Gtrace := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]), [[1,

2]])):

# Gtwo is defined in Eq. (3.9)

Gtwo := DGsimplify( TensorInnerProduct(g, G, G)):

# Gthree is defined in Eq. (3.10)

Gthree := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]) &t

RaiseLowerIndices(g, G, [1]) &t RaiseLowerIndices(g, G, [1]), [[2, 3], [4,

5], [1, 6]])):

# test is defined in Eq. (3.11)

test := simplify( (Gtwo - 1/dim*Gtrace*Gtrace)):

# We test the condition in Eq. (3.11) to see if the scalar field is non-null

or null

if (test <> 0) then

# Lambda corresponds to A as defined in Eq. (3.16)

Lambda := simplify( 1/2*(1/dim* Gtrace*Gtwo - Gthree)*(Gtwo -

1/dim*Gtrace*Gtrace)^(-1)):
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# H is defined in Eq. (3.17)

H := DGsimplify( evalDG( Gdown + Lambda*g + 1/2*( Gtrace + dim*Lambda)*(1

- dim/2)^(-1)*g));

else

# Lambda is defined in Eq. (3.28)

Lambda := -Gtrace/dim;

# H is the trace-free Ricci tensor

H := evalDG( Gdown - 1/dim*Gtrace*g);

end if;

C := Christoffel(g):

HHS := DGsimplify( SymmetrizeIndices( H &t H, [2, 3], "SkewSymmetric")):

covH := CovariantDerivative(H, C):

p1 := SymmetrizeIndices( H &t covH, [4, 5], "SkewSymmetric"):

p2 := RearrangeIndices( p1, [1, 3, 2, 4, 5]):

p3 := SymmetrizeIndices( RearrangeIndices( H &t covH, [1, 4, 2, 3, 5]), [4,

5], "SkewSymmetric"):

# condition1 is Eq. (3.13)

condition1 := HHS:

# condition2 is Eq. (3.14)

condition2 := evalDG( p1 + p2 - p3):

# condition3 is Eq. (3.12)

condition3 := CovariantDerivative( Lambda, C):

if output = "TF" then

Z := DGinfo(condition1 , "CoefficientSet"):

if (Z <> {0}) then

return false

end if;
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end if;

if (output = "TF") then

Z := DGinfo(condition2 , "CoefficientSet"):

if (Z <> {0}) then

return false

end if;

end if;

if (output = "TF") then

Z := DGinfo(condition3 , "CoefficientSet"):

if (Z <> {0}) then

return false

end if;

end if;

if (output = "TF") then

true

else

condition1, condition2, condition3

end if;

end proc:

5.2.2 Scalar Field Reconstruction

The SF function is given a scalar field spacetime metric and returns the associated

scalar field corresponding to the metric.

SF := proc(g0)
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local g, manifoldName, coordinates, frameForms, frameVectors, numVars, C, m,

a, A, b, B, eq, phiSol, aa, dim, G, Gdown, Gtrace, Gtwo, Gthree, Lambda,

H, test;

g := DifferentialGeometry:-evalDG(g0):

manifoldName := DGinfo( "CurrentFrame"):

coordinates := DGinfo(manifoldName, "FrameIndependentVariables"):

frameForms := DGinfo(manifoldName, "FrameBaseForms"):

frameVectors := DGinfo( manifoldName, "FrameBaseVectors"):

numVars := nops(frameForms):

C := Christoffel(g):

dim := nops( DGinfo("FrameBaseVectors")):

G := DGsimplify( EinsteinTensor(g)):

Gdown := RaiseLowerIndices(g, G, [1, 2]):

Gtrace := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]), [[1,

2]])):

# Gtwo is defined in Eq. (3.9)

Gtwo := DGsimplify( TensorInnerProduct(g, G, G)):

# Gthree is defined in Eq. (3.10)

Gthree := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]) &t

RaiseLowerIndices(g, G, [1]) &t RaiseLowerIndices(g, G, [1]), [[2, 3], [4,

5], [1, 6]])):

# test is the requirement defined in Eq. (3.11)

test := (Gtwo - 1/dim*Gtrace*Gtrace):

# test is defined in Eq. (3.11)

if (test <> 0) then

# Lambda corresponds to A as defined in Eq. (3.16)

Lambda := simplify( 1/2*(1/dim* Gtrace*Gtwo - Gthree)*(Gtwo -

1/dim*Gtrace*Gtrace)^(-1)):
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# H is defined in Eq. (3.17)

H := DGsimplify( evalDG( Gdown + Lambda*g + 1/2*( Gtrace + dim*Lambda)*(1

- dim/2)^(-1)*g));

else

# Lambda is defined in Eq. (3.28)

Lambda := -Gtrace/dim;

# H is the trace-free Ricci tensor

H := evalDG( Gdown - 1/dim*Gtrace*g);

end if;

for m from 1 by 1 to numVars do

if (Hook( [frameVectors[m], frameVectors[m]], H) <> 0) then

a[m] := sqrt( Hook( [frameVectors[m], frameVectors[m]], H)):

else

a[m] := 0:

end if;

end do;

# solve for the scalar field

A := DGzip( a, frameForms, "plus");

eq := DGinfo( evalDG( convert(A, DGtensor) - CovariantDerivative(

b(op(coordinates)), C)), "CoefficientSet"):

phiSol := pdsolve( eq):

# return the solution or solutions for the scalar field

if (nops([phiSol]) = 1) then

phiSol := rhs( op(simplify( pdsolve( eq), symbolic)));

else

phiSol := pdsolve( eq);

aa := {}:

for m from 1 to nops([phiSol]) do

aa := aa union {rhs( phiSol[m][1])}
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end do;

end if;

end proc:

5.2.3 Utility: Cosmological Constant

The function Lcheck is a utility function to compute the cosmological constant given

a scalar field spacetime metric.

Lcheck := proc(g)

local G, Gtrace, Gtwo, Gthree, Gdown, Lambda, dim;

dim := nops( DGinfo("FrameBaseVectors")):

G := DGsimplify( EinsteinTensor(g)):

Gdown := RaiseLowerIndices(g, G, [1, 2]):

Gtrace := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]), [[1,

2]])):

Gtwo := DGsimplify( TensorInnerProduct(g, G, G)):

Gthree := DGsimplify( ContractIndices( RaiseLowerIndices(g, G, [1]) &t

RaiseLowerIndices(g, G, [1]) &t RaiseLowerIndices(g, G, [1]), [[2, 3], [4,

5], [1, 6]])):

# Lambda is defined in Eq. (3.16)

Lambda := simplify( 1/2*(1/dim* Gtrace*Gtwo - Gthree)*(Gtwo -

1/dim*Gtrace*Gtrace)^(-1)):

end proc:
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