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ABSTRACT

Characteristic of the Dynamics of Disorder in Crystalline and Amorphous Materials

by

Amir Behbahanian, Doctor of Philosophy

Utah State University, 2021

Major Professor: Nicholas Roberts, Ph.D.
Department: Mechanical and Aerospace Engineering

In this dissertation I address the effect of randomness on the dynamics of crystalline

and amorphous materials. I developed a wavepacket-based methods to capture the energy

of a frequency band and simulated the time evolution of that wavepacket with its defined

energy without the presence of other modes. This method provided minimal decay of that

frequency band although the wavepacket has activated the modes beyond their anharmonic

character. In addition, I used the method to evaluate Molecular Dynamics (MD) simulations

in the context of missing quantum effects and found that even at low temperatures the MD

simulations are reliable up to frequencies as high as 1 THz. As a result of the decay analysis

in the first part, I hypothesised the importance of the existence of other frequency modes

in the dynamics of vibrations in crystalline materials. To evaluate the hypothesis I checked

the thermal conductivity as a measure of the character of vibrations under conventional and

Langevin dynamics. The result of this section provided evidence for the random character

of vibrations at high temperatures that makes the dynamics of vibrations in crystalline

materials comparable to the dynamics of vibration of amorphous materials. At the end of

this dissertation, I evaluated the source of high thermal conductivity in amorphous silicon

and found computational evidence for sub-micron vibrational modes in this material. In

the last piece of my analysis I utilized a notion called “Dynamical Structure Factor” to get
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the lifetime of lattice vibrations that provided the chance to evaluate the property under

the effect of full anharmonicity. This advantage makes picture of the physics provided by

this dissertation more reliable compared to the other worked using methods such as “Static

Structure Factor” that fails to capture the full anharmonic picture of vibrations. The result

of this work will provide the evidence for further research of the application of random

matrix theory to model crystalline materials at high temperatures. This method has been

used to model amorphous materials and showed capabilities to model systems beyond the

capabilities of conventional MD simulation.

(114 pages)
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PUBLIC ABSTRACT

Characteristic of the Dynamics of Disorder in Crystalline and Amorphous Materials

Amir Behbahanian

This work provides the evidence to apply simulation methods that are applicable to

systems with structural randomness to simulate crystalline materials at high temperatures.

My work not only open the avenue to expand the simulation capability of materials but

also provides insight to the physics of vibrations of atoms under different temperature and

for different types of materials. I have also evaluated the reliability of Molecular Dynamics

simulations at the frequency level and found that theses types of simulations, despite the

previous belief, are reliable at low temperatures but up to a measurable frequency. In addi-

tion, the result of my work explains the reason for high thermal conductivity of amorphous

silicon by showing computational evidence for the presence of high wavelength modes in

this material and this work is the first computational work reaching reported low-frequency

modes.
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CHAPTER 1

INTRODUCTION

Material characterization has always been the building block of research and develop-

ment processes in multiple industries. The characterization process targets the discovery

of parameters defining the behavior of a material. As a result, any system that deals with

the flow of heat as a problem or as an energy source requires better understanding of ther-

mal transport properties. The most frequent applications of fundamental and nanoscale

thermal transport properties characterization are thermoelectric devices, thermal interface

materials and coupled mechanical resonators. In all of these applications the performance

of the devices is dependent upon the thermal properties of materials used in the device.

Thermoelectric devices work based on the thermoelectric effect, which states that ap-

plying a voltage difference across a multi-material interface will result in a temperature

difference (Peltier effect) and the temperature difference across a multi-material interface

will produce voltage difference (Seebeck effect). The effect has applications in waste heat

recovery and ultrafast thermal management (heating-cooling) devices [5]. All of these ap-

plications initiated multiple research efforts to increase the efficiency of these devices [6–11].

Despite the benefits of the thermoelectric devices, the efficiency of them has not yet met

the needs of the industry [5], as a result increasing their efficiency is an active area of re-

search. The efficiency in thermo-electrical systems is defined in the context of the figure

of merit equation, the equation defines the efficiency of the system in terms of Seebeck

coefficient (S), electrical conductivity (σ), temperature (T ), and the thermal conductivity

(k), respectively, the thermal and electrical transport properties have always been the knob

for a better efficiency,

ZT =
σS2T

k
. (1.1)
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The increasing demand for smaller yet more efficient electronics has pushed the industry

towards the limitation induced by the increased volumetric heat generation. This obstacle

initiated research efforts to reduce the thermal interface resistance either by thermal inter-

face materials at the macro level [12,13] or manufacture material joints with better coupled

properties [14,15]. The high computational and storage power provided by manipulating the

boundary conductance of an interface has motivated researchers to inspect these properties

and try to explore the potential enhancement opportunities of these properties [16].

Advances in sensing technologies have always demanded precise detection of vibra-

tions. Better sensing in advanced microscopy techniques [17, 18] and more precise mass

sensing in gravimetric sensors [19,20] are examples of technologies that can take advantage

of higher sensing resolution, as a result of better coupled mechanical resonators, which is

based on maximum vibrational energy transportation between two resonator and minimum

decay across an interface in a coupled resonator. The advantages offered by the better sens-

ing technologies has provided the motivation for research efforts targeting a more coupled

contact between dissimilar materials [21].

The classical definition (Fourier’s law of Heat Transfer) of thermal conductivity (k)

defines it as the constant of the linear relationship between heat flow across a temperature

gradient. Fourier’s law describes a system at steady state. The need for a fundamental

understanding of the thermal conductivity that accounts for the temperature dependency

of the property and employs the importance of fundamental material characteristics in

the definition, resulted in a more convoluted definition of the property. The definition

appreciates the frequency (ω), Density of states (D(ω)), equilibrium particle distribution

function (f0) of vibrations, the temperature (T ) dependence of these parameter and the

heat capacity c(ω, T ). It defines the thermal conductivity in terms of the heat capacity,

phonon (Collective vibration of atoms) group velocity (v), and the frequency dependent
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Fig. 1.1: (a) single atom basis (b) primitive cell made by translation vectors (PTV (c) face
centered unit cell made by the choice of PTV (d) a crystal

phonon lifetime (τ(ω)),

c(ω, T ) = ℏω
df0
dT

D(ω),

k =
1

3

∫ ωmax

0
τ(ω)v2(ω)c(ω, T )dω. (1.2)

As the equation presents, manipulation of thermal conductivity is possible with having a

better understanding of the frequency behavior of both heat capacity and phonon-lifetime.

The aforementioned research areas, to support ongoing technology advances, are dependent

on the frequency-based analysis of energy storage and transport in materials. Considering

the two types of energy carriers, electrons and lattice vibrations (Phonon), we will limit our-

selves to the prominent energy caries in non metals (Phonon). The importance of phonons

in a crystal structure became more prominent with the consideration of their role in the

definition of thermal conductivity.
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Amorphous and crystalline materials are both used in the aforementioned applications.

In this dissertation I am searching for resemblance between the dynamics of vibrations

in these two types of structures. The resemblance will shed light on the dynamics of

crystalline materials at high temperatures and I will use the developed tools to address the

low frequency scaling of lifetimes and mean free paths in amorphous silicon. The mentioned

two aims will prove the possibility of using methods used to model amorphous materials

for crystalline materials at high temperatures, and will provide evidence for high thermal

conductivity of amorphous silicon compared to other materials, respectively. I will expand

more upon the problem in the methods section. Before I explain the research procedure

and my methods I will setup the basis with explaining the concept playing and important

role in setting up the line logic in this proposal. The concepts are the notion of crystal,

the computational and theoretical background to calculate the thermal conductivity, and a

brief description of the dynamics of amorphous materials.

1.1 Crystal Structures

Any material in the solid state that has its atoms in an ordered orientation is called a

crystal. The building block of a crystal is a primitive cell, which is the three dimensional

translation of basis atoms with three vectors (a1,a2,a3). These vectors are called primitive

translation vectors. They propagate the atoms in a way that the view of the primitive cell

formed by the translation operation is the same from any two points r and r′. The points

are the result of the following translation equation [22],

r′ = r + c1a1 + c2a2 + c3a3. (1.3)

In the hierarchy of structural complexity we start with a basis (in this case a single

atom is the basis Fig.1.1.a) then we form a primitive cell (Fig.1.1.b) and by putting prim-

itive cells on the lattice points (black points in the Fig.1.1.b), we form a crystal structure

(Fig.1.1.d). The choice of different primitive translational vectors will provide different unit

cell structures such as face centered cubic (FCC) (Fig.1.1.d). The structure used for com-
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Fig. 1.2: (a) crystal structure made by putting primitive cells on lattice points (b) crustal
structure formed by propagating atoms along the translation vectors (computational pur-
poses)

putational purposes is formed with expanding the crystal along the translational vectors,

I call this structure a primitive structure. All the computational applications that require

symmetry with respect to the primitive cell use the primitive structure for their analysis

(Fig.1.2.b).

Crystal structures with a basis that have more than one basis atom are more common in

nature. Silicon, sodium chloride and magnesium silicide are examples of crystal structures

with more than one atom in their basis. In many crystallographic analyses the behavior

of the whole crystal is averaged for all basis atoms in the structure, and mapped onto the

frequency space by a spatial Fourier transform. As a result the number of atoms in the

chosen basis play an important role in the precise presentation of the crystal behavior.

1.2 Thermal Conductivity

The thermal conductivity is classically defined as a material’s thermal transport prop-

erty that is defined in the state of equilibrium. The simplest definition of thermal conduc-

tivity k is a constant of linear relationship between the temperature difference ∆T across
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a sample with known thickness ∆x and passing known amount of heat rate q. The linear

relation is well-known as Fourier’s law of heat transfer,

q′′ = −k
∆T

∆x
. (1.4)

The definition is able to define the property in the linear region of the behavior but fails to

provide a reasonable definition of thermal conductivity as a function of temperature with

a single measurement. It also doesn’t consider the material structure role in the definition

of the property. To address both problems the bulk thermal conductivity can be defined

in terms of the nanoscale contribution of phonons, which is a temperature dependent phe-

nomenon Eq. 1.2. The equation provides a more detailed definition of thermal conductivity,

which will leverage the possibility of designing thermal system with optimum efficiencies.

In the following section I will explain the Phonon Dispersion Relation (PDR) that is the

frequency-wavevector characterization of atomic vibrations in a material. The notion is the

most fundamental approach analysis that provides the information required to character-

ize the transport properties. PDR can be developed computationally and experimentally,

I will explain the theoretical and computational approaches to develop PDR due to the

computational nature of this proposal.

1.2.1 Phonon Dispersion Relation (PDR)

The Phonon dispersion relation is the relationship between a material frequencies and

wavelengths, which is a one-to-one correspondence for crystalline materials at low tempera-

tures and the correspondence becomes a surjective map for amorphous materials.The slope

of the graph in a bijective map presents the phonon group velocities. This relationship

characterizes the frequency dependent dynamics of a system of particles (Fig. 1.3).
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Fig. 1.3: Dispersion relation (Left) and the Density of States (Right) of Argon in different
crystallographic diffraction directions at 0K. The curve is obtained by the GULP package
with a Lattice Dynamics (LD) calculation.

Phonon Dispersion Relation (PDR) Theoretical Understanding

The phonon dispersion relation is traditionally developed based on small perturbation

of the canonical coordinates q, which define the state of a system at each microstate

qi = qi0 + ηi (i : particle number|1, 2, · · · , n).

Based on the small perturbations we can define the Lagrangian of the system as the

difference between the kinetic T and potential V energy, where m is the particle mass and

νij is the diatomic potential change with respect to two coordinates νij =
∂2V
∂qiqj

L = T − V =
1

2

∑
i

∑
j

(mij η̇iη̇j − νijηiηj). (1.5)

Now we can take advantage of Lagrange’s equation and define the equation of motion

for all the particles, in a system with n degrees of freedom (number of particles) limited by
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Fig. 1.4: (a) face centered cubic (FCC) unitcell, (b) FCC primitive structure. In both a
and b the primitive vectors are indicated as, a1,a2 and a3.

c number of constraints

d

dt

∂L

∂η̇i
− ∂L

∂ηi
= 0

n−c∑
j=1

(mij η̈j + νijηj) = 0 , j = 1, ..., n. (1.6)

The path to a solution considering the wave-vectors (k|k0 = 0, k1 = 2π
aL , ..., km = 2π

a ,

the resolution of the wave-vector steps is dependent on the symmetric system size (L)

and the lattice constant (a) Fig. 1.4), and the frequencies goes through the definition

of a solution format and defining our system of particles in the context of basis atoms

(a, b|1, 2, ...,No. of atoms per basis). Considering,

ηbj(t) =
1

√
mimj

Pke
ik.qbe−iωkt (1.7)

in which, P is the wave-vector dependent constant (Eigenvector) and ω is the wave-vector

dependent frequency, we can solve the ordinary differential equation (Equation of motion),

ω2
kPk =

1
√
mamb

∑
a

∑
b

[∑
l

νabe
ik.qa,b

]
Pk. (1.8)
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The value in the brackets is considered to be the spatial Fourier transform of the

inter-atomic potential ν̃ij with respect to the canonical coordinate q, and the summation is

over the same basis atoms in different basis groups l. It is also important to mention that

the subscripts a, b are defining the relative generalized coordinate of atoms a and b in the

basis, but the origin of the basis containing atom a can be taken as zero to define all the

generalized coordinates from the origin.

The value in the brackets, combined with the mass terms, is called the dynamical

matrix D(k). As the spatial Fourier transform maps the average behavior of the basis atoms

onto the Fourier Space, the number of basis atoms determines the number of vibrational

branches (each curve in the PDR) in the dispersion relation. To avoid folded branches

(braches caused by interaction between repetitive atoms) all the calculations including a

spatial Fourier transform require a primitive system, which is the result of basis atom

propagation,

Dab(k) =
1

√
mamb

ν̃ab. (1.9)

and finally the dispersion relation is the solution to the following eigen problem,

ω2
kPk =

∑
a

∑
b

Dab(k)Pk. (1.10)

In the context of theoretical mechanics [23], there is a modal based solution that states

the atomic displacements in terms of single vibrational modes. To achieve such a solution

modal matrix (M), which is composed of all the available eigenvectors, is formed,

M =


P 0
0 P k1

0 . . . P km
1

...
...

. . .
...

P 0
km

P k1
km

. . . P km
km

.

 . (1.11)

On the basis of this new matrix a new displacement variable can be defined, that is

called generalized coordinates ζ(t). And a linear proportionality equation is considered
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between the displacement η(t) and the generalized coordinate ζ(t),

η(t) = Mζ(t) (1.12)

because of the matrix nature of M the relation takes the following format, by multiplying

both sides by MTmkk,

MTmη(t) = ζ(t). (1.13)

By rewriting the Lagrangian equation using the new variable,

L =
1

2

∑
k

(ζ̇k
2 − ω2

kζ
2)

we can offer a solution to the Lagrange’s equation,

ζ = Ake
ikqie−iwkt

and using the Eq. 1.12, we can define the displacements in modal format at each instant.

ηk(t) =
∑
i

AkPke
ikqie−iwkt (1.14)

The summation is over all the atoms in the system, for every isolated wave-vector k and

frequency ωk. This equation was used by Henry and Chen [24] in their phonon lifetime

analysis, with the consideration of removing the time dependence of the equation to find the

instantaneous amplitude Ak. They calculated the autocorrelation function of the amplitude

over time to track the decay of the amplitudes (phonon lifetime).

PDR Computational Methods of development

In this section I will explain the computational methods to develop temperature de-

pendent PDR and the DOS. Except the Lattice Dynamics methods that are based on the

theoretical explanation of PDR with no time evolution of the dynamics and can’t capture

the temperature dependency of PDR, I found two methods that are both based on the
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temperature dependent dynamics of the system.

Before I explain the development of temperature dependent PDR I will expand more

on the Lattice Dynamics methods that was briefly mentioned in the previous paragraph,

explaining two of the algorithms used for the calculation. The first algorithm is based on

the theoretical background of the dispersion relation. The computational algorithm moves

the atoms, grouped in smaller chunks of atoms called super-cells, in different directions and

develops the dynamical matrices [25, 26]. This method is based on the density functional

perturbation theory and is also called frozen-phonon method. The theoretical derivation

that is provided in this document can be used for both frozen phonon method and the

next algorithm. The second method uses the equation of motion and finds the derivative of

potential for a diatomic or multi-atomic potential and mathematically solves the equation

of motion to obtain the frequencies for different wave-vectors [27].

Both of the provided methods calculate the dispersion relation, but at zero Kelvin. For

most of the applications the required understanding of the system behavior is at temper-

atures above the zero kelvin. Two computational methods provide the dispersion relation

at any target temperature. The first method uses molecular dynamics simulations and

outputs the atom velocities and forms the velocity autocorrelation functions for different

polarizations p and wave-vectors k,

vα(k, t) =
∑
i

vαi (t, r)e
−ikri (1.15)

Aα(k, t) =
⟨vα(k, t) · vα(k, 0)⟩
⟨vα(k, 0) · vα(k, 0)⟩

Aα(k, ω) =

Tsim∑
Aα(k, t)e−iωt (1.16)

In which, the velocities are transformed to the spatial Fourier transform of the instantaneous

velocities (Eq. 1.15). The dispersion relation is the result of the Fourier transform analysis

of the obtained data set for every wave-vector. Heino claimed that the accuracy of the

model is limited to the accuracy of the interatomic potential [28].
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The last molecular dynamics-based method that I will also use as part our methodology

is the method developed by Ling Ti Kong [29, 30]. He defined the dynamical matrices

(Diq(k)) as a function of force constant matrices (ϕiq(k)), and the force constant matrices

as a function of instantaneous atom position (R̃iq), which is the spatial Fourier transform of

atom positions of the primitive cell locations (rl), for any favorable canonical coordinates q

like the atom positions. Please also consider that the indices i and j are to indicate atoms

in a primitive cell (unless otherwise is stated).

R̃iq =
1√
N

∑
l

Ri,qe
−iqrl (1.17)

Kong used the Green functionGij =
1

kbT
⟨uiuj⟩, to correlate the interatomic interactions

to the second moment of atomic displacements u with temperature T and the Boltzmann

constant kb as the constants of correlation. He transformed the equality to one that is

related to the instantaneous positions for easier calculations,

G̃ij = ⟨R̃iqR̃jq⟩ − ⟨R̃jq⟩⟨R̃jq⟩. (1.18)

Using the definition of force constants ϕiq(k) we can define it asfollows,

ϕiq(k) = kbTG
−1. (1.19)

As a result of the definition the dynamical matrices are defined,

Diq(k) =
1

√
mimj

ϕiq(k). (1.20)

The above definition provides the frequencies for every wave-vector as the eigenvalues of

the eigenequation (Eq.1.8). Lets work out and example to provide a better understanding of

the indices. Assuming a system with n particles and symmetric with respect to the primitive

cells, we also limit the motions of the atoms in three translational dimensions (x, y, z).

Considering our hypothetical system of particles having two atoms in the primitive cell like
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a system of particles in a diamond structure, we will get two 3× 3 dynamical matrices for

every wave-vector and each atom in the primitive cell. Each of the dynamical matrices will

provide both the optical and acoustic eigenvalues corresponding to the respective branches

of vibration on a dispersion curve.

The recent method provides an easy to apply method for the development of phonon

dispersion relation at all required temperatures. It also provides the dynamical matrices that

have a substantial role in the analytical and computational thermal transport properties

characterization methods provided in the computational sections (sec.1.2.3).
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1.2.2 Experimental studies of Thermal Conductivity

The experimental studies of thermal conductivity of materials in the solid state can be

divided into two main subcategories, bulk and nanoscale thermal conductivity analysis. The

bulk measurement methods provide the thermal conductivity of samples in millimeter scale

up to large samples. But knowing the thermal conductivity of materials at the nanoscale

requires special setups. In the following paragraphs I will provide a concise definition of

bulk thermal conductivity measurement techniques and will add the main techniques to

measure nanoscale thermal conductivity to our discussion.

The bulk thermal conductivity measurement methods are typically based on the Fourier’s

law of heat transfer. The main idea is to apply a temperature difference across a sample

and let it equilibrate around the required temperature. The heat flow in the sample is

measured by measuring the heat flow in the side clamps, holding the sample, and averaging

the values to get an estimate of the heat flow in the sample. The thermal conductivity

is then calculated knowing the temperature difference across the sample, heat flow in the

sample and the geometry of the sample [31].

The thermal conductivity measurement at the nanoscale enables the analysis of man-

ufactured and existing systems in the scale. The three main methods to obtain nanoscale

understanding of material properties are, Time-domain thermoreflectance (TDTR), scan-

ning thermal microscopy, and nanometer-scale thermal analysis/manufacturing [32]. The 3ω

method and the suspended-islands nanofabricated devices also provide the thermal trans-

port properties at the nanoscale, but both methods are limited compared to the other

three mentioned methods. We will provide an overview of these methods in the following

paragraphs.

In 1986 Maris and Eesley separately provided the characterization of thermal transport

properties of material with the aid of thermoreflectance analysis. The method has remained

almost untouched over the years. The approach is to deposit a transducer layer on top of

the sample then a pump laser beam is applied to that layer and the change of the reflectivity

of the sample due to the temperature change is measured by a differentiated and lagged
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piece of the main beam, called the probe beam (Probe beam). The collected data is then

fitted to the analytical models of a system subjected to an oscillatory heat source, to obtain

the unknowns of the model [33].

Scanning thermal microscopy is another technique that takes advantage of fitting the

analytical solution to the experimental data. The approach facilitates the thermal con-

ductivity measurement of metal thin films. A metal thin film is deposited on a dielectric

substrate with a shape that provides a bottle neck for the flow of electrons, which creates

an expansion region due to Joule heating plus a temperature gradient. The Scanning Probe

Microscope with a thermal measurement tip can sense the gradient at different heating

frequencies, which completes the measurement setup [34].

The two previous setups are dependent on an external source of heat generation. Tech-

niques that take advantage of the Atomic Force Microscopy (AFM) are able to use the

AFM tip to create the hot spot on the sample by the tip of the microscope and measure

the temperature at the same time. An understanding of the heat flow between the tip and

the substrate provides the means to measure the thermal properties of the sample [35]. Al-

though not related to the thermal characterization, one of the interesting uses of the setup

is that the setup with an injection capability at the tip can facilitate the lithography on a

substrate, which provides tremendous resolution and spatial resolution for manufacturing

in that scale [36].

The two other mentioned methods provide valuable information about the effective

thermal conductivity of the sample-system [32]. The 3ω method uses a sinusoidal voltage

source to create an oscillating heat source on the sample. The heat source oscillates with

twice the frequency of the voltage source and creates a temperature oscillation with the

same frequency, which leads to a temperature dependent resistance oscillation, with three

times the voltage source frequency. Finally the third harmonic resistance oscillation creates

the third harmonic temperature oscillation that is carrying the material properties informa-

tion [37]. The suspended-island method is one of the suitable methods for the measurement

of transport properties of the nanostructures. The method has two islands, one creating
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the Joule heating and thus a temperature difference across the sample placed between the

islands. The result of the temperature measurements and an understanding of the thermal

conductance between the nanostructure and the islands provides the required information

for the thermal conductivity measurement of the sample [38].

1.2.3 Computational studies of Thermal Conductivity

Computational studies of thermal conductivity can be performed using a powerful

simulation tool called molecular dynamics. Molecular dynamics (MD), in general refers to

any coded package that simulates the inter-atomic interactions and solves the equations of

motion for all the entities in the simulation box to provide the time evolution of the system.

The package produces important information about the dynamics of the system at each

time-step, which are used to characterize the system of study.

Thermal characterization methods based on MD simulations are categorized in two

main groups, equilibrium and nonequilibrium. The nonequilibrium method uses Fourier’s

law of heat transfer and simulates a system with a heat source and a heat sink. The heat

sink removes the same amount of heat that is supplied by the heat source. The process is

based on interchanging the velocity of the hottest atom in the hot region with the velocity

of the coldest atom in the cold region [39]. With MD packages like LAMMPS the addition

and subtraction of heat are two separate processes. After equilibrating the system and

having the temperature gradient, the sample thickness, area, and the heat flux the thermal

conductivity of the sample will be calculated using Fourier’s law of heat transfer (Eq.1.4).

The method is used extensively, because of the simplicity in setup and post-processing, in

different thermal analysis simulations as Nanoparticle effect on thermal conductivity and

etc. [40].

The equilibrium MD approaches are based on the fluctuation dissipation theorem and

regarding the theorem one can find the material properties based on the information ob-

tained from the MD simulations. The following two sections will explore one non-MD based

and the most common MD-based methods for calculating the thermal conductivity. These

methods are explained due to their extensive use in the past ten years.
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Thermal Conductivity based the solution of the Boltzmann Transport Equation

(BTE)

The classical attempts to provide a descriptive definition of transport in materials,

included a cumulative contribution of frequency in their analysis [41–44]. Callaway solved

the Boltzmann Transport Equation (BTE) based on the gray assumption, with which the

a single relaxation time is assumed for all the polarization directions and frequencies [42].

k =
kb

2π2 | νg |
(
kbT

ℏ
)3
∫ θD/T

0
τ(x)

x4ex

(ex − 1)2
dx (1.21)

where kb is the Boltzmann Constant, vg is the phonon group velocity, T is the temper-

ature, ℏ is the reduced Plank constant, θD is the Debye temperature, τ(x) is the cumulative

phonon lifetime, and x is defined as ℏω
kbT

.

Callaway’s work was extended by Holland, who added the frequency dependency of

the phonon lifetime to Callaway’s work, using the Debye approximation of the phonon

dispersion, and assumed a dispersion relation with a constant slope (Constant group veloc-

ity). The result of his work was a polarized thermal conductivity definition, distinguishing

between the Longitudinal and Transverse polarization directions.

k = kLongitudinal + kTransverse

kL =
1

3

∫ θD/T

0
CLT

3τL(x)
x4ex

(ex − 1)2
dx

kT =
2

3

∫ θD/T

0
CTT

3τT (x)
x4ex

(ex − 1)2
dx (1.22)

CL,T =
kb

2π2 | νg |L,T
(
kb
ℏ
)3

Regarding the assumptions made by Holland and Callaway, the bulk thermal conductivity

calculations made by these approaches over-estimate the conductivity [45]. The fact can be

justified by the lower group velocity of phonons (vg) at high frequencies compared to the

sound velocity at lower frequencies.
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A wide range of applications introduced the need for a better understanding of trans-

port properties with incorporation of nonlinear dispersion relation. As a result, Majumdar

and Mazumder introduced the first comprehensive algorithm to solve BTE with nonlinear

dispersion relation and considering various polarizations [46]. Their approach was based

on the Monte Carlo solution technique, they created six independent stochastic spaces and

defined the phonon vectors and positions with the random numbers and the scattering pro-

cess was also defined based on the scattering time scale and the time step in the simulation.

Despite the convoluted procedure they didn’t define the effect of optical branches in their

analysis. Mittal and Mazumder solved the problem and added the contribution of opti-

cal phonons in thermal conductivity of silicon [47]. They found the importance of optical

phonons in temperatures above 200 K, also defined the three phonon interactions with the

definition provided by Kelemns [48], and defined new scattering regimes provided by Naru-

manchi [49]. The BTE technique has also been used in the thermal boundary conductance

analysis [50], which is a vast research discipline and will be addressed in a separate section.

Statistical Mechanics based Analysis (Based on MD)

Statistical mechanics is the other approach to model and characterize physical systems.

The approach can provide a remarkable amount of information from the transport properties

in a material to the statistical evolution of a system over time.

Ryogo Kubo used this approach and modeled a hypothetical many-particle system with

the aid of linear response theory, which correlates an observable in the system with a set of

other observables (or a single observable) in a linear relationship. The transport properties

of the system in any context (Electrical/Mechanical) is the constant of this relationship.

Considering a heat problem, the linear relation is the equation for the heat current J and

the temperature gradient ∇T , and the thermal conductivity is the constant of the linear

relationship [51,52],

J = −k∇T. (1.23)
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Kubo used statistical mechanics to define the constant of the relationship. As a function

of Boltzmann-constant (kb), temperature (T ), volume (V ), and heat current (j) Autocor-

relation within the time window-length of tw,

k =
1

V kbT 2

∫ tw

0

⟨j(0)j(t)⟩
3

dt. (1.24)

The most adopted version of the heat current by the heat transfer research community

is the time derivative of the sum over all particles energy (Ei) and position (ri),

j =
d

dt

∑
i

riEi. (1.25)

The heat current for a pair potential is defined, knowing the inter particle distance (rij ,

inter atomic force (Fij), and particle velocities (vi). The summation is over all the particles

in the system, neglecting self interaction (i ̸= j),

j =
∑
i

Eivi +
∑
ij

rij(vi.Fij) (i ̸= j). (1.26)

With the improvement of the computational power, research attempts led to compu-

tational analysis of frequency-based phonon lifetime including a full-dispersion curve. Volz

calculated the thermal conductivity of silicon and achieved reliable thermal conductivities

at high temperatures [53, 54], at which the long wavelength phonons contribute less to the

thermal conductivity. He attributed the low frequency errors in his calculations to two main

problems, 1) the limitation of simulation size and the removal of wavelengths bigger than

the simulation cell size and 2), the dependency of heat flux vector on the spatial Fourier

transform of the local heat vectors.

McGaughey and Kaviany followed the same approach to calculate the thermal conduc-

tivity. They provided an additional piece of information and characterized the cumulative

(averaged for all frequencies) lifetime of phonons with a two-stage behavior and attributed

the fast decay to the nearest neighbor interactions, and the second decay time to the long
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range interactions [55]. The time-decays were defined based on the heat flux-autocorrelation

normalized by it’s initial value,

⟨j(0) · j(t)⟩
⟨j(0) · j(0)⟩

. (1.27)

McGaughey and Kaviany expanded their next work and defined the preferred path of travel

for the energy in SiO4 with an energy autocorrelation [56]. They also characterized the be-

havior of atom-atom bond in the process of energy transport, using the same autocorrelation

results. The last piece of their trilogy was to make the connection between the BTE so-

lution approach and the Kubo analysis. The analysis was to find the decay of normal

modes, considering the energy autocorrelation function decay and using a fit for the cal-

culated decay times. They used the fitted value for decay as the lifetime for BTE-based

thermal conductivity calculation, also reported acceptable match between the result of two

approaches [57].

In continuation of these valuable works, Henry and Chen defined their frequency-based

phonon lifetime on the basis of the normal coordinate-based atom vibration amplitudes

time-decay [24],

A(k, p, t) =
∑
j

(rj − rj0)Pj(k, p)exp(i.k.rj0). (1.28)

The above equation define the vibrational amplitudes as a function of polarization (p),

wave-vector (q), time (t), atom displacement over time (rj − rj0), and dynamical matrix

eigenvectors P (q, p). They monitored the decay time with the aid of initial and instanta-

neous amplitudes autocorrelation for each wavevector,

⟨A(0) ·A(t)⟩
⟨A(0) ·A(0)⟩

. (1.29)

The Henry and Chen’s work is based on the dispersion relation, which is a very im-

portant relationship between the allowable frequencies, wavelengths and the phonon group

velocities (The velocity of a wave in its direction of travel) at each temperature (Sec.1.2.1).

The motioned techniques are to provide the thermal conductivity of a single material in

both nanoscale and bulk scales for a single material, but most of the industrial applications
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put two same or different material in contact with each other that defines a new transport

property called thermal boundary (interface) conductance. The property is the subject of

multiple research efforts and will be briefly reviewed in the following section.

Thermal Boundary Conductance

Even a perfect perfect contact between two materials will inherit a resistance called

thermal interface resistance. The definition of thermal interface resistance or in its reciprocal

format thermal interface conductance was first based on the Acoustic Mismatch (AM)

model, that defines the transmission across an interface in terms of the acoustic impedance

(Z = ρc) of two materials [58]. The definition will fail to define the transmission across two

materials with the same crystal structures as they have the same impedance. The mentioned

limitation led to the definition of a new analysis method called the Diffuse Mismatch (DM)

model, the model predicts the transmission of phonons based on a perfect crystal phonon

dispersion relation. The probability of a phonon passing an interface or the scattering events

are dependent on the frequency-based homogeneity of two sides of the interface. A more

involved description on the model defines the transition with the aid of Fermi’s Golden Rule,

which defines the transition between energy sates in a continuum of states by applying the

perturbation theory to the system.

Both aforementioned approaches are unable to define the interface-geometry contribu-

tion to the interface resistance [59]. Schelling introduced the phonon dynamics simulation

for a better definition of the interface transmission [60]. The method is based on creation of

waves with a Gaussian envelope, known wave-vector, and polarization in an MD simulation.

The wave will interact with the interface and by monitoring the characteristic of the wave

and the passed wave the transmission is defined for the well defined wave packet.

The other method that can differentiate between different frequencies and polariza-

tions is the Green’s function method. The method uses the coupled greens functions of a

sample sandwiched between to contacts to define the solution of the dynamical equation

of the coupled system. The definition provides the transmission function in terms of the

Green’s function and the connection matrices defined within the dynamics definition of the
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system. [61]. Although the method provides a detailed frequency-based analysis, the cal-

culation becomes cumbersome for complicated geometries. As a result the calculation is

limited to simple nanostructures like nanowires [62].

Barrat used the Green-Kubo formulation to define the boundary conductance but they

were missing the frequency decomposition of the analysis as with other Green-Kubo nased

analysis [63]. The method is based on the spatial average of the power (P ) on both sides

of the interface, and defines the boundary conductance (G) in regards.

G =
1

AkbT 2

∫ ωmax

0
⟨P (0).P (t)⟩dt (1.30)

The Green Kubo formulation also helped other researcher to develop methodologies defining

the frequency-frequency contribution in boundary conductance [64].

The understanding developed in the preceding sections are all defined in the context of

crystalline materials, although most of them can be used for amorphous materials with some

modifications. As growing a crystal in many cases is expensive, a great piece of literature is

based on amorphous materials and understanding their odd thermal conductivity behavior

versus temperature [1]. In the following section I will explain the details of the dynamics of

vibrations in amorphous materials as the last piece in the introduction section.

1.3 Dynamics of vibration in amorphous materials

The difference in the temperature dependency of thermal conductivity in crystalline

and amorphous materials (Fig. 1.5) has initiated research efforts to understand this phe-

nomenon [65, 66]. These efforts resulted in a diverse taxonomy in defining vibrational be-

havior and scattering events of amorphous materials. The three main modes of vibrations

defined for amorphous materials are Propagons (P)(propagating modes), Diffusons (D),

i.e., vibrational modes with no defined wave vector but having energy transport capabili-

ties, and Locons (L) that are local modes with high local magnitudes and low contribution

to thermal conductivity [67]. As a result, the frequency transition limits from one regime

to the other are defined as Ioffe-Regel and the mobility edge. The former is the frequency
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Fig. 1.5: Thermal conductivity comparison between amorphous and crystalline Silicone
Dioxide, data extracted from the experimental work by Cahil and Pohl [1]

border between P-D and the later is the border between D-L [67] and has its roots in the

concept of electron localization [68]. Although the need for such terminology was disputed

by some authors experimentally [69], the terminology resulted in the definition of thermal

properties based on the classification [70], and some authors mandated the definition to

explain their results [71]. Less commonly used modes are floppy modes that are temporally

and spatially trapped modes [67] and Resonant modes that are spatially non-exponentially

decaying modes [70].

Along with the classifications of types of vibrations, defining types of scattering with

respect to frequency is another approach, in parallel with the previous one, to find explana-

tion for the odd temperature behavior of the thermal conductivity in amorphous materials.

Kittel scattering defines the frequency independence of scattering on a scale that the mean

free path is lower than the atomic distance [65]. Klemens scattering defines the scatter-

ing resulting from transverse and longitudinal modes’ interactions through the anharmonic

terms of the interatomic potentials or interaction with local modes [66]. Moreover, the most

historically used scattering classification [72] is a Mean Free Path or lifetime vs. frequency
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classification. For example ω−2, ω−1 are the behaviors defining the lifetime vs. frequency

data in the low frequencies regime, and ω−4 (Rayleigh Scattering), ω−3 [73] explains the

scattering events in the mid-range frequencies interval. These regimes were observed in

both experimental [69,74] and computational [67] works.

On the one hand, the science associated with this terminology has opened the avenue

to phonon engineering [75], and it creates the motivation to seek its application for homo-

geneous materials. This motivation is legit, neglecting its possible physical relevance for

homogeneous materials. On the other hand, the effect of the statistical character of heat

source on thermal properties [76], the anisotropy of heat current related to the homogeneous

molecules [77], and the possible break down of phonon gas model at high temperatures [78]

provide the evidence of possible deviation of homogeneous systems from a wave-particle

picture. The claim is due to the system’s constraints by temperature-dependent statistics

of vibrations, interactions of vibrations, and anharmonicity effects, or all the mentioned

effects.

As a result, I will first develop a methodology that removes the temperature effect from

a system yet can still capture temperature-dependent frequency behavior. The method

will remove any possible random behavior due to temperature. I will use the phonon

lifetime as a measure for comparison to monitor the effect of the absence of temperature

induced randomness. Next, I will use the thermal conductivity as a measure of comparison.

Correspondingly, I will induce more randomness to a system under a temperature constraint

to observe the effect of extra randomness added to the system on its thermal conductivity

and use the amorphous material terminology to analyze the resulting data. The extra

randomness is achieved through Langevin dynamics. Finally, I will use the developed codes

for the analysis above to analyze a long-standing question about the lifetimes’ frequency-

scaling in amorphous silicon and its possibility of diverging the thermal conductivity at low

frequencies.
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CHAPTER 2

PHONON WAVEPACKET SIMULATIONS USING THE QUANTIZED DEFINITION

OF ANERGY AND TEMPERATURE-DEPENDENT PDR AND DOS

2.1 Introduction

Material selection and material engineering has shown to be the promising approaches

to overcome design bottlenecks in multiple engineering disciplines dealing with thermal or

lattice vibration related problems. The target properties are achieved through either design-

ing new materials that doesn’t exist in the nature [79] or through a better understanding

of the physics of the existing materials. Increasing the thermal conductivity at an interface

for the sake of controlling the temperature below the maximum operational temperature of

electronics, decreasing the thermal conductivity to increase the figure of merit in thermo-

electric systems, and finally increasing the coupling in mechanical resonators to approach

better sensing capabilities are the most common applications that will benefit from a better

understanding of thermal transport properties in materials [32,45,80]. Analytical and com-

putational modeling are considered effective tools to characterize the physics of the existing

materials.

Both computational and analytical approaches are categorized into two main streams,

(1) equilibrium analysis, and (2) non-equilibrium analysis. The Boltzmann Transport Equa-

tion (BTE) based simulations, and Green-Kubo simulations are the main equilibrium ap-

proaches to provide the frequency-based behavior of a material. Fisher et al. used the

BTE approach to calculate the relaxation time and, as a result, the conductance across the

Si/Ge interface [81], and LV et al. proposed a Kubo-based approach for the exploration of

mode-mode contribution to thermal conductivity and performed a case study on amorphous

and crystalline silicon [82]. Analytical approaches in the category of equilibrium analysis

are the Green’s function analysis and n-phonon interaction analysis based on the radiative
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heat flux analysis approach [83,84]. These are techniques that have been proven to provide

detailed results in the frequency space. One other method that is not as ubiquitous as the

methods mentioned above is the frequency-based transmission analysis performed by Volz

and Chalopin. This analysis provides comprehensive frequency-based transmission across

the Si/Ge interface in the specular regime [85].

In addition, the wavepacket creation method is a non-equilibrium method used to study

the interface transport and can look at the dynamics of a frequency band in a system of

particles. This technique of creating wavepackets is called “phonon dynamics” [32] and

the method was proposed by Schelling [60]. It is based on the creation of a sinusoidal

wave, which is in a Gaussian envelope. The created wave travels in the defined system, and

monitoring the dynamics of the motion can provide characteristics such as phonon transport

properties and phonon boundary transmission. Schelling and other researchers used the

method to calculate the transmission across twist grain boundaries [86, 87] and to explore

the heat transfer mechanisms of graphene along the in-plane direction [88]. The method

was proven to provide reliable and accurate results for transmission across an interface,

time-dependent energy distribution, scattering, and phonon lifetime calculations [89, 90].

Other authors have also used the results for validation [91]. The phonon dynamics has

always been used assuming an arbitrary constant for the amplitude of a wavepacket as a

result, the direct effect of the wavepacket amplitude on the amount of energy it carries has

been neglected.

A phonon counting process is an essential part of most of the mentioned analysis.

As a result, correct definition of the phonon density of states (DOS) is correlated to any

subsequent analysis. The use of DOS in thermal conductivity calculations started with Call-

away’s linear consideration of the DOS and was reused by other researchers [41, 92]. The

full-Brillion Zone consideration of the DOS provided results that matched the experiment

better [93]. Yet still, a nonlinear (frequency dependent phonon group velocity) full-zone

consideration of the DOS provided a more realistic model of materials. Aksamija and Ken-

zevic considered a nonlinear and full zone DOS and were able to capture the dependency
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of graphene nanoribbons thermal conductivity on the chiral angle of the ribbons. They

also performed the same analysis on silicon-on-insulator nanomembranes and observed the

anisotropy of thermal conductivity in these materials. Despite the possibility, the tem-

perature dependence of the DOS was never addressed in computational thermal property

calculations, although the decrease of the range of lattice-vibration frequencies with in-

creasing temperature is an accepted and experimentally observed phenomenon in physics

research [94, 95]. This phenomenon was attributed to the coupling of optical and acoustic

phonons [96] or the electron-phonon interactions [97]. Typically, the temperature depen-

dency of the calculation is solely based on the temperature dependence of the Bose-Einstein

distribution [98,99], although the importance of the temperature dependent DOS and PDR

was recently addressed by Gerboth and Walker in the context of size-dependent softening

of nanoribbons [100].

The phonon dynamics has always utilized the 0 K DOS and PDR, and in the its

definition the selection of the displacement amplitude is arbitrary. The introduction of the

energy to the definition of a wavepacket is addressed in this work through the consideration

of the temperature dependent DOS and PDR. We used a Green’s function based definition

of the temperature dependent DOS and the PDR [30] in order to get the energy of a

frequency band. The frequency space of the wave packet created using the mentioned

approach was tested using a Fourier analysis based method to provide the difference between

considering the temperature dependence and ignoring it. In addition, the knowledge of the

energy of a wavepacket based on the quantum definition of phonons provided the chance

to quantitatively check the extent of validity of MD simulations in frequency space and at

different temperatures.

To present the details of the work, we first elucidate the details of the computational

approaches for the calculation of the PDR and the DOS (g(ω)) followed by the methodology

to capture the correct kinetic energy of a wavepacket. The Methods section defines the

system, which is the test specimen to simulate and validate the proposed methodology. In

the end, we present our results and discuss the uncertainty of the numerical calculations.
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2.2 Methods

(a) (b) (c)

Fig. 2.1: (a) primitive structure conducive to the spatial Fourier analysis (b) validation
system (c) volumetric mesh in k -space

We designed an extension to the phonon dynamics method that captures the correct

kinetic energy of a frequency band in a wavepacket, which results in a wavepacket carrying

the same amount of energy at a specific temperature in the frequency band flowing in a spe-

cific Cartesian direction. The definition of the energy is based on the quantum definition of

energy for the range of frequencies within a frequency band in a Gaussian envelope. For the

temperature dependent definition of the energy in any system we require the temperature

dependent definition of the PDR and the DOS. In this section we start with the defini-

tion of the PDR and the DOS then we define the methodology to structure a wavepacket

considering the temperature dependent definiton of the PDR and the DOS.

2.2.1 Phonon Dispersion Relation (PDR) and Density of States (DOS)

We encountered two computational methods that can capture the temperature depen-

dency of the PDR and is able to capture the full anharmonic picture of the dynamics.

The first approach was proposed by Heino [28], which is based on mapping the velocity

field to the k -space (k = 2π
λ ) and getting the spatial Fourier transform of the velocity field

vα(t, r). α indicates the direction in the coordinate system for each particle indexed with
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i. The calculation is followed by the computation of the autocorrelation function Aα(k, t)

of the k -space velocity vectors. As a result, the PDR is the output of the temporal Fourier

transform over the total simulation time Tsim of A(k, t), which provides the autocorrelation

function as a function of angular frequency ω and k vectors (A(k, ω)).

vα(k, t) =
∑
i

vαi (t, r)e
−ikri

Aα(k, t) =
⟨vα(k, t) · vα(k, 0)⟩
⟨vα(k, 0) · vα(k, 0)⟩

Aα(k, ω) =

Tsim∑
Aα(k, t)e−iωt (2.1)

The second method is a particle tracking model and defines the dynamical matrices

D(k, ω) in the context of atom positions over time [29, 30]. This method first maps all the

α-component of the atom positions at each time (t), Riα(x, t), in the k -space by a spatial

Fourier transform. The sum is over the location of each primitive cell (Fig. 2.1-a) in the

primitive structure, but it reduces to a summation over atoms i as we have one atom per

unit cell, due to the distribution of atoms along the primitive lattice vectors,

Riα(k, t) =
1√
N

∑
i

Riα(x, t)e
−ikrl . (2.2)

The force constants matrix elements (ϕiα,jβ(k)) are defined with respect to the positions

in k -space (Riα(k, t)). The definition is based on defining the Green’s function in terms of

the time dependent, α and β component of the position of atoms i and j. kb and T are

the Boltzmann constant, and the simulation temperature, respectively. Besides, the ∗ sign

denotes the complex conjugate of a complex vector.

Giα,jβ(k) =⟨Riα(k, t) ·R∗
jβ(k, t)⟩

− ⟨Rjβ(k, t)⟩ · ⟨R∗
jβ(k, t)⟩

ϕiα,jβ(k) =kbTG
−1
iα,jβ(k) (2.3)
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As a result, we defined the dynamical matrices with the aid of force constant matrices, and

the square of angular frequencies are the eigenvalues of the proper eigenproblem (Eq. 2.4).

This method up to the generation of dynamical matrices is available as fix-phonon in the

LAMMPS molecular dynamics package [101].

Diα,jβ(k) =
1

√
mimj

ϕiα,jβ(k)

| Diα,jβ(k)− δαβδijω
2(k) |= 0 (2.4)

The DOS (g(ω)) is the count of frequencies within a frequency bin centered at ω. The

width of the frequency bins were chosen to be equal to 0.01 THz. It is also essential to

perform the DOS normalization precisely by considering all of the three polarizations p

(Eq. 2.5), that results an integration over all frequencies of the DOS(ω) being equal to

three, ∫ ωmax

0
g(ω)dω =

∑
p

1 = 3. (2.5)

The temperature dependency of PDR and DOS is a phenomenon addressed by other

researchers as phonon softening [94]. The frequency shift due to temperature change is

also an observable phenomenon in Raman spectroscopy experimental measurements [102].

The change in the frequency behavior of the PDR and softening of the frequencies was

attributed to the change of the lattice constant due to thermal expansion [103]. Although

the work by Yun et. al. is on UO2 their observation is relevant to this work on argon as the

thermal conductivity of UO2 is lattice dominated up to high temperatures (1400K) [104],

which is well above the temperatures understudy in the work by Yun et. al. [103]. We

confirmed this behavior in our system by first running ten different simulations at 50 K

with 10 different random velocity seeds to capture the numerical oscillation of the results,

and monitoring the frequency-space of the system at the same four different temperatures

under the canonical ensemble (NVT), the analysis will ensure the change being beyond the

statistical variations.
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2.2.2 Simulation Conditions

Two distinguished systems of particles were defined, (1) for the characterization of the

Lennard Jones Argon, and (2) to compare the expected characteristics of a wavepacket with

the ones used in the literature neglecting the temperature effects. To achieve a high k -space

resolution, in the analysis system, we chose a 40×40×40 unit cell system in the format of a

primitive structure. We modeled the interatomic interactions with the 6-12 Lennard-Jones

potential. The constants of the potential ϵ and σ are 1.69 × 10−21 J and 3.4 × 10−10 m,

respectively [55], as a result, we calculated the lattice constant at 0 K is 5.2411 Å [105]. The

run process, of the analysis section, is a combination of a 5× 105 timesteps of equilibration

followed by 9.5× 106 timesteps of calculation for every temperature, and, each timestep is

2 fs. Both equilibration and calculations steps are in an NPT ensemble, which allows for

expansion of the system under the thermal stresses. The validation system (Fig. 2.1-b)

dimensions are 2×60×2 unit cells in the format of a cubic structure (not unit cell), and

the potential constants are the same as the analysis system. Simulations in the validation

system are performed for each wavenumber (5 × 105 timesteps, timestep temporal length

of 1 fs) and were all in a microcanonical ensemble (NVE). The temperature dependency

was observed in the validation system by applying an expanded lattice constant for every

temperature under analysis. The approach helped us run the system at 0 K and still be

able to observe the temperature-dependent PDR. The possibility of observing the frequency

space temperature dependence at 0 K provided us the chance to isolate any other possible

reason resulting in a temperature dependent behavior and validate lattice expansion as the

reason for this type of behavior in dielectrics.

To get the averaged lattice constant at each temperature, we ran the validation system

with no extra wavepackets under NPT and the temperature conditions for 5×106 timesteps

and calculated the average lattice constant after the convergence of macrostates. The

calculation of the lattice constant was through the calculation of the average of the atom-

atom distances over the time of simulations.
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2.2.3 Wavepacket Generation and Energy Calculation

We defined the wavepacket as a sinusoidal function in a Gaussian envelope (Fig. 2.2-a).

The Gaussian envelope ensures the smooth decay of the oscillation to avoid unwanted vi-

brations as a result of abrupt spatial changes in atom displacement. We chose the standard

deviation, s of the Gaussian to be ten times the temperature-dependent lattice constant of

argon to get a full-wave for wave numbers as low as 0.1π
a , and the Gaussian is centered

at the center of the validation system by the definition of µ. The oscillatory part of the

displacement function is a simple cosine (Eq. 2.6). The exponential definition of oscilla-

tion introduces an imaginary part that defines the phase of a hypothetical wave, which is

immaterial in the definition of an initial condition,

z(y) = A exp

(
(y − µ)2

2s2

)
cos (yk). (2.6)

We applied the displacement to all the atoms in the validation system as a function of

the atoms positions y, which is the direction containing 60 unit cells.

To calculate the amplitude of the displacement signal, we first need to define the energy

of the wavepacket. We calculated the wavepacket energy using the frequency-based kinetic

energy (Ke) equation. The equation defines the contribution of each angular frequency ω

to the energy as the product of the reduced Planck’s constant and angular frequency, ℏω.

Then the energy in a frequency band (integration between two frequencies) or the total

energy (integration over the whole spectrum of frequencies) of the system is the summation

of energies considering both the DOS and the Bose-Einstein distribution,

Ke =

∫ ωmax

0
g(ω)

ℏω
1− exp( ℏω

kbT
)
dω. (2.7)

Before we apply Eq. 2.7 to the wavepacket energy calculation, we should notice the

effect of a Gaussian envelope in real space on the wave, in frequency space. The standard

deviation (s) in real space translates to 1/s in frequency space, which requires the consid-
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(a) (b)

Fig. 2.2: (a) representation of a displacement wave (b) the displacement wave with inter-
atomic distance marked on it

eration of the effect of the Gaussian envelope in the calculation of the kinetic energy of a

wavepacket. The phenomenon becomes more evident by considering the following,

1√
2πs2

∫ ∞

−∞
e−

x2

2s2 ei2πkxdk = e−2π2s2k2 . (2.8)

The Gaussian distribution in the frequency space (Eq. 2.8) requires us to multiply

the energy of the frequency bins, activated by creating a wavepacket, by the Gaussian

value of the corresponding frequency. The Gaussian in the frequency space is a function

of wavenumber k(ω) and is centered at k′(ω). As a result, the kinetic energy of the entire

system between two frequencies ω1 and ω2, Keω1≤ω′≤ω2 is defined,

Keω1≤ω′≤ω2 =

∫ ω2

ω1

(
es

2(k(ω)−k′(ω′))2

√
2πs2

)

×

(
g(ω)

ℏω
1− exp( ℏω

kbT
)

)
dω. (2.9)

The calculated kinetic energy is the kinetic energy of a frequency band flowing in all

traveling directions and polarizations. We are interested in the energy of a wavepacket

traveling in a specific direction. Eigenvectors of the dynamical matrices are usually used to

define the flow direction of energy, but the eigenvector are not continuous in the frequency

space and we can’t use them in an integration process. As a result, we defined the direc-

tional dependency of the energy flow considering the main crystallographic directions. This
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Fig. 2.3: PDR curve and the DOS of the argon crystal at four different temperatures. For
comparison the PDR computed, using lattice dynamics (LD), is also included

consideration is supported by the Raman spectroscopy data [106]. Correspondingly, we

divide the calculated energy into three sections for each of the three main crystallographic

directions in the FCC argon lattice, weighted by the linear atomic density (LD) in the

structure. We calculated the share of the energy to be 0.47, 0.33, and 0.2 in directions

[110], [100], and [111], respectively.

The polarization affects the calculation based on our observation that the creation of

a wave by transverse displacement results in the generation of longitudinal modes. We

attributed this fact to the creation of a compression field in the crystal in front of a propa-

gating transverse wave. The longitudinal wave has the longitudinal frequency of the same

wavenumber. The observation suggests the need for the addition of the longitudinal energy

modes to our energy calculation. As a result, a wavepacket carries both the energy of the

transverse bandwidth plus the energy of the longitudinal contribution. To calculate the

energy of each branch contributing to the energy carried by a wavepacket, we are required

to divide the energy of a frequency bin, calculated by the Eq. 2.9 by three, if the fre-

quency is less than the maximum frequency of the transverse branch. The same approach
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has been used with the analytical calculation of thermal conductivity and the contribution

of different polarizations [107]. Considering the energy of the frequency band between ω1

and ω2, the directional linear atom density LDD, the division of energy based on polar-

ization, and the contribution of different polarization, we can define the total energy of

a wavepacket Ke(Tot,D). The definition is for two cases, one that with frequencies below

the maximum transverse frequency ωT,max and with the frequencies above the maximum

transverse frequency,

Ke(Tot,D) = LDD

(
1

3
Ke(ω′

T ) +
1

3
Ke(ω′

L)

)
,

{ω′
L(k

′)| 0 ≤ ω′
L(k

′) ≤ ωT,max}

Ke(Tot,D) = LDD

(
1

3
Ke(ω′

T ) +Ke(ω′
L)

)
,

{ω′
L(k

′)| ωT,max ≤ ω′
L(k

′) ≤ ωL,max}. (2.10)

To enforce the kinetic energy on the wavepacket, we calculated the interatomic distance

R (Fig. 2.2-b) based on the Lennard-Jones potential by equating the potential equation to

the value of the potential (Pmax) at the bottom of the potential well minus the calculated

kinetic energy (Eq. 2.9). The difference between the two positive roots is the displacement

magnitude of the atoms from their equilibrium positions. This protocol provides the energy-

based definition of amplitude instead of choosing it as an arbitrary parameter,

Pmax +Ke(Tot,D) =4ϵ

[(σ
r

)12
−
(σ
r

)6]
,

{r|r ≥ 0 ∧ Im(r) ≡0} , R =| r1 − r2 | . (2.11)

Then we use an algorithm that increases the amplitude of the wave in small steps to

get an average of the interatomic distance r equal to the calculated value from Eq. 2.11.

As the perturbation is applied to the z-direction only, there is no change in the interatomic

distance except for the transverse and longitudinal directions along each string of the atoms.

As a result, we have no displacement in the x-direction.
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2.3 Results and Discussion

We used the method developed by Kong [29,30] to generate the wavevector-frequency

structure of the argon crystal (Fig. 2.3). For comparison and validation, we calculated and

added the lattice dynamics based dispersion, the data is created using the GULP package

[108]. We have also compared our result for one temperature with the experimental data [2]

to confirm the data calculated by Kong’s method (Fig. 2.1-c). The comparison show

acceptable match within the statistical limit, which will be discussed below.

The numerical oscillations showed a maximum of ∼7.7 percent change in the results

(Fig. 2.4-a), which is significantly smaller than the pronounced temperature dependence

of frequency under the NPT ensemble. The NVT results also provided intact frequencies

for most of the frequency interval and under all four temperature conditions (Fig. 2.4-b).

We observed slight changes beyond the statistical oscillation in the PDR at high frequen-

cies, which are not lattice constant related and contradictory to our assumption of lattice

constant-dependency of the PDR. Occelli et al. showed the dependency of phonon fre-

quencies on many-body terms in potential functions for argon [109], the many-body terms

are absent in the Lennard-Jones potential used in this work, thus the effect on frequencies

(Fig. 2.4-b). The statistical variations observed at NVT provided the evidence that the

decreasing trend observed in the frequencies as a function of temperature is not the artifact

of statistical variations.

2.3.1 Importance of the Temperature and Energy dependent definition of a

Wavepacket

Based on the presented data we have confidence in the observed temperature depen-

dence in our simulations and its reason being the lattice expansion as suggested by the

existing experimental data [103]. Using the PDR and DOS data we can create wavepackets

and compare the frequency space of the system considering the temperature dependence

and ingnoring it. To structure our validation system with the required temperature induced

lattice constant, we captured the lattice constants after the expansion by relaxing our vali-
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(a) (b)

(c)

Fig. 2.4: (a) Uncertainty in frequency analysis, inset showing a zoomed area of the graph for
more visibility (b) NVT results showing slight difference in frequencies at high frequencies,
the NVT results at 50 K and 30 K are not presented for the clarity of the graph (c) The
comparison between the PDR resulted from a Green’s function approach and experimental
work [2] at 10 K The red circles are experimental and the black triangles are computational
data, respectively

dation system at each temperature. The resulting lattice constants are listed in Table 2.1,

where we have also compared the results with the experimental values [110]. The computed

lattice constants are in good agreement with the experimental work. We see deviations at

higher temperature, which we attribute to the absence of many body terms in the poten-

tial [109], as the terms provide more constraint to the atom motions thus limiting the lattice
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constant at high temperatures.

The wavepacket validation process is performed in the validation system and under the

explained conditions in the Methods section. The simulation results provided the impor-

tance of the consideration of the temperature dependence of the PDR and DOS in defining

a wavepacket. Neglecting this dependence result in frequencies that are not the correct

frequencies in the system (Fig. 2.5, compare the arrows with the dotted lines). The 0 K

frequencies for the same wavevectors are shown on the figure 2.5 the 0 K frequencies are

commonly used in interpreting the results of phonon dynamics simulations. The arrows are

coded with the colors assigned to each temperature. As a result of comparing the location

of the arrows with the targeted frequencies (dashed vertical lines), we notice the increase

in the gap between them with increasing temperature. The observation emphasizes the

importance of the temperature dependence at higher temperatures. We also compare the

expected frequencies from the PDR analysis with what we observed in our wavepacket sim-

ulations. At 10 K the wavenumber (right side of each plot) and the frequencies (left side

of each plot) match the expected values (solid Gaussian for the wavenumbers and dashed

line for frequencies) (Fig. 2.5-a). The matching trend continues for both 30 K and 50 K

except for minimal deviations at the expected frequencies, which we attribute to the un-

certainty in the first method used in this work (Fig. 2.5-b,2.5-c). The 70 K data does not

show deviations, but we observed low peaks at the target frequencies due to large peaks at

low frequencies, which are due to decay to low frequencies. We couldn’t avoid the decay

as the FFT resolution is dependent on the length of the data set, hence the decay was

inevitable (Fig. 2.5-d). At 70 K we observed nonzero spacial frequency values, two to three

Table 2.1: Lattice Constant Values from computational work acomp. and comparison with
the experimental aexp. values.

Temperature Lattice Constant (Å)
acomp.−aexp.

aexp.
× 100 [110]

0 K 5.24
10 K 5.29 0.2%
30 K 5.33 0.2%
50 K 5.39 0.75%
70 K 5.46 0.92%
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(a)

Fig. 2.5: Spatial Fourier validation of of the perturbation (left) and the temporal Fourier
validation (right) for four different frequencies at (a) 10 K (b) 30 K (c) 50 K (d) 70 K.
The arrows are the 0 K frequencies that are commonly used in the interpretation of the
wavepacket simulations. The arrows are color coded with the colors used for each temper-
ature

sigmas away from the expected maximum, which we attribute to the low frequency-space

resolution in the spatial Fourier analysis. The low number of atoms (60) along the y-axis

is the reason for low spatial frequency resolution and can be solved by choosing a more

computationally extensive system. Nevertheless, we were able to target a frequency with a

specific wavevector and show the importance of the temperature dependent definition of a
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Fig. 2.6: Energy oscillation of the simulation (the shaded area) compared to the energy
calculated for each temperature calculated based on the quantum particle picture of the
problem (black hexagons) at (a) 10 K (b) 30 K (c) 50 K (d) 70 K

wavepacket.
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2.3.2 Frequency Based Validation of MD Simulations

MD simulations do not represent the quantum particle character of phonons due to their

classic nature and the miss representation is pronounced more at temperatures well below

the Debye temperature, where the quantum effects dominate [111, 112] and the classical

MD can over predict the frequency contribution to the specific heat. The quantum effects

specifically for an argon crystal of particles are mentioned heuristically to be important in a

range between one tenth [111] to a quarter of the Debye temperature [113]. The wavepacket

method as a frequency specified method and with the additional energy details provided us

the chance to do a frequency-based assessment of MD simulations and develop a frequency-

based measure to evaluate the reliability of MD simulations with respect to temperature.

As a result, we monitored the oscillation of the total kinetic energy (shaded region in Fig.

2.6) in the simulation and compared the results with the calculated (expected) energy (Eq.

2.9-2.10) for all four frequencies and all four temperature data points (Fig. 2.6). At 10 K,

we observed the first four frequencies (0.2, 0.4, 0.6, and 0.8 THz) lie within the trend of

oscillations of the MD-calculated kinetic energy (Fig. 2.6(a)). The last data point falls out of

the MD oscillation band due to the over prediction of the contribution of the frequency at 10

K (Fig. 2.3). The data shows that the kinetic energy calculated by the MD code is reliable

at temperatures as low as one eighth of the Debye temperature of solid argon [110, 114],

and up to the frequency of 1 THz. This observation is a more exact reliability limit for MD

simulations in comparison with the previous ones [111, 113]. At 30 K, 50 K , and 70 K we

observed that the expected data points follow the trend of the MD oscillations. The decline

in the 1 THz point for 70 K does not refute the energy definition of MD at 70 K, yet still

illustrates the importance of the DOS in the definition of the the kinetic energy, which is

an important concern at low temperatures.

The quantum definition of the energy used in this work can not be represented with

MD simulations. Consequently, we find the expected value of the energy on the bottom

of the energy oscillation at high frequencies of low temperatures and the fact is due to

the consideration of the density of states in the calculations. The observation matches



42

the calculation much better at high temperatures, where the calculated energy is near the

maximum of oscillations. We expected the midpoint of the oscillation to match the quantum

particle-based energy calculation, as the calculated energy was added to the system with an

algorithm setting the average of atomic displacement to the calculated value. As a result,

the MD simulations can be a close estimate of a dielectric material even at low temperatures

for low frequencies and at high frequencies of high temperature where the DOS has a rapid

decrease behavior the MD energy loses the quantum energy trend but its oscillation still

enfolds the quantum value.

It is also necessary to address the current concerns about the acoustic wave picture of

phonons. Henry and Seyf proposed a new definition, as an extension to the concept defined

by Allan and Feldman [115], of lattice vibration with the existence of impurities in materials

and raised concerns about the limit of the acoustic wave assumptions of phonon behavior

[116]. Although the phonon dynamics provides valuable results, the concern brings questions

about the limits, in which this method can provide reliable results. Considering the nature

of this work, which is evaluating the dynamics of phonons within a pure crystalline material,

this method distances itself from this criticism.

2.4 Conclusion

In this work we introduced an extension to the phonon dynamics method. The method

has always been used disregarding the temperature dependent PDR and DOS, under which

the wavepacket is evolving and the amount of energy a wavepacket carries. We utilized a

Green function based approach to capture the temperature dependency of the PDR and the

DOS and compared wavepackets in two cases, one that neglects the temperature dependency

and uses the Lattice Dynamics (0 K) results and cases in which the temperature dependency

is considered. The difference in the frequency space of a system considering the temperature

dependence and the one using 0 K results was shown and we discovered that its importance

increases at higher temperatures, making the consideration more important. Consideration

of the temperature dependent PDR and DOS enabled the definition of the wavepacket

amplitude as a parameter that specifies the amount of energy a wavepacket carries. As
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a result, we improved the phonon dynamics method that considers the amplitude of the

wave as an arbitrary parameter with considering the amplitude as a tuning knob of the

energy. Finally, we were able to use the method to improve a heuristic rule for the validity

of MD simulations considering their classical nature and provide a quantitative measure

in frequency space for the matter. The result of the last piece of our work on one hand

provided that at high temperatures although the MD simulations under a thermostated and

equilibrated condition are able to reproduce the correct DOS, are unable to do so with a

frequency band in an expanded system to the lattice constant of high temperatures, as a

result the lost of the energy trend at high frequencies at high temperatures. On the other

hand, despite the common belief that at low temperatures the MD simulations are not able

to provide acceptable results in comparison with the quantum picture of vibrations, it still

provides reliable results at temperatures as low as the one eight of the Debye temperature

and up to 1 THz in the argon case.
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CHAPTER 3

TEMPERATURE INDUCED RANDOMNESS IN CRYSTALLINE DIELECTRICS

3.1 Introduction

The difference in the temperature dependence of thermal conductivity in crystalline and

amorphous materials has initiated research efforts to understand this phenomenon [65,66].

These efforts resulted in a diverse taxonomy in defining vibrational behavior and scattering

events of amorphous materials. The three main modes of vibrations defined for amorphous

materials are Propagons (P)(propagating modes), Diffusons (D), i.e., vibrational modes with

no defined wave vector but having energy transport capabilities, and Locons (L) that are

local modes with high local magnitudes and low contribution to thermal conductivity [67].

The frequency transition limits from one regime to the other are defined as Ioffe-Regel

and the mobility edge. The former is the frequency border between P-D and the later

is the border between D-L [67] and has its roots in the concept of electron localization

[68]. Although the need for such classification of modes was disputed by some authors

experimentally [69], the classification resulted in the definition of thermal properties for

each class of vibrations and resulted in an improved estimate of the thermal conductivity for

amorphous silicon [70,71]. Less commonly used modes are floppy modes that are temporally

and spatially trapped modes [67] and Resonant modes that are spatially non-exponentially

decaying modes [70] These modes are mainly used to define and explain computational

results that are a subject of size effects.

Along with the classifications of types of vibrations, defining types of scattering with

respect to frequency is another approach to find explanation for the odd temperature be-

havior of the thermal conductivity in amorphous materials. Kittel scattering defines the

frequency independence of scattering on a scale that the mean free path is lower than the

atomic distance [65]. Klemens scattering defines the scattering resulting from transverse



45

and longitudinal modes’ interactions through the anharmonic terms of the interatomic po-

tentials or interaction with local modes [66]. Moreover, the most historically used scattering

classification [117] is a Mean Free Path or lifetime vs. frequency classification. For example

ω−2, ω−1 are the behaviors defining the lifetime vs. frequency data in the low frequency

regime, and ω−4 (Rayleigh Scattering), ω−3 explains the scattering events in the mid-range

frequency interval [73]. These regimes were observed in both experimental [69, 74] and

computational [67] works.

On the one hand, the science associated with this terminology has opened the avenue to

phonon engineering [75] and it creates the motivation to seek its application for crystalline

materials. On the other hand, approaches such as random matrix theory has been used to

model amorphous materials and they provided the chance to model amorphous materials

beyond the capabilities of Molecular Dynamics [118]. If resemblance between the dynamics

of amorphous material and crystalline is found under specific conditions the random matrix

theory provides the path to achieve larger simulations for crystalline materials. In addition,

the affect of the statistical character of heat source on thermal conductivity and the property

being a heat source dependent property [76], and the possible break down of phonon gas

model at high temperatures [78] provide the evidence for temperature dependent character

of the dynamics of vibrations and possible deviation of crystalline systems from a wave-

particle picture, respectively. The mentioned behaviors are due to constraints enforced on

the system by temperature dependent statistics of vibrations, interactions of vibrations,

and anharmonicity effects, or all the mentioned effects. As a result, I borrow tools and

the terminology from the analysis of thermal properties in amorphous material to analyze

the possibility of their use to characterize the behavior of crystalline materials at high

temperatures.

To set up our line of logic, I first used the method I developed in our previous work

to eliminate the effect of other modes in a system and study the decay of a bandwidth of

frequencies in a system under their anharmonic nature of vibrations [119]. This allows us

to explore the absence of any additional parameters in the decay of modes and study the
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vibrations in a simpler setup. Next, I explore the effect of random perturbations on the

interatomic forces on crystalline materials at different temperatures. This approach will

model the spatial randomness in amorphous materials with an added random term to the

potential modeling the interatomic interactions for a crystalline material. The approach

allows the comparison of a crystalline material’s thermal conductivity, as a measure of com-

parison between the dynamics of the two system one, under conventional and conventional

with randomness (CR). It is also the opposite of what I explore first with removing the

effect of any possible randomness caused by other modes. Using the mentioned approach,

I target exploring the physics of vibrations in crystalline dielectrics by studding the two

extremes in terms of having random motions in a system of particles and comparing them

with each other and with a system under conventional potential. Then I expand our anal-

ysis and explore the possibility of observing amorphous materials’ vibrational features in

systems under conventional and a system under a potential, having a deeper potential well,

at different temperatures. As a result, I first explain the methods to support this line of

logic; then, I discuss our results to find a connection between the dynamics of amorphous

materials and crystalline materials at high temperatures.

3.2 Methods

This section explains the methods used and the logic for choosing these methods. For

our analysis, an argon system is simulated under a Lennard-Jones two-body potential inter-

action. The effect of adding random perturbation to the interatomic potential on our system

of particles’ thermal conductivity is explored. In other words, I will run simulations using

conventional potential and a conventional potential with randomness (CR).The thermal con-

ductivity is measured using two well-established methods, Greenwood-Kubo [51,52,120,121]

and Normal Mode Decomposition (NMD) [122]. This analysis will inspect the possibility

of having spatially localized modes in a crystalline system of particles at different tem-

peratures. I also examine the possibility of observing vibrational features in amorphous

materials in a crystalline system using the dynamical structure factor (DSF) (Fig. 3.1).The

DSF (Spatial Energy Density [123, 124]) is a powerful tool to examine the existence of
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Fig. 3.1: DSF of systems at temperatures 10 K-70 K under the conventional and the CR
potential.

Diffusons [125] that are localized modes contributing to the thermal conductivity of the

material unlike Locons. The DSF also measures the spatial coherence of vibrations [123].

The special coherence of a vibrational mode is a measure of spatial extent of a vibration

and is a measure of having localized modes (Diffusons and Locons) in the system.

3.2.1 Simulation Conditions

I performed our simulations using LAMMPS [101], which is a Molecular Dynamics pack-

age. Our simulations were on a system of argon with 64000 atoms in a tetrahedral box that

was propagated along the primitive vectors of the argon FCC unit cell. The structure of

the box and propagation of atoms makes the calculation of DSF and normal modes easier

because of having one atom per unit cell with this structure. I performed two sets of sim-

ulations at each temperature. One, to get the temperature dependent eigenvectors of the

equations of motion, using a method developed by Kong [29, 30]. The other set of simula-

tions generate the trajectory data required for the calculation of thermal conductivity and

the vibrational characterization as a post-processing step.
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I performed the first set of simulations for 107 timesteps with the timestep length of 2

fs. To gather the data and calculate the dynamical matrices, I equilibrated the system for

5×105 timesteps and calculated the averaged dynamical matrices every 5×104 timesteps up

to the end of the simulations. The calculation of the dynamical matrix is performed using the

fix-phonon command. The second set of simulations were performed for 5× 106 timesteps

for the conventional potential and 6 × 106 timesteps for cases with the CR potential; all

simulations in the second set used the 1 fs timestep length. Simulations in the second set

under the conventional potential were equilibrated for 3× 106 timesteps under isothermal-

isobaric (NPT) ensemble followed by 2 × 106 timesteps under canonical ensemble (NVT).

I added an extra equilibration section under the microcanonical ensemble (NVE) to the

CR potential cases, with the length 1 × 106 steps. The data collection for NMD and DSF

analysis was done every 10 fs, for 6 × 104 timesteps, and the Green Kubo (GK) analysis

data collections were every 50 fs, and 6× 106 timesteps. All data collections were executed

under the microcanonical ensemble (NVE).

The interatomic potential used in all simulations was the Lennard-Jones with param-

eters [55] ϵ = 1.69 × 10−21 J and σ = 3.4 × 10−10 m. The cutoff distance was set to 2.6σ.

I used the fix-Langevin command to apply the Brownian Dynamics to the potential with

random numbers drawn from a uniform distribution to thermostat the temperature [126].

This command simulates the system as if a solvent was present in the system, and the atoms

were scattered at every interaction with the solvent atoms. The nature of the system under

Brownian Dynamics makes it a proper candidate to observe the effect of random dynamics

in a system. The application of Langevin Dynamics in LAMMPS doesn’t provide the chance to

tune the amount of randomness added to the dynamics as it is implemented as a thermostat

and targets the set temperature, this option is enabled through methods such as random

matrix theory [118] but one must compile a self-written code for the purpose.
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3.2.2 Thermal Conductivity

The Green Kubo (GK) method is a ubiquitous method of calculating the thermal con-

ductivity and multiple other transport properties of solids and liquids, the GK method

uses the statistics of vibrations and correlates the vibrations’ statistics to different trans-

port properties [51, 52, 120, 121]. The statistical approach to develop the GK method was

adopted to develop other thermal conductivity calculations [127]. The analysis is based on

calculating the heat current J as a function of volume V , per-atom energy (kinetic plus po-

tential) Ei, and the per-atom stress Si, which is calculated at every time step to observe the

oscillations. Then the thermal conductivity (K) is calculated by monitoring the correlation

of these oscillations along each direction (α and β) at each temperature (T ),

J =
1

V

[∑
i

Eivi −
∑
i

Sivi

]

K =
V

KbT

∫ ∞

0
⟨Jα(0) · Jβ(t)⟩dt. (3.1)

The GK method has been used to calculate the thermal conductivity of materials both in

liquid [128] and solid phases. However, the lack of frequency-frequency contribution analysis

motivated the development of techniques such as GK Modal Analysis that was tested for

alloys, interfaces, and crystalline bulk materials [82]. Although the GK method is useful

for all material phases, it can suffer from the cutoff frequency limitations on capturing a

complete picture of vibrations in a simulation,as a result showing some size dependence,

which is yet still less than other available method [73].

The other method that has the frequency-based analysis is the Normal Mode Decom-

position (NMD) method. The method has its roots in the classical mechanics and deriving

the normal coordinates of vibrations [129] to capture the modes vibration, in which all the

atoms oscillate with the same frequency. This makes the method incapable of measuring

the contribution of Diffusons in the thermal conductivity. This method was first utilized

by Kavyani and McGaughey [112] to derive the modal lifetimes. However, the method is

proven to be incapable of defining the oscillations at high temperatures due to its inability
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to define vibrations at the atomic spacing scale [112]. It has provided reliable results at low

and medium temperatures and was successfully compared with other methods [130] within

the temperature range. The method is based on capturing the normal mode coordinates

(q(k, ν, t)) as a function of wave vector(k), branch (ν), and time (t) and their time derivative

(q̇(k, ν, t)).

q(k, ν, t) =
∑
bl

exp(ik · r0)e∗b(k, ν)u(l, b, t)

q̇(k, ν, t) =
∑
bl

exp(ik · r0)e∗b(k, ν)u̇(l, b, t), (3.2)

where the summation is over the displacement (u) or the velocity (u̇) of each atom (b)

in each unit cell (l), and eb is the eigenvector of the equations of motion eigenproblem,

resulting from either lattice dynamics or MD-based methods [29,30].

Now having the normal coordinates, I can calculate the per mode per timestep kinetic

(T ) and potential (U) energies and the autocorrelation of the total modal energy (E) will

provide the lifetime τ , through the fit of the autocorrelation with an exponential decay

function,

U(k, ν, t) =
1

2
ω2(k, ν)q∗(k, ν, t)q(k, ν, t)

T (k, ν, t) =
1

2
q̇∗(k, ν, t)q̇(k, ν, t)

E(k, ν, t) = U(k, ν, t) + T (k, ν, t)

exp

(
−t

τ(k, ν)

)
=

⟨E(k, ν, t) · E(k, ν, )⟩
⟨E(k, ν, 0) · E(k, ν, )⟩

. (3.3)

By performing the quantum correction at the frequency level [131] on the specific heat

(C) to correctly capture the low-temperature behavior of the thermal conductivity [73],

I can calculate the thermal conductivity using the equation for frequency-based thermal
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conductivity [132].

C(ω) =
kbx

2exp(x)

[exp(x)− 1]2
, x =

h̄ω

kbT

k =
1

3

∫ ωmax

0
τ(ω)v2(ω)C(ω)DOS(ω)dω, (3.4)

where v and DOS are the frequency-based group velocity, which is the derivative of the

dispersion relation, and Density of States, which is the result of the solution to the dynamical

matrix, respectively.

These two methods are easy to apply and can capture the full anharmonicity of vi-

brations with less computational expense compared to other methods such as Anharmonic

Lattice Dynamics [122]. It is essential to mention that these methods in their classical

format are not suitable for measuring thermal conductivity in amorphous materials [67].

Other methods were developed to cover both areas [133], alongside less popular methods

such as the perturbed MD method [134] but these methods are beyond the scope of this

paper. Considering the easiness of application, strengths of the first two methods, and their

weaknesses, I decided to simultaneously perform both methods to create a better and more

comprehensive measure of the effect randomness has on the thermal conductivity.

The uncertainty analysis is an important part of any property calculation. The un-

certainty analysis of the NMD Method is through the lifetime calculation and the expo-

nential fit’s covariance matrix. I performed the Monte Carlo uncertainty propagation al-

gorithm [135] to propagate the exponential fit’s uncertainty and get the uncertainty of the

calculated thermal conductivity. The uncertainty analysis of the GK method is commonly

calculated through a power mean formula to get the overall deviation of different ensembles

from their arithmetic mean [73]. Ruan et al. offered a more statistically involved calcula-

tion [136], they found a linear relation between the correlation time (tcorr), integration time

(tint), average thermal conductivity and the its uncertainty (σk), (tint/tcorr) ∝ (σk/kavg). I

can not use their equation as they did not consider the Brownian Dynamics in their analysis.

However, I adopted their suggestion with choosing long correlation and small integration
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time ((tint/tcorr) = 1/80); I also performed ten different simulations with ten different ran-

dom seeds for each temperature with a specific potential condition (CR or Conventional)

for ensemble averaging (Fig.3.4).

3.2.3 Vibrational Characterization

To measure the spatial disorder in vibrations, and explore the existence of local modes

I use the DSF method. This method is defined as the energy per frequency per wave vector,

also called Spectral Energy Density [124]. The DSF is proven analytically to be equal to

the Static Structure Factor that takes advantage of the eigenvectors and requires a Lattice

Dynamics Calculation beforehand [137]. The method was used to derive the dispersion

relation of complex systems [124]. More importantly and related to our work, it was used

to define the Ioffe-Regel limit, which is the P-D transition location [125,138,139], and was

used to characterize complex systems as amorphous systems [140,141].

I am using the DSF instead of the Static structure factor for two reasons. First, to

capture the Brownian dynamics, and second to skip a step of calculation and finding the

eigenvectors of vibrations, which is computationally very expensive for 64000 atoms. The

DSF is based on taking the spatial and temporal Fourier Transform of vibrations. It results

in a Lorentzian type of decay at each wave vector vs. frequency, which characterizes the

lifetime of the mode [130], and another Lorenzian behavior of wave vector at each frequency

that characterizes the spatial coherence [123]. The temporal Fourier transform is taken over

the simulation time (tsim), and the spatial is taken over the k-mesh in the reciprocal space.

The equation for a system of particles containing N atoms of one kind with the mass m is

as follows,

S(k, ω) =
m

4πNtsim

∑
α

∣∣∣∣∣∣
∫ tsim

0

N∑
nx,ny ,xz

u̇α(t) exp(ik · r0 − iωt)dt

∣∣∣∣∣∣
2

.
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3.3 Results and Discussion

Using the methods I presented in my previous work [119] I evaluated the lifetime of

a frequency-band for two different conditions. One, without any other frequencies in the

system, two with a close to zero kelvin thermostat (Fig.3.2). The results show no decay for

the simulation with no thermostating (black plot) showing that although the oscillations are

set to an interatomic distance that activates the anharmonic behavior, the vibrations do not

decay. The decay value is not calculated as the autocorrelation function shows a negligible

exponential decay. Comparing the results of the single frequency (red plot) system with

the thermostated system show that even after 2 ns the single frequency-band system show

no decay but the addition of close to zero thermostat creates a decaying behavior. The

observation suggests either the no decay behavior is due to the lack of other modes and due

to a random dynamics induced by the existence of temperature in the system.

Fig. 3.2: Autocorrelation decay calculated using NMD method for a system under presence
of a single frequency mode and thermostated at a temperature close to zero

The results of the thermal conductivity calculation is presented in the Fig. 3.3. The

values are at four different temperatures 10 K, 30 K, 50 K, and 70 K, and at each temper-
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Fig. 3.3: A comparison between thermal conductivity values calculated with NMD and GK,
under conventional and CR potential, and the experimental values[Thermal conductivity of
solid argon] at four different temperatures 10 K, 30 K, 50 K, and 70 K. The x-axis values
are shifted by 1K for every temperature for better visibility

ature I shifted the results by 1K for better readability. In general all the data points follow

the trend observed in the experimental values [142] except for the NMD under CR potential

(black hollow down-pointing triangles). Despite the mentioned match in trend, the non-

Langevin simulations (red markers) are more comparable with the experiment, although

they fall out of the uncertainty band of the experimental values (green pentagons) and the

maximum deviation of the corresponding calculations is 55% of the experimental value.

The mentioned deviation is expected for these types of calculations and higher values up to

80% was also reported [73]. One might argue that the uncertainty bands should cover the

deviation, but that requires the knowledge of biased uncertainty due to the potential used

and knowing in general how far the estimation created by MD is from reality. The reported

uncertainty for every data point is based on the consideration of the random uncertainty

inherited in the computational approaches used [135].
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Comparison between the GK values obtained under conventional (red up-pointing tri-

angles) and CR (black up-pointing triangles) potential revealed consistent higher values of

thermal conductivity at all four temperatures for the system under CR potential, the obser-

vation is due to the nature of GK method that is calculating the material’s conductivity in

terms of the time correlation of oscillations. As a result, I believe the fix-langevin used

for the application of the Brownian dynamics applies oscillations as perturbations with high

temporal correlation that adds to the final calculated thermal conductivity. The temporal

correlation is becomes clearer by observing higher standard deviation in the simulations

using CR potential, which is due to high correlated perturbations affecting the trajectories

over a certain period of simulation and changing after a period of time (Fig.3.4). In our

uncertainty analysis I looked at the correlation over a long period of time and moved the

correlation window, this was able to capture the high correlation in sections of the heat flux

signal, but the correlation character is changing from one correlation window to another

causing the high standard deviation of the GK results.

Fig. 3.4: Uncertainty analysis of the Green-Kubo method using 3000 data points derived
from ten different ensembles and 100 different trajectories, kx, ky, and kz are considered
equal due to the isotropy of the thermal conductivity in argon[20]
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The difference between the conventional and CR potential results are not as pronounced

for the NMD calculations (down-pointing triangles) except for the 10 K results. At 10 K the

application of the CR potential increases the scattering events as a result, the thermal con-

ductivity is lower for the CR NMD data point (black down-pointing triangle) compared to

the NMD under the conventional potential (red down-pointing triangle). I observed almost

no difference at high temperatures and I attribute it to the nature of the NMD analysis.

NMD is a harmonic analysis based method that analyzes the vibrations in terms of the

superposition of single harmonic motions up to the maximum Debye frequency as a result,

being less affected by the high frequency vibrations added by the Brownian dynamics. The

addition of high frequencies is clear in the difference between GK (up-pointing triangles)

and NMD results (down-pointing triangles) at high temperatures. This is due to the statis-

tical nature of the GK analysis and its capability of capturing the dynamics of vibrations

irrespective of their collective of local nature. It is also observable in the scattered frequen-

cies in the DSF analysis and the addition of high frequencies around the mean (Fig. 3.1).

Considering all the discussed results so far I have not observed an evidence suggesting the

same thermal properties for both conventional and CR potential at each simulated tem-

perature that is not explainable by the characteristics of the methods used. However, an

equal thermal property for cases under the conventional and the CR potential is a piece of

evidence that would suggest similarity in the physics of systems under the conventional and

the CR potential.

The NMD method is based on the calculations of the modal lifetimes and the data is

another measure of finding similarities between the dynamics of crystalline and amorphous

materials in their frequency space (Fig.3.5). The comparison of 10 K data (Fig.3.5 a and e)

shows a higher number of scattering events in the CR potential case, as I see smaller life-

times in the frequency range in the case under CR potential compared to the conventional

at 10 K. With increasing temperature, lifetimes decrease but the decrease is pronounced

more at higher frequencies (a steeper lifetime vs frequency scaling). This claim is clearer

comparing 30 K and 50 K data for both cases under conventional and CR potentials (Fig.3.5
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Fig. 3.5: Lifetime of modes travelling in the [100] direction. The top row is showing
results under the conventional potential and at four different temperature (left to right
10k,30k,50k,70k), The bottom row is showing the results for the same temperatures but for
a CR system. The solid black line is the Ioffe-Regel limit of frequency and lifetime.

b,c and f,g). In general the application of the CR potential flattens the lifetime behaviour

in the low and medium frequency range for temperatures in the range of 30-70 K (Fig.3.5

f, g, and h) and in the mid/high frequency range at 10 K (Fig.3.5 h). This is the behavior

that is described by Kittel scattering [65] and was observed at high frequencies in exper-

imental works [69], this comparison with works on amorphous materials illustrates that

the application of CR potential is a good choice to model random dynamics in crystalline

materials. The observation of this type of scattering is due to the high frequencies added by

fix-langevin and is affecting all modes from low to high frequencies. This affect on a wide

range of frequencies is not comparable to the dynamics of amorphous materials. I also put

the ω−2 and ω−4 scales observed for the propagating modes in amorphous materials [69,73]

on the lifetime graph (Fig.3.5). By visually inspecting the data the ω−2 scale is comparable

with the low frequency behavior of 30-70 K under the conventional potential (Fig.3.5 b,

c, and d), the behavior has been observed in other works on Lennard-Jones crystals [130].

One might argue that the Rayleigh scales should be more observable in the cases under the
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CR potential as the potential is simulating the randomness, but the vibrational modes are

scattered by events that are dominated by high frequency modes added with the Brownian

Dynamics. As a result, the Kittel scatting is dominating the cases with CR potential.

Fig. 3.6: Spectral Free Path comparison of cases under conventional and CR potential at
temperature from 10 K-70 K, the dashed line is indicating the equilibrium lattice constant
at the indicated temperature. The calculation is based on Λω = τωvω, in which the mode
velocity (vω) is calculated as the derivative of the polynomial fitted to the dispersion relation
curve. The graphs are (a), (b), (c), and (d) related to temperatures 10-70 K, respectively.

The main character of vibrations in amorphous materials is the existence of non-

propagating modes (Diffusons and Locons) that are limited to the atomic separations dis-

tances, meaning that the vibrational mode will not travel beyond a distance larger than the

smallest atomic spacing. To check this I plotted the spectral free path (Fig.3.6). As a re-

sult, I found that starting at 30 K have free paths smaller than the lattice constant and the

trend is consistent for 50 K and 70 K simulations. It is also interesting to observe almost

no difference between the Λω values of modes simulated under conventional and the CR

potential at temperatures 50 K and 70 K supporting the almost no difference observation

in the NMD thermal conductivity results of conventional and CR potential. Despite the
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failure in showing comparable result in the thermal conductivity of crystalline and amor-

phous materials, So far I have observed lifeitmes below the Ioffe-Regel limit (Solid black

line in Fig. 3.5) at high temperatures in the lifetime analysis, and below the atomic spacing

extent of travel for modes at temperatures above half of Debye temperature of argon. These

observations lead us to the next step of our analysis.

Observing the evidence for possible existence of non-propagating modes mandates the

search for the known vibrational modes of amorphous structures known as Diffusons. To

discover the existence of Diffusons in our systems I used the dynamical structure factor

(DSF), which is proven to be equal to the structure factor analysis [137]. The Static

Structure factor analysis is a two-step method and the derivation of eigenvectors is the first,

and the main calculation is the second step. I used the DSF to target lower uncertainty

due to less computational work involved and to capture the full picture of the dynamics.

The DSF is not limited to the analysis of understanding vibrations as harmonic oscillators,

involved in the structure factor analysis through the eigenvector calculation. As a result, it is

able to capture the Brownian Dynamics applied to the simulations under the CR potential.

In the literature the DSF is used to provide the dispersion relation of materials using a

spatial and temporal Fourier Transform of the vibrations [138, 139], and the broadening

of the branches in the DSF is the evidence of the existence of Diffusons in the simulation

[125,139].

As presented in Figure 3.1, DSF provides clear evidence for the existence of Diffusons

with increasing temperature specifically at temperatures of 30 K, 50 K, and 70 K. This

section of the results, in addition to the free paths being lower than the lattice constant

(Fig.3.6 b, c, and d), and the observed low lifetimes in comparison with the Ioffe-Regel limit

(Fig.3.5 b, c and d), are evidence of the fact that the frequency-space behavior of crystalline

materials, at high temperatures, is comparable to the frequency space of the amorphous

materials. In other words, the spatial disorder in amorphous materials is comparable to the

temporal and spatial disorder of vibrations in crystalline materials at high temperatures.

It is also understood from the DSF comparison of the CR cases with the corresponding
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Fig. 3.7: Spatial coherence calculations for two temperatures 10 K and 70 K. The dotted
line is indicating the lattice constant of the argon crystal.

cases under the conventional potential that the applied randomness to the system through

Brownian dynamics is an overestimation of the amount of randomness in a system. In

addition, tunable randomness [118] in a system of particles could better resemble a system

under conventional potential.

I claimed the existence of the spatial disorder in other words, spatial discontinuity of

waves in a time instant, in addition to the temporal broadening observed in the DSF graphs.

The broadening of DSF at each frequency fitted to a Lorentzian function provides the spatial

coherence of each frequency [123]. Using this approach, I calculated the spatial coherence

for two temperatures 10 K and 70 K (Fig. 3.7). This data provides clear evidence for

the reduction of coherence, which is intuitive considering the increase of scattering events.

The most important point is the reduction of coherence length to values below the lattice

constant. this is another approach to show the existence of non-propagating modes at high

temperatures. As a result, a proof of and temporal disorder of vibrations in crystalline

systems at high temperatures.
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Fig. 3.8: Spatial coherence calculations for two temperatures 70 K and 700 K. The dotted
line is indicating the lattice constant of the argon crystal.

In addition, I evaluated the effect of change in the depth of the interatomic potential

well to explore the possibility of observation of such temperature dependent localization for a

hypothetical material having a stronger potential. To make a fair comparison I increased the

strength of the Lennard-Jones potential by ten times and observed the melting temperature

increase from 90 K to 900 K. As a result, I compared the special coherence of modes in a

system at 70 K that has the conventional potential strength with another system at 700 K,

which had a potential ten times stronger than the conventional Lennard-Jones potential.

The results (Fig.3.8) clearly show by in the hypothetical system with a stronger potential

the localized modes disappear. As a result, the temperature induced local modes are a

function of potential and might not happen in a stiff system of particles.

To clarify the outcome of the last pieces of evidence provided here I summarize them

by observing the break of temporal coherence due to spectral free paths below the lattice

constant and the broadening of the DSF. I have also observed the break of spatial coherence

based on the observation of coherence lengths below the lattice constant. The observations

are a potential-dependent phenomenon and in Fig. 3.8 I shoId by increasing the strength of
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the potential the local incoherent modes disappear. In general the dynamics of disorder is

observed in crystalline material at high temperatures, which was almost half of the Debye

temperature for argon, and the local modes are absent in a hypothetical material with a

strong potential. The last piece of our observation is showing that the phenomenon is a

potential dependent one.

3.4 Conclusion

I evaluated the possibility of comparing the dynamics of vibrations of crystalline ma-

terials with the amorphous. The reason for our comparison is to evaluate the possibility

of using methods such as random matrix theory to model crystalline materials as these

methods have been used to model systems with number of particles beyond the current

capabilities of Molecular Dynamics simulations. I ran two types of simulations one under

a condition, in which most modes were absent and the other with extra randomness in the

system and compared the cases with a conventionally thermostated system. The results

shoId a temperature dependent behavior and at high temperatures the dynamics of crys-

talline materials are comparable with the dynamics of amorphous. The presented result

are potential dependent. A hypothetical material with ten times the strength of the argon

system under study shoId no modes having coherence length below the lattice spacing, this

observation shows the potential dependence of the phenomenon. As a result, I observed

evidence for the dynamics of vibrations in amorphous materials being comparable with the

dynamics of crystalline material at temperatures as high as half of the Debye temperature

for the argon system. This provide evidence for the application of modeling approaches

such as random matrix theory to crystalline materials to extend the capability of modeling

in crystalline materials beyond the time and size limit of Molecular dynamics simulations.



63

CHAPTER 4

ATOMISTIC MODELING OF THE MICRON-SCALE PROPAGATION LENGTHS IN

AMORPHOUS SILICON

4.1 Introduction

The desire to achieve smaller junction size and have more computational power resulted

in the generation larger amounts of heat in an smaller volume as a result, larger larger

volumetric heat generation. The trend initiated research attempts to understand the heat

transport phenomenon in the non-diffusive transport regime [143, 144]. Non-diffusive heat

transport is the regime of energy transport through a thermal gradient, when the length

scale of the system is below the Mean Free Path (MFP) of the phonons. This reduction of

the length scale leads to the reduction of thermal conductivity as the boundary scattering

of phonons become the dominant scattering mechanism in the system [145]. The reduction

of thermal conductivity is of interest in some applications such as, thermoelectrics [134,

146–149], however this is not desired in most application, such as research and design in

the semiconductor industries [150,151].

The aforementioned applications mandates the analysis and measurements of the phonon

MFP. As a result, multiple computational and experimental approaches have been devel-

oped and used to serve the goal of reducing (e.g Thermoelectrics) or increasing (e.g. semi-

conductor industry) the thermal conductivity through characterizing the materials’ thermal

properties. The experimental approaches range from thin film measurement techniques such

as 3ω [74, 152, 153] to more precise optical techniques as, time domain thermoreflectance

(TDTR) [154], transient thermal grating (TTG) [155], and broadband frequency domain

thermoreflectance (BB-FDTR) [156]. The experimental approaches provide indirect ac-

cess to MFP information through a property called the thermal conductivity accumulation

function, which is accessible through the experimental measurement of the thermal conduc-
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tivity [157]. Computational approaches can provide a clear path to the calculation of MFP,

providing direct access to the modal lifetimes [158].

The importance of MFP and micron scale calculated/measured MFPs in amorphous

silicon (a-Si), which makes it different from the majority of glasses [159], is the motivation of

multiple computational [4] and experimental works [160]. The rapid increase of the thermal

conductivity accumulation function in a-Si suggests a scattering scaling greater than ω−2

in MFP or lifetimes. The observation of ω−4 scaling in MFPs indicates elastic scattering

and is coincident with the Rayleigh law of sound attenuation [161], while the observation

of ω−2 scaling is evidence of anharmonic scattering [162]. The scaling not only provides

insight into the physics of the system, which serves the goal of understanding the MFPs of

materials, but also is required for thermal conductivity models such as the Debye dispersion

and power law of scattering [163].

The computational approaches, as mentioned in the previous paragraph, provide a

clear path to MFPs without dealing with the convolutions of mapping experimental values

of thermal conductivity to the thermal conductivity accumulation function, pertinent to the

experimental approaches [164]. The computational works on silicon lack a wide MFP spec-

trum of analysis, covering low to high frequencies [4,139]. As a result, I explore this gap and

expand the computational works by employing a larger system, and a new frequency analy-

sis approach called dynamical structure factor to understanding the dynamics of amorphous

silicon system under two established potentials, Tersoff and Stillinger-Weber [165, 166]. I

also examine the possibility of tiling a system along one of the axes to access lower frequen-

cies.

I structure the paper as follows; first, I explain the simulation procedure, the procedure

to perform the dynamical structure factor analysis, the fitting procedure that is used to

extract the lifetimes, followed by the hybrid approach to obtain the MFPs in the methods

section. I analyze the obtained computational data and compare them to the existing

experimental data in the discussion section to paint the picture explaining the physics of

scattering in an amorphous silicon system of particles.
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4.2 Methods

Our methods are categorized in three groups, structural analysis, the procedure to

perform the Molecular Dynamics (MD) and lattice dynamics simulations, and the post-

processing procedure to calculate the Mean Free Paths named in this paper as spectral

free paths. I will also use Ill established methods such as the Green-Kubo (GK) thermal

conductivity calculation [51,52,120,121,167], and the Non-Equilibrium Molecular Dynam-

ics (NEMD) calculation of thermal conductivity [168] to support our results that are not

discussed in detail.

4.2.1 Structural Analysis and MD simulations procedure

I performed our simulations in a 100k atoms system of particles created by the WWW

algorithm, which was developed by F. Wooten, K. Winer, and D. Weaire and named re-

spectively [140]. This algorithm was modified further by Normand et. al. [141]. I use the

Radial Distribution Function (RDF) as a measure of the structural compatibility of the

WWW structure with the actual amorphous structure of silicon. To develop the RDF of

our system I have defined a 15 Å off-set from the edges of our structure and put a sphere of

radius 10 Å on atoms in the selected region. Then I divided the sphere into 200 shells and

counted the number of each atom in each shell. I have performed the analysis on all atoms

in the selected region and averaged the values to get a smooth RDF.

I performed the MD simulation using the LAMMPS [101] package and used the GULP [108]

package for the lattice dynamics calculation of the Allen-Feldman (AF) diffusivity [169]. In

both simulations I have used both the 1985 Stillinger-Weber potential [165] and the 1989

Tersoff potential [166] for silicon. All simulations Ire performed at 300 K and due to stress

release requirements I have annealed all systems at 600 K. During the annealing procedure

I have started the simulation under an NPT ensemble [170] at 600 K and kept it at this

condition for 3 ns. This step was followed by cooling back to 300 K under an NPT ensemble

for 6 ns and an equilibration under the same ensemble for 9 ns. Following the mentioned

steps I have simulated the system under the microcanonical ensemble for another 3 ns
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and collected the position and velocity information for 210 ps every 0.025 ps. I have also

evaluated the stability of the data acquisition process through monitoring the pressure and

energy trends in the microcanonical ensemble section of the simulation. I performed lattice

dynamics calculations to develop the AF velocities (thermal keyword in GULP) by setting

the total energy calculated by LAMMPS and the choice of broadening values. The choice of

broadening value is a matter of trial and error to find a value that provides an acceptable

resolution and results in stable diffusivity values. The calculation of the diffusivity is based

on evaluating the modal heat current operator Sij that measures the coupling between the

modes i and j. This operator has a delta function in its definition that tunes the extent

of overlap between modes using a Gaussian estimation of the delta function. The diffusion

calculation is also under the effect of volume (V ), reduced Planck’s constant, and the mode’s

frequency (ωi).

D(ωi) =
πV 2

ℏ2ω2
i

∑
i ̸=j

∥Sij∥2δ(ωi − ωj) (4.1)

4.2.2 Post-Processing

To calculate the lifetimes I have used the dynamical structure factor (DSF) analysis

[162]. This analysis has been used in parallel with the static structure factor (SSF) notion

[139] and the difference is based on the use of eigenvectors in the SSF analysis and the

eigenvector calculation are not required in an DSF analysis. As a result, DSF analysis is

capable of deriving the lifetimes under full anharmonic conditions. The SSF analysis is

using the notion of eigenvectors, calculated using the lattice dynamics calculation, which is

a calculation at 0 K and will not reflect the full anharmonic effects caused by temperatures.

Other methods that are based on the statistics of vibrations [29, 30] can calculated the

eigenvalues of vibration under the full effect of temperature modeled in an MD system,

but they require supercell averaging through tiling of multiple supercells. Considering the

fact that these types of simulations are computationally expensive, the addition of supercell

averaging will make them even less computationally feasible. The DSF is based on taking

the spatial and temporal Fourier Transform of vibrations. The temporal Fourier transform
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is taken over the simulation time (tsim), and the spatial is taken over the k-mesh in the

spatial reciprocal space. The equation for a system of particles containing N atoms of one

kind with the mass m is as follows,

S(k, ω) =
m

4πNtsim

∑
α

∣∣∣∣∣∣
∫ tsim

0

N∑
nx,ny ,xz

u̇α(t) exp(ik · r0 − iωt)dt

∣∣∣∣∣∣
2

.

The decay behavior observed is modeled using a Lorentzian function. The choice of

the Lorentzian function is based on the similarity of the decay in real space to a forced

damped harmonic oscillator [171] as a result, a Lorentzian decay in the frequency space.

The linewidth (Γ(k)) of a mode is the half-width at the half-height of the Lorentzian fit

based on the definition of the Lorentzian function.

S(k, ω) =
C0(k)

[ω0(k)− ω]2 − Γ2(k)
, (4.2)

where C0(k) is a mode-dependent constant and ω0(k) is the frequency at the peak of the

Lorentzian peak. The lifetime of each mode is defined as the inverse of 2 times the linewidths,

τ(ω) =
1

2Γ(k)
. (4.3)

I calculate the AF velocities through the diffusivity values. The calculation of AF velocities

is based on the diffusion of kinetic energy and its squared dependence on the velocity of

diffusion. As a result, I define the AF velocities as the square root of the diffusivites divided

by the appropriate lifetimes [172]. I used these velocities instead of the group velocities

defined based on the derivative of the dispersion curve for a section of the frequency interval,

which exhibits spread in frequencies of a wavevector in the DSF function (Fig. 4.1). Using

the group/AF velocities and the lifetimes I have calculated the spectral free paths through

a linear relationship between spectral free path, lifetime, and group/AF velocities.
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Fig. 4.1: The Dispersion resulted from the dynamical Structure factor analysis on both
Tersoff (left) and the Stillinger-Weber (right) potentials

4.3 Results and Discussion

Fig. 4.2: Radial Distribution function 100k WWW system compared with two other ex-
perimental, and computational results [3, 4]. The Laaziri experimental results and the
computational results of the Larkin work Ire extracted from the graphs.
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Fig. 4.3: top:lifetime of a-Si for both Stillinger-Weber and Tersoff potential. An spline fit
is used to fit the data of each branch (Transverse and Longitudinal) for the purpose of eye
guide. Bottom: The comparison of density of states for both SW and Tersoff potentials,
obtained from lattice dynamics analysis.

Our first measure of the systems I studied, is their RDF analysis and how close the peaks

are to the experimental values. The RDF provides a very close match to the experimental

values and the shape of the function follows the experimental values precisely [3]. The

RDF of the WWW structure is a better match to the experimental values at the first

peak compared to the RDF of a melt-quench structure reported by Larkin and McGauhey

(Fig.4.2). The better match is clear by comparing the black Rhombus, blue circle, and grey

square at the first peak.

Fig.4.3 presents the spectral lifetimes of amorphous silicon under two different poten-

tials. These results are drawn from the Lorentzian fit of the DSF peaks. There is a clear

difference between the mid-range frequency scaling of the Tersoff and SW lifetimes. The

Tersoff results show a stiffer behavior in the low frequency range (0.1-0.3 THz) and the

mid-frequency scaling follows a ω−4 scaling in comparison with the ω−2 scaling of the SW

lifetimes. The stiffness of the Tersoff system is also observable in density as a bulk prop-

erty, the Tersoff Density is 2.34 g
cm3 and the density of the system under SW potential is



70

2.30 g
cm3 . The high frequency behavior as Ill as the lifetime values are consistent with the

observation of Larkin and McGaughey [4]. it is also important to mention that Larkin and

McGaughey have used the SW potential in their analysis. The overall trend of decrease in

the lifetimes from low to high frequencies is consistent with the increase in the density of

states (DOS), which is due to the presence of more modes as a result more scattering events

will occur. The minimum of the lifetime graph is comparable to the maximum of the DOS

curve. The difference in the position of accumulation of modes in the lifetime graph and

the first peak in the DOS data presented in Fig.4.3 is mainly due to the different source

of the information, which is DSF for the lifetimes and lattice dynamics for the DOS. Th

effect of temperature on the position of the peak in the DOS is studied in our previous work

and evident in the lattice dynamics results with missing the temperature effects [119]. The

statistical and fit uncertainties in finding the peaks of the DSF graph and Lorentzian fits of

the DSF data are also affecting the position of the peak in the DOS. Other researchers have

used the Tersoff potential [139] in their lifetime analysis and their results show a crossing

of the Ioffe-Regel limit, which is not the case for the result of this work, and are an order

of magnitude lower for the high frequency region compared to our results, although the

trend matches the observed trend in our results for both SW and Tersoff potential. The

broadening at high frequencies, specifically the broadening of the peaks above the Ioffe-

Regel limit is the convolution of multiple peaks [173], and these types of peaks cannot be

analyzed as a damped harmonic oscillator and the peaks cannot be fitted with a Lorentzian

function [174, 175], which makes the obtained results above the limit unreliable. This no-

tion will not affect our work as I are focused on the low to mid frequency spectrum of the

vibrations.

The Time Domain Thermal Reluctance (TDTR), the picosecond acoustics, and tran-

sient grating spectroscopy data provide the spectral free path, which is in direct relationship

with the spectral lifetimes through the linear relation between the mean free path, lifetime

, and group velocity [162]. The group velocities can be drawn from the dispersion relation

resulting from the DSF analysis for a crystalline material. The material under study in this
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paper is amorphous and vibrations in these types of materials are not all propagating. For

amorphous materials the one-to-one correspondence between wavevectors and frequencies

breaks at some point on the frequency spectrum. As a result, defining the group velocity

as the derivative of the dispersion relation (∂ω∂k ) is correct definition [125]. The thermal

conductivity of non-propagating modes are defined with the AF theorem for diffusons [67].

As a result, I draw velocities of energy propagation using the AF velocities and calculated

from the AF diffusivity definition.

To have the right combination of group and AF velocities, I have distinguished the

transition from dispersion relation group velocities to the AF velocities based on the dis-

tinctness of the DSF peaks and used the wavevector as our measure (Fig. 4.1). The tran-

sition wavevectors are 10.3 and 9.6 1
nm for the longitudinal and the transverse branches,

respectively. From the transition point forward I use the AF velocities. Before I explore

the group and AF velocities I will review the results of the diffusivity analysis.

The results of both SW and Tersoff diffusivities are presented in Fig. 4.3-a. The

diffusivities of both potentials behave the same at first glance but the SW potential creates

lower diffusivities in the low frequency region but the trend reverses in the high frequency

region and the SW results exceed the Tersoff values. The Tersoff and SW diffusivity results

also have different features in the 2-3 THz and 7-8 THz frequency intervals. The feature

between 2-3 THz creates higher AF velocities for the Tersoff potential and the feature

between 7-8 THz creates higher AF velocities for the SW case. I are using the wavevector as

the measure of the transition from group velocity to AF velocities that makes our approach

to have different transition points for each branches ( 9.6 THz for Transverse and 10.3

THz for Longitudinal branches of both potentials). Considering the fact that the Lattice

Dynamics result of diffusivities are versus frequencies, I had to map the diffusivity results

versus frequencies to diffusivity versus wavevectors. For this purpose, I used the peaks

of the dispersion relation, although the peaks at high frequencies are debatable. The use

of high frequency peaks is not a new approach used in this paper and is a method used

in the literature [139]. The remapping result of this basis-change are plotted for both
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potentials in Fig.4.3-a and are labeled with green and black circles for SW and Tersoff

potentials, respectively. The remapping result shows no loss of information, when mapping

the diffusivity result vs. frequency to diffusivity vs. wavevector and mapping them back

vs. frequency basis.

It is also important to measure the diffusivity results for different broadening factors to

estimate the effect of delta function broadening on the formulation of diffusivity (Fig.4.3-b).

I have checked this effect by comparing the values of diffusivity for broadening values twice

and half of the main used value, which was set to 5. The result of this analysis provided

almost no change for most of the frequency range but the values obtained with 5 as the

broadening factor show capturing of lower frequency diffusivites for both the Tersoff, and

the SW potential and predicts less oscillating result for the Tersoff potential in the low

frequency region Fig.4.3-b.

The result of group velocity analysis is presented in Fig.4.5. The velocities show an

abrupt change at the transition to the AF velocities. The discontinuity is justified as the

velocities are attributed to two different regimes of transport. One form of transport is

through coherent and collective motions of atoms to a diffusive penetration of energy and

the second is the mode of transport where the notion of one-to-one correspondence to

frequency is lost [70]. It is noticeable that the SW velocities are higher in the propagating

region of the frequency range. Although the Tersoff potential is stiffer and the diffusion is

lower for stiffer systems [176], the AF velocities are higher for the low frequency region (1-5

THz) for this potential and the fact is due to lower lifetime values in that frequency range

for the Tersoff potential.

The dispersion relation is a one-to-one correspondence between the frequencies and

wavevectors. I presented the dispersion relation with the given explanation for both SW

and Tersoff potentials in Fig.4.5. The one-to-one correspondence is disputed for the high

frequency region in the literature, which is after a transition frequency from propagons to

diffusons [125]. Despite the mentioned fact, it is a great measure of comparison of the

dynamics of the WWW a-Si structure under the SW and Tersoff potentials for the low and
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(a)

(b)

Fig. 4.4: (a) comparison of diffusvities for both SW and Tersoff potentials (top) and the
resting group velocities (bottom) the circles are the interpolations required to map the
frequency based diffusivities to the wavevector based ones (b) comparison between different
values of the broadening factor in the computation of the diffusion for both the SW (top),
and the Tersoff potential.

mid frequency region.

The SW frequencies are higher that is comparable to the stiffer dispersion of a solid at

lower temperatures [119], the stiffer frequency behavior of SW-Si has been reported previ-
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Fig. 4.5: Group Velocity as a combination of the derivative of the dispersion relation and
the AF velocity (top), and the dispersion relation resulted from the peaks of the dynamical
structure factor

ously in the literature [177], although it contradict our previous observations in this paper.

I attribute the difference in the longitudinal branch to the uncertainty of our measurements.

The difference is pronounced more for the transverse branch, which might be attributed to

the directional dependence of both potentials [177].

Using the calculated group velocities for each frequency and the calculated lifetimes, I

calculated the mean free paths (spectral free path) of each mode. The spectral free paths

for both SW and Tersoff potentials follow the same trend in the low frequency region (0.2-

0.4 THz). The behavior changes for both potentials in the mid-frequency region (0.4-6

THz). The Tersoff scaling is more compliant with a scaling between ω−3 and ω−4 for

both the transverse and longitudinal branches. other researchers have also reported ω−3

scaling [178]. The trend starts somewhere between 1-2 THz in the longitudinal branch, but

the initiation of the mentioned scaling starts from 0.4 THz for the transverse branch and

softens from 0.7 THz for the rest of the frequency range. The mid-range behavior of the

spectral free paths are different for the SW potential. The trend follows an ω−2 scaling

after 0.6 THz up to 6-7 THz and the behavior is similar for both branches of vibrations.
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Fig. 4.6: Spectral Free path of modes calculated using both SW and Tersoff potential, in
comparison with other experimental and computational data, and the predicted profile by
Minnich

As mentioned earlier in the text, the importance of the scaling reveals the physics

of scattering. Early attempts to understand the excess of the phonon vibrational density

of states (VDOS) in comparison to the Debye estimation of the VDOS, known as the

Boson Peak [179], led to the introduction of local density fluctuations, which some authors

attributed to the elastic phonon scattering known as Rayleigh scattering [133]. This elastic

scattering is known to scale the lifetimes as a function of frequency with an ω−4 scaling.

As a result such scaling of lifetimes can be an indication of Rayleigh scattering and local

fluctuation of density. It is also insightful to notice that the Rayleigh scattering is commonly

considered as the source of plateau of the amorphous materials’ thermal conductivity graph

versus temperature [66], although it has been disputed in the literature [180].

I have also added the predicted profiles (two dashed lines) by Minnich et. al. [69],

each line represents a branch of vibration. The low-frequency region of the profile predicts

higher spectral free paths compared to our calculation but the trends both comply with the

ω−1 scaling. This scaling for the low frequencies of amorphous materials has been reported

by Walton, and in their approach they model lifetime vs. frequency of these types of
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materials [181]. Our results provide additional evidence for ω−1 scaling at low frequencies,

which was interpreted by Minnich et. al. as the absence of thermally activated relaxations

and the origin of the micron-scale modes in amorphous silicon. I Ire not able to observe

the micron scale modes due to the size limitation of our simulations but as mentioned in

Minnich’s work, lower scaling is the notion of weak thermally activated relaxations. Moving

from high to low frequencies, our results predicted the initiation of modes scaling with ω−1

at higher frequencies for both branches and the mid range frequency trends in our results

are different from their result. The difference between the profiles presented by Minnich

et. al. and our data is dissimilar comparing the profile to the data resulting from different

potentials, used in this work. The Tersoff potential in its longitudinal branch is following

the longitudinal branch of the profile but this compliance deviates for the transverse branch,

where the profile follows an ω−4 scaling and our data follows an ω−3 scaling. The data based

on the SW potential deviates from profile for both transverse and longitudinal branches and

our data for this potential follows a ω−2 scaling. There are some features that are present in

our data (2-3 THZ and 7-8 THz) for both SW and Tersoff potentials. These features have

their roots in the diffusivity data at the two mentioned frequency intervals, presented in

Fig.4.3-a. I have also added the experimental data by Moon et. al. [138] (light blue circles)

and MD results by Moon et. al. [139] (green circles), the experimental data is closer to the

SW results, but the MD results comply with the results from both potentials in the context

of trend but our data are generally higher within the range of Moon’s results.

The Tersoff lifetimes can produce ω−4 scaling but the scaling is less pronounced in the

Spectral Free Path results, the fact is clear comparing the scaling of the Tersoff potential

in Figs.4.3 and 4.6.

I have attempted to induce the ω−4 scaling through the addition of 1% and 3% of Hy-

drogen, Germanium, and Si-29 impurities (Fig. 4.7 and 4.8). The logic behind the addition

of impurities is based on possible light to heavy mass impurities in a deposition chamber. I

used the SW potential and implemented the effect of impurities through mass change. The

results did not produce the scaling for the impurities understudy. The unsuccessful results
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Fig. 4.7: lifetimes of doped samples with Hydrogen, Germanium, and Si-29 (right column)
and the corresponding spectral free paths with a constant group velocity approximation
(left column)

can be due to the bad choice of potential, and a better potential that model impurity-silicon

interactions in more detail, rather than a mass difference model, might be able to reproduce

the the scaling and provide evidence of the impurity related scaling. The spectral free paths

are generated with two assumption about the group velocity, one as a constant value and

two as the derivative of the dispersion relation, which was interpolated with a sinusoidal
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Fig. 4.8: lifetimes of doped samples with Hydrogen, Germanium, and Si-29 (right column)
and the corresponding spectral free paths with a sine interpretation of the dispersion relation
and defining group velocity as its derivative (left column)

function. The result are on the same order of the profile predicted by Minnich et. al. but

do not match the trends in most of the frequency interval.

To support the observed scaling, I calculated the thermal conductivity of different sys-

tem sizes, and under different potentials, using the GK and the Non-Equilibrium Molecular

Dynamics (NEMD) approach (Fig.4.9). The GK results clearly show a divergence behavior



79

Fig. 4.9: Green-Kubo calculation of thermal conductivity of three different system sizes.
100k, 4096, and 1000 atom systems

of the thermal conductivity for the Tersoff system, which is an indication of > ω−4 scaling

in the lifetimes. The decay is less pronounced moving from the 4096 system to the 1000

atom system as the 2-4 nm length scale is within the high frequency region of vibration.

This section of the frequency band accommodates the excess in the mode number (First

peak in the DOS) and the excess amount of modes create non-propagating modes that are

less affected by the size effect [182]. The GK results of the SW potential show minimal

size dependence for 100k and 4096, which is an indication of the plateau behavior in the

thermal conductivity accumulation function of the ω−2 scaling and the reduction in the

thermal conductivity from 4096 to 1000 atom system is due to the size effects on the ex-

cess modes. In our GK analysis I used the first-avalanche (FAV) method [183] to choose

the integration extent of the calculations. To support our GK results I performed NEMD

thermal conductivity calculation for all systems and the results follow the trend of the GK

result Ill, although they are know to be Ill under the influence of the size effects [184]. The

NEMD result for the system sizes with majority of modes being non-propagating are higher

than the GK results and this trend was also observed in other works, which was attributed



80

to the difference in the nature of methods and the inclusion of hot and cold regions in

the NEMD measurements [185]. The smaller change in the NMED result of the Tersoff

potential compared to the GK result is an evidence of the effect of long wavelength modes

on the thermal conductivity of the Tersoff systems as the long wavelengths that are present

in the GK systems due to periodic boundary conditions get scattered in the cold and hot

region of and NEMD simulation. The scattering is due to the random added/subtracted

velocities in the cold and hot region. In addition, this is another evidence for higher scaling

in the Tersoff system compared to the SW system, as the faster reduction in the lifetimes

will make the contribution of higher wavelengths more important.

Fig. 4.10: Lifetimes of a 4096 atom sample tiled three (down) and six (up) times.

Our Tersoff results are different compared to the He and Gali’s results [71] as they

observed a plateau in the thermal conductivity of large samples that I didn’t. The differ-

ence is due to their approach of creating systems with high number of particles, using a

tiling approach these types of systems create flawed lifetimes for low-frequency modes. To

demonstrate this claim I modeled larger systems by tiling the 4096 atom system three and

six times in one direction and performed the lifetime analysis on these systems (Fig. 4.10).
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The result of our analysis shows different lifetimes in the low-frequency region compared

to the lifetimes of the 100k system. The tiled systems illustrate a less steep lifetime scal-

ing compared to the 100k system, which is the result of the absence of scattering events

emerging from the non-extended direction.

4.4 Conclusion

In this paper I presented a computational proof of lower lifetime scaling of low fre-

quency region for amorphous silicon. In our analysis I used two commonly used potentials

for amorphous silicon. In our methodology I utilized a hybrid approach to define the ve-

locity of energy penetration that is known as group velocity for the vibrations with known

wavevector- frequency correspondence and AF velocity for the type of vibrations missing

the aforementioned correspondence. The result of this approach in parallel with using

12×12×12 nm system is the observation of up to micron-scale spectral free paths. The

observation of such spectral free paths is not a violation of size effect as the lifetime is the

source of such analysis and the periodic boundaries provide the possibility of such values for

the spectral free paths. The scaling of spectral free paths follow ω−2 for the SW potential,

which is an indication of inelastic scattering. However, I didn’t observe a clear ω−4 scaling

in the mid-region of the frequency for any of the potentials and the scaling was between

ω−3 and ω−4 for the Tersoff potential, this scaling is known as the elastic scattering and

is known to create a plateau in the thermal conductivity accumulation function for modes

having large spectral free paths. I also evaluated the possibility of the lifetime/spectral free

path scaling modification in the SW potential by the impurities in the deposition chamber

and observe negligible change stemming just from the change of masses in the SW potentials

implementation. This might result in a different outcome if I had access to SW potentials

modified for atom-atom interactions other than silicon-silicon interactions. I have also eval-

uated the effect of extending a system along one side to access lower frequencies but the

implementation results in less scattering due to the missing phonons along the non-extended

directions. I used the last piece our work to explain our results in comparison with other

scholarly works.
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CHAPTER 5

Summary and Conclusion

In this dissertation I characterized the dynamics of disorder in crystalline and amor-

phous materials. To make the evaluation first, I developed a methodology to capture the

energy of a frequency band in a wavepacket. The energy was based on the Quantum

Mechanical definition of phonon energy. I have used a frequency detection approach to

check for the frequencies present in the system to evaluate the performance of the method.

The evaluation provided excellent match with the target frequencies. I have also used the

method to evaluate the validity of Molecular Dynamics simulations at the frequency level

and found that these simulations are still valid, even at low temperatures (10 K for argon),

up to frequencies as high as 1 THz. The method was eventually used for the main purpose

of this study as it provided negligible decay after a long simulation time of 2 ns, although

the atom displacements were well within the anharmonic region of the potential. As a

result, I hypothesised that random dynamics, resulting from the existence of temperature

(kinetic energy), is the cause of the decay of phonons. To evaluate the hypothesis, I evalu-

ated the dynamics of a crystalline argon system with and with out the addition of random

perturbations to the interatomic forces. The result of this analysis with the calculation of

phonon lifetime, spectral free paths, and coherence length provided the evidence for the

resemblance between the dynamics of crystalline materials at high temperature (above half

of the Debye temperature for argon) to the dynamics of amorphous materials. The result

is the evidence for random motions of atoms at high temperatures in crystalline materials

creating scattering events more often. In addition, the result of this section of my work can

lead to future research efforts that use methods such as random matrix theory to model

crystalline materials that will enable researchers to reach longer simulation times and larger
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simulations cells, which is a current limitation of molecular dynamics.

Additionally, I have used a methodology seldom used in the literature to evaluate the

reason for high thermal conductivity of amorphous silicon. The method doesn’t require an

eigenvalue evaluation of the dynamics of the system and, as a result, is a faster approach

to capture temperature dependent lifetimes of any system of particles. By applying the

DSF analysis in addition to the calculation of diffusive energy transport velocity using

the Allen-Feldmann definition of diffusion, I was able to define the spectral free paths

in amorphous silicon and provide computational-based evidence for sub-micron modes in

amorphous silicon for the first time. The reason for this is mentioned in the literature and

based on experimental works as the absence of thermally activated relaxations not affecting

the low-frequency modes.

In conclusion, the research presented in this dissertation will have a lasting impact of

the nanoscale thermal transport and the broader atomistic simulation communities. The

methods that I have developed provide (1) an improved physical representation of phonon

modes in crystalline materials that captures temperature dependent behavior, (2) a new

physical understanding of phonon scattering mechanisms at high temperatures in crystalline

and amorphous materials, and (3) a modeling method that captures this improved under-

standing and provides a path to increasing the scale for which molecular based simulations

can be applied.
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