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ABSTRACT

A Study of Wings with Constant and Variable Sweep for Aerodynamic Efficiency in

Inviscid Flow

by

Bruno Moorthamers, Doctor of Philosophy

Utah State University, 2021

Major Professor: Douglas F. Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

Wing sweep has been studied by industry and academia since the pioneering days of

aviation for both high-speed and low-speed applications. In transonic and supersonic flight

regimes it serves to delay the onset of compressibility effects and decrease wave drag. In

subsonic conditions, flying wing designs sweep back the main lifting surface in such a way

that it can be used for longitudinal stability and control, to allow for the elimination of

a traditional empenage. This is desirable because it can decrease the aerodynamic drag.

Sweep can also be seen in nature in the wings of birds and fins of fish. While sweep in

man-made airplanes is mostly limited to a constant sweep angle from wing root to wing tip,

nature shows a curved sweep profile in the wings of birds and fins of fish. There might be

an aerodynamic benefit to non-constant or variable sweep profiles. This research attempts

to discover the potential aerodynamic benefits of non-constant sweep. In the present work,

the theoretical background of our current understanding of swept wing aerodynamics is

revisited. Inviscid numerical methods are used to investigate the lift, induced drag, and

aerodynamic center position of conventional wings with constant sweep, and crescent wings

with a linear sweep profile, where the local sweep increases from zero at the wing root to

some finite value at the tip. A comparison between the two types is made to see whether
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the curved wing planforms offer a potential aerodynamic benefit over conventionally swept

wings. The wings are compared at equivalent aerodynamic center position so that they will

offer similar longitudinal stability. An induced drag factor that is nearly independent of lift

coefficient and acts as a measure for aerodynamic efficiency, is the performance metric used

in the aerodynamic comparison. A cross-over point that indicates at what aerodynamic

center position or equivalent sweep angle the crescent sweep profile produces less induced

drag than the constant sweep profile is found and shown as a function of aspect and taper

ratio. The wing of an albatross is used to demonstrate that some more complex sweep

profiles can produce less induced drag than both constant or purely linear sweep profiles

in inviscid flow. A separate chapter studies the effects of viscosity on the results found

in this work, by modeling the boundary layer thickness, flow transition, and laminar and

turbulent skin friction using FlightStream. It shows that when including viscous effects, the

wings with constant and linear sweep show similar trends with sweep as those resulting from

inviscid results. The cross-over point between wings with constant sweep and linear sweep

when considering total drag coefficient is shown to not differ significantly from that of the

inviscid results for induced drag, especially not at the small angles of attack considered in

this research. Therefore, the findings from the inviscid study are insightful in understanding

the effects of sweep type and angle on induced drag. Finally, an optimization exercise is

performed to find sweep profiles that offer lower induced drag than both the constant and

linear sweep profiles in a purely inviscid scenario. It is shown that there are more efficient

sweep profiles, but proving that any solution is the global minimum is difficult. It is also

addressed that these results would likely not perform as well in a real world setting.

(131 pages)
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an Fourier coefficient

b span

c chord
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C̃L section lift coefficient

CL,α lift slope

C̃L,α section lift slope

Exac/c difference between analytical and numerical results for

chordwise aerodynamic center position

ns number between 0 and 1 related to the chordwise distribution of vorticity

Nspan number of spanwise sections used to model a wing

RA aspect ratio

RT taper ratio

S wing area

V∞ freestream velocity

xac axial coordinate of aerodynamic center

xqc axial coordinate of quarter chord

z spanwise coordinate

α angle of attack

αL0 zero-lift angle of attack

δL change in lift slope due to sweep

∆xac deviation in chordwise aerodynamic center position

ηroot spanwise distance from root as a fraction of the local chord

ηtip spanwise distance from tip as a fraction of the local chord
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κD induced drag correction factor due to taper, aspect ratio, and sweep
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σ static margin

θ change of variables for the spanwise coordinate, cos−1(−2z/b)

ω Frequency factor used in Eq. (2.31)



CHAPTER 1

INTRODUCTION

Wing sweep has been studied and used by industry and academia in high- and low-

speed applications for many decades. It was first studied during the development of high

speed aircraft before the Second World War [8], and has traditionally been used to delay the

onset of compressibility effects and decrease wave drag at transonic and supersonic speeds.

We therefore not only see it being used on supersonic fighter aircraft but also on commercial

airliners flying at transonic speeds [9], where the acceleration of air over the airfoil would

cause shock waves on an unswept wing. Later developments started utilizing wing sweep

in the design of flying wing aircraft [10], where the lever arm resulting from sweeping back

the main lifting surface allows for longitudinal stability and control without the use of a

conventional empennage. The present research evolved from the interest in tailless flying

wing aircraft, and the scope is therefore limited to subsonic conditions.

In early literature, the wing sweep angle was often defined by following the geometrical

angle of the leading or trailing edge of the wing, or sometimes even using the imaginary

line lying exactly in the middle of these two [1]. These days, literature on aerodynamic

research and industry mostly make use of the angle of the quarter-chord line. This is the

imaginary line running from wing root to wing tip that connects all the points lying at 25%

of the distance from leading edge to trailing edge. The quarter-chord points are a good

first estimate in where the aerodynamic center, an important parameter in aerodynamics

and stability analysis, lies. This research adheres to this convention of defining wing sweep

using the quarter-chord line.

Sweep can be seen in nature in animals, mainly in the wings and tails of birds, and the

fins of fish. These sweep profiles are often variable and more complex than those of aircraft,

with the local angle of sweep varying significantly from wing root to wing tip, sometimes

even showing regions of forward sweep, particularly near the shoulder joint as shown on the



2

frigatebird in Fig. 1.1.

Fig. 1.1: Frigatebird in gliding flight showing forward sweep on the inboard portion of the
wing1

Man-made airplanes use wings where the quarter-chord sweep angle is constant from

root to tip or at most consisting of two or three adjoined sections with each their constant

sweep angle. Birds such as the swift [11], however, can morph their wings and sweep angle

from a straight wing in slow gliding flight, to a highly swept and curved wing in high-speed

flight. Figure 1.2 shows a swift with a nearly straight wing in gliding flight on the left, a swift

in high-speed with a curved, crescent-moon shaped wing in the middle, and a McDonnell

Douglas MD-11 with constant sweep on the right.

Fig. 1.2: Comparison of wing sweep of the swift in gliding flight (left) and high speed flight
(middle) to a McDonnell Douglas MD-11 airliner (right).

1Figure available via license: Creative Commons Attribution 2.0 Generic. Photo by Peter Swaine.
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These curved sweep profiles suggest a linear change in sweep angle, increasing from zero

or even a negative angle, indicating a sweep forwards, at the root to some finite positive

value at the tip in a linear fashion. In a high-speed maneuver, birds can collapse their tail to

a point, suggesting that they also use their main wing for longitudinal stability and control

in a similar way as tailless flying-wing aircraft. It has to be noted that while birds can

morph their wings mid-flight by spreading their feathers or sweeping their wings aft, this

research does not consider morphing of any kind, but instead looks at static wing designs.

Since we see these curved sweep profiles in nature and we like to believe nature offers

efficient solutions, it could be believed that wings with curved or other variable sweep

profiles pose benefits over wings with constant sweep. In the past, airplane designers have

used wings with constant sweep because of the ease of manufacturing, but modern and

future manufacturing techniques such as fibre-reinforced composites [12] or 3D-printing [13]

could relax these requirements. This research aims to understand a potential increase in

aerodynamic efficiency of a wing with a non-constant sweep profile with respect to that of

a conventional wing with constant sweep when considering inviscid flow. An inviscid study

allows to draw direct one-to-one comparisons between the performance of wing designs that

would not be possible when including the effects of viscosity because of its dependence

on atmospheric conditions such as air density and viscosity, and flight conditions such as

airspeed and lift coefficient. An inviscid approach also allows to greatly expand the number

of cases that can be run with limited resources, allow to draw trends that quickly show the

relationship between changes in geometry and their effects on aerodynamic performance.

A separate chapter on the effects of viscosity is included to show the validity of inviscid

results. Previous research by Van Dam [14, 15] and Smith and Kroo [16, 17] suggest an

induced-drag reduction by making use of wings with curved sweep profiles. For the purpose

of this research we introduce the term crescent wing as any wing with a non-constant sweep

profile, in reference to its curved, crescent moon-like shape. As a first step the aerodynamic

performance of crescent wings with a linear sweep profile is investigated and compared to

conventionally swept wings. Figure 1.3 shows a comparison of a crescent wing versus a
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conventional wing with constant sweep.

Fig. 1.3: Comparison of a crescent wing with a linear sweep profile (left) to a wing with
constant sweep (right).

After comparing the aerodynamic performance of wings with a constant sweep profile to

crescent wings featuring a linear sweep profile, the research uses an optimization algorithm

to vary the sweep angle at various positions along the wing span to optimize for aerodynamic

efficiency.

Due to the limitations of analytic methods, the aerodynamics of swept wings has largely

been studied using numerical and experimental methods. Numerical methods for low-speed

swept-wing aerodynamics include low-fidelity approaches such as Weissinger’s lifting-line

method [18] or the numerical lifting-line method by Phillips and Snyder [19] with sweep

corrections by Reid and Hunsaker [20], three-dimensional vortex-lattice methods [21, 22],

three-dimensional panel methods such as PANAIR [23], and high-fidelity computational

fluid dynamics (CFD) simulations. Each of these methods have advantages and disadvan-

tages over the other methods in terms of accuracy, computation time, or complexity of

use.

This research considers the aerodynamic predictions for unswept wings using the ana-

lytic lifting-line method by Prandtl and compares it with computational methods. The

computational methods include the numerical lifting-line method [19] with sweep cor-

rections [20], the three-dimensional high-order panel method PANAIR [23], and Flight-

Stream [24], a commercially available panel code. These numerical methods are also used

to analyze the aerodynamics of swept wings and compare their results. Due to the low-

fidelity nature of each of these methods, the computational expense is low and we are able to

construct images that demonstrate aerodynamic behavior over a range of planform design
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parameters and sweep angles. By analyzing hundreds of wing designs with varying design

parameters we can gain insight in the sensitivity of performance characteristics to design

parameters, similar to the insight provided by analytic solutions. The results of these anal-

yses are used to evaluate correction factors for the lift slope and induced drag coefficient of

tapered planforms with respect to elliptical planforms. Correction factors to evaluate the

effects of wing sweep on lift, induced drag, and aerodynamic center location of wings are

also presented.

After performing the same inviscid aerodynamic analyses using the same tools for both

wings with constant sweep and crescent wings with a linear sweep profile, a comparison

between the two is made to see if one type of wing design has a higher aerodynamic efficiency

than the other when excluding effects of viscosity. They are compared at equal aerodynamic

center position xac, thus providing similar longitudinal stability. An optimization study is

run to find the optimal spanwise sweep profile for lowest induced drag, to see if a design

exists that offers less induced drag than both the wings with constant and linear sweep.
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CHAPTER 2

THEORETICAL BACKGROUND TO FINITE WING AERODYNAMICS

This chapter discusses analytical solutions we can gain from lifting-line theory. Section

2.1 shows corrections that can be used to find the lift slope and induced drag coefficient

of a tapered finite wing relative to an elliptical planform. Section 2.2 discusses an analytic

expression by Dietrich Küchemann for the locus of section aerodynamic centers, an impor-

tant concept in aerodynamic analysis of wings. It has been updated from its original paper

with modern notation.

2.1 SOLUTIONS FROM LIFTING-LINE THEORY FOR WINGS WITH-

OUT SWEEP

From Prandtl’s classical lifting-line theory [25], the circulation distribution at N loca-

tions along the span of a wing is defined in terms of a Fourier series terms as

Γ(θ) = 2bV∞

N∑
n=1

An sin(nθ) (2.1)

where b is the wing span, V∞ is the freestream velocity, and θ is defined from the change of

variables related to the spanwise location z as

θ = cos−1(−2z/b) (2.2)

The Fourier coefficients are related to the planform, angle of attack, geometric twist, and

aerodynamic twist distribution according to

N∑
n=1

An

[
4b

C̃L,αc(θ)
+

n

sin(θ)

]
sin(nθ) = α(θ)− αL0(θ) (2.3)

where α(θ) is the geometric twist distribution, which includes the global angle of attack, and
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αL0(θ) is the aerodynamic twist distribution, which includes the effects of camber. Once

the Fourier coefficients have been obtained, the resulting lift coefficient and induced drag

coefficient can be computed from

CL = πRAA1, RA ≡ b2

S
(2.4)

CDi = πRA

N∑
n=1

nA2
n (2.5)

Phillips [26] suggests an alternate version of this development in which effects of plan-

form, angle of attack, and twist distribution can be independently evaluated. As an initial

study on the effects of sweep, we consider here only wings without geometric or aerodynamic

twist, i.e. α(θ)−αL0(θ) = α−αL0. Following his formulation for a wing without twist, Eq.

(2.1) can be rearranged in the form

Γ(θ) = 2bV∞(α− αL0)
N∑

n=1

an sin(nθ) (2.6)

The Fourier coefficients an are obtained from

N∑
n=1

an

[
4b

C̃L,αc(θ)
+

n

sin(θ)

]
sin(nθ) = 1 (2.7)

and are only a function of wing planform and airfoil-section lift slope. Since the airfoil-

section lift slope does not vary significantly between designs of most aircraft, the Fourier

coefficients an can be thought of as a function of mainly the planform. Using this formula-

tion, the lift slope of the finite wing can be found from

CL,α =
C̃L,α[

1 + C̃L,α/(πRA)
]
(1 + κL)

(2.8)

where the lift-slope factor κL is evaluated from

κL =
1− (1 + πRA/C̃L,α)a1

(1 + πRA/C̃L,α)a1
(2.9)
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The induced drag can be found from

CDi =
C2
L

πRA
(1 + κD) (2.10)

where the induced-drag factor κD is evaluated from

κD =
N∑

n=2

n

(
an
a1

)2

(2.11)

Plots for κL and κD as functions of taper ratio and aspect ratio were published by

Phillips [27]. The induced-drag factor κD can be thought of as an induced-drag penalty

relative to the induced drag produced by the elliptic lift distribution. From lifting-line

theory follows that the elliptic lift distribution produces the lowest induced drag for a given

span, and so κD = 0 for an elliptic lift distribution. It represents a percentage increase in

induced drag for a particular wing planform relative to a planform with the same aspect

ratio that would result in the elliptic lift distribution. Glauert [28] was the first to publish

a plot for κD as a function of taper ratio, but only considered the solution at a single

aspect ratio. Results from his plot formed the rule of thumb that a taper ratio near 0.4

will minimize induced drag. However, as pointed out by Phillips [26], this is only true for a

wing without geometric or aerodynamic twist. Once twist is added to the wing, the taper

ratio that minimizes induced drag can vary significantly from 0.4.

2.2 KÜCHEMANN’S ANALYTICAL DERIVATINS OF SWEPT WING AERO-

DYNAMICS

Dietrich Küchemann [1] provides an approximation for the location of the aerodynamic

center as a function of spanwise location for a swept wing with a symmetric airfoil of

arbitrary thickness. Here we present his method of calculating the location of the locus of

aerodynamic centers, but do so in a more modern notation. For a swept wing of infinite
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span, Küchemann [1] shows that the aerodynamic center at the wing root is

(
∆xac
c

)
root

=
Λc/4

C̃L,α

(2.12)

On a swept wing of infinite span the line of vorticity is modeled along the same angle

as the geometric sweep. In a finite wing, the interaction between vortex effects of the wing

tip and wing root means the line of vorticity will never attain the angle of geometric sweep.

Küchemann therefore defines the effective sweep angle to take this effect into account, and

iteratively arrives at

Λe =
Λc/2[

1 +

(
C̃L,αcosΛc/2

RAπ

)2
]1/4

(2.13)

where Λc/2 is the sweep angle of the half-chord line, C̃L,α is the section lift-curve slope and

RA is the wing aspect ratio. In Eq. (2.13), the local section lift curve slope C̃L,α depends

on the camber and thickness of the local airfoil. Note that in Eq. (2.13), Küchemann uses

half-chord sweep instead of the now more conventional quarter-chord sweep. For the present

work, it is assumed the quarter-chord sweep can be used directly instead of the half-chord

in Eq. (2.13). Küchemann defines a weighting function to account for the influence of

wing root and tip regions dependent on the spanwise position between root and tip. The

weighting function is given by

λs = λ(ηroot)− λ(ηtip) (2.14)

where

λ(η) =

√
1 +

(
2π

tanΛe

Λe
η

)2

− 2π
tanΛe

Λe
η (2.15)

and

ηroot ≡
y

c
(2.16)

ηtip ≡ b/2− y

c
(2.17)
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Here, b is the wing span, y is the local spanwise coordinate and c is the local chord length.

In the case of wings without sweep, indeterminate terms with zero in the numerator and

denominator appear in Eq. (2.15). Therefore, L’Hôspital’s rule is used to evaluate Eq.

(2.15) with Λe = 0 as

λ(η)|Λe=0 =

√
1 + (2πη)2 − 2πη (2.18)

With the weighting function given in Eq. (2.14) determining the amount of influence of

vortex effects from the wing root and tip regions, the location of the aerodynamic center at

any spanwise location can be found from

xac
c

=
1− ns

2
(2.19)

where

ns = 1−
1 + λs

Λe
π/2

2

[
1 +

(
C̃L,αcosΛe

πRA

)2
] 1

4(1+2|Λe|/π)

(2.20)

It should be noted that there is likely a mistake in Eq. (91) in Küchemann’s paper [1]. The

term within parentheses of the exponent in the denominator of Eq. (2.20) was typeset as

(1 + 2|Λe|π) in Küchemann’s paper. However, from his derivation and previous equations

it can only be concluded that it has to be in fact (1 + 2|Λe|/π), which is what is used in

this study.

It is convenient to express the section aerodynamic center location as a shift from its

position in two-dimensional flow. The deviation of aerodynamic center location relative to

the two-dimensional aerodynamic center position at any spanwise location can be calculated

using Küchemann’s analytical approach as

(
∆xac
c

)
Küchemann

=
1− ns

2
−
(xac

c

)
2D

(2.21)

Figure 2.1 shows a comparison between the locus as found using Küchemann’s approach

and experimental data points from others [2–5] for different wing designs. The dashed line

shows the locus of section aerodynamic centers as predicted by Küchemann and the circular
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symbols indicate the experimental data points. The locus is seen to move forward towards

the wing tip and aft towards the wing root.

Kolbe [12] Graham [14]

Weber [15] Hall [13]

Fig. 2.1: Comparison of Küchemann’s analytical solution [1] for the locus of section aero-
dynamic centers and experimental data by Kolbe [2], Hall [3], Graham [4] and Weber [5].
Data extracted from Phillips [6].

While Fig. 2.1 shows promise for the accuracy of Küchemann’s analytical approach,

the amount of available experimental data for evaluation is limited. Therefore this present

research uses a numerical approach using potential flow in Chapter 5 to calculate the locus

of section aerodynamic centers of finite wings and generate data to evaluate the accuracy

of Küchemann’s work. If proven to be accurate, Küchemann’s analytical approach can be

suggested as an input to an ongoing research attempt to improve the existing numerical

lifting-line method by Phillips and Snyder [19] for swept wings.
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2.3 AERODYNAMIC CENTER FOR A SPANWISE SECTION OF A FI-

NITE WING IN INVISCID FLOW

In order to evaluate the location of the aerodynamic center at any location along

the wing, sectional aerodynamic properties including axial and normal forces as well as

the section pitching moment must be known. The location of the aerodynamic center is

commonly assumed to lie on the airfoil chord line and lie at the point xac/c = −C̃m,α/C̃L,α.

However, this widely used expression was developed from thin airfoil theory and neglects

aerodynamic and trigonometric nonlinearities. A more accurate approach is suggested by

Phillips [29]. It is used in combination with the development by Hunsaker, Pope, and

Hodson [30].

The aerodynamic center including any trigonometric and aerodynamic nonlinearities

can be computed from [29]

xac
c

=
C̃A,αC̃m,αα − C̃m,αC̃A,αα

C̃N,αC̃A,αα − C̃A,αC̃N,αα

(2.22)

yac
c

=
C̃N,αC̃m,αα − C̃m,αC̃N,αα

C̃N,αC̃A,αα − C̃A,αC̃N,αα

(2.23)

C̃mac = C̃m +
xac
c

C̃N − yac
c
C̃A (2.24)

The section axial and normal forces are related to the section lift and drag according to

C̃A = C̃D cosα− C̃L sinα (2.25)

C̃N = C̃L cosα+ C̃D sinα (2.26)

Hunsaker [30] shows that the lift and pitching moment of a symmetric airfoil of arbitrary

thickness distribution in inviscid flow can be expressed as

C̃L = C̃L,α sinα (2.27)

C̃m = C̃m,α sinα cosα (2.28)
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The relations shown in Eqs. (2.27) and (2.28) were developed under the assumption of

two-dimensional inviscid flow over a symmetric airfoil. For a finite wing in inviscid flow, the

downwash shed by the finite wing produces an induced angle of attack that varies spanwise

along the wing. For a wing without sweep, this downwash is greatest at the wing tips and

decreases as the wing centerline is approached. The downwash has the effect of decreasing

the local section angle of attack. For example, the lift distribution shown in Fig. 2.2 was

obtained from inviscid computations using the high-order panel code PANAIR on an elliptic

wing with a NACA 0012 airfoil, no sweep, no twist, and an aspect ratio of 8. The wing was

set an angle of attack of 5 degrees. At 5 degrees angle of attack, a two-dimensional NACA

0012 airfoil generates a lift coefficient of 0.6029. This magnitude is also included in the

figure for reference. From Fig. 2.2, it can be seen that no spanwise wing section achieves a

lift coefficient of that magnitude due to the induced downwash.

0.0 0.1 0.2 0.3 0.4 0.5

z/b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C̃
L

Elliptic wing
2D NACA 0012

Fig. 2.2: Spanwise lift coefficient distribution for an elliptic wing using a NACA 0012 airfoil.
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Figure 2.3 shows the local section lift coefficient at the wing centerline of the afore-

mentioned unswept finite wing as a function of angle of attack. Also included is the lift

coefficient as a function of angle of attack of a two-dimensional NACA 0012 airfoil in invis-

cid flow. The two-dimensional results can be fit to Eq. (2.27) to give C̃L,α = 6.9172 for a

NACA 0012 airfoil. Results from Eq. (2.27) are included in Fig. 2.3 for comparison.

Fig. 2.3: Lift coefficient versus angle of attack at root of an elliptic wing using a NACA
0012 airfoil.

As can be seen from Fig. 2.3, the downwash has the effect of scaling the lift and

changing the frequency of the sine wave associated with the lift curve. It can be shown that

the section lift as a function of angle of attack at any spanwise location on a wing with a

symmetric airfoil is in fact not a perfectly linear relationship but can be expressed as

C̃L = µL sin (ωα) (2.29)

where µL is the lift slope of the section at zero angle of attack, and ω is the frequency
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defining the sine wave visible in Fig. 2.3. In the example shown in Fig. 2.3, the section

data at the wing root can be fit to Eq. (2.29) by specifying µL = 1.8079 and ω = 3.5621.

Results from Eq. (2.29) are included in Fig. 2.3 for comparison. Note that µL and ω are a

function of spanwise location and depend on aspect ratio and sweep angle.

The following relation for the section pitching moment as a function of angle of attack

at any spanwise location is used:

C̃m = µm sin (2α) (2.30)

Using Eqs. (2.25) and (2.26) along with Eq. (2.30), differentiating twice, and applying

the results to Eqs. (2.22)–(2.24) gives the aerodynamic center and associated pitching

moment for any symmetric airfoil section with induced drag. This process requires a fair

amount of algebraic manipulation, but can be accomplished quite quickly using a symbolic

solver. The resulting relations are too lengthy to include here [31], but demonstrate that

the aerodynamic center at any spanwise section is a function of angle of attack. Figure 4.8.2

on page 467 of Mechanics of Flight by Phillips [27] shows the dependence of aerodynamic

center location on angle of attack. In the present study, only the aerodynamic center at

zero degrees angle of attack is considered. For this scenario, the resulting relations for the

aerodynamic center reduce to

xac
c

= −2µm

ωµL
(2.31)

yac
c

= C̃mac = 0 (2.32)

The aerodynamic coefficients needed for Eqs. (2.29) and (2.30) can be obtained from a

set of computational results including the section lift and pitching moment at several angles

of attack. In order to obtain appropriate values for µL and ω at any spanwise location, a

nonlinear solver is required. In order to obtain appropriate values for µm, a vertical least-

squares method can be used to obtain an analytical solution as outlined by Hunsaker [30].

This yields
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µm =

n∑
i=1

C̃mi sin (2αi)

n∑
i=1

sin2 (2αi)

(2.33)

Once values for µL, ω, and µm have been obtained at each spanwise section, they can be

used in Eq. (2.31) to obtain the axial location of the aerodynamic center at any spanwise

section. Note that µL and µm were called κL and κm by Moorthamers [32] in an earlier

publication, but have been renamed to prevent conflicting with other variable names in the

current research.
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CHAPTER 3

COMPUTATIONAL METHODOLOGY

In the following sections, the calculation of the locus of section aerodynamic centers,

global aerodynamic center, and general relations to assess the aerodynamic performance of

finite, swept wings is discussed. First, Section 3.1 discusses the definitions of geometry used

in this research and Section 3.2 details the numerical aerodynamic tools used, and presents

grid convergence studies for each.

3.1 DEFINITION OF GEOMETRY

This section describes how wing geometry is modeled in the different methods used

throughout the research. Figure 3.1 shows the coordinate system used throughout the re-

search. The longitudinal direction is denoted by the x-axis, defined positive in the freestream

direction, hence positive towards aft. The lateral y-axis is defined positive towards the right

wing, and the vertical position along the z-axis follows the right-hand rule, and is therefore

defined positive coming out of the page as seen from Fig. 3.1. Note that the origin is

positioned at the quarter-chord location of the wing root for the majority of the research.

Results drawing the locus of aerodynamic centers in Section 3.3 and Chapter 5 are drawn

with the origin at x/c = 0.25.

The wing geometry is built up by defining the local quarter-chord positions of locations

along the span of the wing, and adding the airfoil node coordinates adjusted to the local

chord to that position. The root chord length is always set to unity, so the spanwise chord

distribution is fully defined by the rest of the planform parameters. For tapered wing

planforms, the local chord at any location along the span can be calculated using

c(y) =
2b

RA(1 +RT )
[1− (1−RT )|2y/b|] (3.1)
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Fig. 3.1: Definition of wing coordinate system.

where RA and RT are the aspect and taper ratio respectively. In the case of an elliptic

wing, the chord distribution is defined as

c(y) =
4b

πRA

√
1− (2y/b)2 (3.2)

The location of the quarter-chord points xqc along the span of the wing depend on

the wing sweep. These locations can either be freely put in, to create any arbitrary wing

sweep profile, or can be defined by predetermined types of sweep. Two types of wing

sweep are discussed in this research. The first is the conventional, well-known type of wing

sweep where the angle of sweep is constant along the entire semispan of the wing. With the

quarter-chord location of the wing root section set as the origin, and the positive x direction

set in the direction of the freestream velocity, hence aft, the location of the quarter-chord

points xqc for a conventionally swept wing is

xqc(y) = tanΛtip
2y

b
(3.3)

where Λtip is the angle of the imaginary line connecting the quarter-chord points of the

wing root and wing tip sections. This is equal to what is generally known as Λc/4, the

sweep angle of the quarter-chord line, but has been renamed. Wings where the local sweep

angle of the quarter-chord line is constant along the span, will from here on be referred to

as “conventionally swept wings”, or “wings with constant sweep”.
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The second type of wing sweep is crescent sweep. There is no set description of the ge-

ometry of a crescent wing, beyond it generally being understood to be “half-moon shaped”.

We are particularly interested in wings with a linear sweep profile, meaning one where the

local sweep angle Λ of the quarter-chord sweep line is zero at the wing root, and increases

linearly to some non-zero value at the tip. The local position of the quarter-chord point

along different spanwise sections is given by

xqc(y) = tanΛ(y)
2y

b
(3.4)

where Λ(y), the angle of the imaginary line between the quarter-chord point of the wing

root and the local quarter-chord point, varies along the span as

Λ(y) = Λtip
2y

b
(3.5)

so that it increases linearly from zero at the root to some finite value Λtip at the tip. Figure

3.2 shows an example wing of aspect ratio RA = 8, taper ratio RT = 0.25 and tip sweep

angle Λtip = 20◦. Note that the quarter-chord line, shown as a dotted line, is zero degrees

at the wing root. The red line depicts the imaginary line connecting the quarter-chord

points of the wing root and wing tip section. It is this line that defines the tip sweep angle

Λtip = 20◦.

2 1 0 1 2
y

0.0

0.5

1.0

x

Fig. 3.2: Crescent wing with a linear sweep profile with RA = 8, RT = 0.25 and Λtip = 20◦.
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Figure 3.3 shows the angle of the imaginary line connecting the quarter-chord point of

the root to the quarter-chord point of any section along the span. It is plotted along half of

the same wing as used in Fig. 3.2 as a function of the spanwise location, normalized by the

half-span b/2, so that the horizontal axis runs from 0.0 to 1.0. This figure shows that the

tip sweep angle of this imaginary line increases linearly along the span. We will therefore

refer to wings using this kind of sweep distribution as “linearly swept wings”, “wings with

linear sweep” or sometimes simply “crescent wings” from now on to distinguish them from

the aforementioned wings with constant sweep.

0.0 0.2 0.4 0.6 0.8 1.0
y / (b/2)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fig. 3.3: Local sweep angle of the local quarter-chord line for a linearly swept wing with
RA = 8, RT = 0.25 and Λtip = 20◦.

3.2 NUMERICAL AERODYNAMIC TOOLS

This section introduces the numerical tools used to analyze the aerodynamics of swept

wings. All methods are all able to output lift, induced drag, and pitching moment coeffi-

cients. A numerical implementation of lifting-line theory and two high order panel method
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are used throughout this research. A grid convergence study is presented for each method

to establish them as suitable tools for use in the present research. While a well-converged

method does not imply the method itself being accurate, it does ensure precision. Trun-

cation error is the error that results from using an approximation to represent an exact

formula [33]. For example, in the case of a second order polynomial being used to represent

a physical phenomenon, the result takes on the shape of a parabola across a single panel.

Increasing grid resolution and hence decreasing panel size allows to minimize the truncation

error. Accuracy on the other hand implies closeness to reality. Since all numerical methods

are approximations, none match physical reality perfectly and they all have a degree of

inaccuracy. Generally speaking, methods with a higher level of fidelity will render more

accurate results than methods with a lower level of fidelity. Where possible, references to

other publications with validation cases are given.

For the grid convergence studies, different wings are analyzed at different sweep angles.

All wing are untwisted and use a symmetric NACA 0012 airfoil with a lift-curve slope

C̃L,α = 6.9207, feature a root chord of one, and are analyzed at an angle of attack α = 5◦.

For each method, grids of varying degrees of refinement are used to calculate and judge

convergence on the resulting values for lift coefficient CL. In the case of MachUpX and

PANAIR, the finest of the grids is said to be converged if it is within a reasonable tolerance

of a Richardson extrapolation for each of the sweep angles. The Richardson extrapolation is

a method that can be used to estimate a numerical result as the limit of the number of nodes

approaches infinity [34, 35]. Since FlightStream uses an unstructured mesh, a Richardson

extrapolation can not be applied, therefore convergence is judged based on how much a fine

result differs from the previous step in refinement.

Initially, this research started using PANAIR because of its open-source nature. How-

ever, because of its age, there are memory limitations hard-coded into PANAIR that pre-

vented further grid refinement beyond what is specified in Section 3.2.2. Also, the increasing

number of desired simulations, coupled with the difficulty integrating PANAIR into a mod-

ern, scripted workflow, spurred the search for a more modern tool, leading to the use of
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FlightStream. Chapter 5 is wholly written using PANAIR results, whereas Chapters 4, 6,

and 7 use results from FlightStream. MachUpX is only used in Chapter 4, as lifting-line as

of today does not yet accurately handle wings with sweep.

3.2.1 MACHUPX

MachUpX is a tool based on the modern numerical lifting-line method by Goates [36],

based on developments by Phillips and Snyder [6]. It is a numerical analog to Prandtl’s

classical lifting-line theory [25]. The lifting surfaces get represented by a system of discrete

horseshoe vortices with their bound portion positioned along the locus of aerodynamic

centers and the trailing vortices aligned with the trailing vortex sheet. The system of

equations following from this representation can be solved for the unknown circulation

strengths by equating the resulting force at each discrete local section along the span to the

known aerodynamic properties of the airfoil used at its induced angle of attack. MachUpX

utilizes recent developments by Reid and Hunsaker [20] that have increased the accuracy

of the tool for finite wings with sweep. Some validation cases are given by Goates [36] and

Harvey et al. [37]. Figure 3.4 shows the results for the lift coefficient and pitching moment

coefficient respectively of the wing with aspect ratio RA = 8 and taper ratio RT = 0.25 at

different sweep angles. The coarse grid features 50 nodes per semispan, the medium grid

100 nodes, and fine grid has 200 nodes.
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Fig. 3.4: Convergence plots for lift coefficient CL and pitching moment coefficient Cm as
calculated by MachUpX.

3.2.2 PANAIR

PANAIR is an open-source, high order panel method which uses linear potential flow

theory and can be used for inviscid subsonic and supersonic flow simulations. It is high

order in the sense that the singularity strengths are not constant on each panel but are

allowed to vary linearly or quadratically across them. As a joint development effort from

Boeing and NASA, PANAIR has enjoyed wide acceptance in the research community and

has been validated multiple times in literature [38–40]. However, because of PANAIR’s

strict memory limitations, a grid convergence study was done to make sure it is suited for

the present research. Figure 3.5 shows the lift coefficient and pitching moment coefficient

of a wing with aspect ratio RA = 8 and taper ratio RT = 0.25 as computed using PANAIR

on a coarse (20x20 panels), medium (40x40 panels), and fine grid (80x80 panels).

While the case with a quarter-chord wing sweep of 20◦ shows some numerical discrep-

ancy in its Richardson extrapolation, this is likely due to PANAIR’s rounding of calculations

to four decimals. When comparing Figs 3.4 and 3.5, we see that the circles are a lot more

concentric for the MachUpX results than they are for those of PANAIR. This is MachupX

is already converged even on the smallest grid size, whereas PANAIR is still progressing

towards full convergence. However, due to its age, PANAIR has built-in memory limita-

tions and its grid can’t grow any more, which is part of the reason why a more modern
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Fig. 3.5: Convergence plots for lift coefficient CL and pitching moment coefficient Cm as
calculated by PANAIR.

solution was found later in the research. Still, from Fig. 3.5, we see that the Richardson

extrapolation and the fine grid results are within 1% of each other and therefore the fine

grid is deemed suitable for the purpose of this research.

3.2.3 FLIGHTSTREAM

FlightStream is a commercially available panel code developed by Research in Flight

(RIF) [41]. FlightStream makes use of vortex rings to model three-dimensional surface

vorticity on an unstructured surface mesh. It has a correction for viscous effects of a laminar

and turbulent boundary layer [24] based on a model by Standen [42] and can estimate

transition based on the model by Dvorak [43]. The bulk of this study only uses the inviscid

capabilities because it allows to draw powerful trends between geometry and induced drag,

but a separate chapter on the effects of viscosity is included. It has been validated against

experimental and high-fidelity computational fluid dynamics simulations in many recent

publications [44–50]. It offers either a graphical user interface or the ability to perform

simulations and output the data through scripting. The output of FlightStream is used to

calculate the general relations introduced in Section 3.5 for a large design space of swept

wing configurations. While RIF recommends using 80 panels around the perimeter of the

airfoil, a grid convergence study is performed in spanwise direction to decide on suitable
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grid dimensions. For these grid convergence studies, wings with taper ratio RT = 0.25,

aspect ratios RA = 4 and RA = 20 are analyzed at different tip sweep angles between

Λtip = 0 and Λtip = 40. The wings are untwisted and use a symmetric NACA 0012 airfoil

with a lift-curve slope C̃L,α=6.9207, feature a root chord of one, and are analyzed at an

angle of attack α = 5◦. The grid convergence studies are performed using grids with 20,

40, 80, 120, 160, and 200 panels per half-span respectively, while keeping the number of

panels in chordwise direction constant at 80 panels. A grid is said to be converged if further

refinement offers no significant change in result for each of the tip sweep angles.

Figure 3.6 shows the lift coefficient CL and induced drag coefficient CDi for these wings

using the grids of increasing refinement. The size of the circle denotes the fineness of the

grid, with the largest circles being the most coarse, and the smallest circles being the finest

grids with 200 panels in spanwise direction.
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Fig. 3.6: Convergence plots for lift coefficient CL and induced drag coefficient CDi as cal-
culated by FlightStream for wings with RT = 0.25, RA = 4 and RA = 20, and varying tip
sweep angle Λtip.



26

Figure 3.7 shows the same grid convergence study but with the data represented as

a percentage change from the most refined grid as (CDi − CDi,fine)/(CDi,fine) and (CL −

CL,fine)/(CL,fine).
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Fig. 3.7: Convergence plots for lift coefficient CL and induced drag coefficient CDi as cal-
culated by FlightStream for wings with RT = 0.25, RA = 4 and RA = 20, and varying tip
sweep angle Λtip, expressed as a percentage change from the most refined result.

From the distance between the circles of varying size in Fig. 3.6, we can tell that the

results for lift and drag coefficients become less variable with increasing grid resolution,

and hence converge to a certain value. Figure 3.7 show that the results for 160 panels

in spanwise direction lie within 1% of the results using 200 panels in spanwise direction.

In other words, the largest grid is only 1% more accurate than the second-largest grid.

However, since computation time is proportional to N2, where N is the total number of

panels, computations on the grid with 200 spanwise panels take 1.56 times as long as it takes

for the computations with 160 panels to resolve. We therefore decide to run all simulations
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in this research using a grid of 80 panels in chordwise direction by 160 panels in spanwise

direction for a total of 12800 panels per half-span. The pitching-moment coefficient Cm was

seen to converge in a similar fashion to the lift coefficient, but was left out of this discussion

for brevity.

A crescent wing, first described in Section 3.1, is modeled using a number of spanwise

airfoil definitions Nspan. Using the minimum of two definitions, one for the root airfoil and

one for the tip airfoil, a crescent wing essentially becomes a wing of constant sweep, as

shown in the left hand side of Fig. 3.8. Increasing the number of spanwise airfoil definitions

increases the smoothness of the crescent shape, as becomes apparent in the right hand side

of Fig. 3.8, which shows a wing of the same aspect ratio, taper ratio and tip sweep as the

left hand side of the figure, but with four spanwise definitions as opposed to only two.
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Fig. 3.8: Comparison of a crescent wing defined using two (left) and four (right) spanwise
sections.

A convergence study is performed to see how many airfoil definitions are needed to

represent a crescent wing with sufficient smoothness. Figure 3.9 shows the lift coefficient

and induced drag coefficient for a linearly swept wing with aspect ratio RA = 12, taper

ratio RT = 0.25, and tip sweep angle Λtip = 20◦ defined using Nspan = 2, 4, 8, 16, or 32
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spanwise sections.
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Fig. 3.9: Lift coefficient (left) and induced drag coefficient (right) for a linearly swept wing
as a function of number of spanwise sections.

From Fig. 3.9 it is concluded that the results for the aerodynamic coefficients no longer

vary with increasing of sections, with the results for Nspan = 16 being equal to the results for

Nspan = 32. However, because the computation time between Nspan = 16 and Nspan = 32

does not differ noticeably, all crescent wings are modeled with 32 spanwise sections.
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3.3 CALCULATION OF THE LOCUS OF SECTION AERODYNAMIC CEN-

TERS

We have already seen that the locus of section aerodynamic centers can be calculated

using Küchemann’s analytical method presented in Section 2.2. The location of the aero-

dynamic center of each spanwise section using results from any numerical, or experimental

method is found from

xac
c

= −2µm

ωµL
(3.6)

where ω, µL and µm are variables used in the definitions of lift and moment coefficients

and defined in Section 2.3. Equation (3.6) is developed from relations for the aerodynamic

center by Phillips [29] which include trigonometric and aerodynamic nonlinearities. The

locus of section aerodynamic centers for a wing is then the collection of points found by

applying Eq. (3.6) at each spanwise section. It is convenient to express it as a shift with

respect to the two-dimensional aerodynamic center location, as given by Eq. (3.7).

∆xac
c

=
xac
c

−
(xac

c

)
2D

(3.7)

where xac
c is calculated from Eq. (3.6) using data from any numerical or experimental

method and
(
xac
c

)
2D

is the two-dimensional position of the aerodynamic center for a section

using the same profile.

Figure 3.10 shows an example of the locus as calculated from PANAIR for two wings

with an elliptic planform of aspect ratio 8, one without sweep and one with a quarter-chord

sweep angle of twenty degrees. Figure 3.11 shows the deviation of the locus of aerodynamic

centers of the same two wings from the location of the aerodynamic center for a two-

dimensional section defined using the same profile by making use of Eq. (3.7).
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Fig. 3.10: Locus of section aerodynamic centers of two elliptic wings with varying quarter-
chord sweep.
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for two elliptic wings with varying quarter-chord sweep.
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3.4 CALCULATION OF THE GLOBAL AERODYNAMIC CENTER POSI-

TION

All analytical and numerical computations in the present research are performed at

an angle of attack of α = 5◦, which is well within the range of linear aerodynamics for a

symmetrical airfoil. The results for all methods include lift, induced drag, and pitching

moment coefficients. Because all wings in the research use the symmetric NACA 0012

airfoil, we can calculate a lift slope CL,α and pitching moment slope Cm,α from the results

by recognizing that CL|−α = −CL|α and Cm|−α = −Cm|α. From results at an angle of

attack of α = 5◦, the lift slope and pitching moment slope are therefore calculated using

CL,α =
2 · CL|α=5◦

10◦
(3.8)

Cm,α =
2 · Cm|α=5◦

10◦
(3.9)

The global axial position of the aerodynamic center of a wing can be calculated from

xac
cref

= −Cm,α

CL,α
(3.10)

where cref is a reference chord such as the mean aerodynamic chord.

3.5 GENERAL AERODYNAMIC RELATIONS FOR COMPARISON OF WINGS

WITH AND WITHOUT SWEEP

From the lifting-line development in Section 2.1, we see that the lift slope of a finite

wing without sweep can be expressed as a function of the lift-slope factor κL as shown in

Eq. (2.8). Lifting-line theory provides an expression of κL directly as shown in Eq. (2.9).

However, any analytical, numerical, or experimental method that can be used to predict

the lift slope of a finite wing can be used to estimate κL by rearranging Eq. (2.8) in the

form

κL =
C̃L,α

CL,α

[
1 + C̃L,α/(πRA)

] − 1 (3.11)
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Likewise, the induced-drag factor from lifting-line theory can be directly computed from

Eq. (2.11). However, it can be estimated from other aerodynamic solutions for lift and

induced drag by rearranging Eq. (2.10) in the form

κD = CDi

πRA

C2
L

− 1 (3.12)

With these relations, we can now compare the predictions for κL and κD of the analytic

solutions to computational results stemming from any numerical or experimental method.

Next we consider the aerodynamics of swept wings in terms of the deviation in the lift

slope, induced-drag, and aerodynamic center relative to the straight-wing solution without

sweep. In previous research [51], an induced drag factor was introduced to quantify the

influence of sweep on the induced drag coefficient CDi . However, this factor was dependent

on lift coefficient CL, making comparisons between different wings difficult. Therefore, this

research expands the use of κD from Eq. (3.12) to wings with sweep as well. It can then

be seen as a penalty in induced drag of a certain wing with respect to a wing with the

same aspect ratio RA and taper ratio RT without sweep featuring the elliptic spanwise lift

distribution.

The change in lift slope due to sweep is evaluated using a lift-slope sweep factor δL

defined as

δL =
CL,α

(CL,α)Λ=0
(3.13)

The change in aerodynamic center due to sweep is evaluated using an aerodynamic-

center sweep factor κac defined as

κac =
xac
cref

− (xac)Λ=0

cref
(3.14)

After calculating the aerodynamic center position using Eq. (3.10), all information

is known to determine the lift slope correction factor due to taper and aspect ratio κL,

the induced drag correction factor κD, the change in lift slope due to sweep δL, and the

change in aerodynamic center κac due to sweep. These can be computed using Eqs. (3.11),
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(3.12), (3.13), and (3.14) respectively from numerical results. These are used in the following

chapters to compare the different analytical and numerical methods and gain understanding

of subsonic aerodynamics.
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CHAPTER 4

AERODYNAMIC PROPERTIES OF WINGS WITHOUT SWEEP IN INVISCID FLOW

This chapter discusses the analyses of wings without sweep using Prandtl’s analytic

lifting line solution, the numerical lifting line algorithm MachUpX, and the inviscid panel

code FlightStream. The two numerical methods were discussed in Section 3.2. Results for

κL and κD are shown for all methods for wings without sweep of varying aspect ratio and

taper ratio.

4.1 RESULTS FOR LIFT

A set of 900 wings without sweep but with varying aspect ratios and taper ratios

is analyzed using Prandtl’s analytic lifting line solution, the modern implementation of

numerical lifting-line, MachUpX, and the inviscid panel code, FlightStream. The planform

design variables are shown in Table 4.1.

Table 4.1: Planform variables for unswept wing analysis.

Minimum Maximum Interval

RA 4 20 2
RT 0.01 1.00 0.01

Note that wings with RT = 0.0 produced errors in some numerical methods, therefore

the lower limit is RT = 0.01. All wings are untwisted, feature symmetric NACA 0012

airfoils and a root chord of one, and all computations were done at an angle of attack of 5

degrees.

It is well known that the elliptic lift distribution produces minimum induced drag for a

given lift coefficient. This can be produced by an elliptic planform without sweep. However,

difficulties in manufacturing an elliptic planform and other considerations resulted in the

tapered wing planform as a common compromise. Correction factors κL and κD can be
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used to determine the lift slope and induced drag coefficient of tapered planforms. At a

fixed angle of attack, κL and κD, as calculated using Eqs. (3.11) and (3.12), can be seen as

penalties of aerodynamic performance of these tapered wings as compared to their elliptical

counterparts.

The classic lifting-line result for κL is computed from the Fourier series using Eq. (2.9).

With data from any numerical method, κL can be calculated from Eq. (3.11). Figure 4.1

shows κL as a function of taper ratio with lines for different aspect ratios. Lines show

increasing opacity for increasing aspect ratio from RA = 4 to RA = 20, with the interval

between two subsequent lines being a change in aspect ratio of two.
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Fig. 4.1: Lift slope correction factor due to taper κL as a function of taper ratio RT for
wings with zero sweep.

While the results for classic lifting-line and MachUpX provide a nearly perfect match

for κL, those computed using FlightStream are significantly higher. There are a couple of

possible explanations for this. It has to be noted that Eq. (3.11) is very sensitive to CL,α.
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For example, the lift curve slope of an unswept wing of aspect ratio RA = 4 and taper ratio

RT = 0.25 is 4.417 as computed using MachUpX and 3.814 according to FlightStream.

While this is a difference of only 16%, Fig. 4.1 shows that κL differs by an order of

magnitude. The results are in slightly better agreement for high RA when compared to low

RA, which is likely due to the increased accuracy of the lifting-line method at high aspect

ratio.

4.2 RESULTS FOR INDUCED DRAG

The drag correction factor due to taper κD follows from classic lifting-line by Eq. (2.11).

Using a numerical method, it can be calculated from Eq. (3.12). Figure 4.2 shows κD as

calculated using classic lifting-line, MachUpX, and FlightStream. Lines with the lowest

opacity indicate the lowest aspect ratio RA = 4, and each subsequent increase in opacity

represents an increase of aspect ratio with 2, until the highest aspect ratio RA = 20.
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Fig. 4.2: Induced drag correction factor due to taper κD as a function of taper ratio RT for
wings with zero sweep.
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It can be seen from Fig. 4.2 that results from analytic lifting-line and MachUpX are

in near perfect agreement. For untwisted wings, the optimal taper ratio with the lowest

induced drag lies around RT = 0.4, which is in line with historic findings. It’s interesting

to note that FlightStream predicts negative values for κD at aspect ratio RA = 4 and

taper ratios below roughly RT = 0.2. This suggests that these particular wings are more

aerodynamically efficient than wings with an elliptic spanwise lift distribution. It is not

certain whether this is physically true, or an artifact from numerical simulation. It has

to be remembered that the elliptic lift distribution being the most efficient and leading

to the lowest possible induced drag is only a finding from classical lifting-line theory, and

it is possible that this does not hold for aspect ratios as low as RA = 4. The wake and

surface pressure solution from FlightStream of a wing with aspect ratio RA = 4, taper

ratio RT = 0.01, and induced drag factor κD = −0.066, shown in Fig. 4.3, show no reason

to believe the solution is invalid. One theory is that the combination of very low taper

ratio with a low aspect ratio results in very high angles for the leading and trailing edges,

potentially resulting in a high sweep effect.

Fig. 4.3: Front view and isometric view of FlightStream results of wake and surface pressure
field of a wing with aspect ratio RA = 4, taper ratio RT = 0.01, and induced drag factor
κD = −0.066.
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CHAPTER 5

EVALUATION OF KÜCHEMANN’S ANALYTIC SOLUTIONS FOR WINGS WITH

CONSTANT SWEEP

This chapter evaluates the accuracy of Küchemann’s analytic solution for the locus

of section aerodynamic centers as presented in Section 2.2 using wings with an elliptic

planform. Section 5.1 analyzes wings with constant, rearward sweep, Section 5.2 studies

the effects of thickness variation, and Section 5.3 studies wings with constant, forward

sweep.

5.1 RESULTS FOR CONSTANT REARWARD SWEEP

The locus of section aerodynamic center locations as calculated using Küchemann’s

analytical method given by Eq. (2.21) is here compared to results from PANAIR. For the

purpose of the present research, all wings investigated feature a NACA 0012 profile. The

lift curve slope of this profile is calculated with a two-dimensional vortex panel method

to be C̃L,α = 6.9207. The aerodynamic center of a NACA 0012 airfoil is found to lie at

(xac/c)2D = 0.2619 using the same vortex panel method.

To evaluate the accuracy of Küchemann’s analytic solution to the locus of aerodynamic

centers, multiple numerical simulations were run using swept, elliptic wings over a wide

range of aspect ratios and quarter-chord sweep angles. Table 5.1 defines limits to a range

of design parameters of the swept elliptic wings for which the locus of aerodynamic centers

is calculated.

Table 5.1: Planform variables for evaluation of Küchemann’s analytic solution to the locus
of aerodynamic centers.

Minimum Maximum Interval

Λc/4 [◦] 0 40 1

RA 4 30 2
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An evaluation of the accuracy of Küchemann’s theory is made at each individual span-

wise section by taking the difference of the shift in aerodynamic center location as calculated

using the numerical method, using Eq. (3.7), and analytical method, using Eq. (2.21), as

Exac/c =

(
∆xac
c

)
PANAIR

−
(
∆xac
c

)
Küchemann

(5.1)

Figure 5.1 shows Exac/c along the complete wing semispan for varying quarter-chord

sweep angles with constant aspect ratio RA = 8. It can be seen that as the wing sweep

increases and hence the locus moves away from the two-dimensional aerodynamic center,

the difference between the numerical and analytical result increases over the whole span.

It stays within 1% of the local chord for 90% of the semispan for all sweep angles, only

increasing beyond that at the tip, where the small local chord amplifies the differences.

Note that at high enough sweep angles, Exac/c is positive at the wing tip as opposed to

negative for low sweep angles. This means that Küchemann predicts a farther shift aft than

the numerical approach at low sweep angles whereas at higher sweep angles the numerical

prediction will lie aft of the analytical result.

To see the effect of aspect ratio on the accuracy of Küchemann’s theory according

to Eq. (5.1), Fig. 5.2 shows Exac/c for wings with a quarter-chord sweep angle Λc/4 =

20◦ and different aspect ratios. Note that the accuracy greatly decreases with decreasing

aspect ratio, but the analytic result still lies within 2.5% of the local chord length from

the numerical result for the lowest aspect ratio. It can be seen that Küchemann’s theory

becomes more accurate with increasing aspect ratio.
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chord sweep angles.
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Figure 5.3 shows how far the local aerodynamic center at the root section shifts from the

two-dimensional aerodynamic center location for wings of varying sweep and aspect ratio

using a NACA 0012 profile. The curves show the prediction using Küchemann’s approach

as a function of aspect ratio with different lines for different sweep angles, while the dots

indicate the numerical results using PANAIR. It shows that for increasing wing sweep the

local section aerodynamic center moves aft. For increasing aspect ratio, the local section

aerodynamic center moves aft until it reaches a nearly constant shift, with (∆xac/c)root

not increasing with aspect ratio beyond roughly RA = 12. This means that as aspect

ratio approaches infinity, (∆xac/c)root approaches Küchemann’s analytic approximation for

aerodynamic center position at the root of an infinite wing with sweep given by Eq. (2.12).

It can be seen that the analytical and numerical prediction of the shift at the root section

line up very well for swept wings.
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Fig. 5.3: ∆xac/c at center section for elliptic wings as a function of aspect ratio and sweep
angles.
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For an overview of how accurate Küchemann’s approach is for the full set of wing

designs as defined in Table 5.1, the root mean square error is defined as:

RMS =

√
1

n

((
Exac/c

)2
1
+
(
Exac/c

)2
2
+ ...

(
Exac/c

)2
n

)
(5.2)

Here,
(
Exac/c

)
n
is the difference between the section aerodynamic center location as pre-

dicted by PANAIR and Küchemann as defined in Eq. (5.1). It is calculated at each spanwise

location with a total of n = 80 sections along the semispan. Figure 5.4 shows the root mean

square error as a function of aspect ratio for lines of constant sweep angle on a logarithmic

vertical axis.
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Fig. 5.4: Root mean square error of Exac/c as a function of aspect ratio and quarter-chord
sweep angle for all wings defined in Table 5.1.

From Fig. 5.4 one can deduce that for wings with an aspect ratio higher than RA = 5,

the RMS is below 4% of the local chord. Because of the small chord of an elliptic wing

near the wing tip, the difference Exac/c in this region is magnified and carries a significant
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weight in the RMS calculation. From visual inspection of Figs. 5.1 and 5.2 we see that

Exac/c is significantly smaller in magnitude across the majority of the span than it is at the

outermost portion of the wing. Therefore, the RMS is skewed by this tip region and the

overall error is smaller than suggested by Fig. 5.4. Küchemann’s analytic solution for the

locus of section aerodynamic centers therefore is very close to the numerical result predicted

using PANAIR.

5.2 RESULTS FOR THICKNESS VARIATION

Figure 5.4 shows that Küchemann’s analytic derivation offers a reasonable approach

to calculating the locus of section aerodynamic centers for swept elliptic wings featuring

a NACA 0012 profile with an aspect ratio between 2 and 30 and a quarter-chord sweep

angle between 0 and 40 degrees. To see whether this theoretical approach is valid over a

wider range of wing designs, wings with a thickness-to-chord ratio of between 12% and 21%

are investigated. Table 5.2 describes the airfoils used in the investigation, their respective

lift curve slopes C̃L,α and the location of their aerodynamic center for a profile in two-

dimensional flow (xac/c)2D as calculated using a vortex panel method.

Table 5.2: Airfoil Data.

Airfoil C̃L,α (xac/c)2D
NACA 0012 6.9207 0.2619
NACA 0015 7.0885 0.2657
NACA 0018 7.2515 0.2696
NACA 0021 7.4152 0.2738

Figure 5.5 show the root and tip region of an elliptic wing with aspect ratio RA = 8

and Λc/4 = 20◦ using all airfoils from Table 5.2. It shows the locus of aerodynamic centers

as calculated using Küchemann’s analytic solution as well as using PANAIR data.

As can be seen in Fig. 5.5, Küchemann’s analytic solution correctly captures the trend

due to thickness, where the locus is seen to move forward for increasing wing thickness.
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Fig. 5.5: Magnified view of the locus of section aerodynamic centers near the center and tip
regions of a wing of RA = 8 and Λc/4 = 20◦ and varying profile thickness. Quarter-chord is
indicated by the dashed line.

Figure 5.6 shows Exac/c as calculated using Eq. 5.1 for the same elliptic wing with

aspect ratio RA = 8 and Λc/4 = 20◦ using all thicknesses mentioned in Table 5.2.
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Fig. 5.6: Exac/c for an elliptic wing RA = 8 and Λc/4 = 20◦ and varying profile thickness as
a function of spanwise position.
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From Fig. 5.6, the magnitude of Exac/c seems to decrease for increasing airfoil thickness

over the majority of the wing span. However, Fig. 5.7, showing the root mean square error

over a wide range of wings with geometry defined by Table 5.1 and thicknesses defined by

Table 5.2, does not necessarily reflect that. Isolating the lines for wings with quarter-chord

sweep Λc/4 = 20◦ into Fig. 5.8, the RMS is actually seen to increase for increasing airfoil

thickness over all aspect ratios tested.
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Fig. 5.7: Root mean square error of Exac/c for all wings defined in Table 5.1 for different
profile thicknesses defined in Table 5.2.
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Fig. 5.8: Root mean square error of Exac/c for wings with a sweep angle of Λc/4 = 20◦ as a
function of aspect ratio for different profile thickness.

From Fig. 5.5 we get an idea of why this happens. The differences between Küchemann

and PANAIR at the tip are larger for thicker airfoils. Since the chord is small and hence

Exac/c is large at the tip, the RMS is greatly magnified. However, over the majority of the

span, the numerical and analytical results match very closely. Despite the slight increase

in RMS with increasing thickness, Fig. 5.7 shows that it is still below 4% for all wings

of aspect ratios lower than RA = 5 and therefore Küchemann’s analytic approach gives a

reasonable estimation for the locus of section aerodynamic centers.

5.3 RESULTS FOR CONSTANT FORWARD SWEEP

This section discusses the accuracy of Küchemann’s analytic derivation for the locus of

section aerodynamic centers for forward-swept wings. Wings with forward sweep can be of

interest to aircraft designers because of their favorable properties at high angles of attack.

Their inboard sections will stall first, allowing aileron control authority at high angles of

attack. They are also suggested to be beneficial for use in wing designs with natural laminar



47

flow. With the advent of composite structures, forward-swept wings are more feasible to

produce and hence might see an increased use in aircraft design. [52]

Figure 5.9 shows an elliptic wing of aspect ratio RA = 8 and a quarter-chord sweep angle

of Λc/4 = −20◦ and its locus of section aerodynamic centers as calculated by Küchemann’s

theory as well as calculated using the numerical panel method. The locus moves forward

near the wing root, opposite to the behavior present in a wing swept backwards.
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Fig. 5.9: Locus of section aerodynamic centers for a wing of RA = 8 and Λc/4 = −20◦.
Quarter-chord is indicated by the dashed line.

Figure 5.10 shows a zoomed view of the root region and tip region, respectively, for all

wing thicknesses in Table 5.2. It can be seen that the numerical and analytical approach

match well in the root region, with the difference between numerical and analytical result

increasing for increasing thickness. However, while Küchemann predicts the locus to follow

the quarter chord closely out towards the tip, the numerical approach using PANAIR shows

it to move forward in the outer regions of the wing.
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Fig. 5.10: Magnified view of the locus of section aerodynamic centers near the center and tip
regions of a wing of RA = 8 and Λc/4 = −20◦ and varying profile thickness. Quarter-chord
is indicated by the dashed line.

The behavior at the tip shown in Fig. 5.10 suggests a bad prediction of the locus by

Küchemann as compared to the numerical calculation and a high negative value for Exac/c,

as is confirmed in Fig. 5.11 for all profile thicknesses defined in Table 5.2. Note that the

lower limit on the vertical axis was chosen for plotting purposes, but that the difference

Exac/c does in fact exceed 25% of the local chord length.

On first inspection, with the exception of the very outboard portion of the wing, Fig.

5.11 suggests that Küchemann’s analytic derivation correctly predicts the locus of section

aerodynamic centers over the majority of the span of this particular elliptic wing of aspect

ratio RA = 8 and a quarter-chord sweep angle of Λc/4 = −20◦.
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Fig. 5.11: Exac/c for a wing with RA = 8 and Λc/4 = −20◦ as a function of spanwise position
for varying profile thickness.

To evaluate Küchemann’s analytic derivation over a wide range of forward-swept wing

designs, the root mean square error as defined by Eq. (5.2) is calculated for the wings

defined in Table 5.3. The aerodynamic data from Table 5.2 was used. The results for the

RMS across the whole design space of forward-swept wings are shown in Fig. 5.12.

Table 5.3: Planform variables for evaluation of Küchemann’s analytic solution to the locus
of aerodynamic centers of forward swept wings.

Design Parameter Value Step Size

Λc/4 [◦] 0 – -40 -1

RA 2 – 30 1
Airfoil NACA 0012 – 0021 3%
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Fig. 5.12: Root mean square error of Exac/c for all wings defined in Table 5.3 as a function
of aspect ratio and sweep angle.

Comparing Fig. 5.12 to Fig. 5.7 and using the zero-sweep curve as a reference shows

that overall, the RMS is higher for the forward-swept wings than for the wings with a

positive sweep angle. This is due to the incorrect prediction of the moving forward of the

locus in the outboard portion of the wing as pointed out in the discussion of Fig. 5.10.

The peaks present at low aspect ratios are due to some specific aspect ratio and sweep

combinations that cause numerically erratic behavior within PANAIR.

Figure 5.13 shows the deviation of the aerodynamic center from its two-dimensional

position as calculated by both the analytical and numerical approach at the root section of

wings using a NACA 0012 profile as a function of aspect ratio for varying forward sweep

angles. Figure 5.10 shows that for that particular wing with aspect ratio RA = 8 and

quarter-chord sweep angle of Λc/4 = −20◦, Küchemann and PANAIR agree well. However,
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Fig. 5.13 shows that at combinations of low aspect ratio and high sweep angle, Küchemann

fails to correctly predict the forward shift of the locus by up to 2.5% of the local chord.
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Fig. 5.13: ∆xac/c at center section for elliptic wings as a function of aspect ratio and sweep
angle.

While the RMS from Fig. 5.12 is significantly higher than the results in Fig. 5.7, it

is important to realize that the RMS is mainly driven by the behavior out towards the

wing tips, where the small local chord magnifies Exac/c and hence drives the RMS up.

Still, more care has to be taken when using Küchemann’s analytic solution for the locus of

section aerodynamic centers for forward swept wings.
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CHAPTER 6

AERODYNAMIC PROPERTIES OF WINGS WITH CONSTANT SWEEP IN

INVISCID FLOW

This chapter analyses a set of 1476 wings using a constant sweep profile, with varying

sweep angles, aspect ratios, and taper ratios using the modern panel code FlightStream,

according to the general relations for wings with sweep from Section 3.5. The planform

design variables for the wings are shown in Table 6.1.

Table 6.1: Planform variables for wings with constant tip sweep.

Minimum Maximum Interval

Λtip [◦] 0 40 1
RA 4 20 2
RT 0.25 1.00 0.25

All wings in this analysis feature the symmetric NACA 0012 airfoil and feature no

twist, and a root chord of one, fully defining the geometry. The inviscid simulations are all

run in FlightStream using a grid featuring 160 panels in spanwise direction and 80 panels

in chordwise direction, at an angle of attack of α = 5◦. Tip sweep angle Λtip is defined

as the angle of the imaginary line between the quarter-chord points of the root and tip

airfoil section. In other words, for wings with constant sweep, Λtip is equivalent to the

well-understood Λc/4, but the distinction is made to be consistent with the definition of

geometry of wings with linear sweep, discussed in Section 3.1.

Section 3.5 defined general expressions to relate the aerodynamic properties of swept

wings to wings of the same aspect ratio and taper ratio without sweep. These expressions

can be seen as penalty factors with respect to the ideal, unswept planform with elliptical

lift distribution. Sections 6.1, 6.2, and 6.3 use these relations to analyze the aerodynamic

properties of the wings with constant sweep defined in Table 6.1 in terms of lift, induced
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drag, and aerodynamic center position.

6.1 RESULTS FOR LIFT

Section 3.5 defined δL as the ratio of the lift curve slope at any tip sweep angle Λtip

divided by the lift curve slope of a wing without sweep using the same aspect ratio and

taper ratio. The correction in lift coefficient due to sweep δL for all the wings with constant

sweep defined in Table 6.1 can be seen in Fig. 6.1. Each quadrant shows the results of a

specific taper ratio. The interval between each line represents an aspect ratio change of two,

with the most transparent line representing RA = 4 and the most opaque line representing

RA = 20.

It is expected and shown that δL, and hence CL,α, decreases as the tip sweep Λtip

increases. It can also be seen that for low aspect ratio wings, the penalty in lift curve slope

due to sweep is less than that for high aspect ratio wings. Note that this does not mean that

the absolute value of lift curve slope of a low aspect ratio swept wing is higher than that

of one with a high aspect ratio. While reading specific values of Fig. 6.1 is hard, one could

argue from the high concentration of lines, that above aspect ratio RA = 8, the change in

lift slope due to sweep δL is not very sensitive to aspect ratio. From the spread between

aspect ratio RA = 4 and RA = 20, it also appears that as taper ratio increases, the results

become less sensitive to aspect ratio.

6.2 RESULTS FOR INDUCED DRAG

Figure 6.2 shows the change in induced drag due to sweep κD as a function of the tip

sweep angle with different plots for taper ratio and different lines for aspect ratio. The

opacity of the lines increases with increasing aspect ratio, from the most transparent line

with RA = 4 to the most opaque line for RA = 20. The step between each line represents

an increase or decrease of ∆RA = 2 for the aspect ratio. Each quadrant mentions the taper

ratio.

FlightStream correctly captures the downward trend in δD for increasing tip sweep,

indicating a decrease in induced drag for an increase in sweep angle. We can see that as
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Fig. 6.1: Lift slope factor δL of wings with constant sweep as a function of tip sweep angle
Λtip, aspect ratio, and taper ratio.

taper ratio RT increases, κD trends towards higher values as well. The same is generally

true for κD increasing with increasing aspect ratio RA, although we can notice that this

trend is reversed at higher tip sweep angles for the lowest taper ratio of RT = 0.25. Note

that this plot does not directly tell us anything about absolute values of induced drag, but

that κD is in relation to a wing without sweep using the elliptic spanwise lift distribution.

In other words, while we see that in general the drag penalty with respect to an unswept

wing is larger for higher aspect ratios, we see that for low taper ratios with tip sweep angles

higher than roughly 15◦, low aspect ratios are actually penalized more than high aspect
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Fig. 6.2: Induced drag factor κD of wings with constant sweep as a function of tip sweep
angle Λtip, aspect ratio, and taper ratio.

ratios. This could mean that in terms of aerodynamic efficiency, wings with low taper and

aspect ratio are less suited for high sweep applications

It is interesting to note that while we traditionally have only used κD as an induced

drag penalty for wings without sweep, we can see from Fig. 6.2 that expanding its definition

to include swept wings means that κD can also be negative. This was also suggested by Van

Dam [15]. Remember that κD is an induced drag penalty with respect to an unswept wing

using the elliptic spanwise lift distribution. At first glance, a negative κD might suggest

that the elliptic spanwise lift distribution is not the most aerodynamically efficient, but it
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must be remembered that Fig. 6.2 analyses swept wings. As sweep increases, the induced

drag coefficient CDi decreases [53], so while a negative κD suggests lower drag of a swept

wing when compared to an unswept wing using an elliptic lift distribution, it does not mean

that the lift distribution of the wings in Fig 6.2 is in itself more efficient than an elliptic lift

distribution.

6.3 RESULTS FOR AERODYNAMIC CENTER

Figure 6.3 shows change in aerodynamic center position due to sweep κac as calculated

using Eq. 3.14 for different taper ratios as a function of aspect ratio and tip sweep angle for

all wings defined in Table 6.1. Again, the lowest aspect ratio RA = 4 is represented by the

most transparent line, the highest aspect ratio RA = 20 is shown using the most opaque

line, and the lines are ∆RA = 2 apart.

It can be seen in Fig. 6.3 that κac increases for increasing sweep, meaning that for wings

with rearward swept wings the aerodynamic center moves aft. This is in line with previous

research on the locus of section aerodynamic centers [51]. As expected, κac increases for

increasing aspect ratio, since at constant root chord, an increased aspect ratio means longer

span. The shift in aerodynamic center is seen to be fairly insensitive to taper ratio.
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Fig. 6.3: Aerodynamic center shift factor κac of wings with constant sweep as a function of
tip sweep angle Λtip, aspect ratio, and taper ratio.
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CHAPTER 7

AERODYNAMIC PROPERTIES OF WINGS WITH LINEAR SWEEP IN INVISCID

FLOW

This chapter discusses a set of 1476 wings using a linear sweep profile, with varying

tip sweep angles, aspect ratios, and taper ratios. All wings were analyzed using the inviscid

panel code FlightStream, discussed in Section 3.2.3. The planform variables governing the

set of wings with a linear sweep profile is described in Table 7.1. Section 3.1 discusses the

geometry of a linearly swept wings.

Table 7.1: Planform variables for wings with linear sweep.

Minimum Maximum Interval

Λtip [◦] 0 40 1
RA 4 20 2
RT 0.25 1.00 0.25

Just like with the constant sweep analysis, all linearly swept wings feature the sym-

metric NACA 0012 airfoil, no twist, and a root chord of one. The inviscid simulations are

all run in FlightStream using a grid with 160 spanwise panels and 80 chordwise panels, at

an angle of attack of α = 5◦.

Sections 7.1, 7.2, and 7.3 use the general relations from Section 3.5 to discuss the

aerodynamic properties of wings with a linear sweep profile.

7.1 RESULTS FOR LIFT

For wings with linear sweep, the correction in lift coefficient due to sweep δL is defined

as the ratio of the lift curve slope at any tip sweep angle Λtip divided by the lift curve slope

of a wing without sweep using the same aspect ratio and taper ratio. Figure 7.1 shows δL for

all crescent wings defined in Table 7.1. Each quadrant shows the results of a specific taper
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ratio. The interval between each line represents an aspect ratio change of two, with the

most transparent line representing RA = 4 and the most opaque line representing RA = 20.
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Fig. 7.1: Lift slope factor δL of wings with linear sweep as a function of tip sweep angle
Λtip, aspect ratio, and taper ratio.

When comparing Fig. 7.1 to Fig. 6.1, it seems that, while they following the same

downward trends, the values for δL are slightly higher for the crescent wings, suggesting a

slightly lower penalty in lift-curve slope due to sweep. This is likely due to the fact that

because of its shape, a crescent wing is effectively less swept across the span than a wing

with constant sweep, with only the tip section being in the same location as that of a wing
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with constant sweep. The same overall observations about dependency on taper and aspect

ratio as those made for the wings with constant sweep apply.

A sharp increase in slope can be seen for some wings at high tip sweep angles. This

effect is more noticeable for combinations of high aspect ratio RA with low taper ratio

RT . The exact reason of this is unknown, but a couple of suggestions are proposed. It

could be a physical phenomenon due to the fine outboard wing section having a more

significant effect at high sweep angles. This would explain why the effect is more noticeable

at combinations of high aspect ratio and low taper ratio, where the wing tip is more slender

than at combinations of low aspect ratio and high taper ratio. It could also be a numerical

phenomenon due to the skewness of the fine panels used for modelling the wing tips.

7.2 RESULTS FOR INDUCED DRAG

The results for the penalty in induced drag due to sweep for linearly swept wings can

be seen in Fig. 7.2. Again, each quadrant shows a different taper ratio, and the different

lines show different aspect ratios, with the most transparent line representing RA = 4, the

most opaque line representing RA = 20, and each consecutive line denoting a step change

of two.

When comparing Fig. 7.2 to Fig. 6.2, a couple of things are immediately apparent. At

RT = 0.25, the κD values for crescent wings are never negative, whereas this was achieved

by high aspect ratios on wings with constant sweep and the same taper ratio. However, for

all remaining taper ratios, linearly swept wings appear to achieve lower κD values across the

board, suggesting that crescent wings might be more aerodynamically efficient than wings

with constant sweep. A sharp increase can be seen at high tip sweep angles, especially for

wings with combinations of low taper ratio and high aspect ratio. This is likely to be caused

by the same mechanism that causes the increase in slope of the results for δL in Fig. 7.1.
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Fig. 7.2: Induced drag factor κD of wings with linear sweep as a function of tip sweep angle
Λtip, aspect ratio, and taper ratio.

7.3 RESULTS FOR AERODYNAMIC CENTER

The results for shift in aerodynamic center κac for linearly swept wings are shown in

Fig. 7.3. They show no surprises when compared to the results for conventionally swept

wings in Fig. 6.3. One thing to note is that the overall range of κac values is lower for

the crescent wings than the wings with constant sweep, which is due to the fact of the

crescent wings being effectively less swept across the majority of the span. While for a wing

with constant sweep, the quarter-chord line lies on top of the imaginary line connecting the

quarter-chord points of wing root and wing tip, for a crescent wing, all the surface area
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lies in front of it, decreasing the shift in aerodynamic center aft with sweep. Note that

the curling of the lines at higher tip sweep angles is again likely linked to the mechanism

causing the effects visible in Figs. 7.1 and 7.2.
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Fig. 7.3: Aerodynamic center shift factor κac of wings with linear sweep as a function of tip
sweep angle Λtip, aspect ratio, and taper ratio.
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CHAPTER 8

COMPARISON OF INVISCID AERODYNAMICS OF WINGS WITH CONSTANT

AND LINEAR SWEEP

This chapter makes a comparison between wings with constant sweep and those with

a linear sweep profile, discussed in Chapters 6 and 7 respectively. Section 8.1 discusses why

both wing types can’t be compared to each other at constant Λtip, and offers a different way

of comparing the two. Sections 8.2 and 8.3 combine the results from all wings described

in Tables 6.1 and 7.1 to draw comparisons between the two sweep types, to hopefully offer

some insight in whether one is more aerodynamically efficient than the other and why we

don’t see constant sweep in nature.

8.1 COMPARISON CRITERIA

In order to make a comparison, it has to be established what constitutes a fair or

useful comparison and what the main performance metric to be measured is. It is good to

remember that in subsonic applications, wing sweep is applied to provide stability to the

wing or aircraft by shifting the aerodynamic center aft in relation to the center of gravity.

When comparing wings with a constant and linear sweep profile, a crescent wing with 20

degrees of tip sweep is effectively less swept than a conventionally swept wing with 20

degrees of constant spanwise sweep, because the surface area of the crescent wing lies in

front of that of a wing with constant sweep, as seen in Fig. 8.1, showing wings with RA = 8,

RT = 0.25 and Λtip = 20◦ featuring a linear or a constant sweep profile. The aerodynamic

center positions are shown using a circle.

The same conclusion can be drawn by looking at Fig. 8.2, where κac is plotted versus

the tip sweep angle Λtip for a linearly and conventionally swept wings with aspect ratio

RA = 8 and taper ratio RT = 0.25. It can be seen that for equal tip sweep angle Λtip, κac

is higher for the wing with constant sweep, denoting a farther shift aft of the aerodynamic
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Fig. 8.1: Wings with RA = 8, RT = 0.25 and Λtip = 20◦ featuring constant and linear sweep
profiles.
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Fig. 8.2: Aerodynamic center shift κac as a function of Λtip for wings with RA = 8 and
RT = 0.25 featuring constant and linear sweep profiles.

Because of the significant difference in aerodynamic center position between the wing

with constant sweep and the wing with linear sweep, they are not likely to be used in
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the same application for the same flight condition and comparing two wings of equal tip

sweep angle does not seem useful. A wing with constant sweep and a crescent wing with

the same aspect ratio, taper ratio, and root chord have the same wing area regardless of

their sweep profile. It is assumed that they make use of the same airfoil section and have

no wing twist. Therefore, at a certain tip sweep angle, their lift coefficients CL will be

comparable. If a designer wants to consider these two designs at similar flight conditions in

similar application, they should offer a similar level of longitudinal stability. An important

parameter in flight performance is the static margin, which is a measure for how much

longitudinal stability an aircraft or wing has. It is defined as

σ =
xac − xcg

c̄
(8.1)

where xcg/c is the position of the center of gravity, and xac/c is the aerodynamic center

position, which can be calculated using Eq. (3.10). Since this research is specifically looking

at the aerodynamics of swept wings and does not attempt to make an accurate tool for

center of gravity position prediction, it is assumed that aerodynamic center position offers

a suitable replacement for the static margin. Since one wing with constant sweep and one

wing with crescent sweep in a comparison will be of equal aspect ratio, taper ratio, root

chord, and hence wing area, it is assumed that structurally they will be similar. As the

aerodynamic center moves aft, the center of gravity will move aft a certain amount without

altering the relation between them. Therefore, it is assumed that a comparison between two

wings is fair if they produce the same shift in aerodynamic center position. The aerodynamic

efficiency of both wings is assessed by looking at the induced drag coefficient factor κD.

8.2 RESULTS FOR WINGS WITH ASPECT RATIO RA = 8 AND TAPER

RATIO RT = 0.25

Before looking at the complete set of results, an in-depth look is taken at an example

set of wings with a specific aspect and taper ratio combination. Figure 8.3 shows κD as

a function of κac for wings with RA = 8 and RT = 0.25 using a constant sweep profile
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and a linear sweep profile. Because comparing the two different types of wings at the same

tip sweep angle Λtip is not useful as per the discussion in Section 8.1, κD is plotted versus

κac, the shift in aerodynamic center. The dashed line depicts the wing with constant sweep,

while the solid line depicts the crescent wing. Note that since both wing types were analyzed

to the same maximum tip sweep angle Λtip = 40◦, the wing with constant sweep is capable

of higher values for κac than the crescent wing.
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Fig. 8.3: Induced drag factor κD as a function of aerodynamic center shift κac for wings
with RA = 8 and RT = 0.25 featuring constant and linear sweep profiles.

It can be seen from Fig. 8.3 that the lines for constant and linear sweep cross at some

point, marked by the horizontal and vertical dotted lines. To the left of this intersection,

the dashed line lies below the solid line, suggesting that up until a certain required shift in

aerodynamic center position, the wing with constant sweep could be more aerodynamically

efficient than the wing with linear sweep, although after this point the crescent wing shows

potential benefits. We can quantify this potential benefit by simply taking the difference
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between the two as

∆κD = κD,lin − κD,cst (8.2)

where the subscripts lin and cst denote linear and constant sweep respectively. Figure 8.4

plots ∆κD versus κac over the range of κac values of the crescent wing, since this has the

more limited aerodynamic shift range.
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Fig. 8.4: Change in induced drag factor ∆κD between constant and linear sweep profiles as
a function of aerodynamic center shift κac for wings with RA = 8 and RT = 0.25.

We can find the intersection point where the lines for the wings with constant and

linear sweep cross in Fig. 8.3 at kac = 0.19, κD = 0.072. We can also find this κac value by

marking where the curve crosses ∆κD = 0, marked in Fig. 8.4 . From Fig. 8.2 we can see

what tip sweep angle Λtip this equates to for wings with a constant and linear sweep profile.

For kac = 0.19, the tip sweep of a wing with constant sweep is Λtip,cst = 6.19◦ and that of

a wing with linear sweep is Λtip,lin = 10.42◦. Figure 8.5 shows the two corresponding wings
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plotted on top of each other. The circles indicate their global aerodynamic center position.
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Fig. 8.5: Wings with RA = 8, RT = 0.25 featuring constant and linear sweep profiles with
equal κac and equal κD.

Since κD is nearly independent of lift coefficient CL and it is equal between the constant

and crescent wings at the intersection in Fig. 8.3, it is expected that their induced drag

polars will be identical as well. These can easily be constructed by analyzing the wing

geometries of Fig. 8.5 over a range of angle of attack values from α = −5◦ to α = 5◦.

Figure 8.6 shows the drag polar as lift coefficient CL versus induced drag coefficient CDi .

Note that because this is an inviscid study, the results in Fig. 8.6 only include induced

drag. Also included in the figure are the results for κD = 0, which from Eq. (2.10)

follows is the induced drag coefficient for an unswept wing using the elliptic lift distribution.

Remember that κD is a penalty with respect to this drag value. The crosses, denoted as

“analytic” in the legend, use Eq. (2.10) with κD = 0.072, found from the intersection Fig.

8.3. The fact that these lie on the computational result curves prove that κD is very nearly

independent of CL. This can also be seen in Fig. 8.7, where κD changes only slightly over

the range of CL values, apart from a slight asymmetry across the zero-lift point, which

follows from the way matrices are solved in FlightStream. Note that at CL = 0 there is no

drag in an inviscid simulation, and hence no κD value is computed.

Since the induced drag polars and induced drag factor κD are identical between the

wing with constant and the wing with linear sweep and their aerodynamic center shift factor
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Fig. 8.6: Drag polars for wings with RA = 8, RT = 0.25 using constant and crescent sweep
at the intersection in Fig. 8.3.

κac is equal as well, it could be assumed that their lift properties are also the same. Figure

8.8 shows the spanwise distribution of lift coefficient multiplied by local chord, C̃Lc, for both

wing types. It also includes the elliptic spanwise lift distribution from an elliptic planform

with no sweep and RA = 8. All wings are analyzed at a lift coefficient of CL = 0.3.

Figure 8.8 shows that both distributions resemble an elliptical spanwise lift distribution.

While both integrate to a global lift coefficient of CL = 0.3, the spanwise lift distributions

are are not identical. The wing with linear sweep carries more lift outboard, which is

interesting considering it experiences higher local sweep angles near the wing tip than the

wing with constant sweep does.

Figure 8.6 is specifically for the point of intersection in Fig. 8.3 where the constant

and crescent wings have the same κac and κD. If instead we look at κac = 0.50 in Fig.

8.3, we find that κD = 0.075 for the wing with constant sweep and κD = 0.040 for the

crescent wing, resulting in a ∆κD = −0.035 between both wing types. From Fig. 8.2 we

see that κac = 0.50 corresponds to Λtip,cst = 16.26◦ and Λtip,lin = 27.48◦. Figures 8.9 and
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Fig. 8.7: Induced drag factor κD as a function of lift coefficient CL for wings with constant
and crescent sweep at the intersection in Fig. 8.3
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Fig. 8.8: Spanwise lift distribution for wings with constant and crescent sweep at the inter-
section in Fig. 8.3, evaluated at CL = 0.3

8.10 show the corresponding wings and induced drag polars respectively. The circles in Fig.

8.9 indicate the wings’ global aerodynamic center position.
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Fig. 8.9: Wings with RA = 8, RT = 0.25 featuring constant and linear sweep profiles with
κac = 0.50.
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Fig. 8.10: Drag polars for wings with RA = 8, RT = 0.25 using constant and crescent sweep
with κac = 0.50.

There is a 89% difference between the κD = 0.075 for the wing with constant sweep

and κD = 0.040 for the wing with linear sweep. However, the difference in Fig. 8.10 does

not look as substantial. This is because κD is the penalty of drag with respect to a wing

with the same aspect ratio using an elliptic lift distribution. In other words, the wing with

constant sweep has a drag penalty that is 89% higher than the wing with linear sweep
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compared to the unswept wing with the same aspect ratio and an elliptic lift distribution,

which results in just a few percent more total induced drag.

Going back to Fig. 8.3 and looking at κD = 0.040, we find κac = 0.91 for the con-

ventionally swept wing and κac = 0.50 for the wing with linear sweep. From Fig. 8.2 we

see that this corresponds to Λtip,cst = 27.67◦ and Λtip,lin = 27.36◦. Figures 8.11 and 8.12

show the corresponding wings and induced drag polars respectively. The circles in Fig. 8.11

indicate the wings’ global aerodynamic center position.
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Fig. 8.11: Wings with RA = 8, RT = 0.25 featuring constant and linear sweep profiles with
κD = 0.040

It is obvious that the induced drag polars in Fig. 8.12 lie on top of each other, as the

κD value was specified to be κD = 0.040 for both. It is also clear that the induced drag

values are lower in Fig. 8.12 than in Fig. 8.6, where κD = 0.072. Figure 8.12 shows two

types of wings with the exact same induced drag, but where the one with constant sweep

provides significantly more stability than the crescent wing, thanks to the higher κac.
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Fig. 8.12: Drag polars for wings with RA = 8, RT = 0.25 using constant and crescent sweep
with κD = 0.040.

8.3 RESULTS FOR WINGS OF VARYING ASPECT AND TAPER RATIO

Having looked at the comparison of a wing with constant sweep and one with linear

sweep for one particular aspect and taper ratio combination, RA = 8, RT = 0.25, we now

look at the complete set of wings that were analyzed in Chapters 6 and 7.

Figure 8.13 shows κac versus κD for constant and crescent wings with aspect ratio

RA = 8 and across all taper ratios analyzed, with each quadrant showing a different taper

ratio. The dashed lines depict the wings with constant sweep, while the solid lines depict

the wings with linear sweep.

The point where the lines for wings with constant and linear sweep cross appears to

creep towards the left, or lower κac, for increasing taper ratio, suggesting that crescent wings

could show a benefit at lower required shifts in aerodynamic center, or equivalently lower

tip sweep angles, for wings with high taper ratios than for wings with low aspect ratios..
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Fig. 8.13: Induced drag factor κD as a function of aerodynamic shift factor κac and taper
ratio RT , for wings with aspect ratio RA = 8 featuring constant linear sweep profiles.

Figure 8.14 shows κD for wings of taper ratio RT = 0.25 using constant and linear

sweep. The different quadrants show different aspect ratios. Again, the dashed lines depict

the wings with constant sweep, while the solid lines depict the wings with constant sweep.

We see that as the aspect ratio increases, so does the range on the horizontal axis

depicting κac. This is because since the root chord is kept constant and equal to one for all

wings, a higher aspect ratio results in a higher span. The higher span means a higher shift

of the aerodynamic center or higher κac for swept wings.

It appears from Fig. 8.14 that the results for κD for wings with constant and linear

sweep lie closer to one another as the aspect ratio increases. This would suggest that with
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Fig. 8.14: Induced drag factor κD as a function of aerodynamic shift factor κac and aspect
ratio RA, for wings with taper ratio RT = 0.25 featuring constant linear sweep profiles.

taper ratio RT = 0.25, at high aspect ratios, there is less of a difference in aerodynamic

efficiency between both types of wing sweep profiles than at lower taper ratios. A possible

explanation is that at higher aspect ratios, leading to higher spans, the effect of the physical

curvature of the quarter-chord sweep line from a planform perspective is less noticeable.

Figure 8.15 shows ∆κD as calculated using Eq. (8.2) for all wings. Each quadrant

depicts a different taper ratio, while the different lines indicate different aspect ratios. The

most transparent lines is used for wings with aspect ratio RA = 4, while the most opaque

line shows aspect ratio RA = 20. Each line in between depicts a step change of 2 in aspect

ratio.
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Fig. 8.15: Change in induced drag factor ∆κD between constant and linear sweep profiles
as a function of aerodynamic center shift factor κac, aspect ratio RA, and taper ratio RT .

We see that ∆κD is generally closer to zero for higher aspect ratios for all taper ratios,

but it is nowhere as pronounced as with taper ratio RT = 0.25, which we saw in Fig. 8.14

and now again in the top-left quadrant of Fig. 8.15. It can also be seen that ∆κD reaches

lower, or more negative, values for increasing taper ratio, and that the effect of aspect ratio

becomes less apparent at high taper ratio, which can be noticed due to the lines being more

concentrated.

From Fig. 8.15 we can mark the κac values where ∆κD = 0, to mark at which point the

linear sweep profile is potentially more aerodynamically efficient than the constant sweep

profile. This is similar to what was done in in Fig. 8.4, but applied to all 1476 wings in our
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data set. Figure 8.16 shows how this κac value changes as a function of aspect ratio and

taper ratio.
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Fig. 8.16: Cross-over point between constant and linear sweep profiles in terms of aerody-
namic center shift factor κac as a function of aspect ratio RA and taper ratio RT .

From Fig. 8.16 we see that as taper ratio increases, a crescent wing becomes potentially

more aerodynamically efficient than a wing with constant sweep at lower κac values. Using

Fig. 6.3, κac can be turned in an equivalent constant sweep angle, above which a linear

sweep profile becomes more efficient. Doing this to Fig. 8.16 gives us Fig. 8.17.
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Fig. 8.17: Cross-over point between constant and linear sweep profiles in terms of equivalent
constant tip sweep angle Λtip,cst as a function of aspect ratio RA and taper ratio RT .

The strong curve in the line for taper ratio RT = 0.25 can be explained by looking at

Fig. 8.16. For aspect ratios below around 8-10, the cross-over point in terms of κac where

a crescent wing becomes more aerodynamically efficient than a wing with constant sweep

does not vary much with aspect ratio. However, as aspect ratio increases, the tip sweep

angle required to reach a certain κac value decreases due to the increased span. We see that

for wings with a taper ratio of RT = 0.25 and aspect ratio of RA = 5, a crescent wing is

only potentially more efficient than a wing with constant sweep if the tip sweep angle of a

constant-sweep wing is higher than around 10◦, but this angle decreases to 6◦ for RA = 10.

RT = 0.25 is considered a very low taper ratio. As taper ratio increases, crescent wings

could the potential to decrease drag when compared to a wing with constant sweep at much

lower equivalent sweep angles. For taper ratios upwards of RT = 0.5, Fig. 8.17 shows that

if a constant sweep angle of 4◦ or less is needed for the wing design, an equivalent crescent

wing could show a higher aerodynamic efficiency, regardless of the aspect ratio.
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8.4 COMPARISON TO ALBATROSS WING

This chapter dealt with comparing wings with a constant or linear sweep profile. Both

of these two approaches are man-made and follow from either practicality in manufacturing

or ease of mathematical formulation. In wings of birds or fins of fish we see neither constant

sweep nor pure linear sweep. Assuming that nature always evolves to some optimum, we

could expect these animals to have sweep profiles that are more efficient than the two

studied in this chapter.

Albatrosses are known to be masters of gliding flight, spending only 1.2 to 14.5 percent

of their flight time flapping their wings, and gliding the rest of the time [54]. In fact, thanks

to their efficient wing design, they can stay aloft for days [55]. Figure 8.18 shows the wing

of an albatross [56], and a simplified representation suitable for aerodynamic analysis.

Fig. 8.18: Albatross wing geometry and model representation [7]. 1

In order to calculate the κac value for this albatross wing, we need to establish what

unswept reference wing it will be compared to for the value of (xac)Λ=0 in Eq. 3.14. The

wingspan of the albatross wing in Fig. 8.18 is 3.4m, the mean chord can be measured to be

0.27m, resulting in an aspect ratio of RA = 12.5. We can’t realistically measure the taper

ratio of the albatross wing. Therefore, we keep the aspect ratio, wing area, and span of the

reference wing equal to that of the albatross, and let that drive our taper ratio, resulting

1Figure available via license: Creative Commons Attribution 4.0 International from Srigrarom [7]. Fig-
ured has been altered by removing the background and mirroring the wing.
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in RT = 0.088. Running the analysis using FlightStream with this information results in

κac = 0.3674 and κD = 0.070 for the albatross wing. Figure 8.19 shows a front view and

isometric view of the FlightStream results for the wake and surface pressure field of the

wing.

Fig. 8.19: Front view and isometric view of FlightStream results of wake and surface pressure
field of the albatross wing with induced drag factor κD = 0.070.

As mentioned in Section 8.1, all our comparisons are done at equal aerodynamic center

shift. The equivalent wings with constant sweep and linear sweep need a tip sweep angle

of Λtip = 8.48◦ and Λtip = 15.14◦ to achieve the same κac = 0.3674 value as that of

the albatross wing. Figure 8.20 shows the albatross wing with the equivalent wings with

constant and linear sweep superimposed. Note that in the analysis and in Fig. 8.20, the

albatross wing has been scaled to match the root chord of one used in the rest of this

dissertation research, but because of the aspect ratio remains the same and all reference

lengths and areas are correctly adjusted, the results following from inviscid flow remain the

same.

The equivalent wings with constant and linear sweep both have an induced drag factor

κD = 0.127, higher than the result for the albatross wing, κD = 0.070. It therefore appears



81

3 2 1 0 1 2 3
y

0.5

0.0

0.5

1.0

1.5

x

Fig. 8.20: Comparison between albatross wing and equivalent wings with constant and
linear sweep profiles.

that the albatross wing is more aerodynamically efficient than both types of wing sweep.

Looking at Fig. 8.20, this could be explained by the higher local angles of sweep along the

span. It also has to be remembered that viscous effects are excluded from this analysis, and

boundary flows in spanwise direction are likely to change the results and complicate any

statements on aerodynamic efficiency.

8.5 DISCUSSION AND CONSIDERATIONS

Figures 8.16 and 8.17 are powerful figures that offer immediate use in wing design. They

show the crossover point past which it makes more sense from an aerodynamic efficiency

perspective to use a linear sweep profile over a constant sweep angle. They show that at

least for taper ratios RT = 0.5 and higher, there is a certain aspect ratio beyond which this

crossover point is constant. Taper ratio RT = 0.25 shows less predictable behavior. Once a

designer knows where the aerodynamic center position should be to provide a suitable level

of stability and control, they can decide from Fig. 8.16 whether a wing with constant or

linear sweep will produce the lowest induced drag. They can use Fig. 8.17 to visualize what

the equivalent level of constant sweep is, as they are likely more familiar with imagining

constant sweep designs. It is shown that for a certain amount of drag, a designer can choose

between either sweep profile to determine the level of stability desired.
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An albatross wing is modeled and simulated to show how it is likely more aerodynam-

ically efficient than both the wings with constant sweep as well as the crescent wings with

a linear sweep profile.

One could jump to the foregone conclusion that deciding whether to go for a crescent

wing or a conventional wing is a no-brainer, with the linear sweep profile posing lower κD

values over a large space of wing designs. However, this isn’t true. A large portion of

current airplane designs, such as slow-flying general aviation aircraft with a conventional

empennage, have no need for wing sweep. They don’t face compressibility effects in their

flight regime and have a horizontal stabilizer and elevator for longitudinal stability and

control. The main application and possible benefit to be had is in flying wing designs,

which are becoming increasingly interesting since the advent of unmanned aerial vehicles.

Even there, however, there are drawbacks to a crescent wing design. While the induced

drag polars show that for a certain lift coefficient CL the induced drag coefficient CDi of a

wing with linear sweep is lower than that of one with constant sweep, the generally lower κL

value means it will have to fly at a higher angle of attack. This means that a crescent wing

will likely experience separation and hence stall sooner than a wing with constant sweep,

and likely not reach as high of a CL,max value. Due to the inviscid nature of this research,

with angle of attack values well within the range of linear aerodynamics, separation or

determination of CL,max values is outside the scope of this research.

Besides the discussion of aerodynamic efficiency not being self-evident, there are more

qualitative and practical considerations to make. Wings with constant sweep have been

manufactured for many decades, and crescent wings are conceivably harder to manufac-

ture, similarly to elliptic wing planforms. This could require stiffer and heavier structures,

potentially negating any benefits. Because of their wing tips being noticeable aft of those

of wings with constant sweep and equal κac values, the static elastic deformation resulting

from the increased moment arm could be more significant [57]. This assumption is further

justified when looking at the spanwise lift distributions in Fig. 8.8, where the wing with

crescent sweep experiences more lift outboard of the wing. The added bending could make
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flutter properties such as control reversal more likely and severe [58]. Crescent wings have

higher local angles of sweep, especially near the wing tip, where control surfaces are often

located. These high angles of sweep could potentially have effects on the effectiveness of

these control surfaces [59].

The above considerations should only serve as food for thought and suggestions for

future research. This dissertation is in no way trying to make quantified claims about

them, as they are outside of the scope. In future research, it is also advised to investigate

more types of sweep besides the constant and linear sweep profile.
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CHAPTER 9

EFFECTS OF VISCOSITY ON WINGS WITH SWEEP

While the focus of this dissertation is on inviscid aerodynamics, this chapter will discuss

how the results could change when including the effects of viscosity. FlightStream offers a

viscous correction [24] to account for boundary layer effects based on a model by Standen

[42]. While typically, simple boundary corrections consider the flow to be either laminar

or turbulent, FlightStream takes transition into account when calculating the boundary

layer thickness, using a transition model by Dvorak [43]. It uses a friction model from

Olsen [60] to calculate the skin friction coefficient as a function of surface roughness height,

boundary layer momentum thickness and boundary layer shape factor. The flow outside

the boundary layer is assumed to be isentropic and subsonic, but compressible. This will

be used to consider the first-order effects of viscosity on the results of this work.

While κD was defined as a parameter to represent induced drag without dependency on

lift coefficient CL, it can not be used verbatim when including viscous effects. Analogous to

Eq. (2.10) for inviscid flow, we can write the total drag coefficient, including viscous effects,

as the summation of parasitic and inviscid drag

CDT
= CDp + CDi (9.1)

Figure 9.1 shows the induced, parasitic drag, and total drag coefficient of a wing with a root

chord of one, RA = 8 and RT = 0.25 and tip sweep angle Λtip = 20◦ featuring a constant

sweep profile as a function of lift coefficient at a velocity of V = 10m/s as predicted by

FlightStream.

Note from Fig. 9.1 that the parasitic drag coefficient CDp shows a parabolic relationship

with lift coefficient CL due to viscous effects, increasing with increasing or decreasing lift

coefficient due to the increased boundary layer thickness. Also note from Fig. 9.1 that the
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Fig. 9.1: Induced drag coefficient CDi , parasitic drag coefficient CDp and total drag coeffi-
cient CDT

as a function of lift coefficient CL for a wing with RA = 8 and RT = 0.25 and
tip sweep angle Λtip = 20◦ featuring a constant sweep profile.

induced drag component is zero at zero-lift due to the use of a symmetric airfoil profile and

no wing twist.

The dissertation research preceding this chapter only discussed inviscid studies because

they allow for a great understanding of aerodynamic trends due to geometric design without

the influence of atmospheric conditions and flight characteristics such as free stream velocity.

Figure 9.2 shows induced, parasitic drag, and total drag coefficient as a function of airspeed.

It shows how induced drag coefficient stays constant with increasing velocity, while the

parasitic drag coefficient CDp decreases with increasing velocity because of the increasing

Reynolds number.

Because the induced drag is a parabolic function of lift, and because the parasitic drag

is nearly parabolic with lift, we will use the following relationship to parameterize the total

drag as a function of lift:

CDT
= CDo +

C2
L

πRA
(1 + κ̂D) (9.2)
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Fig. 9.2: Induced drag coefficient CDi , parasitic drag coefficient CDp and total drag coeffi-
cient CDT

as a function of free stream velocity V for a wing with RA = 8 and RT = 0.25
without sweep, at angle of attack α = 5◦.

where CDo is the drag coefficient at zero-lift. Since this research uses symmetric airfoils,

this is also the drag coefficient at an angle of attack of α = 0◦. For inviscid flow it results

that CDo = 0, arriving at Eq. (2.10).

We can calculate all aerodynamic coefficients from Eq. (9.2) using FlightStream with

viscous effects. All wings can be analyzed at an angle of attack of α = 0◦ to find the zero-lift

drag coefficient CDo . Solving Eq. (9.2) for κ̂D results in

κ̂D = (CDT
− CDo)

RA

C2
L

− 1 (9.3)

Equation (9.3) can be used to calculate κ̂D using results from two FlightStream runs

with viscous effects per wing, one at zero degrees angle of attack and one at α = 5◦. The

results at an angle of attack of α = 5◦ include the total drag coefficient and lift coefficient

needed for Eq. (9.3). The resulting κ̂D can then be used in Eq. (9.2) to calculate the total

drag coefficient for that wing at an arbitrary lift coefficient CL below stall.
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In Chapter 8, the aerodynamic characteristics of wings with constant sweep and linear

sweep were compared by plotting their induced drag factors κD versus their shift in aerody-

namic center factor κac. We can’t simply plot κ̂D versus κac when including viscous effects

because the total drag depends on both CDo and κ̂D. Instead, the total drag coefficient

for each wing at the same lift coefficient, calculated using Eq. (9.2), will be used for com-

parison. For our study, we will use a lift coefficient of CL = 0.5 for all comparisons unless

specified otherwise.

In line with the preceding inviscid research, we would like to compare wings of constant

sweep and linear sweep at equal aerodynamic center shift κac as opposed to equal tip sweep

angle. Therefore, total drag coefficient CDT
at lift coefficient CL = 0.5 will be considered

as a function of κac.

Figure 9.3 shows total drag coefficient CDT
at CL = 0.5 as a function of κac for wings

of aspect ratio RA = 8 and taper ratio RT = 0.25 using a constant and linear sweep profile

with tip sweep angles ranging from Λtip = 0◦ to Λtip = 40◦.
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Fig. 9.3: Total drag coefficient CDT
as a function of aerodynamic center shift κac for wings

with RA = 8 and RT = 0.25 featuring constant and linear sweep profiles at CL = 0.5.
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Figure 9.4 shows induced drag coefficient CDi at CL = 0.5 as a function of κac for the

same set of wings as those used in Fig. 9.3. Notice that the cross-over point where wings

with linear sweep produce less aerodynamic sweep than wings with constant sweep lies at

roughly the same point with or without viscous effects.
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Fig. 9.4: Induced drag coefficient CDi as a function of aerodynamic center shift κac for
wings with RA = 8 and RT = 0.25 featuring constant and linear sweep profiles at CL = 0.5.

Figures 9.5 and 9.6 show total drag coefficient CDT
and induced drag coefficient CDi

respectively for the same set of wings as above, evaluated at CL = 0.8.

Note when comparing Figs. 9.4 and 9.6 that their curves are identical, only the absolute

value of the induced drag coefficient has changed. In fact, their shapes are the same as that

of κD in Fig. 8.3.

When comparing Figs. 9.3 and 9.5, the influence of lift coefficient CL on viscous drag

effects becomes apparent, as the cross-over point where wings with linear sweep pose a

potential increase in aerodynamic efficiency over wings with constant sweep has shifted

to the right, so that wings with constant sweep have a lower drag coefficient until higher

equivalent sweep angles than at the lower lift coefficient of CL = 0.5.
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Fig. 9.5: Total drag coefficient CDT
as a function of aerodynamic center shift κac for wings

with RA = 8 and RT = 0.25 featuring constant and linear sweep profiles at CL = 0.8.
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Fig. 9.6: Induced drag coefficient CDi as a function of aerodynamic center shift κac for
wings with RA = 8 and RT = 0.25 featuring constant and linear sweep profiles at CL = 0.8.

Viscous coupling for swept wings is an involved topic outside the scope of the present

research. A comprehensive study on the effects of viscosity would require a significant

amount of extra research, as viscous effects depend on Reynolds number, sweep angle and
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lift coefficient. However, as can be seen from Figs. 9.3-9.6, the trends for total drag including

viscosity are very similar to the trends found for induced drag alone in this work. Hence,

the results of the present study neglecting viscosity offer great insight for understanding

the effects of sweep type and angle on induced drag as a function of taper ratio and aspect

ratio. The inviscid results for induced drag can be used by a designer to make a very

quick comparison between a wing with constant sweep or linear sweep that will not change

significantly when including viscous effects in a later, more resource intensive study.
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CHAPTER 10

OPTIMIZATION OF WING SWEEP PROFILE FOR MINIMUM κD

Chapters 6, 7 and 8 took an in-depth look into the inviscid aerodynamics of conventional

wings with constant sweep, and crescent-shaped wings with a linear sweep profile. These

are not the only two types of wing planform designs. In fact, the set of crescent-shaped

wings in itself contains an infinite amount of design possibilities, depending on the function

governing the curvature of the quarter-chord line. It is therefore conceivable that neither

of them are the most aerodynamically efficient planform shape available. This chapter uses

an optimization algorithm to attempt to find solutions for the wing sweep profile that will

minimize κD, calculated using Eq. 3.12 using data from FlightStream when ignoring viscous

effects. While Chapter 9 shows that the effects of viscosity do not significantly alter the

results and comparisons between wings with constant sweep and linear sweep, it is important

to realize that the results from an optimization study might experience greater influence

from viscosity due to the complexity of the resulting wing geometry. Still, a purely inviscid

study will often be the stepping stone of any aerodynamic study involving optimization.

10.1 OPTIMIZATION SETUP

This section establishes the optimization setup and its limitations and constraints.

Since this research is a study on the effects of sweep profiles on inviscid aerodynamics and

to reduce the scope and number of variables in the optimization, aspect ratio RA and taper

ratio RT are not part of the optimization process. Therefore, for a particular optimization

exercise, RA and RT are defined as input parameters. The aspect and taper ratios fully

define the spanwise chord distribution according to Eq. (3.1). With the root section fixed,

the wing geometry is then completely determined by defining the longitudinal position xqc

of the quarter-chord sweep line. Wings are modeled using Nspan spanwise sections, of which

the innermost section, the wing root, is not allowed to vary. This means that the quarter-
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chord sweep line is defined by the position of the Nspan − 1 outermost sections, which the

optimization algorithm is allowed to vary.

As discussed in Section 8.1, the induced drag factor κD is taken as performance metric,

as it is nearly independent of lift coefficient CL. Our objective function is therefore κD,

calculated using Eq. 3.12 using data from FlightStream.

We have seen before in Section 8.1 that the factor for shift in aerodynamic center κac

of two wings should be equal in order for a fair comparison to be made. So that we can

make this comparison at equal shift in aerodynamic center, κac is taken as an inequality

constraint as follows:

abs

(
b− a

2

)
− abs

(
κac − (a+ b)

2

)
≥ 0 (10.1)

where a and b are the limits within which κac must lie. This function is larger than zero

and returns true only if κac lies between a and b. Besides this one inequality constraint,

bounds have been set on the input variable as xqc ∈ [−5, 5].

Before the optimization algorithm starts, a wing with the same aspect ratio and taper

ratio as that of the wing to be optimized but with zero sweep has to be analyzed to find

(xac)Λ=0

cref
in order to be able to calculate the κac of each iteration using Eq. (3.14). The

gradient-based SLSQP (Sequential Least Squares Quadratic Programming) algorithm [61]

is used to optimize the objective function κD, which is calculated by calling FlightStream,

described in Section 3.2.3. The tolerance for convergence with the SLSQP algorithm is set

to 1e− 3.

During optimization, all simulations are run at a modified grid of 80 panels in spanwise

direction, as opposed to the higher resolution of 160 spanwise panels used in the previous

chapters, to decrease the computation time. From the grid convergence study done with

FlightStream (Section 3.2.3), we see that the results for a grid with 80x80 panels is still

within 6% of the finest grid of 200x80 nodes, so this is considered suitable. After the

optimization is done, the resulting wings are analyzed using a grid with 160x80 panels for

comparison to the rest of the results.
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All optimization exercises feature wings with aspect ratio RA = 8 and taper ratio

RT = 0.25, although with varying requirements on κac. Throughout the discussion of the

results, mention is made of reference wings. These are all wings with aspect ratio RA = 8

and taper ratio RT = 0.25 featuring a constant sweep angle such that they achieve the

relevant κac value that is being discussed in that particular optimization exercise.

10.2 INFLUENCE OF INITIAL GUESS

This section discusses how the solution of a gradient-based optimization effort depends

on the initial guess. From Fig. 8.3 we see that the lines for a wing with constant sweep

and a wing with linear sweep of aspect ratio RA = 8 and taper ratio RT = 0.25 cross at

κD = 0.072 and κac = 0.19. From Fig. 8.2, we can see that this correspond to a tip sweep

angle Λtip = 6.19◦ for the wing with constant sweep and Λtip = 10.42◦ for the linearly swept

wing. At this intersection, the wing with constant sweep effectively produces the same

amount of drag as the wing with linear sweep. An SLSQP optimization algorithm is used

to see if at this particular κac we can find an optimal quarter-chord sweep line distribution

xqc that results in a lower κD than either of these two wing designs. For this we consider

three different initial guesses for xqc. The first one starts from a wing with zero sweep,

the second one starts from a quarter-chord line with a constant sweep angle of Λtip = 6.5◦,

as it is around the cross-over point at κD = 0.072 and κac = 0.19, and the third guess is

initialized from a wing with twice as much sweep, Λtip = 13◦. The goal for κac is set with

a = 0.19 and b = 0.192 in Eq. (10.1), to allow for a small margin. The optimization setups

are summarized in Table 10.1.

Table 10.1: Setup of optimization cases to verify influence of initial guess.

RA RT Nspan κacgoal xqc,0
Wing A.I 8 0.25 5 0.19-0.192 [0, 0, 0, 0, 0]
Wing A.II 8 0.25 5 0.19-0.192 [0, 0.0712, 0.1424, 0.2136, 0.2848]
Wing A.III 8 0.25 5 0.19-0.192 [0, 0.1443, 0.2886, 0.4329, 0.5772]
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The resulting wings are plotted in Fig. 10.1, with the results summarized in Table

10.2, where %∆ref is the percentage change in κD with respect to the reference wing. The

reference wing for all three wings in Table 10.2 is the wing with aspect ratio RA = 8 and

taper ratio RT = 0.25 and a constant sweep profile with Λtip = 6.19◦. It is shown in Fig.

10.1 using a thin dashed line.
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Fig. 10.1: Geometry of results of optimization cases from Table 10.2.

Table 10.2: Results of optimization cases to verify influence of initial guess.

xfinal number of iterations

Wing A.I [0, -0.5737, 0.8875, 0.1649, -0.0077] 245
Wing A.II [0, -0.5317, 0.2896, 0.7056, 0.4784] 212
Wing A.III [0, -0.4684, 0.4173, 0.6598, -0.0854] 170

κac κD %∆ref

Wing A.I 0.19 -0.193 -367%
Wing A.II 0.19 -0.092 -228%
Wing A.III 0.19 -0.056 -178%

It can be seen from Fig. 10.1 and Table 10.2 that the three different initial guesses

result in significantly differing geometries that all meet the κac constraint. We can also

see that the induced drag factor κD for all three results are significantly reduced when
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compared to the results for the reference wing, where from Fig. 8.3 we see that κD = 0.072.

This shows that multiple quarter-chord sweep lines exist that result in lower induced drag

than the constant or linear sweep distributions.

Figure 10.2 shows the spanwise lift distributions for all three wings from Table 10.2, as

well as the elliptic spanwise lift distribution from an elliptic planform with no sweep and

RA = 8.
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Fig. 10.2: Spanwise lift distributions of optimization cases from Table 10.2, evaluated at
CL = 0.3.

Despite all curves in Fig. 10.2 integrating to a global lift coefficient of CL = 0.3, the

curves for the optimal wings differ significantly from the elliptic spanwise lift distribution.

Still, they offer a lower κD value according to the results in Table 10.2. This could be

explained by looking at the geometry in Fig. 10.3, showing the isometric views of the

surface pressure fields of all three wings from Table 10.2 respectively.

Behind the regions of high local sweep, the vorticity being shed in the wake is farther

away from the lifting surface than behind regions with less sweep. Figure 10.4 shows the

vortex structures in the wake behind the three wings from Table 10.2.
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Fig. 10.3: Surface pressure fields of optimization cases from Table 10.2, evaluated at CL =
0.3.

Fig. 10.4: Front views of wakes of optimization cases from Table 10.2, evaluated at CL = 0.3.

The non-linear behavior of our multivariable problem means that SLSQP, a gradient

based optimization solver, is not able to guarantee a global minimum. Basin-hopping is

a technique in which random perturbations are made to the initial guess, followed by a

local optimization with an algorithm such as SLSQP. Based on the resulting minimum

function value, it will accept or reject iteration guesses. This could be useful in covering a
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large space of potential solutions at the expense of significantly increased computing time.

However, basin-hopping does not handle constraints in its selection of new guesses, so it

could violate the inequality constraint on κac in its selection of the initial guess. In the end,

despite covering a large space, it still can’t guarantee having found the global minimum,

it just has more chances at finding a better solution than a gradient based optimization

from just one initial guess, the result of which can vary significantly as shown in Table 10.2.

This optimization chapter serves only to show the existence of solutions with less induced

drag, and realizes it can’t guarantee a global minimum. A global optimization study is

recommended for future research.

10.3 INFLUENCE OF NUMBER OF SPANWISE SECTIONS

The wings in Section 10.2 were modeled using Nspan = 5 sections and studied the

effects of initial guess on the final solution. It is conceivable to think that solutions with

lower induced drag can be found when increasing the number of sections. This increases the

flexibility of the optimizer to modify the wing geometry by allowing it to vary the quarter

chord position at more spanwise locations. We are still considering wings with aspect ratio

RA = 8 and taper ratio RT = 0.25, and like in Section 10.2, the goal for κac is set to

0.19 − 0.192. Wing B.I is modeled using Nspan = 5 sections, Wing B.II using Nspan = 7

sections, and Wing B.III using Nspan = 9 sections. To increase the convergence rate despite

the increased number of sections, all three wings were initialized to a wing with constant

sweep and a tip sweep angle Λtip = 6.5◦, so that the initial guess is closer to the desired κac.

Note that Wing B.I in this study is equal to Wing A.II in Section 10.2. The optimization

setups are summarized in Table 10.3.



98

Table 10.3: Setup of optimization cases to verify influence of number of spanwise sections.

RA RT Nspan κacgoal xqc,0
Wing B.I 8 0.25 5 0.19-0.192 [0, 0.0712, 0.1424, 0.2136, 0.2848]
Wing B.II 8 0.25 7 0.19-0.192 [0, 0.0475, 0.0949, 0.1424,

0.1899, 0.2374, 0.2848]
Wing B.III 8 0.25 9 0.19-0.192 [0, 0.0356, 0.0712, 0.1068, 0.1424,

0.1780, 0.2136, 0.2492, 0.2848]

The resulting wings are plotted in Fig. 10.5, with the results summarized in Table 10.4.

The reference wing for all three wings in Table 10.4 is the wing with aspect ratio RA = 8

and taper ratio RT = 0.25 and a constant sweep profile with Λtip = 6.19◦. It is shown in

Fig. 10.4 using a thin dashed line.
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Fig. 10.5: Geometry of results of optimization cases from Table 10.3.

As we can see in Table 10.4, increasing the number of sections Nspan allows for a de-

crease in the resulting κD, when initialized as a wing with 6.5◦ of constant sweep. Note that

it is not guaranteed and in fact unlikely that either of these solutions is a global minimum,

and that it is possible that a gradient-based optimization algorithm would have found a

higher κD for a wing with more spanwise sections Nspan than another wing. However, con-

sidering all three wings were initialized in the same way, it is telling that increased flexibility
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Table 10.4: Results of optimization cases to verify influence of number of spanwise sections.

xfinal number of iterations

Wing B.I [0, -0.5317, 0.2896, 0.7056, 0.4784] 212
Wing B.II [0, -0.8880, -0.1111, 0.5898,

1.2011, 0.1057, -0.4735] 368
Wing B.III [0, -0.7885, 0.3420, -0.2373, 0.2196,

0.8403, 0.3868, 0.0130, 0.4659] 877

κac κD %∆ref

Wing B.I 0.19 -0.092 -228%
Wing B.II 0.19 -0.256 -455%
Wing B.III 0.19 -0.359 -597%

in geometry allows the optimizer to find a solution with lower induced drag.

10.4 RESULTS FOR OPTIMIZATIONS AT DIFFERENT κac

The previous sections all dealt with optimizations of wings with RA = 8 and RT = 0.25

at κac = 0.19. This was the cross-over point of the curves in Fig. 8.3, where the wings

with constant and linear sweep of RA = 8 and RT = 0.25 produce the same amount of

drag. This section looks at wings with RA = 8 and RT = 0.25 at different required shifts in

aerodynamic center. This will effectively result in wings with different levels of equivalent

sweep. All five wings investigated were modeled with Nspan = 5 spanwise sections and

initiated as a wing without sweep. Note that Wing C.III in Table 10.5 is the same as Wing

A.I in Section 10.2.

Table 10.5: Setup of optimization cases at different κac.

RA RT Nspan κacgoal xqc,0
Wing C.I 8 0.25 5 0.0-0.002 [0, 0, 0, 0, 0]
Wing C.II 8 0.25 5 0.1-0.102 [0, 0, 0, 0, 0]
Wing C.III 8 0.25 5 0.19-0.192 [0, 0, 0, 0, 0]
Wing C.IV 8 0.25 5 0.3-0.302 [0, 0, 0, 0, 0]
Wing C.V 8 0.25 5 0.4-0.402 [0, 0, 0, 0, 0]

The resulting wings are plotted in Fig. 10.6, with the results summarized in Table

10.6. Note that the reference wings in this study are not the same. They are all wings with
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aspect ratio RA = 8 and taper ratio RT = 0.25 featuring a constant sweep profile, but their

tip sweep angle Λtip is such that the κac of the appropriate reference wing matches that of

the optimized wing. Because there are multiple reference wings, they have been omitted

from Fig. 10.6 to preserve legibility.
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Fig. 10.6: Geometry of results of optimization cases from Table 10.6.

Table 10.6: Results of optimization cases at different κac.

xfinal number of iterations

Wing C.I [0, -0.6017, 0.6537, -0.0726, 0.0324] 364
Wing C.II [0, -0.5264, 0.7889, -0.0494, 0.0792] 266
Wing C.III [0, -0.5737, 0.8875, 0.1649, -0.0077] 245
Wing C.IV [0, -0.1139, 1.0059, -0.5676, 0.4928] 822
Wing C.V [0, -0.0047, 0.9299, -0.2002, 0.3708] 479

κac κD %∆ref

Wing C.I 0.00 -0.197 -448%
Wing C.II 0.10 -0.177 -369%
Wing C.III 0.19 -0.193 -367%
Wing C.IV 0.30 0.104 +63%
Wing C.V 0.40 -0.011 -114%
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The first thing to note from the results in Table 10.6 is that the optimization attempt

for Wing C.IV resulted in a higher κD than the reference wing with constant sweep, which

had a value of κD = 0.076. This is proof that a gradient based optimization algorithm can

get stuck in a local minimum. From Fig. 10.6, it can be seen that the inboard wing section

carries a lot of weight in the determination of κac, since the wings with higher κac constraints

show less forward sweep in the inboard section than the wings with a lower required aero-

dynamic center shift. Another thing of interest is that, barring Wing C.IV, %∆ref appears

to become increasingly less negative with increasing κac. While care should be taken not

to jump to rash conclusions, there is a possible explanation for this. Throughout these

optimization exercises it has become clear that the optimization algorithm wants to make

use of high local forward and rearward sweep angles to minimize κD. This can likely be

explained by looking at Fig. 6.2, where κD is seen to decrease with increasing sweep angle.

Wings with constant sweep and a high κac value already feature higher sweep angles than

wings with a lower κac value. There is therefore likely less possibility in decreasing κD by

changing the local sweep angles.

10.5 DISCUSSION AND CONSIDERATIONS

This chapter made clear that there exist more aerodynamically efficient sweep profiles

than both the constant and linear sweep profile when considering purely inviscid solutions.

An optimization algorithm is a good way at finding optimal solutions, but it is hard, if not

impossible, to guarantee a global minimum without a good functional description for the

problem. The use of SLSQP, a gradient-based optimization algorithm, means it is easy to

get stuck in a local minimum. In a real-life design scenario, it is advised to start multiple

optimization exercises from different initial guesses, or use basin-hopping techniques, to

increase the chance of finding a global optimum. This is definitely a worthwhile area for

future research.

It is obvious from the resulting geometries that the optimization algorithm seeks wings

with areas of high local forward and rearward sweep, making the manufacturability of the

resulting geometries somewhat unlikely. Constraints for maximum changes in sweep should
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be put in place to remedy this. While increasing the number of sections Nspan for the

optimizer to vary allows for more flexibility to find a solution with less induced drag, it

has to be realized that the resulting wing becomes increasingly unfeasible to manufacture.

It is also conceivable that the effects of viscosity will be more noticeable in these complex

wing geometries. Chapter 9 showed that including viscosity does not significantly alter the

main findings of this work, but that is possibly due to the continuous nature of the sweep

profile of the wings with constant and linear sweep used in the comparison. In this inviscid

optimization exercise, the gradient-based optimization algorithm seeks areas of high local

sweep, because of the decreasing effect sweep has on κD. When including spanwise flow, it

is possible that the boundary layer looks very complex in these areas of discontinuity in the

sweep profile, greatly altering the results from optimization. A more detailed study focused

on aerodynamic optimization is recommended.

In regards to the high local angles of sweep, note the remarks made in Section 8.5

about the maximum lift coefficient CL,max. It is likely that these wings resulting from the

optimization algorithm, while producing a lower κD, are limited by their capabilities in lift

due to flow separation.
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CHAPTER 11

CONCLUSIONS

Wing sweep in low-speed applications serves to provide longitudinal stability and con-

trol by shifting the aerodynamic center with respect to the center of gravity. Most current

solutions in airplanes are limited to wings using a constant wing sweep angle throughout the

span from wing root to wing tip. Nature, however, uses curved, crescent-shaped solutions

in the design of birds’ wings and fish’ fins. Considering that nature uses evolution to find

efficient solutions, it is conceivable that these crescent sweep profiles offer benefits over the

constant sweep profiles, for example in terms of aerodynamic efficiency.

A theoretical background to finite wing aerodynamics was presented using existing

literature. From Prandtl’s classical lifting-line theory, factors can be defined to evaluate the

penalty of taper ratio RT and aspect ratio RA on the lift-slope and induced drag coefficient.

Plots for these factors κL and κD, have been published by, among others, Glauert [28]

and Phillips [19], showing that a taper ratio of RT = 0.4 will minimize induced drag.

Küchemann [1] presented an analytic solution for the locus of section aerodynamic centers

of swept wings. This is an important curve in aerodynamics and stability. Starting from

developments by Hunsaker, Pope, and [30], a modern method to calculate the aerodynamic

center position for any spanwise section on a finite wing was presented. This was used to

compare the results from a numerical method for the locus of aerodynamic centers to the

analytic derivation by Küchemann.

Throughout the present research, different numerical methods were used for predicting

the aerodynamic properties of finite wings in inviscid flow. Wings were analyzed using

the modern numerical lifting line algorithm MachUpX, an open source high order panel

code PANAIR, and a modern, commercially available panel code FlightStream. All three

numerical methods were discussed with appropriate grid convergence studies for each of

the methods. Crescent wings were analyzed using FlightStream, so a separate convergence
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study on the required smoothness of the sweep profile was presented. Results from these

numerical methods were used to evaluate κL, κD, δL and κac over a wide range of wing

planforms with varying sweep angles and profiles.

Analytical and numerical results using MachUpX and FlightStream for κL and κD for

wings without sweep were compared. The results are shown in Figs. 4.1 and 4.2. While there

are differences between both numerical methods due to different levels of fidelity, the trends

they follow with aspect and taper ratio are largely the same. The results for numerical and

analytical lifting-line theory are near-identical as expected, and all three methods confirm

the historical finding of minimal induced drag around taper ratio RT = 0.4 for wings without

twist. For low aspect ratios, FlightStream tends to show different trends, even resulting in

negative κD values for RA = 4. This is likely because MachUpX, a lifting-line development,

is less suited for low aspect ratios than the inviscid panel code FlightStream, which is able

to capture chordwise vorticity.

The analytical solutions for the locus of section aerodynamic centers by Küchemann are

shown to be very accurate when evaluated against computed results from the inviscid panel

code PANAIR. The analytical method was compared to the numerical method over a wide

range of elliptic wing designs with varying aspect ratios and sweep angles. The numerical

and analytical results for the locus are very close to each other, even capturing the effects

of airfoil thickness. The RMS error between the two methods remains under 4% for all

wings with aft sweep and aspect ratios higher than RA = 5. The RMS error is actually

skewed by the error at the wing tip, where the very small local chord magnifies the error

between the two methods. Over the vast majority of the span, the error is much smaller

than the RMS error. Since Küchemann’s analytical solutions appear to deviate more from

the numerical result for forward swept wings than for rearward swept wings, more care has

to be taken when using the analytical approach to model the locus of section aerodynamic

centers of forward-swept wings. Again, the RMS error is mostly skewed by the tip results.

This finding could potentially be used in future efforts to improve the accuracy of numerical

lifting-line algorithms for swept-wing analysis. They currently model the bound vorticity of
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the wing along its quarter-chord line as an approximation for the aerodynamic center, but

using the locus of section aerodynamic centers as predicted by Küchemann instead could

offer a better result.

Numerical results using FlightStream for δL, κD, and κac were computed for wings

with constant sweep and linear sweep in inviscid flow as a function of taper ratio, aspect

ratio, and tip sweep angle. Results are shown in Figs. 6.1, 6.2, 6.3, 7.1, 7.2, and 7.3. The

lift slope factor δL behaves very similarly between the wings with constant sweep and linear

sweep. The penalty on lift slope is seen to be higher for high aspect ratio wings than for

low aspect ratio wings, although above aspect ratio RA = 8, δL is not very sensitive to

aspect ratio. As taper ratio increases, the sensitivity of δL with aspect ratio decreases. At

low taper ratios, the results for κD for wings with linear sweep show flatter curves than for

wings with constant sweep, although at high taper ratios the crescent wings can achieve

lower κD values than for conventionally swept wings. It is shown that κD can in fact be

negative for swept wings. This only means that the induced drag coefficient is lower than

the induced drag coefficient of an elliptic wing with no sweep and the same aspect ratio. It

does not mean that the spanwise lift distribution of the swept wing in question is in itself

more efficient than if an elliptic spanwise lift distribution were to be used for the swept

wing as well. The results for κac show expected trends for both wing types, increasing as

sweep increases, denoting an aft shift in aerodynamic center position. For a constant tip

sweep angle Λtip, the wing with linear sweep achieves a lower κac value than a wing with

constant sweep, since its lifting surface lies in front of the imaginary line connecting the

quarter-chord points of the wing root and wing tip.

In-depth comparisons are made between wings with constant and wings with linear

sweep. Induced drag factor κD was used as the measure of aerodynamic efficiency and

as a metric to compare between different wings. In Section 8.1 it is explained why wings

should be compared at equal aerodynamic center shift κac for fair comparison. A wing with

constant sweep and linear sweep can be compared using their κac-κD curves, as shown in

Fig. 8.3. At the intersection of the curves in this figure, both sweep types produce the same
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amount of aerodynamic center shift and induced drag. Using numerical data it is proven

that κD is nearly independent of lift coefficient CL. This intersection can be seen as the

cross-over point below which wings with constant sweep are more aerodynamically efficient,

and above which crescent wings can be more aerodynamically efficient. Figures 8.16 and

8.17 show this cross-over point in terms of aerodynamic center shift or equivalent constant

tip sweep angle as a function of aspect ratio and taper ratio. It is shown that as taper ratio

increases, this cross-over point moves left, making wings with linear sweep potentially more

aerodynamically efficient over a wider range of applications. For example, for RT = 0.25

and RA = 4, a linear sweep profile is only more aerodynamically efficient as soon as the

required equivalent constant sweep angle is over 10◦. This required equivalent constant

sweep angle decreases for increasing taper ratio, and for taper ratios above RT = 0.5, it is

nearly independent of aspect ratio above RA = 10.

A study of the albatross wing showed that it is likely more aerodynamically efficient

than both the constant and linear sweep profile. Figure 8.20 shows the wing of an albatross

compared to equivalent wings using constant and linear sweep profiles producing the same

shift in aerodynamic center. The albatross wing produces an induced drag factor of κD =

0.070, while the two other wings produce an induced drag factor of κD = 0.127. This is

81% higher than that of the albatross wing.

Chapter 9 takes into account effects of viscosity to show that these do not significantly

alter the findings of the inviscid research. A change in lift coefficient CL can slightly shift

the cross-over point where wings with linear sweep produce less induced drag than wings

with constant sweep as compared to the cross-over point in inviscid flow, but the overall

downward trend and its slope stay largely unchanged. The cross-over point for total drag

coefficient does not vary by much from the cross-over point when considering just induced

drag coefficient. The conclusions from comparing the induced drag of the two types of wing

sweep in inviscid flow remain useful to a wing designer even when excluding viscosity. As

shown, they offer great insight for understanding the effects of sweep type and angle on

induced drag as a function of taper ratio and aspect ratio.
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Some considerations to be made when deciding between constant or linear sweep were

presented. It is conceivable that wings with a linear sweep profile are harder to manufacture,

making them potentially heavier and negating the positive effects of a lower κD. Stall

characteristics are outside the scope of this research, and it is possible that crescent wings

need to fly at higher angles of attack to achieve certain lift coefficients, potentially limiting

their CL,max and hence their applications. It is also suggested that perhaps control surfaces

are less effective along the highly swept outboard sections of a wing with linear sweep.

Several optimization studies were performed to see if wing sweep profiles resulting

in less induced drag than the constant and linear sweep could be found. It was shown

that this is in fact possible, and Fig. 10.1 showed that the optimization results are highly

dependent on initial guess. Increasing the number of spanwise sections for the optimizer to

vary increases its flexibility in finding a solution with less induced drag, as shown in Fig.

10.5. All optimal solutions made use of high local sections of sweep, lowering the induced

drag factor κD. It is suggested that these optimized wing results could suffer from similar

lift restrictions as crescent wings with linear sweep. The results from the optimization study

will likely change significantly when including viscous effects. As shown, a purely inviscid

aerodynamic study will lead to local areas of high local sweep with strong discontinuities

in the sweep profile, because it leads to lower induced drag in inviscid flow. The spanwise

flow of the boundary layer will likely be very complex at these areas of severe changes in

sweep angle, leading to a different result. Still, an inviscid study is a logical first step in an

aerodynamic optimization and offers some insight quickly.

This research analyzed a very broad range of wing planforms with varying aspect ratio,

taper ratio, sweep angles and sweep profiles. By making use of a computationally efficient

inviscid panel code, a lot of datapoints could be computed to create a map of results that is

sensitive to its input parameters. The figures in this research provided an overview of how

the lift, induced drag, and aerodynamic center characteristics of wings change with different

sweep profiles. It compared wings with constant sweep and linear sweep using figures such

that a reader could decide which sweep type is more efficient in a certain application. This
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research could be further progressed by including the effects of viscosity. It is possible that

the flow of the boundary layer in spanwise direction could affect the trends with increasing

sweep. It is also suggested to look at different predetermined sweep profiles, such as a

quadratic profile. This research used optimization algorithms to find optimal sweep profiles

for particular scenarios, without making any claims to global optimality. Future research

could use more complex optimization algorithms to guarantee finding a global optimum.

Future research could include high-fidelity CFD results or experimental wind tunnel results

for validation of the findings.



109

REFERENCES

[1] D. Kuchemann, “A simple method for calculating the span and chordwise loading on
straight and swept wings of any given aspect ratio at subsonic speed.” Aeronautical
Research Council London, Tech. Rep., 1956.

[2] F. W. Boltz and C. D. Kolbe, “The forces and pressure distribution at subsonic speeds
on a cambered and twisted wing having 45 of sweepback, an aspect ratio of 3, and a
taper ratio of 0.5,” NACA RMA52D22, 1952.

[3] I. Hall and E. Rogers, “Experiments with a tapered sweptback wing of warren 12
planform at mach numbers between 0.6 and 1.6,” RM-3271, Aeronautical Research
Council, London, 1962.

[4] R. R. Graham, “Low-speed characteristics of a 45 sweptback wing of aspect ratio 8 from
pressure distributions and force tests at reynolds numbers from 1,500,000 to 4,800,000,”
NACA RM-L51H13, 1951.

[5] J. Weber and G. Brebner, “Low speed tests on a 45-deg swept back wings, part-i:
Pressure measurements on wings of aspect ratio 5,” RM-2882, Aeronautical Research
Council, London, 1958.

[6] W. Phillips, D. F. Hunsaker, and R. Niewoehner, “Estimating the subsonic aerody-
namic center and moment components for swept wings,” Journal of Aircraft, vol. 45,
no. 3, pp. 1033–1043, 2008.

[7] S. Srigrarom and W.-L. Chan, “Ornithopter type flapping wings for autonomous micro
air vehicles,” Aerospace, vol. 2, no. 2, pp. 235–278, 2015.

[8] A. Busemann, “Aerodynamischer auftrieb bei überschallgeschwindigkeit,” Luftfahrt-
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