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allowed for maximum dispersal of juniper upslope and into high plains by coyotes in early 

timesteps, which in turn tapered off through time as climate change reduced suitable niches 

(Figure 4.3). Passerines on the other hand provided a constant rate of dispersal, never outpacing 

the change in niches. Both dispersers allowed junipers to track the leading edge of newly 

suitable areas and to compensate for losses at the trailing edge when they occurred. 

The effect of the longer seed dispersal distances provided by coyotes vs. passerines is 

particularly pronounced where juniper is encroaching on grasslands. Current grasslands 

generally exist in climate niches suitable for juniper and remain suitable through 2100. This 

niche suitability allows juniper encroachment to exploit the full dispersal capabilities of coyotes 

from 2021 through 2100. As a result, coyotes can convert 3.4 times (>185,000 km2 vs <55,000 

km2, at SSP 2-4.5) more area of grassland than passerines. Elsewhere dispersal was limited by 

the availability of newly suitable areas for juniper to expand into, resulting in a narrower 

difference in total range expansion with coyotes providing only 2.5 times more dispersal than 

passerines (970,000 km2 vs 389,000 km2 at SSP 2-4.5). Previous work has shown upwards of a 

four-fold increase in juniper range over 80 years (Rowland et al., 2011) and a 2% annual rate of 

grassland encroachment (Sankey et al., 2010). Our model found a maximum of a 1.6-fold 

increase over 80 years, and a maximum annual rate of encroachment of ~3,000 km2 or 0.2% of 

total available grasslands. Comparison of these numbers is difficult as previous work has 

generally focused on more discrete ranges or ecosystems, while we focused on gross totals for 

the entire conterminous United States. Our lower rates of increase and encroachment are at 

least in part due to studying the entire range of juniper, rather than just a region currently 

experiencing high rates of expansion and encroachment. Additionally, though all grasslands 

were considered vulnerable to encroachment in our model, some were beyond the theoretical 

maximum dispersal potential of either disperser (but not beyond the long-distance dispersal 
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parameter and thus kept in the model). The even lower rates of expansion and annual 

encroachment (1.24 and 794 km2 or 0.05% respectively) provided by passerines under the same 

conditions suggest that juniper is dispersed by multiple unique seed dispersers that provide a 

range of dispersal distances; otherwise, the previously observed rates of expansion would not 

be possible. 

Our results show that juniper will continue to encroach into grasslands under both 

moderate and severe climate change scenarios, provided that a vertebrate seed disperser 

persists as well. This encroachment will have a cascade of effects on the carbon storage capacity 

of the encroached landscape. Our model shows that future juniper encroachment will increase 

above-ground biotic carbon storage by 0.32 to 1.2 Pg C. Under both climate scenarios, coyote 

dispersal of juniper increases above-ground biotic carbon storage by more than three times as 

much as passerines, highlighting the magnitude of difference that the introduction or removal of 

a seed disperser can have on the carbon cycle (Figure 4.4). Juniper encroachment into 

grasslands also increases the volume and proportion of biotic carbon deposited on the soil 

surface as liter that is resistant to decay (recalcitrant), due to the higher lignin content in the 

woody parts of juniper  (Norris et al., 2001). As a result of more recalcitrant carbon, this litter is 

then incorporated into both the duff layer and the soil as soil organic carbon (McKinley & Blair, 

2008; Throop & Lajtha, 2018). A recalcitrant duff layer and increased soil organic carbon reduces 

the overall turnover of the accumulated biotic organic carbon, reducing both the magnitude and 

rate of soil carbon remineralization to CO2. Thus, the conversion of grasslands to woodlands by 

vertebrate seed dispersers has the potential to increase the long-term storage capacity of 

carbon on the landscape. 

Contrary to the positive results for carbon storage, increased woody encroachment of 

grass and shrublands can harm plant and wildlife communities. Juniper encroachment can 
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reduce plant community diversity and richness (Ratajczak et al., 2012), which in turn can reduce 

a plant community or landscape’s overall resilience to disturbance (Chillo et al., 2011). Reducing 

the diversity of plant species also reduces the availability of forage by excluding more nutritive 

grasses and replacing them with largely unpalatable juniper leaves (Van Auken, 2009). Greater 

sage grouse (Centrocercus urophasianus), a vulnerable species in the Intermountain West, are 

particularly susceptible to the ill effects of juniper encroachment, as it not only reduces forage 

for sage grouse but also suitable lek sites that are crucial to their reproduction (Coates et al., 

2017). Ultimately the landscape effects of juniper encroachment are mixed with positive 

outcomes for biotic carbon storage and potentially negative outcomes for plant diversity and 

conservation of vulnerable vertebrate species that require large intact grasslands. 

Our model has a few limitations due to uncertainties. First, juniper is a heavily managed 

plant, and juniper encroachment into grasslands and other habitats is controlled through 

removal programs (Bombaci & Pejchar, 2016; Farzan et al., 2015). Historical removals of juniper 

could have reduced the diversity of climate conditions represented in our occurrence data, thus 

constraining their future suitable niche. Additionally, our model does not account for future 

management actions that may remove junipers and reduce their rate of expansion and 

encroachment. Finally, both grazing and fire are common occurrences in juniper habitats and 

grasslands. However, we did not account for the potential interactive effects that grazing and 

fire could have on landscape susceptibility to encroachment (Caracciolo et al., 2017) and carbon 

storage in aboveground biomass (Rau et al., 2012). Future research adding parameters 

accounting for fire and management actions would further improve the quality of this model to 

predict the future expansion of juniper and their overall effects on the landscape. 

Several studies have focused on the negative effects that the loss of large-bodied, 

vertebrate seed dispersers have on plant dispersal, plant community composition, and carbon 
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storage (Bello et al., 2015; Harrison et al., 2013; Pérez-Méndez et al., 2016). Our study is unique 

because we focused on how the expanding population and distributions of a vertebrate species, 

the coyote, across the USA may aid in juniper persistence and expansion under climate change. 

Our findings show that a diverse dispersal guild was important for helping junipers expand 

under moderate and severe climate change (Chanthorn et al., 2019; Peres et al., 2016). Longer 

distance seed dispersal provided by larger vertebrates, such as coyotes, was especially 

important for maintaining or increasing a plant's ability to track newly suitable climate 

conditions. In the case of juniper, dispersal by vertebrates into new areas helped offset any 

losses caused by the loss of suitable habitat from climate change. Not only did dispersal by 

vertebrates help juniper expand under climate change, but it also influenced the ability to 

convert grasslands to woodland, which ultimately increased landscape-level carbon storage. Our 

findings do not offer a solution or a direct management suggestion regarding the species 

studied. Rather we illustrate the importance of maintaining diverse seed dispersal guilds to help 

ensure that plant species and communities can meet new challenges caused by climate change 

with a robust natural response, and the importance of including Carnivorans in plant dispersal 

models. 
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Figures 

 
Figure 4.1. Flow chart of inputs and outputs of each modeling step in our analysis of juniper 

dispersal by two vertebrate seed dispersers, and the resulting rate of grassland encroachment 

and increases in above-ground biotic carbon storage under changing climate conditions.  

Ecological 
Niche Model

•Model: Maxent

•Input:

•Juniper species presence only data from Forest Service Forest Inventory and Analysis National 
Program (Forest Inventory and Analysis 2007) with more than 50 records

•Current and future bioclimatic variables 5, 12, and 18 future variables based on the CanESM5 
model for SSP's 2-4.5 and 5-8.5

•Output:

•Prediction of current distribution of all species

•Prediction of future suitable landscape for all species 

Migration
Model

•Model: MigClim

•Input:

•Predicted current distribution and future suitable landscape from maxent

•Estimated dispersal distance for coyotes and avian seed dispersers

•Human modified unsuitable habitat raster (i.e. urban, suburban and tilled agriculture)

•Output:

•Predicted future distribution of juniper species constrained both by climate and dispersal

Grassland
extraction

•input:

•MigClim outputs for each species, SSP, and dispersal vector combination

•National Land Cover Database shape file of current grasslands

•Output:

•Estimate of the maximum encroachment of junipers into grasslands (square Km)

Carbon 
estimate

•Input:

•Estimate of grassland conversion/encroachment

•Minimum and maximum estimates of changes in above ground living biomass carbon after juniper 
encroachment

•Output:

•Estimate of total change in above ground living biomass carbon 
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Figure 4.2. Ecological niche model results for seven species of juniper (J. californica, J. deppeana, 

J. monosperma, J. occidentalis, J. Osteosperma, J. scopulorm, and J. virginiana), under two 

different climate change scenarios (SSP 2-4.5 and 5-8.5). The top map represents the currently 

predicted suitability with darker blue representing increasingly suitable conditions. The cross-

hatched areas represent the currently predicted occurrence of juniper in the conterminous 

United States. The eight lower maps represent the predicted suitability for juniper under the 

two climate change scenarios, across four future time steps. Suitability for juniper advanced 

upslope and north tracking favorable temperatures, and away from mesic conditions due to 

narrow precipitation tolerances. 
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Figure 4.3. Juniper dispersal model results for dispersal by both coyotes (greens and yellows) 

and passerines (blues) across the conterminous United States from 2021-2100 under a 

moderate climate change scenario (Shared Social Pathway 2-4.5) and a severe climate change 

scenario (Shared Social Pathway 5-8.5). Passerine dispersal is displayed on top of the coyote 

dispersal; therefore all visible coyote dispersal is where it extends beyond the total dispersal 

provided by passerines throughout the entire 80-year model run. The dark blue represents the 

starting distribution of juniper for both species as the passerine original distribution directly 

overlays the coyote original distribution. Coyotes provide 2.5 times as much dispersal by 2100. 

The difference in dispersal between coyotes and passerines was highest at high elevation or 

where distributions abut mountain slopes where newly suitable conditions (hotter conditions 

during the warmest month) extended far enough ahead of the current distribution to make 

dispersal the primary mechanism.   
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Figure 4.4. Gross new above-ground carbon storage provided by passerine and coyote mediated seed dispersal of junipers (Juniperus sp.) into 
grasslands. Values are reported in Petagrams of carbon (Pg C) with 95% confidence intervals that account for the cumulative error of all 
modeling steps
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CHAPTER 5 
 

CONCLUSION 
 
 

The order Carnivora represents an important seed dispersal vector throughout the 

world because they disperse viable seeds to diverse locations a long distance from their source. 

This pattern aids in plant migration, plant community change, and changes in above-ground 

biotic carbon storage. I evaluated the current understanding of the prevalence of Carnivoran 

seed dispersal, its spatial and taxonomic breadth, and if Carnivorans are effective seed 

dispersers. I also explored the seed dispersal efficacy of a model Carnvioran species, the coyote, 

and determined gut passage time for fruit and seeds, seed viability and germination, and the 

effect of the proportion of fruit in the diet on these responses. Finally, I modeled the differential 

effect that a Carnivoran (coyote, Canis latrans), could have on seed dispersal, plant migration, 

woody encroachment, and carbon storage when compared to other sympatric seed dispersers 

under changing climate conditions. 

In chapter 2, I found that effective seed dispersal is common within the order Carnivora 

both taxonomically and geographically. Ten out of the 13 terrestrial families in the order 

Carnivora are documented as being explicit seed dispersers or implicit seed dispersers based on 

the prevalence of frugivory. Frugivory in Carnivora was documented worldwide and across 

nearly all ecoregions. Carnivorans provide effective seed dispersal by depositing seeds in diverse 

and suitable locations for seed germination. Gut passage does not appear to hamper dispersals, 

as most seed-Carnivoran pairings result in the deposition of viable seeds, and only rarely result 

in suppressed germination. The current literature supports the hypothesis that Carnivorans are 

widespread effective seed dispersal. 
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The prevalence of Carnivoran frugivory is important for fruiting plant ecology because of 

the complementary nature of Carnivoran seed dispersal to other seed dispersers (Escribano-

Avila et al. 2014). Given the diverse pairings of Carnivorans and plant species with positive 

outcomes for seed dispersal, Carnivorans are likely broadly augmenting seed dispersal and may 

be able to support plant species that are losing current seed mutualists (Chanthorn et al. 2019). 

Furthermore, Carnivorans may add a long-distance seed dispersal partner in areas where certain 

Carnivorans are expanding their range (e.g., coyotes; Hody and Kays 2018). The broad dispersal 

services Canivorans provide will help plant species maintain genetic diversity and migrate to 

adapt to escape climate change respectively (Kremer et al. 2012, Naoe et al. 2016). 

My research highlights areas where more research on Carnivoran frugivory and seed 

dispersal is still needed to understand their contribution to seed dispersal. More studies on 

Carnivoran seed dispersal are particularly needed in Africa, Oceana, and western Asia. These 

three areas are home to many Carnivoran species that are within generas that have been 

identified elsewhere as seed dispersers, such as Canis, and Ursus (Roehm and Moran 2013, 

Lalleroni et al. 2017). Further research is needed in these locations to determine if patterns of 

dispersal capability are consistent or differ from their close relatives elsewhere. More research 

is also needed on the explicit spatial patterns of Carnivoran seed dispersal and seed dispersal 

effectiveness (SDE), as most studies attempting to estimate a dispersal kernel or SDE rely on 

inferences from gut passage time and post gut passage viability which does not account for the 

quality of the deposition location. Finally, further analysis should be done on the overarching 

pattern of effects that Carnivoran gut passage has on seed viability and germination either by 

plant family, seed morphology, or the Carnivoran who consumed them. Despite these gaps in 

knowledge, I was able to show that Carnivorans effectively disperse seeds worldwide. 
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In chapter 3, I found that coyotes have the potential to be effective seed dispersers. 

Coyote gut passage did not affect seed viability or germination rate, regardless of the length of 

gut passage time or diet composition. Coyote gut passage times averaged between 8 and 24 

hours, providing the potential for regular long-distance seed dispersal. Finally, seed germination 

rate and speed were both suppressed when seeds remained impounded in scats, highlighting 

the importance of secondary dispersal from whole scats by scatter-hoarding granivores. Taken 

together my findings indicate that coyotes regularly disperse viable seeds long distances. 

Coyote seed dispersal is of particular interest in the ecology of plants in North America 

because they are well-documented frugivorous Carnivoran (Cypher and Cypher 1999, Armenta-

Méndez et al. 2020), and their range is rapidly expanding (Hody and Kays 2018). Coyotes have 

already shown a propensity to disperse novel seeds within their recently colonized range 

(Roehm and Moran 2013), making it likely that they will continue to establish new seed dispersal 

relationships with other fruiting species as they continue to expand their range. Coyotes also 

have a high tolerance for anthropogenic landscapes (Atwood et al. 2008), providing the 

opportunity for coyotes to disperse a variety of non-native plants from the urban and suburban 

landscape to surrounding wild spaces (Larson et al. 2020, Spennemann 2020). My findings 

support coyotes not only participating in these expanding seed dispersal roles but also that they 

are capable of providing effective seed dispersal at long distances. 

Two limitations to my study provide opportunities for future research. First, logistical 

trade-offs prevented more frequent scat searches limiting a more fine-scale evaluation of gut 

passage time which would have provided a more nuanced look at potential dispersal distances 

and patterns. Second, only having two of three seed species germinate limited the inferences 

that could be made regarding germination vs viability post-consumption, and further 

exploration on the role gut passage plays in breaking seed dormancy. A new feeding study 
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establishing a fine-scale estimate of gut passage time, paired with a field study mapping scat 

depositions on the landscape, could provide a model for fine-scale seed distribution. This model 

could also be validated using seed mimics in wild feeding trials. Another potential line of inquiry 

would utilize cold stratification to break seed dormancy of highly dormant species to evaluate 

the interplay of gut passage and dormancy break in a more detailed way. Chapter 3 provides a 

framework for which future studies, such as those suggested here or undertaken for different 

Carnivorans, could follow. 

In chapter 4, I found that seed dispersers with different dispersal distances can provide 

different outcomes for plants under climate change and that these effects can cascade down to 

impact plant communities and carbon storage. Under changing climate conditions, juniper in the 

conterminous United States will disperse up-slope from their current distribution with minimal 

losses along the trailing edge of their distribution. Both passerines and coyotes disperse seeds 

into areas that are currently grasslands catalyzing woody encroachment and increasing above-

ground biotic carbon storage. Under the same conditions, coyotes increased juniper ranges 2.5 

times as much as passerines and provided 3.4 times as much encroachment. This difference in 

encroachment resulted in up to a 0.85 Pg of carbon storage difference between the different 

seed dispersers (0.36 vs 1.2 Pg C). 

These findings show that understanding the total dispersal guild for a plant species is 

important for predicting the total dispersal kernel (Rogers et al. 2019). Differences in seed 

dispersal distance provided by different seed dispersers did not show a difference in the ability 

of juniper to survive climate change, but it did show a profound difference in range expansion 

and plant community conversion. These results are important because the overlooked group of 

seed dispersers in the order Carnivora are repatriating parts of their range (Sommer and 
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Benecke 2005, Draper et al. 2017), and coyotes specifically are drastically expanding across 

north and central America (Hody and Kays 2018). 

This study’s models were limited due to uncertainties surrounding previous and future 

land use management, and fire regimes. Previous management of juniper may have altered the 

occurrence records distorting the realized niche measured in the models, additionally, future 

management may result in the removal of newly dispersed juniper altering further dispersal and 

total dispersal, encroachment, and carbon storage estimates. Finally, my models did not account 

for the complex interplay of fire in these landscapes both in changing landscape susceptibility to 

encroachment or release of stored carbon after a juniper stand burns. Very naturally these 

limitations lead to possible future research to incorporate fire and management into predictions 

of juniper’s future on the landscape, and the role that different seed dispersers may play. This 

research could be further extended by increasing the complexity of the model to include more 

species of plants and seed dispersers, as well as incorporating resistance values to landscapes 

that may be less susceptible to conversion. More research is needed to explore the varied and 

nuanced aspects of plant community distributions in the future as they are affected by climate, 

dispersal vectors, competition, and other factors. 

This dissertation contributes to the general understanding of seed dispersal within the 

order Carnivora. My findings document the extensive nature of seed dispersal within a possibly 

improperly named order of animals and point to the likelihood that seed dispersal within the 

order Carnivora is much more widespread than currently documented. Furthermore, my 

findings show that individual species within Carnivora have the potential to provide extensive 

seed dispersal services altering landscapes and landscape-level biotic carbon storage. 
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