
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

12-2022 

Path Planning for Aircraft Under Threat of Detection from Ground-Path Planning for Aircraft Under Threat of Detection from Ground-

Based Radar with Uncertainty in Aircraft and Radar States Based Radar with Uncertainty in Aircraft and Radar States 

Austin D. Costley 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Costley, Austin D., "Path Planning for Aircraft Under Threat of Detection from Ground-Based Radar with 
Uncertainty in Aircraft and Radar States" (2022). All Graduate Theses and Dissertations. 8653. 
https://digitalcommons.usu.edu/etd/8653 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F8653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8653?utm_source=digitalcommons.usu.edu%2Fetd%2F8653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


PATH PLANNING FOR AIRCRAFT UNDER THREAT OF DETECTION FROM

GROUND-BASED RADAR WITH UNCERTAINTY IN AIRCRAFT AND RADAR

STATES

by

Austin D. Costley

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Greg Droge, Ph.D. Randall Christensen, Ph.D.
Major Professor Committee Member

Jake Gunther, Ph.D. Donald Cripps, Ph.D.
Committee Member Committee Member

Jeff Ferrin, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2022



ii

Copyright © Austin D. Costley 2022

All Rights Reserved



iii

ABSTRACT

Path Planning for Aircraft Under Threat of Detection from Ground-Based Radar with

Uncertainty in Aircraft and Radar States

by

Austin D. Costley, Doctor of Philosophy

Utah State University, 2022

Major Professor: Greg Droge, Ph.D.
Department: Electrical and Computer Engineering

Manned and unmanned aircraft often operate within the detection range of ground-

based radar systems. For certain applications, the risk of detection is a primary concern for

the mission planners. The detection risk is influenced by several factors, including aircraft

pose (i.e., position and orientation), aircraft radar cross-section, radar position, and radar

parameters. Current path planning algorithms for the radar detection application assume

that these factors are deterministic and known, however, in practice, these factors are

estimated and have significant uncertainty. The objective of this research is to explore the

incorporation of uncertainty in these factors to inform a path planning algorithm.

The objective is met by quantifying the detection risk and estimating its variability,

modeling the uncertainty in the detection factors, and applying these developments to a

path planner. The detection risk is quantified by an approximation to the probability of

detection, PD, which is linearized with respect to the aircraft pose, radar position, and

radar parameters. The linearized model is used to estimate the variance of PD induced by

these uncertainties. The radar position and radar parameter uncertainty is assumed to be

constant while aircraft pose uncertainty is estimated using an inertial navigation filter. To

enable rapid path evaluation, this work presents a method to provide analytical expressions
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for the nominal aircraft pose and IMU measurements along candidate paths which are used

as inputs to the inertial navigation filter. The radar model with uncertainty and the efficient

aircraft pose and IMU measurement generator are incorporated into a modified visibility

graph path planner that uses the variance of PD as part of the path validity check. The

planner uses a linear covariance model of the aircraft dynamics to enable efficient generation

of error budgets that provide actionable information to the mission planner regarding the

sources of uncertainty.

(78 pages)



v

PUBLIC ABSTRACT

Path Planning for Aircraft Under Threat of Detection from Ground-Based Radar with

Uncertainty in Aircraft and Radar States

Austin D. Costley

Mission planners for manned and unmanned aircraft operating within the detection

range of ground-based radar systems are often concerned with the probability of detec-

tion. Several factors influence the probability of detection, including aircraft position and

orientation, radar position, and radar performance parameters. Current path planning al-

gorithms assume that these factors are known with certainty, but in practice, these factors

are estimated and have some uncertainty.

This dissertation explores methods to consider the uncertainty in the detection factors

for an aircraft path planner. First, the detection model is extended to include uncertainty

in the aircraft position and orientation, radar position, and radar parameters. Second, an

efficient method to estimate the aircraft position and orientation uncertainty is presented

that enables rapid path evaluation. Third, the extended radar model and efficient aircraft

uncertainty calculation are incorporated into a path planner that evaluates the sources of

uncertainty and provides actionable information to the mission planner.
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CHAPTER 1

INTRODUCTION

Manned and unmanned aircraft operate in the presence of ground-based radar systems

which transmit electromagnetic energy into the airspace to search for objects. Aircraft

within the detection range of the radar will reflect some of the electromagnetic energy back

to the radar system. Several factors influence the level of reflected energy and the probability

that the aircraft is detected. These factors include the radar position, radar parameters

(e.g., power, aperture, noise factor, loss factor, etc.), aircraft position and orientation, and

the physical properties of the aircraft such as the radar cross section (RCS).

Aircraft mission planners concerned with radar detection risk seek to plan paths that

keep the probability of detection below a mission-specified threshold given information

about the aircraft and radar systems. Aircraft missions concerned with the probability of

detection include reconnaissance [1], radar counter-measure deployment [2, 3], and combat

operations [4]. Current path planning and target detection methods assume that the factors

that influence the probability of detection are deterministic and known [2–14]. However, in

practice, each detection factor has uncertainty which increases the detection risk.

Uncertainty enters the detection factors listed above in the following ways. First,

the position and capability of the radar system is estimated through gathered intelligence

which includes satellite imagery or radar transmission detection. Second, the aircraft pose is

estimated using a navigation filter that incorporates measurements from noisy and biased

sensors. Third, the RCS model is dependent on the aircraft pose so pose uncertainties

induce uncertainty in the RCS.

Consider the scenario shown in Figure 1.1 with an aircraft traveling through a region

with two radar sensors (S1, S2). The radar detection areas are represented by the red

regions, and the aircraft position uncertainty is represented by the blue region. The mission

objective is to fly to the waypoint marked by the blue “X” and avoid detection. The
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Fig. 1.1: An example of a UAV flying through a region with two radar sensors (S1, S2).
The simplified detection regions are shown in red. The navigation state uncertainty is
represented by the blue region surrounding the path. The distributions of the detection
statistics and navigation uncertainty are over-laid on the respective regions. The navigation
state uncertainty grows along the path representing a loss in global position measurements.

overlapping area between the blue and red regions represents the probability of detection

due, in part, to the aircraft position uncertainty and is the motivation for the research

presented in this work. This example leads to several research questions that are discussed

in the following paragraphs.

First, how does the path planner calculate the detection risk? The target detection

literature provides high-fidelity models for calculating the probability of detection [5–9].

However, current path planning algorithms do not quantify the probability of detection

use simplified metrics to represent the detection risk. These metrics include the integrated

inverse range models [2, 3, 10–12], peak/aggregate RCS [13], and the radar range equation

[14]. An exception is [4], which quantifies the probability of detection using a logistic

function approximation but does not provide a relationship between the logistic function

variables and the radar parameters.

The research presented in this work uses a high-fidelity radar detection model from
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[9] which provides an approximation of the probability of detection, PD, given the radar

position, radar parameters, aircraft pose, and RCS model. The radar detection model uses

an approximation from [7] and a consolidated radar constant that is a function of common

radar parameters. The radar detection and RCS models used in this work are described in

detail in Chapter 2.

Second, how is uncertainty in the detection factors modeled and incorporated into the

calculation of the detection risk? The target detection and path planning literature de-

scribed above does not provide a method for incorporating uncertainty in the detection

factors. The research presented in this work provides a method to estimate the variability

in the probability of detection given the covariance in the aircraft pose, radar position, and

consolidated radar constant. The method uses a linearized radar detection model and a

Gaussian uncertainty assumption to estimate the standard deviation of PD due to uncer-

tainty in the detection factors. Chapter 2 describes the framework for incorporating the

aircraft pose covariance into the radar detection model. Chapter 3 extends this framework

and includes uncertainty in the radar state (i.e., uncertainty in the radar position and the

consolidated radar constant).

Third, how is the radar detection framework incorporated into a path planner? The

path planner in this research evaluates whether the detection risk stays below a specified

threshold. The detection risk is defined as the sum of PD and a multiple of the standard

deviation of PD calculated by the radar detection framework. PD and its standard deviation

are functions of the aircraft pose and the radar state with their associated covariances. The

planner assumes that the radar state and radar state covariance are constant for a given

planning scenario, whereas, the aircraft pose and pose covariance are dependent on the

candidate path.

The aircraft pose covariance is estimated by an aided inertial navigation system (INS)

that incorporates measurements from an inertial measurement unit (IMU), GPS, and al-

timeter. The INS estimates the pose covariance using the propagation and update equations

from an extended Kalman filter (EKF). Inputs to these equations include the nominal air-
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craft pose and sensor measurements along each candidate path. Generating the required

aircraft poses and sensor measurements, especially the IMU measurements, is computation-

ally intensive and hinders rapid path planning. To address this, Chapter 4 presents a novel

aircraft state and IMU measurement generator (ASG) that provides analytical expressions

for the aircraft poses and IMU measurements along a flyable trajectory.

A benefit of modeling the INS is that the planned path can be analyzed to determine

the contribution of each source of uncertainty to the variability in PD. This is accomplished

by generating an error budget for the planned path. Error budgets are typically generated

using the statistics from several Monte Carlo analyses. In this approach, the planned

path is simulated hundreds or thousands of times for each source of uncertainty. This

is computationally intensive and not well suited for rapid path planning applications. An

alternative to Monte Carlo analysis is linear covariance analysis which uses linearized models

and Gaussian noise assumptions to estimate the same statistical information as a Monte

Carlo analysis in a single simulation over the planned path.

The radar detection framework, aircraft state generator, and linear covariance analy-

sis are incorporated into a path planner as described in Chapter 5. The radar detection

framework enables the planner to consider the variability in PD induced by the aircraft pose

covariance and radar state covariance. The ASG method efficiently generates inputs to an

aided-INS to generate the aircraft pose covariance along the candidate path. Finally, linear

covariance analysis enables the rapid generation of error budgets which provides actionable

information for the mission planner about the planned path.

The radar detection path planning methods referenced above do not consider uncer-

tainty in the aircraft and radar state when evaluating the detection risk of a candidate path.

Incorporating these uncertainties provides a more complete picture of the detection risk for

aircraft operating near ground-based radar systems. This dissertation describes research to

address the challenges of this motivating example and provides the following contributions:

1. Develops a framework for incorporating uncertainty in the aircraft pose, and radar

state into the radar detection model to obtain an estimate of the standard deviation
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of PD

2. Develops an analytical aircraft state and IMU measurement generator that converts

a series of waypoints into a flyable path and generates samples for the nominal states

and sensor measurements for an aided-INS

3. Applies the detection framework and ASG method to a path planner that uses linear

covariance analysis to generate error budgets that inform the mission planner about

the contribution of each source of uncertainty to the variability of PD.

The research detailed in this dissertation has been submitted or published in high-

quality refereed journals. Each of the following chapters is a paper that contains a relevant

literature review, description of methods, and results. The following paragraphs introduce

the papers presented in this dissertation and their current publication status.

Sensitivity of Single-Pulse Radar Detection to Aircraft Pose Uncertainties [15]

Submitted: IEEE Transactions on Aerospace and Electronic Systems

Provided in Chapter 2, this paper presents the radar detection model used in this disser-

tation and develops a framework for incorporating aircraft state covariance into the radar

detection model. The framework linearizes the equations used to calculate PD and includes

support for three RCS models (i.e., constant, ellipsoid, simple spikeball). It is shown that

the linearization is valid for high levels of state uncertainty and that even moderate levels

of state uncertainty induce significant variability in PD.

Sensitivity of Single-Pulse Radar Detection to Radar State Uncertainty [16]

Submitted: IEEE Transactions on Aerospace and Electronic Systems

Provided in Chapter 3, this paper extends the framework developed in [15] to incorporate

uncertainties in the radar state which includes the radar position and the consolidate radar

parameter. The framework is extended by defining partial derivatives of the equations used

to calculate PD with respect to the radar state. The linearization is validated with a Monte

Carlo analysis and the results show that PD is moderate radar state uncertainty induce
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significant variability in PD.

Analytical Aircraft State and IMU Signal Generator from Smoothed Reference

Trajectory [17]

Published: IEEE Transactions on Aerospace and Electronic Systems

Provided in Chapter 4, this paper develops a method, ASG, to translate a series of way-

points to a flyable trajectory with analytical expressions for the aircraft states and IMU

measurements along the path. The method uses a corner smoothing algorithm to convert

a series of waypoints into continuous curvature path segments. Curvilinear motion theory

and a coordinated turn assumption are used to obtain an expression for the specific force

and angular rates experienced by the aircraft as it travels along the trajectory. The results

illustrate three corner smoothing algorithms and show that the IMU measurements are ac-

curate and consistent with the integration method provided by Groves [18].

Path Planning with Uncertainty for Aircraft Under Threat of Detection from

Ground-Based Radar [19]

Submitted: Under Review - Will submit to Robotics and Autonomous Systems

Provided in Chapter 5, this paper incorporates the radar detection framework presented in

Chapters 2 and 3 and the ASG method presented in Chapter 4 into a path planner. The

planner uses an aided-INS to fuse measurements from the IMU, GPS, and altimeter and

estimate the aircraft state covariance. Linear covariance analysis is used to evaluate the

final trajectory and generate an error budget. The results show that the planner successfully

maintains the detection risk below the mission-specified threshold and provide an example

of how a mission planner may use the error budget information to improve the planned

path.
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CHAPTER 2

SENSITIVITY OF SINGLE-PULSE RADAR DETECTION TO AIRCRAFT POSE

UNCERTAINTIES
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Sensitivity of Single-Pulse Radar Detection to
Aircraft Pose Uncertainties

Mr. Austin Costley, Dr. Randall Christensen, Dr. Robert C. Leishman, Dr. Greg Droge

Abstract—Mission planners for aircraft that operate in radar
detection environments are often concerned with the probability
of detection. The probability of detection is a nonlinear function
of the aircraft pose and radar position. Current path planning
techniques for this application assume that the aircraft pose is
deterministic. In practice, however, the aircraft pose is estimated
using a navigation filter and therefore contains uncertainty.
The uncertainty in the aircraft pose induces uncertainty in the
probability of detection, but this phenomenon is generally not
considered when path planning. This paper provides a method
for combining aircraft pose uncertainty with single-pulse radar
detection models to aid mission planning efforts. The method
linearizes the expression for the probability of detection and
two radar cross section models. The linearized models are then
used to determine the variability of the probability of detection
induced by uncertainty in the aircraft pose. The results of this
paper verifies the linearization using Monte Carlo analysis and
explores the sensitivity of the probability of detection to aircraft
pose uncertainty.

NOMENCLATURE

PD Probability of detection
P̄D PD at nominal state
Pfa Probability of false alarm
S Signal-to-noise ratio
σr Radar cross section (m2)
R Range to target (m)
cr Lumped radar parameter (Jm2/◦K)
NED North-East-Down coordinate frame
xa Aircraft state vector
x̄a Nominal aircraft state vector
δxa Aircraft perturbation state vector
pna Aircraft position vector in NED frame
Θ Aircraft Euler angle vector (rad.)
pan, pae, pad Aircraft position in NED frame (m)
φa, θa, ψa Aircraft Euler angles roll, pitch, yaw (rad.)
pnr Radar position vector in NED frame
prn, pre, prd Radar position elements in NED frame (m)
ρbr Radar position vector in aircraft body frame
ρrx, ρry, ρrz Radar position in aircraft body frame (m)

This work was supported by Air Force Research Laboratory, Wright-
Patterson Air Force Base, OH.
A. Costley is with the Electrical and Computer Engineering Department, Utah
State University, Logan, UT 84322 USA (e-mail: austin.costley@usu.edu)
R. Christensen is with the Electrical and Computer Engineering
Department, Utah State University, Logan, UT 84322 USA (e-mail:
randall.christensen@usu.edu)
R. Leishman is with the ANT Center, Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH 45433 USA (e-mail:
robert.leishman@afit.edu)
G. Droge is with the Electrical and Computer Engineering Department, Utah
State University, Logan, UT 84322 USA (e-mail: greg.droge@usu.edu)

σre Ellipsoid RCS (m2)
a, b, c Ellipsoid RCS parameters (m)
σrs Simple spikeball RCS (m2)
as, bs Simple spikeball RCS parameters (m2)
α RCS azimuth angle (rad.)
φ RCS elevation angle (rad.)
θr Radar detection azimuth angle (rad.)
φr Radar detection elevation angle (rad.)
Cxx Aircraft pose covariance
CPD

Variance of PD
σpd Standard deviation of PD

I. INTRODUCTION

Manned and unmanned aircraft are often tasked with
operating under threat of detection from ground-based radar
systems. Mission planners must plan paths that maintain the
probability of detection below mission-specified levels. A path
that fails to meet this criteria may present an unacceptable level
of risk to the pilot or aircraft. Missions that are concerned
with detection risk include reconnaissance [1], radar counter-
measure deployment [2, 3], and combat operations [4]. A
number of factors contribute to the probability of detection.
The factors include the aircraft position and orientation (pose),
radar system parameters, the physical characteristics of the
aircraft (e.g. radar cross section (RCS)), and atmospheric
conditions.

A common assumption when modeling the detection
probability is that the aircraft pose along the planned path
is deterministic and known [2–13]. In practice, uncertainties
in the aircraft pose enter through a variety of sources. First,
disturbances arise due to environmental factors (e.g. wind
gusts [14]) and the physical characteristics of the aircraft (e.g.,
wing and tail design). Second, the inertial navigation system
on the UAV estimates the pose of the aircraft using noisy
and biased sensors [15–17]. Considering navigation errors
is particularly important for regions where global position
measurements are contested, degraded, or denied. When these
uncertainties are taken into account, the aircraft pose is
represented by a probabilistic distribution. The variability in
the resulting distribution induces variability in the predicted
probability of detection. This can be illustrated using Monte
Carlo analysis where samples from the distribution of the
aircraft pose result in a range of detection probabilities. This
paper develops a framework for incorporating aircraft pose
uncertainty in the calculation of the probability of detection,
PD, for a single-pulse radar model. It is shown that pose
uncertainty can be a significant source of variability in the
probability of detection.
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Current path planning methods use a variety of approaches
to evaluate the detection risk and survivability along candidate
paths. Detection risk methods include the integrated inverse
range models [2, 3, 6–8], peak/aggregate RCS [9], and the
radar range equation [5]. Although these approaches model the
detection risk, they do not quantify the probability of detection,
which is necessary to plan paths that maintain the probability
of detection below a mission-specified threshold. Other
methods extend the detection risk evaluation and consider
aircraft survivability, which includes modeling adversarial
sensor networks and weapons systems to determine the
probability that the aircraft will complete the mission [4,
11–13]. The approach in [4, 11] uses a logistic function
approximation of the probability of detection and integrates
it over a window of time to model a adversary tracking
and engaging the aircraft. Alternatively, [12, 13] use Markov
processes with transition probabilities to determine if the
aircraft is detected, tracked, and engaged. The survivability
methods provide an extended view of the path planning
problem but they are beyond the scope of this paper and do
not consider aircraft pose uncertainty in their models. The
approach in this paper focuses on a path planning application
where the instantaneous probability of detection is predicted
while considering aircraft pose uncertainty.

The target detection literature has made various
developments to create high-fidelity radar detection models.
The single-pulse radar model is used to determine the
instantaneous probability of detection given radar parameters,
radar position, and the pose of the detected aircraft. Marcum
[18] expresses target detection as a probability using a
nonlinear function of the radar parameters, target radar
cross section (RCS), and range to target. Swerling [19]
extends the work by Marcum to include fluctuating targets
for multiple-pulse detection models. Mahafza [20] extends
the work by Marcum and Swerling to include considerations
for modeling modern radar systems and provides expressions
for common RCS models as a function of the aircraft pose
(position and orientation) relative to the radar. The probability
of detection thus depends upon various radar parameters, the
inverse of the relative range, and the relative pose of the
aircraft with respect to the radar.

Despite the significant dependence upon relative aircraft
pose, none of the literature mentioned above considers the
effects of aircraft pose uncertainty on the predicted probability
of detection. The primary contribution of this paper is a
framework for incorporating aircraft pose uncertainty with
the single-pulse radar detection model presented by Mahafza.
This is accomplished by linearizing the expression for the
probability of detection with respect to aircraft pose. The
linearized system is then used to approximate, to the first order,
the variance of the probability of detection due to the pose
uncertainty. The results verify the linearization by running
a Monte Carlo analysis and illustrate the sensitivity of the
probability of detection to several aircraft pose uncertainty
levels. The framework may be used by mission planners to
better understand the variability of the detection risk due to
aircraft pose uncertainty. The resulting information can be used
to plan paths to avoid detection in the presence of uncertainty,

which is a primay objective of operating near adversarial radar
networks.

This paper is organized as follows. The single-pulse radar
detection and RCS models are discussed in Section II. The
framework for linearizing the expression for the probability
of detection and incorporating aircraft pose uncertainty is
presented in Section III. The results for this paper are provided
in Section IV where the linearization is verified and the
sensitivity of the probability of detection to aircraft pose
uncertainty is presented.

II. RADAR DETECTION MODEL

This section describes the single-pulse detection model as
presented by Mahafza [20]. The model includes expressions
for the probability of detection, PD, signal-to-noise ratio, S,
and RCS, σr, as functions of the aircraft pose and radar
position. This section uses the ellipsoid RCS models from [20]
and defines the simple spikeball as a second model.

The singe-pulse detection model described in this section
quantifies PD given the aircraft pose and radar position.
An approximation to PD is used to provide a differentiable
function which will be leveraged in the following section.
The simplified model does not account for fluctuating targets
or multiple radar frequencies which may be added to this
framework in the future. Similarly, the RCS models presented
in this section provide analytical expressions for the RCS
based on the relative pose of the aircraft. These models balance
fidelity and computational complexity with the intnent of
enabling path planning algorithms that must rapidly evaulate
many possibilities. Mission planners should consider the
fidelity required for their specific applications.

A. Probability of Detection

PD is a function of the probability of false alarm, Pfa, and
the signal-to-noise ratio, S. Pfa is a considered a constant for
a particular radar, while S depends both on radar parameters
and the relative target pose. A common expression for PD is
Marcum’s Q-function [20]. However, it contains an integral
that does not have a closed form solution. An accurate
approximation to PD, provided by North [20, 21], is

PD ≈ 0.5× erfc
(√
− lnPfa −

√
S + 0.5

)
(1)

where erfc(·) is the complementary error function given by

erfc(z) = 1− 2√
π

∫ z

0

e−ζ
2

dζ. (2)

Fig. 1 shows an example graph of PD with respect to S .
A general expression for the signal-to-noise ratio is a

function of the radar constant, cr, radar cross section, σr, and
range to the radar, R, given by

S = cr
σr
kR4

(3)

where k is Boltzmann’s constant (1.38 × 10−23 J/◦K). The
radar constant, cr, is a function of radar parameters such
as power, aperture area, noise figure, and loss factor and is
dependent on the type of radar being modeled. The specific
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Fig. 1: PD with respect to S for a constant Pfa = 1e−10.
S is determined by the aircraft state and radar position and
parameters.

radar parameters are not critical to the development of this
paper so they will be lumped into a single radar constant.
The following paragraphs describe the calculation of σr and
R given the radar position and the pose of the target aircraft.

Consider the detection event depicted in Fig. 2. The range,
R, is calculated using the aircraft and radar positions. The
RCS, σr, is a function of the azimuth and elevation angles to
the radar, which are determined by the pose of the aircraft and
the radar position. Let the aircraft position in the NED frame,
pna , and orientation, Θa, be defined by

pna =
[
pan pae pad

]ᵀ
(4)

Θa =
[
φa θa ψa

]ᵀ
(5)

where Θa is a vector of Euler angles for the roll, pitch, and
yaw of the aircraft [22]. Thus, (3) is expressed more explicitly
as

S
(
pna ,Θa

)
= cr

σr
(
pna ,Θa

)

kR
(
pna
)4 . (6)

and the range to the radar is given by

R(pna ) = ||pna − pnr ||2 (7)

where pnr represents the position of the radar in the NED
frame with

pnr =
[
prn pre prd

]ᵀ
. (8)

In this work the radar position is assumed to be deterministic
and known.

B. Radar Cross Section Models

The RCS of an aircraft is dependent on several factors
including the azimuth and elevation angles to the radar, radar
frequency, and the aircraft size, shape, and material. In this
work, the RCS will be calculated using simplified models that
illustrate the sensitivity of RCS to the pose of the aircraft
relative to the radar. The RCS models provide analytical
expressions for the RCS value as a function of the azimuth and
elevation angles of the radar detection vector in the body frame
of the aircraft that represent the backscattered RCS using a
Physical Optics approximation [20]. The RCS representations
used in this work are described in the following paragraphs.

The body frame x and y axes are shown as bx and by in
Fig. 2. The body frame z axis points out of the bottom of the

aircraft. The relative position of the radar in the body frame
of the aircraft is given by

ρbr =
[
ρrx ρry ρrz

]ᵀ
. (9)

The vector ρbr is calculated using the aircraft pose and radar
position by

ρbr = T bn
(
pnr − pna

)
(10)

where T bn is the direction cosine matrix formed by the ZYX
Euler angle sequence [22] given by

T bn =



CψaCθa −CφaSψa + CψaSφaSθa
CθaSψa CφaCψa + SφaSψaSθa
−Sθa CθaSφa

SφaSψa + CφaCψaSθa
−CψaSφa + CφaSψaSθa

CφaCθa


 (11)

and S· and C· are the sin(·) and cos(·) functions.
The RCS azimuth angle is the angle from the body frame

x axis to the projection of the radar detection vector into the
x-y plane of the body frame. The RCS elevation angle φ is
the angle from the x-y plane in the body frame of the aircraft
to the radar detection vector with a positive angle towards the
bottom of the aircraft. The RCS azimuth and elevation angles
are given by

α = arctan

(
ρry
ρrx

)
(12)

and

φ = arctan

(
ρrz√

(ρrx)2 + (ρry)2

)
. (13)

A common graphical representation of an RCS model is
a polar plot, where the angle is either the RCS azimuth or
elevation angle and the radius represents the RCS value. Fig.
3 provides example polar plots for three radar cross section
models as functions of the RCS azimuth angle. The complex
spikeball (Fig. 3a) is the highest fidelity model and is generally
obtained through radar measurements and data gathering or
computational electromagnetics [23].

Path planners often [4, 5, 9] use simplified models such
as those in Figs. 3b-3c because they provide analytical
expressions for the RCS. The simplified models employed
in this work are the ellipsoid and simple spikeball models.
The ellipsoid model captures large broadside cross sections
that are common for fixed-wing aircraft. The spikeball model
has repeating lobes around the aircraft where the number
and size of the lobes is configurable. The spikeball model
also illustrates the performance of the method presented in
this work when strong non-linearities are present in the RCS
model. A mission planner should select an RCS model and
associated model parameters that approximate of the aircraft
RCS to captures the primary structure of the data. The
remainder of this section presents equations for computing
the RCS for the simplified models as a function of the RCS
azimuth and elevation angles.
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Fig. 2: Graphical representation of the quantities used in the
radar detection model.

The first RCS model is the ellipsoid. The equation for the
RCS of an ellipsoid [4, 20] represents a 3dimensional surface
given by

σre =
π (abc)

2

(
(aSαCφ)

2
+ (bSα Sφ)

2
+ (cCα)

2
)2 (14)

where a, b, and c, are the length of the ellipsoid axes. A polar
plot of the ellipsoid RCS with respect to α is shown in Fig.
3b. Note that the ellipsoid model is also a function of the
elevation angle, φ.

The second RCS model the “simple spikeball.” The term
comes from the shape of the plot in polar coordinates. An
example of a simple spikeball with four lobes is shown in
Fig. 3c. The expression for a simple spikeball RCS is given
by

σrs =
∣∣∣as sin

(n
2
α
)∣∣∣+ bs (15)

where as determines the amplitude of the lobes, bs is the
minimum RCS value, and n determines the number of lobes.
Note that the simple spikeball model does not depend on φ.

III. LINEARIZED PROBABILITY OF DETECTION

The aircraft pose is represented by a Gaussian distributed
random variable with a mean xa =

[
pna Θa

]ᵀ
and

covariance Cxx. The prior sections have shown that PD is a
nonlinear function of the aircraft state. Hence, variability in the
aircraft pose induces variability in the probability of detection.
The expected PD (i.e. the mean) and the uncertainty (i.e.
variance) are approximated by linearizing (1) about the aircraft
state. The framework presented in this paper does not dictate
how the pose uncertainty is calculated or stipulate what error
sources are considered in its calculation. It is left to the mission
planner to determine what uncertainty sources and resulting
pose covariance best represent the planning application.

The combination of (1) and (6) provides an expression for
PD as a function of the aircraft pose, xa, which is expressed
as a nominal pose, x̄a, with a perturbation, δxa, as

xa = x̄a + δxa. (16)

In general, PD is a nonlinear function with respect to the
pose of the detected aircraft. However, variations in PD can
be approximated by linearizing Eqs. (1), (6), and (7) about
a nominal operating point using a Taylor series expansion to
obtain

δPD ≈
∂PD
∂S

(
∂S
∂R

∂R

∂xa
+
∂S
∂σr

∂σr
∂xa

) ∣∣∣∣∣
x̄a

δxa (17)

≈ AP δxa. (18)

where δPD is the perturbation of PD due to the perturbation of
the aircraft state. The nominal operating point, x̄a, is chosen
as the nominal aircraft pose around which the perturbations
are being calculated. The variance of PD due to aircraft pose
uncertainty is computed using a similarity transform as

CPD
= E [δPDδP

ᵀ
D] (19)

= APCxxA
ᵀ
P (20)

and the standard deviation is given by

σpd =
√
CPD

. (21)

These equations show that AP must be calculated to compute
the variability of PD. The following subsections will define
the five partial derivatives from (17) required to compute AP .

A. Partial Derivative of PD with Respect to S
The partial derivative of PD with respect to S is computed

by combining (1) and (2) to obtain

PD ≈ 0.5− 1√
π

∫ W

0

exp
(
−ζ2

)
dζ (22)

where

W =
√
− lnPfa −

√
S + 0.5. (23)

Proceed by computing the derivative of PD with respect to W
by applying the fundamental theorem of calculus

∂PD
∂W

=
− exp

(
−W 2

)
√
π

(24)

The partial derivative of W with respect to S is given by

∂W

∂S =
−1

2
√
S + 0.5

.

It follows that

∂PD
∂S =

∂PD
∂W

∂W

∂S
=

exp
(
−W 2

)

2
√
π
√
S + 0.5

. (25)

B. Partial Derivative of S with Respect to Range

The partial derivative of the signal-to-noise ratio (6) with
respect to range is given by

∂S
∂R

= −cr
4σr
kR5

. (26)
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Fig. 3: Examples of four RCS models as a function of the azimuth angle, α, where the aircraft nose is pointed towards the
0 degree line. (a) Shows the highest fidelity model and is typically obtained through measurements. (b) and (c) Show the
ellipsoid and simple spikeball RCS models that are dependent on radar azimuth angle α. The ellipsoid model is a 3D ellipsoid
that is also dependent on the radar elevation angle φ (not pictured). The complex spikeball is included on the other figures to
show how these models may be used to approximate the high-fidelity model.

C. Partial Derivative of Range with Respect to Aircraft State

The range or distance between the aircraft and the radar is
given by (7). The partial derivative of range with respect to
the aircraft position is given by

∂R

∂xa
=
[

∂
∂pa
||pa − pr||2 01x3

]
(27)

=
[

(pa−pr)ᵀ

||pa−pr||2 01x3

]
. (28)

D. Partial Derivative of S with Respect to Radar Cross
Section

The partial derivative of the signal-to-noise ratio (6) with
respect to the RCS is given by

∂S
∂σr

= cr
1

kR4
. (29)

E. Partial Derivative of RCS with Respect to Aircraft State

The partial derivative of the RCS with respect to the aircraft
state, ∂σr

∂xa
, is dependent on the choice of RCS model. The

lengthy derivation of the partial derivatives of the RCS models
presented in Section II-B are provided in Appendix A.

F. Combining Expressions for AP
Finally, the partial derivatives calculated in the preceding

subsections are combined to obtain an expression for AP as

AP =
[
−cr

2exp(−W 2)(pa−pr)ᵀ

kR6
√
π
√
S+0.5

01x3

]
(30)

+cr
exp

(
−W 2

)

2kR4
√
π
√
S + 0.5

∂σr
∂xa

(31)

where ∂σr

∂xa
depends on the chosen RCS model as defined

in Appendix A. The resulting expression for Ap is used to
compute the variance of PD with respect to the aircraft state
uncertainty using (21). Section IV provides results that verify
the linearization presented in this section and illustrates the
sensitivity of PD to aircraft state uncertainty.

TABLE I: Radar parameters for used in results section

Param Value Description
a 0.2 m Ellipsoid RCS forward axis length
b 0.24 m Ellipsoid RCS side axis length
c 0.26 m Ellipsoid RCS up axis length
as 0.18 m2 Spikeball RCS lobe amplitude
bs 0.12 m2 Spikeball RCS minimum
n 6 Number of lobes

L σpa 0.1 m Low position state std. dev.
M σpa 10 m Medium position state std. dev.
H σpa 100 m High position state std. dev.
L σang 0.1 deg. Low Euler angle state std. dev.
M σang 1 deg. Medium Euler angle state std. dev.
H σang 2 deg. High Euler angle state std. dev.
ψ̄a 0 deg. Aircraft course angle
p̄ad −3 km Aircraft position along "down" axis
pnr 03×1 m Radar position vector (NED)
cr 167.4 Jm2/◦K Lumped radar constant
Pfa 1.7e−4 Probability of false alarm
R 600 km Range to aircraft

IV. RESULTS

The results for this paper are separated into two sections.
First, results are presented to verify the linearization of the
radar detection and RCS models. Second, the sensitivity
of PD to the aircraft state uncertainty is presented. Both
sections provide results for the RCS models presented in
Section II-B for three levels of aircraft state uncertainty (low,
medium, high). Table I provides the parameter values used
in this section. The radar parameters represent a surveillance
radar from examples in [20]. The aircraft pose uncertainty
levels are associated with a navigation system aided by GPS
measurements (Low), degraded GPS measurements (Medium),
and no GPS measurements (High).
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A. Linearization Verification

The linearization described in Section III provides a first
order approximation to variations in the nonlinear radar
detection model due to variations in the aircraft pose. The
validity of this approximation is dependent on the operating
point x̄a, the RCS model, and the pose uncertainty Cxx and
is assessed in this section.

The linearization verification will be illustrated using Monte
Carlo analysis for a scenario where the radar is at the origin
of the NED frame (pnr = 03×1) and the aircraft position
is rotated around the radar at a nominal range with a fixed
nominal heading and altitude. In this approach, the aircraft is
considered at a series of nominal poses that are perturbed with
random samples according to the state uncertainty level. The
kth nominal aircraft pose is given by

x̄a[k] =
[
R sin(θr[k]) R cos(θr[k]) p̄ad 01×3

]ᵀ
, (32)

where θr[k] ranges from 0–180 degrees in increments of 0.5
degrees. The nominal range, R = 600 km, ensures that PD is
near 0.5 for some values of θr given the RCS models defined
in Table I and p̄ad = −3 km which is within the operating
altitude for tactical unmanned aircraft [24]. The nominal state
for the ith Monte Carlo run is perturbed using

xa,i[k] = x̄a,i[k] +wi[k] (33)

where wi[k] is sampled as a zero-mean Gaussian distributed
random vector with a covariance matrix given by

Cxx =

[
σpaI3×3 0

0 σangI3×3

]
. (34)

The perturbed states are used to calculate PD[k] using (1) for
each θr[k] value. The collection of PD values over the range
of θr make up a single Monte Carlo run. The full Monte Carlo
analysis consisted of 1000 runs. In addition to PD calculated
from the perturbed states, P̄D is calculated with (1) using the
nominal aircraft state, x̄a.

The Monte Carlo results are provided in Figs. 4-5, which
show gray lines representing PD calculated for each Monte
Carlo run over a range of radar azimuth angles, θr. The
standard deviation estimated with the linearized system, σpd,
is calculated using (21) with x̄a. The associated 3σpd values
are illustrated with dashed red lines. For valid linearization,
the 3σpd values calculated from the linearized system will
be consistent with the Monte Carlo results. This is shown
graphically by the red dashed lines mostly encapsulating the
the gray lines representing PD calculated for each Monte Carlo
run. The following paragraphs describe the verification results
for the RCS models introduced in Section II-B.

Fig. 4 shows the Monte Carlo result for the ellipsoid RCS
where P̄D ranges from near 0 when the radar detection vector
points to the front and rear of the aircraft and nearly 0.85
when it points to the side of the aircraft. The variation in
PD is significantly influenced by the shape of the ellipsoid
RCS model which is much larger at the sides of the aircraft.
Furthermore, the bottom plot of Fig. 4 illustrates over 5%
variability in PD, and that σpd a strong function of θr. Note
that the magnitude of σpd is consistent with the Monte Carlo

Fig. 4: Monte Carlo analysis results for probability of detection
with “medium” level of aircraft state uncertainty over the range
θr = [0, 180] degrees with the ellipsoid RCS model. The
plots show “hair” lines PD (top) and PD error (bottom) for
each Monte Carlo run and the 3σpd approximated with the
linearized models.

ensemble statitcs for all azimuth angles and that the azimuth
angles associated with the largest σpd values are the angles
where the RCS model and (1) change most rapidly.

Fig. 5 shows similar results for the spikeball RCS. As in the
previous case, P̄D exhibits a strong dependence on the azimuth
angle, ranging from close to 0 to nearly 0.9. For several
azimuth angles, the variation in PD is large, approaching
±15%, which is due to rapid changes in the RCS and (1)
near these angles. As in the case of the ellipsoid, the 3σpd
values obtained via linearization appropriately encapsulate
most of the Monte Carlo ensembles for all radar azimuth
angles. At radar azimuth angles of 0, 60, 120, and 180
degrees, the Monte Carlo ensembles become biased due to
linearization errors near the sharp corners of the spikeball RCS
model and (1) approaching 0. Near these angles, the linear
approximation to RCS model presents a bias that influences
the estimation of PD. Regardless of the indicated bias, the
Monte Carlo ensembles are mostly encapsulated by the 3σpd
values calculated from the linearized models at these angles,
resulting in a conservative estimate of σpd. Note that if the
sharp corners were sharp outward spikes, the linearization of
the RCS model would cause a similar bias where the 3σpd
values are higher than the extent of the Monte Carlo samples
which would represent a conservative approximation of σpd.

Several important conclusions are drawn from the results
of this section. First, the variability of PD due to uncertainty
in aircraft pose is substantial for ellipsoid and spikeball RCS
models, ±5% for the former and ±10% for the latter. Second,
sharp changes in the RCS with respect to azimuth angle induce
a skew in the distribution of PD about the nominal value.
The skew is especially prominent for the case of high state
uncertainties. Third, despite the induced skew, he 3σpd values
predicted by (21) are consistent with the extents of the Monte
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Fig. 5: Monte Carlo analysis results for probability of detection
with “medium” level of aircraft state uncertainty over the range
θr = [0, 180] degrees with the spikeball RCS model. The
plots show “hair” lines PD (top) and PD error (bottom) for
each Monte Carlo run and the 3σpd approximated with the
linearized models.
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Fig. 6: Probability of detection sensitivity to state uncertainty
for the ellipsoid RCS. Each line indicates the 3σpd values of
the linearized PD statistics.

Carlo ensembles, yielding conservative bounds for PD.

B. Sensitivity to State Uncertainty

The results of the previous section served to verify the
variation in PD predicted by (21). This section explores the
sensitivity of PD to state uncertainty using the linearized
models. This is illustrated by evaluating 3σpd values over a
range of θr for the two RCS models and the three levels of
state uncertainty. Note that the nominal range for each RCS
model is the same as in the previous section.

Fig. 6 shows 3σpd for the ellipsoid RCS model across
a range of θr for the three state uncertainty levels. The
plot shows that 3σpd approaches 0.15 for the high level of
state uncertainty. The magnitude of the sensitivity is highly
dependent on the radar azimuth angle, θr. The magnitude of
σpd is primarily driven by the rate of change of the RCS model
and (1) at a given azimuth angle. Fig. 7 shows similar results
for the spikeball RCS but 3σpd approaches 0.3 for the high
level of state uncertainty.

The results in this section show that σpd varies based
on the RCS model, radar azimuth angle θr, and the state
uncertainty. The σpd values for the ellipsoid and spikeball RCS
models are significant, especially for the medium and high
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Fig. 7: Probability of detection sensitivity to state uncertainty
for the spikeball RCS. Each line indicates the 3σpd values
estimated by the linearized models.

levels of state uncertainty. This indicates that considering the
state uncertainty for the ellipsoid and spikeball RCS models
provides significant value, especially for scenarios with large
state uncertainty. Failing to consider the state uncertainty in
these scenarios will result in detection probabilities that are
higher than expected.

V. CONCLUSION

In planning the path of an aircraft, operators must ensure
that the probability of being detected by radar systems stays
below mission-specified levels. The probability of detection
PD is commonly considered a deterministic value that is
a function of the aircraft pose, radar position, and radar
parameters. This approach fails to consider the variability in
PD induced by uncertainty in such parameters. A source of
uncertainty in mission planning is in the aircraft pose which
is often modeled as a Gaussian random vector with a mean
and covariance. This paper presents a method for estimating
the variability of PD due to uncertainty in the aircraft pose.

The method presented in this work provides a first-order
approximation of the variations in PD. This is accomplished
by linearizing an expression for PD with respect to the aircraft
pose. The resulting linear model is used to determine the 3σ
variability of PD due to uncertainty in the aircraft pose. As
part of the linearization, the necessary partial derivatives are
derived for the ellipsoid, and spikeball radar cross section
models.

The linearization of PD with respect to the aircraft state is
verified using a Monte Carlo analysis for three levels of aircraft
pose uncertainty and the two radar cross section models.
Despite small biases present in the Monte Carlo ensemble due
to sharp changes in the simple spikeball RCS model, the 3σ
values predicted by the linear model appropriately incapsulate
the variations in PD due to uncertainty in the aircraft pose.

The sensitivity of PD to aircraft pose uncertainty is also
explored in this paper. The results show that the magnitude
of the 3σ bound is significant for the ellipsoid and simple
spikeball RCS models – nearly 0.15 and 0.3, respectively for a
high level of state uncertainty. These variations are significant
and must be considered in mission planning efforts. Failing to
consider the aircraft pose uncertainty will result in detection
probabilities that are higher than expected. Mission planners
interested in applying the framework presented in this paper
must collect the following information:
• Parameters for the RCS model
• Radar parameters cr and Pfa
• Radar position in NED frame
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• Aircraft pose and covariance samples along a nominal
trajectory

The methods presented in this paper provide a framework
for incorporating uncertainty in the aircraft pose into the
calculation of the probability of detection. Several extensions
to this work may be explored. First, in this work, the radar
position and radar parameters are assumed to be known and
deterministic quantities. In practice, these values are estimated
and have inherent uncertainty. The framework presented in
this paper may be extended to incorporate uncertainties in
these parameters. Second, the framework in this paper may be
applied to a path planner that accounts for the variability of
PD due to uncertainties in the aircraft pose. Third, the current
framework utilizes a single-pulse detection model. This may
be extended to support multiple-pulse detection to examine
the effect of pulse-integration methods and Swerling models
for fluctuating targets. Fourth, additional RCS models may be
explored.
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APPENDIX A
RADAR CROSS SECTION LINEARIZATION

The following paragraphs will define the partial derivatives
of the RCS models presented in Section II-B. The ellipsoid
and simple spikeball RCS models are functions of the RCS
azimuth and elevation angles from the radar detection vector
and the partial derivatives of these expressions are derived as
follows

∂α

∂xa
=

∂α

∂ρbr

∂ρbr
∂xa

(35)

∂φ

∂xa
=

∂φ

∂ρbr

∂ρbr
∂xa

(36)

where
∂ρbr
∂xa

=
[
∂ρb

r

∂pn
a

∂ρb
r

∂Θa

]
. (37)

The partial derivative of the azimuth and elevation angle with
respect to ρbr are given by

∂α

∂ρbr
=

[ −ρry
ρ2rx+ρ2ry

ρrx
ρ2rx+ρ2ry

0
]

(38)

∂φ

∂ρbr
=

[
−ρrxρrz

γ
−ρryρrz

γ

√
ρ2rx+ρ2ry

ρ2rx+ρ2ry+ρ2rz

]
(39)

where
γ =

(
ρ2
rx + ρ2

ry + ρ2
rz

)√
ρ2
rx + ρ2

ry. (40)

The partial derivative of ρbr with respect to the aircraft position
in the NED frame is given by

∂ρbr
∂pna

= −T bn (41)
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where T bn is defined in (11). The partial derivative of ρbr with
respect to the aircraft orientation is given by

∂ρbr
∂Θa

=




∂ρb
r

∂Θa 11

∂ρb
r

∂Θa 12

∂ρb
r

∂Θa 13
∂ρb

r

∂Θa 21

∂ρb
r

∂Θa 22

∂ρb
r

∂Θa 23
∂ρb

r

∂Θa 31

∂ρb
r

∂Θa 32

∂ρb
r

∂Θa 33


 (42)

where
∂ρbr
∂Θa 11

= −(CφaSψa − CψaSφaSθa)p∆d

−(SφaSψa + CφaCψaSθa)p∆e (43)
∂ρbr
∂Θa 12

= CψaSθap∆n − CψaCθaSφap∆e

−CφaCψaCθap∆d (44)
∂ρbr
∂Θa 13

= (CφaCψa + SφaSψaSθa)p∆e

−(CψaSφa − CφaSψaSθa)p∆d

+CθaSψap∆n (45)
∂ρbr
∂Θa 21

= (CφaCpsia + SφaSψaSθa)p∆d

+(CψaSφa − CφaSψaSθa)p∆e (46)
∂ρbr
∂Θa 22

= SψaSθap∆n − CφaCθaSψap∆d

−CθaSφaSψap∆e (47)
∂ρbr
∂Θa 23

= (CφaSψa − CψaSφaSθa)p∆e

−(SφaSψa + CφaCψaSθa)p∆d

−CψaCθap∆n (48)
∂ρbr
∂Θa 31

= CθaSφap∆d − CφaCθap∆e (49)

∂ρbr
∂Θa 32

= Cθap∆n + CφaSθap∆d + SφaSθap∆e(50)

∂ρbr
∂Θa 32

= 0 (51)

and

pn∆ = pnr − pna (52)

=
[
p∆n p∆e p∆d

]ᵀ
. (53)

The partial derivatives of the RCS models with respect to α
and φ are defined in the following subsections.

A. Ellipsoid RCS

The second RCS model is the ellipsoid. The partial
derivative of the ellipsoid RCS model with respect to the
aircraft state is given by

∂σre
∂xa

=
∂σre
∂α

∂α

∂xa
+
∂σre
∂φ

∂φ

∂xa
. (54)

The partial derivatives of the ellipsoid RCS model with respect
to the RCS azimuth and elevation angles are given by

∂σre
∂α

=
−2π(abc)2 sin(2α)κ

D3
(55)

∂σre
∂φ

=
−2π(abc)2

(
b2 − a2

)
sin(α)2 sin(2φ)

D3
(56)

where
κ = a2 cos(φ)2 + b2 sin(φ)2 − c2 (57)

and

D = (a sinα cosφ)
2

+ (b sinα sinφ)
2

+ (c cosφ)
2
. (58)

B. Simple Spikeball RCS

The third radar cross section model is the simple spikeball.
The partial derivative of the simple spikeball RCS model in
(15) with respect to the aircraft state is

∂σrs
∂xa

=
∂σrs
∂α

∂α

∂xa
(59)

where
∂σrs
∂α

=
n

2
as cos

(n
2
α
)

sign
(
as sin

(n
2
α
))

. (60)
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CHAPTER 3

SENSITIVITY OF SINGLE-PULSE RADAR DETECTION TO RADAR STATE

UNCERTAINTY
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Sensitivity of Single-Pulse Radar Detection to
Radar State Uncertainty

Mr. Austin Costley, Dr. Randall Christensen, Dr. Robert C. Leishman, Dr. Greg Droge

Abstract—Mission planners for aircraft operating under
threat of detection from ground-based radar systems are often
concerned with the probability of detection. Current approaches
to path planning in such environments consider the radar state
(i.e. radar position and parameters) to be deterministic and
known. In practice, there is uncertainty in the radar state
which induces uncertainty in the probability of detection. This
paper presents a method to incorporate the uncertainty of the
radar state in a single-pulse radar detection model. The method
linearizes the radar detection model with respect to the the radar
state and uses the linearized models to estimate, to the first order,
the variance of the probability of detection. The results in this
paper validate the linearization using Monte Carlo analysis and
illustrate the sensitivity of the probability of detection to radar
state uncertainty.

NOMENCLATURE

PD Probability of detection
Pfa Probability of false alarm
S Signal-to-noise ratio
σr Radar cross section (m2)
R Range to target (m)
cr Culmination constant of radar parameters
xa Aircraft state vector
pna Aircraft position vector in NED frame
Θa Aircraft Euler angle vector
pan, pae, pad Aircraft position elements in NED frame
φa, θa, ψa Aircraft Euler angles (roll, pitch, yaw)
pnr Radar position vector in NED frame
prn, pre, prd Radar position elements in NED frame
a, b, c Ellipsoid RCS parameters
α RCS azimuth angle
φ RCS elevation angle
θr Radar detection azimuth angle
φr Radar detection elevation angle
Caa Aircraft pose covariance
σpd Standard deviation of PD

I. INTRODUCTION

Manned and unmanned aircraft are often tasked with
operating under threat of detection from ground-based radar

This work was supported by Air Force Research Laboratory, Wright-
Patterson Air Force Base, OH.
A. Costley is with the Electrical and Computer Engineering Department, Utah
State University, Logan, UT 84322 USA (e-mail: adcostley@gmail.com)
R. Christensen is with Blue Origin, Kent, WA 98032 USA (e-mail:
rchristensen@blueorigin.com)
R. Leishman is with the ANT Center, Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH 45433 USA (e-mail:
robert.leishman@afit.edu)
G. Droge is with the Electrical and Computer Engineering Department, Utah
State University, Logan, UT 84322 USA (e-mail: greg.droge@usu.edu)

systems. Missions executed in such environments include
reconnaissance [1], radar counter-measure deployment [2, 3],
and combat operations [4]. Planners for these missions are
often concerned with the probability of being detected, which
is determined by a number of factors. The factors include the
aircraft position and orientation (pose), radar position, radar
parameters (e.g. power, aperture, noise factor, loss factor, etc.),
and the physical characteristics of the aircraft such as the radar
cross section (RCS).

The target detection literature provides high-fidelity single-
pulse radar detection models which estimate the instantaneous
probability of detection given the radar position, radar
parameters, and the pose of the detected aircraft. Marcum
[5] and Swerling [6] express target detection as a probability
for single-pulse and fluctuating target models. Mahafza [7]
extends the work by Marcum and Swerling to include
considerations for modeling modern radar systems and
common RCS models. Most path planning algorithms use
simplified radar models that do not attempt to quantify the
probability of detection [2, 3, 8–12]. In constrast, Kabamba [4]
quantifies the probability of tracking with a logistic function
approximation, but the model abstracts away the radar-specific
parameters. This paper will use a high-fidelity model from [7]
which quantifies the probability of detection as a function of
radar parameters such as power, aperture, noise factor, and
loss factor.

A common feature of the referenced path planning and
radar detection literature [2–16] is that the aircraft pose, radar
position, and radar parameters are deterministic and known.
However, [17] shows that moderate aircraft pose uncertainty
induced significant variability in the probability of detection.
The resulting mean and variance of the probability of detection
is useful for path planning [15, 16] and error budget analysis
[18–20].

The primary contribution of this paper is an extension of the
framework developed in [17] to incorporate radar position and
parameter uncertainty in the calculation of the probability of
detection for a single-pulse radar model. This is accomplished
by linearizing the radar detection model with respect to the
radar state. The linearized model is used to produce a first-
order approximation of the variability of the probability of
detection due to uncertainties in the aircraft and radar states.
The linearization is validated using Monte Carlo analysis.
Futhermote, the sensitivity of the probability of detection to
aircraft and radar state uncertainties is illustrated by evaluating
the radar detection model with three levels of radar state
uncertainty.

The remainder of this paper is organized as follows. The
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radar detection framework presented in [17] is reviewed in
Section II. The linearization of the radar detection model
with uncertainty in the radar state is derived in Section III.
The results of the Monte Carlo and sensitivity analyses are
provided in Section IV.

II. RADAR DETECTION MODEL

The purpose of the radar detection model in this work is
to provide an expression for the probability of detection, PD,
as a function of the aircraft pose, radar position, and radar
parameters. A common expression for PD uses Marcum’s Q-
function [7] which is dependent on the amplitude of the radar
sinusoid and contains an integral that does not have a closed
form solution. An accepted and accurate approximation to PD
provided by North [21] and used in [7] is

PD ≈ 0.5× erfc
(√
− lnPfa −

√
S + 0.5

)
, (1)

where Pfa is the probability of false alarm, S is the signal
to noise ratio, and erfc(·) is the complementary error function
given by

erfc(z) = 1− 2√
π

∫ z

0

e−ζ
2

dζ. (2)

The Pfa is considered a constant for a given radar, whereas
S is a function of radar parameters and the pose of the target
aircraft. A general expression for the signal-to-noise ratio is
given by

S = cr
σr
kR4

, (3)

where k is Boltzmann’s constant (1.38× 10−23 J/◦K), cr is
the consolidated radar constant, R is the range to the target,
and σr is the RCS. Models for the radar constant, range to the
target, and the RCS are provided in the following paragraphs.

The expression for consolidated radar constant depends on
the radar type. Mahafza [7] provides an expression for a
surveillance radar as

cr =
PavA

16T0LF

Tsc
Ω
, (4)

where Pav is the average transmitted power, A is the aperture,
T0 is the temperature, Tsc is the radar scan time, and Ω is the
radar search volume.

Consider the radar detection scenario illustrated in Fig.
1. The range to the target is defined as the 2-norm of the
difference between the aircraft and radar positions in the
North-East-Down (NED) frame given by

R = ||pnr − pna ||2. (5)

where
pnr =

[
prn pre prd

]ᵀ
(6)

and
pna =

[
pan pae pad

]ᵀ
. (7)

The RCS of the target aircraft is a function of the angles that
describe the vector from the aircraft to the radar. These angles

ψa

θr

αN

E

radar



pan

pae

pad






prn
pre
prd




bx

by

Fig. 1. Graphical representation of the quantities used in the radar detection
model.

are referred to as the RCS azimuth angle α and elevation angle
φ given by

α = arctan

(
ρry
ρrx

)
(8)

and

φ = arctan

(
ρrz√

(ρrx)2 + (ρry)2

)
, (9)

where the relative position of the radar in the body frame of
the aircraft is given by

ρbr =
[
ρrx ρry ρrz

]ᵀ
. (10)

The body frame of the aircraft is defined with the x-axis out
the nose of the aircraft, the z-axis out the bottom of the aircraft,
and the y-axis out the right wing. The vector ρbr is calculated
using the aircraft pose and radar position by

ρbr = T bn
(
pnr − pna

)
, (11)

where T bn is the direction cosine matrix formed by the ZYX
Euler angle sequence [22] given by

T bn =



CψaCθa −CφaSψa + CψaSφaSθa
CθaSψa CφaCψa + SφaSψaSθa
−Sθa CθaSφa

SφaSψa + CφaCψaSθa
−CψaSφa + CφaSψaSθa

CφaCθa


 (12)

where S· and C· are the sin(·) and cos(·) functions, and φa,
θa, and ψa are the Euler angles for the roll, pitch, and yaw of
the aircraft, respectively.

As stated previously, the RCS is a function of α and φ,
but the specific function depends on the chosen RCS model.
The framework in [17] provides support for three analytical
RCS models – constant, ellipsoid, and simple spikeball. This
paper uses the ellipsoid RCS model [4, 7], although a similar
derivation can be done for each of the other RCS models. The
ellipsoid RCS model represents a 3-dimensional surface given
by

σre =
π (abc)

2

(
(aSαCφ)

2
+ (bSα Sφ)

2
+ (cCα)

2
)2 (13)
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where a, b, and c, are the length of the ellipsoid axes. Note
that the ellipsoid orientation is aligned with the body frame
with the a axis forward, b axis down, and c axis out the right
wing.

III. LINEARIZED PROBABILITY OF DETECTION

This section describes a method to linearize the radar
detection model with respect to the radar position and radar
parameters and incorporate the linearized model into the
framework in [17] to account for radar state uncertainty. The
previous section has shown that PD is approximated by a
nonlinear function of the aircraft pose, radar position, and
radar constant cr. Thus, variability in these quantities induces
variability in PD. Let the radar state be defined as

xr =
[
pnr cr

]ᵀ
(14)

and the aircraft state be defined as

xa =
[
pna φa θa ψa

]ᵀ
. (15)

A first order approximation for the mean and variance of PD is
obtained by linearizing (1) about the nominal aircraft and radar
states and applying a Taylor series expansion. The expansion
results in the sum of PD evaluated at the nominal aircraft and
radar states (x̄a, x̄r) with the perturbation of PD, δPD, as

PD(x̄a + δxa, x̄r + δxr) ≈ PD(x̄a, x̄r) + δPD (16)

where δxa and δxr are perturbations on the aircraft and radar
states. The perturbation of PD, δPD, is expanded as

δPD =
∂PD
∂S

[
∂S
∂R

∂R
∂xa

+ ∂S
∂σr

∂σr

∂xa

] ∣∣∣∣∣
x̄a

δxa+

∂PD
∂S

[
∂S
∂R

∂R
∂pn

r
+ ∂S

∂σr

∂σr

∂pn
r

∂S
∂cr

] ∣∣∣∣∣
x̄r

δxr (17)

≈ APaδxa +APrδxr. (18)

Thus, the perturbation can be approximated as a linear
combination of perturbations on the aircraft and radar
states. The Jacobians APa and APr have three partial
derivatives in common

(
∂PD

∂S ,
∂S
∂R ,

∂S
∂σr

)
. The common partial

derivatives and the remaining partial derivatives that define
APa are derived in [17]. The remaining partial derivatives(
∂R
∂pn

r
, ∂σr

∂xr
, ∂S∂cr

)
are derived in the following paragraphs.

The partial derivative of the range to the aircraft as defined
in (5) with respect to the radar state is given by

∂R

∂pnr
=
− (pa − pr)

ᵀ

||pa − pr||2
. (19)

The RCS, σr, is a function of the RCS azimuth α and elevation
φ angles so the partial derivative of σr with respect to the radar
state is expanded to obtain

∂σr
∂pnr

=
∂σr
∂α

∂α

∂pnr
+
∂σr
∂φ

∂φ

∂pnr
. (20)

The partial derivatives of σr with respect to α and φ(
∂σr

∂α ,
∂σr

∂φ

)
are dependent on the chosen RCS model. For the

ellipsoid RCS model [4, 7, 17], these partial derivatives are
given by

∂σre
∂α

=
−2π(abc)2 sin(2α)κ

D3
(21)

∂σre
∂φ

=
−2π(abc)2

(
b2 − a2

)
sin(α)2 sin(2φ)

D3
, (22)

where
κ = a2 cos(φ)2 + b2 sin(φ)2 − c2 (23)

and

D = (a sinα cosφ)
2

+ (b sinα sinφ)
2

+ (c cosφ)
2
. (24)

The partial derivatives of α and φ as defined in (8) and (9)
with respect to the radar position are common for all RCS
models

(
∂α
∂pn

r
, ∂φ
∂pn

r

)
and are expanded as

∂α

∂pnr
=

∂α

∂ρbr

∂ρbr
∂pnr

(25)

∂φ

∂pnr
=

∂φ

∂ρbr

∂ρbr
∂pnr

, (26)

where
∂α

∂ρbr
=

[ −ρry
ρ2rx+ρ

2
ry

ρrx
ρ2rx+ρ

2
ry

0
]

(27)

∂φ

∂ρbr
=

[
−ρrxρrz

γ
−ρryρrz

γ

√
ρ2rx+ρ

2
ry

ρ2rx+ρ
2
ry+ρ

2
rz

]
(28)

and
γ =

(
ρ2rx + ρ2ry + ρ2rz

)√
ρ2rx + ρ2ry. (29)

The remaining expression is calculated by taking the partial
derivative of (11) with respect to pnr given by

∂ρbr
∂pnr

= T bn. (30)

Finally, the partial derivative of S as defined in (3) with respect
to the radar constant cr is given by

∂S
∂cr

=
σr
kR4

. (31)

The partial derivatives are used to obtain an expression for
APr as

APr =
∂PD
∂S

[
∂S
∂R

∂R
∂pn

r
+ ∂S

∂σr

∂σr

∂pn
r

∂S
∂cr

]
(32)

=
exp

(
−
(√
− lnPfa −

√
S + 0.5

)2)

2
√
π
√
S + 0.5[

4crσr(pa−pr)
ᵀ

kR5||pa−pr||2 + cr
kR4

∂σr

∂pn
r

σr

kR4

]
(33)

where ∂σr

∂pn
r

is determined by (20) for the ellipsoid RCS model.
The purpose of linearizing the radar detection model is

to obtain an expression for the variability of PD due to
uncertainties in the aircraft and radar states. The variance of
the linearized model is calculated by taking the expectation of
(δPD)2 as

σ2
pd = E

[
(δPD)2

]
(34)

= APaCaaA
ᵀ
Pa +APrCrrA

ᵀ
Pr (35)

where Caa is the covariance of the aircraft state and Crr is
the covariance of the radar state.
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TABLE I
PARAMETERS FOR USED IN RESULTS SECTION

Param Value Description
a 0.15 m Ellipsoid RCS forward axis length
b 0.13 m Ellipsoid RCS side axis length
c 0.21 m Ellipsoid RCS up axis length
σpa 10 m Aircraft position std. dev.
σang 1 deg. Euler angle state std. dev.
L σpr 10 m Low radar position std. dev.
M σpr 100 m Medium radar position std. dev.
H σpr 1000 m High radar position std. dev.
L σcr 1 Jm2/◦K Low radar constant std. dev.
M σcr 5 Jm2/◦K Medium radar constant std. dev.
H σcr 10 Jm2/◦K High radar constant std. dev.
ψ̄a 90 deg. Nominal aircraft course angle
p̄ad -3 km Nominal aircraft position - "down" axis
p̄nr 03×1 m Nominal radar position vector (NED)
c̄r 167 Jm2/◦K Nominal radar constant
Pfa 1.7e−4 Probability of false alarm

IV. RESULTS

The results of this paper are separated into two sections.
First, results are presented to illustrate the validity of the
linearization presented in Section III using Monte Carlo
analysis. Second, the linearized models are used to illustrate
the sensitivity of PD to variations in the aircraft and radar
states. The sensitivity of PD is examined using a moderate
level of aircraft state uncertainty and three levels of radar
state uncertainty (Low, Medium, and High). The radar model
used in this section is a surveillance radar from [7] and the
parameters used to generate the results are provided in Table
I.

A. Linearization Validation

The linearization approach described in Section III provides
a first order approximation to the variation in PD due to
uncertainty in the aircraft and radar states. The validity of this
approximation is dependent on the nominal operating point of
the aircraft state x̄a and radar state x̄r, the associated state
covariances Caa and Crr, and the RCS model.

The linearization is validated using Monte Carlo analysis
for a scenario where the nominal radar position is at the
origin of the NED frame (p̄nr = 03×1) and nominal aircraft
positions are obtained by rotating the aircraft about the radar
at a nominal range. The nominal radar constant value is 167
m2/◦K which is obtained from a radar example provided in
[7]. In this approach, the aircraft is considered at a series
of nominal poses that are perturbed with random samples
according to the aircraft state uncertainty level. The radar
states are similarly perturbed at the beginning of every Monte
Carlo run. The nominal radar state is given by

x̄r =
[
0 0 0 c̄r

]ᵀ
. (36)

The kth nominal aircraft state is given by

x̄a[k] =
[
p̄na 0 0 ψ̄a

]ᵀ
(37)

where

p̄na =
[
R sin(θr[k]) R cos(θr[k]) p̄ad

]ᵀ
(38)

and θr[k] ranges from 0–180 degrees in increments of 0.5
degrees. The nominal range, R = 500 km, ensures that PD is
near 0.5 for some values of θr given the parameters defined
in Table I. The nominal states for the ith Monte Carlo run are
perturbed using

xa,i[k] = x̄a[k] +wr,i[k] (39)

and
xr,i = x̄r +wa,i (40)

where wa,i[k] and wr,i are sampled as zero-mean Gaussian
distributed random vectors with a covariance matrices given
by

Cxx =

[
σpaI3×3 0

0 σangI3×3

]
(41)

and

Crr =

[
σprI3×3 0

01×3 σcr

]
. (42)

The perturbed states are used to calculate PD[k] using (1) for
each θr[k] value. The collection of PD values over the range
of θr make up a single Monte Carlo run. The full Monte Carlo
analysis in this work consists of 500 runs. In addition to PD
calculated from the perturbed states, P̄D is calculated using
the nominal states, x̄a and x̄r.

The first Monte Carlo analysis is performed using the
ellipsoid RCS model and the Medium level of radar state
uncertainty. Fig. 2 shows the Monte Carlo results for this
scenario. The top plot illustrates the PD values calculated
using (1) for each Monte Carlo run, PD,MC , and the nominal
states, P̄D. The plot also shows upper and lower 3-σpd values
as calculated using the linearized model in (35) which is
expected to envelop 99.7% of the Monte Carlo values. The
bottom plot illustrates the difference between PD calculated
from the nominal states and PD calculated using (1) for each
Monte Carlo run. Observe that the 3-σpd values of PD are
nearly 0.1 for θr ≈ 45 and 135 degrees. This indicates that
depending on the value of θr, the variability in PD may
increase the detection risk by 0.1. A key aspect to note is
that the 3-σpd values predicted by (35) are consistent with the
ensemble statistics of the Monte Carlo runs for all values of
θr.

Two conclusions are drawn from the results in this section.
First, a moderate level of aircraft state uncertainty and Medium
level of radar state uncertainty induces substantial variability
in PD (nearly ±0.1 for certain detection angles). Second, the
variance of the linearized model is consistent with the extents
of the ensemble statistics of the Monte Carlo runs as indicated
by Fig. 2.

B. Sensitivity to State Uncertainty

The next set of results illustrate the sensitivity of PD to
uncertainty in the radar state. The first analysis shows the 3-
σ variability of PD due to Low, Medium, and High radar
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Fig. 2. Monte Carlo analysis results for PD with “Medium” level of aircraft
and radar state uncertainty over the range θr = [0, 180] degrees with the
ellipsoid RCS model. The plots show “hair” lines for PD (top) and PD error
(bottom) for each Monte Carlo run and 3-σpd calculated with the linearized
radar model.
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Fig. 3. Sensitivity analysis of PD for three levels of radar state uncertainty
over the range θr = [0, 180] degrees with the ellipsoid RCS model and
R = 500 km. Each line indicates the 3-σpd value for each level of state
uncertainty.

state uncertainty as defined in Table I. The second analysis
provides an error budget that illustrates the contribution of
each of the four sources of uncertainty (i.e. aircraft position,
aircraft orientation, radar position, and radar constant) to the
variability of PD.

The first analysis is accomplished by calculating 3-σpd using
(35) with the nominal aircraft and radar states over a range of
θr for the three levels of radar state uncertainty. The nominal
states were set using the same approach as the Monte Carlo
analysis. Fig. 3 shows the results of this analysis where, as
expected, the magnitude of 3-σpd gets larger for higher levels
of radar state uncertainty. Note that the magnitude of 3-σpd is
nearly 0.1 for the Medium level of radar state uncertainty and
over 0.15 for the High level of radar state uncertainty for θr ≈
45 and 135 degrees. This indicates that at certain detection
angles, PD may be 0.1 or 0.15 higher than the nominal value
due to Medium to High levels of uncertainty in the aircraft
and radar states.

The second analysis provides an error budget for the
Medium level of radar state uncertainty. An error budget
illustrates the contribution of each source of uncertainty (or
error) in a given scenario. This is accomplished by calculating
the 3-σpd value using (35) with the nominal aircraft and
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Radar Position

Radar Constant
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Fig. 4. Error budget for variability of PD due to four sources of uncertainty
for the “Medium” level of radar state uncertainty, ellipsoid RCS model, and
R = 500 km. Each line indicates the 3-σ uncertainty magnitude as contributed
by a given source of uncertainty. The Total line indicates the 3-σpd magnitude
for the scenario.

radar states when a single source of uncertainty is present (or
activated) and the other uncertainty sources deactivated. The
method is repeated for each source of uncertainty to obtain an
expression for 3-σpd due to each source of uncertainty.

Fig. 4 shows the resulting error budget with four sources
of uncertainty (i.e. aircraft position, aircraft orientation, radar
position, and the radar constant). The “Total” line shows the
magnitude of 3-σpd with all the error sources active which
corresponds to the square root of the sum of the squares of the
3-σpd values due to each contributing source. The “Total” line
is also the same as the “Medium” line from Fig. 3. Observe
that the largest contributor to the overall variability in PD is
the uncertainty in the radar constant when σcr is just under
3% of the nominal radar constant value.

Several conclusions can be drawn from the results presented
in this section. The variability of PD is sensitive to the level of
radar state uncertainty for a given scenario and the magnitude
of the variability depends on the radar detection angle. The
High level of radar state uncertainty induces a 3-σpd value of
over 0.15 for θr ≈ 45 and 135 degrees. These detection angles
are associated with the areas of the ellipsoid RCS model with
the largest variability. Uncertainty in the aircraft and radar
states has the greatest influence at these detection angles.
The contribution of individual error sources to the overall
variability in PD is illustrated in the error budget in Fig. 4. The
graph indicates that the variability in PD is primarily driven by
the uncertainty in the radar constant and the orientation of the
aircraft. If the mission planner desires to reduce the variability
in PD, attention should first be given to the possibility of
reducing uncertainty in the radar constant and improving the
estimate of the aircraft orientation.

V. CONCLUSION

Mission planning for aircraft operating in environments with
ground-based radar systems must account for the probability
of detection. Several factors influence the probability
of detection including aircraft pose, radar position, and
radar performance characteristics. Current methods for path
planning in radar detection environments consider these factors
to be deterministic and known. In practice, these factors
are estimated using gathered intelligence and have some
uncertainty. The methods presented in this work extend [17]
to incorporate uncertainty in the radar state.
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The framework in [17] provides a first-order approximation
of the variance of PD due to uncertainties in the aircraft
state. This is accomplished by linearizing the radar detection
equations with respect to the aircraft state. The methods in this
paper extend this framework by linearizing the radar detection
equations with respect to the radar state. The linearized
equations are used to compute the variability of PD due to
uncertainties in the aircraft and radar states.

The linearization of PD with respect to the radar states
is validated using Monte Carlo analysis for three levels of
radar state uncertainty. Two conclusions are drawn from the
Monte Carlo analysis. First, the radar state uncertainty induces
significant variability in PD (nearly 0.1 for medium radar state
uncertainty). Second, the 3-σpd values values predicted by the
linearized model are consistent with the ensemble statistics for
the ellipsoid RCS model indicating valid linearization.

The sensitivity of PD to state uncertainty is also explored in
this paper. The sensitivity analysis shows that the magnitude
of the 3-σpd values from the linearized models are over 0.15
for High radar state uncertainty and the magnitude varies
based on the detection angle. An error budget is generated to
identify the contributions of each source of uncertainty. The
error budget indicates that the uncertainty in the radar constant
is the largest contributor to the variability in PD with a radar
constant standard deviation of only 3% of the nominal value.

The results in this paper indicate that the linearization
is valid and the incorporation of the radar state uncertainty
has a significant influence on the variability of PD. Failing
to incorporate uncertainty in the radar state will result in
detection probabilities that are higher than expected.
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Analytical Aircraft State and IMU Signal Generator
from Smoothed Reference Trajectory

Mr. Austin Costley, Dr. Randall Christensen, Dr. Robert C. Leishman, Dr. Greg Droge

Abstract—Generating aircraft position, velocity, and attitude
along a reference trajectory is useful in many path and mission
planning applications. In applications simulating an inertial
navigation system the body-frame accelerations and angular rates
are also required. This work presents a method for generating
a smoothed continuous-curvature reference trajectory from a
series of waypoints using line, arc, clothoid, and Fermat spiral
segments in a fillet smoothing framework. The geometry of the
segments are used to generate the position, velocity, and attitude
of an aircraft following the reference trajectory. A primary
contribution of this work is the use of the path geometry,
coordinated turn model, and curvilinear motion theory to obtain
analytical solutions for the body-frame accelerations and angular
rates of the aircraft along the reference trajectory.

NOMENCLATURE

ψ∆ Course angle change at waypoint
k, ψ Path curvature and course angle
x0, y0, ψ0, k0 Initial position, course angle, and curvature

of path
ρ Turn direction of path (1 left,-1 right)
θ Polar angle for arc and Fermat segments
r Radius of arc segment
s Length of segment or along segment
σc Curvature rate of clothoid segments
θkmax

Polar angle associated with maximum cur-
vature of Fermat segment

c Shaping parameter of Fermat segment
en, et Unit vectors normal and tangent to path
v,a Velocity and acceleration vectors.
Rbn Rotation matrix from navigation frame to

body frame
gn Gravity vector in the navigation frame
xt, yt Transition point between segments
xm, ym Midpoint of arc segment
d Attachment distance from waypoint to start

of first transition segment
xc, yc Center point of arc segment
kmax, k

′
max Maximum curvature and maximum curva-

ture rate per unit length
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φa, φf Central angle of arc and Fermat segments
an Acceleration in the navigation frame
φe, θe, ψe Euler angles for roll, pitch, and yaw
p, q, r Body frame angular rates

I. INTRODUCTION

An objective for the mission and path planning of unmanned
aerial vehicles (UAVs) is to determine a flyable path that
meets mission requirements. The characteristics of a flyable
path are determined by the capabilities of the aircraft. The
mission requirements vary based on the application, such as
path planning in contested environments to avoid detection [1],
reconnaissance missions where the aircraft attitude determines
sensor coverage [2], and obstacle avoidance [3].

Candidate paths generated by the path planner are assessed
based on mission requirements. The path assessment often
consists of evaluating functions of the aircraft pose (i.e.
position and orientation) and sensor measurements along the
path. This work presents a method called ASG for generating
analytical aircraft state and inertial measurement unit (IMU)
signals along smoothed candidate paths. The aircraft states
and IMU measurements will be calculated using path segment
geometry, a coordinated turn assumption [4], and curvilinear
motion theory [5].

An important aspect of mission and path planning for
UAVs is to account for uncertainty during the operation.
Uncertainties exist in three components in planning, namely,
vehicle position and orientation, environmental, and vehicle
motion uncertainties. Path planning techniques often model
some or all of these uncertainties to determine an optimal
path [3, 6]. In this work, a fixed-wing UAV with an inertial
navigation system (INS) [7] is considered. The propagation
of the state estimates and uncertainty of an INS is dependent
on measurements from a strapdown IMU [8]. Thus, a path
planning algorithm considering the uncertainty of such a sys-
tem would require estimating aircraft states and the associated
IMU measurements along the candidate path.

IMU measurement generation is used in a variety appli-
cations. Among the most popular applications are trajectory
reconstruction [9, 10], trajectory generation [7, 11, 12], and
simulation [4, 13]. While there is significant overlap between
these classifications, the chosen application typically deter-
mines the information that is available to generate the IMU
measurements. For example, the trajectory reconstruction ap-
plication typically reconstructs a trajectory using recorded
flight data. In contrast, the simulation application can obtain
acceleration and angular rates directly from the integration of
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aircraft dynamics. The trajectory generation application is the
most relevant for the purposes of this work.

Trajectory generation takes a series of aircraft poses and
calculates expressions for the accelerations and angular rates
experienced by the aircraft. These quantities can then be used
to generate IMU signals along the path. Most approaches to
trajectory generation rely on numerical derivatives of lower-
order states to calculate accelerations and angular rates [7, 11–
13]. The numerical derivative is sufficiently accurate for small
sampling times, however, the accuracy degrades with large
sampling times. The large sampling times are often desired in
path planning to reduce the computational burden of evaluating
path validity. The primary contribution of this work is ASG,
a method for analytically generating aircraft states and IMU
signals using path segment geometry and a coordinated turn
model. The analytical approach avoids numerical derivatives
and is stable for large sampling times.

The first stage of the ASG method generates a smoothed
reference trajectory from a piecewise linear candidate path (or
series of waypoints). The piecewise linear path is not flyable
for a fixed-wing UAV due to the discontinuities in course
angle. The piecewise linear path can be converted to a flyable
path using a path smoothing algorithm [14, 15]. This work
will use a fillet corner smoothing algorithm that converts the
piecewise linear path into a flyable path that maintains cur-
vature continuity. The corner smoothing approach described
in this work is not a novel contribution but a description of
the approach is provided in Section III for completeness and
reproducibility. The corner smoothing approaches used in this
work were chosen because the resulting path consists of a
series of segments that have analytical solutions for position,
course angle, and curvature.

The path segments generated by the path smoothing algo-
rithm are lines, arcs, and transition segments. The transition
segments are used to connect the lines and arcs and maintain
continuity in course angle and curvature. The first transition
segment is the clothoid, which provides a linearly changing
curvature per unit length [16]. A drawback to the clothoid
curve is the dependence on the Fresnel Integrals that do not
have a closed form solution, however, accurate approximations
exist and can be used to simplify the computation [17]. The
second transition segment is the Fermat Spiral [18], which
avoids the costly computation of the Fresnel Integrals while
maintaining continuous curvature. This work describes an
algorithm for generating 3 types of smoothed paths (Arc
Fillet, Clothoid Fillet, and Fermat Fillet) parameterized by
a maximum curvature and maximum curvature rate. The
smoothed path is then used to obtain analytical expressions for
the aircraft state and IMU measurements along the candidate
path.

The ASG method generates and samples the smooth refer-
ence trajectory and analytically generates IMU measurements.
The novel IMU measurement generation approach is compared
with a third party open-source software package based on
Matlab code provided with [7], by Paul Groves. The software
package provides many utilities for INS implementations.
In particular, this work uses a method for generating IMU
signals given position, velocity, and attitude samples. The IMU

measurements generated by the ASG method are compared
with those generated from the Groves method. The comparison
shows agreement between the two methods. Furthermore, the
ASG method provides greater accuracy as the step time is
increased because it has analytical solutions for the path
geometry instead of relying on discrete derivatives.

The next section describes background information that is
used throughout this work. Section III presents the corner
smoothing algorithm that converts a series of waypoints to a
path of continuous course angle. The path segment definitions
(see Section II-B) are used to determine the position and
course angle of the aircraft. Section IV describes a method
for determining the roll, pitch, and body-frame accelerations
and angular rates of the aircraft assuming straight-and-level
flight during straight line segments, and a coordinated turn
for transition segments and arcs. Finally, Section V provides
results for the ASG method that show the resulting aircraft
states and that the accuracy of the IMU measurements is
maintained for large time steps.

II. BACKGROUND

This section presents background information used through-
out this work. Section II-A describes the notation. Section
II-B defines the segment types used in the corner smoothing
algorithm. Finally, accelerations and angular rates along the
smoothed path are determined by curvilinear motion theory
which is discussed in Section II-C.

A. Notation

In this work, curvature rate refers to the derivative of
curvature with respect to path length, s, thus the following
convention will be used for brevity

dk

ds
= k′ (1)

when the derivative is taken with respect to time, the standard
dot notation will be used, k̇.

Vectors in this work will be expressed in bold face such
that v =

[
vx vy vz

]T
for a vector in Cartesian coordinates.

This work will maintain three frames of reference in which
vector quantities may be expressed, namely, inertial, i, body,
b, and the Navigation or North-East-Down (NED), n. The
frame in which a vector is expressed will be indicated by the
superscript so the velocity vector in the NED frame would be
expressed as vn =

[
vn ve vd

]T
.

The cross product matrix is used throughout this work and
will be given by

Ω = [ω×] =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 . (2)

B. Corner Smoothing Segment Definitions

There is a significant amount of literature on the subject
of corner smoothing [14, 15]. As the name suggests, corner
smoothing takes a corner made from the connection point of
two straight path segments and generates a curved segment to
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x

y

p1

p2

ψ∆

Fig. 1. Corner smoothing example where a two segment piece-wise linear
path is smoothed to create path with continuous course angle and curvature.
The entry vector is shown as p1, the exit vector is shown as p2, and the
course angle change is expressed as ψ∆.

transition from the first straight segment to the second straight
segment. Fig. 1 shows an example of a two segment piece-wise
linear path with a smoothed turn.

The corner smoothing algorithm in this work will output
a series of path segments, including straight lines, maximum
curvature (minimum turn radius) arcs, and transition segments
with changing curvature. The transition segments that will be
used in this work are clothoid and Fermat spiral segments.
For a given corner, the algorithm will generate two or three
smoothing segments depending on the sharpness of the turn.
A sharp turn will require three segments (transition segment,
maximum curvature arc, transition segment). Whereas a grad-
ual turn will only require two transition segments to smooth
the corner. The following subsections define expressions to
determine the Cartesian positions (x, y), course angle (ψ), and
curvature (k) along each of the path segment types.

1) Line: The first segment type is a line which is defined
by

x (s) = x0 + s cos (ψ0) (3)
y (s) = y0 + s sin (ψ0) (4)
ψ = ψ0 (5)
k = 0 (6)

where s is the length along the segment, and ψ0 is the initial
segment angle.

2) Arc: The arc is a continuous curvature segment. In the
smoothing application, the arc will be parameterized by the
maximum curvature (kmax) attainable by the aircraft. The
expressions that define the arc are parameterized by the polar
angle, θ, and are given by

x (θ) = x0 − ρr sin (ψ0) + ρ cos (θ) (7)
y (θ) = y0 + ρr cos (ψ0) + ρ sin (θ) (8)
ψ (θ) = ψ0 + ρθ (9)

k =
ρ

r
(10)

where r is the radius of the arc (the inverse of curvature), and
ρ indicates the direction of travel where

ρ =

{
1, counter-clockwise (left) turn
−1, clockwise (right) turn.

(11)

The polar angle, θ, is related to the length on the path by the
arc length formula s = rθ. Thus, the arc can be sampled at a
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Fig. 2. Euler spiral and Fermat spiral with ψ0 = π
2

, k0 = 0. The curvature
rate for the Euler spiral is σc = 1 and Fermat Spiral has a maximum curvature
of 1 1

m
. The square markers on each line indicate the location where the

curvature of the segment is equal to one and the solid segments (before the
markers) show the part of the segments used in the path smoothing algorithm.

specified arc length interval by computing the associated polar
angle interval and applying the equations above. Note that the
convention employed here is that θ = 0 is associated with the
point on the curve where ψ = π

2 .
3) Clothoid: A clothoid or Euler spiral is a path segment

whose curvature varies linearly by segment length [19]. The
position along the clothoid segment is determined by comput-
ing the Fresnel Integrals given by

x = C(s) = x0 +

∫ s

0

cos(0.5σcξ
2 + k0ξ + ψ0)dξ (12)

y = S(s) = y0 +

∫ s

0

sin(0.5σcξ
2 + k0ξ + ψ0)dξ (13)

where s is the length along the clothoid segment, ψ0 is the
initial segment angle, k0 is the initial segment curvature, x0

and y0 represent the starting point of the segment, and σc is the
curvature rate of the clothoid segment. A primary challenge
when working with clothoids is that the Fresnel Integrals do
not have a closed form solution so numerical solutions are
required to compute positions along the path. However, there
are numerous methods [14, 20, 21] for computing accurate
approximations to these equations that help mitigate this
drawback.

The course angle of a clothoid segment changes quadrati-
cally by segment length as given by

ψ(s) = ψ0 + k0s+ 0.5σcs
2. (14)

Finally, the curvature of the clothoid segment is given by

k(s) = k0 + σcs. (15)

This shows the linear relationship between path length and
curvature. An example of a Euler spiral is shown in Fig. 2 for
a segment that is 5 meters long, has an initial segment angle
and initial curvature of zero, and a curvature rate of one.
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4) Fermat Spiral: Another spiral that has been investigated
for corner smoothing is the Fermat spiral [18]. The Fermat spi-
ral is an interesting corner smoothing candidate as it provides
many of the benefits of the clothoid but avoids the integral
computation used to compute the positions along the curve.
The curve is parameterized in a polar coordinate system as
r = c

√
θ, where the c parameter can be used to modify the

curve characteristics and θ is the polar angle. Converting the
curve to Cartesian coordinates results in

x(θ) = x0 + c
√
θ cos (ρθ + ψ0) (16)

y(θ) = y0 + c
√
θ sin (ρθ + ψ0) . (17)

The curve is shown in Fig. 2 where it can be noted that
curvature does not monotonically increase as the polar angle
increases, instead, the curvature increases to a maximum and
then decreases until settling at a nearly constant value. The
curvature is given by the non-linear equation

k (θ) =
1

c

2
√
θ
(
4θ2 + 3

)

(4θ2 + 1)
3
2

. (18)

Fig. 3 shows the curvature of the Fermat spiral for a quarter
of a rotation of the polar angle. The figure shows that there is
a single maximum for θ > 0. The value of the polar angle at
which the maximum curvature is achieved at

θkmax
=

√√
7

2
− 5

4
≈ 0.26995 (19)

which is independent of the shaping parameter, c. Beyond
θkmax

the curvature decreases. This may appear to be a
drawback for using this type of segment in corner smoothing,
however, in this application, the polar angle is restricted to
the range of 0 < θ < θkmax

so the curvature is monotonically
increasing along the transition segment.

The last curve property of interest is the course angle which
is given by

ψ (θ) = θ + arctan (2θ) . (20)

For the corner smoothing application, it is important to define
equations for a reflected segment that starts at an arbitrary
point along the segment and tracks back to the start of the
segment. This operation is more involved for a Fermat Spiral
segment than the other segments defined in this section so it
will receive special attention here. The position equation for
the reflected Fermat Spiral is parameterized by the curve end
point (xend, yend), and course at the end of the segment ψend
and is given by

x (θ) = xend + c
√
θend − θ cos (ρ (θ − θend) + ψend) (21)

y (θ) = yend + c
√
θend − θ sin (ρ (θ − θend) + ψend) (22)

and θend is the polar angle at the end of the reflected Fermat
Spiral segment.

Lekkas et al. [18], show how the shaping parameter, c, can
be set such that the maximum curvature of the segment is equal
to the maximum curvature of the aircraft. This is accomplished
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Fig. 3. Curvature of Fermat spiral for a quarter of a rotation of the polar
angle with a maximum curvature of 1 1

m
. The solid line shows the portion of

the spiral that will be used in the transition segment. The curvature decreases
after the point of maximum curvature.

by solving (18) and using θ = θkmax
and k (θkmax

) = kmax.
Then an expression for c is given by

c =
1

kmax

2
√
θkmax

(
4θ2
kmax

+ 3
)

(
4θ2
kmax

+ 1
) 3

2

(23)

which will result in a scaled curve that reaches a maximum
curvature of kmax. Thus, the Fermat spiral can be parameter-
ized to respect the same maximum curvature constraint used
in the clothoid smoothing implementation.

One drawback to using the Fermat spiral for corner smooth-
ing is that the length of the path is given by

s = c
√

2

∫ θkmax

0

√
1 + 4θ2dθ (24)

which does not have a closed form solution. In [18] the length
of a Fermat segment is expressed as a hyper-geometric func-
tion with guaranteed convergence over the domain of interest.
Thus, in implementation, the computational cost of (24) can
be mitigated using a lookup table or an iterative solution to
the hyper-geometric function with some convergence criteria.

C. Curvilinear Motion Theory

Curvilinear motion theory defines the motion of a particle
along a curved path [5]. Properties of this theory will be used
to relate the geometry of the path with the aircraft state vector.
The velocity and acceleration along a curved path is given by

v = ṡet (25)

and

a = s̈et + ṡψ̇en (26)

where et and en, are the tangent and normal vectors, and ψ̇
is the angular rate of the path.
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TABLE I
PATH SMOOTHING METHOD COMPARISON OF COURSE ANGLE AND

CURVATURE CONTINUITY AND RESPECTING LIMITS ON CURVATURE AND
CURVATURE RATE (X= YES, - = NO)

Continuous Respect
Method ψ k kmax k′max

Arc Fillet X - X -
Clothoid Fillet X X X X
Fermat Fillet X X X -

III. CORNER SMOOTHING

In the first stage of the aircraft state generator presented in
this work, a piece-wise linear path is converted into a smooth
path with continuous course angle or curvature. In the case of
continuous curvature, a limit on curvature and curvature rate
can be imposed to ensure that the path will be flyable by a
specific aircraft. In this way, the physical limitations of the
aircraft can be considered and the resulting states can more
accurately reflect the behavior of the aircraft.

This section describes three methods for smoothing a piece-
wise linear path 1) Arc Fillet, 2) Clothoid Fillet, and 3) Fermat
Fillet. Each of these methods perform corner smoothing at
every way-point in the path. The resulting path will consist of a
series of straight line, arc, and transition segments with varying
curvature. This section is particularly useful for a person in the
navigation field that may be unfamiliar with corner smoothing
algorithms because it provides a unified framework for three
methods used in the path planning field.

The path smoothing algorithms presented in this section
assume that the spacing between the way-points is suffi-
ciently large enough to perform the indicated corner smoothing
method. For example, if the start or end way-point in Fig. 1
was closer to the corner point than the connection between
the straight path and the smoothing arc, then the algorithms
presented here would not be sufficient.

The first path smoothing approach presented in this section
is the Arc Fillet method where a maximum curvature segment
is used to connect two straight segments. This method has
continuous course angle but has discontinuous path curvature.
The second is the Clothoid Fillet method where clothoid
segments are used to smooth the corners or, where needed,
transition to a kmax segment. This method has continuous
curvature and course angle and respects limits on curvature
and curvature rate. The third is the Fermat Fillet method which
is similar to the Clothoid Fillet method but Fermat spiral
segments are used in place of clothoid segments. This method
has continuous curvature and course angle and respects limits
on curvature, however, it is not guaranteed to respect limits on
curvature rate. These properties are summarized in Table I.

The three approaches presented in this section iterate
through the corners in the path and compute a series of
path segments that represent the resulting smooth path. The
sharpness of the corner and positions of the way-points before
and after the corner are required to determine the smoothing
segments. The position of the way-points is provided to the
algorithm. The sharpness of the corner is represented by the
change of course angle, ψ∆, required to transition from the

x

y

ψ∆

d

xm dt

(xm, ym)

(xt, yt)

Fig. 4. Arc Fillet example where the origin for the plot is at the connection
point along the straight segment entering the way-point and the initial course
angle for the arc matches the course angle of the entering segment.

entry segment to the exit segment. The ψ∆ quantity can be
computed by expressing the entry and exit segments as vectors
(p1 and p2 from Fig. 1) and using properties of the dot product
to determine the angle between the vectors. Another important
quantity for each corner is the turn direction, ρ, which is
determined using the sign of the cross product of the two
vectors. The sign convention for ρ is given in (11).

A. Arc Fillet

The Arc Fillet method smooths a corner at a way-point
by adding a circular arc of maximum curvature (kmax) that
transitions from the first straight segment to the other. The arc
segment is parameterized by the radius, r = 1/kmax, and the
arc length, s = rψ∆, as discussed in Section II-B2. Then (8)
is used with θ = ψ∆ to determine the end point, (xt, yt), and
the midpoint, (xm, ym), of the arc. The distance along the x-
axis from the midpoint of the arc is computed geometrically
as

dt =

∣∣∣∣∣∣
ym

tan−1
(
π−ψ∆

2

)

∣∣∣∣∣∣
(27)

and the distance from the way-point to the connection point
of the arc on the first straight segment is given by

d = dt + xm. (28)

This distance is used to determine the connection point for
the arc segment on the first straight segment. Fig. 4 shows the
geometry of the Arc Fillet method and includes a graphical
representation of xm and dt.

B. Clothoid Fillet

The Clothoid Fillet method uses clothoid segments to con-
nect the straight segments and arcs while maintaining continu-
ous curvature. Using clothoid segments to generate continuous
curvature paths is well documented in [22]. This section will
describe the specific application of smoothing corners using
a clothoid fillet method within the unified framework of the
current work.

The Clothoid Fillet method relies on the fact that the
scaling factor, σc, of a clothoid segment represents the rate
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x

y

ψ∆

d

d

φs

(xt, yt)

ψ∆

2

ψt

xt dt

Fig. 5. Smoothing with clothoid segments. The blue lines represent clothoids
reflected about the bisecting angle and the red segment is a maximum
curvature segment.

of change of the curvature of the segment. This method
uses the maximum change in curvature, k′max, to transition
from the initial straight segment (k = 0), to a maximum
curvature (k = kmax) arc. The transition segment is then
reflected to obtain a transition from the constant curvature arc
to the second straight segment. The resulting smoothed path
consists of a series of segments including straight segments,
kmax orbits, and clothoid transition segments with curvature
changing linearly by k′max. Fig. 5 shows a representation of a
series of segments generated by the path smoothing algorithm
when transition segments are used. The blue segments are
transition segments and the red segment is a kmax arc.

When the turn is small enough enough two clothoid seg-
ments can be used to smooth the corner, otherwise, a kmax
arc must be added. The course angle change at which the
kmax arc segment is required is determined by solving (15)
with k0 = 0 to determine the segment length at which the
segment reaches maximum curvature (k = kmax) as

skmax =
kmax
k′max

. (29)

Then evaluating (14) with k0 = ψ0 = 0 and s = skmax gives

ψm =
k2
max

2k′max
(30)

where ψm is the change of course angle produced change
by one clothoid segment. Thus, the maximum course angle
change that can be spanned with two clothoid segments is
2ψm.

It remains to define the parameters of the line segments
used for corner smoothing with the Clothoid Fillet method.
The parameters include initial position, (x0, y0), initial course
angle, ψ0, initial curvature, k0, curvature rate, σc, and segment
length, s. The following paragraphs discuss how each of these
parameters are determined for the smoothing segments based
on the course angle change of the corner.

The initial position for the first clothoid segment is the
attachment point for the smoothing segments to the initial
straight segment. The attachment point can only be determined

after the smoothing segments are defined so the smoothing
segments will be defined for a base-case where the initial
position, course angle, and curvature for the first clothoid
segment are x0 = y0 = ψ0 = k0 = 0.

The clothoid curvature rate, σc, for the initial clothoid seg-
ment is set to the maximum curvature rate (σc = k′max) desired
for the current application. The second clothoid segment is a
reflection of the first clothoid segment so the curvature rate
is negated (σc = −k′max) to reduce the curvature from the
transition curvature back to k = 0.

The segment length for each of the smoothing segments is
determined using the course angle change of the corner and the
curvature rate for the clothoid segments. For the case where the
turn can be spanned by two clothoid segments (ψ∆ ≤ 2ψm),
(14) is solved for s with ψ = ψ∆

2 , ψ0 = 0, and σc = k′max
which yields s =

√
ψ∆/k′max. For the case where a maximum

curvature segment is required to smooth the corner, s = skmax
(see (29)). The segment length defined here is the same for
both clothoids segments used in the Clothoid Fillet Method.
The segment length of the arc segment when one is required
is computed using the arc length formula as

s =
φa
kmax

(31)

where φa is the central angle of the arc (see Fig. 6) and is
expressed as

φa = 2

(
ψ∆

2
− ψt

)
. (32)

For small turns (ψ∆ ≤ 2ψm), two clothoid segments are
defined to smooth the corner. Each clothoid segment provides
a course angle change of ψ∆/2. The initial position (xt,yt) and
course angle (ψt) of the second clothoid segment is determined
by evaluating (12)-(15) with σc = k′max, s =

√
ψ∆/k′max, and

k0 = 0. The initial curvature of the second clothoid segment
is given by k0 = σcs =

√
k′maxψ∆.

For large turns (ψ∆ > 2ψm), a kmax arc is added be-
tween the clothoid transition segments. In this case, the initial
clothoid segment transitions from zero curvature to kmax so
the length of the segment is skmax (see (29)). The initial
position (xt1,yt1) and course angle (ψt1) of the arc segment
is then determined by evaluating (12)-(15) with c = k′max,
s = skmax, and k0 = 0. The length of the arc segment is given
in (31). The initial position (xt2,yt2) and course angle (ψt2) of
the second clothoid segment can be determined by evaluating
(7)-(10) with (x0, y0, ψ0) = (xt1, yt1, ψt1), θ = φa, and
r = 1/kmax.

The parameters defined in the preceding paragraphs are
summarized in Table II. The table shows the segment param-
eters required to smooth large and small corners using the
Clothoid Fillet method. The parameters are provided in terms
of the course angle change of the corner (ψ∆), the maximum
curvature of the smoothed corner (kmax) and the maximum
curvature rate (k′max).

With the smoothing segments defined for the base case of
the Clothoid Fillet method, it remains to determine the attach-
ment point (xa, ya, ψa) on the initial straight segment. The
attachment point is determined by computing the parameter d
in Fig. 5 which represents the distance from the attachment
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φa

1
kmax

ψt1

ψ∆

2

(xt1 , yt1)
dx

dy

(xc, yc)

(xt2 , yt2)

Fig. 6. Definition of key parameters in the development of a kmax segment.

TABLE II
SEGMENT DEFINITION FOR CLOTHOID FILLET CORNER SMOOTHING.

ψ∆ Segment (x0,y0,ψ0) k0 σc s

Sm
al

l Clothoid (xa,ya,ψa) 0 k′max
√

ψ∆
k′max

Clothoid (xt,yt,ψt)
√
k′maxψ∆ −k′max

√
ψ∆
k′max

L
ar

ge

Clothoid (xa,ya,ψa) 0 k′max
kmax
k′max

Arc (xt,yt,ψt) kmax 0 φa
kmax

Clothoid (xt2 ,yt2 ,ψt2 ) kmax −k′max kmax
k′max

point to the end of the straight segment. Equation (27) can be
used to compute the value for dt where ym is the y component
of the transition point between the two smoothing clothoid
segments (ym = yt), or the midpoint of the kmax segment,
where one is used. Then the attachment distance d is calculated
as

d = xt + dt (33)

where xt is the x component of the transition point between
the two clothoid segments, or the midpoint of the kmax arc
segment, where one is used. Then (3) and (4) can be evaluated
using the segment parameters of the initial straight segment
and with s = so − d where so is the original length of the
initial straight segment.

Finally, the initial position and heading for each of the
smoothing segments are adjusted based on the calculated
attachment position and course angle. The adjustment is
accomplished by adding the attachment position and course
angle to the initial position and course angle of each of the
segments.

C. Fermat Fillet

The Fermat spiral was shown to be an effective transition
segment for path smoothing applications in [18]. This section
reiterates some of the development from [18] to fit in the
framework presented in this work and define the segments
required to smooth a corner using the Fermat Fillet method.
The parameters required to define a Fermat spiral segment
are the initial position and course angle (x0, y0, ψ0), initial
curvature (k0), and span of the polar angle (θ∆).

The Fermat Fillet method results in a continuous curvature
path where the transition segments are Fermat spirals. Similar
to the Clothoid Fillet method, the corner can be smoothed with
two Fermat spirals for small turns, or two Fermat spirals and
a kmax arc segment for large turns. The largest course angle
change that can be achieved with one Fermat spiral segment
is determined by combining (19) and (20) as

ψm =

√√
7

2
− 5

4
+ tan−1



√√

7

2
− 5

4


 (34)

≈ 0.7650 rad. (35)

Then the largest course angle change (ψ∆) that can be spanned
by two Fermat spiral segments is 2ψm.

In the case where a kmax segment is needed (ψ∆ > 2ψm),
θkmax is defined by (19) and the course angle at the transition
between the first Fermat spiral segment and the kmax arc is
ψm. In the case where two Fermat spiral segments can span
ψ∆ (where ψ∆ ≤ 2ψm), the course angle at the transition is
given by ψt = ψ∆/2. In this case, θkmax is more difficult to
compute because (20) is not invertible. However, [18] suggests
using a root finding method to iteratively solve for the roots
of the course angle equation. This can be implemented by
defining

f(θ) = θ + tan−1(2θ)− ψt (36)

where subtracting ψt moves the root of the course angle
equation such that applying the root finding method will result
in the θ associated with the desired course angle ψt.

With θkmax and ψt defined, the first Fermat spiral segment
can be completely defined. The base case starts at the origin
with ψ0 = 0, and θmax = θkmax using the value for θkmax
determined above. Then, the scale factor, c, in the Fermat
spiral can be computed using (23) with θkmax = ψm which
ensures that kmax will be achieved at ψm even if the segment
ends prior to the curvature reaching kmax. The transition point,
(xt,yt), can be determined by evaluating (16) and (17) at θmax
and the course angle at the transition is ψt.

In the case where a kmax segment is required, an arc is
added with with an initial position of (xt, yt), initial course
angle of ψt, radius of 1/kmax, and arc length given by

s =
ψ∆ − 2ψt
kmax

(37)

then (8) can be evaluated at θ = ψ∆−2ψt to get the transition
point for the second Fermat spiral segment, (xt, yt), and θ =
ψ∆−2ψt

2 to get the midpoint of the arc, (xm, ym).
The second transition segment is then defined that connects

to the first transition segment, or the kmax arc at (xt, yt). The
second transition segment is a reflection of the first transition
segment. For the Fermat spiral, this reflection is accomplished
by computing the connection point, (xc, yc), to the exit seg-
ment and flipping the sign of the direction parameter, ρ. The
connection point is determined by computing the deviation
from the straight line segment, where the cross track deviation,
h, and down track deviation, l, are given by

h = c
√
θkmax sin (θkmax) (38)

l = c
√
θkmax cos (θkmax) (39)
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TABLE III
SEGMENT DEFINITION FOR FERMAT FILLET CORNER SMOOTHING.

ψ∆ Segment (x0,y0,ψ0) k0 s
θkmax

Method

Sm
al

l Fermat (xa,ya,ψa) 0 Eq. (24) Root
Finding

Fermat
(reflected) (xc,yc,ψc) 0 Eq. (24) Root

Finding

L
ar

ge

Fermat (xa,ya,ψa) 0 Eq. (24) Eq. (19)

Arc (xt,yt,ψt) kmax
ψ∆−2ψt
kmax

n/a

Fermat
(reflected) (xc,yc,ψc) 0 Eq. (24) Eq. (19)

x

y

ψ∆

d

(xt, yt)

xt dt

h

l

(xc, yc) ψc

φf

(xm, ym)

Fig. 7. Parameters used in Fermat Fillet method.

then the magnitude of the deviation is given by

β =
√
l2 + h2. (40)

Then determine the angle, φf , that relates (xc, yc) and (xt, yt)
as follows

ψc = π − ψ∆ (41)

φf =
π

2
− ψc − θkmax. (42)

The connection point is then calculated as

xc = xt − β sin (φf ) (43)
yc = yt + ρβ cos (φf ) . (44)

The geometry used to compute these parameters is shown
graphically in Fig. 7. These results are used with (21) and
(22) to compute the properties of the reflected segment.

This method calculates a final connection point and uses
a reflection parameter so that the terminal point of the final
segment is at the transition point, (xt, yt). This requires
additional computation for the creation and sampling of the
segments but provides simple segment parameter definitions.
The parameters used to define the segments using the Fermat
Fillet method are summarized in Table III.

The final parameter of interest in the Fermat Fillet method
is the distance, d, to the connection point on the first straight

segment. Similar to the approach in the Clothoid Fillet method,
dt is computed using (27) where ym is either the mid-point
of the kmax arc segment or yt if there is no kmax segment.
Then the distance d is calculated as

d = xt + dt (45)

where xt is the x value of the transition point between the
two Fermat segments, or it is the x value of the mid-point of
the kmax arc, if one is required.

Finally, the initial position and heading for each of the
smoothing segments are adjusted based on the calculated
attachment position and course angle. The adjustment is
accomplished by adding the attachment position and course
angle to the initial position and course angle of each of the
segments.

IV. IMU SIGNAL GENERATION

The purpose of this section is to present a method to
efficiently determine the accelerations and angular rates ex-
perienced by an aircraft following a path smoothed using the
methods described in Section III. The accelerations and angu-
lar rates can then be used as nominal error-free measurements
from an IMU and be used to propagate the covariance of
the state estimate of a navigation system. For applications
requiring high fidelity IMU measurements, additional elements
such as coning, sculling, biases, and misalignment and scale-
factor errors can be added to the accelerations and angular
rates generated in this section [9]. This section will present an
approach for determining the acceleration and angular rates for
an aircraft using curvilinear motion theory (see Section II-C),
vehicle dynamics, and knowledge of the aircraft maneuver
(coordinated turn).

Other methods for generating accelerations and angular
rates exist, namely, inverting the navigation equations, or 6-
DOF aircraft simulations. These methods have potential to
be highly accurate, but they are computationally expensive
which may be prohibitive depending on the application. The
method presented in this section is intended to efficiently
provide accelerations and angular rates at high enough fidelity
to provide accurate covariance propagation results.

The accelerations experienced by the aircraft in the NED
frame can be expressed using curvilinear motion theory as

an = s̈ent + ṡψ̇enn (46)

where tangent vector in the 2D plane is computed as a function
of the course angle as

ent =
[

cos (ψe) sin (ψe) 0
]ᵀ

(47)

and the normal vector is defined to complete the right-handed
coordinate frame between the tangent vector and positive-z
unit vector as

enn =
[

0 0 1
]ᵀ × ent . (48)

Combining (46) - (48) results in

an =



s̈ cos(ψe)− ṡψ̇e sin(ψe)

s̈ sin(ψe) + ṡψ̇e cos(ψe)
0


 (49)
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as the expression for the acceleration experienced by the
aircraft in the NED frame and is valid for all of the segment
types presented in this work.

The angular rates experienced by an aircraft are dependent
on the path shape and the dynamics of the vehicle maneuver.
An aircraft, for example, can perform a variety of maneuvers to
negotiate a turn (i.e. skid-to-steer, coordinated turn) and each
will result in different angular rates. In this work, the angular
rates for an aircraft executing a coordinated turn will be
examined. The coordinated turn is a common aircraft turning
condition where there is no lateral acceleration in the body
frame of the aircraft [23].

The coordinated turn assumption provides a useful relation-
ship between the course angle (ψe) and roll angle (φe) [4] of
the aircraft as

ψ̇e =
g

Va
tanφe. (50)

The rate of change of the roll angle can be computed by first
differentiating (50) as

ψ̈e =
g

Va

1

cos2 φe
φ̇e (51)

and solving for the roll angle rate, which yields

φ̇e = ψ̈e
Va
g

cos2 φe. (52)

The roll rate (φ̇e) and course angle rate (ψ̇e) need to be con-
verted to body-frame angular rates, (p, q, r). This conversion
requires a frame change from the Euler angle frames to the
body-frame which will be completed using a ZYX Euler angle
sequence. The Euler angle rates are related to the body-frame
angular rates [4] as



p
q
r


 =




1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ




︸ ︷︷ ︸
AB



φ̇e
θ̇e
ψ̇e


 . (53)

Assuming no change in pitch angle, substitution of (52) and
(59) into (53) yields



p
q
r


 = AB



ψ̈e

Va

g cos2 φe
0

ψ̇e


 (54)

or in component form

p = ψ̈e
Va
g

cos2 φe − ψ̇e sin θe (55)

q = ψ̇e sinφe cos θe (56)
r = ψ̇e cosφe cos θe. (57)

This indicates that to compute the angular rates of an aircraft
executing a coordinated turn, ψ̇e and ψ̈e must be determined
for each of the segment type in the path.

The time-derivative of the course angle is computed from
(14) utilizing the chain rule

ψ̇e(t) =
d

dt
ψe (s (t)) (58)

=
dψe
ds

ds

dt
. (59)

The second derivative of heading with respect to time is
computed utilizing a combination of multiplication rule and
chain rule as

ψ̈e(t) =
d

dt
ψ′e(s(t))ṡ(t) (60)

=
dψ′e
ds

ds

dt
ṡ(t) + ψ′es̈(t) (61)

= ψ′′e (s(t))ṡ(t)2 + ψ′e(t)s̈(t). (62)

To generate the angular rates for the aircraft, it remains
to define ψ̇e and ψ̈e for each of the segment types used in
the path smoothing algorithm. The line segment is trivially
defined as ψ̇e = ψ̈e = 0. The following subsections provide
the derivation of expressions for ψ̇e and ψ̈e for the remaining
segment types.

A. Arc

The course angle of an arc segment is related linearly to the
length along the segment as

ψa(s) = ψ0 + ks (63)

where k is the constant curvature of the arc segment. The
derivative of this with respect to path length is given by

ψ′a(s) = k (64)

and the second derivative is ψ′′ = 0. Then the time derivatives
of the course angle (see (59) and (62)) are given by

ψ̇a = kṡ (65)
ψ̈a = ks̈. (66)

B. Clothoid

The course angle of the clothoid segment is given in (14).
The derivative with respect to the path length is given by

ψ′c(s) = k0 + σcs (67)

and the second derivative is given by

ψ′′c = σc. (68)

Then applying (59) and (62) the time derivatives are given by

ψ̇c(s) = (k0 + σcs) ṡ (69)
ψ̈c(s) = σcṡ

2 + (k0 + σcs) s̈. (70)

C. Fermat Spiral

The course angle of a Fermat Spiral segment is given in (20)
in terms of the polar angle θ. In [18], a change of variables is
presented as u =

√
θ which provides consistent sampling per

path length. Then, the course angle can be expressed as

ψf (u) = u2 + arctan
(
2u2
)
. (71)

This change of variables is useful because an expression for
the time derivative of u exists and is given by

u̇ =
ṡ

c
√

1 + 4u4
(72)
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Then the time derivative of the path segment can be computed
as follows

ψ̇f = ρ
dψ

du

du

dt
(73)

= ρ

(
2u+

4u

4u4 + 1

)
u̇ (74)

where ρ is the direction of the curve defined in (11). The
second derivative is computed by applying the quotient rule
and chain rule as

ψ̈f =
d

dt

(
2ṡ
(
4u5 + 3u

)√
4u4 + 1

c (4u4 + 1)
2

)
. (75)

The time derivative of the numerator is given by

Ṅ = 2
[
s̈
((

4u5 + 3u
)√

4u4 + 1
)

+ṡṄ1

]
(76)

where

Ṅ1 = d
dt

((
4u5 + 3u

)√
4u4 + 1

)
(77)

=

[(
20u4 + 3

)√
4u4 + 1 +

8u3(4u5+3u)√
4u4+1

]
u̇. (78)

The time derivative of the denominator is given by

Ḋ = 32c
(
4u4 + 1

)
u3u̇ (79)

then

ψ̈f = ρ
ṄD − ḊN
D2

. (80)

V. RESULTS

This section provides results for the path smoothing and
aircraft state generation. The first set of results will include a
comparison of the corner smoothing techniques presented in
Section III. These results include a comparison between the
path characteristics and the execution time for the methods
presented. The second set of results show a comparison
between the generated IMU measurements.

A. Path Smoothing

The algorithm defined in Section III was implemented
in Matlab where a series of waypoints was converted to a
continuous curvature path. Fig. 8 shows a piece-wise linear
path smoothed using the three methods presented here. This
was generated using kmax = 2.1, and k′max = 3.

The course angle and curvature for the scenario shown in
Fig. 8 is shown in Fig. 9. For this scenario all three methods
achieve the maximum curvature but the differences in the
shape for the curvature and course angle are apparent. The
curvature plot shows a step change for the Arc Fillet method,
a linear change for the Clothoid Fillet method, and a smooth
transition for the Fermat Fillet method.

The shape of the curvature and course angle graphs should
be considered when deciding what corner smoothing algorithm
to use. For example, the arc fillet method has a step change in
curvature which is infeasible for a fixed-wing aircraft. This
highlights the need to consider the dynamics of the target
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Fig. 8. Continuous curvature path given 3 waypoints. Blue lines represent
straight segments, yellow lines with square markers represent clothoid seg-
ments, purple lines with circle markers represent Fermat segments and the
orange lines with triangle markers represents the kmax arc segment. The
dashed red line indicates the piece-wise linear path and the red asterisk
symbols represent the waypoints.
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methods. Clothoid fillet (solid), arc fillet (dashed), Fermat fillet (dotted).

system and the desired maneuvers when selecting a corner
smoothing algorithm and the associated path segment types.

The processing time for the 3 methods were compared
using a series of 12 waypoints. The Clothoid Fillet method
is the slowest (due to the Fresnel Integrals), and the Arc Fillet
method is the fastest. The Fermat Fillet method provides a
63.3% improvement in execution time when compared with
the Clothoid Fillet method, whereas the Arc Fillet method
provides an 87.98% improvement. These results provide a
framework for deciding which method best suits the target
application. For example, if the application does not require
continuous curvature, the Arc Fillet method is very efficient
and fulfills the objective. However, if continuous curvature is
desired, the Fermat Fillet or Clothoid Fillet methods should
be considered and if execution time is a primary concern, the
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Fig. 10. Block diagram of ASG and RII used for the results comparison.

preference should be given to the Fermat Fillet method.

B. IMU Measurement Results

The previous subsection showed results for the three path
smoothing methods presented in this work. This section will
extend these results and present the specific force and angular
rates generated using the IMU signal generation method
described in Section IV. Due to the discontinuities in course
angle for the Arc Fillet method, it will be omitted from this
analysis.

The IMU signals generated using the method shown in
Section IV will be compared with the Groves method available
as an open-source1 implementation based on derivations in
[7] and used in [24]. Fig. 10 shows a diagram of how the
accelerometer, ã = [ax ay az]

ᵀ, and gyro, ω̃ = [gx gy gz]
ᵀ,

measurements are generated using the ASG and Groves meth-
ods. Two simple scenarios of four waypoints (two turns)
were used to compare the methods. The first method will be
referred to as the nominal trajectory scenario with kmax =
0.005 1/rad, and k′max = 0.00005 1/rad/m. The second
will be referred to as the aggressive trajectory scenario that
has waypoints closer together and with kmax = 0.01 1/rad,
and k′max = 0.0002 1/rad/m. Fig. 11 shows one of the turns
in the nominal trajectory scenario with the Clothoid Fillet and
Fermat Fillet methods.

The accelerometer and gyro measurements for the Clothoid
and Fermat Fillet methods for the nominal trajectory scenario
are provided in Figs. 12 and 13, respectively. The IMU signals
for both methods match the baseline results well. The slight
differences between the Groves method and ASG method are
difficult to see in Figs. 12 and 13 so an error metric will
be introduced in the following paragraphs to illustrate the
differences.

The Groves method relies on a discrete derivative taken at
each time step, dt. For a small time step, this method provides
consistent results. However, in some applications, accurate

1https://github.com/jmcanana/MATLAB-Groves
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Fig. 11. First turn of nominal trajectory scenario showing the Clothoid Fillet
and Fermat Fillet paths. The paths were created with kmax = 0.005 1/rad,
and k′max = 0.00005 1/rad/m.
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Fig. 12. Accelerometer and gyro measurements for the nominal trajectory
scenario using the Clothoid Fillet corner smoother.

IMU signals are desired with larger time steps. This can be
particularly useful in mission and path planning scenarios
where reducing processor usage is desired. One benefit to the
ASG method is that the IMU signal generation avoids the
derivative and maintains accuracy for large time steps because
the IMU measurements have analytical solutions along the
path segments.

To quantify the effect of increasing the time step on these
two methods, baseline IMU signals were generated using the
Groves method with a small time step (dt = 0.001s). IMU
signals for time steps ranging from dt = 0.1s to dt = 3.0s
were generated using both methods. The integrated norm of the
error, Υ, was calculated as the integrated difference between
the IMU measurements generated by each method and the
baseline Groves method (with dt = 0.001s). Fig. 14 provides
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Fig. 13. Accelerometer and gyro measurements for the nominal trajectory
scenario using the Fermat Fillet corner smoother.
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ASG) for both Clothoid Fillet (C) and Fermat Fillet (F) corner smoothing
algorithms. The y-axis was plotted with a log-scale to more clearly show the
differences.

a graph of Υ for increasing dt using the Groves and ASG
methods for the Clothoid and Fermat fillet methods. The
errors associated with the Groves method grow more quickly
than the ASG method as the step size increases for both
the accelerometer and gyro measurements. The ASG method
results in nearly constant errors for both corner smoothing
methods. The ASG method clearly provides more accurate
IMU signals for the time steps shown.

The integrated norm of the error, Υ, for the aggressive
trajectory scenario is shown in Fig. 15. This trajectory has
waypoints that are closer together and kmax = 0.01 1/rad,
and k′max = 0.0002 1/rad/m. The error plots indicate that
the ASG method outperforms the Groves method for this
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Fig. 15. Integrated norm of the error for the accelerometer (left) and gyro
(right) measurements for the aggressive trajectory scenario for a range of
sample times. The plots show errors of both IMU signal generation methods
(RII, ASG) for both Clothoid Fillet (C) and Fermat Fillet (F) corner smoothing
algorithms. The y-axis was plotted with a log-scale to more clearly show the
differences.

trajectory as well, and the general error characteristics are
consistent with the nominal trajectory scenario. It should be
observed that the errors are higher for the aggressive trajectory
scenario than the nominal trajectory scenario.

VI. CONCLUSION

This work has presented ASG as a method for generating
aircraft states and IMU signals along a candidate path. The
method includes a corner smoothing algorithm to convert a
series of waypoints into a smoothed reference trajectory and
uses path segment geometry to generate the aircraft states. The
final stage of the method applies curvilear motion theory and
vehicle maneuver dynamics to generate IMU signals along the
candidate path. The generated states and IMU signals can be
applied to a variety of applications, including general path
planning, and covariance propagation for inertial navigation
systems.

Three corner smoothing approaches were presented in a
unified framework. The Clothoid Fillet and Fermat Fillet
algorithms can be parameterized to respect vehicle constraints
in curvature and curvature rate. The results showed that the
Fermat Fillet requires less processing time than the Clothoid
Fillet due to the Fresnel integrals. The Arc Fillet method
requires the least processing time but has discontinuities in
curvature and is thus not suitable for a fixed wing aircraft.

The results for the IMU signal generation stage show that
the ASG method performs better than the Groves method by
avoiding a discrete derivative. This allows for large step sizes
in sampling when using the ASG method.
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CHAPTER 5

PATH PLANNING WITH UNCERTAINTY FOR AIRCRAFT UNDER THREAT OF

DETECTION FROM GROUND-BASED RADAR
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Path Planning with Uncertainty for Aircraft Under
Threat of Detection from Ground-Based Radar

Austin Costley, Greg Droge, Randall Christensen, Robert C. Leishman, James Swedeen

Abstract—Mission planners for aircraft operating under threat
of detection by ground-based radar systems are concerned with
the probability of detection. Current path planning methods
for such scenarios consider the aircraft pose, radar position,
and radar parameters to be deterministic and known. This
paper presents a framework for incorporating uncertainty in
these quantities into a radar detection model that is used
by a path planner. The developed path planner evaluates the
radar detection risk in the presence of uncertainties and uses
linear covariance analysis to efficiently generate error budgets.
The error budgets identify the contribution of each source
of uncertainty (e.g., sensor measurement noise, radar position
uncertainty) to the overall variability in the probability of
detection. The framework is applied to a modified visibility graph
path planner that uses the detection risk and its variability to
calculate path adjustments, which maintain the detection risk
below a specified threshold. The results show that the framework
is effective at providing actionable information to the mission
planner that improves the final planned path and reduces the
detection risk.

NOMENCLATURE

PD Approximation of probability of detection
P̄D Nominal value of PD
δPD Perturbation of PD about nominal
Pfa Probability of false alarm
S Signal-to-noise ratio
σr Radar cross section (m2)
R Range to target (m)
cr Lumped radar parameter (Jm2/◦K)
xa Aircraft state vector
x̄a Nominal aircraft state
pn
a Aircraft position vector in NED frame

Θa Aircraft Euler angle vector
pan, pae, pad Aircraft position in NED frame (m)
ϕa, θa, ψa Aircraft Euler angles roll, pitch, yaw (rad.)
xr Radar state vector
x̄r Nominal radar state
pn
r Radar position vector in NED frame
prn, pre, prd Radar position elements in NED frame (m)
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J. Swedeen is with the Electrical and Computer Engineering Department, Utah
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a, b, c Ellipsoid RCS parameters
α RCS azimuth angle (rad.)
ϕ RCS elevation angle (rad.)
Caa Aircraft pose covariance
Crr Radar state covariance
APa Jacobian of PD w.r.t. xa

APr Jacobian of PD w.r.t. xr

σpd Standard deviation of PD
vn Velocity vector in NED frame
qnb Aircraft attitude quaternion
bba Accelerometer bias in body frame
bbg Gyro bias in body frame
νb Specific force vector in body frame
ωb Angular rate vector in body frame
gn Gravity vector in NED frame
wa FOGM driving noise for accelerometer bias
wg FOGM driving noise for gyro bias
nν Accelerometer noise std. dev.
nω Gyro noise std. dev.
δθnb Error rotation vector
δxe Error state vector
Rnb Rotation matrix from body to NED frame
P EKF covariance matrix
σn, σe, σd GPS noise std. dev.
σh Altimeter noise std. dev.
σψ Heading noise std. dev.
τa, τg FOGM time constant for IMU biases
σa,ss Accelerometer bias steady state std. dev.
σg,ss Gyro bias steady state std. dev.
κ Path segment curvature ( 1

m )
mσ Multiple of σpd used in planner
PDT PD threshold for planning
Ptrue True navigation error covariance
CA Augmented system covariance
k Boltzmann’s constant

I. INTRODUCTION

Aircraft mission planners are tasked with planning paths
for aircraft operating under threat of detection by ground-
based radar systems. Example missions include reconnaissance
[1], radar counter-measure deployment [2, 3], and combat
operations [4]. Mission planners for such scenarios are
primarily interested in the probability of being detected by
a radar system. This paper develops and demonstrates a
framework that allows for the consideration of aircraft and
radar state uncertainties when planning a path constrained to
stay below a given probability of detection threshold.
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The work herein builds upon two groups in the literature.
The first is the target detection literature in which high-
fidelity radar detection models have been developed [5–7].
In particular, [7] defines a value, PD, that approximates the
probability of detecting an aircraft given the signal-to-noise
ratio and false alarm rate of the detection. The signal-to-
noise ratio is dependent upon radar characteristics, relative
positioning, and the radar cross section, which can vary
significantly based upon the orientation of the aircraft. The
second group is the radar detection path planning literature
[2–4, 8–13], which use some form of detection risk that may
only consider some aspects of the high-fidelity radar detection
models. The planning literature seeks to rapidly evaluate
candidate paths while the target detection literature seeks to
create a high-fidelity determination of detection probabilities.
Neither body considers the uncertainty of the aircraft state,
radar position, or radar parameters, which are all estimated
and include some uncertainty.

When accurate position measurements are available,
neglecting aircraft state uncertainty is a useful technique
to reduce complexity. However, scenarios where an aircraft
is seeking to avoid radar detection may include regions
where accurate position measurements are not available (i.e.
GPS-denied regions). In such regions, the state uncertainty
grows and becomes a significant factor in the variability of
the predicted PD [14]. Aircraft operating in radar detection
regions are often equipped with an aided inertial navigation
system (INS). Such systems use measurements from an inertial
measurement unit (IMU) and aiding sources, such as GPS,
to estimate the aircraft state and state covariance [15–17]. A
common filtering technique for an aided INS is the Extended
Kalman Filter (EKF) [18, 19], which propagates and updates
the state estimate in the presence of measurement and process
noise.

There are a couple of key questions that must be answered
when creating paths that respect thresholds on PD. First,
how does the planner calculate an estimate for PD and its
uncertainty along a path while considering uncertainty in the
aircraft state, radar position, and radar parameters? Answering
this question aids in determining whether a path is valid.
Second, how does one determine which noise sources (e.g.,
measurement, process, uncertain initial conditions, etc.) are
the main cause of growth in PD and its associated uncertainty
(i.e., error budget analysis [17, 18])? Answering this question
aids in determining, for example, whether a higher quality
sensor will sufficiently reduce PD for a given path.

A Monte Carlo approach could be utilized to answer the
questions posed in the previous paragraph to an arbitrary
level of fidelity. In a Monte Carlo approach, each path under
consideration is simulated hundreds or thousands of times
to model the effect of uncertainties on the aircraft state as
estimated by the navigation filter. Each simulation, or run,
uses a different sampling of the noise and radar uncertainties.
The resulting ensemble statistics are calculated for PD at
each point in time to quantify the variability in PD due to
the uncertainties present in the simulations. The Monte Carlo
analysis is repeated several times with a different set of active
error sources to obtain the necessary data to build an error

budget. This approach is computationally intensive and not
well-suited to rapid planning or error budget analysis.

An efficient alternative to Monte Carlo analysis is linear
covariance analysis [18, 20, 21]. Linear covariance analysis
utilizes similar linearization techniques and Gaussian noise
assumptions as employed by an EKF to propagate the second
order moments of the random variables in question. This
approach approximates the same statistical information as
Monte Carlo analysis in a single simulation over the trajectory.

The path planner in this paper evaluates PD with respect
to the covariance of the aircraft and radar states using
a framework provided in [14, 22]. The IMU measurement
generation capability developed in [23] provides inputs to
an inertial navigation filter to enable rapid evaluation of the
aircraft state covariance along candidate paths. This paper uses
linear covariance techniques to rapidly evaluate the variability
of PD due to uncertainties estimated by a navigation filter
and demonstrates the use of these statistics in a path planning
application. Given a path to be followed, the efficient IMU
signal generator in [23] is used to generate representative
measurements along the trajectory that are incorporated into a
navigation filter. The aircraft and radar state uncertainties are
used as in [14, 22] to estimate the variance of PD. The path
planner generates multiple such candidate paths and eliminates
paths that violate threshold constraints.

The contributions of this work are threefold. First, a
framework is developed for the calculation of the variance
of PD given a trajectory. The variance incorporates the
aircraft state and radar state uncertainties and enables the
mission planner to estimate unknown parameters with a
distriution rather than a single value. Second, an error budget
analysis for the resulting variance of PD is developed using
linear covariance analysis. Third, an iterative path planning
technique based upon shortest path visibility graphs is created
to demonstrate the ability to consider PD uncertainty when
planning.

The remainder of this paper is organized as follows. Section
II-A presents the radar detection model which provides an
expression for the probability of detection, the linearization
of the model, and the incorporation of aircraft and radar
state uncertainties. The aircraft state uncertainty is computed
using an aided-INS as described in Section II-C. Section III
describes the linear covariance model and the method for
generating error budgets. Section IV describes the path planner
that incorporates these components and the results of the path
planner are provided in Section V.

II. BACKGROUND AND PREVIOUS WORK

This section describes previous work that is relevant to
the path planning application presented in this paper. The
path planner seeks to keep PD below a specified threshold
while accounting for uncertainty in the aircraft and radar
states. Section II-A describes the development of the radar
detection model from [7] and the linearization of that model
to obtain an expression for the variance of PD as shown
in [14, 22]. Section II-C details the INS model used in this
paper to calculate the aircraft pose covariance. Finally, Section
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Fig. 1: Block diagram for components discussed in the
background section.
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Fig. 2: Graphical representation of the quantities used in the
radar detection model.

II-D describes the rapid aircraft state generation (ASG) used
to create representative aircraft state and IMU measurements
from smoothed piece-wise linear paths as presented in [23].
These measurements are used to propagate the aircraft state
covariance. The block diagram in Fig. 1 shows the relationship
of the ASG, INS, and radar model as described in this section.

A. Probability of Detection

The radar detection model used in this paper is presented
in [7]. For sake of completeness, the main equations are
provided in this section. The model includes expressions for
the probability of detection, PD, signal-to-noise ratio, S, and
RCS, σr. These quantities are functions of the aircraft pose,
radar position, and radar parameters.

An accurate approximation to PD, provided by North [7,
24], is

PD ≈ 0.5× erfc
(√

− lnPfa −
√
S + 0.5

)
(1)

where Pfa is the probability of false alarm, S is the signal-to-
noise ratio, and erfc(·) is the complementary error function.
The Pfa is considered a constant for a given radar, whereas
S is a function of radar parameters and the pose of the target
aircraft relative to the radar.

A general expression for the signal-to-noise ratio is given
by

S = cr
σr
kR4

(2)

where k is Boltzmann’s constant (1.38 × 10−23 J/◦K) and
cr is a radar constant that is a function of several radar
parameters. These parameters include power, aperture area,
noise figure, and loss factor. The specific equation for cr is
dependent on the type of radar being modeled [7].

The RCS, σr, and range, R, are functions of the aircraft
pose and radar position as depicted in Fig. 2. The aircraft

pose consists of the position in the North-East-Down (NED)
frame, pn

a , and a vector of the Euler angles, Θa, as described
in [25]. The range to the radar is given by

R = ||pn
a − pn

r ||2 (3)

where pn
r represents the position of the radar in the NED

frame.
The framework developed in [14, 22] supports several RCS

models. In this paper, the ellipsoid RCS representation is used
[4, 7, 14], which is a function of the RCS azimuth α and
elevation ϕ angles and is given by

σr =
π (abc)

2

(
(aSαCϕ)2 + (bSα Sϕ)2 + (cCα)2

)2 (4)

where a, b, and c are the length of the ellipsoid axes and S·
and C· are the sin(·) and cos(·) functions. Equations for the
RCS azimuth and elevation angles as functions of the aircraft
pose and radar position are provided in [14, 22].

B. Uncertainty in Probability of Detection

The framework presented in [14, 22] provides a method
for incorporating aircraft and radar state uncertainty into the
calculation of PD for a single-pulse radar detection model.
The framework provides an expression for the variance of PD
given the covariance of the aircraft and radar states.

Let the aircraft state be xa =
[
pn
a Θa

]⊺
and radar

state be xr =
[
pn
r cr

]⊺
. The state vectors are represented

as Gaussian distributed random variables with xa ∼
N (x̄a, Caa) and xr ∼ N (x̄r, Crr) where the bar notation
is used to indicate the mean (or nominal). To find a linear
approximation of PD, xa and xr are both expressed as the
sum of a nominal state and a perturbation as

xa = x̄a + δxa (5)
xr = x̄r + δxr. (6)

Because PD is a nonlinear function of the aircraft and radar
state, variability in xa and xr induce variability in PD. Thus,
PD is expressed as the sum of a nominal and a perturbation
as

PD = P̄D + δPD. (7)

The perturbation, δPD, is approximated, to the first order, by
linearizing (1)-(4) about the nominal operating points (x̄a, x̄r)
using a Taylor series expansion to obtain

δPD ≈ APaδxa +APrδxr. (8)

The Jacobians APa and APr are the partial derivatives of PD
as defined in (1) with respect to xa and xr, respectively. The
partial derivatives are described in detail in [14, 22].

The variance of PD due to aircraft and radar state covariance
is computed by taking the expectation of δP 2

D as

σ2
pd = E

[
δP 2

D

]
(9)

= APaCaaA
⊺
Pa +APrCrrA

⊺
Pr. (10)

These equations show that variability of PD is a function of
the Jacobians APa and APr, the covariance of the aircraft



4

state, Caa, and the covariance of the radar state, Crr. For
the path planning application presented in this paper, Crr
is considered constant and Caa is time-varying and obtained
from a stochastic model of an inertial navigation system.

C. Inertial Navigation Model
The expression in (10) indicates that the variance of PD

is a function of the aircraft state covariance, Caa. This
section provides a method for calculating Caa by modeling
the covariance propagation of an aided-INS.

The INS used in this work is a continuous-time error-state
EKF with discrete measurement updates for position, heading,
and altitude. The covariance of the EKF is propagated with
measurements from an IMU using the “model replacement”
method [18]. The following paragraphs describe the method
for propagating and updating the aircraft state covariance for
the INS.

The error-state EKF estimates the difference between a
truth and navigation model of the aircraft dynamics. For the
development of this filter, let the truth model for the aircraft
dynamics be defined as




ṗn

v̇n

q̇nb
ḃ
b

a

ḃ
b

g




︸ ︷︷ ︸
ẋ

=




vn

Tnb ν
b (t) + gn

1
2q
n
b ⊗

[
0

ωb (t)

]

− 1
τa
bba +wa

− 1
τg
bbg +wg




︸ ︷︷ ︸
f(x,w,t)

(11)

where the aircraft position, pn, and velocity, vn, are in the
NED frame, the attitude quaternion, qnb , is the orientation
of the body frame with respect to the NED frame, and the
accelerometer bias bba, and gyro bias bbg are in the body frame.
The matrix Tnb is the transformation from the body frame
to the NED frame associated with the attitude quaternion qnb
and ⊗ represents the Hamiltonian quaternion product [26].
The accelerometer and gyro biases are modeled as Fist-Order
Gauss Markov (FOGM) processes with time constants τa and
τg and driving white noise of wa and wg . The truth model
is driven by the true specific force νb and angular rate ωb of
the aircraft body. This model is similar to navigation models
presented in [15–17] with the addition of FOGM sensor biases
as in [18].

The navigation model has the same states as the truth model
but is driven by biased and noisy measurements from an IMU
with




˙̂pn

˙̂vn

˙̂qnb
˙̂
bba
˙̂
bbg




︸ ︷︷ ︸
˙̂x

=




v̂n

T̂nb

(
ν̃b(t)− b̂a

)
+ gn

1
2 q̂
n
b ⊗

[
0

ω̃b(t)− b̂
b

g

]

− 1
τa
b̂
b

a

− 1
τg
b̂
b

g




︸ ︷︷ ︸
f̂(x̂,ỹ,t)

. (12)

where the hat symbol (x̂) is used to indicate navigation model
states. The IMU measurements are provided by a three-axis

accelerometer and gyro and are corrupted by bias and noise
given by

[
ν̃b(t)

ω̃b(t)

]

︸ ︷︷ ︸
ỹ

=

[
νb(t) + bba
ωb(t) + bbg

]

︸ ︷︷ ︸
c(x,u)

+

[
nν
nω

]

︸ ︷︷ ︸
η

. (13)

where nν ∼ N (0, Qν) and nω ∼ N (0, Qω).
The EKF states are updated by discrete-time measurements

using the Kalman update equation

x̂+
k = x̂−

k +Kk

[
z̃k − ˆ̃zk

]
(14)

where Kk is the Kalman gain. The measurements are
generated with

z̃k = h(xk) + νk (15)

and the expected measurement is given by

ˆ̃zk = ĥ (x̂k) . (16)

The INS in this paper processes discrete-time measurements
for position, heading, and altitude corrupted by additive white
noise as

p̃n [tk] = pn [tk] + np [tk] (17)

ψ̃ [tk] = ψ [tk] + nψ [tk] (18)

h̃ [tk] = h [tk] + nh [tk] (19)

where

np ∼ N
(
03×1, Rp = diag

(
σ2
n, σ

2
e , σ

2
d

))
(20)

nψ ∼ N
(
0, Rψ = σ2

ψ

)
(21)

and
nh ∼ N

(
0, Rh = σ2

h

)
. (22)

The error states of the EKF are defined as the difference
between the true and navigation states given by

δxe = x− x̂. (23)

where the difference is defined by subtraction for all but
the attitude states. The attitude difference is defined using
quaternion arithmetic as

[
1

− 1
2δθ

n
b

]
= qnb ⊗ (q̂nb )

∗ (24)

where (q̂nb )
∗ represents the quaternion conjugate of the

navigation attitude quaternion and δθnb is the error rotation
vector. The error state vector is then given by

δxe =
[
δpn δvn δθnb δbba δbbg

]⊺
. (25)

The error state dynamics are linearized about the nominal
aircraft trajectory to obtain

δẋe = F̂ δx+ B̂we (26)
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where F̂ is the linearized error state dynamics matrix given
by

F̂ =




0 I 0 0 0

0 0
[
T̂nb

(
ν̃b − b̂

b

a

)]
× −T̂nb 0

0 0 0 0 T̂nb
0 0 0 − 1

τa
I 0

0 0 0 0 − 1
τg
I




(27)

and B̂ is the noise mixing matrix given by

B̂ =




0 0 0 0

−T̂nb 0 0 0

0 T̂nb 0 0
0 0 I 0
0 0 0 I



. (28)

The boldface 0 and I entries represent 3× 3 zero matrix and
identity matrix, respectively. The additive white noise vector,
we, consists of the accelerometer and gyro measurement noise
as well as the process noise of the FOGM biases

we =
[
nν nω wa wg

]T
(29)

which has power spectral density, Q, defined by

E
[
we (t)we (t

′)
T
]
= Qδ (t− t′) (30)

where

Q =




Qν 0 0 0
0 Qω 0 0
0 0 qaI 0
0 0 0 qgI


 (31)

and

qa =
2σ2

a,ss

τa
(32)

qg =
2σ2

g,ss

τg
. (33)

The state covariance, P , is propagated with the continuous
Ricatti equation given by

Ṗ = F̂P + PF̂ ⊺ + B̂QB̂⊺. (34)

In implementation, the continuous Ricatti equation is often
replaced by a more efficient discrete-time propagation equation
that uses the state transition matrix [27]. The path planner
presented in this paper uses such a method where the
state transition matrix is approximated using Lear’s method
[28]. More details about Lear’s method and this covariance
propagation approach are provided in Appendix B.

The EKF state covariance is updated at the discrete
measurement times using the Joseph form [18] as

P+
k = (I −KkHk)P

−
k (I −KkHk)

T
+KkRνK

T
k (35)

where Kk and Hk are the Kalman gain and the measurement
model Jacobian for the measurement being processed. The
measurement model Jacobian for the position, altitude, and
heading measurements are given by

Hp =
[
I3×3 03×3 03×3 03×3 03×3

]
(36)

Hh =
[
0 0 −1 01×3 01×3 01×3 01×3

]
(37)

and

Hψ =
[
01×3 01×3 0 0 −1 01×3 01×3

]
. (38)

The Kalman gain, Kk, is calculated with

Kk = P−
k Hk

(
HkP

−
k H

T
k +Rν

)−1
. (39)

The INS state vector defined in this section differs from
the aircraft state vector used in the radar detection model in
Section II-A. The primary difference is that xa is a reduced
set of states and the attitude is represented by a vector of Euler
angles instead of a quaternion. The aircraft state covariance,
Caa, used in the radar detection model is a transformation of
the EKF state covariance estimated by the navigation model
given by

Caa(t) =MaP (t)M
⊺
a (40)

where Ma is derived in Appendix A.

D. Aircraft State and IMU Generation

The previous section shows that the aircraft state covariance,
Caa, is propagated using the aircraft states, process noise and
bias parameters, and measured accelerations from an IMU
(i.e., ν̃b in (27)). The process noise and bias parameters are
constant for a given scenario, however the aircraft states and
IMU measurements must be generated for each candidate path
considered by the path planner. To enable rapid planning,
an efficient aircraft state and IMU measurement generator is
desired. This paper uses the ASG method presented in [23] to
accomplish this task.

The ASG method converts a series of 2D waypoints to a
smooth flyable trajectory constrained by maximum curvature
and maximum curvature rate. The waypoint path is smoothed
using fillets with line, arc, and clothoid [29] segments. The
nominal aircraft position, heading, and curvature are obtained
using the path segment geometry equations. For example, the
clothoid segment geometry is defined by

x(s) = x0 +

∫ s

0

cos(0.5κ′ξ2 + κ0ξ + ψ0)dξ (41)

y(s) = y0 +

∫ s

0

sin(0.5κ′ξ2 + κ0ξ + ψ0)dξ (42)

ψ(s) = ψ0 + κ0s+ 0.5κ′s2 (43)
κ(s) = κ0 + κ′s (44)

where s is the length along the segment, ψ0 is the initial
heading, κ0 is the initial curvature, x0 and y0 represent the
starting point, and κ′ is the curvature rate per unit length
of the segment. This approach enables efficient generation of
nominal aircraft states that adhere to a flyable trajectory given
the vehicle maneuver constraints.

In the ASG method, the pitch angle, θa, is a constant trim
value and the roll angle, ϕa, is obtained from a coordinated
turn model [25]. The coordinated turn model provides a
relationship between the heading rate and roll angle of the
aircraft as

ψ̇a =
g

ṡ
tanϕa (45)
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where ψa and ϕa are the Euler angles for yaw and roll, g is the
acceleration due to gravity, and ṡ is the speed of the aircraft.

The final stage of the ASG method uses the Euler angles and
Euler angle rates along the segments to calculate the specific
force and angular rates experienced by the aircraft body when
following the smoothed path. The ASG method in [23] shows
that the true specific force is given by

νb = T bn



s̈ cos(ψa)− ṡψ̇a sin(ψa)

s̈ sin(ψa) + ṡψ̇a cos(ψa)
−g


 (46)

and the angular rates are given by

ωb =



ψ̈a

ṡ
g cos

2 ϕ− ψ̇a sin θa

ψ̇a sinϕ cos θa
ψ̇a cosϕ cos θa


 (47)

where s̈ is the acceleration in the direction of the path, and T bn
is the rotation matrix from the NED frame to the body frame.

The quantities generated from ASG are used as the nominal
aircraft states, x̄a, true specific force, νb, and true angular
rates, ωb. These quantities are used by the INS model in
Section II-C to calculate the aircraft state covariance Caa,
which is used by the radar detection model from Section II-A
to calculate the variance of PD, σ2

pd. The remainder of this
paper shows how these elements are combined into a path
planner that incorporates uncertainty in the aircraft and radar
states.

III. ERROR BUDGETS AND LINEAR COVARIANCE

The INS model described in Section II-C is used to
estimate the uncertainty of a navigation state due to biased
and noisy sensor measurements. One approach to analyze the
performance of the INS, is to generate error budgets that
provide a graphical representation of the contribution of each
source of uncertainty on the overall estimation uncertainty.
This section describes error budgets in more detail and derives
a linear covariance model that is used to efficiently generate
error budgets.

A. Error Budgets

Error budgets are generated from statistical information
typically obtained through several Monte Carlo analyses [17,
18]. In this approach, a Monte Carlo analysis is first performed
with all uncertainty sources activated. Then the Monte Carlo
analysis is repeated for each source of uncertainty where a
single source is activated and all other sources are de-activated
(i.e. noise samples set to zero). The ensemble statistics for
each Monte Carlo analysis are used to estimate the time-
varying navigation error covariance, Ptrue, due to the activated
uncertainty source.

The error budget generation method is used to analyze
the effect of the sources of uncertainty on the overall
navigation error covariance. For the radar detection path
planning application, the error budget of interest is the effect
of the sources of uncertainty on the variability of PD. This
introduces two additional uncertainty sources to be evaluated
(i.e., radar position and radar constant). The effect of each

source of uncertainty on PD is analyzed by turning off all
sources of uncertainty except the one being evaluated and
calculating the variance of PD using (10). Once all sources of
uncertainty have been evaluated, the variance of PD calculated
during each test can be compared in an error budget.

The PD error budget analysis includes eight Monte Carlo
analyses with each requiring hundreds or thousands of
navigation system simulations along the reference trajectory.
The high computational burden of this analysis prohibits
its use in the proposed path planning framework. An
alternative method to compute the navigation error covariance
is linear covariance analysis (LinCov) [18, 20, 21]. LinCov
uses linear models for the truth and navigation states to
efficiently generate the navigation error covariance along
a reference trajectory. This approach generates the same
statistical information as a Monte Carlo analysis, but requires
only a single simulation over the reference trajectory. Thus,
the error budget analysis described in this section can be
performed with only eight simulations over the reference
trajectory. The following section describes the LinCov models
used in this paper to obtain the true navigation error covariance
Ptrue.

B. Linear Covariance Model

This section describes the LinCov model associated with the
truth and navigation models developed in Section II-C. The
LinCov model forms an augmented state vector of the truth
and navigation states and the associated linearized augmented
system matrices. The notation used in this section follows the
development in [21].

The linearized truth state dispersion dynamics are
determined by taking the Jacobian of the truth model defined
in (11) to obtain

δẋ = Fxδx+Bw (48)

where the uppercase letters represent the partial derivative of
an equation taken with respect to the variable in the subscript.
For example, Fx is the partial derivative of f(·), as defined in
(11), with respect to the truth state, x, evaluated at the nominal
truth state, x̄. Given this definition, the matrices in (48) are
defined as

Fx =




0 I 0 0 0
0 0

(
T̄nb ν

b
)
× 0 0

0 0 0 0 0
0 0 0 − 1

τa
I 0

0 0 0 0 − 1
τg
I




(49)

and

B =

[
09×6

I6×6

]
. (50)

The additive white noise vector is given by

w =

[
wa

wg

]
(51)

where wa and wg are defined in (29)-(33).



7

The linearized navigation state dispersion dynamics are
determined by taking the Jacobian of the navigation model
defined in (12) to obtain

δ ˙̂x = F̂x̂δx̂+ F̂ỹCxδx+ F̂ỹη (52)

where

F̂x̂ =




0 I 0 0 0

0 0
[
ˆ̄Tnb

(
νb − ˆ̄ba

)]
× − ˆ̄Tnb 0

0 0 0 0 ˆ̄Tnb
0 0 0 − 1

τa
I 0

0 0 0 0 − 1
τa
I




(53)

F̂ỹ =




0 0
ˆ̄Tnb 0

0 − ˆ̄Tnb
0 0
0 0




(54)

and
Cx =

[
06×9 I6×6

]
6×15

. (55)

The truth state update is linearized to obtain

δx+
k = δx−

k . (56)

The navigation state update equation defined in (14) is also
linearized to produce the dispersion update equation given by

δx̂+
k =

(
I16×16 − K̂kĤx̂

)
δx̂−

k + K̂kHxδx
−
k + K̂kνk (57)

where the H matrices depend on the measurement update type
and are defined in (36)-(38). Note that for the measurement
models used in this paper, Hx = Ĥx̂.

The linearized truth and navigation models are combined
to form the augmented system model. The augmented system
state vector for the linearized dispersion models is formed as

X =

[
δx
δx̂

]
(58)

and the augmented propagation and update equations are

Ẋ = FX + Gη +Ww (59)

X+
k = AkX

−
k + Bkνk (60)

where

F =

[
Fx 0

F̂ỹCx F̂x̂

]
(61)

G =

[
0

F̂ỹ

]
(62)

W =

[
B

016×6

]
(63)

Ak =

[
I16×16 016×16

KkHx I16×16 −KkĤx̂

]
(64)

Bk =

[
016×nz

Kk

]
(65)

and nz is dimension of the discrete-time measurement being
processed.

Finally, the covariance propagation and update of the
augmented system is expressed as

E
[
ẊẊ

T
]
= ĊA = FCA + CAFT + GSηGT +WSwWT

(66)

E
[
X+
kX

+T
k

]
= C+

A = AkC
−
AAT

k + BkRνBTk (67)

where the power spectral density of the inertial measurements
and process noise are

Sη =

[
Qν 03×3

03×3 Qω

]
(68)

Sw =

[
qaI 03×3

03×3 qgI

]
(69)

and Qν , Qω , qa, and qg are defined in (30)-(33).
The quantity of interest for this paper is the navigation

estimation error. It is important to note that the navigation
error covariance defined below is the true navigation error
covariance, which may be different than the estimated
navigation covariance from the Kalman filter. This quantity
is extracted from the augmented covariance matrix via

Ptrue =
[
−I I16×16

]
CA
[
−I I16×16

]T
. (70)

Note that the error budget and linear covariance models
developed in this section evaluate the variability in PD due
to uncertainty in the aircraft INS and the radar states. This
approach evaluates knowledge errors due to the sources of
uncertainty rather than vehicle dispersions that are affected by
disturbances such as wind, or guidance and control designs.
This is convenient for the path planning application because it
requires less computation than the vehicle dispersion analysis.
Furthermore, the navigation errors are a good approximation
of the vehicle dispersions when the control authority of the
vehicle is sufficient to follow the planned path in the presence
of disturbances. If an analysis of the vehicle dispersions is
desired, then a closed-loop LinCov model as developed in [21]
could be used in the framework presented in this paper.

IV. APPLICATION: VISIBILITY GRAPH PLANNER

The methods presented in this paper can be used to inform
a variety of radar detection path planning algorithms. This
section presents an application of these methods to a visibility
graph path planner. The following subsections describe the
visibility graph path planner and an associated extension to
incorporate the radar detection framework discussed in the
previous sections.

A. General Visibility Graph Path Planner

The visibility graph path planner finds the shortest path
between a start and goal location while navigating around
obstacles. The nodes in the graph are the start and goal points
and the vertices of the obstacles. Each node is connected by
edges to every “visible” node. In this context, a node is visible
if a line segment to the node does not pass through an obstacle.
The edge cost is set to the Euclidean distance of the edge. The
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Fig. 3: Visibility graph example with six polygon obstacles
(dark gray) where the light gray lines represent the edges of
the visibility graph

shortest path (the path with the least cost) between the goal
and target vertices is found using a graph search algorithm
such as Dijkstra’s [30] or A* [31].

Fig. 3 shows an example of a visibility graph applied to
a path planning problem where the gray lines represent the
edges of the graph, and the gray polygons are the obstacles.
The blue line is the shortest path between the start point
(triangle) and the goal point (star) that was found using a
shortest path algorithm. The visibility graph method relies
on the assumption that the shortest path through an obstacle
field will touch the edges of the obstacles if a single straight
segment between the start point and goal point is not valid.

The visibility graph planner described in this section is
sufficient for radar detection planning with constant RCS
and no uncertainty. The following subsection describes an
extension to the visibility graph path planning algorithm to
incorporate the methods presented in this paper. The resulting
algorithm generates a path that maintains PD below a specified
threshold and accounts for varying RCS and uncertainty in the
aircraft and radar states.

B. Visibility Graph Extension

A block diagram for the PD visibility graph (PDVG)
algorithm is shown in Fig. 4 where the Aircraft and Radar
Models block is expanded in Fig. 1. The algorithm represents
the radar detection region with polygons so that a visibility
graph problem can be formulated and solved to efficiently
produce a candidate path. The path is smoothed to provide
continuous heading and curvature using the fillet method
described in Section II-D. Once smoothed, the navigation
covariance is propagated along the path using the INS model
described in Section II-C. Finally, the radar detection model
from Section II-A is used to determine if the probability
of detection stays within the user-specified requirements. If
the smoothed path satisfies the threshold, the algorithm is

complete. Otherwise, the radar polygons are expanded based
on the radar detection information and a new plan is generated
using expanded polygons. The following paragraphs will
describe these steps in more detail.

1) Initial Radar Polygons: The first step of the algorithm is
to construct the initial radar detection polygons. The detection
polygons are parameterized by a position, number of vertices,
and a radius. The position of the radar, pn

r , is the center of the
detection polygon. The number of vertices is a design decision
by the user and the radius is determined by solving (1) and
(2) for R as

R =

(
crσr

k
(
erfcinv (2PD,init)−

√
− logPfa

)2 − 0.5

) 1
4

.

(71)
where PD,init is a PD value used to construct the polygons, and
σr is a nominal RCS value for the aircraft. Typically, PD,init
is the same or slightly lower than the mission PD threshold
PDT , and σr is the average RCS value of the chosen RCS
model.

2) Visibility Graph Planner: The visibility graph planner
uses the radar polygons to build a visibility graph and
calculates the shortest path from the start point to the goal
point. The resulting path is a series of waypoints that mark a
path through the planning region.

3) Aircraft and Radar Models: The Aircraft and Radar
Models are used to generate samples of PD and σpd from
a series of waypoints. The ASG method from [23] and
summarized in Section II-D generates a flyable trajectory from
the waypoints. The flyable trajectory includes nominal aircraft
states, x̄a, and nominal IMU measurement samples (νb, ωb)
along the path. The inertial navigation model uses the nominal
aircraft states and IMU measurements to compute the aircraft
state covariance, Caa, along the candidate path using the
methods described in Section II-C.

The nominal aircraft state and aircraft state covariance are
used to calculate the time-varying nominal P̄D(t) using (1)
and the variance of PD, σ2

pd(t), using (10). The variance of
PD along the nominal trajectory, as defined in (10), is modified
for the multiple-radar scenario such that, for the ith radar, σpd
is given by

σ2
pd,i(t) =APa,i(t)Caa(t)APa,i(t)

⊺

+APr,i(t)Crr,iAPr,i(t)
⊺. (72)

4) Check Path Validity: The P̄D,i and σpd,i are used to
determine if the candidate path is valid. For this application, a
path is considered valid if the nominal PD plus a multiple of
σpd stays below a specified PD threshold, PDT , for all time
as described below. Let mσ be a mission planner specified
multiple of the standard deviation of PD. Then a path is
considered valid if

P̄D,i(t) +mσσpd,i(t) < PDT ∀ t, i. (73)

Note that the σpd value calculated with the linearized radar
detection model using (10) represents the standard deviation
of a Gaussian distribution. So the mσ multiple follows
the empirical rule such that one, two, and three deviations
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Fig. 4: Block diagram for the PDVG path planner. The Aircraft and Radar Models block in blue is expanded in Fig. 1.

radar

original

expanded

Fig. 5: Radar expansion diagram. The black polygon
represents the original polygon, the blue segments represent
the polygon expansion, and the dashed red lines show the
expansion vertices. Vertices of the original and expanded
polygons are represented by black and blue circles,
respectively.

will contain 68%, 95%, and 99.7% of samples from the
distribution, respectively.

5) Radar Polygon Expansion: If a candidate path passes
the validity check in (73) for all time and every radar, the
algorithm terminates and the candidate path is provided as the
planned path. Otherwise, the detection statistics are used to
expand the radar polygons.

The radar polygon expansion component expands the
polygons in areas where the candidate path was invalid
according to (73). The polygon expansion is shown graphically
in Fig. 5 and is accomplished in two steps as described in the
following paragraphs.

First, an expansion range is determined using P̄D,i and σpd,i
for all samples where the path is invalid according to (73). The
objective of the expansion range is to move the nominal path
away from the radar to pass the validity check in (73). This is
accomplished by determining an expansion PD, PD,exp, that
when added to mσσpd stays below PDT . Let PD,exp for the
ith radar be defined as

PD,exp,i(t) = max
(
PDT −mσσpd,i(t), 1e−3

)
(74)

where the max() function is used to ensure that PD,exp,i is
positive and avoids the asymptote of the erfcinv() function
at zero. Then the associated expansion range Rexp,i(t) is
determined by solving (71) with PD,init = PD,exp,i(t) and
σr = σr,i(t).

Second, the expansion ranges calculated in the first step are
applied to the closest radar polygon vertices. Then vertices
are added to the polygon near the expanded vertices with the
same expansion range as represented in Fig. 5.

The expanded radar polygons are provided to the visibility
graph component and the algorithm continues until a valid
path is found. The iterative nature of this algorithm allows the

TABLE I: Common parameters for the scenarios in this
section.

Param Value Description
a 0.18 m Ellipsoid RCS forward axis length
b 0.17 m Ellipsoid RCS side axis length
c 0.20 m Ellipsoid RCS up axis length
σpr 500/3 m Radar position std. dev.
σcr 2/3 Jm2/◦K Radar constant std. dev.
pad -3.5 km Nominal aircraft position - "D" axis
pnr,1 03×1 km Radar 1 nominal position (NED)
pnr,2 [-650, 900, 0]⊺ km Radar 2 nominal position (NED)
cr 164.7 Jm2/◦K Nominal radar constant
Pfa 1× 10−9 Probability of false alarm
pnstart [-100, -700, -3.5]⊺ km Start position
pngoal [-400, 1650, -3.5]⊺ km Goal position
PD,init 0.1 PD used for initial vgraph
σr,init 0.09 m2 RCS used for initial vgraph
np 30 # of radar polygon vertices
PDT 0.1 PD threshold for planner
σn 1/3 m North position noise std. dev.
σe 1/3 m East position noise std. dev.
σd 1 m Down position noise std. dev.
σh 0.1/3 m Altitude noise std. dev.
σψ 0.1/3 deg. Heading noise std. dev.

visibility graph component to provide a new candidate path
according to the expanded obstacles.

V. RESULTS

The results in this section illustrate the performance of
the PDVG path planner described in Section IV-B for three
scenarios. The planner seeks to satisfy (73) with a threshold
of PDT = 0.1 and mσ = 3. The results for each scenario
include a 2D map of the planning region, PD calculated along
the planned trajectory, and an error budget for the sources of
uncertainty. The common parameters for the three scenarios
are provided in Table I and the ellipsoid RCS model as a
function of azimuth and elevation angles are shown in Fig. 6.

The three scenarios include a start point, goal point, radar
systems and “planning limits” in which the planned path must
remain. Fig. 7 shows the map for Scenario 1 with the start
(triangle) and goal (star) points. The diamonds represent the
position of the radar systems and the gray circles surrounding
the diamonds show the radar detection regions. The radius of
the radar detection regions are determined using (71) with
σr = 0.15 m2 and PD,init = 0.01. These quantities were
chosen so that the radar detection region would reflect a worst-
case scenario for the RCS and a very low PD value. The
scenarios in this section will compare the effect of the IMU
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Fig. 6: Ellipsoid RCS model as a function of RCS azimuth
and elevation angles.

TABLE II: Parameters for tactical and navigation grade IMU’s.

IMU 3
√
qa 3σa,ss 3

√
qg 3σg,ss

Grade (m/s/
√

hr) (g) (deg./
√

hr) (deg./hr.)
Industrial 0.1 0.001 0.2 10
Tactical 0.03 0.0001 0.05 1

grade (i.e. industrial, tactical) on the uncertainty in PD and
illustrate how this influences the path planner. The IMU grade
parameters used in this section are provided in Table II.

A. Scenario 1

The first scenario shows a planned path for an aircraft
equipped with a industrial-grade IMU. Fig. 7 shows a map
with the planned and candidate paths of the path planner.
The black polygons show the final state of the radar polygons
used in the visibility graph planner. The initial candidate path
shows that the shortest path is between the two radar units. As
the aircraft travels through a GPS-Denied region, position and
heading measurements are made unavailable to the INS. This
causes the aircraft pose covariance to grow which contributes
to an increase in σpd. The radar polygons are adjusted in
areas where (73) is not satisfied according to the adjustment
policy described in Section IV. The adjusted polygons overlap
making the path between the radar units infeasible. The final
planned path goes around the bottom of the lower radar unit
but remains within the gray radar detection region.

Fig. 8 shows the PD results for Scenario 1. This indicates
that P̄D+3σpd stays below the PD threshold of 0.1 as required
by (73). Note that the areas of highest detection risk and largest
σpd occur when the radar is detecting the side of the aircraft
(i.e. α ≈ 90, 270 deg.). This is expected as these azimuth
angles are associated with the largest RCS values and highest
degree of variability (see Fig. 6). Also note that at its peak
(t ≈ 4.2 hr.), 3σpd ≈ 0.018 which is 34.4% of the nominal
P̄D at that time. These results indicate that there is substantial
variability in PD due to uncertainty in the aircraft pose, radar
position, and radar parameters.

Fig. 9 shows an error budget for the sources of uncertainty
at t = 4.2 hours using the methods presented in Section III.
This time was chosen because it is when the aircraft is about to
exit the GPS-Denied region and the aircraft pose uncertainty
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Fig. 7: Visibility graph path planner results for Scenario 1
with two radar systems (diamonds), radar polygons (black
lines), GPS-Denied regions (black rectangles), candidate paths
(dashed gray lines), and the final planned path (blue line).
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Fig. 8: PD results for Scenario 1 with the PD threshold PDT =
0.1, nominal P̄D, and P̄D + 3σpd. The planner successfully
finds a path through the radar detection region that maintains
P̄D + 3σpd < PDT .

is the largest. The error budget indicates that the uncertainty in
the IMU is the primary driver of uncertainty in the variability
of PD. This indicates that to reduce the uncertainty in PD the
uncertainty in the IMU measurements must be reduced which
will be examined in Scenario 2.

The LinCov analysis that is used to generate the error budget
in Fig. 9 is expected to provide the same statistical information
as a Monte Carlo analysis. Fig. 10 shows Monte Carlo results
for a subset of the planned trajectory near the GPS-Denied
region below the lower radar unit. The gray lines in Fig. 10
represent the PD results for each of the 500 Monte Carlo
runs. As expected, the gray lines mostly stay within the 3σpd
lines and the plots show agreement between the LinCov 3σ
and the Monte Carlo 3σ. Agreement between the Monte Carlo
and LinCov results serve to validate the linear approximations
made in the LinCov framework. There are minor deviations
throughout the trajectory due to linearization errors (i.e. minor
bias between t = 4.15-4.25 hrs.), but the deviations are
negligible for the path planning scenario presented.
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Fig. 9: Error budget results for Scenario 1 at t = 4.2 hours.
This shows the 3σpd value at the stated time when each
source of uncertainty is isolated. The Total line shows the 3σpd
value of the LinCov model with all the sources of uncertainty
activated. The percentages to the side of each bar indicate the
percent of the Total uncertainty and the root-sum-square of
the contributing 3σpd values equal the Total uncertainty.

Fig. 10: PD Monte Carlo results with 500 runs for the path
segments around the first radar. The gray lines indicate PD
results for each Monte Carlo run with the PD error results in
the bottom figure. The PD error is determined by subtracting
the Monte Carlo run PD from P̄D.

B. Scenario 2

The second scenario uses the same radar and aircraft
configuration as Scenario 1, except the industrial grade IMU
is replaced by a tactical grade IMU (see Table II). Fig. 11
shows the 2D map for Scenario 2 where the final planned
path goes between the radar units. In contrast to Scenario 1
with the industrial grade IMU, the tactical grade IMU makes
the shorter path between the radar feasible by reducing the
aircraft pose covariance.

Fig. 12 shows the PD results for Scenario 2. The graph
shows that the PDVG planner maintains P̄D+3σpd below the
PDT threshold of 0.1. Note that at its peak (t ≈ 2.38 hr.),
3σpd ≈ 0.013 which is 15.2% of the nominal P̄D at that time.
This is a significant portion of the nominal PD that must be
considered for radar detection path planning in the presence
of uncertainty, but is smaller than the variation calculated in
Scenario 1.

The error budget for Scenario 2 at t = 2.38 hours, which
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Fig. 11: Visibility graph path planner results for Scenario 2
with two radar systems (diamonds), radar polygons (black
lines), GPS-Denied regions (thick black rectangles), candidate
paths (dashed gray lines), and the final planned path (blue
line).
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Fig. 12: PD results for Scenario 2 with the PD threshold
PDT = 0.1, nominal P̄D, and P̄D + 3σpd. The planner
successfully finds a path through the radar detection region
that maintains P̄D + 3σpd < PDT . The effect of the GPS-
Denied region is the increase in 3σpd near t = 2.4 hours.

is just before the aircraft exits the GPS-Denied region, is
provided in Fig. 13. The graph indicates that the radar constant
is the primary driver of uncertainty in PD followed by the
IMU. Contrast these results with the error budget in Scenario
1 (Fig. 9) to observe the reduction of the variability of PD
due to the IMU grade improvement.

C. Scenario 3

The third scenario illustrates the performance of the PDVG
path planning algorithm in a radar detection region with
several radar units. For this scenario, the radar constant and
radar uncertainty were lowered (cr = 50 and 20, σpr = 100/3,
σcr = 1/3) to fit more radar units in the planning region
used for Scenarios 1 and 2. Fig. 14 shows the 2D map of the
results for Scenario 3. The dashed lines show the candidate
paths considered by the PDVG path planner and the blue
line shows the final planned path. Fig. 15 shows the PD
results for Scenario 3, which indicates the planner successfully
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Fig. 14: Visibility graph path planner results for Scenario
3 with six radar systems (diamonds), radar polygons
(black lines), GPS-Denied regions (thick black rectangles), a
candidate path (dashed gray line), and a planned path (blue
line).

finds a path through the radar detection region that maintains
P̄D + 3σpd < PDT . This scenario illustrates the utility of the
PDVG path planner in complex detection environments that
require expansions around several radar units.

The results in this section have illustrated the methods
presented in this paper in four ways. First, the visibility
graph path planner with the associated polygon adjustment
policy is used to determine a feasible path that maintains
P̄D + 3σpd < PDT . Second, the INS is modeled to obtain
aircraft state uncertainty due to errors in measurement sources
and GPS-Denied regions. The resulting state covariance is
used to inform the visibility graph path planner to find a
path that maintains PD below the mission-specified threshold.
Third, the LinCov models are used to generate error budgets
to compare sources of uncertainty. The error budget provided
actionable information (i.e., improve IMU grade) which, when
implemented, resulted in a shorter path between the radars
that met the mission objectives. Fourth, the PDVG planner
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Fig. 15: PD results for Scenario 3 with the PD threshold
PDT = 0.1, nominal P̄D, and P̄D + 3σpd. The planner
successfully finds a path through the radar detection region
that maintains P̄D + 3σpd < PDT .

described in this paper is applied to a congested detection
region with several radar systems.

VI. CONCLUSION

Path planning for aircraft operating under threat of detection
from ground-based radar systems must account for the
probability of detection. Several factors influence the detection
risk of the aircraft including the aircraft pose, radar position,
and radar performance characteristics. In addition, uncertainty
in each of these factors also influence the probability of
detection. Current radar detection path planning methods fail
to consider the uncertainty in these factors when estimating
the detection risk of a trajectory. In practice, the uncertainty
inherent in each of these factors is significant and influences
the variability of the probability of detection. In the scenarios
shown in this paper, the variability of PD is a large fraction,
up to 34.4%, of the nominal value.

This paper presents a method to propagate the covariance
of the aircraft state and incorporate it with the uncertainty of
the radar state into the radar detection model. The method
uses an inertial navigation system to propagate the covariance
using IMU measurements and update the covariance with
position, heading, and altitude measurements. The nominal
aircraft states and IMU measurements are generated using
the ASG method from [23]. The radar detection model is
linearized about a nominal operating point and the variance of
PD is calculated using the aircraft and radar state covariance
matrices [14, 22].

These methods are used in the PD Visibility Graph (PDVG)
path planner, where the nominal PD and standard deviation,
σpd, are used to determine path validity and the polygon
expansion policy. This paper shows that the PDVG planner
successfully plans paths that maintain PD + 3σpd below a
threshold for three scenarios. The error budgets generated by
the path planner indicate that when the aircraft travels through
GPS-Denied regions, measurement uncertainties in the IMU
become the primary driver of the variance of PD. This variance
is reduced by improving the IMU grade used in the aircraft
model.

The results show that an advantage of using the methods
presented in this paper is that the user can evaluate the sources
of uncertainty and make actionable decisions. For example,
the IMU uncertainties were the primary driver of the variance
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of PD in Scenario 1, but when the IMU grade was improved,
σpd was reduced by 27.8%. The improved IMU grade allowed
the aircraft to travel between two radars which was infeasible
with the original IMU grade. The results in this paper show
that uncertainty in the aircraft and radar states significantly
impact the variability of PD and must be considered for path
planning. To address this, the PDVG planner is presented as a
framework for incorporating the variability of PD in planning
a path that maintains the probability of detection below a
mission-specified threshold.
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APPENDIX A
QUATERNION TO EULER ANGLE LINEARIZATION

This appendix derives the linearization of the quaternion
to Euler angle attitude representations with a small angle
assumption. The linearized model is used to define the matrix
Ma which transforms the aircraft state of the INS model x̂
defined in (12) to the aircraft state of the radar model xa

given by xa =
[
pn
a Θa

]⊺
.

The general quaternion to Euler transformation [32] is given
by



ϕ
θ
ψ


 =




arctan 2(q0q1+q2q3)

1−2(q21+q22)
arcsin 2(q0q2 − q3q1)

arctan 2(q0q3+q1q2)

1−2(q22+q23)


 (75)

The first element of the error quaterion defined in (24) is 1 so
let q0 = 1 then



ϕ
θ
ψ


 =




arctan 2(q1+q2q3)

1−2(q21+q22)
arcsin 2(q2 − q3q1)

arctan 2(q3+q1q2)

1−2(q22+q23)


 (76)

The Jacobian of (76) with respect to q1:3 is ∂Θ
∂q1:3

. The
elements of ∂Θ

∂q1:3
are given by

∂ϕ

∂q1
= −

2
qa

− q1(2q1+2q2q3)4
q2a

q2a

q2a + (2q1 + 2q2q3)
(77)



14

∂ϕ

∂q2
= −

2q3
qa

− q2(2q1+2q2q3)4
q2a

q2a

q2a + (2q1 + 2q2q3)
(78)

∂ϕ

∂q3
= − 2q21 + 2q22 − 1

(2q21 + 2q22 − 1)2 + (2q1 + 2q2q3)2
(79)

∂θ

∂q1
= − 2q3√

1− (2q2 − 2q1q3)2
(80)

∂θ

∂q2
=

2√
1− (2q2 − 2q1q3)2

(81)

∂θ

∂q3
= − 2q1√

1− (2q2 − 2q1q3)2
(82)

∂ψ

∂q1
= − 2q2qb

q2b + (2q3 + 2q1q2)2
(83)

∂ψ

∂q2
= −

2q1
qb

− q2(2q3+2q1q2)4
q2b

q2b

q2b + (2q3 + 2q1q2)2
(84)

∂ψ

∂q3
= −

2
qb

− q3(2q3+2q1q2)4
qb

q2b

q2b + (2q3 + 2q1q2)
(85)

where

qa = 2q21 + 2q22 − 1 (86)

qb = 2q22 + 2q23 − 1. (87)

Evaluating the partial derivatives at the nominal q1 = q2 =
q3 = 0 yields the final Jacobian of the quaternion to Euler
angle transformation as

∂Θ

∂q1:3

∣∣∣∣∣
δq̄

= 2I3×3. (88)

The quaterion to Euler angle Jacobian defined in (88) is
used to transform the INS model state x̂ as defined in (12) to
the aircraft state in the radar model xa as

xa =

[
I3×3 03×3 03×3 03×3 03×3

03×3 03×3 2I3×3 03×3 03×3

]
x (89)

=Max. (90)

APPENDIX B
COVARIANCE PROPAGATION USING LEAR’S METHOD

While the error state model in (26) is an accurate
representation of the error dynamics, the error states are more
efficiently propagated using the state transition matrix (STM).
This is represented in discrete time as

δxk = Φ(tk, tk−1) δxk−1 +wk−1 (91)

where Φ (tk, tk−1) is the STM from the tk−1 to tk , and wk−1

is the integrated process noise over the same time interval
given by

wk−1 =

∫ tk

tk−1

Φ (tk, τ)BQ (τ)w (τ) dτ. (92)

The covariance of the estimation errors is also propagated
using the STM using

P−
k = Φ(tk, tk−1)P

−
k−1Φ

T (tk, tk−1) +Qk−1 (93)

where Qk−1 is the covariance of the integrated process noise
defined by

Qk−1 = E
[
wk−1w

T
k−1

]

=

∫ tk

tk−1

Φ (tk, τ)B (τ)Q (τ)BT (τ) ΦT (tk, τ) dτ.

(94)

The following paragraphs provide a derivation for Φ (tk, tk−1)
and Qk−1. The STM is defined as the matrix which satisfies
the differential equation [18]

Φ̇ (tk+1, tk) = F (t) Φ (tk+1, tk) (95)

where Φ (tk, tk) = In×n. While it is possible to numerically
integrate (95), approximation of the integral over small time
frames is sufficient for many practical filters and is much more
efficient. There are many good approximations for this purpose
[27], however Lear’s method is chosen for this application
[28]. Lear’s method for approximating the state transition
matrix is given by

Φ (tk+1, tk) ≈ I +
∆t

2
(Fk + Fk−1) +

∆t2

2
FkFk−1 (96)

where Fk = F (tk) and ∆t = tk − tk−1. To aid in the
derivation that follows, the error states defined in (25) are
partitioned into vehicle states and parameter states as

δx =
[
δxv δxp

]T
(97)

where the vehicle states comprise the position, velocity, and
attitude errors

δxv =
[
δpn δvn δθnb

]T
(98)

and the parameter states include the accelerometer and gyro
biases.

δxp =
[
δbba δbbg

]T
(99)

The state coupling matrix Fk has the same form as (53) and
is partitioned as

Fk =

[
Fvv Fvp
06×9 Fpp

]
(100)

and the STM is partitioned as

Φ (tk+1, tk) = Φk =

[
Φvv Φvp
Φpv Φpp

]
. (101)

Since the parameter states are modeled as FOGM processes,
independent of the vehicle states, the corresponding elements
of the STM are known analytically as

Φpv = 06×9 (102)

and

Φpp =

[
exp (−∆t/τa) I3×3 03×3

03×3 exp (−∆t/τg) I3×3

]
(103)

The upper-left element of the STM from (101) is approximated
using (96) to yield

Φvv ≈



I3×3 ∆tI3×3

∆t2

2

[
ν̂nk−1

]
×

03×3 I3×3
∆t
2 [ν̂nΣ]×

03×3 03×3 I3×3


 (104)
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where

ν̂nk−1 = T̂nb,k−1

(
ν̃bk−1 − b̂

b

a,k−1

)
(105)

ν̂nk = T̂nb,k−1

(
ν̃bk − b̂

b

a,k

)
(106)

and
ν̂nΣ = ν̂nk + ν̂nk−1. (107)

The lower-left element of the STM from (101) is
approximated using (96) to yield

Φvp ≈




−∆t2

2 T̂nb,k−1 03×3

−∆t
2 T̂

n
b,Σ + ∆t2

2τa
T̂nb,k

∆t2

2 {[ν̂nk ]×} T̂nb,k−1

03×3
∆t
2 T̂

n
b,Σ − ∆t2

2τg
T̂nb,k




(108)
where

T̂nb,Σ = T̂nb,k + T̂nb,k−1. (109)

The integrated process noise Qk−1 in (94) is derived in
the following paragraphs. Begin by partitioning the dynamics
coupling matrix and noise density matrix

B =

[
Bv,n 09×6

06×6 I6×6

]
(110)

Q =

[
Qn 06×6

06×6 Qw

]
(111)

where

Bv,n =




03×3 03×3

−T̂nb 03×3

03×3 T̂nb


 (112)

Qn =

[
Qν 03×3

03×3 Qω

]
(113)

Qw =

[
qaI3×3 03×3

03×3 qgI3×3

]
(114)

The integral of (94) can be expressed as

Qk−1 =

[
Qvv Qvp
Qpv Qpp

]
(115)

where

Qvv =

∫ tk

tk−1

Φvv (tk, τ)Bv,n (τ)QnB
T
v,n (τ) Φ

T
vv (tk, τ)

+Φvp (tk, τ)QwΦ
T
vp (tk, τ) dτ (116)

Qvp = QTpv =

∫ tk

tk−1

Φvp (tk, τ)QwΦ
T
pp (tk, τ) dτ (117)

and

Qpp =

∫ tk

tk−1

Φpp (tk, τ)QwΦ
T
pp (tk, τ) dτ (118)

The integrals in (116)-(118) are derived separately in the
following paragraphs. The integrated process noise for the
parameter states is approximated as

Qpp ≈
[
qa
τa
2 eaI3×3 03×3

03×3 qg
τg
2 egI3×3

]
. (119)

where

ea = 1− exp(
−2∆t

τa
) (120)

eg = 1− exp(
−2∆t

τg
). (121)

The integrated process noise of the coupled parameter and
vehicle states can be derived as

Qvp =




−qaT̂nb,k−1ca
−qaT̂nb,Σct + qaT̂

n
b,k

ca
τa

03×3

03×3

qg {[ν̂nk ]×} T̂nb,k−1ca
qgT̂

n
b,Σct − qgT̂

n
b,kca


 (122)

where

ca = τ3a − 1

2
τa
(
2τ2a + 2τa∆t+∆t2

)
exp(

∆t

τa
)(123)

ct =
τ2a
2

− τa
2
(τa +∆t) exp(

−∆t

τa
) (124)

The integrated process noise of the vehicle states is
partitioned as

Qvv =



Qvv,11 Qvv,12 Qvv,13
Qvv,21 Qvv,22 Qvv,23
Qvv,31 Qvv,32 Qvv,33


 (125)

where the equations for each entry are given by

Qvv,11 =
∆t3

3
Qν,k

+
∆t5

20

(
Qn
b,k−1 + qaT̂

n
b,k−1

(
T̂nb,k−1

)T)
(126)

Qvv,12 =
∆t2

2
Qν,k

+
∆t4

16

({[
ν̂nk−1

]
×
}
Qω,k {[ν̂nΣ]×}T

+qaT̂
n
b,k−1T̂

n
b,Σ

T
)
− qa

∆t5

20τa
T̂nb,k−1

(
T̂nb,k

)T
(127)

Qvv,13 =
1

6
∆t3

{[
ν̂nk−1

]
×
}
Qν,k (128)

Qvv,21 =
∆t2

2
Qν,k

+
∆t4

16

(
{[ν̂nΣ]×}Qω,k

{[
ν̂nk−1

]
×
}T

+qaT̂
n
b,Σ

(
T̂nb,k−1

)T)
− qa

∆t5

20τa
T̂nb,k−1

(
T̂nb,k

)T

(129)

Qvv,22 = ∆tQν,k +
∆t3

12

(
{[ν̂nΣ]×}Qω,k {[ν̂nΣ]×}T

+qaT̂
n
b,Σ

(
T̂nb,Σ

)T)
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− qa
∆t4

16τa
T̂nb,k

[
T̂nb,k

(
T̂ n
b,Σ

)T
+ T̂ n

b,Σ

(
T̂nb,k

)T]

+
∆t5

20

(
qa
τ2a
R̂nb,k

(
R̂nb,k

)T

+qg {[ν̂nk ]×} T̂nb,k−1

(
T̂nb,k−1

)T
{[ν̂nk ]×}T

)
(130)

Qvv,23 =
∆t2

4
{[ν̂nΣ]×}Qω,k

+ qg
∆t4

16
{[ν̂nk ]×} T̂nb,k−1

(
T̂nb,Σ

)T

− qg
∆t5

20τg
{[ν̂nk ]×} T̂nb,k−1

(
T̂nb,k

)T
(131)

Qvv,31 =
∆t3

6
Qω,k

{[
ν̂nk−1

]
×
}T

(132)

Qvv,32 =
∆t2

4
Qω,k {[ν̂nΣ]×}T

+ qg
∆t4

16
T̂nb,Σ

(
{[ν̂nk ]×} T̂nb,k−1

)T

− qg
∆t5

20τg
T̂nb,k

(
{[ν̂nk ]×} T̂nb,k−1

)T
(133)

Qvv,33 = ∆tQω,k + qg
∆t3

12
T̂nb,Σ

(
T̂nb,Σ

)T

− qg
∆t4

16τg

[
T̂nb,k

(
T̂nb,Σ

)T
+ T̂nb,Σ

(
T̂nb,k

)T]

+ qg
∆t5

20τ2g
T̂nb,k

(
T̂nb,k

)T
(134)

and

Qn
b,k−1 =

{[
ν̂nk−1

]
×
}
T̂nb,kQω

(
T̂nb,k

)T {[
ν̂nk−1

]
×
}T

(135)

Qν,k = T̂nb,kQν

(
T̂nb,k

)T
(136)

Qω,k = T̂nb,kQω

(
T̂nb,k

)T
(137)

R̂nb,Σ = T̂nb,k−1 + T̂nb,k. (138)
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CHAPTER 6

CONCLUSION

Mission planners for aircraft operating under threat of detection by ground-based radar

systems plan paths to avoid detection. Several factors influence the probability of detection,

including the aircraft pose, radar cross-section, radar position, and radar parameters. In

practice, these factors have inherent uncertainty that is neglected by prior path planning

methods. This dissertation describes research to incorporate uncertainty in these factors

into a path planner. The development includes a framework to calculate detection risk

with uncertainty, a novel aircraft state and IMU measurement generator to enable rapid

path evaluation, and a path planner that uses the detection risk uncertainty and provides

actionable information to the mission planner.

The radar detection model used in this work provides an expression for the detection

risk, PD, as a nonlinear function of the detection factors. The framework developed in

Chapter 2 linearizes the equation for PD with respect to the aircraft pose. The linearized

model is used to approximate, to the first order, the uncertainty induced by the aircraft

pose covariance. The results in Chapter 2 validate the linearization of PD and examine the

sensitivity of PD to aircraft pose uncertainty. It is shown that the 3σpd values predicted

by the linearized model exceed 0.1 for moderate aircraft pose uncertainty with the simple

spikeball RCS model.

The radar detection framework is extended to include uncertainties in the radar state

in Chapter 3. In this development, the equation for PD is linearized with respect to the

radar position and radar constant. The results in Chapter 3 validate the linearization

for three levels of radar state uncertainty and shows that the 3σpd values estimated by

the linearized model approach 0.1 for moderate radar state uncertainty. Furthermore, an

error budget is generated that compares the contribution of moderate aircraft and radar

state uncertainties to the variability in PD. The error budget shows that the radar state
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uncertainties contribute more to the variability in PD than aircraft state uncertainty.

The radar detection framework presented in Chapters 2 and 3 relies on the calculation

of the aircraft pose covariance matrix. The framework does not dictate the source of the

aircraft pose covariance, but the approach taken in this dissertation is to use the pose co-

variance estimated by an aided inertial navigation system. The pose covariance propagation

of such a system relies on noisy and biased measurements from an IMU. Previous methods

for generating IMU measurements relied on differentiating aircraft pose samples to generate

an aircraft trajectory with associated specific force and angular rate measurements. This

approach is computationally intensive due, in part, to the small time steps required to get

accurate IMU measurements. This limitation is addressed in Chapter 4, where a novel

aircraft state and IMU measurement generator, ASG, is developed that provides analytical

expressions for the quantities on interest.

The ASG method is a multi-stage component that provides analytical expressions for

the aircraft pose, specific force, and angular rates along a path. The first stage converts a

series of waypoints to continuous-curvature path segments with analytical expressions for

position, curvature, and course angle. The second stage assumes the aircraft is operating at

a trimmed pitch value and applies a coordinated turn assumption to calculate the roll and

pitch angle, roll and pitch angle rates, and course angle rate along each segment. The third

stage uses curvilinear motion theory to obtain an expression for the acceleration vector

along path that is used to generate nominal specific force measurements. The final stage

converts the roll, pitch, and yaw angle rates to the body frame angular rates experienced by

an aircraft flying along the smoothed path. The results in Chapter 4 compare the accuracy

of the IMU measurements from the analytical expressions with those generated from an

integration method for various time-steps. The results show that the analytical method

is consistent with the integration method for small time steps (i.e., dt = 0.001s) and as

the time step is increased, the error in the analytical method grows much slower than the

integration method.
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The ASG method and radar detection framework enable rapid path planning for air-

craft operating under threat of detection from ground-based radar systems with uncertainty

in the aircraft and radar states. Chapter 5 extends a visibility graph path planner with the

methods developed in this dissertation to efficiently propagate the covariance of an aided

inertial navigation system and consider the variability in PD as part of the path evaluation.

The path planner uses a linear covariance model to obtain the necessary statistical informa-

tion to generate error budgets for the uncertainty sources present in the aircraft and radar

models. The error budgets provide a graphical comparison of how each uncertainty source

contributes to the variability in PD.

The results in Chapter 5 illustrate the performance of the path planner and the ad-

vantages of generating error budgets for the sources of uncertainty. The path planner

successfully maintains the detection risk below a mission specified threshold for multiple

planning scenarios. In the first scenario, the planner determines a path around the two

radar systems because the planner is unable to find a valid path between them. The er-

ror budget indicates that the uncertainty in the IMU measurement is the primary driver

of variability in PD. In the second scenario, a higher-grade IMU is used and the planner

successfully finds a path between the radar systems. This example illustrates the advantage

of incorporating uncertainties in the path planning scenario and generating an error budget

to inform the mission planner of actionable information to improve the performance.

The research in this dissertation provides a foundation for future work in the field

of path planning for aircraft under threat of radar detection. Several extensions to this

research may be explored and are discussed below. First, the path planner in Chapter 5

uses the INS covariance to evaluate path validity and an open-loop linear covariance model

for error budget generation. This approach could be extended to a full closed-loop linear

covariance model where the aircraft pose covariance is obtained from the state dispersions.

The dispersions will include errors from guidance and control laws, actuator limitations,

and modeled disturbances such as wind.

Second, the ASG method and PDVG path planner assume that the aircraft is traveling
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at a constant altitude which reduces the planning space to a 2D plane. These components

can be modified to allow changes in altitude which will affect the radar detection vector and

probability of detection. This could result in a path planner that optimizes the operating

altitude as part of the trajectory to avoid detection.

Third, the PDVG path planner uses an unobstructed planning space, so the radar units

have a clear field of view to their maximum detection ranges. The PDVG planner could

incorporate terrain models or radar counter measures to obstruct the radar field of view

which could be leveraged by the path planner. This additional situational awareness may

prove useful for practical planning scenarios.
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The RCS models used throughout this work are analytical representations of the

backscattered radar cross-section for a given aircraft. The constant and ellipsoid RCS

models are often used in path planning applications due to their simplicity, however, mis-

sion planners sometimes have access to a table of measured RCS values for an aircraft. This

appendix presents the look-up table (LUT) RCS model that incorporates tabulated RCS

data into the radar detection framework presented in Chapters 2 and 3.

RCS look-up table data provides RCS values as a function of the RCS azimuth angle α

and elevation angle φ. The objective of the LUT RCS model is to fit a polynomial surface

that envelops the LUT data. The enveloping function will provide a conservative estimate

of the RCS signature of the aircraft while capturing the overall structure of the data.

Figure 1 shows an example of RCS LUT data as a function of α and φ. Despite the

sharp spikes across the ranges of the RCS angles, there is a general structure in the LUT

data that the RCS model will exploit. The LUT RCS model will fit a polynomial surface

by solving

min
x

P∑

p=0

Q∑

q=0

(R(αp, φq)− σrl(x, αp, φq))2 (1)

s.t. R(αp, φq) < σrl(x, αp, φq)

∀ p = 0, ..., P q = 0, ..., Q (2)

where R(αp, φq) is the measured RCS value associated with the pth α and qth φ values and

σrl(x, αp, φq) =
N∑

i=0

M∑

j=0

xi,jα
i
pφ

j
q (3)

defines the polynomial surface with coefficients defined by x. The constraint in (2) ensures

that the polynomial surface is larger than the sampled data at every point. This results in

a conservative representation of the LUT data. Figure 2 shows the resulting polynomial fit

where N = M = 5.

The resulting polynomial surface is a function of α and φ and can be used as an RCS
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Fig. 1: LUT RCS data as a function of RCS azimuth α and elevation φ angles.
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Fig. 2: LUT RCS data with enveloping polynomial surface fit.
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Fig. 3: Monte Carlo analysis results for PD with “medium” level of aircraft and radar state
uncertainty over the range θr = [0, 180] degrees with the LUT RCS model. The plot shows
that the linearized model provides a conservative estimate of the LUT data in the presence
of state uncertainty.

model in the framework presented in Chapters 2 and 3. This model is linearized by taking

the partial derivative of (3) with respect to α and φ. These partials are given by

∂σrl
∂α

=
N∑

i=1

M∑

j=0

ixi,jα
i−1
p φjq (4)

and

∂σrl
∂φ

=

N∑

i=0

M∑

j=1

jxi,jα
i
pφ

j−1
q . (5)

The linearization is verified by performing the same Monte Carlo analysis described in

Chapters 2 and 3 with the medium level of state uncertainty, and nominal range R = 400

km. For this scenario, each Monte Carlo run obtained PD values using the LUT data

with linear interpolation. Fig. 3 shows PD calculated for each Monte Carlo run for this

scenario, PD calculated with the nominal aircraft and radar states, and the upper 3-σ value

from the linearized model. The key observation from this graph is that PD and the 3-σ

values calculated with the linearized model provide a conservative estimate of the detection

probability.

The LUT RCS model is convenient option in situations where the mission planner has

access to the measured RCS data for a given aircraft. The mission planner should consider
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the general structure of the data when choosing the order parameters for the polynomial

surface (N , M) and evaluate the polynomial surface to ensure that it captures the desired

RCS features.
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