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ABSTRACT

Relativistic, Continuum Drift-Kinetic Capability in the NIMROD Plasma Fluid Code

by

Tyler Markham, Doctor of Philosophy

Utah State University, 2022

Major Professor: Eric D. Held, Ph.D.
Department: Physics

A ”runaway” electron is an electron that, through a self-reinforcing process, accelerates

to relativistic speeds. At multiple points during tokamak discharges, relativistic runaway

electron (RE) beams can form. RE beams pose a serious risk in the form of severe dam-

age to plasma facing components in ITER and future burning plasma reactors. Early RE

studies used simplified geometric and transport models, but enabled feedback on the overall

plasma evolution. This feedback is important for understanding the evolution of the RE

current column. The work in this thesis is an important step toward self-consistently evolv-

ing an RE distribution in the plasma fluid code NIMROD. While the long-term goal is to

predict RE particle and heat loads on plasma facing components in NIMROD simulations

of ITER, this work seeks to verify several 2D phase-space benchmarks involving the lin-

ear and nonlinear relativistic Coulomb collision operators. Completing these benchmarks

required implementation of the hefty, nonlinear Beliaev-Budker collision operator in NIM-

ROD. In order to motivate this, we first demonstrate the need for the nonlinear operator

by presenting the 2D phase space evolution of a low-density RE population according to

the approximate, linearized collision operator. We show that the linear operator does not

conserve momentum or energy for cases involving a diffuse, relativistic population relaxing

back to a non-relativistic background plasma. Other important RE physics in the kinetic
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equation, like the electric field acceleration and synchrotron radiation reaction force, is also

presented. After a discussion of our implementation of the Braams-Karney differential for-

mulation of the Beliaev-Budker operator, we show NIMROD simulations that exhibit the

correct 2D phase-space evolution. In particular, we show successful benchmarking of the

NIMROD and NORSE codes for the case of thermodynamic equilibrium.

(106 pages)
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PUBLIC ABSTRACT

Relativistic, Continuum Drift-Kinetic Capability in the NIMROD Plasma Fluid Code

Tyler Markham

A ”runaway” electron is an electron that, through a self-reinforcing process, accelerates

to relativistic speeds. At multiple points during tokamak discharges, relativistic runaway

electron (RE) beams can form. RE beams pose a serious risk in the form of severe damage to

plasma facing components in ITER and future burning plasma reactors. Early RE studies

used simplified geometric and transport models, but enabled feedback on the overall plasma

evolution. This feedback is important for understanding the evolution of the RE current

column. The work in this thesis is an important step toward self-consistently evolving an RE

distribution in the plasma fluid code NIMROD. While the long-term goal is to predict RE

particle and heat loads on plasma facing components in NIMROD simulations of ITER, this

work seeks to verify several 2D phase-space benchmarks involving the linear and nonlinear

relativistic Coulomb collision operators. In particular, we show successful benchmarking of

the NIMROD and NORSE codes for the case of thermodynamic equilibrium.



vi

ACKNOWLEDGMENTS

I would like to thank my friends Trevor, Zoe, and Josh for helping to keep me afloat

when things seemed at their worst. I would also like to thank Dr. Held, Dr. Spencer, and

Dr. Ji. Without Dr. Held I would not even be in the position to get my PhD. He has always

been there as a support system for me and I truly value him as an advisor and friend. Dr.

Spencer has taken so much of his time in order to help me grow and understand NIMROD

and various numerical techniques and has always welcomed me every time I bothered him

in his office. Lastly, I am grateful for Dr. Ji always pushing me to do things the right way

instead of the easy way.

Tyler Markham



vii

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SPECIAL RELATIVITY FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Relativistic Mechanics and Electromagnetism . . . . . . . . . . . . . . . . . 5
2.2 Lorentz Boosts and Einstein’s Velocity Addition . . . . . . . . . . . . . . . 11

3 RELATIVISTIC SINGLE-PARTICLE DESCRIPTION OF A PLASMA . . . . . . . . 18
3.1 Relativistic Lagrangian of a Charged Particle . . . . . . . . . . . . . . . . . 18
3.2 Conjugate Momenta and the Relativistic Hamiltonian . . . . . . . . . . . . 21
3.3 Non-Canonical Hamiltonian Theory for Single-Particle Motion . . . . . . . 23

4 RELATIVISTIC KINETIC THEORY AND THERMODYNAMICS . . . . . . . . . . . 30
4.1 Relativistic Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . 30
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CHAPTER 1

INTRODUCTION

A “runaway” electron (RE) is an electron that, through a self-reinforcing process,

accelerates to high speeds. At multiple points throughout tokamak operation, relativistic

RE beams can form. Thermal quenching in tokamak plasmas lead to rapidly decreasing

temperature and increased resistivity. Under normal tokamak operating conditions, the

electric-field used to drive toroidal current does not lead to substantial RE generation.

However, due to the rapid change in the plasma’s resistivity from the thermal quench, large

inductive electric fields are generated. Introduction of such large inductive fields can cause a

substantial fraction of the electrons in the plasma to “runaway”. Additionally, the increased

resistivity drives tearing modes and large magnetic islands, as can be seen in Figure 1.1 (Izzo

et al., 2011). This then leads to field-line stochasticity. As a result, REs can then run along

the magnetic field to the inner wall of the tokamak.

Due to the potentially catastrophic consequences that high-energy REs can have on

plasma facing components during tokamak operation, a great deal of research has gone into

studying the mechanism(s) by which they are produced. In 1959, Dreicer proposed that

Figure 1.1: Poincare plots of magnetic field lines in ITER simulation at 1.30 ms.
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there existed a critical electric field (often referred to as the Dreicer field) given by

ED ≡ nee
3 ln Λ

4πϵ20mev2Te

, (1.1)

where ne is the electron number density, e is the elementary charge, lnΛ is the Coulomb

logarithm, ϵ0 is the permittivity of free space, me is the mass of an electron, and vTe is the

electron thermal velocity (Dreicer, 1959). The Dreicer field is described as the electric-field

past which the electric-force acting on an electron is greater than the collisional friction

force. However, this critical electric-field is derived using non-relativistic mechanics, hence

it is not ideal for REs that can take on relativistic speeds. Relativistic corrections to the

critical field were made by Connor & Hasties (CH) who derived

ECH ≡
(vTe

c

)2
ED, (1.2)

where c is the speed of light (Connor & Hastie, 1975). Upon inspection of (1.2), the CH

critical electric-field is very closely related to the Dreicer field. One thing it provides, that

the Dreicer field does not, is a lower limit on the critical field. This explains why REs

were not always generated according to the Dreicer mechanism. Moreover, it provides a

mechanism by which REs can rejoin the bulk population.

Additionally, any process that excites even a small population of electrons can cause

the RE population to grow exponentially through an avalanche process. Electron avalanche

can occur in tokamak plasmas when electrons collide with neutral atoms. This collision

causes impact ionization, which in turn can generate more REs. As seen in Figure 1.2,

Rosenbluth showed that prior predictions of avalanche growth rates are underestimates for

low electric-fields (Rosenbluth & Putvinski, 1997).

Currently the world’s largest tokamak, the International Thermonuclear Experimental

Reactor (ITER), is under construction in southern France. Expected power output for

ITER is 500 MW, core with a core temperature of 150 million degrees Celsius and a plasma

radius of 6.2 m (ITER, n.d.). Given the fact that RE generation is predicted to be more
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Figure 1.2: Ratio of runaway growth rate calculated by Rosenbluth’s Monte Carlo code.
Here Z is the effective atomic ion number for the background plasma.

likely in larger tokamaks like ITER, further study into the evolution REs, and the conditions

under which they form, is an important topic of study for disruption mitigation.

Early attempts to model REs used simple geometric and transport models, but enabled

feedback of the RE current on the overall plasma evolution. This feedback is important

for understanding the evolution of the RE current column so that better techniques can be

developed to prevent RE current columns from hitting the wall. Much of the research to

date has progressed by either simplifying momentum-space or physical-space dynamics. In

this thesis, we shall simplify the physical-space dynamics.

While the long-term goal of this research is to predict RE particle and heat loads on

plasma facing components in NIMROD simulations of ITER, this thesis seeks to verify

several 2D phase-space benchmarks involving the linear and nonlinear relativistic Coulomb

collision operators. NIMROD is a multi-fluid extended magnetohydrodynamics (MHD) code

used in simulations of the macroscopic stability of magnetic fusion energy experiments like

tokamaks (Sovinec et al., 2004). In order to motivate our RE work, in Chapters 2, 3, and 4,

we first build the theory required to describe the relativistic Boltzmann equation, which is

then simplified to the Beliaev-Budker operator for the small momentum transfer limit. The

need for the nonlinear operator is then motivated in Chapter 5 by presenting the 2D phase

space evolution of a low-density RE population according to the approximate, linearized

collision operator. We show that the linear operator does not conserve momentum or
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energy for cases involving a diffuse, relativistic population relaxing back to a non-relativistic

background plasma. Verification of other important RE physics in the kinetic equation, like

the electric field acceleration and synchrotron radiation reaction force, is also presented.

After a discussion of our implementation of the Braams-Karney differential formulation of

the Beliaev-Budker operator in Chapter 6, we show NIMROD simulations that exhibit the

correct 2D phase-space evolution. In particular, we show successful bench-marking of the

NIMROD and NORSE codes for the case of thermodynamic equilibrium. We conclude in

Chapter 7 with a discussion of future work on building a successful coupling of RE physics

in the NIMROD code.
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CHAPTER 2

SPECIAL RELATIVITY FRAMEWORK

2.1 Relativistic Mechanics and Electromagnetism

Since the ultimate goal is to provide a kinetic description of the plasma using a single-

particle distribution function defined in a 6D phase-space, we first look to define the four-

vector analogues to x and p. In 4D position space the square of the length of a line element

in Cartesian coordinates in the lab-frame is given by

dxµdxµ = −c2dt2 + dx2 + dy2 + dz2

= ηµνdx
µdxν , (2.1)

where xµ
.
= (ct, xi) is the four-position. The rank two tensor ηµν is known as the Minkowski

metric, which is the metric for 4D Cartesian coordinates. In general, we denote any arbitrary

metric by gµν . In this thesis, we shall assume the Einstein summation convention for

repeated indices. Additionally, unless stated otherwise, Greek indices will range from 0-3

and roman indices will range from 1-3.

Next, we define the proper-time τ as the time experienced by an observer traveling at

the same speed, and located at the same position, as the origin of the particle’s reference

frame, or dxµdxµ = −c2dτ2. Using this expression, (2.1), and the invariance of (2.1), the

relationship between proper-time and time can be shown to be given by

dτ =

√√√√1− 1

c2

((
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
)
dt

=

√
1− v2

c2
dt

≡ dt

γ
. (2.2)
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Additionally, it should be noted that the proper-time is a scalar, i.e. it does not

transform under any coordinate transformation. This concept is more easily understood by

considering the general form of proper-time differential:

dτ =
1

c

√
−gµνdxµdxν . (2.3)

As can be seen in (2.3), the right-hand-side (RHS) is comprised of three tensors with all

indices contracted, which implies dτ is a scalar and therefore does not transform. However,

if we further assume that we are unconcerned about transforming our time coordinate, and

restrict all transformations to be time-independent transformations such that the trans-

formation on the spatial coordinates are curvilinear, then g00 = −1 and x0 = ct in all

coordinate transformations under this constraint. Applying this constraint, (2.3) reduces

to

dτ =
1

c

√
−g00dx0dx0 − gijdxidxj

=

√
1− 1

c2
gijvivjdt

=

√
1− v2

c2
dt

=
dt

γ
. (2.4)

Note that this is simply a consequence of the invariance of three-vector magnitudes in

3D position space under spatial curvilinear transformations. Ergo, the relationship between

time and proper-time still holds under these types of transformations. However, a 4D

curvilinear analogue would require the time component to transform as well. As a result, it is

important to note that throughout this thesis, when we say that something is invariant under

“curvilinear transformations”, we are only referring to the time independent transformations

of the spatial components normally used in 3D position space. The only instance in which

we will transform the time coordinate will be under a Lorentz transformation, which will

be discussed in more detail in a later section.
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Now that we have established our approach, we define a few more parameters. The

general prescription to convert 3D non-relativistic vectors defined by time-derivatives to

the 4D relativistic ones is to “upgrade” derivatives with respect time to derivatives with

respect to τ and replace three-vectors with their four-vector equivalents. For example, the

four-velocity uµ is given by

uµ ≡ dxµ

dτ

.
=
(
γc, γvi

)
. (2.5)

This procedure ensures that the resulting vector is in fact a four-vector and is therefore

covariant. Following this procedure we can also define the four-momentum and four-force

(sometimes referred to as the Minkowski force) pµ and Kµ by

pµ ≡ muµ (2.6)

Kµ ≡ dpµ

dτ
, (2.7)

where m is the mass. A direct consequence of this “upgrade” is that the magnitudes of the

four-vector analogues are invariant under any transformation. Using the example of the

four-velocity again, it can be seen that in Cartesian coordinates:

uµuµ = −γ2c2 + γ2v2 (2.8)

= −c2
(
1− v2

c2

1− v2

c2

)
(2.9)

= −c2. (2.10)

Note that uµuµ = −c2 is a coordinate independent statement since c is a scalar. This is

due entirely to the tensorial nature of xµ and the the invariance of τ .

With basic definitions out of the way, we turn our attention to electromagnetism in

special relativity. First, we define the Faraday tensor Fµν as

Fµν ≡ 2∇[µAν], (2.11)
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where Aµ .
=
(
Φ/c,Ai

)
is the four-vector potential, ∇µ is the covariant derivative with

respect to xµ, Φ is the electrostatic potential, and Ai is the three-vector potential. The

brackets around the indices in (2.11) denote the anti-symmetric part of the tensor over

the enclosed indices. Technically, the Faraday tensor is defined in terms of the covariant

derivative ∇µ, which when operating on an arbitrary four-vector Vν and an arbitrary rank

two tensor Vµν is given by

∇µVν ≡ ∂µVν − Γλ
µνVλ (2.12)

∇µVνλ ≡ ∂µVνλ − Γρ
µνVρλ − Γρ

µλVνρ, (2.13)

where Γλ
µν is the connection.

We can simplify the expression in (2.11) by assuming a metric compatible connection,

or a connection that satisfied the the condition:

∇µgνλ = ∂µgνλ − Γρ
µνgρλ − Γρ

µλgνρ = 0. (2.14)

Since the metric is always symmetric, solving for Γλ
µν yields the Christoffel connection

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (2.15)

which is symmetric in its two lower indices by construction. By choosing this connection,

(2.11) reduces to

Fµν = 2∂[µAν]. (2.16)

At this point, we need to now relate (2.11) to the relativistic version of Maxwell’s

equations. In Cartesian coordinates, the spacetime and spatial components of the Faraday
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tensor in the Lorenz gauge are given by

F0i = −Ei

c
(2.17)

Fij = εijkB
k, (2.18)

where εijk is the 3D Levi-Chevita symbol and Bi ≡ εijk∂jAk. While (2.17) is invariant

under curvilinear transformations, (2.18) is not, since the Levi-Chevita symbol is not a

tensor. Hence, by the Principle of General Covariance (PGC) we must find the tensor

analogue to εijk. Luckily this is easily done by noting that εijk transforms as a tensor

density.

Following Carroll’s procedure (Carroll, 1997) for constructing the Levi-Chevita tensor

for the 3D case, the 3D Levi-Chevita tensors (in its raised and lowered forms) is given by

ϵijk ≡
√

|g|εijk (2.19)

ϵijk ≡ 1√
|g|
εijk, (2.20)

where g≡̇det (gµν). For curvilinear transformations,
√
|g| = h1h2h3, with the hi’s defined

as the corresponding curvilinear scale-factors. With Levi-Chevita tensor now defined, the

last thing to do is to upgrade (2.18) and the definition of the magnetic field to

Fij = ϵijkB
k (2.21)

Bk ≡ ϵijk∂jAk. (2.22)

The covariant forms of Maxwell’s equations are given by

∇νF
µν = µ0J

µ (2.23)

∇[µFνλ] = 0, (2.24)

such that µ0 is the magnetic permeability in a vacuum, Jµ .
=
(
ρc, J i

)
is the four-vector
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current density, ρ is the lab-frame volumetric charge density, and J i is the 3-vector current

density. Utilizing (2.21) and (2.22) to unpack the µ = 0 component of (2.23) yields

µ0ρc = ∂νF
0ν + Γ0

νλF
λν + Γν

νλF
0λ

=
1

c
∂iE

i +
1

c
√
|g|
∂i

(√
|g|
)
Ei,

which only occurs for a time-independent metric. Combining both terms on the RHS using

the product rule gives us the final result

1√
|g|
∂i

(√
|g|gijEj

)
=

ρ

ε0
, (2.25)

where ε0 as the vacuum permittivity. Note that the left-hand-side (LHS) of (2.25) is just

the curvilinear form of the divergence in a coordinate basis, which only differs from its

orthonormal analogue by its corresponding scale-factor (e.g. in spherical coordinates eϕ =

r sin(θ)ϕ̂). Thus, (2.25) is just the differential form of Gauss’s law. The inverse metric

is introduced simply to reproduce the same format of the divergence as found in most of

physics literature. Following a similar procedure, the µ = i component yields

ϵijk∂jBk = µ0J
i + µ0ε0∂tE

i, (2.26)

which is exactly the Maxwell-Ampere law.

An equivalent representation of (2.24) is given by

ϵµσνλ∂σFνλ = 0.

Note that the covariant derivative reduces to partial derivatives for the same reason shown

to prove (2.11). The 4D Levi-Chevita tensor ϵµσνλ is analogous to (2.20) with the convention

ϵ0ijk = ϵijk (some authors put a minus sign in from of the 3D version). The µ = 0 component

becomes

1√
|g|
∂i

(√
|g|gijBj

)
= 0, (2.27)
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which is just ∇ ·B = 0. For µ = i we have

0 = ϵi0jk∂0Fjk + ϵij0k∂jF0k + ϵijk0Fk0

= −1

c
ϵijk∂t

(
ϵjklB

l
)
− 2

c
ϵijk∂jEk

= −∂tBi − ϵijk∂jEk.

Therefore, the µ = i component of the Bianchi identity is

ϵijk∂jEk = −∂tBi, (2.28)

or Faraday’s law.

For curvilinear transformations, Maxwell’s equations retain their non-relativistic form.

It is important to note that restricting our transformations in this manner is only appro-

priate when sources of strong gravitational fields are absent. By this we mean that while

we are always free to restrict our transformations in this way, strong gravitational fields

introduce significant spacetime curvature, which would make it disadvantageous to restrict

our transformations in such a way. However, since our intent here is to study relativistic

electrons, which have incredibly small mass, in a local lab-frame environment on Earth, we

can safely restrict our transformations in this manner.

2.2 Lorentz Boosts and Einstein’s Velocity Addition

The last topic to be discussed in this section concerns the transformation laws in special

relativity due to a change of reference frame. Specifically, we will derive the general Lorentz

boost in order to determine the expression for the relative velocity. For the sake of simplicity

we shall consider first a boost only in the x-direction and then generalize to a boost in an

arbitrary direction. From the invariance of the dxµdxµ in (2.1), in Cartesian coordiantes:

−c2dt2 + dx2 + dy2 + dz2 = −c2
(
dt′
)2

+
(
dx′
)2

+
(
dy′
)2

+
(
dz′
)2
.
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At this point, we must ask ourselves what types of transformations we are willing to

consider. A translation (i.e. x′µ = xµ+aµ where aµ is a four-vector of constant magnitude)

clearly leaves the space-time interval invariant, but is not useful to consider for our purposes

since the translation simply vanishes after taking the differential. If we take as an axium

Einstein’s hypothesis of the homogeneity of space-time and the isotropy of space, then

the transformation is linear and is independent of space-time. In this section, we shall

only consider the impact of “boosts” in space-time (differences in measurements due to

relative speed). One may also consider the impact of rotations, but since the ultimate

goal of this section is to determine the form of the relative velocity, boosts are sufficient.

Mathematically, such a transformation can be expressed as

dx′µ = Λµ
νdx

ν , (2.29)

such that Λµ
ν satisfies

ηµν = ηλρΛ
λ
µΛ

ρ
ν , (2.30)

or in vector notation η = ΛTηΛ. Conceptually, what we have just done is reinforce the

PGC.

If we denote the lab frame as K and the boosted frame as K ′, and assume that dx =

vFxdt, where vFx is the instantaneous relative speed between the two frames (where the F

denotes that the velocity is that of the new frame), then (2.29) can be represented as



cdt′

dx′

dy′

dz′


=



Λ0
0 Λ0

1 0 0

Λ1
0 Λ1

1 0 0

0 0 1 0

0 0 0 1





cdt

dx

dy

dz


. (2.31)
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Writing out η00, η11, and η01 in (2.30), we get the following system of equations:

−
(
Λ0

0

)2
+
(
Λ1

0

)2
= −1 (2.32)

−
(
Λ0

1

)2
+
(
Λ1

1

)2
= 1 (2.33)

−
(
Λ0

0

) (
Λ0

1

)
+
(
Λ1

0

) (
Λ1

1

)
= 0. (2.34)

Though (2.32)-(2.34) is an under-determined system of equations, a clever choice of parametriza-

tion, and (2.31), will help us find a solution. Letting Λ0
1 = sinhϕ and Λ1

0 = sinhψ, where

ϕ and ψ are arbitrary functions, and plugging these new expressions into (2.32)-(2.34), we

find that

Λ0
0 =

√
1 + sinh2 ϕ = coshϕ

Λ1
1 =

√
1 + sinh2 ψ = coshψ

ϕ = ψ.

Defining this particular transformation matrix as (Λx)
µ
ν , we now have

(Λx)
µ
ν :=



coshϕ sinhϕ 0 0

sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1


.

Now, after taking the x-equation from (2.31) at the origin, and some algebra, we get the

condition

tanhϕ = −vFx

c
,

or

sinhϕ = −γF vFx

c

coshϕ = γF ,
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where γF is just the Lorentz factor for v → vF . Therefore, the Lorentz boost matrix for a

boost in the x direction from K to K ′ is given by

(Λx)
µ
ν :=



γF −γF vFx/c 0 0

−γF vFx/c γF 0 0

0 0 1 0

0 0 0 1


. (2.35)

Note that plugging (2.35) into (2.31) yields the well known 1D Lorentz transformations:

dt′ = γF

(
dt− vFx

c2
dx
)

(2.36)

dx′ = γF (dx− vFxdt) (2.37)

dy′ = dy (2.38)

dz′ = dz. (2.39)

For (2.36)-(2.39), we can generalize to an arbitrary frame velocity pointing in an arbitrary

direction. In general, we say that dx = vxdt, where vx is the x-component of the particle

velocity. Furthermore, the expressions for time-dilation and relative velocity in this case

can be derived by dividing (2.36) by dt and dividing (2.37) by dt′. Doing so yields

dt′

dt
= γF

(
1− vxvFx

c2

)
(2.40)

v′x =
vx − vFx

1− vxvFx
c2

. (2.41)

As we have just shown, finding the Lorentz boost in one direction, when the two frames

are collinear, is relatively straight forward. However, what we desire is the general boost

for an arbitrary v. The rigorous way to do this involves the application of Lie theory, and

requires a great deal of calculation. Alternatively, we could take the exact same approach

as before, but now we would have a system of 16 equations to solve. Instead, we will make

a rotational argument to get the general form of the Lorentz boost.
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To generalize (2.35), we will effectively take the K ′ frame and rotate it to an arbitrary

orientation relative to the K frame, thereby allowing for the frame velocity to point in

any arbitrary direction. Under such a transformation, the time component should not

transform, while space-time and spatial components will transform like 3-vectors and 3D

dyadic tensors, respectively. Enforcing these transformation properties and ensuring that

the general form reduces to (2.35) guarantees the correct general form. Hence, we will

simply rewrite the components (2.35) in terms 3-vectors and 3D dyadic tensors.

In the 1D case, vFx = vF and vFy = vFz = 0. Consider (Λx)
0
0 for vFy ̸= 0 and

vFz ̸= 0. The Lorentz factor is a scalar under SL transformation. Ergo, we have Λ0
0 = γF .

For (Λx)
i
0 and (Λx)

0
i, we can rewrite these components in 3-vector notation as

Λi
0 = −γF v

i
F

c
(2.42)

Λ0
i = −γF vFi

c
. (2.43)

The tricky part of (2.35) to generalize is (Λx)
i
j . The trick is to decompose this part of the

matrix into 3-covariant pieces, or

(Λx)
i
j :=


1 0 0

0 1 0

0 0 1

+


γF − 1 0 0

0 0 0

0 0 0



=


1 0 0

0 1 0

0 0 1

+
γF − 1

v2F


vFxvFx vFxvFy vFxvFz

vFyvFx vFyvFy vFyvFz

vFzvFx vFzvFy vFzvFz


By inspection, the spatial components are given by

Λi
j = δi j + (γF − 1)

viF vFj

v2F
. (2.44)
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Therefore, the general Lorentz boost is

Λµ
ν :=



γF −γF vFx
c −γF vFy

c −γF vFz
c

−γF vFx
c 1 + (γF − 1)

v2Fx

v2F
(γF − 1)

vFxvFy

v2F
(γF − 1)vFxvFz

v2F

−γF vFy

c (γF − 1)
vFyvFx

v2F
1 + (γF − 1)

v2Fy

v2F
(γF − 1)

vFyvFz

v2F

−γF vFz
c (γF − 1)vFzvFx

v2F
(γF − 1)

vFzvFy

v2F
1 + (γF − 1)

v2Fz

v2F


. (2.45)

Thanks to (2.45), we can now find the general form for the instantaneous relative

velocity (henceforth we shall simply call this the relative velocity) Therefore, the logical

choice would be to boost the four-velocity or

u′µ = Λµ
νu

ν . (2.46)

Note that an equivalent representation of the transformed four-velocity is u′µ := (γ′c, γ′v′n).

Ultimately, we wish to know what v′n is. Unfortunately, we do not know how the Lorentz

factor transforms in this frame yet. However, this information is stored in the time compo-

nent of (2.45). Unpacking the µ = 0 component and using u′0 = γ′c yields

u′0 = Λ0
0u

0 + Λ0
iu

i

γ′c = γγF c− γγF

(
vnvFn

c

)
γ′ = γγF

(
1− vnvFn

c2

)
. (2.47)

Now that we have γ′, taking the µ = i component and dividing by this factor shows that

the relative velocity is

v′i =
u′i

γ′

=
1

γ′

[
−γγF viF + γvi + γ(γF − 1)

1

v2F
(vnvFn) v

i
F

]
=

1

1− vnvFn
c2

[
1

γF
vi − viF +

1

v2F

(
1− 1

γF

)
(vnvFn) v

i
F

]
. (2.48)
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Though the above expression for the relative velocity is correct, the correction to the non-

relativisitic Galilean transformation v′ = v − vF is not obvious from this form. The usual

prescription to remedy this is to utilize the BAC-CAD vector identity, which in index

notation, and Cartesian coordinates, takes the form

εijkεklmvFjv
l
F v

m = (vnvFn) v
i
F − v2F v

i. (2.49)

(2.49) lets us rewrite (2.48) in vector notation as

v′ =
1

1− v·vF
c2

[
v − vF −

(
γF − 1

γF

)
v⊥

]
, (2.50)

where v⊥ ≡ vF × (v × vF ) such that v = v∥ + v⊥.

The form given in (2.50) makes it much easier to see the relativistic corrections to the

Galilean relative velocity. In particular, the denominator is simply a consequence of general

expression for time-dilation

dt′

dt
= γF

(
1− vnvFn

c2

)
. (2.51)

The previous equation is derived by applying the general boost to xµ and taking the µ = 0

component. The only other correction is the v⊥ term, which shall be referred to as the

non-collinear term. Note this disappears when the two frames are collinear. Moreover, for

v ≪ c and vF ≪ c, v′ ≈ v − vF .
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CHAPTER 3

RELATIVISTIC SINGLE-PARTICLE DESCRIPTION OF A PLASMA

3.1 Relativistic Lagrangian of a Charged Particle

In classical mechanics, Hamilton’s principle of least action defines the Lagrangian L

for a single particle as the time derivative of the action S, or

S =

∫ t2

t1

L dt, (3.1)

such that δS = 0, where δS is the so called “variation” of S. Hence, Hamilton’s principle

requires that the action be a scalar. Non-relativistically, time is considered to be absolute

and is therefore invariant, forcing δL = 0. To construct a relativistic analogue to Hamilton’s

principle, we will need to apply the same upgrade method that we did in the previous section.

There are two different ways that we can accomplish this.

The first way would be to construct a fully covariant variational principle, with a

covariant Lagrangian L related to the action S by

S ≡
∫ τ2

τ1

L dτ, (3.2)

where L = L (xµ, uµ) and S is not necessarily S. Note that this Lagrangian does not

preserve the classical Euler-Lagrange equation. The covariant Euler-Lagrange equation can

be derived in the same manner as the classical one, but with xµ and uµ as the parameters

to be varied and δxµ vanishing at the endpoints. Varying (3.2), and utilizing integration by
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parts on the term containing δuµ, we find that

δS =

∫ τ2

τ1

(
∂L
∂xµ

δxµ +
∂L
∂uµ

δ

(
dxµ

dτ

))
dτ

=
∂L
∂uµ

δxµ
∣∣∣∣τ2
τ1

+

∫ τ2

τ1

(
∂L
∂xµ

δxµ − d

dτ

(
∂L
∂uµ

)
δxµ
)
dτ

=

∫ τ2

τ1

(
∂L
∂xµ

− d

dτ

(
∂L
∂uµ

))
δxµ dτ.

Enforcing δS = 0 yields the relativistic Euler-Lagrange equation

∂L
∂xµ

− d

dτ

(
∂L
∂uµ

)
= 0. (3.3)

Alternatively, we could simply make use of the relationship dt = γdτ to upgrade (3.1)

to

S ≡
∫ τ2

τ1

γLR dτ, (3.4)

where LR = LR

(
xi, vi, t

)
is the relativistic analogue to the classical Lagrangian. The

subscript on the Lagrangian is simply a means of distinguishing the Lagrangian in the

v ∼ c regime. Note that the Lagrangian in (3.4) preserves the original Euler-Lagrange

equation. We shall derive both relativistic forms of the Lagrangian.

While (3.4) looks fairly intuitive, the limitations of this form comes from the limited

number of four-vectors we have to construct invariants with. If we wish for LR ≈ L when

v ≪ c, then we should choose our invariants such that the equations of motion reduce to

the equations of motion generated by the non-relativistic Lagrangian for an ionized plasma:

L(x,v, t) =
1

2
mv2 − qΦ+ qv ·A. (3.5)

In other words, we will require that δLR ≈ δL in this limit. To imitate terms of (3.5) for

a relativistic Lagrangian, we will further break up the action in (3.4) into S = SF + SEM ,

where SF is the free-particle contribution and SEM is the electromagnetic contribution.

The Lagrangian is split up in the same manner.
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First, we will consider the free-particle Lagrangian LRF . The kinetic term in (3.5)

suggests that the contraction uµuµ = −c2 provides the correct analogue to v2. To account

for possible coefficients in front, we will pick γLRF = −ac2, where a is an arbitrary constant.

For v ≪ c, δLRF ≈ δ
(
av2/2

)
. Hence, a = m and the free-particle Lagrangian is given by

LRF = −mc2
√

1− v2

c2
. (3.6)

Analyzing the remaining terms in (3.5), the intuitive choice for LREM ’s invariant is uµAµ =

−γΦ+γviAi. Note that this invariant is identical to the last two terms in the non-relativistic

Lagrangian for v ≪ c save for the q out front. Therefore, LREM is just

LREM = −qΦ+ qviAi, (3.7)

which is exactly the same as the classical version. Finally, combining (3.6) and (3.7), the

total relativistic Lagrangian for a single charged particle is then

LR = −mc2
√

1− v2

c2
− qΦ+ qviAi, (3.8)

which produces the same equations of motion as (3.5) when v ≪ c.

Having determined the invariants that describe the correct kinetic and electromagnetic

behavior, they can again be used to determine the form of the covariant Lagrangian, albeit

with a different coefficient on LF . Following the same procedure as the non-covariant

formulation, it can be shown that the covariant version of (3.8) is

L =
1

2
muµuµ + quµAµ. (3.9)

The key difference between the covariant and non-covariant forms of the Lagrangian is the

covariant version is a scalar, while the non-covariant one is only invariant under curvilinear

transformations. As we will see, this choice has a significant effect on the construction of

the relativistic Hamiltonian.



21

3.2 Conjugate Momenta and the Relativistic Hamiltonian

The construction of both relativistic Hamiltonians follows the same procedure as in

classical mechanics, or

HR ≡ Piv
i − LR (3.10)

H ≡ Pµu
µ − L, (3.11)

where Pi are the conjugate momenta corresponding to the non-covariant Hamiltonian HR

and Pµ are the conjugate momenta corresponding to the covariant Hamiltonian H. The

conjugate momenta for each are defined by the term inside the time/proper-time derivative

in their respective Euler-Lagrange equations. These momenta are given by:

Pi ≡
∂LR

∂vi
(3.12)

Pµ ≡ ∂L
∂uµ

. (3.13)

For the time being, we shall assume that scalar and vector potentials are independent of

the particle velocity. Therefore, under this assumption, the conjugate four-momentum is

given by

Pµ = pµ + qAµ, (3.14)

and the non-covariant conjugate momenta are given by

Pi = pi + qAi. (3.15)

Upon inspection of (3.14) and (3.15), we can see that Pi = Pi. Conceptually, this tells us

that the choice to use the non-covariant Lagrangian formulation has effectively confined us

to move along a surface in 8D phase-space, reducing the effective number of dimensions down

to six. Additionally, we shall use Pµ → Pµ to represent the components of the conjugate

momenta for the covariant formulation since the spatial components of the covariant case
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overlap with the conjugate momenta in the non-covariant case.

With all conjugate momenta found, applying the transformations described by (3.10)

and (3.11) yields the following covariant and non-covariant Hamiltonians

H =
gµν

2m

(
PµPν − 2qPµAν + q2AµAν

)
(3.16)

HR = mc2
√

1 +
gij

m2c2
(PiPj − 2qPiAj + q2AiAj) + qΦ, (3.17)

where both Hamiltonians are written in terms of their respective independent variables (i.e.

(xµ, Pµ) for the covariant case and (xi, P i) for the non-covariant case). Note that we can

express (3.17) in the simpler form

HR = E + qΦ, (3.18)

with relativistic energy denoted by E = γmc2. Note that p0c = E and qA0c = qΦ, which

implies that P 0 = HR/c. Therefore the covariant conjugate momentum can be expressed as

Pµ := (HR/c, P
n). Ergo, the covariant formulation implicitly stores the information gained

from the non-covariant approach as components of the covariant approach’s conjugate four-

momentum. This suggests that the non-covariant approach contains the same relativistic

mechanics as the covariant approach, but in a somewhat less organized manner. However,

it should also be noted that (3.18) holds a much closer relationship to the non-relativistic

limit than (3.16). Since a well-defined non-relativistic limit is ideal for numerical studies,

we shall opt to use this form of the Hamiltonian.

Lastly, we now wish to know the equation of motion our particle obeys. In order to

construct a 6D phase space with independent variables (x,p,t), we will not be able to use

Hamilton’s equations the get said equation of motion, since p is not the canonical momen-

tum. However, we can address this complication by utilizing non-canonical Hamiltonian

theory.
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3.3 Non-Canonical Hamiltonian Theory for Single-Particle Motion

The ultimate goal of this section is to derive the equation of motion for a relativistic

charged particle in an electromagnetic field, assuming a velocity independent four-vector

potential. For this section, our derivation of non-canonical equations of motion follows

almost the exact same procedure laid out by Cary (Cary & Brizard, 2009). Additionally,

we will generalize the 3-position xi such that xi → qi, where qi is the generalized position.

We first start with (3.10), which we rewrite in a slightly different form below for con-

venience:

L = Piq̇
i −H, (3.19)

where the dot indicates the total time derivative with respect to the lab-frame time. Sub-

scripts used in previous sections to distinguish between covariant and non-covariant formu-

lations have been suppressed. Let the qi = q(zα, t)i, where zα ≡
(
qi, pi

)
is a 2N dimen-

sional vector containing the new non-canonical position in the first N degrees of freedom,

while the other N degrees of freedom contain the new non-canonical momentum, such that

α = 0, 1, · · · , 2N . The indices β and γ will also use the same range of values as α. All other

Greek indices will retain their original range from 0-3 from special relativity. We will leave

these coordinates arbitrary for the sake of generality for now. Expanding q̇i yields:

q̇i =
∂qi

∂t
+ żα

∂qi

∂zα
. (3.20)

Substitution of (3.20) into (3.10) gives the new transformation equation

L = Λαż
α − H (3.21)

with Λα and H given by:

Λα ≡ Pi
∂qi

∂żα
(3.22)

H ≡ H − Pi
∂qi

∂t
. (3.23)
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Here, Λαż
α represents the symplectic part of the Lagrangian and H the Hamiltonian part.

As mentioned in the previous section, the non-covariant formulation preserves the orig-

inal form of Lagrange’s equations, regardless of coordinate choice. Hence, Lagrange’s equa-

tions in non-canonical coordinates are

d

dt

(
∂L

∂żα

)
=

∂L

∂zα
. (3.24)

Utilizing (3.21), (3.24) can be re-written as

∂Λα

∂t
+
∂Λα

∂zβ
żβ =

∂Λβ

∂zα
− ∂H

∂zα(
∂Λβ

∂zα
− ∂Λα

∂zβ

)
dzβ

dt
=
∂Λα

∂t
+
∂H

∂zα
.

By defining the so called “Lagrange matrix” (or the symplectic form) as

ωαβ ≡ ∂Λβ

∂zα
− ∂Λα

∂zβ
(3.25)

and the so called “Poisson matrix” (or the inverse symplectic form) Παγ such that Παγωγβ =

δαβ (and doing a little algebra), (3.24) simplifies to the general form for Hamilton’s non-

canonical equations of motion:

dzα

dt
= Παβ

[
∂H

∂zβ
+
∂Pi

∂t

∂qi

∂zβ
− ∂Pi

∂zβ
∂qi

∂t

]
. (3.26)

A useful way to check (3.26) is to let zα := (xi, P i), i.e. canonical coordinates. If

the coordinate choice is canonical, then the RHS of (3.26) should simply reduce to usual

Poisson bracket form

dzα

dt
= σαβ

∂H

∂zβ
≡ {zα, H} , (3.27)
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where σαβ is the fundamental symplectic form given by:

σαβ :≡

 0 ηmn

−ηmn 0

 . (3.28)

To check this, we need to introduce some new notation. To make the calculation of ωαβ,

and other 2N dimensional tensors, more intuitive, we define un-primed roman indices to

run from 1 to N and primed indices to run from N + 1 to 2N . For example, consider the

case of N = 3 (which is what we will be assuming most of the time). If i is the index in

question, and i = 1, 2, 3, then this implies that i′ = 4, 5, 6, or i′ = i + 3. For arbitrary N

we can simply relate primed indices to their un-primed counterpart by adding N to the

un-primed index.

A more convenient form of (3.25) for calculating ωαβ is

ωαβ = ηkl

(
∂P k

∂zα
∂ql

∂zβ
− ∂P k

∂zβ
∂ql

∂zα

)
. (3.29)

Note that choosing zα := (xi, P i) yields the following components for ωαβ:

ωij = ωi′j′ = 0 (3.30)

ωi′j = −ωij′ = ηij , (3.31)

or

ωαβ :=

 0 −ηmn

ηmn 0

 . (3.32)

The inverse symplectic form Παβ is simply the inverse of the above expression, which implies

that Παβ = σαβ for canonical coordinates. Moreover, the second and third terms in (3.26)

vanish identically since xi and P i are independent of time given this choice of coordinates.

Hence, (3.26) reduces to (3.27) when zα := (xi, P i).

Now we turn our attention to finding the equation of motion for a charged particle

moving in a velocity independent four-vector potential. Without loss of generality, we shall
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let xi replace qi as the canonical position to avoid confusion with the particle’s charge q.

Letting zα := (xi, pi), where pi is the particle’s momentum, from (3.15) and (3.29) we get

ωij = q

(
∂Aj

∂xi
− ∂Ai

∂xj

)
= qFij (3.33)

ωi′j = −ωij′ = ηij (3.34)

ωi′j′ = 0, (3.35)

or in the matrix representation:

ωαβ :=

qFmn −ηmn

ηmn 0

 .
Therefore, the inverse symplectic form can be represented by

Παβ :=

 0 ηmn

−ηmn qFmn

 . (3.36)

Note that the only difference between (3.36) and σαβ is the i′j′ block. This change is

a direct consequence of the four-vector potential’s influence over the particle’s trajectory

in a non-conservative manner. Mathematically, this influence appears explicitly in (3.15).

However, the velocity independence of the four-vector potential is another reason why Παβ

deviates only slightly from σαβ. A velocity dependent four-vector potential would alter the

i′j and ij′ blocks as well.

Taking the i′ component of (3.26) and substituting in (3.10) and (3.36), the equation

of motion becomes:

dpi

dt
= Πi′β

[
∂H

∂zβ
+ ηkl

∂Ak

∂t

∂xl

∂zβ

]
= −qηij

[
∂Φ

∂xj
+
∂Aj

∂t

]
= q

[
Ei + εijkvjBk

]
. (3.37)
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Defining F i ≡ ṗi, (3.37) simply tells us that our particle follows the trajectory dictated by

the Lorentz force, the same as in non-relativistic mechanics. While this may seem odd at

first, it should be noted special relativity time and time again has been shown to be easily

derived from Maxwell’s equations. The Lorentz force law does have a somewhat hidden

caveat though; Newton’s second law only holds for the rate of change of the momentum.

This is easily seen from the spatial components of the four-momentum, or pi = γmvi. Only

when the particle’s speed is constant will the F i = mai form of Newton’s Second Law hold.

While (3.37) contains almost all of the information we need, one might still wonder

what would happen if instead of studying the non-canonical dynamics of H, what would

happen if we had used H instead? In short, there is very little difference between the two

symplectic forms constructed using H and H, respectively. However, as it will be shown,

the covariant derivation will give us some additional information about our system.

Firstly, we would need to upgrade our number of degrees of freedom in position space

to N = 4, and let Pi → Pµ and q̇i → uµ in (3.19) so that

L = Pµu
µ −H. (3.38)

Following the exact same procedure as before, we would get the following definitions for the

symplectic form and the equation of motion:

ωαβ = ηλρ

(
∂P λ

∂zα
∂qρ

∂zβ
− ∂P λ

∂zβ
∂qρ

∂zα

)
(3.39)

dzα

dτ
= Παβ

[
∂H
∂zβ

+
∂Pµ

∂τ

∂qµ

∂zβ
− ∂Pµ

∂zβ
∂qµ

∂τ

]
, (3.40)

where Παβ is the inverse of the ωαβ defined by (3.39). Letting zα := (xµ, pµ) and taking

the µ′ component of (3.40), Παβ becomes

Παβ :=

 0 ηλρ

−ηλρ qF λρ

 (3.41)
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and, after some algebra, the equation of motion reduces to

dpµ

dτ
=

q

m
Fµνpν . (3.42)

Note that the i component of (3.42) can be written as the following:

dpi

dτ
=

q

m

[
F i0p0 + F ijpj

]
=

q

m

[(
−E

i

c

)
(−γmc) +

(
εijkBk

)
(γmvj)

]
= qγ

[
Ei + εijkvjBk

]
.

Dividing the above expression by γ, and utilizing (2.4), the above expression is equivalent

to (3.37). Therefore, the spatial components do not carry any new information. The µ = 0

equation can be expressed, after some manipulation, as

dE
dt

= qEivi. (3.43)

Hence, the time compoenent gives us the condition for rate of change for the particle’s

kinetic energy, since the rest energy is a constant. Conceptually, this translates into the old

adage: the magnetic field does no work. The only field capable of changing the particle’s

kinetic energy is the electric field. In other words, if the particle’s velocity is perpendicular

to the electric field, or if there is no electric field, then particle’s velocity will remain constant

and simply undergo circular motion about the magnetic field. This concept is consistent

with non-relativistic dynamics of charged particles in electromagnetic fields.

While the condition for constant velocity, in the case of purely circular motion, may

seem like new information, this information can also be obtained by simply contracting
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both sides of (3.37) with pi, which becomes:

pi
dpi

dt
= qEipi

1

2γm

d

dt

(
p2
)
= qEivi.

Note that

dE
dt

=
1

2γm

d

dt

(
p2
)

gives us back (3.43). Therefore, both the non-covariant and covariant Hamiltonians pro-

duced the exact same information. The covariant formulation simply produces this infor-

mation in a neat and compact format.



CHAPTER 4

RELATIVISTIC KINETIC THEORY AND THERMODYNAMICS

In this chapter, we will initially be following along closely with Cercignani and Kremer’s

derivation of the relativistic Boltzmann equation, equilibrium distribution, and relativistic

first law of thermodynamics (Cercignani & Kremer, 2002). However, we deviate slightly in

regards to notation and definitions for various fluid tensors.

4.1 Relativistic Boltzmann Equation

For the purpose of deriving the relativistic Boltzmann equation, we will first need to

make the following assumptions:

1. Only binary collisions are considered. Since tokamak plasmas are dilute, this is a

reasonable assumption.

2. Both particles are completely uncorrelated prior to the collision. This is the molecular

chaos assumption.

3. We assume that the single-particle distribution function does not change much over a

time-interval larger than the interaction time for a single collision. Additionally, this

time-interval must be shorter than the time between collisions. This assumption also

applies to the change in fa over distances on the order of the interaction range.

4. We will work in 12D phase-space with independent variables (xi1, p
i
1, x

i
2, p

i
2, t), where

t is the lab-frame time shared by both particles. However, the final equation will be

in terms of fa as the xi2 and pi2 dependence will be integrated out due to collisions.

Hence, we will ultimately only need to consider species a’s 6D phase space over the

independent variables (xi1, p
i
1, t).

The previous numbering system will be used to reference these assumptions through the

derivation.
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We begin by defining the phase space we will be working in by the same phase space

volume element as is done non-relativistically, d3x1d
3p1. Note that for the purpose of this

thesis, volume elements will implicitly store their corresponding scale factors as shown below

d3x′1 =
√

|g|dx11dx21dx31 (4.1)

d3p′1 =
√

|gp|dp11dp21dp31, (4.2)

where gp is the determinant of the the momentum space metric. Note that while, individ-

ually, d3x1 and d3p1 are not Lorentz invariant, the product of the two is.

To show this, we first consider the transformation to an arbitrary frame F moving at

speed vFx along the x-axis. Note that (2.36)-(2.39) also hold in their non-differential forms.

Consider a thin rod placed parallel to the x-axis with endpoints defined by x1a and x1b

(Cercignani & Kremer, 2002). These endpoints as measured in F are then given by

x′1a = γF (x1a − vFxt) (4.3)

x′1b = γF (x1b − vFxt) . (4.4)

Subtracting (4.4) from (4.3) we find that ∆x′1 = γF∆x1, which is just the 1D concept of

length contraction. Doing the same for the y and z direction, we find that the volume

transforms as:

∆x′1∆y
′
1∆z

′
1 = γF∆x1∆y1∆z1. (4.5)

Taking the infinitesimal limit thus gives us

d3x′1 = γFd
3x1. (4.6)

Now we turn our attention to d3p1. Fortunately, we can find d3p′1 using a somewhat

more straightforward method. In Cercignani & Kremer, 2002 it is proven that for any four-

vector V µ such that V µVµ is a constant, the corresponding 3D volume element d3A′ in a
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Lorentz boosted frame F is related to the lab frame volume element by

d3A′

A0′ =
d3A

A0
. (4.7)

Moreover, (4.7) shows that the volume elements corresponding to four-vectors of this type

can be made into ”proper volumes” by simple dividing them by the time component of said

four-vector. Therefore, we can find the boost momentum space volume element by simply

finding the ration of p0′/p0. Boosting the four-momentum in the same manner as we did

for d3x1, and taking a ratio of the new and old time components, we find that

p0′

p0
=

1

γF
. (4.8)

Using (4.8), (4.7), and (4.6), we find that

d3x′1d
3p′1 = d3x1d

3p1. (4.9)

Note that (4.9) is invariant under reorientation of the frame velocity and curvilinear trans-

formations. Therefore, our phase-space volume area is Lorentz invariant in any curvilinear

coordinates and orientation of the frame velocity.

Now that we have properly defined the nature of our phase-space, we can define the

single-particle distribution function fa for species a by

fa ≡ dNa

d3x1d3p1
. (4.10)

Species b’s distribution function and four-position are defined in the same manner with

subscripts of 1 → 2. Note that (4.10) implies by construction that the distribution function

is Lorentz invariant since both the number of particles and the phase-space volume element

are Lorentz invariant.

At a time t+∆t, measured in the lab-frame, fa(x
i
1, p

i
1, t) → fa(x

i
1+v

i
1∆t, p

i
1+F

i
a∆t, t+



33

∆t). The change in the number of particles in the volume element d3x1d
3p1 in the time-

interval ∆t is then

∆dNa = fa(x
i
1 + vi1∆t, p

i
1 + F i

1∆t, t+∆t)dΓ1(t+∆t)− fa(x
i
1, p

i
1, t)dΓ1(t) (4.11)

with dΓ1 ≡ d3x1d
3p1.

Note that the relationship between dΓ1(t+∆t) and dΓ1(t) is given by

dΓ1(t+∆t) = |J1|dΓ1(t), (4.12)

where J is the Jacobian of transformation at time t+∆t given by

J1 =
∂Zα

1

∂zβ1
(4.13)

such that Zα
1 := (xi1(t+∆t), pi1(t+∆t)) and zα1 := (xi1(t), p

i
1(t)). Assumption 3 is used here

by keeping terms in (4.13) only up to order one in ∆t, or

J1 ≈ 1 +
∂F i

1

∂pi1
+O

(
∆t2

)
. (4.14)

While not explicitly shown here, ∆t2 is a factor in every term in the O
(
∆t2

)
part of (4.14).

This fact will become important later. Taylor expanding fa(x
i
1 + vi1∆t, p

i
1 + F i

1∆t, t +∆t)

about ∆t = 0 and keeping only terms of order ∆t, (4.11) simplifies to

∆dNa ≈
[
∂fa
∂t

+ vi1
∂fa
∂xi1

+ F i
1

∂fa
∂pi1

+
∂F i

1

∂pi1
fa

]
d3x1d

3p1∆t+O
(
∆t2

)
=

[
∂fa
∂t

+ vi1
∂fa
∂xi1

+
∂

∂pi1

(
faF

i
1

)]
d3x1d

3p1∆t+O
(
∆t2

)
. (4.15)

The remainder of this derivation will focus on determining the form of the LHS of (4.15)

by calculating the number of particles entering and leaving the volume element d3x′1d
3p′1 in

the time interval ∆t′ or

∆dNa = dN+
a − dN−

a , (4.16)
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where dN+
a is the number of particles entering the volume element and dN−

a is the number

of particles leaving the volume element. These two terms are often referred to as the gain

and loss terms, respectively.

Consider a collision between two beams of particles that travel as speeds v′1 and v′2,

where the primes denote that the velocities are evaluated after the collision. In their own

respective reference frames, the number of particles entering d3x′1d
3p′1 can be expressed as

dN+
a =

∑
b

[∫
f
′(2)
ab d3x′Rcd

3p′R2

]
d3x′1d

3p′1, (4.17)

where f
′(2)
ab is the two-particle distribution function for species a and b before the collision.

Note that the integration done in the bracketed term in (4.17) results in the fraction of

the single particle distribution for species a that interacts with species b inside the collision

cylinder d3x′Rc ≡ v′12∆t
′
2dσ

′
2, where v

′
12 is the relative velocity between particle one and

two and dσ′2 is the differential cross-section prior to the collision in particle two’s reference

frame. This term is then summed over all potential species that can interact with species a.

It is important to remember that the collisional cylinder volume in (4.17) is, by necessity,

calculated in the second particle’s reference frame, indicated by the subscript R. It is crucial

that the term in brackets is calculated in particle two’s rest frame so that (4.17) is Lorentz

invariant. Unpacking (4.17), and utilizing the molecular chaos assumption f
′(2)
ab ≡ f ′af

′
b, we

find that

dN+
a =

∑
b

[∫
f ′af

′
bv

′
12∆t

′
2dσ

′
2d

3p′R2

]
d3x′1d

3p′1. (4.18)

Now that we have determined the number of particles entering the volume element

d3x′1d
3p′1, determining the number leaving it can be done in exactly the same manner,

except that parameters shall be evaluated after the collision (e.g. f ′a → fa). Therefore, the

number of particles leaving this volume element is given by

dN−
a =

∑
b

[∫
fafbv12∆t2dσ2d

3pR2

]
d3x1d

3p1. (4.19)
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Liouville’s theorem tells us that the volume element in phase-space is the same before and

after the collision, which implies that

v12∆t2dσ2d
3pR2d

3x1d
3p1 = v′12∆t

′
2dσ

′
2d

3p′R2d
3x′1d

3p′1. (4.20)

Therefore enforcing Liouville’s theorem and plugging (4.18) and (4.19) into (4.16), (4.15)

can now be written as

∂fa
∂t

+ vi1
∂fa
∂xi1

+
∂

∂pi1

(
faF

i
a

)
+O (∆t) =

∑
b

∫ (
f ′af

′
b − fafb

)
v12

∆t2
∆t

dσ2d
3pR2, (4.21)

where the order in the error term was reduced by one due a division of ∆t on both sides

and d3x1d
3p1 has also been divided out on every term. Since ∆t represents an arbitrary

time-interval, we can reduce the error term to zero by taking the limit of both sides of

the equation as ∆t → 0, and utilizing (2.51). Doing so to (4.21) gives us the “relativistic

Boltzmann equation” or:

∂fa
∂t

+ vi1
∂fa
∂xi1

+
∂

∂pi1

(
faF

i
a

)
=
∑
b

∫ (
f ′af

′
b − fafb

)(
1− vk1v2k

c2

)
v12dσ2d

3p2. (4.22)

4.2 The Maxwell-Jüttner Distribution and First Law of Thermodynamics

Since we are interested in solving for the RE distribution numerically, we will ultimately

need a useful analytic initial condition for the distribution function. Moreover, we would like

our initial condition to be the distribution when the plasma is in equilibrium, i.e. before the

electrons have undergone significant acceleration. In non-relativistic plasma kinetic theory,

the Maxwell-Boltzmann (MB) distribution is this distribution. Ergo, the purpose of this

section is to derive the relativistic analogue to the MB distribution, as well as define new

relativistic analogues to fluid variables and the first law of thermodynamics (FLOT).

First, we must establish the condition by which we define the equilibrium distribution.

The condition for equilibrium is conceptually the same as the non-relativistic case: entropy

production must vanish. To do this, it is convenient to first write (4.22) in the covariant
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form:

pµ1
∂fa
∂xµ1

+ma
∂

∂pµ1
(faK

µ
a ) =

∑
b

∫ (
f ′af

′
b − fafb

)
p12dσ2

d3p2
γ2

, (4.23)

where p12 ≡ γ12mav12 is the relative momentum between the first and second particle and

Kµ
a is the Minkowski four-force for species a defined in (2.7). Additionally, we shall assume

that ∂Kµ
a /∂p

µ
1 = 0, which is true for the case of the Lorentz force and, trivially, equilibrium.

To determine a form for the entropy production term, we define the entropy four-flow

as

Sµ
a ≡ −k

∫
uµ1 ln

(
fah

3
)
fa

d3p1
γ1

, (4.24)

where h and k are the Planck and Boltzmann constants, respectively. Consider an arbitrary

function ψ1(x
µ
1 , p

µ
1 ). Multiplying both sides of (4.23) by ψ and integrating over d3p1/γ1, and

following the procedure in (Cercignani & Kremer, 2002), we can write a general equation

of transfer given by

∂

∂xµ1

∫
ψ1p

µ
1fa

d3p1
γ1

−
∫ [

pµ1
∂ψ1

∂xµ1
+maK

µ
a

∂ψ1

∂pµ1

]
fa

d3p1
γ1

= P, (4.25)

such that

P ≡ 1

4

∫ (
ψ1 + ψ2 − ψ′

1 − ψ′
2

) (
f ′af

′
b − fafb

)
p12dσ2

d3p1
γ1

d3p2
γ2

, (4.26)

where P is the production term for the quantity ψ. Thus, to find the entropy production

term, we let ψ1 = −k ln
(
fah

3
)
and ψ2 = −k ln

(
fbh

3
)
. Substituting this definition of ψ into

(4.25), yields the final expression we need:

∂Sµ
a

∂xµ1
= ζ, (4.27)

with the entropy production ζ given by

ζ ≡ 1

4
k

∫
fafb ln

(
f ′af

′
b

fafb

)(
f ′af

′
b

fafb
− 1

)
p12dσ2

d3p1
γ1

d3p2
γ2

. (4.28)

Finally, we can begin determining the relativistic analogue to the MB distribution.
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Upon inspection of (4.28), the condition by which entropy production is minimized is given

by f ′af
′
b = fafb. Note that under the molecular chaos assumption, where the two-particle

distribution function for species a and b is given by f
(2)
ab = fafb, this is equivalent to requiring

that the two-particle distribution remain unchanged. This condition can also be written in

the following form:

ln
(
fah

3
)
+ ln

(
fbh

3
)
= ln

(
f ′ah

3
)
+ ln

(
f ′bh

3
)
. (4.29)

The form in (4.29) is what is known as a summational invariant form. In Cercignani &

Kremer, 2002, it is proven that for any generalized function or distribution ψ (pµ), ψ is a

summational invariant if and only if it takes the form

ψ (pµ) = A+Bµpµ, (4.30)

such that A is an arbitrary scalar and Bµ is an arbitrary four-vector that is independent of

pµ. Therefore, ln
(
fah

3
)
must have the form given in (4.30). Exponentiation of both sides

of this expression yields

fa = NMe
Bµpµ , (4.31)

where NM is a constant Lorentz scalar that has absorbed all other constant coefficients.

Our task is now to determine the normalization constant NM and the four-vector Bµ.

We do so by first defining the following moments of the distribution function

na =

∫
fad

3p1 (4.32)

nRaU
µ
a =

∫
uµ1fa

d3p1
γ1

(4.33)

Tµν
a = ma

∫
uµ1u

ν
1fa

d3p1
γ1

, (4.34)

where na is the lab-frame number density, nRa is the fluid-frame density, Uµ
a is the four-flow,

and Tµν
a is the stress-energy tensor for species a. Note that the relationship between the
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lab-frame density and the fluid-frame density can be found by utilizing the invariance of

Uµ
a Uaµ. Doing so yields the relationship:

n = γV nR. (4.35)

The factor γV is simply the Lorentz factor such that v → V, where V is the flow velocity.

As previous mentioned, to complete our relativistic equilibrium description, we will also

need to develop a relativistic analogue to the FLOT. It is important to note that the FLOT

is defined in terms of the scalar pressure, which is a contraction of the pressure tensor,

not the stress-energy tensor. Hence, we will need to rigorously define what we mean by

relativistic pressure.

The pressure tensor, as in non-relativistic theory, is defined as the part of the stress-

energy tensor (stress tensor non-relativistically) that is orthogonal to the flow. Consider

the following projection operator

∆µ
ν ≡ δµν +

1

c2
Uµ
a U

ν
a , (4.36)

with the properties:

∆µ
λ∆

λ
ν = ∆µ

ν (4.37)

∆µ
µ = 3 (4.38)

∆µ
νU

ν
a = 0. (4.39)

In the fluid-frame, (4.36) is completely diagonal with components ∆0
0 = 0 and ∆i

j = δij .

The operator ∆µ
ν projects a given four-vector in a direction orthogonal to the four-flow.

Therefore, applying (4.36) to both indices of (4.34), or Pµν
a ≡ ∆µ

α∆ν
βT

αβ
a (de Groot et al.,

1980), the pressure tensor can be written as

Pµν
a = ma

∫
(uµ1 − γRU

µ
a ) (u

ν
1 − γRU

ν
a ) fa

d3p1
γ1

. (4.40)
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In (4.40), only spatial components along the diagonal exist in the rest frame, hence we

define the scalar pressure in the same way as is done non-relativistically, or psa ≡ Pµ
aµ/3.

Therefore, after a fair amount of simplification, the scalar pressure is

psa =
1

3

∫
p2Rfa

d3p1
γ1

, (4.41)

where pR is the relative momentum in the fluid-frame. Note that in the non-relativistic

limit, the spatial components of (4.40) and the scalar pressure become

P ij
a ≈ ma

∫
viRv

j
Rfad

3p1 (4.42)

psa ≈ 1

3
ma

∫
v2Rfad

3p1 (4.43)

where viR ≈ vi1−V i
a . Equations (4.42) and (4.43) are exactly the non-relativistic versions of

the pressure tensor and scalar pressure. We have shown this non-relativistic limit to make

a conceptual point. A common misconception regarding the pressure is that it is defined

in terms of the relative velocity in the fluid-frame, and therefore in terms of the relative

kinetic energy. As can be seen from (4.40), this is not the case. Hence the form in (4.42)

and (4.43) are simply the result of a low-velocity projection operator and the scalar pressure

is actually defined in terms of the relative momentum in the fluid frame.

Now that we have properly defined our fluid moments, we can begin to solve for our

under-determined parameter/four-vector. Letting Bµ
R = (z/mac, 0), where z is an arbitrary

scalar, and utilizing (4.32) and (4.33), it can be shown that

NM =
nRaz

4π(mac)3K2(z)
(4.44)

Bµ
a =

(
z

mac2

)
Uµ
a , (4.45)

where K2(z) is a Bessel function of the second kind. Our final task will be to determine the

expression for the scalar z. By defining the relativistic FLOT, we can pin down this last
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constraint. Defining the entropy per particle and energy density in the fluid-frame by

sa ≡ 1

nRac
Sµ
aUaµ (4.46)

nRaεRa =
1

ma

∫ (
p0R
)2
fa

d3p1
γ1

(4.47)

and using (4.31) and (4.41), we can write the following relationship between the entropy,

pressure, and energy per particle in the fluid-frame in equilibrium as

dsEa =
kz

mac2

(
dεERa +

1

Na
pEsadVR

)
, (4.48)

Note that the subscript of E denotes that the parameter in question is measured in equilib-

rium. Moreover, (4.48) reduces exactly to the non-relativistic FLOT, save for the coefficient

outside the parentheses. Therefore, to enforce the contraint that our new FLOT reduces to

the non-relativistic regime, our parameter z must be

za =
mac

2

kTEa
, (4.49)

where TEa is the species temperature in equilibrium. Substituting (5.1), (4.45), and (4.44)

back into the (4.31), and unpacking the contraction in the exponent, gives us the final

expression

fMJ
a =

nERa

4πm2
ackTEaK2(mac2/kTEa)

e−γRmac2/kTEa ., (4.50)

which is exactly the Maxwell-Jüttner (MJ) distribution (Jüttner, 1911). Note that the MJ

distribution is in fact a Lorentz scalar as implied by the Lorentz invariance of (4.10).

When working with the MJ distribution, it is often more useful to define it using a

normalized momentum s1 ≡ p1/mac (not to be confused with the entropy per particle) and

normalized ”flow-momentum” defined by sV a ≡ γV Va/c, where Va is the magnitude of the

three-flow for species a. Additionally, the temperature dependence will be written in terms

of za instead. Using this notation and defining the MJ distribution instead over normalized
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momentum space, (4.50) becomes

fMJ
a (s1) ≡

nERaza
4πK2(za)

e−zaγR , (4.51)

where γR = γ1γV − s1 · sV . The MJ distribution over normalized momentum space is both

useful numerically and allows one to see the non-relativistic limit more clearly. Note that

by substitution of (4.51) into (4.41), and switching to normalized fluid-frame momentum

space coordinates, it can be show that

pEsa = nERakTEa, (4.52)

which is analogous to the non-relativistic ideal-gas law. We can use the form of (4.52) to

extend our definition of temperature outside of equilibrium to

nRakTa ≡ 1

3

∫
p2Rfa

d3p1
γ1

, (4.53)

where we keep the integration and distribution over un-normalized momentum for consis-

tency with other fluid moment definitions.

Unlike most of the non-relativistic limits we have taken thus far, simply taking a low

velocity limit will not suffice to reproduce the MB distribution. In order for (4.51) to reduce

to the MB distribution, we must also take a high za limit, or limit in which the thermal

energy is much smaller than the rest energy for the species. Note that K2(za) can be

approximated as

K2(za) ≈
√

π

2za

(
1 +

15

8za
+O

(
z−2
a

))
(4.54)

in the high za limit (Hazeltine & Waelbroeck, 2018). Additionally, since the MB distribution

is generally defined over velocity space, which is only a factor of mass different from the

momentum non-relativistically, we must divide (4.51) by a factor of c3 in order to put the

distribution over the appropriate space. Doing so and taking the high za limit to first order
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and the low velocity limit to second order, (4.51) reduces to

fMJ
a (v1) ≈

na

π3/2v3Ta

e−v2R/v2Ta , (4.55)

where the thermal velocity vTa is defined as the most probable velocity or

vTa ≡
√

2kTa
ma

. (4.56)

Equation (4.55) is exactly the MB distribution.

4.3 The Beliaev-Budker Operator

While the relativistic Boltzmann collision operator is completely general for two particle

collisions, it should be noted that the form of the integrand is intractable numerically. This

is an issue for the non-relativistic Boltzmann operator as well, as it relates to the quantity

f ′af
′
b in (4.22). The non-relativistic work around is to instead use an approximate form of

the Boltzmann collision operator: the Landau collision operator (Ter Haar, 2013).

The Landau collision operator is given by

C(fa, fb) ≡
q2aq

2
b ln Λab

8πϵ20

∂

∂pi1

∫
U ij

(
fb
∂fa

∂pj1
− fa

∂fb

∂pj2

)
d3p2, (4.57)

where the kernel U ij is given by

U ij ≡ v212η
ij − vi12v

j
12

v312
(4.58)

and ln(Λab) = ln(λD/ρ0) such that λD is the Debye length and the distance of closest

approach ρ0 is given by

ρ0 ≡
qaqb

4πϵ0mabv
2
12

. (4.59)

Here mab is the reduced mass between species a and b. We will not show the derivation of

this operator here as we are concerned only with the relativistic variant. However, drawing
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parallels between the assumptions of the Landau operator and the relativistic analogue will

be invaluable. Equation (4.57) is derived from the following assumptions:

• The change in momentum due to a single, binary collision is small. The quantity f ′af
′
b

is Taylor expanded to second order in ∆p1 and ∆p2.

• The differential cross-section is determined by Rutherford scattering (i.e. Coulomb

interaction), where we take the maximum distance for the interaction of both particles

to be λD. Beyond this distance interactions are screened perfectly. This is often called

cut-off Coulomb interaction.

• The Coulomb logarithm is large, or lnΛab ≫ 1, and is independent of either particle’s

momentum. This is the case when there are a large number of charged particles

participating in the screening process.

In relativistic kinetic theory, Beliaev and Budker’s work is the main source for the

so called ”relativistic Landau operator”(Beliaev & Budker, 1956). The so called Beliaev-

Budker collision operator is used as the basis for the vast majority of relativistic kinetic

plasma physics related to runaway electrons in ITER-like tokamaks (Guo et al., 2017;

Sandquist et al., 2006; Boozer, 2015; Papp et al., 2011; Stahl et al., 2017). The Beliaev-

Budker Operator takes the exact same form as (4.57) with the exception of the kernel U ij ,

which is now given by

U ij ≡ γ12

γ1γ2c
(
γ212 − 1

)3/2
(γ212 − 1

)
ηij − γ21

c2
vi1v

j
1 −

γ22
c2
vi2v

j
2 +

γ212
c2

vi1vj2 + vi2v
j
1

1− vk1v2k
c2

 .
(4.60)

Note that (4.60) does reduce to (4.58) for v1 ≪ c and v2 ≪ c. However, there is a fair

amount of ambiguity surrounding this operator.

The Beliaev-Budker (BB) operator is not derived from (4.22). Rather, it is derived in

8D phase-space following the same procedure given in Landau’s original derivation, but with

all three dimensional parameters upgraded to their 4D versions (Beliaev & Budker, 1956;

Ter Haar, 2013). In their derivation, ∆pµ1 and ∆pµ2 are considered to be small, which is
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analogous to the assumptions of the Landau operator. It is also assumed that the Coulomb

logarithm can be pulled out of the collision integral. Often this is done in non-relativistic

mechanics by roughly approximating the kinetic energy due to random motion in a single

collision as equal to the thermal energy. It should also be noted that this is a very rough

approximation. Additionally, Beliaev and Budker never give an analogous approximation.

We are then left to arbitrarily assume that this approximation has been made. Moreover,

we are also left to assume that relativistic corrections to the Debye length and distance of

closest approach have been made and that the largeness of the Coulomb logarithm holds.

Lastly, there is no obvious connection between the BB operator and (4.22). With all of

these factors taken into consideration, it is the view of this thesis to treat the utilization of

the BB operator as simply a replication study with the goal of reproducing the work of the

linearized version of the BB operator and the full version of the operator in the NIMROD

code. Specifically, our goal ultimately is to reproduce the work of Stahl (Stahl et al., 2017).



CHAPTER 5

TEST PARTICLE OPERATOR IN NIMROD

5.1 The Sandquist and Papp Operators

As mentioned at the end of the previous chapter, we first wish to implement in the

NIMROD code a linear version of the BB operator. We do so as a means of simplifying

the initial relativistic kinetic equation in NIMROD, as well as to test initial benchmarks

for verifying simplified relativistic mechanics. This can be done my making the following

assumptions. We begin by Taylor expanding the kernel in (4.60) about v2 = 0 to second

order, or

U ij ≈ U ij
∣∣
vb=0

+ vl2

[
∂U ij

∂vl2

∣∣∣∣
vb=0

]
+

1

2
vk2v

l
2

[
∂

∂vk2

(
∂U ij

∂vl2

)∣∣∣∣
vb=0

]
, (5.1)

and assuming that the background is the non-relativistic Maxwell-Boltzmann distribution,

with Vb = 0, in velocity-space

fMb =
nb

π3/2v3Tb

e
−
v22
v2Tb . (5.2)

Here vTb ≡ 2kTb/mb is the bulk/thermal velocity for species b (Sandquist et al., 2006). Note

that what we have just forced the background to be static and isotropic. This will have

physical consequences later, namely, the background has in effect, infinite inertia and heat

capacity compared to the relativistic, test-particle species.

Calculating each term in (5.1) is incredibly tedious. However, by exploiting the isotropy

of fb, we can greatly simplify the steps we need to get our approximate U ij . First we define
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the two integrals in (4.57) by the following:

I1 ≡
∫
U ijfMb

∂fa

∂pj1
d3v2 (5.3)

I2 ≡
∫
U ijfa

∂fMb
∂pj2

d3v2. (5.4)

Note that due to the isotropy of fb, the first order term in (5.1) does not contribute to (5.3),

while only the first order term contributes to (5.4). Simplifying I1 we find that

I1 = U ij
∣∣
v2=0

∫
fMb d3v2 +

1

2

[
∂

∂vk2

(
∂U ij

∂vl2

)∣∣∣∣
v2=0

]∫
vk2v

l
2f

M
b d3v2

= nb U
ij
∣∣
v2=0

+
1

4
nbv

2
Tb

[
∂

∂v2k

(
∂U ij

∂vk2

)∣∣∣∣
v2=0

]
(5.5)

and I2 simplifies to

I2 =

[
∂U ij

∂vl2

∣∣∣∣
v2=0

]
ηjn

∫
vl2v

n
2 f

M
b d3v2

= − nb
mb

[
∂U ij

∂vj2

∣∣∣∣∣
v2=0

]
. (5.6)

Our goal now is to find the derivatives of U ij denoted in brackets in (5.5) and (5.6).

Firstly, the zeroth order term intuitively is just

U ij
∣∣
vb=0

=
v21η

ij − vi1v
j
1

v31
, (5.7)

which takes the exact same form as the non-relativistic kernel. The fact that (5.7) retains

the non-relativistic form is due to the form of the relative velocity when the boosted frame

is stationary. In this case, v12 → v1 as v2 → 0. The other two terms, after a significant
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amount of simplification, become

∂U ij

∂vj2

∣∣∣∣∣
vb=0

=
2vi1
v31

(5.8)

∂

∂v2k

(
∂U ij

∂vk2

)∣∣∣∣
vb=0

=
4

v51
vi1v

j
1 −

2

v21

(
1− v41

c4

)(
v21η

ij − vi1v
j
1

v31

)
. (5.9)

Using (5.7), (5.8), and (5.9), the following integrals may be found in advance to help simplify

(4.57):

∫
U ijfMb d3v2 ≈ nb

[(
1− v2Tb

2v21

(
1− v41

c4

))(
v21η

ij − vi1v
j
1

v31

)
+
v2Tb

v51
vi1v

j
1

]
(5.10)

∂

∂pi1

(∫
U ijfMb d3v2

)
≈ − 2nb

γamac2

[
1

p1

(
1− v2Tb

c2

)
+

(mac)
2

p31

(
1− 3v2Tb

2c2

)]
pj1 (5.11)∫

U ij ∂f
M
b

∂pj2
d3v2 ≈ −2nbγ

2
am

2
a

mb

(
pi1
p31

)
(5.12)

∂

∂pi1

(∫
U ij ∂f

M
b

∂pj2
d3v2

)
≈ − 4nb

mbc2p1
. (5.13)

Equation (4.57) can be written in the form

C(fa, fb) =
Γab

2nb

[
∂

∂pi1

(∫
U ijfMb d3v2

)
∂fa

∂pj1
+

(∫
U ijfMb d3v2

)
∂

∂pi1

(
∂fa

∂pj1

)

−
(∫

U ij ∂f
M
b

∂pj2
d3v2

)
∂fa
∂pi1

− ∂

∂pi1

(∫
U ij ∂f

M
b

∂pj2
d3v2

)
fa

]
, (5.14)

where Γab is defined by

Γab ≡
nbq

2
aq

2
b ln Λab

4πϵ20
. (5.15)

By substituting (5.10)-(5.13) into (5.14), switching to spherical coordinates (p1, θ, ζ), and

assuming there is no ζ (gyroangle) dependence, the Sandquist operator can then be shown

to be

C(fa, fb) ≈ Γab

[
1

p2
∂

∂p

(
p2
(
A(p)

∂fa
∂p

+ F (p)fa

))
+
B(p)

p2
L(fa)

]
, (5.16)
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where the Lorentz operator L(fa) is given by

L(fa) ≡
∂

∂ξ

(
(1− ξ2)

∂fa
∂ξ

)
(5.17)

where ξ ≡ cos(θ). The subscript for the momentum is dropped to simplify notation. The

coefficients A(p), F (p), and B(p) in (5.16) are given by

A(p) =
v2Tb

2v3
(5.18)

F (p) =
v

kTb
A(p) (5.19)

B(p) =
1

v

(
1− v2Tb

2v2

(
1−

(v
c

)4))
. (5.20)

Unfortunately, the expansion in (5.1) only converges for ultra-relativistic test-particles.

Since we wish to simulate the evolution of the RE distribution, limiting the domain of the

momentum is not ideal. To the best of this author’s knowledge, the only known relativistic

test particle operator that encompasses both the ultra-relativistic and non-relativistic limit

is the Papp operator which takes the form of (5.16), but with different coefficients (Papp

et al., 2011). The coefficients in Papp’s operator take the form:

Ap(p) =
1

v
G

(
v

vTb

)
(5.21)

Fp(p) =
v

kTb
A(p) (5.22)

Bp(p) =
1

v

(
Erf

(
v

vTb

)
−G

(
v

vTb

)
+

1

2

(vTbv

c2

)2)
, (5.23)

where the function G(x) is given by:

G(x) ≡ 1

2x2

(
Erf(x)− dErf(x)

dx

)
. (5.24)

Papp arrives at this form of the test-particle collision operator via what he refers to

as ”asymptotic matching” (Papp et al., 2011). Equations (5.21)-(5.23) do reduce to (5.18)-

(5.20) in the ultra-relativistic limit and the appropriate coefficients in non-relativistic kinetic
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theory (Helander & Sigmar, 2002). Thus, it appears that the only other condition that is

enforced to construct these coefficients is to ensure continuity between these two limits.

Since the exact meaning of ”asymptotic matching” does not clearly define the constraints

by which continuity is enforced, we shall treat the numerical implementation of the Papp

operator as a replication study as well. For the purposes of our linear electron-electron

test-particle operator, we shall employ the use of (5.16) with coefficients (5.21)-(5.23).

Note that the operator in (5.16) using (5.21)-(5.23) only refers to interactions between

species a and species b. To get the total RHS to (4.22), we need to sum over all possible

species b that particle a can interact with. If we assume that particle a is an electron and we

assume that the plasma we are studying is a pure quasi-neutral plasma with only electrons

and a single ion species, then the electron-electron collision operator, Cee(fe), is simply just

(5.16) for vTb → vTe, where vTe is the electron thermal velocity.

To determine the form of the electron-ion collision operator, Cei(fe), we will make one

final assumption. If we assume that the ion mass mi → ∞, then the electron-ion collision

operator is simply given by

Cei(fe) ≈
ΓeeZeff

vp2
L(fe), (5.25)

where Zeff is defined by

Zeff ≡ − qi ln Λei

qe ln Λee
≈ − qi

qe
(5.26)

and the quasi-neutrality assumption neqe+niqi = 0 is utilized. Our final collision operator,

C(fe) = Cee(fe) + Cei(fe) is therefore

C(fe) = Γee

[
1

p2
∂

∂p

(
p2
(
Ap(p)

∂fe
∂p

+ Fp(p)fe

))
+
B̃p(p)

p2
L(fe)

]
, (5.27)

where the new coefficient B̃p(p) is just

B̃p(p) ≡
1

v

(
Zeff + Erf

(
v

vTe

)
−G

(
v

vTe

)
+

1

2

(vTev

c2

))
. (5.28)
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Note that, given the assumption that the ion mass is effectively infinite, the only contribu-

tion the electron-ion operator makes is an additional constant term for pitch-angle scattering

perpendicular to the magnetic field.

5.2 NIMROD Implementation

With (5.28) and the LHS of (4.22), we can now put together our final drift-kinetic

equation. We first begin by establishing a 3D phase space similar to the one in the previous

section, but in terms of the unit-less variables (s, ξ, ζ), where s ≡ p/mec and ξ ≡ p||/p. The

subscript || indicates that the parameter is the component of the corresponding vector that

is parallel to the magnetic field. Likewise, a subscript ⊥ indicates that the parameter in

question is the component of the corresponding vector that is perpendicular to the magnetic

field. Additionally, for the sake of simplicity, we shall assume that both the electric and

magnetic field terms are uniform and that the gyro-motion with gyro-frequency given by

ωg = eB/me dominates.

In addition to (3.37), we incorporate into the force-per-particle F i on the LHS of (4.22)

the Abraham-Lorentz-Dirac force

F i
ALD =

e2γ2

6πϵ0c3

[
ȧi +

3γ2

c2

(
vkak

)
ai +

γ2

c2

(
vkȧk +

3γ2

c2

(
vkak

)2)
vi
]
, (5.29)

such that F i = F i
E + F i

B + F i
ALD, where F

i
E and FB are the electric and magnetic forces,

respectively (Decker et al., 2016). Equation (5.29) describes the radiation back-reaction

force due to the acceleration of charged particles in electromagnetic fields. Using the as-

sumptions that the frequency ωg dominates and the uniformity of the magnetic field (which

will require that vkak = 0), we can rewrite the third term on the LHS of (4.22) using the

variables (s, ξ) as the sum of an electric-field acceleration term and a synchrotron-radiation

reaction force term (Stahl et al., 2017). Assuming that the electric field is purely along the

direction of the magnetic field, or neglecting the small drift that arises when E⊥ ̸= 0, our
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drift-kinetic equation then becomes

∂fe
∂t

−
eEi

||

mec

∂fe
∂si

+
∂

∂si
(
F i
Sfe
)
= Cs(fe), (5.30)

where the electric-field acceleration term can be written as

−
eEi

||

mec

∂fe
∂si

= −
eE||

mec

(
ξ
∂fe
∂s

+

(
1− ξ2

)
s

∂fe
∂ξ

)
(5.31)

and the synchrotron-radiation reaction force term can be written as

∂

∂si
(
F i
Sfe
)
= −

(
1− ξ2

)
τrγ

[
γ2s

∂fe
∂s

− ξ
∂fe
∂ξ

+

(
4s2 +

2

1− ξ2

)
fe

]
. (5.32)

Here the parameter τr is often referred to as the radiation time-scale and is given by

τr ≡
6πϵ0 (mec)

3

e4B2
. (5.33)

The test-particle operator, C(fe) in (5.27), as a function of normalized momentum is

Cs(fe) =
1

τee

[
1

s2
∂

∂s

(
s2
(
As(s)

∂fe
∂s

+ Fs(s)fe

))
+
B̃s(s)

s2
L(fe)

]
, (5.34)

where the final forms for the operator coefficients are given by

As(s) = 2

(
v

vTe

)2

G

(
v

vTe

)
(5.35)

Fs(s) =
γ

s
G

(
v

vTe

)
(5.36)

B̃s(s) =
γ

s

(
Zeff + Erf

(
v

vTe

)
−G

(
v

vTe

)
+

1

2

(vTev

c2

))
. (5.37)

Here the parameter τee ≡ Γee/m
2
ec

3 is often referred to as the electron-electron collision time-

scale. Our final step is to multiply both sides by τee so that we advance the distribution in

time using a unit-less version of time, t̃ ≡ t/τee. Doing so to (5.30) yields our final equation
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for numerical implementation

∂fe

∂t̃
− Ẽ||

i∂fe
∂si

+ α
∂

∂si

(
F̃ i
Sfe

)
= C̃s(fe), (5.38)

where Ẽ||
i ≡ Ei

||/Ec, Ec is the CH critical electric field, and C̃s(fe) = τeeCs(fe). Here the

third term in (5.38) is simply (5.32) with τr pulled outside of the s derivative. This is

done to define α ≡ τee/τr, which is the parameter that will actually be implemented into

NIMROD.

Note that the vi∂ife term is missing from (5.30). Since we intend to always set our

initial condition to (4.51), there will be no spatial dependence during the first time-step

when solving for the fe. Consequentially, the choice to keep the magnetic fields uniform

through the evolution of the distribution function inherently restricts the distribution to be

only dependent on the normalized momentum. Ergo, so long as we do not introduce spatial

dependence into the force, it is safe to neglect this term.

Our goal is now to make (5.38) discrete. Since fe = fe(s, ξ, t) we need to first decouple

the distribution’s s and ξ dependence. We do so by expanding fe in the following manner:

fe(s, ξ, t) =

Nξ∑
l=0

fe,l(s, t)Ql(ξ). (5.39)

Here Nξ is the maximum polynomial degree for the expansion in ξ. In NIMROD, Ql(ξ)

represents either 1D finite-element (FE) basis functions in ξ or Legendre polynomials (Held

et al., 2015). Throughout this thesis, when we are utilizing the Legendre representation,

we will switch notation from Ql(ξ) → Pl(ξ). In the case of a 1D FE expansion, Ql(ξ) can

be represented as either Lagrange or Gauss-Lobatto-Legendre (GLL) polynomials. For the

purpose of this thesis, we will only use GLL and Legendre expansions in ξ.

To handle s dependence, we opt to solve (5.38) at a set ofNs collocation points such that

fe,l,i ≡ fe,l(si, t), where si is the ith collocation point. Ultimately, what this boils down to

is solving (5.38) Ns times. In order to complete this description, we must determine a form

for s derivatives of the distribution function. We achieve this by providing an alternative
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expansion for fe,l in terms of the non-classical, orthogonal polynomials

fe,l(s, t) =

Ns−1∑
k=0

f̄e,l,k(t)Lk(s)f0(s), (5.40)

which are defined by their orthogonality relationship

∫ ∞

0
Lj(s)Lk(s)f0(s)ds = δj,k. (5.41)

Here f0(s) is the weight function by which we can define a non-classical quadrature scheme.

In this thesis we will choose f0(s) = e−z
√
1+s2 to ensure that the expansion in (5.40) has

the correct behavior at s = 0 and s → ∞. Note this weighting also coincides very closely

with the Ve = 0 case in (4.51). Additionally, we will choose the roots of LNs(s) to be our

collocation points si and the quadrature nodes for integration over s.

Though the collocation points coincide with the indices in (5.40), we still need to relate

the coefficients f̄e,l,i to fe,l,i as they are not equivalent. By multiplying both sides of (5.40)

by Lj(s) and integrating both sides, the coefficients of the non-classical expansion can be

written in terms of the coefficients at the collocation points as

f̄e,l,k =

Ns−1∑
j=0

wjLk(sj)fe,l,j , (5.42)

where wj are the weights generated from the non-classical quadrature scheme. Therefore,

using (5.40) and (5.42), we can write the nth derivative of fe,l at the collocation points as

∂nfe,l
∂sn

∣∣∣∣
s=si

=

Ns−1∑
j=0

[
Ns−1∑
k=0

wjLk(sj)
∂n

∂sn
(Lk(s)f0(s))|s=si

]
fe,l,j . (5.43)

Note the term in the brackets of (5.43) is completely independent of time. Ergo, this term

can be pre-computed before even running the NIMROD relativistic, continuum kinetic
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solver. We define an s-coupling matrix S
(n)
i,j such that

S
(n)
i,j ≡

Ns−1∑
k=0

wjLk(sj)
∂n

∂sn
(Lk(s)f0(s))|s=si

, (5.44)

which transforms (5.43) into

∂nfe,l
∂sn

∣∣∣∣
s=si

=

Ns−1∑
j=0

S
(n)
i,j fe,l,j . (5.45)

Though (5.45) is general for any order derivative, only S
(1)
i,j and S

(2)
i,j have been implemented

into NIMROD as there is no need for higher order derivatives at present.

Next, our time dependence is handled by using the limit definition of the derivative to

approximate the time-derivative in (5.38) at the (k + 1)th time-step

∂fe

∂t̃

∣∣∣∣
t̃=t̃(k+1)

≈ f
(k+1)
e − f

(k)
e

∆t̃
≡ ∆f

(k+1)
e

∆t̃
. (5.46)

Note this implies that f
(0)
e refers to the initial condition (4.51). Using (5.46) we can re-write

(5.38) in the Θ-centered form

∆f (k+1)
e +∆t̃

[
−ΘEẼ

i∂∆f
(k+1)
e

∂si
+ΘSα

∂

∂si

(
F i
S∆f

(k+1)
e

)
−ΘcC̃s

(
∆f (k+1)

e

)]

= ∆t̃

[
Ẽi∂f

(k)
e

∂si
− α

∂

∂si

(
F i
Sf

(k)
e

)
+ C̃s

(
f (k)e

)]
. (5.47)

The Θ parameters in (5.47) are centering parameters that determine the scheme used for

the time-advance. Here ΘE = ΘS = Θc = 1 refers to an implicit advance whereas ΘE =

ΘS = Θc = 0 is an explicit advance. Due to the high velocities REs can reach, it is possible

for the distribution to change dramatically on even short time-scales. Since implicit solves

remove this concern, for the purpose of this thesis, we shall always use ΘE = ΘS = Θc = 1.

We can pick off the ξ dependence in (5.47) by multiplying both sides by the test-

function Qm(ξ) and integrating over the domain. This is often referred to as the Galerkin
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approach for the finite-element method. This gives rise to the following ξ-coupling matrices:

M
(t)
l,m ≡

∫ 1

−1
Ql(ξ)Qm(ξ)dξ (5.48)

M
(s)
l,m ≡

∫ 1

−1
ξQl(ξ)Qm(ξ)dξ (5.49)

M
(B)
l,m ≡ −1

2

∫ 1

−1

(
1− ξ2

) ∂Ql(ξ)

∂ξ
Qm(ξ)dξ (5.50)

M
(c)
l,m ≡

∫ 1

−1
L (Ql(ξ))Qm(ξ)dξ (5.51)

M
(F1)
l,m ≡

∫ 1

−1

(
1− ξ2

)
Ql(ξ)Qm(ξ)dξ (5.52)

M
(F2)
l,m ≡

∫ 1

−1
ξ
(
1− ξ2

)
Ql(ξ)Qm(ξ)dξ. (5.53)

Like (5.44), (5.48)-(5.53) must be computed only once before the time-advance in (5.47).

This allows us to write (5.47) as

∑
l,j

ILHS
i,m,l,j∆f

(k+1)
e,l,j =

∑
l,j

IRHS
i,m,l,jf

(k)
e,l,j , (5.54)

where ILHS
i,m,l,j and I

LHS
i,m,l,j are the total coupling matrices for the LHS and RHS, respectively.

The complete description of these matrices is given by (A.1)-(A.3). Note that the indices

(l, j) in (5.54) can be consolidated into one index q = l+1+(j−1)dξ, where dξ = NξMξ+1

is the number of degrees of freedom in ξ and Mξ is the number of subdivisions of the domain

−1 ≤ ξ ≤ 1. Re-writing (5.54) in terms of q we now have the equation

∑
q

ILHS
i,m,q∆f

(k+1)
e,q =

∑
q

IRHS
i,m,qf

(k)
e,q (5.55)

Since the RHS of (5.55) is known for every kth time-step, letting i and m range over all

possibilities leads to the algebraic system Ax = b, which NIMROD solves using its native

GMRES algorithm (Saad & Schultz, 1986). The distribution function at the (k + 1)th

time-step is then calculated via f
(k+1)
e,q = f

(k)
e,q +∆f

(k+1)
e,q .

To set the time-advance in motion we must define some input parameters needed for
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Figure 5.1: 2D phase-space representation of f̃MJ
e ≡ fMJ

e /NM for ze = 1 (left) and ze = 100
(right). The parallel flow parameter sV || = 0 for both cases. The normalization coefficient
NM is defined in (4.44). The 1D FE grid in ξ and the collocation grid in s is overlayed on
the MJ distribution to give an indication of normalized momentum-space resolution.

f
(0)
e given by (4.51). Arguably the most important input parameter is the ze parameter.

This parameter effectively determines how relativistic the initial distribution is. Moreover,

as can be seen in Figure 5.1, it also can drastically affect its peak value and the rate at which

the MJ distribution decays. The equilibrium number density for the electron population

in the fluid rest-frame nREe is assumed to be some fraction β of the bulk density nB, or

nREe = βnB. The bulk density is the same density as in (2.2). We write this density as nB

to distinguish it from the lab-frame density for the REs, ne. In order for our assumption

that the bulk electrons are unaffected by the RE population to hold true, it is important

that β is quite small. Lastly, as indicated in Figure 5.1, we also incorporate into the initial

condition a parallel flow parameter sV || ≡ γV V||/c. In other words, we pick our initial flow

to lie purely along the direction of the magnetic field.

5.3 Results

For the purposes of this section we will discuss the following cases: collisional relaxation

of the MJ distribution with flow, collisional relaxation of a double MJ distribution, and a full

simulation of (5.30) with all parameters turned on. Unless stated otherwise, all parameters

are calculated and shown in MKS units.

To properly benchmark our implementation in NIMROD, we start by considering the

case of collisional relaxation of the MJ distribution given by (4.51). By collisional relaxation,



57

Figure 5.2: Collisional relaxation ofm3
efe with 30 time-steps at ∆t̃ = 10−3 and 7 time-steps

at ∆t̃ = 10−2. The 2D normalized momentum space contour plots (read from left to right
and top to bottom) show the distribution at four different times. Here Ns = 40, Nξ = 7,
Mξ = 3, ze = 10, zB = 100, sV || = 0.65, Ẽ|| = 0, α = 0, β = 10−4, and nB = 1019m−3.

we mean the process by which the test-particle distribution slowly evolves to the background

distribution in the absence of external force. Note that since the assumptions of (5.38)

require the potentially relativistic electron distribution to interact with the non-relativistic

MB distribution, the collision operator does not trivially go to zero.

As can be seen in Figure 5.2, by turning off the parallel electric field and synchrotron

radiation in NIMROD, the MJ distribution does indeed evolve to a MB distribution such

that Ve = 0. However, as Figure 5.2 suggests, the manner by which the MJ distribution

relaxes into the MB distribution is somewhat un-physical. Instead of a smooth transfor-

mation from the initial condition into the background, the initial MJ distribution simply

fades away while a MB distribution takes its place. While both the introduction of the

background MB and the removal of the MJ distribution happen in a continuous manner,

the two distributions are seemingly uncoupled. This is most likely due to the ”asymptotic

matching” assumption needed to transform the Sandquist’s form of the test-particle oper-

ator, with coefficents (5.18)-(5.20) into the form given by Papp with coefficients instead
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given by (5.21)-(5.23).

Figure 5.3: Convergence test for the case in Figure 5.2. This case is run for more time-
steps in order to show fluid parameters evolving to the bulk population in equilibrium. Here
(left-arrow) plots the average kinetic energy for different values of Ns, while (right-arrow)
plots the RE number density normalized by the number density of the bulk population for
the same Ns values.

We also wish to verify the behavior of several fluid parameters during the relaxation

process. Additionally, we wish to ensure that our solution is independent of the resolution of

our 2D normalized momentum space. Figure 5.3 shows the convergence of both the average

kinetic energy and the number density as a function of time and Ns. The average kinetic

energy is given by taking

KEe =
1

ne

∫
(γ1 − 1)mec

2fed
3p1. (5.56)
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Figure 5.4: Collisional relaxation of a double MJ distribution with 20 time-steps at ∆t̃ =
10−4 and 5 time-steps at ∆t̃ = 10−3. Here Ns = 40, Nξ = 7, Mξ = 3, ze = 51, zB = 510,
sV || = 0.65, Ẽ|| = 0, α = 0, β = 10−3, and nB = 1019m−3.

The parallel flow-velocity is found by taking the spatial component of (4.33), dividing by

ne, and taking the parallel component of the result. This can be written as

Ve,|| ≡
1

ne

∫
v||fed

3p1. (5.57)

In Figure 5.2, Ns = 40 is sufficient to resolve our normalized momentum space. Upon

inspection of the fully resolved versions of our fluid parameters in Figure 5.3, it can be seen

that number density is conserved throughout this process. Although not shown explicitly, as

expected, the flow velocity of the shifted relativistic test-particle distribution correctly, and

continuously, goes to zero as the solution becomes an un-shifted MB distribution. However,

the average kinetic energy is not conserved. This is due to the background distribution

not being allowed to evolve in time. Constraining the simulation in this manner, that is,

using a linearized test-particle collision operator that does not include “field” terms, makes

it impossible for energy and momentum to be transferred from the RE population to the

bulk population.
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Figure 5.5: Evolution of unshifted (sV || = 0) MJ distribution over 30 time-steps at ∆t̃ =

10−1. Here Ns = 40, Nξ = 7, Mξ = 3, ze = 51, zB = 510, sV || = 0, Ẽ|| = 2.25, α = 0.2,
β = 10−3, and nB = 1019m−3.

Our second benchmark is the collisional relaxation of a double MJ distribution, defined

by

f2MJ
e ≡ NM

(
e−γRmec2 + e−γR−mec2

)
, (5.58)

where γR− is simply γR such that sV || → −sV ||. Since (5.38) is symmetric in ξ, the same

behavior that occured in Figure 5.2 should occur in the same fashion, but on both sides

symmetrically about ξ = 0. As shown in Figure 5.4, using the initial condition given by

(5.58) does indeed yield exactly this behavior.

Given the results of these two benchmark cases, we consider the linearized test-particle

operator given by the RHS of (5.38) to have been successfully implemented in the NIM-

ROD code. We now turn our attention to testing the implementation of the electric-field

acceleration and synchrotron radiation terms in (5.30). Here we set the electric-field to

be higher than the CH critical electric-field, in order to observe the behavior of the RE

distribution above this threshold. Additionally, we set α in (5.38) to be fairly small so

that the influence of the electron-electron interaction is somewhat more significant than the
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Figure 5.6: Three 1D (s⊥ = 0) slices of the case from Figure 5.5 with two slightly modified
and one un-modified. These cases are (Ẽ|| = 2.25, α = 0) in red, (Ẽ|| = 0, α = 0.2) in blue,

and (Ẽ|| = 2.25, α = 0.2) in purple.

influence of synchrotron radiation. In addition, we make our initial condition unshifted.

We do this to ensure that our distribution stays closer to the center of the 2D normalized

momentum-space grid. As the distribution accelerates to the right, it requires increasingly

more grid points to properly resolve.

In Figure 5.5, it is clear that as time advances, increasingly more electrons are being

accelerated in the direction along the magnetic field due to the parallel electric-field applied

in the opposite direction. However, Figure 5.5 does not clearly show the influence of the

synchrotron radiation reaction force. Additionally, despite the number density being con-

served in this case, as it was in collisional relaxation cases, it seems as though the center of

the distribution is locked in place. As a consequence, the number density does not appear

to be conserved at first glance.

To clarify the role that each term on the LHS of (5.30) plays, we can look at 1D slices

of our 2D normalized momentum-space distribution. Moreover, we run two additional

simulations: one with just the electric-field acceleration term on and one with just the

synchrotron radiation reaction force on. We then superimpose these two cases with the

case in Figure 5.5. The time-advance of the purely synchrotron radiation and collisions run
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Figure 5.7: Convergence test for the purely synchrotron term in Figure 5.6. This case is
run for more time-steps in order to show fluid parameters evolving to the bulk population
in equilibrium. Here (left-arrow) plots the average kinetic energy for different values of NS

(shown as np), while (right-arrow) plots the RE number density normalized by the number
density of the bulk population for the same Ns values.

in Figure 5.6 shows that without the push of the electric-field, the RE population appears

to grow in an unbounded fashion. Obviously, such behavior would not be physical.

Nevertheless, plots of the density and kinetic energy (see Figure 5.7) reveal that conser-

vation of density is obtained over several synchrotron radiation time-scales using Ns ≥ 20.

Furthermore, the expected decay of KEe due to radiation shows a rapid decay early on

followed by a slower decay later on. Taking into consideration the concerns raised regarding

the linearlized, test-particle operator, namely, ”asymptotic matching” and a non-evolving

background distribution, we turn now to implemention of the fully non-linear BB opera-

tor in the interest of obtaining the correct time-advance of the RE distribution and the

conservation of energy and momentum.



CHAPTER 6

BRAAHMS-KARNY FORMULATION IN NIMROD

6.1 Braams-Karney Differential Forumaltion

We now turn our attention to our final goal of reproducing some of the benchmarks

in Stahl’s work using the fully non-linear BB operator. As cited in the previous section,

the (5.16) has a number of setbacks. To correct these issues, we again turn our attention

to (4.57), which allows for the background distribution to evolve. Keep in mind that the

electron-electron interaction term in (4.57)’s form is numerically challenging since it makes

the kinetic equation a non-linear, integro-differential equation. One way to make progress

is to express the collision operator in terms of potential functions that serve as relativistic

analogues to Rosenbluth potentials (Braams & Karney, 1987). These potentials are given

by

Υb,0 ≡ − 1

4π

∫ (
γ212 − 1

)− 1
2 fb (x2, s2, t)

d3s2
γ2

(6.1)

Υb,1 ≡ − 1

8π

∫ (
γ212 − 1

) 1
2 fb (x2, s2, t)

d3s2
γ2

(6.2)

Υb,2 ≡ − 1

32π

∫ [
γ12 cosh

−1 (γ12)−
(
γ212 − 1

)]
fb (x2, s2, t)

d3s2
γ2

(6.3)

Πb,0 ≡ − 1

4π

∫
γ12
(
γ212 − 1

)− 1
2 fb (x2, s2, t)

d3s2
γ2

(6.4)

Πb,1 ≡ − 1

4π

∫
cosh−1 (γ12) fb (x2, s2, t)

d3s2
γ2

. (6.5)

To begin, we first put the electron-electron interaction term in (4.57) into the Fokker-

Planck form

Cee(fe) = αc
∂

∂si

(
Dij

e

∂fe
∂sj

−F i
efe

)
, (6.6)
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where Dij
b and F i

b are defined by

Dij
b ≡ c

8π

∫
U ijfb (x2, s2, t) d

3s2 (6.7)

F i
b ≡ − c

8π

∫
∂U ij

∂sj2
fb (x2, s2, t) d

3s2, (6.8)

αc ≡ 4π/nτc, and the subscript has been dropped from s1 for simplicity. Here Dij
b and F i

b

are often referred to as the diffusion and drag terms, respectively. Additionally, we shall

henceforth drop the b subscript on the potentials since the potential formulation will only

be used for Cee(fe). For Cei(fe), we will use the same scattering operator used in Sec.(IV),

which we write below for convenience:

Cei(fe) =
γ

τcs3
L(fe). (6.9)

It is important to note that the variable n does not naturally come out of this formulation

of the collision operator. It is artificially incorporated so that we may normalize our time

coordinate in the same fashion as Sec.(IV). Therefore, n is a free parameter that has no

connection to the RE number density and only influences the collisional time-scale that we

are working with.

To connect (6.6) to (6.1)-(6.5), we introduce three new operators, Lij , Ki, and La.

Additionally, for convenience, we have defined three new potentials Υ− ≡ 4Υ2 −Υ1, Υ+ ≡

4Υ2 + Υ1, and Π ≡ 2Π1 − Π0. By doing so, we can now rewrite (6.7) and (6.8) for the

electron-electron interaction as

Dij
e =

1

γ

[
LijΥ− −

(
ηij + sisj

)
Υ+

]
(6.10)

F i
e =

1

γ
KiΠ, (6.11)
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where Lij , Ki, and La are defined by

LijΥ− ≡
(
ηik + sisk

)(
ηlj + slsj

) ∂2Υ−
∂sksl

+
(
ηij + sisj

)(
sk
∂Υ−
∂sk

)
(6.12)

KiΠ ≡
(
ηij + sisj

) ∂Π
∂sj

(6.13)

LaΨ ≡
(
ηij + sisj

) ∂2Ψ

∂si∂sj
+ 3si

∂Ψ

∂si
+ (1− a2)Ψ. (6.14)

Through (6.14), it can also be shown that all five potentials are coupled to the kinetic

equation via their own PDEs, which are given by:

L0Υ0 = fe (6.15)

L2Υ1 = Υ0 (6.16)

L2Υ2 = Υ1 (6.17)

L1Π0 = fe (6.18)

L1Π1 = Π0. (6.19)

With foundation of the five potential PDEs coupled to the collision operator, it is

now possible to express the RHS of the kinetic equation as coefficients comprised of linear

combinations of derivatives of potential functions onto linear derivatives of the distribu-

tion function. Once again we utilize our 3D momentum space coordinates (s, ξ, ζ), while

assuming that there is no ζ dependence, to write Cee(fe) (normalized by αc) as

Cee(fe)

αc
= C(s2)∂

2fe
∂s2

+ C(s)∂fe
∂s

+ C(ξ2)∂
2fe
∂ξ2

+ C(ξ)∂fe
∂ξ

+ C(sξ) ∂
2fe

∂s∂ξ
+ C(f)fe, (6.20)

with the following coefficients:

C(s2) ≡ γ (8Υ2 −Υ0)−
2γ3

s

∂Υ−
∂s

− γ
(
1− ξ2

)
s2

∂2Υ−
∂ξ2

+
2γξ

s2
∂Υ−
∂ξ

(6.21)
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C(s) ≡ 1

γs

(
2 + 3s2

)
(8Υ2 −Υ0)− 16γ

∂Υ2

∂s
+ 6γ

∂Υ1

∂s
− γ

∂Υ0

∂s

− 2γ3

s

(
∂2Υ−
∂s2

+
1

s

∂Υ−
∂s

)
+

1

γs

(
2 +

1

s2

)(
2ξ
∂Υ−
∂ξ

− (1− ξ2)
∂2Υ−
∂ξ2

)
− γ

∂Π

∂s
(6.22)

C(ξ2) ≡ 1− ξ2

γs2

[
γ2

s

∂Υ−
∂s

+
1

s2

((
1− ξ2

) ∂2Υ−
∂ξ2

− ξ
∂Υ−
∂ξ

)
−Υ+

]
(6.23)

C(ξ) ≡− ξ
(
1− ξ2

)
γs4

∂2Υ−
∂ξ2

− 2γ
(
1− ξ2

)
s3

∂2Υ−
∂s∂ξ

− 2γξ

s3
∂Υ−
∂s

+

(
2

γs4
+

3
(
1− ξ2

)
γs2

)
∂Υ−
∂ξ

−
(
1− ξ2

)
γs2

(
4
∂Υ2

∂ξ
− 3

∂Υ1

∂ξ
+
∂Υ0

∂ξ
+
∂Π

∂ξ

)
+

2ξ

γs2
Υ+ (6.24)

C(sξ) ≡ 2γ
(
1− ξ2

)
s3

(
s
∂2Υ−
∂s∂ξ

− ∂Υ−
∂ξ

)
(6.25)

C(f) ≡ −γ ∂
2Π

∂s2
− 1

γs

(
2 + 3s2

) ∂Π
∂s

−
(
1− ξ2

)
γs2

∂2Π

∂ξ2
+

2ξ

γs2
∂Π

∂ξ
. (6.26)

With the above differential formulation of the RHS of the BB operator, the last step

is to find a way to solve for the five potentials. Specifically, we will be solving for their

Legendre coefficients. First, for any function χ that can be expanded in terms of Legendre

polynomials, or χ(s, ξ, t) =
∑

l χl(s, t)Pl(ξ), we can define a new operator Ll,a on χl by

Ll,aχl ≡ γ2
∂2χl

∂s2
+

(
2

s
+ 3s

)
∂χl

∂s
+

(
1− a2 − l(l + 1)

s2

)
χl. (6.27)

Note that Ll,a is simply La when the function it is operating on is expanded in terms of

Legendre polynomials and has no ζ dependence. Additionally, if we do a Legendre expan-

sion for fe as well, then (6.15)-(6.18) effectively become ODEs in terms of the normalized
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momentum variable s.

To proceed any further, we will need to invent some new notation (Braams & Karney,

1989). We write (6.15)-(6.18) in the more concise notation

Ll,aψl,a = fe,l (6.28)

Ll,a′ψl,aa′ = ψl,a (6.29)

Ll,a′′ψl,aa′a′′ = ψl,aa′ . (6.30)

One can quickly verify that all five potential equations are stored in these three equations

by simply plugging in values for a, a′ and a′′ where appropriate. For example, for a = 0,

a′ = 2, and a′′ = 2, the above equations simply become Ll,0ψl,0 = fe,l, Ll,2ψl,02 = ψl,0,

and Ll,2ψl,022 = ψl,02. Comparing these equations with (6.15)-(6.17) allows us to identify

ψl,0 = Υ0,l, ψl,02 = Υ1,l, and ψl,022 = Υ2,l. Keep in mind that the first subscript on the Υ

and Π potentials is just a label. A similar comparison can be done for the Π potentials. In

our case, although (6.30) only applies for ψl,022, we leave the labels arbitrary for the sake

of generality.

What we have done is change the way we label each potential. Instead of having three

Υ potentials and two Π potentials, we label them all as ψ potentials. The labels a, a′, and

a′′ below ψ refer to the corresponding labels of the list of operators, in order from left to

right, required to make the RHS of the potential equation equal to fe,l. For (6.28) this is

self-explanatory as the RHS is already fe,l, However, applying Ll,a to both sides of (6.29)

and Ll,aLl,a′ to both sides of (6.30), and utilizing (6.28) we have the following equations:

Ll,aLl,a′ψl,aa′ = fe,l (6.31)

Ll,aLl,a′Ll,a′′ψl,aa′a′′ = fe,l. (6.32)

Closer inspection of (6.31) and (6.32) shows that the second label on each of the operators

in their respective equations spells out, in order, the label for the corresponding ψ potential.

Assuming that fe,l is known, (6.28), (6.31), and (6.32) are effectively (ignoring time which is
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un-coupled to s in each equation) linear inhomogeneous ODEs that can be solved by using

the Green’s function approach.

To start, let us consider the two homogeneous solutions to (6.28) defined by

jl,a(s) ≡
√
π

2s
P

−(l+1/2)
a−1/2 (γ) (6.33)

yl,a(s) ≡ (−1)l+1

√
π

2s
P

l+1/2
a−1/2(γ), (6.34)

where Pµ
ν (x) is the extension of the associated Legendre polynomials of the first kind for

real-valued indices µ and ν. Using (6.33) and (6.34), we can construct a Green’s function

Nl,a(s>, s<) for (6.28), with Nl,a(s, s
′) given by

Nl,a(s, s
′) ≡ yl,a(s)jl,a(s

′). (6.35)

Here s> ≡ max(s, s′) and s< ≡ min(s, s′). Note that Nl,a(s>, s<) satisfies the equation

Ll,aNl,a(s>, s<) =
γ2

s2
δ(s− s′), (6.36)

where we make use of the jump condition

(
∂Nl,a(s, s

′)

∂s
− ∂Nl,a(s

′, s)

∂s

)∣∣∣∣
s=s′

=
1

γ′s′2
. (6.37)

For a more detailed proof of (6.36), see the Appendix. Using (6.36), it can be shown that

a particular solution to (6.28) is

ψPS
l,a (s) =

∫ ∞

0
Nl,a(s>, s<)

s′2

γ′
fe,l(s

′)ds′. (6.38)

In order to construct Green’s functions for ψl,aa′ and ψl,aa′a′′ , we will use the formulation

for ψl,a’s Green’s function as a basis.

It is important to note that we do not have as much freedom to pick the particular

solution for ψl,aa′ and ψl,aa′a′′ as we did when picking it for ψl,a. This is due to the fact that
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ψl,a, ψl,aa′ , and ψl,aa′a′′ must satisfy the system of equations (6.28)-(6.30). In other words

we need to construct Nl,aa′(s>, s<) and Nl,aa′a′′(s>, s<) such that

Ll,aNl,∗a(s>, s<) = Nl,∗(s>, s<), (6.39)

where

Nl(s>, s<) ≡
γ

s2
δ(s− s′). (6.40)

The * in (6.39) refers to any arbitrary list of indices. From this equation we see that the

last index on the LHS must match the index for the operator of the corresponding equation,

while the RHS must have all the same indices as the LHS (notated by *) except for the last

one. We will make use of this * notation often as it will help generalize statements that

would be cumbersome otherwise.

Adhering to the constraints set forth by (6.39), we can construct the Green’s functions

Nl,aa′(s>, s<) and Nl,aa′a′′(s>, s<) such that

Nl,aa′(s, s
′) ≡ yl,a(s)jl,aa′(s

′) + yl,aa′(s)jl,a′(s
′) (6.41)

Nl,aa′a′′(s, s
′) ≡ yl,a(s)jl,aa′a′′(s

′) + yl,aa′(s)jl,a′a′′(s
′) + yl,aa′a′′(s)jl,a′′(s

′), (6.42)

where jl,∗ is defined for multi-indexed polynomials by

jl,∗aa′ ≡
jl,∗a − jl,∗a′

a2 − a′2
, (6.43)

which also satisfy their own system of equations

Ll,ajl,∗a = jl,∗. (6.44)

The relationships for multi-indexed yl,∗ are analogous to that in (6.43) and (6.44). Note

that for a = a′, a limit must be taken. Following the same process as before, it can be
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shown that the particular solution for ψl,∗ is given by

ψPS
l,∗ (s) =

∫ ∞

0
Nl,∗(s>, s<)

s′2

γ′
fe,l(s

′)ds′. (6.45)

To find the full solution for ψl,∗ we must also account for the corresponding homoge-

neous solutions to (6.28), (6.31), and (6.32), such that ψl,∗ = ψHS
l,∗ + ψPS

l,∗ . The expressions

for ψHS
l,∗ are

ψHS
l,a = Al,ayl,a +Bl,ajl,a (6.46)

ψHS
l,aa′ = Al,aa′yl,a′ +Bl,aa′jl,a′ +Al,ayl,aa′ +Bl,ajl,aa′ (6.47)

ψHS
l,aa′a′′ = Al,aa′a′′yl,a′′ +Bl,aa′a′′jl,a′′ +Al,aa′yl,a′a′′ +Bl,aa′jl,a′a′′ +Al,ayl,aa′a′′ +Bl,ajl,aa′a′′ .

(6.48)

Note that several coefficients repeat throughout (6.46)-(6.48). Due to the system of equa-

tions (6.28)-(6.30), many solutions are constrained to have the same coefficients as the ones

from the previous equations in the system. Hence, our goal is now to determine Al,∗ and

Bl,∗ by imposing further constraints on our solution.

The coefficients Al,∗ can be determined by noting the behavior of yl,∗ and jl,∗ near

s = 0. For low s,

jl[k]∗(s) =
sl+2k−2

(2k − 2)!!(2l + 2k − 1)!!
+O(sl+2k) (6.49)

yl[k]∗(s) =
(−1)k(2l − 2k + 1)!!

(2k − 2)!!sl−2k+3
+O(s−(l−2k+1)), (6.50)

where the new k index just indicates the the number of indices in *. This new notation is

helpful for determining low s behavior in an index independent way, but will be suppressed

from here on out as it is ultimately redundant. Upon inspecting (6.50), it can be seen that

yl[k]∗ diverges as s → 0. Requiring the potentials to be regular at s = 0, this implies that

Al,∗ = 0.

To find the coefficients Bl,∗, we will have to put in a little more legwork. Namely, we
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will need to match our general solution and the Legendre coefficients for (6.1)-(6.5) in the

non-relativistic limit. We first start by taking our general solution and truncate it to lowest

order in s, or

ψsol
l,∗ (s) ≈

sl

(2l + 1)!!

[
Bl,∗ +

∫ ∞

0
yl,∗(s

′)
s′2

γ′
ds′
]
, (6.51)

where the superscript is to distinguish the Green’s function solution from the definition

form. We can then condense (6.1)-(6.5) into the single equation:

ψ∗(s) =
1

4π

∫
y0,∗

(w
c

)
f(s′)

d3s
′

γ′
, (6.52)

where w = c
√
γ2rel − 1 and γrel = γγ′ − s · s′. Note that γrel and γ12 represent the same

quantity, but in different notation.

Since (6.52) is written with ζ and ζ ′ dependence, we will need to expand ψ∗(s) in

terms of spherical harmonics and then convert these coefficients to those for our solution’s

Legendre expansion. Doing said expansion, for both the potentials and the distribution

function, and solving for the the coefficients gives us

ψlm,∗(s) =
1

4π

∞∑
n=0

n∑
k=−n

∫ ∞

0

∫
Ω′

∫
Ω
y0,∗

(w
c

)
fe,nk(s

′)
s′2

γ′
Y ∗
lm(θ, ζ)Ynk(θ

′, ζ ′)dΩdΩ′ds′,

(6.53)

where we have utilized (6.52) for ψ∗(s) above.

From here we need to write y0,∗(s
′) in a more tractable form that allows us to integrate

over the solid angles and compare these coefficients to (6.51). Namely, as shown in the

Braams & Karney, 1989,

y0,∗

(w
c

)
=

∞∑
j=0

yj,∗(s
′)
ϵj

j!
, (6.54)

such that

ϵ ≡ s cosα− (γ − 1)γ′

s′
(6.55)

and

α ≡ cos−1

(
s · s′
ss′

)
. (6.56)
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Note that, to lowest order in s, ϵ ≈ s cosα. Finally, we can use the following identity from

Gradshteyn and Ryzhik

cosj α =

⌊j/2⌋∑
i=0

j!

2ii!

2j − 4i+ 1

(2j − 2i+ 1)!!
Pj−2i(cosα) (6.57)

and an expansion for Pj−2i(cosα) given by (3.62) in Jackson, or

Pj−2i(cosα) =
4π

2j − 4i+ 1

j−2i∑
r=−(j−2i)

Y ∗
j−2i,r(θ

′, ζ ′)Yj−2i,r(θ, ζ), (6.58)

to obtain the form for the solid angle integration we need in (6.53) (Gradshteyn et al., 2007;

Jackson, 1975). Using (6.57) and (6.58), (6.53) can be integrated over the solid angles,

which to lowest order in s is given by

ψlm,∗(s) ≈
sl

(2l + 1)!!

∫ ∞

0
yl,∗(s

′)flm(s′)
s′2

γ′
ds′. (6.59)

Lettingm = 0 and noting that ψl0/fl0 = ψl/fl, we have our final expression for the Legendre

coefficients for the gyro-angle independent potential case, or

ψl,∗(s) ≈
sl

(2l + 1)!!

∫ ∞

0
yl,∗(s

′)fl(s
′)
s′2

γ′
ds′. (6.60)

Upon inspection of (6.51), we can see that this means that Bl,∗ = 0, thereby making

ψHS
l,∗ = 0. Therefore, the overall solution, given in a slightly more numerically tractable

form, is given purely by the particular solution or

ψl,∗(s) =

∫ s

0
Nl,∗(s, s

′)fl(s
′)
s′2

γ′
ds′ +

∫ ∞

s
Nl,∗(s

′, s)fl(s
′)
s′2

γ′
ds′. (6.61)

6.2 NIMROD Implementation

The only change that needs to be made to (5.55) to implement the BB operator into

NIMROD is the adjustment of the collisional coupling term ICOLL
i,m,l,j in (A.1). There are

ten new pitch-angle coupling matrices that can be pre-computed before the first time step.
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These are given by the following definitions:

M
(aa)
l,m,n ≡

∫ 1

−1
Ql(ξ)Qm(ξ)Pn(ξ)dξ (6.62)

M
(ab)
l,m,n ≡

∫ 1

−1
ξQl(ξ)Qm(ξ)

∂Pn(ξ)

∂ξ
dξ (6.63)

M
(ac)
l,m,n ≡

∫ 1

−1

(
1− ξ2

)
Ql(ξ)Qm(ξ)

∂2Pn(ξ)

∂ξ2
dξ (6.64)

M
(ba)
l,m,n ≡

∫ 1

−1
ξ
∂Ql(ξ)

∂ξ
Qm(ξ)Pn(ξ) (6.65)

M
(bb1)
l,m,n ≡

∫ 1

−1

∂Ql(ξ)

∂ξ
Qm(ξ)

∂Pn(ξ)

∂ξ
dξ (6.66)

M
(bb2)
l,m,n ≡

∫ 1

−1

(
1− ξ2

) ∂Ql(ξ)

∂ξ
Qm(ξ)

∂Pn(ξ)

∂ξ
dξ (6.67)

M
(bc)
l,m,n ≡

∫ 1

−1
ξ
(
1− ξ2

) ∂Ql(ξ)

∂ξ
Qm(ξ)

∂2Pn(ξ)

∂ξ2
dξ (6.68)

M
(ca)
l,m,n ≡

∫ 1

−1

(
1− ξ2

) ∂2Ql(ξ)

∂ξ2
Qm(ξ)Pn(ξ)dξ (6.69)

M
(cb)
l,m,n ≡

∫ 1

−1
ξ
(
1− ξ2

) ∂2Ql(ξ)

∂ξ2
Qm(ξ)

∂Pn(ξ)

∂ξ
dξ (6.70)

M
(cc)
l,m,n ≡

∫ 1

−1

(
1− ξ2

)2 ∂2Ql(ξ)

∂ξ2
Qm(ξ)

∂2Pn(ξ)

∂ξ2
dξ (6.71)

The notation for the superscript of each coupling matrix denotes the order of derivative

taken on the the distribution’s ξ basis, Ql(ξ), and the potential’s Legendre basis in ξ, Pn(ξ).

The letter a represents no derivative, b the first derivative, and c the second derivative. Note

that in the case of M
(bb)
l,m,n there are two such integrals, which have been denoted with (bb1)

and (bb2), respectively. The complete breakdown of the construction of ICOLL
i,m,l,j is given in

(A.4)-(A.9) and (A.10).

The most noticeable difference between the construction of the Papp operator and the

BB operator is the need to solve for Υ and Π potentials at the kth time-step, regardless

of whether it is a part of the LHS or RHS total coupling matrices. Doing so allows us to

preserve the form given by (5.55).

In order to construct these potentials, we must first build the polynomials jl,∗(s) and

yl,∗(s) in (6.35), (6.41), and (6.42). We do this by first establishing the recursion relation
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for the single-index polynomials by

j̃l−2,a(s) = γj̃l−1,a(s)−
(l − a)(l + a)

(2l − 1)(2l + 1)
s2j̃l,a(s), (6.72)

where we use

j̃l,a(s) ≡
(2l + 1)!!

sl
jl,a(s) (6.73)

instead of jl,a. Note that what we have done is divide out the leading order dependence

(k = 0) for jl,a in (6.49). Solving for this normalized version of jl,a helps us to avoid

potential issues related to numerical underflow and overflow (Braams & Karney, 1989). To

determine an initial condition to the backward recursion relation, we first must take the

limit of (6.72) for high l. Doing so gives the relationship for a particular index L:

j̃L,a(s)

j̃L−1,a(s)
≈ 2

γ + 1
. (6.74)

Therefore, if we simply pick a new version of j̃′L−1,a = 1 and j̃′L,a = 2/(γ + 1), we can use

(6.72) to generate j̃′l,a from 0 ≤ l ≤ L. Note that j̃′l,a is only a multiplicative factor away

from our desired polynomials j̃l,a. Utilizing the fact that j̃a−1,a = 1, and enforcing that like

ratios of both types of polynomials are equal, we have the following relationship:

j̃l,a =
j̃′l,a

j̃′a−1,a

. (6.75)

Though this scheme works very well for small s, the presence of the s2 in (6.72) will

lead to compounding error for each iteration in the recursion for large values of s. Hence,

it is useful to also implement a forward-recursion version of (6.72). This is given by

j̃l,a(s) =
(2l − 1)(2l + 1)

(l − a)(l + a)s2
(
γj̃l−1,a(s)− j̃l−2,a(s)

)
. (6.76)

To avoid the singularity at l = a, one must first define all j̃l,a for 0 ≤ l ≤ 2 and 0 ≤

a ≤ 2. The j̃l,a corresponding to these values of l and a can be quickly computed in
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Mathematica, or other computational software, and then hard-coded. A splitting parameter

ssp is implemented in NIMROD that can then be used enforce the use of the scheme set

forth by (6.72) for s ≤ ssp. All other values of s will utilize (6.76). From here, jl,a can

be calculated using (6.73). For the purposes of this thesis, we will always have ssp = 2.

The multiple-index jl,∗ present in (6.41) and (6.42) can be calculated in terms of the the

single-index jl,a using

jl,02(s) =
s

2
jl+1,1(s) (6.77)

jl,11(s) =
s

2
jl+1,0(s) (6.78)

jl,22(s) =
s

2
jl+1,1(s) +

s2

2
jl+2,0(s) (6.79)

jl,022(s) =
s2

8
jl+2,0(s). (6.80)

Once all jl,∗ have been calculated, yl,∗ can then be calculated by using

yl,∗ = (−1)l+1 j−(l+1),∗. (6.81)

Note that the values of fe,l that are fed into (6.61) are by necessity expanded in terms

of Legendre polynomials. In general, we could map the coefficients of the distribution on an

arbitrary Ql(ξ) basis onto a Legendre one. However, this has not yet been implemented into

NIMROD. Hence, we shall assume that the distribution is also expanded in terms of Legen-

dre polynomials for now, or Ql(ξ) → Pl(ξ). The integrals in (6.61) are then calculated using

an optimized Romberg integration scheme that was implemented into NIMROD explicitly

for the calculation of these potentials. For the explicit representations of these integrals see

(B.1)-(B.5). Consequentially, this requires us to know the value of the distribution at the

limits of integration, which are not a part of our collocation points. However, these can be

easily calculated by direct evaluation of (5.40) and using (5.42).

It is important to note that the manner in which we handled derivatives of fe,l at the

collocation points cannot be used to evaluate derivatives of the potentials. This problem
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arises due to the fact that our potentials cannot be expanded using the same weight function

as is used for the distribution in (5.40). However, since we have an analytic form for the

potentials, we can get around this by directly taking first and second derivatives. As a

result, we must also find a way to calculate the first and second derivatives of jl,∗ and yl,∗.

This can be achieved using the following relationships:

∂jl,∗(s)

∂s
=

1

γ
jl−1,∗(s)−

(l + 1)

s
jl,∗(s) (6.82)

∂2jl,∗(s)

∂s2
=

1

γ2
jl−2,∗(s)−

(
s

γ3
+

(2l + 1)

γs

)
jl−1,∗ +

(l + 1)(l + 2)

s2
jl,∗(s) (6.83)

∂yl,∗(s)

∂s
= −1

γ
yl+1,∗(s) +

l

s
yl,∗(s) (6.84)

∂2yl,∗(s)

∂s2
=

1

γ2
yl+2,∗(s) +

(
s

γ3
− (2l + 1)

γs

)
yl+1,∗ +

l(l − 1)

s2
yl,∗(s) (6.85)

The first and second derivatives of all five potentials in terms of (6.82)-(6.85) are shown in

(B.24)-(B.33).

6.3 Results

The process by which the LHS and RHS of (5.55) is constructed in the case of the BB

collision operator is very involved. At multiple steps throughout its construction there is a

very high chance for coding and round-off errors long before GMRES iterations even begin.

Due to the high chance of error in calculating the Υ and Π potentials, we benchmark our

solutions for these potentials, as well as their first and second derivatives, with Mathematica.

Specifically, we use Mathematics’s built in NIntegrate feature to calculate the integrals in

(B.6)-(B.23) for comparison with the Romberg integration scheme that we implemented in

NIMROD. Values for Pµ
ν (γ) can also be explicitly evaluated in Mathematica. This allows

analytic construction of jl,∗ and yl,∗ instead of generating them recursively.

As seen in the previous chapter, the parameter ze can wildly change the behavior of

the distribution. Ergo, for this section we have decided to normalize our initial condition

by its peak value in (4.51), or

f̃ (0)e =
fMJ
e

NMe−z
. (6.86)
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Figure 6.1: Υ and Π potentials calculated using f̃
(0)
e for l = 0 such that sV || = 0 and

ze = 51. Blue dots are values of the potential calculated using NIMROD and red lines are
the potentials using Mathematica’s capabilities. Here Ns = 40, Nξ = 7, and Mξ = 1.

This normalization restricts the range of the distribution to [0, 1]. Note that due to

the bilinear nature of the BB operator, this normalization will also introduce an additional

factor of NMe
−z in front of the collision operator. Figure 6.1 shows that the potentials

calculated by NIMROD are in good agreement with those calculated using NIntegrate and

analytic versions of the jl,∗ and yl,∗ polynomials. Moreover, careful inspection of these
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Figure 6.2: First derivatives of potentials from Figure 6.1.

plots verifies that the majority of the potentials presented do not share the same limiting

behavior as the distribution. Ergo, the choice to avoid the non-classical quadrature scheme

as an expansion for the potentials was a wise one.

To benchmark the first and second derivatives, it is not enough for the potentials

from both methods to agree with each other. They must also behave like first and second

derivatives. Comparing each plot in Figure 6.1 to their counterpart in Figure 6.2, it is clear

that taking the tangent line to each point in a particular potential plot does indeed yield the

behavior seen in Figure 6.2. Performing the same analysis on Figure 6.2, it can be seen that
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Figure 6.3: Second derivatives of potentials from Figure 6.1.

both the behavior of the tangent line of the first derivative plots, as well as the concavity

of the potentials themselves, are in agreement with Figure 6.3. Therefore we deem that we

have successfully implemented a solver for the BK potentials into NIMROD.

With the potentials successfully benchmarked, we now turn our attention to bench-

marking the the new form of I
(COLL)
i,m,l,j . To verify that this coupling matrix has been suc-

cessfully updated in NIMROD, we simulate the evolution of an unshifted MJ distribution

in the absence of electric-field acceleration and synchrotron radiation. From the derivation

of (4.50), we know that the MJ distribution represents the equilibrium solution to the rel-
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Figure 6.4: Equilibrium benchmark for case in Figure 6.1 with ∆t̃ = 1 over 60 time-steps.
Here Ẽ|| = 0, α = 0, and nERe = 1019m−3. Number density is shown in blue, while the
kinetic energy is shown in red.

ativistic Boltzmann equation. Moreover, this should also be the case when the collision

operator is given by the BB collision operator. Ergo, we expect that the resulting distribu-

tion and fluid parameters will remain unchanged. In Figure 6.4, we can see that is indeed

the case. Note, that unlike the collisional relaxation cases for the Papp operator, we do

not include similar plots for lower Ns. This is due to the fact that in this specific case

the result is independent of our normalized momentum-space resolution. Note that this is

only true due to the fact that the distribution does not evolve in time. If the distribution

evolves away from the initial condition at all, then its projection onto the 2D normalized

momentum-space grid would change as well. However, it should be noted that the choice

to run this simulation with only the unshifted MJ distribution serves only as a benchmark

for the l = 0 terms in I
(COLL)
i,m,l,j . To test the l ̸= 0 terms, we could need to run a simulation

with an initial condition that has ξ dependence.
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CONCLUSION

In this thesis, we have shown the successful implementation of many RE features in the

NIMROD code, with the goal of self-consistently advancing the RE distribution in mind.

Firstly, we have shown the successful implementation of the relativistic drift kinetic equation

in 2D normalized momentum space with the Papp collision operator acting as our RHS.

This linear implementation was benchmarked with both MJ and double MJ distribution

collisional relaxation simulations. In both cases, the distribution evolved to the stationary

background MB distribution. The simulation of the relativistic drift kinetic equation using

the Papp operator revealed that there were issues with the method of “asymptotic matching”

used to derived the operator. Though the MJ distribution evolved to the background MB

distribution continuously, it evolved in a manner that was inconsistent with normal diffusive

behavior. Additionally, we showed that neither energy, nor momentum were conserved.

Consequentially, these concerns were used to motivate the implementation of the fully non-

linear BB operator, which contains a proper diffusion tensor in it’s definition. Moreover,

it allows for interaction of REs with background electrons and avoids the “asymptotic

matching” assumption.

A scheme for solving the relativistic drift kinetic equation with the BB collision operator

was then implemented into NIMROD utilizing the BK differential formulation. This scheme

removes the “integro” portion of the non-linear relativistic drift kinetic equation by coupling

to five ODEs for the Legendre coefficients of five corresponding potentials. By using the

solution for the distribution function at the previous time-step to construct these potentials,

we are able to turn the nonlinear BB operator into a pseudo-linearized form.

Green’s function solutions for these potentials are presented in integral form and im-

plemented numerically in NIMROD via the combination of a jl,∗ recursion scheme and an

optimized Romberg integration scheme. This same scheme was then also used to calculate
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the respective first and second derivatives of these potentials, and were bench-marked to

Mathematica’s NIntegrate functionality and it’s analytic forms for jl,∗ and yl,∗. Finally,

the NIMROD implementation of the BB operator was benchmarked by simulating the evo-

lution, or lack there of, of the RE distribution in equilibrium. It was show that number

density and kinetic energy were conserved for a large number of collision times for the case

of an unshifted MJ distribution.

Further benchmarking of the implementation of the BB operator in NIMROD is re-

quired. The equilibrium simulation for the case of an unshifted MJ distribution only tests

the l = 0 terms in ICOLL
i,m,l,j . Since (4.50), with nonzero flow-velocity, is also an equilibrium

solution, simulation of this case in equilibrium can also be used to benchmark the l ̸= 0

terms. Additionally, running an analogous double MJ distribution simulation can be used

to confirm the symmetry of the BB operator. Upon completion of these benchmarks, we

would seek to reproduce the “electron slide-away” case in Stahl’s work (Stahl et al., 2017).

The final goal would then be to simulate the non-linear analogue to the case in Figure 5.5.
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APPENDIX A

DISCRETIZATION OF COUPLING MATRICES

A.1 Linear DKE and Papp Operator Coupling

The total coupling matrix for the LHS of (5.47) ILHS
i,m,l,j is the sum of a streaming

coupling matrix and a collisional coupling matrix, or

ILHS
i,m,l,j (ΘE ,ΘS ,Θc) = ISTR

i,m,l,j (ΘE ,ΘS) + ICOLL
i,m,l,j (Θc) , (A.1)

where ISTR
i,m,l,j (ΘE ,ΘS) and I

COLL
i,m,l,j (Θc) are given by

ISTR
i,m,l,j (ΘE ,ΘS) =M

(t)
l,mδi,j −ΘEẼ||

[
M

(s)
l,mS

(1)
i,j +

1

si
M

(B)
l,m δi,j

]
− ΘS

γi

[
γ2i siM

(F1)
l,m S

(1)
i,j +

(
4s2iM

(F1)
l,m −M

(F2)
l,m + 2M

(t)
l,m

)
δi,j

]
(A.2)

ICOLL
i,m,l,j (Θc) =

Θc

si

[(
2As(si) + si

(
Fs(si) +

∂As

∂s

∣∣∣∣
s=si

))
S
(1)
i,j + siAs(si)S

(2)
i,j

+

(
2Fs(si) + si

∂Fs

∂s

∣∣∣∣
s=si

)
δi,j +

B̃s(si)

s2i
M

(c)
l,mδi,j

]
. (A.3)

The total coupling matrix for the RHS of (5.47) is simply IRHS
i,m,l,j = −ILHS

i,m,l,j(1, 1, 1), regard-

less of the value for the three centering parameters.
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A.2 Beliaev-Budker Operator Coupling

The coupling for the LHS using (4.57) is exactly the same as in (A.1) with the exception

of ICOLL
i,m,l,j (Θc). To determine this, we introduce the following subset of coupling matrices:

I
(s2)
i,m,l,n,j =

[(
γi (8Υ2,n,i −Υ0,n,i)−

2γ3i
si

∂Υ−,n

∂s

∣∣∣∣
s=si

)
M

(aa)
l,m,n

+

(
2γi
s2i
M

(ab)
l,m,n − γi

s2i
M

(ac)
l,m,n

)
Υ−,n,i

]
S
(2)
i,j (A.4)

I
(s)
i,m,l,n,j =

[(
1

γisi
(8Υ2,n,i −Υ0,n,i) +

(
−16γi

∂Υ2,n

∂s

∣∣∣∣
s=si

+ 6γi
∂Υ1,n

∂s

∣∣∣∣
s=si

−γi
∂Υ0,n

∂s

∣∣∣∣
s=si

)
− 2γ3i

si

(
∂2Υ−,n

∂s2

∣∣∣∣
s=si

+
1

si

∂Υ−,n

∂s

∣∣∣∣
s=si

)

−γi
∂Πn

∂s

∣∣∣∣
s=si

)
M

(aa)
l,m,n

+
1

γisi

(
2 +

1

s2i

)(
2M

(ab)
l,m,n −M

(ac)
l,m,n

)
Υ−,n,i

]
S
(1)
i,j (A.5)

I
(ξ2)
i,m,l,n,j =

1

γis2i

[(
γ2i
si

∂Υ−,n

∂s

∣∣∣∣
s=si

−Υ+,n,iδi,r

)
M

(ca)
l,m,n

+
1

s2i

(
M

(cc)
l,m,n −M

(cb)
l,m,n

)
Υ−,n,i

]
δi,j (A.6)

I
(ξ)
i,m,l,n,j =

1

γis4i

[((
2M

(bb1)
l,m,n − 3s2iM

(bb2)
l,m,n − γiM

(bc)
l,m,n

)
Υ−,n,i

−s2iM (bb2)
l,m,n (4Υ2,n,i − 3Υ1,n,i +Υ0,n,i +Πn,i)

+2s2iM
(ba)
l,m,nΥ+,n,i

)
−2γ2i si

(
M

(bb2)
l,m,n +M

(ba)
l,m,n

) ∂Υ−,n

∂s
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s=si

]
δi,j (A.7)
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I
(sξ)
i,m,l,n,j =

2γi
s2i
M

(bb2)
l,m,n

(
si
∂Υ−,n

∂s

∣∣∣∣
s=si

−Υ−,n,i

)
S
(1)
i,j (A.8)

I
(f)
i,m,l,n,j =

[
−
(
γi
∂2Πn

∂s2

∣∣∣∣
s=si

+
1

γisi

(
2 + s2i

) ∂Πn

∂s

∣∣∣∣
s=si

)
M

(aa)
l,m,n

+
1

γis2i

(
2M

(ab)
l,m,n −M

(ac)
l,m,n

)
Πn,i

]
δi,j . (A.9)

Equations (A.4)-(A.9) are the discretized versions of the coefficients from (6.21)-(6.26).

Note that the presence of BK potentials in the coupling matrices introduces an additional

index due to its expansion in terms of Legendre polynomials. Therefore, we can simply add

(A.4)-(A.9), take the sum over n, and include the collisional centering parameter Θc to get

ICOLL
i,m,l,j (Θc) = −Θc

Nξ∑
n=0

[
I
(s2)
i,m,l,n,j + I

(s)
i,m,l,n,j + I

(ξ2)
i,m,l,n,j + I

(ξ)
i,m,l,n,j + I

(sξ)
i,m,l,n,j + I

(f)
i,m,l,n,j

]
.

(A.10)

Derivatives of potentials in (A.4)-(A.9) can be evaluated at the collocation points using

(B.24)-(B.33). Equation (A.10) can then be plugged into (A.1) to get the full LHS coupling.

The RHS coupling is once again IRHS
i,m,l,j = −ILHS

i,m,l,j(1, 1, 1).
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APPENDIX B

BRAAMS-KARNEY POTENTIALS

B.1 BK Potentials and Their First and Second Derivatives

First, let us define the Legendre coefficients of each potential in (6.61) in their fully

explicit forms. Suppressing the kth time-step index, the potential coefficients are given by

Υ0,l(s) = yl,0(s)R
(1)
l (s) + jl,0(s)R

(2)
l (s, t) (B.1)

Υ1,l(s) = yl,0(s)R
(3)
l (s) + yl,02(s)R

(4)
l (s) + jl,02(s)R

(5)
l (s) + jl,2(s)R

(6)
l (s) (B.2)

Υ2,l(s) = yl,0(s)R
(7)
l (s) + yl,02(s)R

(8)
l (s) + yl,022(s)R

(9)
l (s) + jl,022(s)R

(10)
l (s)

+ jl,22(s)R
(11)
l (s) + jl,2(s)R

(12)
l (s) (B.3)

Π0,l(s) = yl,1(s)R
(13)
l (s) + jl,1(s)R

(14)
l (s) (B.4)

Π1,l(s) = yl,1(s)R
(15)
l (s) + yl,11(s)R

(16)
l (s) + jl,11(s)R

(17)
l (s) + jl,1(s)R

(18)
l (s), (B.5)

where the terms R
(r)
l are the results of the Romberg integration for a particular value of s

that correspond to each potential’s integrals in (6.61). These are defined by

R
(1)
l (s) =

∫ s

0
jl,0(s

′)
s′2

γ′
fe,l(s

′)ds′ (B.6)

R
(2)
l (s) =

∫ ∞

s
yl,0(s

′)
s′2

γ′
fe,l(s

′)ds′ (B.7)

R
(3)
l (s) =

∫ s

0
jl,02(s

′)
s′2

γ′
fe,l(s

′)ds′ (B.8)

R
(4)
l (s) =

∫ s

0
jl,2(s

′)
s′2

γ′
fe,l(s

′)ds′ (B.9)
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R
(5)
l (s) =

∫ ∞

s
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γ′
fe,l(s
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0
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s′2

γ′
fe,l(s

′)ds′ (B.12)

R
(8)
l (s) =
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0
jl,22(s
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s′2

γ′
fe,l(s

′)ds′ (B.13)

R
(9)
l (s) =

∫ s

0
jl,2(s

′)
s′2

γ′
fe,l(s

′)ds′ (B.14)

R
(10)
l (s) =

∫ ∞

s
yl,0(s
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s′2

γ′
fe,l(s

′)ds′ (B.15)

R
(11)
l (s) =

∫ ∞

s
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γ′
fe,l(s
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R
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R
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l (s) =
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0
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γ′
fe,l(s

′)ds′ (B.18)

R
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l (s) =
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s
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fe,l(s
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0
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s
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s′2

γ′
fe,l(s

′)ds′ (B.22)

R
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l (s) =
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γ′
fe,l(s
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Using (B.6)-(B.23), the first derivatives with respect to s for (B.1)-(B.5) are given by

∂Υ0,l

∂s
=
∂yl,0
∂s

R
(1)
l (s) +

∂jl,0
∂s

R
(2)
l (s) (B.24)
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∂Υ1,l
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=
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∂s

R
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R
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(9)
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l (s) +
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∂Π0,l
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=
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∂s

R
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l (s) +

∂jl,1
∂s

R
(14)
l (s) (B.27)
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=
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and the second derivatives are given by
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