
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2023

Probabilistic Verification for Modular Network-on-Chip Systems Probabilistic Verification for Modular Network-on-Chip Systems

Jonah W. Boe
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Boe, Jonah W., "Probabilistic Verification for Modular Network-on-Chip Systems" (2023). All Graduate
Theses and Dissertations. 8763.
https://digitalcommons.usu.edu/etd/8763

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F8763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8763?utm_source=digitalcommons.usu.edu%2Fetd%2F8763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PROBABILISTIC VERIFICATION FOR MODULAR NETWORK-ON-CHIP SYSTEMS

by

Jonah W. Boe

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Zhen Zhang, Ph.D. Arnd Hartmanns, Ph.D.
Major Professor Committee Member

Sanghamitra Roy, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Jonah W. Boe 2023

All Rights Reserved

iii

ABSTRACT

Probabilistic Verification for Modular Network-on-Chip Systems

by

Jonah W. Boe, Master of Science

Utah State University, 2023

Major Professor: Zhen Zhang, Ph.D.
Department: Electrical and Computer Engineering

Modern network-on-chip (NoC) systems require better modeling tools in order to fur-

ther understand issues caused by power supply noise (PSN), and to aid in mitigating the

issues that heavy system traffic can have. Dramatic variations in network traffic leads to

fluctuations in the power delivery across the entire chip, which can ultimately lead to errors

in data transfers between the individual routers. Further complicating the problem, NoC

applications vary widely in size and traffic patterns. Thus, constructing a formal NoC mod-

eling system whose properties can be verified with minimal effort becomes advantageous for

streamlining design and verification procedures. This thesis provides a novel approach to

modularizing the design of probabilistic NoC models by creating a universal router as the

fundamental component, capable of being instantiated into larger networks with minimal

effort. Additionally, formal properties are developed to ensure the functional behavior of the

modular design, and a structured approach is presented for ensuring that NoC models are

indeed representative of their physical counterparts. The modular model is then scaled and

used to analyse PSN properties in a larger topology, not previously verified probabilistically.

The Modest Toolset is used for stochastic modeling and verification.

(78 pages)

iv

PUBLIC ABSTRACT

Probabilistic Verification for Modular Network-on-Chip Systems

Jonah W. Boe

Modeling physical systems with formal analysis tools can help in the design of more

fault-proof systems, by helping to determine if unpredictable or unwanted behavior may

occur. Probabilistic verification further advances such processes, by providing quantitative

information about the system. More complex systems can especially benefit from formal

modeling and verification, as testing the physical system in every possible condition manu-

ally, can be extremely complex, and often impossible.

There is a growing interest in the application of Network-on-Chip (NoC) systems. NoCs

can help simplify communication between the subsystems of many technologies, including

the ever more complex multicore processors being produced. These NoCs come with their

own problems, and under high network activity, can cause power fluctuations on the chip’s

power supply. These fluctuations can cause data corruption and loss, resulting in reduced

performance, and even unpredictable behavior.

This work presents a novel approach to creating a modular probabilistic model of an

NoC, which can be scaled to meet the needs of a variety of implementations. Additionally,

it presents a structured approach for ensuring that NoC models are indeed representative

of their physical counterparts.

v

To my wife and kids. For all of their patience and love.

vi

ACKNOWLEDGMENTS

During the course of my education, I have been influenced and inspired by many friends,

family, and educators. The work presented here would not have been possible without their

support.

Primarily, I would like to thank my advisor Dr. Zhen Zhang for providing me with this

great opportunity, and for all of his many contributions along the way. His expertise and

guidance has been invaluable to me throughout this program.

I would like to thank the faculty and staff of the ECE department here at USU, for

their guidance and support. I especially want to thank Tricia Brandenburg, Diane Buist,

and Kathy Phippen, for their administrative efforts on my behalf.

I would like to thank my committee, for their time and efforts on my behalf. Especially

Arnd Hartmanns, for his professional advice on working with the modeling tools used in

this work.

I would like to thank my parents (Edward and Lillith Boe), for their love and support.

Especially for their encouragement, in persuit of my passions in engineering.

Finally, I would like to thank my wife Abby, for encouraging me and supporting me

throughout my higher education. She has made the best of even tough circumstances, and

brought joy to every moment.

Jonah W. Boe

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

ACRONYMS . xi

NOTATION . xii

1 INTRODUCTION . 1
1.1 Contributions . 3
1.2 Thesis Outline . 4

2 REVIEW OF LITERATURE . 5
2.1 Formal Verification of NoCs . 5
2.2 Probabilistic Model Checking . 6
2.3 Statistical Model Checking . 8
2.4 Probabilistic Verification of NoCs . 9

3 BACKGROUND . 10
3.1 Flit Routing . 10
3.2 Modeling Discrete-time Markov Chains . 12
3.3 LTL Property Specifications . 14
3.4 PCTL Property Specifications . 14
3.5 The Modest Toolset . 16

3.5.1 Modest Language and Syntax . 16
3.5.2 Probabilistic Model Checking in Modest 22
3.5.3 Statistical Model Checking in Modest 23
3.5.4 Modeling PSN Properties in Modest 23

4 MOTIVATION . 25

5 MODULAR DESIGN FOR FORMAL NOC MODEL . 27
5.1 NoC Design Implementation . 27

5.1.1 Flit Generation . 30
5.1.2 Flit Propagation . 31
5.1.3 Priority Tracking and Updates . 33
5.1.4 Noise Tracking . 35

viii

6 SCALING OF MODULAR NOC . 36
6.1 Scaling the Modular NoC . 36
6.2 Counting resistiveNoise and inductiveNoise in Scaled Models 37
6.3 NoC Customization . 39

7 FORMAL VERIFICATION OF NOC . 42
7.1 Router Verification . 43
7.2 Inter-Router Verification . 45
7.3 Composed System Verification . 47

8 COMPARATIVE CHECKING OF NOC . 49

9 RESULTS AND DISCUSSION . 56
9.1 Discussion . 59

10 CONCLUSIONS . 62

REFERENCES . 63

ix

LIST OF TABLES

Table Page

3.1 Temporal Operators . 14

3.2 Logical Operators . 15

8.1 Patterns for Generating resistiveNoise in a 2×2 Model 52

x

LIST OF FIGURES

Figure Page

3.1 Example of Round Robin Conflict Resolution 12

3.2 DTMC Example . 13

5.1 Universal Router Diagram . 28

5.2 NoC Neighbor Assignments for 2 × 2 Configuration. Buffers are not shown
for each router. 29

5.3 Synchronization Conflict for 2×2 NoC due to the absence of synchronization
actions. 32

5.4 Synchronization Conflict for 2× 2 NoC. Due to Having no tock Action. . . 32

6.1 NoC Neighbor Assignments for 3 × 3 Configuration. Buffers are not shown
for each router. 38

8.1 Initial Comparison of resistiveNoise in 2× 2 NoC Models 50

8.2 Second Comparison of resistiveNoise in 2× 2 NoC Models 54

8.3 Final Comparison of inductiveNoise in 2× 2 NoC Models 55

9.1 resistiveNoise for Modular 2× 2 Model . 57

9.2 inductiveNoise for Modular 2× 2 Model . 58

9.3 resistiveNoise for Modular 3× 3 Model . 59

9.4 inductiveNoise for Modular 3× 3 Model . 60

9.5 Router Specific resistiveNoise for Modular 3× 3 Model 61

9.6 Router Specific inductiveNoise for Modular 3× 3 Model 61

xi

ACRONYMS

CMOS Complementary Metal-Oxide-Semiconductor

DTMC discrete-time Markov chain

FML formal modeling language

LTL linear temporal logic

MPSoC multiprocessor system on chip

NoC network on chip

PCTL probabilistic computation tree logic

PSN power supply noise

SoC system on chip

xii

NOTATION

Routing

ri router with ID of i

rbi buffer b (Local, North, East, South, W est) of ri

x ↠ rLi new flit with destination x is generated by the Local buffer of ri

rsi
x−→ rdj flit with destination x is routed from the source buffer rsi to the

destination buffer rdj

CHAPTER 1

INTRODUCTION

As modern systems grow in complexity, there has been an increasing need for highly

efficient on-chip communications, and the days of all communications on a chip occurring

through a single data bus are quickly becoming antiquated. Network-on-chip (NoC) archi-

tectures are quite advantageous in this regard. Similar to routers in traditional computer

networks, they allow for multiple nodes within a single chip to communicate simultane-

ously. Such a solution can vastly improve the overall communication throughput of a

system, compared to traditional bus-based methods. Traditionally, a singular data bus (set

of connections comprised of chip-select, clock, and data lines) would carry information be-

tween sub-systems of a chip. If one sub-system needed to communicate with another, it

would check to make sure that the bus was not in use by others before transmitting. Such

systems become overwhelmed when many nodes demand the bus at once. Implementing

an NoC allows for a more intricate system of connections between chip sub-systems. These

nodes are capable of communicating with direct neighbors, without interfering in other

communications occurring within the network.

Because of the advantages NoCs provide, a great deal of work is currently going into

perfecting their performance, especially in complex architectures, such as system-on-chip

(SoC) designs [1, 2]. These advanced chips take advantage of modern silicon production

capabilities. This in turn allows for single chips to contain many more sub-systems, from

standard processing units to specialized hardware accelerators [3].

Though they are becoming highly utilized throughout many industries, NoCs still face

new challenges not prevalent in their bus-type counterparts. For NoCs to truly become

a viable solution, especially in safety-critical systems, there needs to be guarantees about

the specific properties that govern such systems, as any faults in their design can lead to

catastrophic effects [4, 5]. One of the major properties inherent in current NoC systems

2

is that of power supply noise (PSN). PSN occurs when there are sudden shifts in network

packet traffic activity across individual nodes. Such sudden changes in traffic patterns

directly correspond to fluctuations in power drawn by those nodes. Larger fluctuations

in power draw can result in data corruption or loss. By integrating formal modeling and

verification approaches early within the NoC design flow, problems such as PSN may be

mitigated, and guarantees can be made as to their functional and quantitative correctness.

Formal modeling gives great insight into the intricate details of NoC design, even helping

to eliminate bugs and errors early on in the NoC design process. This is important, as

patterns of PSN are not consistent between NoCs, and traffic patterns can vary widely from

application to application. Thus, it becomes advantageous to be able to have quantitative

guarantees about the likelihood of PSN across a variety of systems and applications.

While formal modeling of NoCs continues to be studied, limited work has been done

to model them probabilistically [6]. Probabilistic checking is not only used to verify in-

variants, but more especially, to gain insight into the quantitative likelihood of particular

events. This work proposes that such modeling is advantageous to better understanding is-

sues associated with PSN, as non-probabilistic model checking does not reveal quantitative

information about the properties being checked. This information can assist in determin-

ing the criticality of unwanted events. Additionally, existing probabilistic NoC modeling

solutions are lacking in modularity, with the entire NoC systems being modeled in a single

monolithic module [7, 8].

The NoC router model presented in this work is synchronous in nature. That is, all

routers in the model execute in parallel, synchronizing flit generation, buffer updates, and

arbitration. At the time of this writing, there does not appear to be a synchronous quan-

titative formal modeling language that can directly meet the need of this work – modeling

a synchronous NoC and verifying probabilistic properties. For this reason, a number of

additional variables (e.g. a clock and flags), were coded into the NoC router modules, in

order to achieve the correct behavior. The Modest formal modeling language is used in

this work, as at the time of this writing, it appears to be the only formal modeling language

3

with support for arrays and lists. These datatypes are critical to NoC design, as they make

up a large portion of the system architecture.

1.1 Contributions

This work provides a modular formal modeling approach for NoC designs. Such a

model can be scaled to contain more routers with minimal effort for easy analysis of larger

scale implementations. Additionally, it provides functionality verification at a local level to

ensure that the subcomponents of the modular NoC are behaving as intended. At a higher

level, procedures are outlined for verifying system correctness on an application basis.

The major contributions of this work include:

• The derivation of a modular probabilistic model for measuring the PSN of a NoC,

by creating a NoC model that can be reconfigured to meet a variety of needs with

minimal effort.

• A set of formal properties for ensuring the functionality of each module of the modular

NoC. This results in proven correct modular components that can be instantiated. To

accomplish this, the Modest Toolset is utilized for the statistical model checking

of LTL properties.

• A novel procedure for verifying the modular NoC on an application specific basis. This

is accomplished by utilizing data collected from other working models of the system,

or statistics from previous implementations or prototypes. Unlike discrete modeling,

verifying the equivalency of two probabilistic models is beyond property checking.

While such tasks may help in identifying differences and bugs, this work proposes

a more structured approach which utilizes the probabilistic results for identifying

discrepancies.

• Formal verification of a 3×3 NoC. Using this new model, analysis is performed for

identifying patterns of PSN within a 3×3 NoC model using the statistical verification

tools available in the Modest Toolset. The results of this verification reveals that

4

larger scale NoCs are inherently more prone to PSN than smaller implementations,

assuming uniform packet injection patterns.

1.2 Thesis Outline

The remaining work is as follows. Chapter 2 investigates related work in this field.

Chapter 3 gives the necessary background information including the NoC architecture and

routing procedures, and a detailed description of statistical model checking techniques and

procedures. Chapter 4 outlines the motivation which prompted this work. Chapter 5

describes the design decisions made in developing a modular NoC. Chapter 6 gives a detailed

walk through on scaling the modular NoC. Chapter 7 elaborates on the specific properties

used to verify the functional correctness of the modular NoC. Chapter 8 describes how

existing data can be used for ensuring that a modular NoC implementation is representative

of the system it aims to emulate. Chapter 9 analyses patterns of PSN within a 3×3 topology.

Chapter 10 concludes this thesis and presents possible future research opportunities.

5

CHAPTER 2

REVIEW OF LITERATURE

Modern formal verification techniques are quite capable of providing provable guar-

antees to real-world applications, and can lend valuable insights into the properties of the

systems under verification. Modern NoC technologies currently benefit from powerful for-

mal verification tools, resulting in more robust fault-resilient systems. Such verification

techniques have been used especially in the high-level behavioral design stage of these sys-

tems. Formal verification can continue to be of great value in helping to further mature

this technology by providing quantitative information about specific NoC implementations

within the application stage of such systems.

2.1 Formal Verification of NoCs

Much of the existing formal verification work on NoC designs has used non-probabilistic

verification techniques. Such techniques are useful for verifying the correctness and func-

tionality of the NoC systems. Functional correctness properties for NoCs include verifying

correct routing of flits [9, 10] and securing vulnerabilities [11].

While limited, some research has been done to verify NoC systems using probabilistic

techniques. The work of [12] verifies their overall performance in heterogeneous CPU-GPU

chip architectures. It focuses on using optimized routing algorithms to improve system

performance and to lower chip power consumption. An algorithm is proposed based on

the Strength Pareto Evolutionary Algorithm2 [13], boasting a 17% improvement on perfor-

mance, while decreasing power consumption by at least 2.3 times that of its predecessor.

Two particular problems facing NoC development are deadlock and livelock. Deadlock

occurs when a buffer is starved as the result of a cyclical dependency within the NoC

routing protocol. Livelock problem occurs when a routing algorithm causes a flit to be cycled

throughout the system without ever reaching its destination. The work done in [14] presents

6

a routing algorithm which builds on the Glass/Ni fault-tolerant routing algorithm [15]. In

addition to maintaining the livelock freedom of the Glass/Ni algorithm, it improves the

algorithm by adding deadlock freedom. By verifying the livelock-freedom functionality

of NoC routing algorithms, more can be understood about what traffic patterns are better

suited for certain applications; improvements can then be made; and better routing practices

can be developed [9]. This latter work presents a proven correct packet routing protocol,

which patches a scalability issue found in the protocol presented in [14]. This issue resulted

in deadlock for topologies larger than 2× 2.

As the primary hub for communications in modern systems, NoCs are a prime target

for attacks. Such attacks include prevention of data to travel between components, data

leaks, and corruption of system behavior. The formal verification of NoCs can prove the

correctness of security features, or even reveal further vulnerabilities not yet perceived.

Such vulnerabilities are critical to resolve, especially in systems such as multiprocessor

system on chips (MPSoCs), where NoCs are being used to communicate potentially sensitive

information between the cores of multiprocessors [11].

As a result of the work being done to formally verify the many properties of NoCs,

not only has reliability of these systems improved, but also their energy footprint [12].

This is especially critical in high density applications, like MPSoCs. In such applications,

large amounts of data are being communicated between processors at very high rates. The

switching of logic gates causes peaks in current draw, resulting in increased thermal output

by the NoC. Lowering the power consumption of these systems can greatly decrease their

thermal output and improve overall system efficiency [16].

2.2 Probabilistic Model Checking

Unlike their deterministic counterparts, probabilistic modeling tools can be used to

verify both if a system can reach a certain state of interest and the probability of such an

event occurring. For example, one might be interested in ensuring that a system design

can reach some particular state. Such an assertion might hold true using non-probabilistic

model checking tools. However, modeling the same system using probabilistic tools can

7

reveal that, for example, the probability of reaching the desired state was actually below

some arbitrarily low percentage, which might be unacceptable. With this information, the

system could be redesigned until the more robust probabilistic property is satisfied. This

is the advantage of probabilistic model checking. It can provide more detail about the

quantitative metrics of a system than its deterministic counterparts [17].

A fair amount of research has been going into developing probabilistic verification

tools, with the earliest reference appearing in 1983 [18]. Modern research has produced

tools such as Modest [19], PRISM [20], Storm [21], IscasMC [22], and PAT [23], to name

a few. The work of [20] elaborates on the powerful capabilities of PRISM, for example, as

a tool for modeling more complex embedded systems. The Modest Toolset has similar

modeling capabilities, and aims to integrate existing state-of-the-art tools into a single

environment [19]. Most probabilistic model verification tools can be applied to a variety

of fields, ranging from flight controllers [24] to molecular biology [25]. The versatility

of probabilistic modeling tools has not only gained them attention in both industry and

academia, but also provided an opportunity for such tools to be improved, as feedback is

received from professionals of diverse backgrounds.

While probabilistic model checking has many advantages, it does come with some lim-

itations. One of its main drawbacks is that it tends to require significant computational

resources. This issue is referred to as the state space explosion problem, and a practical

solution has yet to be developed. Model checking is the processes of enumerating every

reachable state of a system, and the state space increases exponentially as the number of

variables and processes grows. Of course, the usefulness of probabilistic model checking is

greatly reduced when constrained to only very simple systems, so many potential solutions

have been proposed. Many of these solutions exist especially for simplifying finite-state

systems. These include symmetry reduction [26], symbolic model checking [27], and bisim-

ulation minimization [28]. With regard to infinite-state systems, these approaches are not

applicable unless the model is truncated. Truncation attempts to represent an infinite-state

system using a finite approximation. This process is tedious when done manually, and

8

attempts to automate it on certain models can also result in state space explosion [29,30].

2.3 Statistical Model Checking

Statistical model checking uses data collected from a relatively large set of random

simulation runs in order to approximate a model’s probabilistic properties [31]. As a result,

the confidence level of these approximations is proportional to the number of runs exe-

cuted, with more executions resulting in higher confidence. Even so, models which contain

extremely rare events may take hundreds of thousands of runs to achieve accurate results.

Even so, the certainty of results can never be guaranteed.

While statistical model checking does not provide the same level of certainty, as opposed

to probabilistic model checking, it does provide some major advantages. First, because it

does not explore the entire state space of the system, only the applicable results of each

run need to be stored in memory. Second, it is much simpler to take advantage of parallel

processing when implementing this approach, as each simulation of the system model runs

independent of the others. Lastly, this approach is easily applicable to a broad range of

tools, regardless of the underlying logical reasoning method being used [32]. These benefits

mean that statistical model checking is not only much less resource intensive, but it can

also be scaled for use in much more complex systems.

In order for the probability of rare events to be estimated, the event itself must be

known, and expressed as a property of the system. Rare-event simulation then gives some

bias to that event while simulating. This does skew the results however, and techniques

must be used to normalize them [33]. Rare-event simulation cannot guarantee results,

however tools like Modest do give the user the ability to set the confidence interval. A

higher confidence interval inherently requires more time and resources.

The Modest Toolset is the primary tool used in this work, and while it has the

capability of doing both probabilistic and statistical model checking [19,34], this work will

primarily use the latter for its analysis. Additionally, the Modest Toolset is capable of

rare-event simulation through automated importance splitting [35], though these tools will

not be used in this work.

9

2.4 Probabilistic Verification of NoCs

As of this writing, there has been very little existing work on the formal verification

of NoCs using probabilistic verification techniques. One major contribution is the model

checking of reliability properties of a single central router of an NoC. The work of [8] ex-

amines the possible states of a central router and the probabilities of transitioning between

those states under uniform traffic load. For example, given any two possible states a and

b, what is the probability that a will directly proceed b? The work showed that the single

router could be represented by a table of transitions, and that by using this transition table

alone, information about the PSN of the individual router could then be determined. By

implementing all state transition probabilities as a set of deterministic choices, a model

was designed to check resistive and inductive noise properties. The work proved that prob-

abilistic model checking is capable of providing valuable insight into the field of PSN in

NoCs.

Additional work has been done to create an abstracted model of a 2× 2 mesh network

topology. The work of [7] added two major contributions. First, the state transition prob-

ability matrix from the previous work was used to develop a complete 2× 2 NoC. Second,

this model was abstracted using probabilistic choice abstraction, a novel concept which is

achieved by eliminating unnecessary variables in order to combine otherwise identical state

paths within the individual branches of execution. By doing this, the overall system state

space was greatly reduced.

The probabilistic choice abstraction introduced in [7] does address scalability to some

extent, although the work itself focuses on only the 2 × 2 NoC. Additionally, the models

developed in these works are monolithic, and therefore, are not broken down into submod-

ules. Because of this, their correctness was validated manually. While this approach was

feasible for their smaller topologies, such an approach is not easily scalable. By designing

the modular NoC using a non-monolithic approach, the work presented in this paper allows

for the verification of the systems submodules to be automated. Additionally, the modular

approach allows for a level of scalability never before achieved in a probabilistic NoC model.

10

CHAPTER 3

BACKGROUND

This chapter gives a description of background knowledge relevant to this thesis. Sec-

tion 3.1 describes how flits are routed within the system, including routing conflicts and

resolution. Sections 3.2 to 3.4 outline the formal modeling principles required in order to

understand this work. Finally, Section 3.5 gives an overview of the Modest Toolset,

including language syntax, and property checking.

3.1 Flit Routing

In this work, router inputs contain buffers and are therefore referred to as inputs and

buffers synonymously. Likewise, the outputs and channels will be used interchangeably.

In traditional networking, packets are used to communicate information between routers

or transceivers. These packets have a standardized size, and are given a header, which in-

cludes the addresses of the both the sender and the recipient. This packet can then be

routed through a link of other routers until it has reached its destination. There, the packet

is unpacked from its header, decompressed if necessary, and put to use depending on appli-

cation. Routing within an NoC has a similar purpose and implementation. Flits containing

information are sent from one router to another in order to transport information between

components of the overlying system. In order to accomplish this, the flit must at least

include the destination router address, so that the routers in the system know where to

send it.

Similar to traditional networking, the path a flit takes to get from the sender to the

recipient depends on the protocol that has been implemented across the network. As men-

tioned, this work uses X-Y routing. This means that flits are first routed to the west or

east, until they have reached the same column as the destination router. Only then are they

routed north or south until they have reached their destination. Once a flit begins routing

11

in the Y direction it cannot switch back to routing in the X direction. Additionally, flits

cannot be routed away from their destination, nor past their destination for any reason.

Meaning that a flit cannot be routed east and west within its lifetime. The same is true

for routing north and south. For example, a flit being routed from r3 to r8 within the

configuration shown in Fig. 6.1, will always take the X direction path rL3
8−→ rW4 , rW4

8−→ rW5 ,

before taking the Y direction path rW5
8−→ rN8 . When flits reach their destination router,

they are then removed from the system by that router.

By its very nature, X-Y routing does not allow for cyclical routing behavior, eliminating

the opportunity for livelock. There is, however, still the possibility that starvation can

occur. This could happen, for example, if the east buffer of a router is competing for the

west channel every cycle, and is allowed priority over the other routers repeatedly. Similar

to the work done in [8], this model uses a Round-Robin pattern for the resolution of such

conflicts, by assigning higher priority to the buffers that are not serviced in a given cycle.

An example of a priority list update sequence is illustrated in Fig. 3.1. For this example,

it is assumed that there are three consecutive cycles of flit injection for a single buffer.

For reference, see r3 in Fig. 6.1. The west buffer is grayed out to indicate that it was not

assigned a neighbor, and buffers in red were not serviced in the given cycle. While other

conflicts could be assumed, here it is assumed that the south buffer conflicts with the local

buffer in cycle (a), as shown in Fig. 3.1. Because the south buffer is farther towards the

end of the priority list, it is the one marked as unserviced for the next cycle. It is then

assumed that in cycle (b) of Fig. 3.1, the south, local, and east buffers have all competed

for the north output channel. In this scenario, the south has the highest priority and is

therefore serviced, while the local and east buffers are advanced in the priority queue. In

cycle (c) of Fig. 3.1, in addition to the last conflict, the south buffer now requires the north

output channel again. It is reasonable that it should not take priority over the east buffer,

as the east buffer has now been waiting for a longer duration. Notice that by marking the

west buffer as serviced every cycle – though it is not connected to a neighbor – it has been

pushed to the back of the priority list, and is consistently kept at lower priority than those

12

buffers which are connected to neighbors. In this way, unassigned buffers never compete for

priority. This holds true for routers with more than one unassigned neighbor as well, such

as is the case for routers r0, r2, r6, and r8 of the same system.

(a) t = n (b) t = n+ 1

(c) t = n+ 2

Fig. 3.1: Example of Round Robin Conflict Resolution

For the individual router to know which direction to send a flit next, information about

the dimensions of the system must be available to every router. This is accomplished by

keeping the maximum router ID (1 - the total number of routers) as a global variable, as all

routers will need to be able to access it. Because the system must be n× n, the router can

use this information to determine not only the width and height of the system, but also its

own position within that system.

3.2 Modeling Discrete-time Markov Chains

This section introduces concepts of modeling discrete-time Markov chains (DTMC)s.

DTMCs can be defined as a tuple (S, s̄, P, L), where S is a finite set of states describing

13

some system, and s̄ is the initial state. Additionally, P is the probability matrix describing

all possible state transitions of the system, such that each row of P describes all of the

transitions for a single state. Note that the sum of the transition probabilities of a single

state must add to 1. That is,
∑

s′∈S P(s, s′) = 1 must hold for all elements of P, where s′

is the next state, and P(s, s′) is the probability of transitioning to the next state. Lastly,

L is a function which assigns to state s the appropriate atomic propositions of that state.

Fig. 3.2 shows a graphical representation of a DTMC for the game rock-paper-scissors.

For this example, P is given by Equation 3.1. The state labels have been assigned: L(s0) =

∅, L(s1) = {rock}, L(s2) = {paper}, and L(s3) = {scissors}. There is a uniformly

distributed probability that a player goes to any one of the three states (rock, paper,

scissors) from the starting state S0. The player then returns to the start for the next round.

Assuming that there is interest in the probability of the path S0 → S1 → S0 → S2, being

taken by the player. This probability can be calculated as the product of all state transitions

over the path, or 1/3 · 1 · 1/3 = 1/9.

Fig. 3.2: DTMC Example

14

P =



0 1/3 1/3 1/3

1 0 0 0

1 0 0 0

1 0 0 0


(3.1)

3.3 LTL Property Specifications

Linear temporal logic (LTL) formulas use temporal and logical operators, in conjunc-

tion with propositional variables, to describe not only the state reachability of systems, but

more practically, temporal patterns such as sequencing, recurrence, and persistence. The

basic temporal operators of LTL are shown in Table 3.1. Here a and b are assumed to rep-

resent known, unique state formulas. These formulas represent the evaluation of automatic

propositions, and must have a boolean result. x represents another state formula, and does

not have any defined relationship to a or b.

Operator Description Example Trace

a a a → x → x → x → x → x

⃝a next is a x → a → x → x → x → x

♢a eventually a x → x → x → x → a → x

□a always a → a → a → a → a → a

b ∪ a b until a b → b → b → a → x → x

Table 3.1: Temporal Operators

Some additional logic operators can be used to further describe the behavior of the

system. A few of these are shown in Table 3.2.

3.4 PCTL Property Specifications

Properties of DTMCs can be specified using probabilistic computational tree logic

(PCTL). PCTL properties build on LTL principles using some additional syntax. The

syntax most important to this work is P∼q(♢≤KΨ). That is, the probability that Ψ is

eventually true within K time steps satisfies the probability interval specified by ∼q. ∼q

15

Operator Description

¬a true when a is false

a ∨ b true when a or b is true (both can be true)

a ∧ b true when a and b are true

a = b true when a is equal to b

a < b true when a is less than b

a > b true when a is greater than b

a ≤ b true when a is less than or equal to b

a ≥ b true when a is greater than or equal to b

Table 3.2: Logical Operators

is further defined by ∼ ∈ {<,≤,≥, >}, and q ∈ [0, 1]. Additionally, P∼q can be written as

P=?, indicating that the probability is the variable of interest. For a complete definition of

PCTL syntax and semantics, see [36].

In the example shown in Property 3.2, the property will evaluate to true, if the prob-

ability that a path will eventually contain a state where a is true, is less than 25%.

P<0.25(♢a) (3.2)

In the example shown in Property 3.3, the property will evaluate to the probability,

that all paths will never contain a state where a is equal to b.

P=?(□(¬(a = b))) (3.3)

There are occasions were the PCTL property might be of interest only within a

certain number of time steps. This is important, as an individual run can technically

execute indefinitely. The syntax used to describe PCTL specification in this work is

[accumulate(clk) ≤ N]. In the example shown in Equation 3.4, the property will evalu-

ate the probability, that within 10 clock cycles, all paths eventually contain a state where

a is true.

P=?(♢
[accumulate(clk)≤10] a) (3.4)

16

3.5 The Modest Toolset

The Modest Toolset provides both the Modest modeling language for formal mod-

eling systems, and a suite of tools for model simulation and verification. This section de-

scribes the Modest language syntax and the analysis tools that are relevant to this work.

3.5.1 Modest Language and Syntax

The Modest language contains a handful of primitive datatypes, including int, real,

and bool. Both int and real can be bounded upon initialization. Code Segment 3.1 shows

an example of how such bounding is implemented.

int (0..5) x;

Code Segment 3.1: Bounding of Integers in Modest

Arrays are also supported. Their syntactic implementation is similar to that of arrays in

C-type programming languages. An example implementation is shown in Code Segment 3.2.

int[] x = [0, 1, 2, 3];

Code Segment 3.2: Array Instantiation in Modest

Additionally, Modest includes a method for simplifying array Instantiation. An ex-

ample is shown in Code Segment 3.3. This implementation creates an array x, of five objects

of type j.

j[] x = array(i, 5, j{});

Code Segment 3.3: Array Method in Modest

In addition to the primitive datatypes, Modest allows for the implementation of cus-

tom datatypes. These datatypes are similar to structs in C-type programming languages,

and can consist of both primitive datatypes, and other custom datatypes. Code Segment 3.4

demonstrates an example implementation.

17

datatype x = {

int i,

bool j

};

datatype y = {

int id,

y[] z

};

Code Segment 3.4: Custom Datatypes in Modest

It should be noted that the Modest language consists of two additional keywords:

none and option. The keyword none can be assigned to a variable to indicate that it is not

currently assigned. Notice that in Code Segment 3.1, x was created, but not initialized.

This does not make x equal to none. The assignment to none must happen explicitly. In

order to assign a variable as none, it has to have been created using the option keyword;

indicating that the variable can be assigned the value of none. Only variables created with

the option keyword can be used when assigned to none.

The Modest language includes two functional datatypes: functions and processes.

Functions are used when a value needs to be returned, and can only be used to evaluate the

parameters explicitly passed in. This means that neither variable creation, nor assignment

is allowed within the scope of a function. Processes, on the other hand, are allowed to

include assignment operators and local variables. Alternatively, they are not allowed to

return a value. As a result of these rules, functions are generally used to create reusable

logical and arithmetic operations. Generally, processes define the behavior of the system

by manipulating variables.

Until now, the examples given have demonstrated variable assignment during either

initialization of a global variable, or in the description of a custom datatype. It is important

to note that assignments within processes have special rules. First, assignments are grouped

into blocks. These blocks are indicated by special operators, as shown in Code Segment 3.5.

18

Second, these assignment blocks are what tell the Modest Toolset to store a new state.

Additionally, although the assignments made in these blocks happen concurrently, some

order can be explicitly given. An example of this is shown in Code Segment 3.6. In this

example, the two lines labeled 0 execute concurrently, followed by the next two lines in

sequentially in the order given.

{=

i = 5,

j = false

=}

Code Segment 3.5: Process Assignment Operator Block

{=

0: a = 5,

0: b = false,

1: c = 2,

2: d = 2

=}

Code Segment 3.6: Ordered Process Assignment Operator Block

Using available Modest keywords, lists can also be created. There is not a native

datatype for lists in Modest, but they can easily be constructed as shown in Code Seg-

ment 3.7. As of this writing, the Modest language appears to be the only probabilistic

modeling language with support for both arrays and lists. This makes Modest even more

ideal for this work, as the priority lists and buffers require such datatypes. List manipula-

tion and access are both accomplished through custom functions. Code Segment 3.8 shows

how to add items, and Code Segment 3.9 shows how to access the front item in the list.

The tl, or tail, is the main body of the list. The hd, or head, is the first item in the list.

Additional functions can be created for checking the hd, removing the hd, checking if the

list is empty, and checking the length of the list.

19

datatype list = {

int hd,

list option tl

};

Code Segment 3.7: Creating Lists in Modest

function list option enqueue(int i, list option lst) =

some(list {

hd: i,

tl: lst

});

process addItem(int i){

list lst;

{=

lst = lst.enqueue(i)

=}

}

Code Segment 3.8: Adding Item to Lists in Modest

20

function int peekFront(buffer option ls) =

if ls == none then -1

else if ls!.tl == none then ls!.hd

else peekFront(ls!.tl);

process getFront(list lst){

int front;

{=

front = lst.peekFront()

=}

}

Code Segment 3.9: Getting Front Item of Lists in Modest

In this work, each router in the NoC is given its own process, and all are run in

parallel. The parallel composition of all router processes is achieved in Modest through

the par operator. Code Segment 3.10, gives an example. Note that the Player and Ball

must be processes. In this example, the Player process is instantiated twice (once for each

player), and the Ball is instantiated only once. Also note that all three processes are run

in parallel.

par{

:: Player()

:: Player()

:: Ball()

}

Code Segment 3.10: Ordered Process Assignment Operator Block

Actions are also available in Modest. The one built-in action used in this work is

tau. It is a silent action, meaning that it simply serves to be a placeholder where nothing is

desired to happen. In Modest all if statements must have a corresponding else statement,

though the may be separated by many else if statements. Additionally, no conditional

block can be left empty. Code Segment 3.11 shows a proper use case for the tau action.

21

The two non-silent actions provided by Modest are break and error. The only construct

for looping is do. The do construct will execute until either a stop or abort behavior is

reached, or a break action is performed. Code Segment 3.12 shows an example where the

loop exits after five cycles in the loop. The error action can be used to indicate an error

has been reached, and is actualy called by the abort behavior.

if(a > b){

{=

c = 5

=}

}

else{

tau

}

Code Segment 3.11: Ordered Process Assignment Operator Block

{= i = 0 =};

do{

if(i < 4){

{= i++ =}

}

else{

break

}

};

Code Segment 3.12: Example of a do Loop in Modest

Custom actions are also available, and in this work, they are used to synchronize any

common parallel processes. By default, actions use multi-way synchronization, meaning

that all parallel processes containing the same action are halted until all processes are

ready to execute that action. Once all processes are ready, they all execute the action

simultaneously in a single step. Not all process in parallel composition have to contain

22

the same synchronizing actions, and multiple actions can exist in any number of processes.

Custom actions must be declared at the global scope within the model.

One key feature of synchronous actions is that they can include assignment blocks. An

example is given in Code Segment 3.13, where tick is the synchronizing action, and clk is

being incremented when the action is executed. With this feature, variables across multiple

parallel processes can be updated simultaneously, and the result is stored in a single state.

ExecuteA();

tick{= clk++ =};

ExecuteB();

Code Segment 3.13: Atomic Assignment During Synchronous Action

The final syntactical Modest feature important to this work is the implementation of

probabilistic choice. This is achieved using palt. The format is rather intuitive, and an ex-

ample is shown in Code Segment 3.14. In this example, the distribution is discrete uniform,

and Modest has a shorthand equivalent for this assignment (see Code Segment 3.15).

palt{

:(1/4): {= choice = 0 =}

:(1/4): {= choice = 1 =}

:(1/4): {= choice = 2 =}

:(1/4): {= choice = 3 =}

}

Code Segment 3.14: Probabilistic Choice Example in Modest

{= choice = DiscreteUniform(0, 4) =}

Code Segment 3.15: Probabilistic Choice Example in Modest

3.5.2 Probabilistic Model Checking in Modest

Probabilistic model checking exhaustively searches the entire state space of a system

23

in order to determine the likelihood of a particular state existing within that space. It

can be both time-consuming and resource intensive, especially when checking systems with

complex and concurrent behaviors. See Section 2.2 for more detail.

The Modest Toolset includes a probabilistic model checker (mcsta), which builds

the state space of a given probabilistic model in computer memory. Modest, however,

does not support certain temporal operators, such as ⃝ or □. While □ can be represented

using the equivalent logic and operators that are available (i.e. ¬♢¬x), ⃝ cannot. The

⃝ operator is unique in that it represents the next state of the system, and requires an

awareness of the position of one state in time relative to another (the current state and

the next state). This makes it more complex, and is possibly the reason that the Modest

language does not yet support it.

3.5.3 Statistical Model Checking in Modest

Rather than use exhaustive techniques to search the state space of the system statisti-

cal model checking builds on Monte Carlo principals. This involves simulating the system,

until the simulator can decide if the model satisfies some property. While this is not usu-

ally completely accurate, it can be done within a certain confidence threshold [37]. See

Section 2.3 for more detail.

The primary tool available through the Modest Toolset for probabilistic model

verification is modes. This tool uses statistical methods to explore the state space of a

model.

3.5.4 Modeling PSN Properties in Modest

Like [7,8], this work uses two main properties to determine the PSN of a system. These

two properties are resistiveNoise, and inductiveNoise respectively. resistiveNoise occures

when a router within the NoC experiences more than a specified threshold of activity in a

given clock cycle. inductiveNoise is different in that it occurs when the difference in router

activity between the last cycle and the current cycle is greater than a specified threshold.

This threshold is a parameter of the system, and is discussed in greater detail in Section 6.3.

24

When a router experiences resistiveNoise, it increments a counter for the entire NoC

system. Similarly, inductiveNoise receives its own counter. Property 3.5 is therefor check-

ing the probability that the resistiveNoise of the system (or of the counter previously

mentioned), will eventually be greater than some threshold (K), within N clock cycles.

Property 3.6 shows a similar property for determining the system’s inductiveNoise proba-

bility within N clock cycles.

P=?(♢
[accumulate(clk)≤N] resistiveNoise ≥ K) (3.5)

P=?(♢
[accumulate(clk)≤N] inductiveNoise ≥ K) (3.6)

25

CHAPTER 4

MOTIVATION

PSN in the power delivery network of a NoC is created by simultaneous switching of

logic devices, causing a drop in the effective power supply voltage. It can be broken down

into two major contributors, namely resistiveNoise and inductiveNoise. The resistiveNoise

of a system is the product of both the current drawn and the total resistance of the NoC

circuitry. Similarly, inductiveNoise is caused by the total inductance of the circuit as the

current drawn changes. These properties together are used to quantify the magnitude of

PSN within a NoC system. Recent work has also shown that the problem of PSN is only

aggravated by the ongoing shift of CMOS transistor scaling: In an 8× 8 NoC, scaling from

32-nm technology to 14-nm technology, resulted in the PSN amplitude increasing from 40%

of the supply voltage to around 80% [38]. At a higher level, it is evident that heavy network

traffic is a major contributing factor to PSN [38]. As a result of heavy network traffic,

router supply voltages may become unpredictable, timing errors can occur, and network

packets can be lost or corrupted. This results in degraded system performance. While non-

probabilistic NoC verification can provide guarantees about the functional correctness of

these systems, it cannot formally quantify the potential risk of PSN under random synthetic

traffic patterns. Probabilistic verification however, can provide such information.

By analyzing patterns of PSN across specific chip designs, improved implementations

can be developed, which distribute packet routing more efficiently; in order to mitigate PSN

and its effects. In this work, flit injection is uniformly distributed across the system, meaning

that each router will produce an equal number of flits for all other routers in the network.

This pattern is generic enough to evaluate PSN, compared to particular real-world packet

generation patterns. Thus, by simulating uniform traffic patterns, the resulting data should

reveal where PSN is more likely to naturally occur in a network. Using this information,

recommendations can be made to improve chip design, by moving heavy traffic away from

26

areas of the network which naturaly experience higher PSN.

The work of [7] recommends moderating flit injection for a 2×2 NoC. In this work, the

recommended pattern is applied: flits are generated the first three out of every ten clock

cycles. Not only will this produce results comparable to those found in previous works (a

requirement for the work done in Chapter 8), but it will also greatly improve simulation

times [7, 8].

27

CHAPTER 5

MODULAR DESIGN FOR FORMAL NOC MODEL

This work focuses on developing a modular formal model for NoC verification. A

major advantage to this models’ modularity is its ability to be scaled and customized with

minimal effort. It is this modularity which enables it to be adapted for applications of

varying topological size. Additional configurations which can be easily changed within the

model are discussed in Chapter 6. In order to keep the modular model similar to previous

works [7,8], the same buffer size of 4 is used here, so that results can be compared to those

generated from the monolithic designs. This will become important in Chapter 8.

The NoC router model presented in this chapter is synchronous in nature. That is, all

routers in the model execute in parallel; synchronizing flit generation, buffer updates, and

arbitration.

5.1 NoC Design Implementation

To accomplish this work, a single universal Modest router model was developed, as

shown in Fig. 5.1. This router has four input buffers, as well as four output channels for

interfacing with neighboring routers. It also contains a local input buffer for generating

new flits. This is the only way by which new flits are introduced into the NoC. When

instantiated, the router process is given its own unique ID, as well as the IDs of its neighbors.

Disconnected routers are assigned an ID value of −1, to indicate that they do not have a

neighbor on the given channel. This universal router design allows easy instantiation and

configuration of routers with different locations, e.g., corner, edge, or central, within an

arbitrary mesh network. Code Segment 5.1 shows this universal router being instantiated

four times into a 2× 2 mesh topology, and Fig. 5.2 shows the resulting network. The order

of parameters for the RouterBehavior process is: this router’s ID, the north neighbor’s ID,

the west neighbor’s ID, the east neighbor’s ID, and the south neighbor’s ID.

28

Fig. 5.1: Universal Router Diagram

par{

:: Clock()

:: RouterBehavior(0, -1, -1, 1, 2)

:: RouterBehavior(1, -1, 0, -1, 3)

:: RouterBehavior(2, 0, -1, 3, -1)

:: RouterBehavior(3, 1, 2, -1, -1)

}

Code Segment 5.1: Parallel Processes of Routers for a Modular 2× 2 NoC

An important component to the modular design, is the Clock process (shown in Code

Segment 5.2). The clock variable, clk, essentially counts the number of cycles lapsed. This

process is called recursively, and exits when a predetermined threshold, CLK UPPER, is

reached. The design for the universal router includes a similar exit procedure (see Code

Segment 5.3). The use of the tick action once every cycle, is what keeps this process in sync

with all routers in the NoC. As mentioned in Chapter 4, this process is necessary, because

Modest is an asynchronous language, and the NoC is a synchronous system.

29

Fig. 5.2: NoC Neighbor Assignments for 2 × 2 Configuration. Buffers are not shown for
each router.

process Clock(){

tick{= clk++ =};

if (clk <= CLK_UPPER) {

Clock()

}

else {

stop

}

}

Code Segment 5.2: Clock Processes for a Modular NoC

In order to simplify the modular design, the universal router, is divided into five ma-

jor sub-processes: Generating new flits on the local buffer, preparing the router for flit

advancement, advancing flits to their respective output channels, updating the priority

list, and updating the variables that track both inductiveNoise and resistiveNoise. A top

module implements all sub-processes and describes the sequence of operations. Code Seg-

ment 5.3 shows this implementation. The tick and tock properties are custom actions, used

30

to synchronize all parallel instantiations of this process. Additionally, the loop shown in

Code Segment 5.3 includes a conditional statement for exiting the process once the desired

number of clock cycles is reached. Notice the assignments being made to the state variable

during these actions. As stated in Section 3.5.1, Modest allows for variable assignment

during actions. All sub-processes execute this assignment to their respective state variable

simultaneously. This is important for the verification of Property 7.6, which states that all

sub-processes must remain in sync.

do{

tick{= states[id] = 1 =};

GenerateFlits(id);

PrepRouter(id);

tock{= states[id] = 2 =};

AdvanceRouter(id);

UpdatePiority(id);

UpdateNoiseTracking(id);

if(clk >= CLK_UPPER){

stop

}

else{

tau

}

}

Code Segment 5.3: RouterBehavior Main Sequence Loop

5.1.1 Flit Generation

As mentioned in Chapter 4, this work is interested in the traffic patterns described

in [7]. That is, flit generation is uniform, and only occurs in the first 3 out of every 10

clock cycles. The behavior for generating flits is described in the GenerateFlits sub-process,

shown in Code Segment 5.4. A value is generated between 0 and one less than the maximum

NoC ID. From there, the value is enqueued into the current router, increasing it by 1 if it is

31

either equal to or greater than the current routers ID. In this way, the uniform distribution

of flit generation to all other routers in the network is preserved, and the router will never

generate a flit for itself (see Property 7.2). This model also allows for the frequency and

distribution of flit generation to be configured, as described in Section 6.1.

int destination;

{=

destination = DiscreteUniform(0, NOC_MAX_ID - 1)

=};

if(destination >= id){{=

noc[id].channels[LOCAL].buffer = enqueue(destination + 1,

noc[id].channels[LOCAL].buffer)

=}}

else{{=

noc[id].channels[LOCAL].buffer = enqueue(destination,

noc[id].channels[LOCAL].buffer)

=}}

Code Segment 5.4: Uniform Flit Generation for a Modular NoC Model

5.1.2 Flit Propagation

While parallel composition eliminates the need for redundant code, it also results in

synchronization problems between routers, not previously relevant to other works [7, 8].

Primarily, the individual routers of the system are able to fall out of sync with one another,

allowing for a single router to execute multiple cycles before its neighbors. Figure 5.3 shows

an example of what can happen if the tick action for r0 is allowed to go out of sync with the

rest of the system. In this example, r0 executes three full clock cycles, generating flits for

each of the other routers in the network. This all happens before the other router processes

even begin their first cycles.

Synchronizing the system once every cycle still allows for a router to write to its neigh-

bors before those neighbors have started their cycles. This results in a write-before-read

conflict, where flits are advanced through multiple routers in a single cycle, if those routers’

32

Fig. 5.3: Synchronization Conflict for 2 × 2 NoC due to the absence of synchronization
actions.

input buffers were previously empty. Figure 5.4 shows an example of what can happen if

the tick action is working, but the tock action is out of sync for all routers. In a single cycle,

a flit is generated by r0, forwarded to r1 before being forwarded to r3, and eventually gets

absorbed by r3.

Fig. 5.4: Synchronization Conflict for 2× 2 NoC. Due to Having no tock Action.

The sub-process PrepRouter was created to resolve the aforementioned incorrect write-

before-read issue. Without it, the tock action is not a sufficient solution, because the

AdvanceRouter sub-process still executes asynchronously between routers. To solve this

problem, the PrepRouter sub-processes raises a flag for each of the buffers in a router,

only if that buffer contains a flit. Then, the tock action synchronize the routers. This

synchronization ensures that no router can be writing to its flags, after neighboring routers

have started advancing flits into its respective buffers. During the AdvanceRouter sub-

process, rather than check if its buffers are empty or not, the router checks these flags. A

flit will only be forward from that buffer if its flag is set, and the flag will only be set if

33

there was a flit present before the PrepRouter process was run. All flags are reset at the

end of each cycle. Because buffers can only route one flit per cycle, only the flit which

previously raised the flag will be forwarded on, while flits being added by neighbors during

that time will not. Additionally, while router channels can only be used once in a single

cycle, multiple flits can be removed from a router in a single cycle, if they have reached

their destinations, and are next to be serviced within their respective buffers.

This latter design choice is not in accordance with the works of [7] or [8], both of which

implement a design which allow for only one flit to be removed per router every cycle. This

decision came about as the result of discrepancies between model results, which lead to a

conversation with the main author of [38]. While both designs are valid, the reality is that

the overarching hardware which feeds the NoC is unknown. It is therefore assumed in this

work, that the hardware feeding into the NoC is capable of consuming multiple flits per

cycle. Both the forwarding of flits, and the removal of flits occur within the AdvanceRouter

sub-process.

5.1.3 Priority Tracking and Updates

During routing, flags are set when buffers are unable to be serviced due to conflicts. In

the UpdatePriority sub-process, these flags are then used to generate the priority list for the

next cycle. The implementation of this is shown in Code Segment 5.5. The process shown

is called five times for each router, using the iterating index i, to advance through every

item in the respective routers’ priority list (priority list). The updates to the priority list

are stored in a temporary list (priority list temp), which is written to the parent priority

list at the end of each cycle.

34

if(noc[id].channels[noc[id].priority_list[i]].serviced){

{=

0: noc[id].priority_list_temp[noc[id].total_unserviced

+ noc[id].serviced_index] = noc[id].priority_list[i],

1: noc[id].serviced_index++

=}

}

else{

{=

0: noc[id].priority_list_temp[noc[id].unserviced_index]

= noc[id].priority_list[i],

1: noc[id].unserviced_index++

=}

}

Code Segment 5.5: Routine for Updating Priority Lists

In Section 3.1, a scenario was given, describing the priority updates illustrated in

Fig. 3.1. In this example, there is a conflict between the south and local buffers in step (a).

As a result, the total unserviced property would be incremented to 1. This property, as

well as the serviced index and unserviced index of each buffer, are set to 0 at the beginning

of each clock cycle. As the process described in Code Segment 5.5 iterates through the

items in the priority list, it first checks the local buffer. This buffer is marked as serviced,

so the buffer is placed at the total unserviced + serviced index = 1 position of the prior-

ity list temp. The serviced index is then incremented to the value of 1. This process repeats

for each buffer in the priority list, until the south buffer is reached. This is the first unser-

viced buffer in the priority list. Because of this, it is placed at the unserviced index = 0

position of the priority list temp, and the unserviced index is incramented by 1. This places

the south buffer at highest priority for the next round. Once all items in the priority list

have been moved, the priority list temp is then copied into the priority list, setting the

priority order of buffers for the next cycle.

35

It should be noted, that on the first cycle, the priority list of each router is arbitrarily

set to contain the values: north, east, south, west, and local, in that order. All permutations

of this list where tested, and it was concluded that the order does not matter in regard to

calculating PSN.

5.1.4 Noise Tracking

In the initial modular design, two additional flags are set during routing for helping to

track resistiveNoise and inductiveNoise. One flag (isResistive), indicates if a buffer is not

empty and is serviced, or has no neighbor. The other flag (isInductive), indicates that a

buffer is empty, or is not serviced. Two additional flags (wasResistive and wasInductive),

indicate the respective states of these flags from the last cycle. The UpdateNoiseTrack-

ing sub-process uses these flags to increment the resistiveNoise and inductiveNoise of the

system. If a router’s isResistive flag is set to true in a cycle, then resistiveNoise is incre-

mented by 1. Updating inductiveNoise is more involved. If the system’s wasResistive flag

held in the last cycle and the isInductive flag holds in the current cycle, or if the system’s

wasInductive flag held in the last cycle and the isResistive flag holds in the current cycle,

then inductiveNoise is incremented by 1. This is true for all routers, so in any given cycle,

resistiveNoise and inductiveNoise can potentially increase by the amount equal to the total

number of routers. Note that this is not the implementation used in the final model, as it

does not scale with the system. Section 6.2 explains the issues in greater detail, as well as

the changes made to resolve them.

36

CHAPTER 6

SCALING OF MODULAR NOC

6.1 Scaling the Modular NoC

The modular model presented in Chapter 5 is extremely flexible, and scaling it takes

minimal effort. It is important to define what it means to be scaled with minimal effort.

Using the 2 × 2 model as a base, any n × n model can be derived with only two simple

modifications to the code. It must also be noted that for the model to function properly, the

IDs of the routers must follow the following rules: each ID must be unique, and assignment

of IDs starts at 0 and must be done incrementally (left to right and top to bottom). Fig. 5.2

and Fig. 6.1 demonstrate proper ID assignments for 2× 2 and 3× 3 NoCs, respectively.

The first step in scaling the modular NoC is to modify the number of routers in the

NoC, as well as, the dimension of the NoC. Both can be done using a single variable. The

maximum router ID is 1 - the total number of routers. Because this work focuses on only

modeling n × n mesh topologies, it follows that
√
1 +NOC MAX ID must always be a

whole number, and is equal to the width and height of the system. This parameter is set

in Code Segment 6.1.

const int NOC_MAX_ID = 3;

Code Segment 6.1: Max ID Declaration for a Modular 2× 2 NoC

The second step in scaling the modular NoC is to instantiate aModest process for each

of the routers. The implementation of this for a 3× 3 NoC is shown in Code Segment 6.2,

and the resulting network is shown in Fig. 6.1. Each router takes its own ID, as well as the

IDs of its immediate neighbors as parameters. As mentioned in Chapter 5, disconnected

neighbors are assigned an ID of −1. The order of these parameters is: the current router

ID, the north neighbor’s ID, the west neighbor’s ID, the east neighbor’s ID, and the south

37

neighbor’s ID.

par{

:: Clock()

:: RouterBehavior(0, -1, -1, 1, 3)

:: RouterBehavior(1, -1, 0, 2, 4)

:: RouterBehavior(2, -1, 1, -1, 5)

:: RouterBehavior(3, 0, -1, 4, 6)

:: RouterBehavior(4, 1, 3, 5, 7)

:: RouterBehavior(5, 2, 4, -1, 8)

:: RouterBehavior(6, 3, -1, 7, -1)

:: RouterBehavior(7, 4, 6, 8, -1)

:: RouterBehavior(8, 5, 7, -1, -1)

}

Code Segment 6.2: Parallel Processes of Routers for a Modular 3× 3 NoC

6.2 Counting resistiveNoise and inductiveNoise in Scaled Models

In previous works, modeling and analysis was only performed on 2 × 2 NoC models.

This topology is made up entirely of corner routers. In implementing the 3×3 model shown

in Fig. 6.1, for example, there are additionally four edge routers (r1, r3, r5, r7), and one

central router (r4). Edge routers have one more assigned neighbor than corners, and center

routers have two more assigned neighbors than corners. This results in questions about

how resistiveNoise and inductiveNoise are to be calculated based on the different router

locations. In [38], it is explained that there is some arbitrary threshold of activity which

must be decided upon, at which point resistiveNoise and inductiveNoise become probable.

Working with the 2 × 2 topology, it was assumed that for there to be an increment in

resistiveNoise, all buffers had to be serviced in a given cycle. Because corner routers only

have three assigned input buffers, the noise threshold of three was implicitly being applied.

resistiveNoise is rather straight forward to calculate with a noise threshold implemen-

tation. So long as the number of buffers serviced in a cycle is equal to or greater than

the noise threshold, resistiveNoise is incremented by 1 for that router. The difference with

38

Fig. 6.1: NoC Neighbor Assignments for 3 × 3 Configuration. Buffers are not shown for
each router.

inductiveNoise, is that it is not calculated based on a level of activity, but rather a change in

activity levels between two consecutive cycles. Therefore, if the difference between a router’s

activity in the current cycle and the previous cycle is greater than the noise threshold, then

inductiveNoise is incremented by one for that router.

In order to implement a noise threshold in the modular NoC model, the four flags used

for tracking resistiveNoise and inductiveNoise (as described in Section 5.1.4) were replaced

with two integer variables. The first (thisActivity), is used to track how many buffers have

been serviced by the current router in the current cycle. The second (lastActivity), is used to

track how many buffers were serviced by the current router in the last cycle. Using these two

parameters, the resistiveNoise can be updated as shown in Code Segment 6.3. Similarly,

the inductiveNoise can be updated as shown in Code Segment 6.4. Code Segment 6.4

also, shows how inductiveNoise is calculated, being the difference in noise between two

39

cycles. Note that resistiveNoise and inductiveNoise are global variables of the NoC. The

ACTIVITY THRESH is a customizable parameter, which is assigned in Code Segment 6.5.

if(noc[id].thisActivity >= ACTIVITY_THRESH){

{= resistiveNoise++ =}

}

else{

tau

};

Code Segment 6.3: Routine for Incrementing resistiveNoise

if (abs(noc[id].lastActivity - noc[id].thisActivity) >= ACTIVITY_THRESH) {

{= inductiveNoise++ =}

}

else{

tau

};

Code Segment 6.4: Routine for Incrementing inductiveNoise

ACTIVITY_THRESH = 3;

Code Segment 6.5: NoC Activity Threshold Customization

6.3 NoC Customization

The model designed in this work also allows for additional customizations to be made,

which go beyond the scope of scalability. The first of the customizations, is changing the

length of the router input buffers. This modification can be made in the code where the

lines appear from Code Segment 6.6. Any size can be specified, depending on the needs of

the application.

40

const int BUFFER_LENGTH = 4;

Code Segment 6.6: Router Buffer Length Customization

As mentioned in Section 6.2, the dynamics of counting resistiveNoise and induc-

tiveNoise changes with NoCs which contain more than just corner routers. The ACTIV-

ITY THRESH variable, shown in Code Segment 6.5 can be set to indicate how much

activity (or difference in activity) is needed, before a router will contribute to the total PSN

of the system. For example, setting the ACTIVITY THRESH to 2, will cause routers to

contribute to the systems resistiveNoise, if two or more buffers are serviced in a cycle.

Additionally, the flit injection rate can be changed. For this work, the flit injection

pattern is set to generate flits during the first three of every ten cycles. This modification

can be made in the code where the lines appear from Code Segment 6.7. As shown, the

INJECTION RATE NUMERATOR indicates how many cycles in which flits will be gener-

ated, within every INJECTION RATE DENOMINATOR cycles. The pattern used in this

work was chosen to match that of [7, 8].

const int INJECTION_RATE_NUMERATOR = 3;

const int INJECTION_RATE_DENOMINATOR = 10;

Code Segment 6.7: Injection Rate Customization

While this work focuses on uniform flit generation patterns, the model allows for any

flit injection pattern to be represented. By checking the ID of the current router, the flit

injection patterns can even be specified by router through the use of conditional statements.

Further, the global clk variable (specified in Code Segment 5.2), can be used to dynamically

change the flit injection pattern based on time. Code Segment 6.8 demonstrates an arbitrary

example of custom flit generation for a 2 × 2 NoC. In this example, while under 20 clock

cycles, only r3 is active. Once above 19 clock cycles, routers r0, r1, and r2, each begin

producing flits with uniform distribution, destined to all other routers in the network.

While under 100 clock cycles, a third of the flits generated by r3 are destined for r0, and the

41

rest are destined for r2. After 100 clock cycles, all routers produce a uniform distribution of

flits. Such control over flit generation patterns allows for this modular NoC to be tailored

to a broader scope of applications.

int destination;

if(clk < 100 && id == 3){

palt{

:(1/3): {= destination = 0 =}

:(2/3): {= destination = 2 =}

}

}

else if(clk < 20){

tau

}

else{

palt{

destination = DiscreteUniform(0, NOC_MAX_ID - 1)

}

};

if(destination >= id){{=

noc[id].channels[LOCAL].buffer = enqueue(destination + 1,

noc[id].channels[LOCAL].buffer)

=}}

else{{=

noc[id].channels[LOCAL].buffer = enqueue(destination,

noc[id].channels[LOCAL].buffer)

=}}

Code Segment 6.8: Custom Flit Generation for a Modular 2× 2 NoC

42

CHAPTER 7

FORMAL VERIFICATION OF NOC

In this chapter, the functional correctness of the modular NoC model is verified. While

this model seeks to mitigate complexity by promoting the reuse of otherwise redundant

code, some complexities remain, which make it difficult to debug. Such debugging stems

from discrepancies between the expected resistiveNoise or inductiveNoise, and the actual

results. In order to simplify this process, the work of verifying the NoC is divided into three

categories: router verification, inter-router verification, and composed system verification.

This helps to narrow down the cause of errors. In this chapter the term process refers to the

process construct found in the Modest language, which are the building block of Modest

model behavior.

In this chapter a notation is introduced to express the behavior of the routers. Previ-

ously, routers have been expressed using the notation ri, where i is the ID of the router.

Here, the addition of a superscript is given, to indicate the buffer being addressed. The

script becomes rbi , where i is still the router ID, and b is the buffer index. This index can

be specific (i.e. N , S, E, W , L), indicating the north, south, west, east, or local buffer,

or in can be generalized as source or destination. The next notation is j ↠ rLi . Here the

local buffer of router i is generating flit j, where j is the ID of the destination router. The

final notation introduced here is rsourcei
x−→ rdestinationj . Here ri is sending a flit with the

destination router ID of x from its own source buffer, to the destination buffer of rj .

The Modest language does not support iterating through values of variables within

properties, so the properties given in this chapter had to be encoded in all of their variants.

For example, the property implemented in Code Segment 7.1 was encoded twelve times, in

order to cover every permutation of i and j in a 2 × 2 network. This also means that the

implementations of these properties would need to be scaled with the model. This could

become quite cumbersome, as each property increases the time it takes to check the model.

43

Notice in the code of this chapter, that the Pmax() method returns a probability. By

evaluating the result using comparative operators (e.g. <, >, ==), a boolean property is

created, which the Modest Toolset will evaluate to either True or False.

7.1 Router Verification

This section focuses on verifying the behavior of the processes in which routers only

access their own resources, and are independent of their neighbors. That is, processes in

which routers are not accessing the buffers of other routers. Such independent processes

include generating flits and updating the priority list.

Each router must eventually generate a flit for every other router in the

system. While some applications might experience little to no traffic between a particular

pair of routers, this work in focused on the effects of PSN, assuming uniform random

flit generation for each router. Because of this, there should eventually be communication

between every pair of routers. The encoding for Property 7.1 is shown in Code Segment 7.1.

∀i : ∀j ̸= i : ♢(j ↠ rLi) (7.1)

property p = Pmax(<>(peekFront(noc[i].channels[LOCAL].buffer) == j)) > 0;

Code Segment 7.1: Encoding of Property 7.1

Routers must not generate flits for themselves. There is no readily evident

need for a router to send a flit to itself, as any hardware connected to that router would

already have access to such information – itself being the sender. This model seeks to avoid

such a scenario entirely. For this property (represented by Property 7.2), The encoding for

Property 7.2 is shown in Code Segment 7.2.

∀i : ¬♢(i ↠ rLi) (7.2)

44

property p = Pmax(<>(peekFront(noc[i].channels[LOCAL].buffer) == i)) == 0;

Code Segment 7.2: Encoding of Property 7.2

All buffers must always exist in the priority list. The purpose of this property

is to verify that the priority list is not becoming corrupted, by ensuring that channels are

not being removed nor duplicated. Without this property, channels may be removed from

the priority list, resulting in that channel being starved (never able to send). In this model,

the priority lists of all routers are arbitrarily initialized to (north, east, south, west, local).

Because the size of the priority lists is also never changing, it follows that there are no

duplicate items in the priority list. Duplicate items would result in a biased advantage for

certain channels, resulting in skewed resistiveNoise and inductiveNoise values. The process

of updating the priority list is described in more detail in Section 5.1. The encoding for

Property 7.3 is shown in Code Segment 7.3. Notice that in the code, in addition to i being

a placeholder for the router ID, b is a placeholder for the buffer index (i.e. NORTH, EAST,

SOUTH, WEST, LOCAL). Meaning this property has twenty variants for verifying a 2× 2

network.

∀i : □(local ∈ ri.priorityList

∧north ∈ ri.priorityList

∧east ∈ ri.priorityList

∧south ∈ ri.priorityList

∧west ∈ ri.priorityList)

(7.3)

45

property p = Pmax(<>(!(

noc[i].priority_list[0] == b || noc[i].priority_list[1] == b ||

noc[i].priority_list[2] == b || noc[i].priority_list[3] == b ||

noc[i].priority_list[4] == b))) == 0;

Code Segment 7.3: Encoding of Property 7.3

7.2 Inter-Router Verification

This section focuses on verifying the behavior of processes which coordinate the inter-

actions between routers. Such processes are involved in the passing of flits from one router

to another, and manipulate only the two routers involved in the transaction. A binary func-

tion (neighbors()), is therefore defined, which takes two router IDs as parameters and only

evaluates to true if the two routers identified are assigned to one another as neighboring

routers. This neighbor assignment is outlined in Section 6.1.

A flit can only be routed when its source buffer is not empty and its desti-

nation buffer is not full. This property avoids the conflicts that might arise from input

buffers becoming congested. Such a scenario can occur when an input buffer is competing

with other buffers in the router repeatedly over many cycles. For example, in the 3×3 NoC

from Fig. 6.1, routers r0 and r2 might both generate flits destined for r4, repeatedly over

the course of many cycles. Here, both r0 and r2 are competing for the south channel of r1,

and they will each only get priority once every other cycle. Thus, the east and west buffers

of r1 will begin to fill. The solution is to never allow forwarding a flit to a full input buffer.

This means keeping it in the senders buffer, and marking that buffer as unserviced. This

does not completely eliminate the problem however, as flits will continue to be generated,

and other buffers will become more congested. Over enough time, the local buffers will also

become congested. This design is implemented such that if any local buffer becomes full,

that router will halt generating flits until space on the local buffer becomes available. The

function isEmpty() returns true only if the specified buffer contains no flits. The function

isFull() returns true only if the specified buffer contains the maximum number of flits al-

46

lowed. The encoding for Property 7.4 is shown in Code Segment 7.4. Notice in the code,

that the buffers (b1 and b2) are placeholders for the buffer indexes.

∀i : ∀j ̸= i : ∀x : □(neighbors(i, j) ∧ rsourcei
x−→ rdestinationj

=⇒ ¬(isEmpty(rsourcei) ∨ isFull(rdestinationj)))

(7.4)

property p = Pmax(<>(!(!isRouting[i].routing[SOUTH] || (

!noc[i].channels[SOUTH].isEmpty &&

!noc[j].channels[NORTH].isFull)))) == 0;

Code Segment 7.4: Encoding of Property 7.4

This formula states that for every permutation of two unique routers (ri and rj), if

they are neighbors, a flit (x) sent from ri to rj , implies that the source buffer of ri is not

empty, nor is the destination buffer of rj full.

A flit can only be routed if the channel has not been used in the current

cycle. Because the NoC of interest is synchronous, it operates on a centralized clock. It

would be physically impossible – under the synchronous assumption – to send two flits

on the same buffer in a single cycle. This property reinforces the realities of the physical

hardware and architectures of actual NoCs. It is not unreasonable to assume that an NoC

might only be able to send one flit per channel in any given cycle.

For this property (represented by Property 7.5), i and j are router IDs. While buffers

are located at the inputs to the routers, channels are the outputs through which the flits

must pass to reach the neighboring routers’ input buffers. Each router contains a list of

output channels. The function channelTo returns the channel which connects the parent

router (ri) to the router whose ID is being referenced (rj). The function isUsed returns true

if the given channel has not been used in this clock cycle. The encoding for Property 7.5 is

shown in Code Segment 7.5. Notice in the code, that the buffer (b) is a placeholder for the

buffer index.

47

∀i : ∀j ̸= i : ∀x : □(neighbors(i, j) ∧ rsourcei
x−→ rdestinationj

=⇒ ¬isUsed(ri.channelTo(j)))
(7.5)

property p = Pmax(<>(!(!isRouting[i].routing[b]

|| !noc[i].used[b]))) == 0;

Code Segment 7.5: Encoding of Property 7.5

This formula states that for every permutation of two unique routers (ri and rj), if

they are neighbors, a flit (x) sent from ri to rj , implies that the channel between them has

not been used in this cycle.

7.3 Composed System Verification

This section focuses on the broader property, which govern all routers in the network

simultaneously. This property is used to ensure the synchronization of the entire system,

and to help correctly quantify PSN.

All routers must synchronize between generating and sending flits. Using the

model developed in this work, all routers in a composed NoC are simulated in parallel. With-

out synchronizing actions to coordinate the timing of routers, buffers could potentially run

repeatedly in a single cycle, allowing flits to advance through multiple routers. This would

result in much higher, and incorrect readings for both resistiveNoise and inductiveNoise.

For this property, the state variable is a binary variable, which holds the value of 0

when the router is in its flit generation state, and 1 when the router is in its flit forwarding

state. The specific sub-processes which fall into these two categories are shown in Code

Segment 5.3. This property guarantees that all routers will both generate, and then forward

flits simultaneously. The encoding for Property 7.6 is shown in Code Segment 7.6.

∀i : ∀j : □(ri.state = rj .state) (7.6)

48

property p = Pmax(<>(!(states[i] == states[j]))) == 0;

Code Segment 7.6: Encoding of Property 7.6

49

CHAPTER 8

COMPARATIVE CHECKING OF NOC

The NoC designed in this work attempts to be a close representation of real hardware,

in which many of the mechanics of the model cannot be abstracted away. As a result, doing

a model checking results in state explosion. It is for this reason that the results presented

in this work was derived through statistical model checking. In order to give a more fair

comparison, new results were generated using the models developed by [7] and [8], using

the same statistical model checking tools.

Initial implementation of the modular design yielded data quite different from that

observed in the works of [7] and [8]. These differences are shown in Fig. 8.1. Because the

modular model had already been proven using the properties addressed in Chapter 7, it was

concluded that either the previously developed models had errors, or that the architectural

functionality of NoCs had been interpreted differently in the previous works. Comparative

checking is a novel practice, which enables tracking discrepancies between two models, by

comparing inputs and outputs, without the need to track the entire state space. This is

important because, while the model developed in this work is modular, the models available

for comparison were not. This resulted in many major architectural differences. As a result,

comparing the states of the two would have been very laborious.

In order to have a fair comparison, a 2× 2 NoC would have to be used, as the previous

works could not be scaled without drastic modifications to their code. The implemented

configuration of a 2 × 2 modular model is shown in Fig. 5.2. For reference, a situation in

which a router is expected to increase the resistiveNoise of the system, and is ultimately

observed doing so, will be referred to as a true positive. Likewise, a situation in which a

router is expected not to increase the resistiveNoise of the system, and is ultimately observed

behaving as expected, will be referred to as a true negative. A situation in which a router

is expected to increase the resistiveNoise of the system, and is ultimately observed not

50

(a) resistiveNoise ≥ 1 (b) resistiveNoise ≥ 5

(c) resistiveNoise ≥ 10 (d) resistiveNoise ≥ 20

Fig. 8.1: Initial Comparison of resistiveNoise in 2× 2 NoC Models

behaving as expected, will be referred to as a false negative. Lastly, a situation in which

a router is expected not to increase the resistiveNoise of the system, and is ultimately

observed not behaving as expected will be referred to as a false positive.

If two NoC models yield contradicting results, it must be that there is a discrepancy

in at least one of the two models. Either the model predicting the lesser amount of re-

sistiveNoise is correct, or it contains an error which results in false negatives. Similarly,

the model predicting the greater amount of resistiveNoise is either correct, or contains an

error which results in false positives. Both models may contain errors, but both cannot be

correct.

It is possible that one of the models contains many errors which both increase and

decrease the results. In such a case the more dominant error would need to be resolved

51

before the other could be identified. In the event that the two errors cancel one another

out, and the resulting PSN levels are the same between models, this method will fail.

In order to track down the cause of the discrepancy, one must first assume that one of

the models is correct, and then test the other against a set of predetermined flit generation

patterns, in order to verify that it is calculating PSN correctly. If the model assumed to be

faulty is seeing higher PSN than expected, then the routers in the network should be checked

to make sure that they satisfy patterns which should result in true negatives. Likewise, if

the model assumed to be faulty is seeing lower PSN than expected, then the routers in the

network should be checked to make sure they satisfy patterns which should result in true

positives. During these tests, if the model evaluates any members of the input set as either

false positives or false negatives respectfully, then the model is disproven, and the necessary

properties can be developed in order to correct its functionality.

It was determined that within two consecutive clock cycles, no resistiveNoise could

occur. This is because it takes one clock cycles for the flits to generated, and another cycle

for the flit to propagate to a neighboring router. As a result, for the first two clock cycles,

routers only have their local buffers to service, and the rest are empty. Additionally, within

three clock cycles, any router could send a flit to any other router in a 2× 2 network, with

the first cycle being used to generate the flit. For these reasons, the set of all patterns which

should result in true positives (within three clock cycles), was used for testing the models.

Table 8.1 shows the five possible patterns for r1 of the NoC illustrated in Fig. 5.2, which

should produce resistiveNoise within three clock cycles. It should be noted that while all

routers must be verified individually in the previous works, only the one implementation

of the generic router needs to be verified for the modular model. Here we introduce the

notation i ↞ rbi , where ri removes flit i from its own buffer b, as the flit has reached its

destination.

Using the patterns shown in Fig. 8.1, and by assuming that the modular model was

the one behaving correctly, the concrete model developed in [7] was then checked to verify

that it satisfied all true positives which could occur within three clock cycles. By forcing

52

Case Clk = 0 Clk = 1 Clk = 2

1 1 ↠ rL0 , 1 ↠ rL3 rL0
1−→ rW1 , rL3

1−→ rS1 , 0 ↠ rL1 1 ↞ rW1 , 1 ↞ rS1 , rL1
0−→ rE0

2 1 ↠ rL0 , 1 ↠ rL3 rL0
1−→ rW1 , rL3

1−→ rS1 , 2 ↠ rL1 1 ↞ rW1 , 1 ↞ rS1 , rL1
2−→ rE0

3 1 ↠ rL0 , 1 ↠ rL3 rL0
1−→ rW1 , rL3

1−→ rS1 , 3 ↠ rL1 1 ↞ rW1 , 1 ↞ rS1 , rL1
3−→ rN3

4 3 ↠ rL0 , 1 ↠ rL3 rL0
3−→ rW1 , rL3

1−→ rS1 , 0 ↠ rL1 rW1
3−→ rN3 , 1 ↞ rS1 , rL1

0−→ rE0

5 3 ↠ rL0 , 1 ↠ rL3 rL0
3−→ rW1 , rL3

1−→ rS1 , 2 ↠ rL1 rW1
3−→ rN3 , 1 ↞ rS1 , rL1

2−→ rE0

Table 8.1: Patterns for Generating resistiveNoise in a 2×2 Model

the local buffers to inject certain patterns, a sort of testbench could be created for the

model. Using the methods discussed in 6.3, these custom flit generation patterns could be

implemented within the modular model. The code for implementing the first pattern is

shown in Code Segment 8.1. The processes for forcing the previously developed model to

inject specific patterns was much more extensive [7], and is not shown here.

if(clk == 0 && (id == 0 || id == 3)){{=

noc[id].channels[LOCAL].buffer = enqueue(1,

noc[id].channels[LOCAL].buffer)

=}}

else if(clk == 1 && id == 1){{=

noc[id].channels[LOCAL].buffer = enqueue(0,

noc[id].channels[LOCAL].buffer)

=}}

Code Segment 8.1: Modular Implementation for Forcing resistiveNoise Pattern:
Case 1

The concrete model produced in [7] only counts resistiveNoise for cases 4 and 5 of

Table 8.1, while the modular model counted resistiveNoise for all cases (as expected). These

results revealed that the previous model did not count resistiveNoise when r1 received more

than one flit destined for itself in a single cycle, because its architecture only allowed for it

to handle the removal of one flit at a time. Further testing revealed that this was the case

for all routers in the non-modular system.

After analyzing the design decisions made in [7], it was determined that the modular

53

model was more in line with the NoC described in [38]. A conversation was held with

the authors of the aforementioned works, and this observation was validated. In order to

verify that this was the only discrepancy between the models, the necessary changes were

made to the routing sub-process of the modular model, in order to match the previous

architectures, and results were generated again for the 2×2 NoC. The results in Fig. 8.2

show how the three models are now much more similar regarding resistiveNoise. Results

were also generated for inductiveNoise using the 2×2 models, and a comparison of these

results are shown in Fig. 8.3. These results show that, besides the design decisions effecting

the resistiveNoise, there were no other issues influencing the inductiveNoise of the modular

system. Once these results where generated and the models were found to be equivalent,

the modular made was reverted to its last iteration, and all further results presented in this

work will be based on that design.

The properties developed in Chapter 7 not only helped to verify the functional be-

havior of the modular model, but held up against the discrepancy detected between this

and previous works. As a result of that discrepancy, the comparative verification process

developed in this chapter, was effective in helping to identify the source of the problem. It

is worth noting that the comparative verification process is a results based approach, and

is therefore only helpful in tracking issues which affect the results. When using simulation

techniques, there may be discrepancies in the results which are not due to errors in the

models, but rather, are inherent to simulation itself.

54

(a) resistiveNoise ≥ 1 (b) resistiveNoise ≥ 5

(c) resistiveNoise ≥ 10 (d) resistiveNoise ≥ 20

Fig. 8.2: Second Comparison of resistiveNoise in 2× 2 NoC Models

55

(a) inductiveNoise ≥ 1 (b) inductiveNoise ≥ 5

(c) inductiveNoise ≥ 8

Fig. 8.3: Final Comparison of inductiveNoise in 2× 2 NoC Models

56

CHAPTER 9

RESULTS AND DISCUSSION

The results presented in this work were generated on a machine using a 12-core AMD

Ryzen Threadripper Processor, operating at 3.5 GHz. The machine has 132 GB of memory,

and runs Ubuntu Linux version 22.04 LTS. Additionally, the Modest Toolset version

3.1.182 was used. For simulations, all Modest parameters where default, except for –max-

run-length, which was set to 0. Most of the results where generated in less than 24 hours,

though some (more especially for inductiveNoise), took upwards of 5 days. This makes it

relatively more intensive than the monolithic model, though only by a matter of hours at

most.

While Chapter 8 shows the difference in PSN between this and previous works, Fig. 9.1

and Fig. 9.2 show the resistiveNoise and inductiveNoise for a 2× 2 implementation of the

modular model alone. This is with the new architecture presented in Chapter 8. Together,

these figures show that PSN is much higher given the assumption that multiple flits can be

removed by a router in a single cycle.

The advantage of a modular NoC design is the ability to scale it with ease. In order

to verify the complete functionality of the generic modular router designed in this work,

implementing it in a 3×3 NoC model would be ideal. This is because a 3 × 3 NoC is

the smallest network size which utilizes edge, corner, and center nodes. As a comparable

probabilistic 3 × 3 NoC model does not exist in published work for us to do comparative

verification on, we have to assume that as our model is correct, as it does satisfy all properties

from Chapter 7. Fig. 9.3 and 9.4 show the resistiveNoise and inductiveNoise respectively,

for the scaled 3×3 NoC model. These figures show a very pronounced pattern, where there

are steep slopes followed by rough steps. The roughness of the graphs is a result of using

simulations tools. The default settings are being used to generate the data presented here,

and the default value for the confidence parameter is 95%. The Modest Toolset can

57

Fig. 9.1: resistiveNoise for Modular 2× 2 Model

perform at higher confidence levels, though simulation takes much longer. The step pattern

is a result of using three out of ten flit injection bursts. Only the first three clock cycles of

every ten actually produce flits, and therefore effect the PSN of the system.

With the scaled 3 × 3 model working, additional information can be derived. Rather

than allowing all routers to increment the system’s resistiveNoise and inductiveNoise, a

condition can be used to check just a set of routers. Code Segment 9.1, shows an imple-

mentation for checking only the PSN of router 0. This code is just a modification to Code

Segment 6.4. Using this method, the PSN properties for routers 1, 3, and 4 were also ver-

ified. It is important to note that only these routers were simulated, because router 0 is

a corner, and should experience the same PSN as routers 2, 6, and 8. Similarly, router 1

should be the same as 7, and 3 should be the same as 5. Perhaps a little less intuitive is the

fact that the horizontal edge routers (i.e. 1 and 7), should not experience the same PSN

and the vertical edges (i.e. 3 and 5). This is because X-Y routing is being used, and there-

fore horizontal edges should be experiencing more PSN than the edges. For reference see

Fig. 6.1. The resistiveNoise results of this test are shown in Fig. 9.5, and the inductiveNoise

results are shown in Fig. 9.6

58

Fig. 9.2: inductiveNoise for Modular 2× 2 Model

if (id == 0

&& abs(noc[id].lastActivity - noc[id].thisActivity) >= ACTIVITY_THRESH) {

{= inductiveNoise++ =}

}

else{

tau

};

if(id == 0 && noc[id].thisActivity >= ACTIVITY_THRESH){

{= resistiveNoise++ =}

}

else{

tau

};

Code Segment 9.1: Checking PSN for Router 0 Only

59

Fig. 9.3: resistiveNoise for Modular 3× 3 Model

9.1 Discussion

Finally, the results given in this chapter show that the scaled 3× 3 model yielded new

and valuable information to the field of probabilistic NoC verification. In comparing the

PSN properties between the 2×2 and 3×3 implementations, it can be seen that PSN scales

proportionally with the size of the NoC. This observation is over the entire system, and

localized results may be different.

The router specific results in Fig. 9.5 and 9.6 show that PSN increases towards the

center of the router. While the corner routers experienced a very gradual increase in PSN

with respect to time, the center router experienced high levels of PSN almost immediately.

This could be in part due to the design of the NoC. For this design, the threshold for

routers to experience resistiveNoise was set to three or more buffers being serviced in a

cycle. Because, the center router has more active buffers than the other routers on the chip,

it is intuitive that it should experience more PSN. Even so, the horizontal edge routers

experienced higher PSN than the vertical edges, regardless of having the same number of

buffers. This is likely a result of X-Y routing causing higher traffic through those areas.

It can be concluded, that keeping the more traffic-prone neighbors on the perimeter of the

NoC may be advantageous.

60

Fig. 9.4: inductiveNoise for Modular 3× 3 Model

Previously, the largest topology achieved for a probabilistic NoC model was a 2 × 2

network. As mentioned, the routers in such a configuration would only have three input

buffers. With the threshold for PSN being set to three serviced buffers, this inherently

results in lower PSN across routers with higher conflict rates. This is because if even one

buffer goes unserviced in a cycle, there can be no PSN on that router. At the same time,

having conflicts results in lower router efficiency. This measure does not scale to larger

NoCs, making it difficult to make any particular recommendation to chip designers based

on these findings.

In the work of [7], it is concluded that by injecting delays between flits, PSN can be

reduced. While this is true, this work affirms that PSN is difficult to completely eradicate

using routing flit injection pattern alone. The larger an NoC becomes, the longer it takes on

average, for flits to propagate through the system. Injecting flits in only a single clock cycle

can still result in PSN. In addition to reducing the flit injection rate, this work recommends

grouping routers into high-traffic regions, with the highest traffic connections being reserved

for vertical neighbors. In this way, flits can propagate through the system more quickly.

This recommendation, in conjunction with keeping heavy traffic on the perimeter of the

NoC, may result in even lower traffic through the central routers.

61

Fig. 9.5: Router Specific resistiveNoise for Modular 3× 3 Model

Fig. 9.6: Router Specific inductiveNoise for Modular 3× 3 Model

62

CHAPTER 10

CONCLUSIONS

Better modeling of NoC systems will aid in resolving the challenges currently facing

their advancement. Formally modeling and verifying such systems probabilistically will

further help to develop a better understanding of characteristics such as PSN, and provide

quantitative guarantees to aid in the validation of NoC design and behavior.

Having a modularized design will greatly assist in the development of such systems by

providing a scalable architecture which can be customized to a range of applications. This

work contributes to the advancement of this goal, by producing a probabilistic modular

NoC model for the verification of PSN properties. The architecture of this model has been

verified, through formal properties which ensure that its behavior is in line with previous

NoC attributes.

The modular model developed in this work was used to demonstrate its scalability. This

resulted in the collection of PSN data under synthetic uniform distribution traffic patters,

for both the entire model, and the individual routers. Results showed that the probability of

PSN properties is not uniform, and is additionally biased by the implementing X-Y routing.

Future research includes implementing an NoC for simulating flit generation actually

found in existing applications, as opposed to using the synthetic uniform distribution traffic

pattern used in this and previous work. This would open the door for more customized

results, tailored to specific applications. Research opportunities also exist for automat-

ing the comparative verification process. This would allow for a scripted process to track

down the source of discrepancies between models swiftly and accurately, speeding up NoC

verification. Additionally, the opportunity exists to create tools for automating model con-

version into physical hardware designs. The ability to generate hardware (e.g. schematics

or VHDL), from formal models would greatly improve NoC production, by reducing time

spent in development, and mitigating human error.

63

REFERENCES

[1] J.-J. Lecler and G. Baillieu, “Application driven network-on-chip architecture explo-
ration and refinement for a complex SoC,” Design Autom. for Emb. Sys., vol. 15, pp.
133–158, 06 2011.

[2] Tsai, Lan, Hu, and Chen, “Networks on chips: Structure and design methodologies,”
vol. 2012, 2012.

[3] P. Royannez, H. Mair, F. Dahan, M. Wagner, M. Streeter, L. Bouetel, J. Blasquez,
H. Clasen, G. Semino, J. Dong, D. Scott, B. Pitts, C. Raibaut, and U. Ko, “90nm
low leakage SoC design techniques for wireless applications,” in ISSCC. 2005 IEEE
International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005,
pp. 138–589 Vol. 1.

[4] N. K. R. Becchu, V. M. Harishchandra, and N. K. Yernad Balachandra,
“System level fault-tolerance core mapping and FPGA-based verification of
NoC,” Microelectronics Journal, vol. 70, pp. 16–26, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026269217302884

[5] S. Y. Jiang, G. Luo, Y. Liu, S. S. Jiang, and X. T. Li, “Fault-tolerant routing algo-
rithm simulation and hardware verification of NoC,” IEEE Transactions on Applied
Superconductivity, vol. 24, no. 5, pp. 1–5, 2014.

[6] J. Müller, M. R. Fadiheh, A. L. D. Antón, T. Eisenbarth, D. Stoffel, and W. Kunz, “A
formal approach to confidentiality verification in SoCs at the register transfer level,”
in 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 991–996.

[7] R. Roberts, B. Lewis, A. Hartmanns, P. Basu, S. Roy, K. Chakraborty, and Z. Zhang,
“Probabilistic verification for reliability of a two-by-two network-on-chip system,” in
Formal Methods for Industrial Critical Systems, A. Lluch Lafuente and A. Mavridou,
Eds. Cham: Springer International Publishing, 2021, pp. 232–248.

[8] B. Lewis, A. Hartmanns, P. Basu, R. Jayashankara Shridevi, K. Chakraborty, S. Roy,
and Z. Zhang, “Probabilistic verification for reliable network-on-chip system design,”
in Formal Methods for Industrial Critical Systems, K. G. Larsen and T. Willemse, Eds.
Cham: Springer International Publishing, 2019, pp. 110–126.

[9] L. Taylor and Z. Zhang, “Scaling up livelock verification for network-on-chip routing al-
gorithms,” in Verification, Model Checking, and Abstract Interpretation, B. Finkbeiner
and T. Wies, Eds. Cham: Springer International Publishing, 2022, pp. 378–399.

[10] R. Salamat, M. Khayambashi, M. Ebrahimi, and N. Bagherzadeh, “A resilient rout-
ing algorithm with formal reliability analysis for partially connected 3D-NoCs,” IEEE
Transactions on Computers, vol. 65, no. 11, pp. 3265–3279, 2016.

https://www.sciencedirect.com/science/article/pii/S0026269217302884

64

[11] J. Sepulveda, D. Aboul-Hassan, G. Sigl, B. Becker, and M. Sauer, “Towards the formal
verification of security properties of a network-on-chip router,” in 2018 IEEE 23rd
European Test Symposium (ETS), 2018, pp. 1–6.

[12] L. Alhubail and N. Bagherzadeh, “Power and performance optimal NoC design for
CPU-GPU architecture using formal models,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019, pp. 634–637.

[13] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, “SPEA2+: Improving the perfor-
mance of the strength pareto evolutionary algorithm 2,” in Parallel Problem Solving
from Nature - PPSN VIII, X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-
Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiňo, A. Kabán, and H.-P. Schwefel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 742–751.

[14] Z. Zhang, W. Serwe, J. Wu, T. Yoneda, H. Zheng, and C. Myers, “An
improved fault-tolerant routing algorithm for a network-on-chip derived with
formal analysis,” Science of Computer Programming, vol. 118, pp. 24–39, 2016,
formal Methods for Industrial Critical Systems (FMICS’2014). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642316000125

[15] C. Glass and L. Ni, “Fault-tolerant wormhole routing in meshes,” in FTCS-23 The
Twenty-Third International Symposium on Fault-Tolerant Computing, 1993, pp. 240–
249.

[16] N. Mediouni and S. Hasnaoui, “Phosphorus: An ultra low footprint and energy con-
sumption 3D NoC architecture,” in 2017 International Conference on Internet of
Things, Embedded Systems and Communications (IINTEC), 2017, pp. 129–133.

[17] J.-P. Katoen, “The probabilistic model checking landscape,” in 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2016, pp. 1–15.

[18] S. Hart, M. Sharir, and A. Pnueli, “Termination of probabilistic concurrent program,”
ACM Trans. Program. Lang. Syst., vol. 5, no. 3, pp. 356–380, jul 1983. [Online].
Available: https://doi.org/10.1145/2166.357214

[19] A. Hartmanns and H. Hermanns, “The modest toolset: An integrated environment for
quantitative modelling and verification,” in Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, ser. Lecture Notes in Computer
Science, E. Ábrahám and K. Havelund, Eds., vol. 8413. Springer, 2014, pp. 593–598.
[Online]. Available: https://doi.org/10.1007/978-3-642-54862-8 51

[20] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585–591.

https://www.sciencedirect.com/science/article/pii/S0167642316000125
https://doi.org/10.1145/2166.357214
https://doi.org/10.1007/978-3-642-54862-8_51

65

[21] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The probabilistic
model checker Storm,” Int. J. Softw. Tools Technol. Transf., vol. 24, no. 4, pp.
589–610, aug 2022. [Online]. Available: https://doi.org/10.1007/s10009-021-00633-z

[22] E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang, “iscasMc: A web-based
probabilistic model checker,” in FM 2014: Formal Methods, C. Jones, P. Pihlajasaari,
and J. Sun, Eds. Cham: Springer International Publishing, 2014, pp. 312–317.

[23] S. Song, J. Sun, Y. Liu, and J. S. Dong, “A model checker for hierarchical probabilistic
real-time systems,” in Computer Aided Verification, P. Madhusudan and S. A. Seshia,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 705–711.

[24] L. Wang and F. Cai, “Reliability analysis for flight control systems using probabilistic
model checking,” in 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS), 2017, pp. 161–164.

[25] M. Lakin, L. Parker, D amd Cardelli, M. Kwiatkowska, and A. Phillips, “Design and
analysis of DNA strand displacement devices using probabilistic model checking,” in
Journal of the Royal Society, Interface Vol. 9. Journal of the Royal Society, Interface,
jan 2012.

[26] M. Kwiatkowska, G. Norman, and D. Parker, “Symmetry reduction for probabilistic
model checking,” in Computer Aided Verification, T. Ball and R. B. Jones, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 234–248.

[27] Christel Baier and Edmund M. Clarke and Vasiliki Hartonas-Garmhausen and M.
Kwiatkowska and Mark Ryan, “Symbolic model checking for probabilistic processes,”
in International Colloquium on Automata, Languages and Programming, 1997.

[28] K. Fisler and M. Y. Vardi, “Bisimulation and model checking,” in Conference on
Correct Hardware Design and Verification Methods, 1999.

[29] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “INFAMY: An infinite-state
Markov model checker,” in International Conference on Computer Aided Verification,
2009.

[30] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers, and Z. Zhang, “STAMINA 2.0: Im-
proving scalability of infinite-state stochastic model checking,” in Verification, Model
Checking, and Abstract Interpretation, B. Finkbeiner and T. Wies, Eds. Cham:
Springer International Publishing, 2022, pp. 319–331.

[31] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of discrete event systems
using acceptance sampling,” in International Conference on Computer Aided Verifica-
tion, 2002.

[32] A. Legay, A. Lukina, L.-M. Traonouez, J. Yang, S. A. Smolka, and R. Grosu, “Statis-
tical model checking,” in Computing and Software Science, 2019.

[33] P. Zuliani, C. Baier, and E. M. Clarke, “Rare-event verification for stochastic
hybrid systems,” in Proceedings of the 15th ACM International Conference on

https://doi.org/10.1007/s10009-021-00633-z

66

Hybrid Systems: Computation and Control, ser. HSCC ’12. New York, NY,
USA: Association for Computing Machinery, 2012, pp. 217–226. [Online]. Available:
https://doi.org/10.1145/2185632.2185665

[34] C. E. Budde, P. R. D’Argenio, A. Hartmanns, and S. Sedwards, “A statistical model
checker for nondeterminism and rare events,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2018, pp.
340–358.

[35] C. E. Budde, P. R. D’Argenio, and A. Hartmanns, “Automated compositional
importance splitting,” Science of Computer Programming, vol. 174, pp. 90–
108, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167642318301503

[36] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic Model Checking. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220–270. [Online]. Available:
https://doi.org/10.1007/978-3-540-72522-0 6

[37] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for Technology
Transfer, vol. 17, no. 4, pp. 397–415, 2015. [Online]. Available: https:
//doi.org/10.1007/s10009-014-0361-y

[38] P. Basu, R. J. Shridevi, K. Chakraborty, and S. Roy, “IcoNoClast: Tackling voltage
noise in the NoC power supply through flow-control and routing algorithms,” IEEE
Trans. VLSI Syst., vol. 25, no. 7, pp. 2035–2044, 2017.

https://doi.org/10.1145/2185632.2185665
https://www.sciencedirect.com/science/article/pii/S0167642318301503
https://www.sciencedirect.com/science/article/pii/S0167642318301503
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y

	Probabilistic Verification for Modular Network-on-Chip Systems
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	NOTATION
	INTRODUCTION
	Contributions
	Thesis Outline

	REVIEW OF LITERATURE
	Formal Verification of NoCs
	Probabilistic Model Checking
	Statistical Model Checking
	Probabilistic Verification of NoCs

	BACKGROUND
	Flit Routing
	Modeling Discrete-time Markov Chains
	LTL Property Specifications
	PCTL Property Specifications
	The Modest Toolset
	Modest Language and Syntax
	Probabilistic Model Checking in Modest
	Statistical Model Checking in Modest
	Modeling PSN Properties in Modest

	MOTIVATION
	MODULAR DESIGN FOR FORMAL NOC MODEL
	NoC Design Implementation
	Flit Generation
	Flit Propagation
	Priority Tracking and Updates
	Noise Tracking

	SCALING OF MODULAR NOC
	Scaling the Modular NoC
	Counting resistiveNoise and inductiveNoise in Scaled Models
	NoC Customization

	FORMAL VERIFICATION OF NOC
	Router Verification
	Inter-Router Verification
	Composed System Verification

	COMPARATIVE CHECKING OF NOC
	RESULTS AND DISCUSSION
	Discussion

	CONCLUSIONS
	REFERENCES

