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ABSTRACT

Deep Learning with Attention Mechanisms in

Breast Ultrasound Image Segmentation and Classification

by

Meng Xu, Doctor of Philosophy

Utah State University, 2023

Major Professor: Xiaojun Qi, Ph.D.
Department: Computer Science

Breast cancer is a great threat to women’s health. Breast ultrasound (BUS) imaging is

commonly used in the early detection of breast cancer as a portable, valuable, and widely

available diagnosis tool. Automated BUS image segmentation and classification can assist

radiologists in making accurate and fast decisions. Deep neural networks have recently been

employed to achieve better image segmentation and classification results than conventional

approaches. In this dissertation, we introduce three different deep learning architectures,

each of which aims to address the drawbacks of their peers and evaluate their performance

in terms of segmentation and classification accuracy on two public BUS datasets. The

first developed method is called a Multi-Scale Self-Attention Network (MSSA-Net), which

can be trained on small datasets to explore relationships between pixels to achieve bet-

ter segmentation accuracy. Specifically, Our MSSA-Net integrates rich local features and

global contextual information at different scales and applies self-attention to multi-scale

feature maps. The second developed method is called a Multi-Task Learning Network with

Context-Oriented Self-Attention (MTL-COSA) to automatically and simultaneously seg-

ment tumors and classify them as benign or malignant. The COSA module incorporates

prior medical knowledge to guide the network to learn contextual relationships for better
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feature representations in BUS images to improve both segmentation and classification per-

formance. The third developed method is called a Regional-Attentive Multi-Task Learning

framework (RMTL-Net), which simultaneously segments tumor regions in BUS images and

classifies tumors into benign or malignant categories. To improve both segmentation and

classification accuracy, we design a Regional Attention (RA) module that employs the seg-

mentation output to automatically guide the classifier to learn important category-sensitive

information in the tumor, peritumoral, and background regions and seamlessly fuse them to

achieve better classification accuracy. We compare the performance of the three proposed

deep learning architectures with state-of-the-art segmentation and classification methods by

conducting extensive experiments on two publicly available BUS datasets, including Dataset

UDIAT and Dataset BUSI.

(99 pages)
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PUBLIC ABSTRACT

Deep Learning with Attention Mechanisms in

Breast Ultrasound Image Segmentation and Classification

Meng Xu

Breast cancer is a great threat to women’s health. Breast ultrasound (BUS) imaging is

commonly used in the early detection of breast cancer as a portable, valuable, and widely

available diagnosis tool. Automated BUS image analysis can assist radiologists in making

accurate and fast decisions. Generally, automated BUS image analysis includes BUS image

segmentation and classification. BUS image segmentation automatically extracts tumor

regions from a BUS image. BUS image classification automatically classifies breast tumors

into benign or malignant categories. Multi-task learning accomplishes segmentation and

classification simultaneously, which makes it more appealing and practical than an either

individual task. Deep neural networks have recently been employed to achieve better image

segmentation and classification results than conventional approaches. In addition, attention

mechanisms are applied to deep neural networks to make them focus on the important parts

of the input to improve the segmentation and classification performance. However, BUS

image segmentation and classification are still challenging due to the lack of public training

data and the high variability of tumors in shape, size, and location.

In this dissertation, we introduce three different deep learning architectures with atten-

tion mechanisms, each of which aims to address the drawbacks of their peers and evaluate

their performance in terms of segmentation and classification accuracy on two public BUS

datasets. First, we propose a Multi-Scale Self-Attention Network (MSSA-Net) for BUS

image segmentation that can be trained on small BUS image datasets. We design a multi-

scale attention mechanism to explore relationships between pixels to improve the feature



vi

representation and achieve better segmentation accuracy. Second, we propose a Multi-

Task Learning Network with Context-Oriented Self-Attention (MTL-COSA) to segment

tumors and classify them as benign or malignant automatically and simultaneously. We

design a COSA attention mechanism that utilizes segmentation outputs to estimate the

tumor boundary, which is treated as prior medical knowledge, to guide the network to learn

contextual relationships for better feature representations to improve both segmentation

and classification accuracy. Third, we propose a Regional-Attentive Multi-Task Learning

framework (RMTL-Net) for simultaneous BUS image segmentation and classification. We

design a regional attention mechanism that employs the segmentation output to guide the

classifier to learn important category-sensitive information in three regions of BUS images

and fuse them to achieve better classification accuracy. We conduct experiments on two

public BUS image datasets to show the superiority of the proposed three methods to sev-

eral state-of-the-art methods for BUS image segmentation, classification, and Multi-task

learning.
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CHAPTER 1

INTRODUCTION

Breast cancer is a significant threat to women’s health and is the most commonly

diagnosed cancer and the leading cause of cancer mortality among women worldwide in

2020. It accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths in women [1]. A forecast

indicates that breast cancer will result in more than 3 million new cases and 1 million

deaths by 2040 [2]. Breast cancer mortality rates are much higher in low- and middle-

income countries than in high-income countries due to the delayed detection and treatment

[3, 4]. Early diagnosis and appropriate treatments can significantly increase survival rates.

Mammography and breast ultrasound (BUS) are two popular screening modalities for early

breast cancer detection. BUS has been commonly used in the early diagnosis of breast

cancer in women of all ages, especially in low- and middle-income countries, because it is

portable, widely available, low-cost, and highly sensitive [5, 6].

Computer-aided-diagnosis (CAD) systems are proposed to help radiologists interpret

BUS images, make a more accurate diagnosis, and reduce their workload [7, 8]. In general,

a CAD system for breast cancer detection includes automated segmentation and classifica-

tion as two primary steps for further processing. BUS image segmentation automatically

extracts tumor regions from a BUS image. Accurate segmentation can assist radiologists

in identifying and locating breast tumors precisely. In addition, it can aid in visualizing

and tracking changes in breast tumors over time, which enables radiologists to easily mon-

itor the progress of breast cancer and the efficacy of treatments. BUS image classification

automatically classifies breast tumors into benign or malignant categories. Multi-task learn-

ing (MTL) simultaneously accomplishes BUS image segmentation and classification, which

makes it more appealing and practical than either individual segmentation or classifica-

tion. Figure 1.1 shows an example of a BUS image, its segmentation ground truth and

classification label, and segmentation and classification results.
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Fig. 1.1: An example of a BUS image, its segmentation ground truth and classification
label, and its segmentation and classification results.

Given a BUS image, a BUS image segmentation/classification/MTL CAD system con-

sists of two major components: (1) a feature extraction module to represent breast tumors

in numerical features and (2) a feature segmentation module to draw the tumor contour,

a feature classification module to predict a benign or malignant tumor, or both. Figure

1.2 shows a high-level diagram of a BUS image segmentation CAD system, a BUS image

classification CAD system, and a BUS image MTL CAD system. First, an input BUS image

is fed into a feature extraction module to extract features that are most relevant to the spe-

cific task for later steps. Next, a trainable segmentation/classification/MTL module uses a

machine learning algorithm to segment the tumor region from the input image, categorize

the input image as benign or malignant, or do both based on extracted features.

Automated analysis of BUS images can help radiologists make efficient diagnoses of

breast cancer. However, it is still challenging due to the lack of public training data and

the high variability of tumors in shape, size, and location [9,10]. Supervised learning CAD

methods for image segmentation and classification require a sufficient number of labeled

training data. The quality of the manual annotation process is a vital factor in determining

the performance of the developed CAD methods. But acquiring labeled data is time-

consuming and labor-intensive, especially for medical images. For example, BUS images

need to be manually labeled by experienced radiologists. For each BUS image, radiologists

need to assess whether there is a tumor, classify the tumor into benign or malignant cate-

gories, identify the tumor regions, and draw the tumor contours using specialized software

tools. The high cost of manual annotation and the need to protect patient privacy lead to
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Fig. 1.2: A high-level representation of (a) a BUS image segmentation CAD system, (b) a
BUS image classification CAD system, and (c) a BUS image MTL CAD system. The input
of three types of CAD systems is a BUS image, and the output is a segmented tumor region
and/or tumor category.

the shortage of high-quality, publicly accessible BUS image datasets for research purposes.

There are only two commonly used high-quality public BUS image datasets, dataset UDI-

AIT [11] and dataset BUSI [12], including only 943 images in total. A few other public

BUS datasets either lack pixel-wise segmentation ground truth of partial or all images or

provide cropped images containing breast tumors at the center with a limited amount of

surrounding background. Therefore, these datasets are not included in our study. The

limited training data makes it more challenging to train a robust CAD method for BUS

image segmentation or classification. In addition, tumors in BUS images exhibit significant

variation in shape, size, and location, making segmentation a daunting task. For example,

Figure 1.3 shows six examples of BUS images from each of the two datasets that contain

benign and malignant tumors, respectively. Red lines delineate tumor regions in various

shapes, sizes, and locations.

In this dissertation, we focus on developing novel deep learning-based CAD methods for

the automated analysis of BUS images. We propose three methods, including a method for

BUS image segmentation and two MTL methods for simultaneous BUS image segmentation

and classification. The remainder of this dissertation is organized as follows: Chapter 2

provides the background of deep learning and attention mechanism and introduces related
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Fig. 1.3: Illustration of BUS images containing benign tumors (the first three columns)
and malignant tumors (the last three columns). The first row shows images from dataset
UDIAT and the second row shows images from dataset BUSI.

works of BUS image segmentation, classification, and MTL performing segmentation and

classification tasks at the same time. Chapters 3, 4, and 5 introduce our proposed MSSA-

Net, MTL-COSA, and RMTL-Net, respectively. Chapter 6 presents datasets, evaluation

metrics, segmentation and classification results of the proposed three methods on two public

BUS datasets, and their comparison with the state-of-the-art methods. Chapter 7 presents

the comparison between the three proposed methods and discusses the advantages, potential

usefulness, limitations, and future work of the proposed methods. Chapter 8 draws a

conclusion. To reduce the notations and increase the readability, notations in each chapter

are only applicable within the chapter itself.



CHAPTER 2

RELATED WORKS

2.1 Deep Learning

Deep learning is a subfield of machine learning that uses artificial neural networks

to solve problems in various fields, such as computer vision, natural language processing,

speech recognition, and robotics. Compared to traditional machine learning algorithms,

deep learning algorithms tend to have better performance on complex tasks, more efficient

feature engineering, and more flexibility and scalability [13–15]. For example, deep learning

models can better fit complex non-linear patterns, which makes them work better on com-

plex tasks (e.g., image recognition, scene understanding, object tracking, etc.) in the real

world. In addition, deep learning models automatically extract the most relevant features

from the input data without or with little human involvement. They can further handle

a wide range of data types and large volumes of data. Deep learning algorithms can be

categorized into three main types: supervised learning, unsupervised learning, and semi-

supervised learning [16]. Supervised learning requires all training data to be labeled to train

a model, while unsupervised learning does not require training data to be labeled to train

a model. Semi-supervised learning uses some labeled training data and some unlabeled

training data to train a model.

In this dissertation, we focus on developing supervised deep learning-based architec-

tures for Breast UltraSound (BUS) image segmentation and classification. In this section,

we introduce the relevant mathematical background of deep learning used in our work.

Specifically, we provide a comprehensive overview of the fundamental concepts in super-

vised learning, loss function, optimization, and Convolutional Neural Networks (CNNs) to

build a BUS image segmentation and classification system.
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2.1.1 Supervised Learning

In supervised learning, the model is trained on a labeled dataset, where each input is

paired with an output. We call the output a ”label” or ”ground truth,” the true answer

to the problem. A supervised learning model learns a pattern (function) that maps from

the input to the output during training. The trained model then makes predictions for new

input based on the pattern it has learned from the labeled dataset. Following [17], given a

training dataset of input-output pairs {(x1, y1), (x2, y2), ..., (xN , yN )}, a supervised learning

problem can be formulated as

f : X → Y (2.1)

where X = {x1, x2, ..., xN} is the input space and Y = {y1, y2, ..., yN} is the output space.

Each input-output pair was generated by an unknown function yi = f(xi), where i ∈

{1, ..., N} and N is the number of input (i.e., training data). The goal of a supervised

learning problem is to find a function h that approximates the function f . The function h

is called a hypothesis that is drawn from a hypothesis space H of possible functions. We

call the learned function h a trained model of the training data. For each input xi in the

input space, the model makes a prediction ŷi = h(xi). We cannot expect an exact match

between h and f , but we hope they are as close enough so that the model can make an

accurate prediction ŷi ≈ yi for any input. More formally, we find a best-fit function h in

the space H of possible functions by minimizing a loss function L(ŷi, yi) over all samples in

the training dataset:

h⋆ = argmin
h∈H

1

N

N∑
i=1

L(yi, h(xi)) (2.2)

where L(yi, h(xi)) measures the difference between the predicted value ŷi = h(xi) and the

actual value yi. The function h⋆ is the best-fit function we are looking for.

For BUS image segmentation and classification, the input is a set of N BUS images

X = {x1, x2, ..., xN}. The label of BUS image classification is Ycls = {y1, y2, ..., yN}, where

each yi is either benign or malignant. For BUS image segmentation, each pixel of a BUS

image is a training sample. In other words, segmentation is a pixel-wise classification.
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The ground truth of BUS image segmentation is a binary image of the same size as the

input, where 0 represents a background pixel and 1 represents a tumor pixel, i.e., Yseg =

{y1,j , y2,j , ..., yN,j}, where j ∈ {1, ...,M} and M is the total number of pixels in a BUS

image. Training a robust deep learning-based, supervised learning model needs a large

amount of training data. For BUS image segmentation, our two small-size datasets are

sufficient because each pixel is a training sample. However, they are insufficient for training

a classification model. To solve the problem, we propose to do Multi-Task Learning (MTL)

of BUS image segmentation and classification. Training an MTL model for multiple tasks

can help reduce the amount of data required for each individual task and can lead to better

performance on all tasks. MTL helps to improve the efficiency of learning by feature sharing

between tasks. In an MTL model consisting of a segmentation network and a classification

network, the classification network takes advantage of shared features learned from the

segmentation network and therefore achieves better classification results than a single-task

classification network. For an MTL model, the label set includes segmentation ground

truths and classification labels, i.e., YMTL = {(y1, y1,j), (y2, y2,j), ..., (yi, yi,j), ..., (yN , yN,j)},

where i ∈ {1, ..., N} and j ∈ {1, ...,M}.

2.1.2 Loss Function

In deep learning, the loss function quantifies the difference between the predicted values

and the true values, and the goal of training a deep learning model is to minimize this

difference or loss. A good loss function is important because it accurately evaluates the

model’s performance on a task during training and testing. In addition, the loss function

is used to optimize the trainable parameters of the model. A good loss function trains a

model that can make accurate predictions on new input data. In this section, we briefly

introduce three commonly used loss functions in deep learning for computer vision tasks,

including Mean squared error (MSE), binary cross-entropy (BCE), and categorical cross-

entropy (CCE).

The MSE loss is commonly used for image regression tasks. It measures the average

squared difference between the predicted values and true values. Given a set of N training
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samples, the MSE loss is defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2.3)

where yi is the true label and ŷi is the predicted value of the ith training sample. They

are both continuous values in a regression problem. The MSE loss is simple and easy to

interpret. It penalizes large errors more heavily than small errors, which is often desirable

in regression tasks. However, the MSE loss is sensitive to outliers, which makes it heavily

influenced by extreme values in the training data.

The BCE loss is also known as log loss. It is commonly used for binary classification

problems. It measures the difference between the predicted values and true values of a

binary classification task. The BCE loss is defined as:

BCE = − 1

N

N∑
i=1

yi ∗ log ŷi + (1− yi) ∗ log (1− ŷi) (2.4)

where yi is either 0 or 1, representing two categories, and ŷi is a value in the range [0,1],

representing the probability of the ith training sample belonging to a category.

The CCE loss is a popular choice for multi-class classification problems. It is also

known as Softmax loss. Assuming there are C classes, the CCE loss is defined as:

CCE = − 1

N

N∑
i=1

C∑
j=1

yi,j ∗ log ŷi,j (2.5)

where yi,j and ŷi,j are the true label and predicted probability of the ith image that belongs

to the jth class, respectively. Note that yi is a one-hot encoded vector representing the

actual categories, and yi,j is a vector of probability scores in range [0, 1] representing the

predicted categories. For example, yi = [1, 0, 0, 0] means the training sample belongs to

the first category in a four-category classification problem. And ŷi = [0.2, 0.2, 0.4, 0.2] is a

vector of probabilities of the training sample belonging to each category.

The cross-entropy loss is easy to implement and computationally efficient, which makes
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it suitable for large-scale data. In addition, the log operation keeps gradients from varying

too widely, which makes it suitable for gradient-based optimization methods like stochas-

tic gradient descent (SGD). BUS image segmentation is a pixel-wise binary classification

problem, and BUS image classification is a binary classification problem. Considering the

advantages of cross-entropy loss, we adopt the BCE loss as the loss function for both the

segmentation and classification tasks of our three proposed methods.

2.1.3 Optimization

Most deep learning algorithms involve some kind of optimization, which refers to the

task of either minimizing or maximizing a loss function. In deep learning, an optimizer

is an algorithm that updates the parameters of a model in order to minimize the loss

function during training. The goal of the optimizer is to find the optimal values of the

model parameters that result in the lowest loss on the training dataset. Mini-batch SGD

and Adaptive Moment Estimation (Adam) are two commonly used optimizers in computer

vision.

Following [18], suppose we have a function y = h(x) where both x and y are real

numbers. Denote the derivative of this function as h′(x). To reduce h(x), we can move x

in small steps to the direction of −h′(x). We call this technique Gradient Descent (GD).

The GD optimizer iteratively updates the parameters of a deep learning model until the

loss function converges to a minimum or until some other stopping criterion is met. When

h′(x) = 0, the derivative gives no information about which direction to move. Points where

h′(x) = 0 are called critical points. A local minimum is a point where h(x) is smaller than

all neighboring points in a small range of x values. A global minimum is a point where h(x)

is the smallest value for all possible x values. In deep learning, a loss function can have

multiple local minima that are not optimal. It is very difficult to find a global minimum for

all problems, especially when the loss function takes multidimensional inputs. Therefore,

we expect to find a h(x) value that is small enough but not necessarily global minimal for

all possible x values in real-world deep learning problems. In real-world problems like BUS

image segmentation and classification, the loss function takes multi-dimensional inputs. In
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this case, we use a partial derivative ∂
∂xi

h(x) to measure how h changes as xi increases at

point x. A critical point is a point where the gradient ∂
∂xi

h(x) = 0 for all possible xi.

The GD optimizer updates the model parameters using the gradient of the loss func-

tion computed over the entire training dataset in each iteration. It converges smoothly.

However, the computational cost of gradients in one iteration is expensive, especially for

large datasets. To solve this problem, the mini-batch SGD algorithm is proposed to update

the model parameters using the gradient computed over a small subset of the training data.

This leads to more frequent updates and a faster convergence speed, but the loss function

is not as well minimized as in the case of GD. In SGD, the updates of model parameters

may not always go in the optimal direction. But in most cases, the learned model param-

eters are good enough. There are several variants of the SGD optimizer that improves its

performance and convergence, including SGD with momentum [19] and weight decay [20].

GD-based optimizers update the model parameters by taking a step in the direction

of the negative gradient of the loss function with respect to each parameter in an iterative

manner during training. We use a hyperparameter named learning rate to control the

size of the step that the optimizer takes when updating the model parameters. For the

mini-batch SGD optimizer, the learning rate is fixed and must be chosen by the user.

The Adam optimizer [21] is an extension of SGD that calculates an adaptive learning rate

when updating each parameter based on estimates of the first and second moments of

the gradients. The first and second moments are the mean and variance of the gradients,

respectively. The Adam optimizer is computationally efficient and typically requires little

tuning. It also has faster convergence and better generalization than SGD. We use the

mini-batch SGD optimizer for the first proposed method and use Adam optimizer for the

second and third methods.

2.1.4 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a class of artificial neural networks. CNNs

are most commonly applied to computer vision tasks, such as image segmentation [22],

image classification [23], and object detection [24]. Our proposed methods for BUS image
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segmentation and classification use CNNs to build its learning architecture. In this section,

we briefly introduce several fundamental concepts of CNN related to our works.

Convolutional Layer. A convolutional layer is where a set of filters (or kernels) are

applied to input images or feature maps to generate a new feature map. The parameters of

the filters are to be learned during training. Convolutional Layers of a CNN extract features

from the input and pass the convolved features to the next layers. Figure 2.1 illustrates

how a 3× 3 filter convolves an input of size 5× 5 to produce convolved features. The nine

parameters of the 3× 3 filter are learned throughout the training.

Fig. 2.1: An example of a convolution operation with a 3 × 3 filter and stride of 1. The
filter moves across the input and performs a dot product between the nine weights of the
filter and the nine pixel values in the input. The result of the dot product is a single value
in the output feature map.

Pooling Layer. A pooling Layer always follows a convolutional layer to reduce the

spatial dimension of feature maps while retaining the important features. It reduces the

number of parameters to learn and the computational cost during the training and alleviates

the overfitting problem. In other words, the pooling operation summarises the features in

the input feature map. Commonly used pooling operations include max pooling, average

pooling, stochastic pooling [25], and spatial pyramid pooling [26]. Figure 2.2 shows two

examples of max pooling and average pooling, respectively.

Fully Connected layer. A fully connected layer is also known as a dense layer. It

connects all the neurons in one layer to all neurons in the next layer. A fully connected layer
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Fig. 2.2: An example of a 2 × 2 max pooling operation with a stride of 2. It selects the
maximum value in each 2× 2 region of the input feature map and outputs the single value
for that region. The output feature map is half the size of the input feature map due to the
stride size of 2.

always follows a convolutional layer or a pooling layer. Fully connected layers are usually the

last few layers in a CNN. They convert high-dimension features to low-dimension features,

whose dimension is the same as the number of classes. The value at each dimension gives

the probability of an input belonging to the corresponding class.

In a computer vision task, a typical CNN consists of convolutional layers, pooling

layers, and fully connected layers. It uses convolutional layers to extract features from the

input images, uses pooling layers to reduce the spatial dimension of the extracted features,

and uses fully connected layers to flatten the features and perform image classification or

regression tasks. Figure 2.3 shows an example of a typical CNN for image classification.

2.2 Attention Mechanisms

In artificial neural networks, the attention mechanism is a technique that mimics cog-

nitive attention in humans. It allows neural networks to focus selectively on certain parts

of the input to improve their performance. Attention mechanisms have been commonly

used in different tasks, such as natural language processing and computer vision. Spatial

attention, channel attention, and self-attention are three representative attention mecha-

nisms. Specifically, spatial attention selectively focuses on different regions of an image or

feature map, whereas channel attention selectively focuses on different channels of a feature

map. They assign weights to different regions or channels to make the model focus on the
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Fig. 2.3: An typical CNN for image classification. It consists of multiple convolutional layers
and pooling layers. There may be more convolutional layers and pooling layers before fully
connected layers. The output layer has one neuron for each class and outputs the probability
of an input image belonging to each class.

most relevant regions or channels to get better results. Self-attention can be used in both

spatial attention [27] and channel attention [27, 28] to calculate a set of weights for each

position/channel of the input. Self-attention helps a deep learning model focus on the most

important regions/channels of the input to improve task performance and can be easily

generalized to a wide range of tasks. However, it is computationally expensive and requires

powerful equipment to run. Figure 2.4 illustrates a typical spatial attention module and a

typical channel attention module.

In BUS image segmentation and classification, self-attention and its variants [29–32]

are widely used in neural networks to investigate the importance of features automatically

to improve the results. Some other attention mechanisms including the attention-gated unit

with soft attention mechanism [33], channel attention [34], spatial-channel attention [35],

and global attention upsample [36] have also yielded improved BUS image segmentation or

classification performance. These attention mechanisms enhance the useful regions/chan-

nels and suppress useless regions/channels in BUS image features to get better feature

representation to improve the segmentation and/or classification accuracy.

Two of the three proposed deep learning architectures in this dissertation involve an

extension of the spatial self-attention mechanism. Therefore, we provide a brief introduction

to spatial self-attention in this section following [27, 28]. The spatial self-attention module
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Fig. 2.4: Illustration of (a) a typical spatial attention module and (b) a typical channel
attention module. They take a feature of H × W × C as the input, where H, W , and
C respectively represent the height, width, and channel dimensions, and output a spatial-
weighted or channel-weighted feature map. A softmax operation is used to scale the weights
in the attention map to the range of (0,1).

Fig. 2.5: Illustration of the spatial self-attention mechanism.
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takes convolutional features as the input and enhances their representation capability by

integrating rich contextual information. As shown in Figure 2.5, given a convolutional

feature F ∈ RH×W×C , with H, W , and C respectively representing the height, width, and

channel dimensions, we first use a 1 × 1 convolution to transform F into two new feature

maps X and Y , respectively, where {X,Y } ∈ RH×W×C . Then we reshape X and Y to

RHW×C . A matrix multiplication between the transpose of reshaped X (denoted as Xr)

and reshaped Y (denoted as generates a new feature map in RHW×HW . After that, a

softmax layer is performed on this feature map to generate a normalized attention map

A ∈ RHW×HW :

Aji =
exp(Xr

i · Y r
j )∑M

i=1 exp(X
r
i · Y r

j )
(2.6)

where Aji measures the ith position’s impact on jth position. A large value in A indicates

a high correlation.

On a second branch, we use another 1×1 convolution to transform F into a new feature

map Z ∈ RH×W×C and reshape it into RHW×C . Then we perform a matrix multiplication

between A and reshaped Z (denoted as Zr) to generate a new feature map of size RHW×C

and then reshape it to RH×W×C . Finally, it is multiplied with a learnable parameter µ to

gradually assign appropriate weights to A to generate a weighted attention map as in [28],

which is further added to the input F to generate a weighted feature map W ∈ RH×W×C :

W = µ× reshape(
HW∑
i=1

(AjiZ
r
i )) +Aj (2.7)

where each position of W is a weighted sum of the features across all positions and original

features. Therefore, the output of the self-attention module integrates global contextual

relationships. The similar semantic features achieve mutual gains, which improve intra-class

compact and semantic consistency, therefore improving the segmentation accuracy [27].

2.3 BUS Image Segmentation

BUS image segmentation methods can be classified into semi-automated [37–39] and
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fully automated methods [40, 41] based on human intervention. Fully automated BUS im-

age segmentation is the trend in future BUS CAD systems since it is reproducible and

suitable for large-scale tasks [42]. Deep learning-based fully automated methods have re-

cently gained increased popularity because of its improved accuracy and ability to handle

large and complex data compared to traditional segmentation methods.

U-Net [43] based methods are particularly popular among all deep learning-based fully

automated methods for BUS image segmentation because of their good performance. U-

Net uses skip connections to concatenate feature maps in different resolutions and preserve

fine details to achieve high segmentation accuracy. Many recent segmentation methods

[10, 44–47] are built upon the original U-Net or take advantage of the U-shape encoder-

decoder structure. For example, Wang et al. [10] propose a fusion deep learning network

to address issues of unclear boundaries and large variations in tumors in BUS images. It

uses an encoder to capture the context information, a decoder to localize prediction, and

a core fusion stream path to combine information from the encoder and the decoder. The

fusion stream path takes superpixel images along with the original images as the input

and employs four modules to capture various-sized tumor features, coarse-to-fine features,

precise boundary features, and consistent features, respectively. These four aggregated

feature representations are eventually used for more accurate tumor segmentation. Amiri

et al. [44] propose a two-stage U-Net architecture that uses the same U-Net architecture

for both Region of Interest (ROI) detection and segmentation of BUS images. Specifically,

the first U-Net detects where the tumor exists and extracts the ROI of the tumor. The

bounding box of each tumor contains the ground truth for the first U-Net. The second U-

Net takes the extracted ROI as input and segments the tumor from the ROI. Their results

prove that the first stage helps to improve segmentation results in the second stage. Yan

et al. [47] propose an attention-enhanced U-net with hybrid void convolution to highlight

salient features in BUS images to improve the segmentation accuracy. Specifically, they add

an attention unit to each skip connection of U-Net to make it focus on learning the tumor

area rather than the unnecessary background. They also use hybrid dilated convolution to
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alleviate the “gridding” effect caused by dilated convolution, and to assign the values in the

output feature map using the receptive field region.

2.4 BUS Image Classification

Over recent decades, many methods have been proposed for breast cancer classification.

Traditional machine learning classification methods such as Support Vector Machine (SVM)

[48, 49], K-Nearest Neighbors (KNN) [50], random forest [51, 52], and Gaussian mixture

models [53] have been well studied. For example, Liu et al. [48] employ an SVM on three

edge-based features (i.e., sum of maximum curvature, sum of maximum curvature and peak,

and sum of maximum curvature and standard deviation) extracted from BUS images for

breast cancer classification. Ding et al. [50] propose a multi-instance learning algorithm to

combine local distance and sparseness features and use KNN for classification. Abdel-Nasser

et al. [52] propose to reconstruct a high-resolution image from a set of input BUS images

and then compute ROIs and texture features and finally employ random forests on these

features for classification. Huang et al. [53] propose to employ a deep neural network to

extract features from BUS images, apply principal component analysis to condense extracted

features, and use neutrosophic Gaussian mixture models for classification.

Convolutional neural networks (CNNs) have recently achieved superior performance

compared to traditional machine learning classification methods. Among them, VGG [54],

ResNet [55], and their variants are widely used because the extracted features are efficient

for BUS image classification [56]. VGG is popular due to its good performance and its

simple and uniform architecture, where all convolutional layers use small 3x3 filters and

max-pooling layers to downsample the feature maps. ResNet is designed to alleviate the

vanishing gradient problem in very deep neural networks. It introduces the concept of

residual connections, where the input is added to the output of a residual block to facilitate

the optimization. Many classification methods are based on VGG and ResNet. For example,

Liao et al. [57] adopt a supervised block-based segmentation algorithm to separate tumor

regions from BUS images and then use a VGG-19 to classify segmented tumor regions

as benign or malignant. In the tumor region extraction stage, they divide input images
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into non-overlapping subblocks of the same size for feature extraction. They then use a

SVM to classify the tumors in each subblock, and merge adjacent subblocks of the same

category into one region. They then use a VGG-19 pre-trained on the Image-Net database to

classify segmented tumor regions. Cui et al. [58] propose to use ResNet-34 as the backbone

feature extractor and design a fused network to combine features of the tumor, peritumoral,

and combined-tumoral (combination of tumor and peritumoral) regions to achieve better

classification results. Specifically, they propose an enhanced combined-tumoral module to

enhance the features of the combined-tumoral region, a region fusion module to extract

features of three different regions simultaneously, and a channel attention fusion module to

fuse three-region features adaptively. They apply two enhanced combined-tumoral module

modules between the last three residual blocks of ResNet-34, apply a region fusion module

after the last residual blocks of ResNet-34, and apply a channel attention fusion module

before the prediction to improve the overall classification accuracy.

2.5 Multi-task Learning

Multi-task learning (MTL) for simultaneous BUS segmentation and classification has

recently been extensively studied in the computer vision community. Benign and malignant

breast tumors have different characteristics [59, 60]. For example, benign tumors tend to

be smooth, round, and well-circumscribed, whereas malignant tumors are typically rough

and spiculated. In addition, malignant tumors tend to have spiculated margins and poste-

rior acoustic shadows. Based on these observations, many MTL studies [29, 30, 33, 61, 62]

are proposed to join BUS image segmentation and classification tasks in one network to

encourage feature sharing during training to improve both tasks. These MTL methods are

mostly based on a U-shape structure (i.e.,, an encoder-decoder network for segmentation),

and some of them [29, 30, 33] include attention mechanisms to achieve better classification

performance. For example, Zhou et al. [61] propose an MTL framework for 3D BUS im-

age classification and adopt an iterative feature-refining training strategy to refine features

to highlight tumor regions. Their MTL framework consists of a V-Net for segmentation

and a lightweight multi-scale network for classification. Low-level features capture shape
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and boundary information, whereas high-level features summarize attributes of different

targets for classification. The authors connect and fuse multi-scale feature maps extracted

by different stages of V-Net by using channel-wise global average pooling to improve the

classification performance. Their results demonstrate that MTL outperforms single-task

segmentation and classification. Chowdary et al. [62] propose an MTL framework with a

dense branch to combine multi-scale features from different levels of the network for efficient

classification of BUS images. The segmentation network is a residual U-Net that replaces

each convolutional block of the original U-Net with a residual block. The residual block

has a residual connection that adds the input to the output of the original convolutional

block, which helps with the propagation of information without degradation. The classi-

fication network concatenates features extracted by the last block of the encoder, bridge,

and the first block of the decoder for the final classification. Zhang et al. [33] propose an

MTL framework with soft and hard attention mechanisms to guide the model to pay more

attention to tumor regions to boost classification accuracy. The U-shape segmentation net-

work uses DenseNet121 as its backbone. Multi-scale features extracted by the encoder are

coalesced by attention-gated units and are flattened to obtain a feature vector for better

classification.

2.6 Proposed Methods

In this dissertation, we introduce three deep learning architectures which have been

developed during the course of my Ph.D. journey. One of these architectures is for BUS

image segmentation, and the other two are for simultaneous BUS image segmentation and

classification. Each of the proposed architectures aims to address the drawback of their

peers and improve the performance of their peers in terms of segmentation and classification

accuracy.

We name the single-task segmentation architecture as Multi-Scale Self-Attention Net-

work (MSSA-Net). The proposed MSSA-Net incorporates an MSSA module in a deep

neural network, which uses ResNet-101 as a backbone, to achieve better segmentation re-

sults. This MSSA module combines multi-scale features learned by different convolutional
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blocks to represent the original image at several semantic levels. It integrates both low-level

local spatial and high-level semantic contextual information captured in multi-scale features

to compute contextual relationships.

We name the two multi-task architectures as Context-Oriented Self-Attention (MTL-

COSA) and regional-attentive multi-task learning framework (RMTL-Net). The MTL-

COSA incorporates a COSA module in an MTL deep neural network to achieve better

segmentation and classification results. It utilizes segmentation outputs to automatically

estimate the tumor boundary to learn contextual relationships to improve segmentation and

classification accuracy. The RMTL-Net adopts a similar MTL network architecture as MTL-

COSA but improves its attention module. Specifically, it employs a more effective regional

attention (RA) module to learn corresponding category-sensitive features from three regions

(e.g., tumor, peritumoral, and background regions) in BUS images and investigate their

influence on BUS image segmentation and classification performance.



21

CHAPTER 3

MSSA-NET

3.1 Introduction

BUS image segmentation has been well studied. However, many existing BUS im-

age segmentation methods [63–65] simply utilize learned feature maps to segment tumors

without considering relationships between pixels. To address this shortcoming, researchers

employ self-attention [28] to improve segmentation results by exploring the relationship be-

tween pixels and their context. However, it only computes the impact of a pixel on other

pixels in one feature map, which is insufficient to represent the contextual relationships.

To address the above issues, we propose a novel deep neural network named Multi-Scale

Self-Attention Network (MSSA-Net). Our main contributions are:

• Employing ResNet-101 as the backbone to build MSSA-Net to integrate rich spatial

and high-level semantic information via multi-scale features.

• Designing a novel MSSA module to explore the rich contextual relationships among

pixels in the multi-scale feature maps to boost segmentation performance.

3.2 Architecture Overview of MSSA-Net

The architecture of the proposed MSSA-Net is illustrated in Fig. 3.1. MSSA-Net uses

ResNet-101 as its backbone, which consists of five blocks. We use Ci to denote the output of

one of the five blocks of ResNet-101, where integer i corresponds to a block number ranging

from 1 to 5. It should be noted that Ci contains feature maps of different scales at different

depths, where scales decrease and depth increases with increasing i. To integrate both

local spatial details and high-level semantics, we employ outputs from five blocks to form

a multi-scale feature map F . To maintain local spatial details at the highest resolution,
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Fig. 3.1: An overview of the proposed MSSA-Net.

we resize each low-resolution output (e.g., C2, C3, C4, and C5) to a high-resolution output

with the same dimension as C1 by:

C ′
i = upsample(Ci)&&|C ′

i| = |C1| (3.1)

where i = 2, 3, 4, and 5 and |x| represents the dimension of a feature map x without depth.

We then concatenate all resized outputs to construct a multi-scale feature map F by:

F = C ′
1 ⊕ C ′

2 ⊕ C ′
3 ⊕ C ′

4 ⊕ C ′
5 (3.2)

where ⊕ represents the concatenation operation. Each high resolution C ′
i and the multi-

scale feature map F are individually fed into the proposed MSSA module, which will be

explained in section 3.3, to calculate contextual relationships among pixels and obtain its

weighted feature map Di by:

Di = MSSA(C ′
i, F ) (3.3)
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Starting with D5, we convolve it with a 3 × 3 filter and concatenate the filtered result to

integrate spatial and semantic information obtained from blocks 5 and 4. We repeat the

same operation to combine spatial and semantic information from blocks 4 and 3, blocks 3

and 2, and blocks 2 and 1. A 3× 3 convolution is then applied to U1, followed by bilinear

interpolation and softmax to generate the segmentation result.

3.3 MSSA Module

Self-attention methods [27, 28] have been widely used to compute contextual relation-

ships to better represent features learned by convolutional layers. They take a feature map as

the input and output a weighted feature map containing contextual relationships. However,

this weighted feature map cannot provide sufficient contextual information. Specifically, a

feature map learned by shallow layers contains rich local spatial details while missing high-

level semantics. A feature map learned by deep layers contains rich high-level semantic

information while missing local spatial details.

To address the aforementioned shortcomings, we propose an MSSA module to integrate

both local spatial and high-level semantic contextual information via multi-scale features

learned by different convolutional blocks. The MSSA module takes a multi-scale feature

map F and a resized local feature map C ′
i as inputs and generates a weighted multi-scale

feature map Di that contains contextual relationships among pixels from local spatial and

high-level semantic perspectives.

Fig. 3.2 illustrates the proposed MSSA model. For the input of a feature map C ′
i ∈

RH×W×Ch1 with H, W , and Ch1 respectively representing the height, width, and channel

dimensions and i representing the block number, we use a 1 × 1 convolution to transform

C ′
i into a new feature map Y ∈ RH×W×Ch1/8. We use a ratio of 1/8 to reduce the channel

number to its 1/8 since this ratio has been empirically determined to be optimal [28].

Similarly, for the input of a multi-scale feature map F ∈ RH×W×Ch2 , we use a 1 × 1

convolution to generate a new feature map Z ∈ RH×W×Ch1/8. Since Ch2 is significantly

larger than Ch1, we reduce the channel number of F to Ch1/8 to conserve time and memory

space and enable matrix computations in the next few steps. We then reshape Y to Yr of
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Fig. 3.2: Illustration of the proposed MSSA module.

size (H ×W ) × Ch1/8 and reshape and transpose Z to Zrt of size Ch1/8 × (H ×W ). A

multiplication between Yr and Zrt generates a map of size (H ×W )× (H ×W ). A softmax

is performed on this map to generate a normalized map A, also called the attention map.

In other words, the attention map A is computed by:

A(m,n) =
exp(Yr(m, :) · Zrt(:, n))∑H×W

n=1 exp(Yr(m, :) · Zrt(:, n))
(3.4)

where : is an operator to get all values in a row or a column and A(m,n) represents the

impact of the nth column of Zrt on the mth row of Yr. A large value in A indicates a high

correlation between Yr and Zrt (i.e., between C ′
i and F ).

On a second branch, we use another 1 × 1 convolution to transform C ′
i into a new

feature map X ∈ RH×W×Ch1 and reshape and transpose X to Xrt of size Ch1 × (H ×W ).

We then perform a matrix multiplication between Xrt and A. This result is reshaped to

the size H × W × Ch1 and multiplied with a learnable parameter µ to gradually assign

appropriate weights to A to generate a weighted attention map as in [28], which is further
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added to the input C ′
i to generate a weighted feature map Di ∈ RH×W×Ch1 .

Di(m,n)=µ× reshape((Xrt(m, :) ·A(:, n))) + C ′
i(m,n) (3.5)

where Di(m,n) contains the value of a weighted feature map at location (m,n) and µ is

initialized to 0 to allow the network to rely on cues of the local neighborhood to maximize

learning.
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CHAPTER 4

MTL-COSA

4.1 Introduction

Researchers integrate either attention mechanisms [33, 45] or prior medical knowledge

[41] in deep neural networks to achieve better BUS segmentation and classification results.

Attention mechanisms make networks focus more on the important parts of BUS images

and therefore learn better feature representations and achieve better results. Prior medical

knowledge provides helpful information to guide either segmentation or classification. For

example, Xu et al. [45] design a multi-scale self-attention model to extract rich contextual

relationships, which leads to better segmentation results. Zhang [33] et al. include soft and

hard attention in an MTL network to pay more attention to tumor regions and achieve better

classification results. Huang et al. [41] incorporate prior medical knowledge to correct any

conflicting mistakes. The above three systems achieve better segmentation or classification

results. However, none of these systems involves both attention and prior medical knowledge

and explores the feasibility of bringing the output of one task to the network to guide the

other task. Furthermore, Huang’s system is not an end-to-end model.

To address the above issues, we propose a novel end-to-end MTL framework named

MTL-COSA (COSA stands for Context-Oriented Self-Attention) to incorporate the COSA

module in an MTL deep neural network to achieve better segmentation and classification

results. Our major contributions are:

• Proposing an MTL deep neural network for simultaneous breast tumor classification

and segmentation.

• Adopting the self-attention model [28] to focus more on each of three regions (back-

ground, tumor, and margin) to learn contextual relationships within each region for

better feature representations.
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• Designing a COSAmodule that incorporates prior medical knowledge to achieve better

segmentation and classification.

4.2 Architecture Overview of MTL-COSA

The architecture of the proposed MTL-COSA is illustrated in Fig. 4.1. It consists

of three branches: backbone feature extraction, segmentation, and classification. Segmen-

tation and classification branches use the same feature map extracted by the backbone

to produce segmentation and classification results, respectively. The backbone network is

ResNet-101 [55], which has five convolutional blocks. We use Ci to denote the output of

one of the five blocks, where integer i corresponds to a block number ranging from 1 to 5.

Each Ci is at different scales in different depths, where scales decrease and depths increase

with increasing i.

Fig. 4.1: An overview of the proposed MTL-COSA.

The backbone feature extraction branch performs downsampling operations, and the

segmentation branch performs upsampling operations. These two branches pair together
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to form a U-shape structure. We use Ui to denote an upsampled feature map in the seg-

mentation branch, where i ranges from 1 to 4. Starting with C5, the feature map extracted

by the backbone, we concatenate its upsampled feature map with the feature map C4 to

obtain U4, which integrates local and semantic information from both blocks 5 and 4. We

repeat a similar operation to get U3, U2, and U1. A 3 × 3 convolution is then applied to

U1, followed by bilinear interpolation and softmax layer to generate the final segmentation

result.

The feature map C5 extracted by the backbone feature extraction branch together with

the segmentation output is fed into the proposed COSA module to compute rich contextual

relationships in BUS images and generate a weighted feature vector FW , which is passed to

a fully connected layer to generate the classification result.

The overall loss of MTL-COSA is the weighted sum of the loss of the segmentation

branch Lseg and the loss of the classification branch Lcls.

L = α · Lseg + β · Lcls (4.1)

where α and β are weights of losses from segmentation and classification branches, respec-

tively. α+ β = 1. Cross-entropy is employed to compute both Lseg and Lcls.

4.3 COSA Module

The self-attention mechanism and prior medical knowledge are commonly used in BUS

image segmentation [41, 45]. However, they have not been well studied in the field of

BUS image classification and segmentation. To the best of our knowledge, we are the first

to incorporate the segmentation results into self-attention [28] to simultaneously segment

tumors and classify them as benign or malignant. The segmentation results contain the

shape of extracted tumors, which can be used as the estimated prior medical knowledge, to

guide the proposed MLT-COSA to learn contextual relationships in BUS to better represent

features and therefore achieve better classification and segmentation results.

Fig. 4.2 illustrates the proposed COSA module. It takes the feature map C5 and
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Fig. 4.2: Illustration of the proposed COSA module.

segmentation output as inputs and then outputs a weighted feature vector FW . Following

the findings in [59] that posterior acoustic shadowing in the background region, tumor shape,

and tumor margin are three characteristics to differentiate benign and malignant tumors,

we split the segmentation output into three regions (background, tumor, and margin) to

capture the three vital characteristics. To this end, we apply the Sobel edge detector on

the segmentation result to find the tumor contour. We then use a 5× 5 square structuring

element to perform a dilation operation on the tumor contour to find the inner and outer

boundaries. The tumor region falls within the inner boundary. The margin region falls

between the inner and the outer boundaries. The background region falls outside the

outer boundary. The COSA module employs self-attention to focus on learning contextual

relationships to better represent features in each region without the interference of other

regions.

To facilitate the description of the COSA, we label the dimension of the data at each

step in Fig. 4.2. For the segmentation output of size 256 × 256, three non-overlapping

binary maps X, Y , and Z respectively capture the background, tumor, and margin regions,

where the pink region contains values of 1’s, and the white region contains values of 0’s.

The union of three pink regions is a binary map of size 256× 256 with all 1’s. Region maps

X, Y , and Z are then resized to 8×8 and individually multiplied with C5 to generate three

regional feature maps CX , CY , and CZ , which respectively contain features of background,

tumor, and margin regions. CX , CY , and CZ together with C5 are individually fed into the

self-attention module [28] to compute contextual relationships in the background, tumor,
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and margin regions, respectively. This self-attention module builds upon the module in [45]

to take two inputs and then output an attentive feature map. Attentive feature maps

SX , SY , and SZ produced by the self-attention module are individually fed into a Global

Averaging Pooling (GAP) layer to generate their corresponding feature vectors PX , PY ,

and PZ , which are concatenated to construct a new feature vector F of size 3× 2048. F is

resized to 1 × 2048 × 3 and a 1 × 1 convolution filter is then applied to F to generate FW

of size 1× 2048× 1. Lastly, the final weighted feature FW is resized to 1× 2048.
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CHAPTER 5

RMTL-NET

5.1 Introduction

Recently, several studies have demonstrated that tumor, peritumoral (the tumor-adjacent

area surrounding the tumor), and background regions in BUS images help to improve the

diagnosis accuracy of breast cancer in CAD methods [58, 66–68]. Lee et al. [67] use the

mask R-CNN to extract tumor regions from BUS images and obtain peritumoral regions

via a dilation operation. They then use a deep learning model to train tumor, peritumoral,

and their combined-tumoral regions to predict axillary lymph node (ALN) metastasis sta-

tus, which is important in guiding treatment in breast cancer. Sun et al. [66] build two

models based on tumor, peritumoral, and combined-tumoral regions and compare their

performance to show that peritumoral and combined-tumoral regions achieve significantly

better performance in predicting ALN metastasis in BUS images for both models.

Tumor, peritumoral, and background regions of a BUS image have been further studied

to provide important category-sensitive information to improve the aforementioned meth-

ods to achieve better segmentation or classification results. Specifically, the peritumoral

region in BUS images was discussed in the BUS image classification task [58] and the ALN

metastasis prediction task [66, 67] to further improve their accuracy. Cui et al. [58] use an

encoder-decoder structure to obtain three tumoral regions at different resolutions to extract

tumor features (e.g., component, internal echo, and aspect ratio), peritumoral features (e.g.,

tumor boundary patterns), and background features (e.g., contextual relationships between

the tumor and surrounding tissues). These features lead to higher computational costs but

better classification results. Despite the success of the utilization of three tumoral regions,

they have hardly been employed in simultaneous BUS image segmentation and classifica-

tion. To the best of our knowledge, the research work of Xu et al. [29] is the pioneer in
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this direction. They employ three tumoral regions in a BUS image to improve the MTL

performance. However, their extracted peritumoral region is small, which may not provide

sufficient information for simultaneous BUS image segmentation and classification.

Fig. 5.1: An overview of the proposed RMTL-Net.

To address the shortcomings of the MTL methods, we propose a regional attention

(RA) module to learn corresponding category-sensitive features from three regions (e.g.,

tumor, peritumoral, and background regions) in BUS images and investigate their influence

on MTL. We also apply the proposed RA module to a two-stage MTL framework to demon-

strate its efficacy in BUS image segmentation and classification. The proposed regional-

attentive multi-task learning framework (RMTL-Net) consists of an encoder-decoder net-

work for segmentation and a lightweight network for classification. Both segmentation and

classification share features extracted from the encoder. In addition, the RA module utilizes

the predicted probability maps to guide the classification network to learn weighted region

attentive features for more accurate classification. The overall framework of the proposed

RMTL-Net is illustrated in Fig. 5.1. Our main contributions are summarized as follows:

• Designing a novel MTL framework, named RMTL-Net, for simultaneous tumor seg-

mentation and classification in BUS images.

• Proposing a RA module to improve both segmentation and classification performance.

• Employing the predicted probability maps to automatically guide the classifier to learn

important category-sensitive information in the tumor, peritumoral, and background
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regions.

5.2 Methods

In this section, we first present the proposed pre-processing method to prepare the

training images and their pseudo ground truth images. We then describe the proposed

method in terms of its network architecture and the regional attention (RA) module.

5.2.1 Pre-processing

In the proposed method, all images are resized to 256 × 256 by bilinear interpolation

before being fed into RMTL-Net. Data augmentation techniques are carried out to augment

images during the training process using four transformations: (i) rotation of an angle

between -5 and 5 degrees at the image center, (ii) random flipping horizontally, vertically,

or both, (iii) Gaussian blur, and (iv) Median blur. We perform these four transformations

in the above order on each input BUS image to augment the training images during the

training procedure.

Given a ground truth BUS image that contains the tumor contour, we generate two

pseudo ground truth regions: peritumoral and background regions. First, we employ a

Laplace edge detector on the ground truth image to find the contour of the tumor region.

Second, we dilate the tumor region by 32 pixels and subtract the tumor region from the

dilated result to obtain the peritumoral region. We choose 32 pixels in dilation to ensure

the peritumoral region remains at the lowest resolution when a series of down-sampling

operations take place in RMTL-Net. Third, we treat the remaining region as the background

region. The first three columns in Fig. 5.2 present BUS example images, their ground

truth tumor region labeled by radiologists and their pseudo ground truth peritumoral and

background regions produced by the proposed pre-processing method, and three regions

as shown on the original images. An image containing the ground truth tumor region,

the pseudo ground truth peritumoral region, and the pseudo ground truth background

region is further used during the training process to learn the boundaries delineating tumor,

peritumoral, and background.
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Fig. 5.2: Illustration of two examples of BUS images, their ground truth and pseudo ground
truth regions, and three probability maps generated by the proposed RMTL-Net. First
column: Original BUS images with a benign tumor shown at the top row and a malignant
tumor shown at the bottom row. Second column: Pseudo ground truth regions produced
by the proposed pre-processing method, where the peritumoral region is shown in green
and the background region is shown in black. The ground truth tumor region is shown
in red. Third column: Three regions containing category-sensitive information overlaid on
the original image, where the tumor region is within the red line, the peritumoral region is
between green and red lines, and the background region is outside the green line. Fourth
column: Probability map of the tumor region. Fifth column: Probability map of the
peritumoral region. Sixth column: Probability map of the background region.

5.2.2 Architecture Overview of RMTL-Net

The proposed RMTL-Net improves its peer MTL-COSA [29] from the following five

aspects:

• Unlike MTL-COSA that generates a binary segmentation result, RMTL-Net generates

a binary segmentation result and three probability maps for tumor, peritumoral, and

background regions, respectively.

• Unlike MTL-COSA that uses the contour of segmented tumors to find binary seg-

mentation masks for tumor, peritumoral, and background regions, RMTL-Net uses

probability maps generated from the network to estimate tumor, peritumoral, and

background regions in BUS images and feed them as estimated prior medical knowl-

edge into the RA module to guide the classification task.

• Unlike MTL-COSA that extracts the peritumoral region by dilating the segmented

tumor boundary, RMTL-Net is trained to generate respective probability maps for
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tumor, peritumoral, and background regions to gather more detailed categorical in-

formation than the binary masks extracted by MTL-COSA.

• Unlike MTL-COSA whose peritumoral region has a ring area of the width of 5 pixels

evenly covering the background and tumor areas, RMTL-Net extracts a bigger peri-

tumoral region with a ring-like area of the width of 32 pixels outside of the tumor to

provide sufficient information at the lowest resolution to facilitate classification.

• Unlike MTL-COSA that uses self-attention to learn important classification features,

RMTL-Net replaces it with the RA module to significantly reduce network parame-

ters by 14.40% and reduce both training and testing times yet achieve better overall

segmentation and classification performance.

The detailed network architecture of the proposed RMTL-Net is illustrated in Fig. 5.3.

RMTL-Net is a two-stage framework that consists of a segmentation stage and a classifica-

tion stage. The segmentation stage utilizes a U-shape architecture consisting of an encoder,

a decoder, and skip connections to extract multi-scale features and predict three respective

probability maps for tumor, peritumoral, and background regions, as shown in the last three

columns in Fig. 5.2. The classification stage uses shared features extracted from the encoder

and three probability maps generated from the segmentation stage to produce classification

results. Specifically, we use the peritumoral region to capture boundary characteristics,

which are useful to differentiate benign and malignant tumors. We use the tumor region

to capture the shape properties of tumors, which are useful for both tumor segmentation

and classification. We use the background region to capture posterior acoustic shadowing,

which is observed more for malignant lesions and less for benign tumors due to attenuation

of the sonographic signal [59, 69]. Sharing features makes segmentation and classification

promote each other during the training process. In addition, it addresses the problem of

having insufficient training images for classification since each pixel is treated as a labeled

training data for segmentation. Sharing features with the segmentation stage with sufficient

training samples improves the overall accuracy and robustness of the classification stage.
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Fig. 5.3: A detailed illustration of the proposed RMTL-Net.

We use ResNet-101 [55] as the backbone of the segmentation stage of RMTL-Net due

to its great performance in BUS image segmentation and classification [45, 58]. The archi-

tecture of ResNet-101 remains the same. Specifically, the encoder utilizes one convolutional

layer Conv1 together with four residual blocks (Conv2 x to Conv5 x) to perform five down-

sampling operations to extract multi-scale features from input images. Multi-scale features

extracted by Conv1 to Conv5 x are of sizes 128× 128× 64, 64× 64× 256, 32× 32× 512,

16× 16× 1024, and 8× 8× 2048, respectively. The decoder symmetrically utilizes four de-

convolutional blocks (Deconv4 to Deconv1) and one convolutional layer (Conv2) followed

by bilinear interpolation and softmax operations to perform up-sampling operations. Skip

connections between the encoder and decoder combine feature maps in different scales to

compensate for the loss of spatial information during down-sampling operations and to re-

fine segmentation outcomes. As a result, multi-scale features are restored to the original

input size and are further interpreted to predict three probability maps.
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We use three probability maps generated from the segmentation stage of RMTL-Net

and multi-scale high-level features shared by both segmentation and classification stages to

produce classification results.

5.2.3 Regional Attention Module

Unlike classical image classification networks (e.g., VGG [54] and ResNet [55]), we add

a regional attention (RA) model to further encourage information sharing. This RA model

outputs a weighted feature vector of size 1× 2048 that is passed to a fully connected layer

to generate more accurate classification results.

We observe benign and malignant tumors exhibit different characteristics. For example,

benign tumors tend to be smooth and round, and malignant tumors are always rough with

an aspect ratio of greater than 1 [59,60]. Benign tumors tend to have smooth, thin, and reg-

ular margins, and malignant tumors tend to have spiculated, thick, and irregular margins.

Benign tumors tend to have less posterior acoustic shadowing in the background region than

malignant lesions. As a result, we propose to utilize tumor, peritumoral, and background

regions to learn their inherently important characteristics, including tumor features (e.g.,

component, internal echo, and aspect ratio), tumor boundary patterns (e.g., smoothness,

shape, and contextual texture between tumor and surrounding tissues), and background

features (posterior acoustic shadowing) [59, 68] to help with the joint segmentation and

classification tasks. In addition, we propose to include a RA module in the classification

stage of the RMTL-Net to encourage information sharing and output a weighted feature

vector to facilitate classification. This RA module combines multi-scale high-level features

with three probability maps generated from the segmentation stage to guide the learning of

category-sensitive features from three regions, namely, tumor, peritumoral, and background

regions. Category-sensitive features are represented as a weighted feature vector, which is

passed to a fully connected layer to generate more accurate classification results. Fig. 1.3

shows six examples of BUS images that contain benign and malignant tumors, respectively.

Tumor regions with high variability in shape, size, and location are delineated by red lines.

When using these images as training images, we generate their pseudo ground truth peritu-
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moral and background regions using the pre-processing method explained in Section 5.2.1.

When using these images as testing images, RMTL-Net predicts their probability maps, as

shown in Fig. 5.2.

The structure diagram of the proposed RA module is shown in Fig. 5.4. The algorith-

mic view of the RA module is summarized below:

Fig. 5.4: An overview of the proposed Regional Attention (RA) module.

Input: C5 (the feature map of size 8× 8× 2048 extracted by Conv5 x of the encoder)

and P (the probability map of size 256× 256× 3 generated by the last convolutional layer

Conv2 of the decoder).

Output: A weighted feature map FW of size 1× 2048.

1. Split P into three probability maps PT , PP , and PB of size 256×256, where subscripts

T , P , and B represent tumor, peritumoral, and background, respectively.

2. Employ the nearest neighbor method to resize PT , PP , and PB to obtain coarse

probability maps P ′
T , P

′
P , and P ′

B of size 8× 8.

3. Utilize a threshold of 0.5 to filter coarse probability maps P ′
T , P

′
P , and P ′

B to obtain

three noise-free probability maps P ′′
T , P

′′
P , and P ′′

B, respectively. Specifically, values

greater than 0.5 in coarse probability maps are kept intact, and values smaller than
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or equal to 0.5 are set to 0:

P ′′
x = P ′

x > 0.5 ?P ′
x : 0 (5.1)

where subscript x can be replaced with T , P , or B.

4. Individually and elementwisely multiply P ′′
x with each channel of C5 to generate multi-

channel weighted regional feature maps Cx.

Cx = C5 · P ′′
x (5.2)

5. Apply the global average pooling (GAP) on Cx to capture weights of each region in

its corresponding Gx of size 1× 2048:

Gx = GAP (Cx) (5.3)

6. Concatenate GT , GP , and GB to construct a new feature vector F of size 3× 2048:

F = Concatenate(GT , GP , GB) (5.4)

7. Apply a 1× 1 convolution filter to F to generate a weighted feature map FW of size

1× 2048.

FW = f1×1(F ) (5.5)

It should be noted that all non-zero pixels in P ′′
T , P

′′
P , and P ′′

B have high likelihood

values larger than 0.5, which indicate high strength of tumor, peritumoral, and background

features, respectively. We choose 0.5 as the threshold because it classifies a pixel into

one of the three classes. The multiplication of C5 and P ′′
T , P

′′
P , and P ′′

B leads to multi-

channel weighted tumor, peritumoral, and background features CT , CP , and CB. The GAP

operation further finds the features in each channel of CT , CP , and CB to best represent

three respective regions. The concatenation operation followed by the 1 × 1 convolution
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constructs a weighted sum of multi-view features from three parallel channels (i.e., GT ,

GP , and GB), which can be formulated as:

FW = w1 ·GT + w2 ·GP + w3 ·GB (5.6)

where w1, w2, and w3 indicate the importance of tumor, peritumoral, and background re-

gions, respectively. These weights are automatically learned during the training process.

Finally, FW is passed to a fully connected layer followed by a softmax activation function

for automated tumor classification. FW captures the importance of each region for better

feature representation and therefore leads to better classification results than using a non-

weighted feature map (i.e., convolving C5 with a feature vector of 1× 2048). In summary,

the proposed RA module follows the perspectives of radiologists to learn multi-view features

from three regions in BUS images to achieve better segmentation and classification perfor-

mance. Specifically, the tumor region helps to extract the basic features of breast tumors.

The peritumoral region helps to capture tumor boundary patterns. The background region

helps to collect contextual information.

5.2.4 Loss Function

The overall loss of RMTL-Net is computed by the weighted sum of the loss of the

segmentation task Lseg and the loss of the classification task Lcls.

L = λ · Lseg + (1− λ) · Lcls (5.7)

where λ and 1 − λ are contribution weights of losses from segmentation and classification

tasks, respectively. Cross entropy is employed to compute both Lseg and Lcls.

Let K denote the number of classes in a given task, N denote the number of images,

and P denote the number of pixels in an image. In the segmentation task, there are 3

classes representing tumor, peritumoral, and background regions. In other words, K = 3.
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The pixel-wise cross entropy Lseg of the segmentation task is computed as follows:

Lseg = − 1

P

P∑
p

K∑
k

yp,k · log ŷp,k (5.8)

where yp,k and ŷp,k represent the true and predicted probability of pixel p belonging to class

k, respectively. The true probability yp,k is either 0 or 1 since each pixel belongs to one of

the three classes. The predicted probability ŷp,k is in the range of [0, 1].

In the classification task, there are 2 classes representing benign and malignant tumors.

In other words, K = 2. The image-wise cross-entropy Lcls of the classification task is

computed as follows:

Lcls = − 1

N

N∑
n

K∑
k

yn,k · log ŷn,k (5.9)

where yn,k and ŷn,k represent the true and predicted category of image n belonging to class

k, respectively. Both yn,k and ŷn,k are either 0 or 1.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this section, we first introduce two major public datasets in BUS image segmentation

and classification in section 6.1. We then introduce evaluation metrics of BUS segmentation

and classification in section 6.2. We next provide the experimental setup and experimental

results of the proposed MSSA-Net, MTL-COSA, and RMTL-Net in sections 6.3, 6.4, and

6.5, respectively. Each of them is compared with various state-of-the-art BUS segmentation

and classification methods.

6.1 Datasets

Dataset UDIAT [11]: This dataset was collected by the UDIAT Diagnostic Centre

of the Parc Taul´ı Corporation, Sabadell (Spain), using a Siemens ACUSON Sequoia C512

system 17L5 HD linear array transducer (8.5 MHz). It contains 163 BUS images with an

average size of 760 × 570 pixels, where 110 images have benign tumors and 53 images have

malignant tumors. These BUS images are obtained from different female patients, and each

BUS image presents one tumor. Ground truth is generated by experienced radiologists.

Dataset BUSI [12]: This dataset was collected by Baheya Centre for Early Detection

and Treatment of Women’s Cancer, Egypt using LOGIQ E9 ultrasound and LOGIQ E9

Agile ultrasound system. It contains 780 BUS images with an average size of 500 × 500

pixels, where 437 images have benign tumors, 210 images have malignant tumors, and 133

images do not have any tumors. These BUS images are obtained from 600 female patients

between the ages of 25 and 75 years old. We use 647 images with benign or malignant

tumors in this dataset for binary classification in this study. Ground truth is generated by

radiologists from Baheya.

Because the size of dataset UDIAT is small, there is 3% classification performance

differences between multiple runs even if we use five-fold cross-validation to train and test
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on it. To increase the credibility of experimental results, we train all competing methods

on two datasets together and test on two datasets separately. Specifically, for each dataset,

we split the data into five groups, where each group keeps the same proportion of benign

and malignant cases as in the original dataset. In each fold experiment, four groups of

each dataset are combined and used as the training set, and the other group is used as the

testing set. In this study, all experimental results are reported by averaging the five-fold

cross-validation performance.

6.2 Evaluation Metrics

In this section, we introduce evaluation metrics of BUS segmentation and classification

that we used throughout this dissertation. The three proposed methods employ different

metrics depending on their tasks.

We employ commonly-used BUS segmentation metrics [10, 33, 42, 44, 45, 62] including

sensitivity (SEN), specificity (SPE), accuracy (ACC), dice similarity coefficient (DSC), and

intersection over the union of tumor (tumor IoU) to quantitatively evaluate the segmentation

performance. Higher values of these metrics represent better segmentation performance.

Specifically, SEN and SPE measure the ability of a model to correctly identify all tumor

pixels and background pixels in BUS images, respectively; ACC reports the percent of

correctly segmented tumor pixels in BUS images; both DSC and tumor IoU are positively

correlated and measure the spatial overlap between the predicted segmentation result and

ground truth. However, DSC tends to measure the average-case performance and tumor

IoU tends to measure the worst-case performance. FPR⋆ and AER are proposed in [70]

specifically for measuring the ratio of wrongly classified pixels, and the error rate of BUS

segmentation. These metrics are calculated as follows:

SEN =
TP

TP + FN
(6.1)

SPE =
TN

TN + FP
(6.2)
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ACC =
TP + TN

TP + TN + FP + FN
(6.3)

DSC =
2TP

2TP + FP + FN
(6.4)

IoU =
TP

TP + FP + FN
(6.5)

FPR⋆ =
FP

TP + FN
(6.6)

AER =
FN + FP

TP + FN
(6.7)

where TP represents true positives (i.e., the number of true tumor pixels that are correctly

predicted to be tumor pixels), FP represents false positives (i.e., the number of true back-

ground pixels that are wrongly predicted to be tumor pixels), FN represents false negatives

(i.e., the number of true tumor pixels that are wrongly predicted to be background pix-

els), and TN represents true negatives (i.e., the number of true background pixels that are

correctly predicted to be background pixels). Since only two kinds of pixels (tumor and

background) are involved in evaluating the segmentation performance, we consider all the

pixels in the predicted background and peritumoral regions as background pixels and all

the pixels in the predicted tumor region as tumor pixels.

We employ commonly-used BUS classification metrics [33,48,53,58,62] including SEN,

SPE, ACC, precision (PRE), F1-score (F1), and area under receiver operating characteris-

tic curve (AUC) to quantitatively evaluate the classification performance. Higher values of

these metrics represent better classification performance. Specifically, SEN, SPE, and ACC

are computed in the same manner as the segmentation metrics of the same names. However,

TP , TN , FP , and FN are defined differently when evaluating classification. TP and TN

respectively represent the number of BUS images that are correctly predicted as benign

images (i.e., a positive class) and malignant images (i.e., a negative class). FP and FN

respectively represent the number of BUS images that are incorrectly predicted as benign

and malignant images. F1-score is the same as DSC. AUC is a summary of the receiver

operating characteristic (ROC) curve, which shows the performance of a model at all classi-
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fication thresholds. A higher AUC value represents better classification performance. PRE

computes the ratio of correctly predicted positive samples to the total predicted positive

samples. It is computed as follows:

PRE =
TP

TP + FP
(6.8)

6.3 MSSA-Net Results

In this section, we evaluate the performance of the proposed MSSA-Net on the above

two public BUS datasets. All experiments are conducted on Ubuntu 18.04 system, Intel(R)

Xeon(R) CPU E5-2620 2.00 GHz, and two NVIDA GeForce 1080 graphics cards. Input

images and ground truths are resized to 128×128. The Stochastic Gradient Descent (SGD)

optimizer utilizes a learning rate of 0.001, a momentum of 0.99, a batch size of 12, and

epochs of 100. Cross-entropy is employed in the loss function. To ensure a fair comparison,

we set these parameters to be the same for all compared methods. We also employ 10-fold

cross-validation to evaluate the performance of all compared methods on two datasets.

We compare the performance of MSSA-Net with six state-of-the-art deep neural network-

based segmentation methods on two aforementioned datasets. The six compared meth-

ods are U-Net [43] with ResNet-101 as a backbone [55] (denoted as U-ResNet), U-ResNet

with self-attention [28] applied on five blocks (denoted as U-ResNet SA), ResNet-101 [55]

by resizing the output of the 5th block to the input size, FCN8s [71], PSPNet [72], and

Deeplabv3+ [73]. We use five metrics to evaluate segmentation results, including SEN,

FPR, IoU, DSC, and AER.

Table 6.1 summarizes segmentation results of MSSA-Net and six peer methods in terms

of five measures on two datasets. MSSA-Net has the highest SEN, JI, and DSC values

and the lowest FPR⋆ and AER values on Dataset BUSI and therefore achieves the best

performance. Specifically, it improves the second-best method by 2.35%, 1.42%, 1.32%,

2.82%, and 5.67% for SEN, JI, DSC, FPR, and AER, respectively. MSSA-Net achieves the

best performance in terms of JI, DSC, FPR, and AER and a comparable SEN on dataset

BUSI. MSSA-Net also achieves the smallest standard deviation for all five metrics (e.g.,
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Table 6.1: Summary of tumor segmentation results of MSSA-Net and its peer methods (%)

Datasets Methods SEN FPR⋆ IoU DSC AER

Dataset UDIAT

U-ResNet 85.67 24.12 74.70 82.83 38.45
U-ResNet SA 84.32 24.98 74.87 82.85 40.67
ResNet-101 46.52 26.70 37.35 46.77 80.18
FCN8s 77.95 32.98 62.27 72.90 55.03
PSPNet 81.06 23.77 70.65 79.73 42.71
Deeplabv3+ 63.44 76.20 50.57 60.78 112.77
proposed 85.63 19.48 76.05 83.78 33.85

Dataset BUSI

U-ResNet 79.20 34.82 70.59 79.03 55.63
U-ResNet SA 79.02 29.80 70.89 79.60 50.78
ResNet-101 53.30 36.94 44.37 54.20 83.64
FCN8s 78.19 44.94 64.00 74.28 66.75
PSPNet 78.76 33.96 69.79 78.56 55.20
Deeplabv3+ 57.34 44.51 48.12 57.98 87.18
proposed 81.06 28.96 71.90 80.65 47.90

0.21 for SEN, 1.30 for FPR, 0.21 for JI, 0.21 for DSC, and 1.36 for AER). MSSA-Net

and U-ResNet SA, respectively, have 71, 534, 626 and 98, 374, 562 trainable parameters. On

average, it takes 0.031 seconds for MSSA-Net and 0.035 seconds for U-ResNet SA to segment

an image.

Fig. 6.1 compares the performance of MSSA-Net and its five variants on two datasets

in terms of five aforementioned metrics. MSSA-Net involves combined attention layers U5

through U1, while its variants involve some selected attention layers or no attention. Five

variants of MSSA-Net are as follows: V1 for variant 1 without involving attention layers; V2

for variant 2 involving one attention layer U1; V3 for variant 3 involving combined attention

layers U2 and U1; V4 for variant 4 involving combined attention layers U3 through U1;

V5 for variant 5 involving combined attention layers U4 through U1; V6 for the proposed

MSSA-Net. We compute the average values of each metric for two datasets to compare

segmentation performance. Specifically, we present TPR, JI, and DSC results in the left

plot of Fig. 6.1 since larger values indicate better segmentation results and present FPR and

AER results in the right plot of Fig. 6.1 since smaller values indicate better segmentation

results. It clearly shows that MSSA-Net yields the largest TPR, JI, and DSC values and
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Fig. 6.1: Comparison of MSSA-Net and its variants in terms of five metrics: TPR, JI, and
DSC (left); FPR and AER (right).

the smallest FPR and AER values. Variant 1 yields the smallest JI and DSC values and the

largest FPR and AER values. With the exception of the TPR metric, JI and DSC values

gradually increase, and FPR and AER values gradually decrease as more attention layers

are employed. In other words, segmentation results gradually improve as more attention

layers are employed.

Fig. 6.2 presents segmentation results of MSSA-Net and six compared methods for one

representative BUS image in Dataset UDIAT (top row) and Dataset BUSI (bottom row).

For the BUS image in Dataset UDIAT containing a small tumor and a large tumor-like

region with a clear contour, Deeplabv3+, PSPNet, ResNet-101, and U-ResNet mistak-

enly segment the tumor-like region and ResNet-101 mistakenly segments the tumor region.

FCN8s and U-ResNet SA segment a single tumor with a JI value of 63.28% and 72.46%,

respectively. MSSA-Net gives a more accurate segmentation result with the highest JI value

of 82.17%. For the BUS image in Dataset BUSI containing one irregular tumor without a

clear contour, MSSA-Net achieves the highest JI and DSC values of 74.43% and 84.68%,

and the lowest AER value of 28.79%. The other six methods fail to segment the tumor

since their JI values are less than 55%, DSC values are less than 70%, and AER values are

larger than 65%.
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Fig. 6.2: Illustration of segmentation results. (a) BUS images; (b) Ground truth; Segmen-
tation results obtained by (c) Deeplabv3+; (d) PSPNet; (e) FCN8s; (f) ResNet-101; (g)
U-ResNet; (h) U-ResNet SA; (i) MSSA-Net.

6.4 MTL-COSA Results

In this section, we evaluate the performance of the proposed MTL-COSA on Dataset

UDIAT and Dataset BUSI. All experiments are conducted on Ubuntu 18.04 system, Intel(R)

Core(TM) CPU i5-11600K 3.9 GHz, and 2 NVIDIA GeForce 1080Ti graphics cards. To

train all networks, Adam optimizer is used with learning rate of 0.0001, momentum β1 of

0.9, momentum β2 of 0.99, and weight decay of 0.0005. The batch size is 12 and the number

of training epochs is 100. All BUS images are resized to 256 × 256 as the input. Weights

of two branches α and β are empirically set to be 0.8 and 0.2, respectively. Other values

significantly reduce the mIoU value of segmentation results.

We compare the proposed MTL-COSA with several state-of-the-art methods in terms

of segmentation and classification accuracy. The compared segmentation methods are U-

shape ResNet-101 [55] (UResNet), Multi-Task Learning (MTL) with a classification branch

added to UResNet, MTL-SA with conventional self-attention [28] added to MTL, and the

proposed MTL-COSA with COSA added to MTL. MTL feeds C5 into a fully connected layer

for classification while passing C5 into U4 to U1 for segmentation. MTL-SA applies self-

attention [28] to C5, and the attentive C5 is used to generate classification and segmentation

results in the same way as MTL. The compared classification methods are VGG-16 [54],

LeNet [74], ResNet-101, MTL, MTL-SA, and MLT-COSA.

Table 6.2 summarizes the segmentation results of all compared methods on each dataset

in terms of segmentation metrics SEN, FPR⋆, mIoU, DSC, and AER. Note that mIoU rep-
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resents the mean value of IoU of the tumor and background regions in this work. The

Single Task (ST) segmentation network, UResNet, achieves better SEN, mIoU, and DSC

values than all MTL methods on both datasets. It is reasonable because adding a classi-

fication branch to UResNet leads to a weight reduction of the segmentation branch in the

loss function. This reduction is determined by α in Eq. (4.1), with smaller α leading to

more weight reduction in segmentation and therefore leading to worse segmentation results.

Among three MTL methods, MTL-COSA achieves the highest mIoU of 85.87%, the highest

DSC of 81.82%, and the lowest AER of 34.97% on Dataset UDIAT. Among three MTL

methods, MTL-COSA outperforms the other two methods in all five metrics on Dataset

BUSI. Overall, MTL-COSA achieves the best segmentation performance on both datasets

compared to other MTL methods. The segmentation performance is dropped for all MTL

methods when comparing with the ST method since less weight is employed in training to

reduce segmentation error. However, MTL-COSA maintains the smallest drop in segmen-

tation performance due to its integration of both attention mechanisms and prior medical

knowledge.

Table 6.2: Summary of tumor segmentation results of MTL-COSA and its peer methods
(%)

Datasets Methods SEN FPR⋆ mIoU DSC AER

Dataset UDIAT

ST UResNet 84.39 34.03 86.11 82.25 49.64

MT
MTL 82.18 23.03 85.00 79.92 40.85
MTL-SA 78.54 15.50 84.44 78.90 36.96
MTL-COSA 82.17 17.14 85.87 81.82 34.97

Dataset BUSI

ST UResNet 77.09 33.34 82.27 77.63 56.25

MT
MTL 77.52 39.11 81.48 76.38 61.59
MTL-SA 75.28 37.05 81.09 75.61 61.77
MTL-COSA 77.85 37.01 82.13 77.48 59.15

Table 6.3 summarizes classification results of all compared methods on each dataset.

Among the ST classification methods, ResNet achieves the best overall performance. Among

the MTL classification methods, MTL-COSA achieves the best performance in terms of
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FPR, ACC, PRE, and F1 scores. All MTL classification methods achieve better performance

than all ST classification methods in terms of ACC, PRE, and F1 scores. At least one

MTL classification method achieves better performance than all ST classification methods

in terms of SEN and FPR⋆ scores. It is clear that classification results are significantly

improved for MTL methods. Adding a segmentation branch, which has enough training

samples, makes the network learn better feature representations and therefore achieve better

classification results. This improvement surpasses the performance drop caused by the

weight reduction of the segmentation branch in the loss function.

Table 6.3: Summary of tumor classification results of MTL-COSA and its peer methods
(%)

Datasets Methods SEN SPE ACC PRE F1

Dataset UDIAT

ST
VGG-16 85.33 66.73 79.16 84.10 84.60
LeNet 92.73 48.18 77.99 78.26 84.74
ResNet 90.91 70.18 84.09 86.23 88.38

MT
MTL 92.73 68.36 84.69 86.09 88.88
MTL-SA 90.82 74.36 85.34 88.24 89.22
MTL-COSA 91.73 77.64 87.08 89.36 90.41

Dataset BUSI

ST
VGG-16 89.22 79.05 85.92 89.83 89.51
LeNet 90.84 56.67 79.74 81.44 85.81
ResNet 93.56 82.86 90.10 91.90 92.68

MT
MTL 93.57 85.24 90.86 92.98 93.22
MTL-SA 94.27 83.81 90.87 92.39 93.30
MTL-COSA 92.20 90.00 91.48 95.05 93.59

Fig. 6.3 shows ROC curves with values of Area Under the ROC Curve (AUC) for

each method listed in Table 6.3. Among three ST classification methods, ResNet yields

the highest AUC of 0.89 on Dataset UDIAT and 0.96 on Dataset BUSI. Among three

MTL methods, the proposed MTL-COSA achieves the highest AUC of 0.93 on Dataset

UDIAT and 0.97 on Dataset BUSI. The MTL method without attention and prior medical

knowledge achieves the worst classification results on both datasets, which are comparable

with the classification results obtained by the best ST method. It is clear from Table 6.3 and

Figure 6.3 that the COSA module guides the MLT network to utilize the estimated prior
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medical knowledge in the attention mechanism to learn better feature representations and

achieve better classification results and comparable segmentation results than ST methods.

Fig. 6.3: ROC curves of six compared classification methods on Dataset UDIAT (left) and
Dataset BUSI (right).

6.5 RMTL-Net Results

In this section, we introduce all competing methods, evaluate the performance of multi-

task learning with different hyperparameter λ values in equation 5.7, present a detailed

ablation study of the proposed RA module, and evaluate the performance of the proposed

RMTL-Net on Dataset UDIAT and Dataset BUSI.

The implementation of the proposed method is based on the public platform PyTorch

[75]. All experiments are conducted on Ubuntu 18.04 system, Intel(R) Core(TM) CPU

i5-11600K 3.9. All models are trained and tested on a GeForce RTX 3080 Ti graphics card

with 12GB memory using the Adam optimizer with momentum β1 of 0.9, momentum β2

of 0.99, a weight decay of 0.0001, and a learning rate initialized at 0.0001 and decayed at

10% after every 20 epochs. In the training procedure, the batch size is set as 16 and the

number of training epochs is set as 100. Following the empirically optimal setup [55], we

adopt batch normalization right after each convolution and before activation. To reduce
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overfitting, we adopt dropout with a probability of 0.5 in the fully connected layer of the

classification network. The contribution weight of loss from the segmentation task (i.e., λ)

is empirically set to be 0.9. All competing methods, including ResNet, UResNet, MTL-Net,

MTL-COSA, and RMTL-Net models, are pre-trained on ImageNet and fine-tuned with

training images selected from datasets UDIAT and BUSI. In this study, all experimental

results are reported by averaging the five-fold cross-validation performance.

Competing Methods

Table 6.4 briefly summarizes the task nature and enhanced features of the proposed

RMTL-Net and 11 State-Of-The-Art (SOTA) methods. Specifically, we compare RMTL-

Net with three recent single-task classification methods (e.g., VGG-16 [54], ResNet-101 [55],

and DenseNet [76]), four recent single-task segmentation methods (e.g., FCN [71], PSPNet

[72], Deeplab v3+ [73], and U-ResNet), and four recent MTL methods (e.g., MTL-Net,

MTL-COSA [29], SHA-MTL [33], and Residual U-Net [62]). U-ResNet is a U-Net [43] with

ResNet-101 as its backbone. MTL-Net passes features extracted by Conv5 x of U-ResNet

into a GAP layer followed by a fully connected layer for classification. Table 6.4 shows that

some of these compared methods employ feature enhancement strategies such as attention

mechanisms and skip connections to improve segmentation and classification performance.

Multi-Task Learning

All compared multi-task learning (MTL) methods including MTL-Net, MTL-COSA

[29], SHA-MTL [33], Residual U-Net [62], and the proposed RMTL-Net compute their

total loss as the weighted sum of both segmentation and classification losses. In other words,

they use the hyperparameter λ in equation 5.7 to balance segmentation and classification

performance during MTL. In this section, we evaluate the segmentation and classification

performance of RMTL-Net under different λ values. We anticipate observing similar trends

for the other compared multi-task methods since MTL-Net, MTL-COSA, and RMTL-Net

use U-ResNet and others use a similar network as their backbones.

Fig. 6.4 compares the segmentation results of RMTL-Net under five λ values (e.g., 0.1,
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Table 6.4: A brief comparison of 11 SOTA methods and the proposed RMTL-Net

Methods
Tasks Feature Enhancement

Single
Classification

Single
Segmentation

Multi
Task

Attention
Mechanism

Skip
Connection

VGG-16 ✓
DenseNet ✓
ResNet-101 ✓
FCN ✓
PSPNet ✓
Deeplab v3+ ✓ ✓
U-ResNet ✓ ✓
MTL-Net ✓ ✓
MTL-COSA ✓ ✓ ✓
SHA-MTL ✓ ✓ ✓
Residual-U-Net ✓ ✓
RMTL-Net (Proposed) ✓ ✓ ✓

0.3, 0.5, 0.7, and 0.9) on two datasets. We calculate all five segmentation metrics to evaluate

the segmentation results on two datasets under five λ values. It is interesting to observe

that SPE and ACC segmentation metrics yield similar values when using different λ values.

Specifically, SPE oscillates between a range of 98.97% and 99.25% on dataset UDIAT and

between a range of 97.75% and 98.02% on dataset BUSI. Similarly, ACC oscillates between

a range of 98.20% and 98.79% on dataset UDIA and between a range of 94.96% and 96.28%

on dataset BUSI. As a result, we remove SPE and ACC results in Fig. 6.4 to show values of

segmentation metrics SEN, DSC, and IoU, where the narrow bar near the top of each bar

indicates the standard deviation and the values above two selected narrow bars present the

largest and smallest metric values obtained under five λ values in five-fold experiments. It

demonstrates that SEN, DSC, and IoU values increase on both datasets when λ increases,

except for λ = 0.7 on dataset UDIAT.

Fig. 6.5 compares the classification results of RMTL-Net under five λ values (e.g., 0.1,

0.3, 0.5, 0.7, and 0.9) on two datasets. We calculate all six classification metrics to evaluate

the classification results on two datasets under five λ values. We re-scale AUC to the range

of [0, 100] to ensure all classification values are in the same range for easy display and

better understanding. Similar to Fig. 6.4, we use a narrow bar to indicate the standard
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(a) Segmentation performance on UDIAT. (b) Segmentation performance on BUSI.

Fig. 6.4: Segmentation results of RMTL-Net on two datasets under different λ values.

deviation for each metric and present the largest and smallest metric values obtained under

five λ values in five-fold experiments. It is clear that the overall classification performance

of RMTL-Net tends to increase on both datasets when λ increases, except for the SEN

values on both datasets.

RMTL-Net uses predicted probability maps to guide the classification task to learn

better feature representations and achieve better classification results. As a result, accurate

segmentation may lead to a better classifier. Fig. 6.4 and Fig. 6.5 confirm that both

segmentation and classification accuracy tends to improve hand in hand when λ increases.

Therefore, we set λ = 0.9 for RMTL-Net to ensure that more weights are given to the

dominating task in the MTL framework. We also use the same setting for all MTL methods

to ensure a fair comparison.

Ablation Study of RA Module

The regional attention (RA) module is a crucial component of RMTL-Net. It utilizes

predicted probability maps to guide the classification network to learn multi-view features

from tumor, peritumoral, and background regions in BUS images. To validate the effec-

tiveness of the proposed RA module, we conduct a detailed ablation study by combining

information from different region combinations. We list all variants of RMTL-Net below:
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(a) Classification performance on UDIAT.

(b) Classification performance on BUSI.

Fig. 6.5: Classification results of RMTL-Net on two datasets under different λ values.



56

• Variant 1 (MTL-Net): None of the three regions are used.

• Variant 2 (MTL-Net + P): The peritumoral region is used.

• Variant 3 (MTL-Net + T): The tumor region is used.

• Variant 4 (MTL-Net + B): The background region is used.

• Variant 5 (MTL-Net + T + P): The tumor and peritumoral regions are used.

• Variant 6 (MTL-Net + P + B): The peritumoral and background regions are

used.

• Variant 7 (MTL-Net + T + B): The tumor and background regions are used.

• Variant 8 (proposed RMTL-Net): The tumor, peritumoral, and background

regions are used.

For Variant 1, the feature map extracted by Conv5 x of the encoder is directly passed

to a GAP layer followed by a fully connected layer for classification. For Variants 2, 3,

and 4, the weighted regional feature maps CP , CT , and CB are respectively passed to a

GAP layer to obtain a new feature vector GP , GT , and GB of size 1 × 2048, which are

then respectively passed to a fully connected layer for classification. For variants 5, 6, and

7, multi-channel weighted regional feature maps CT and CP , CP and CB, and CT and CB

are respectively passed to a GAP layer and concatenated to obtain a new feature vector

F of 2 × 2048. Their corresponding F is then filtered by a 1 × 1 convolution to get their

associated weighted feature vector Fw of 1× 2048. Lastly, their corresponding Fw is passed

to a fully connected layer for classification.

Tables 6.5 and 6.6 present the segmentation results of eight systems in the ablation

study in terms of SEN, SPE, DSC, ACC, and Tumor IoU on datasets UDIAT and BUSI,

respectively. Tables 6.7 and 6.8 present the classification results of eight systems in the

ablation study in terms of SEN, SPE, PRE, ACC, F1, and AUC on datasets UDIAT and

BUSI, respectively. We observe the following from the results shown in these four tables:
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1. Variant 1, which does not incorporate RA, achieves the worst overall segmentation

performance when compared with the other seven variant systems. It achieves com-

parable overall classification performance as the other seven variant systems.

2. Variant 8, which uses tumor, peritumoral, and background regions in the RA module,

achieves the best overall segmentation and classification performance when compared

with the other seven variant systems.

3. Comparing three variants that use a single region in the RA module, variant 4 involv-

ing the background region achieves the best overall performance. Variant 3 involving

the tumor region achieves the second-best performance. Variant 2 involving peritu-

moral regions achieves the worst performance.

4. Comparing three variants that use two of the three regions in the RA module, variant

7 involving tumor and background regions achieves the best performance. Variant 5

involving tumor and peritumoral regions achieves the worst performance.

Table 6.5: Segmentation performance (Mean ± SD) of ablation study on dataset UDIAT.

Variants SEN SPE DSC ACC Tumor IoU

MTL-Net 84.28 ± 5.05 99.25 ± 0.14 80.95 ± 5.00 98.65 ± 0.38 72.73 ± 5.49

MTL-Net + P 86.52 ± 1.06 99.20 ± 0.23 82.73 ± 2.52 98.68 ± 0.30 74.92 ± 2.86
MTL-Net + T 87.15 ± 2.74 99.23 ± 0.22 84.03 ± 2.91 98.71 ± 0.27 75.84 ± 3.24
MTL-Net + B 88.43 ± 2.99 99.09 ± 0.31 84.48 ± 3.23 98.65 ± 0.18 76.06 ± 3.57

MTL-Net + T + P 87.97 ± 3.07 99.22 ± 0.24 84.21 ± 4.62 98.69 ± 0.29 76.19 ± 5.17
MTL-Net + P + B 88.68 ± 2.29 99.17 ± 0.23 84.61 ± 2.84 98.68 ± 0.21 76.25 ± 3.16
MTL-Net + T + B 87.87 ± 3.76 99.24 ± 0.34 85.09 ± 2.33 98.72 ± 0.29 76.88 ± 2.51

RMTL-Net 89.51 ± 0.91 99.25 ± 0.19 85.69 ± 2.00 98.79 ± 0.24 77.84 ± 2.45

For most BUS images, we observe that the background region has the biggest size

and the peritumoral region has the smallest size. As a result, we assume that the larger

the region, the more information it can provide for both segmentation and classification

tasks. The experimental results shown in Tables 6.5, 6.6, 6.7, and 6.8 seem to support this

assumption. First, either background, tumor, or peritumoral region plays an important

role in the segmentation task since variants 2, 3, and 4 outperform variant 1 without using
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Table 6.6: Segmentation performance (Mean ± SD) of ablation study on dataset BUSI.

Variants SEN SPE DSC ACC Tumor IoU

MTL-Net 78.91 ± 2.22 98.30 ± 0.25 77.76 ± 3.11 96.18 ± 0.15 69.33 ± 2.89

MTL-Net + P 81.02 ± 2.08 98.05 ± 0.58 79.46 ± 2.84 96.25 ± 0.44 71.31 ± 2.82
MTL-Net + T 81.63 ± 1.92 98.08 ± 0.51 79.55 ± 2.04 96.28 ± 0.27 71.31 ± 1.93
MTL-Net + B 81.84 ± 2.71 98.02 ± 0.43 79.53 ± 2.39 96.25 ± 0.21 71.44 ± 2.20

MTL-Net + T + P 81.30 ± 2.43 98.08 ± 0.32 79.64 ± 2.13 96.26 ± 0.20 71.47 ± 1.97
MTL-Net + P + B 81.98 ± 2.25 97.99 ± 0.44 79.79 ± 2.85 96.30 ± 0.24 71.72 ± 2.83
MTL-Net + T + B 81.84 ± 3.26 97.96 ± 0.40 79.91 ± 2.74 96.32 ± 0.30 71.82 ± 2.54

RMTL-Net 82.54 ± 2.31 98.00 ± 0.30 80.04 ± 2.47 96.41 ± 0.27 71.93 ± 2.15

Table 6.7: Classification performance (Mean ± SD) of ablation study on dataset UDIAT.

Variants SEN SPE PRE ACC F1 AUC

MTL-Net 89.96 ± 7.43 74.00 ± 13.63 87.99 ± 5.08 84.69 ± 2.85 88.65 ± 2.39 90.82 ± 6.46

MTL-Net + P 92.64 ± 4.12 68.91 ± 16.22 86.09 ± 6.62 84.73 ± 5.52 89.09 ± 3.79 88.26 ± 9.38
MTL-Net + T 91.73 ± 6.76 72.55 ± 17.96 87.66 ± 6.65 85.34 ± 4.82 89.34 ± 3.37 89.54 ± 8.75
MTL-Net + B 92.68 ± 6.87 70.36 ± 20.71 87.24 ± 7.79 85.30 ± 4.40 89.45 ± 2.81 89.90 ± 7.17

MTL-Net + T + P 93.55 ± 7.65 74.18 ± 07.20 88.10 ± 2.55 87.12 ± 3.94 90.56 ± 3.30 91.28 ± 4.65
MTL-Net + P + B 93.55 ± 6.15 77.82 ± 16.43 90.09 ± 6.65 88.33 ± 4.00 91.50 ± 2.84 91.87 ± 7.09
MTL-Net + T + B 94.50 ± 2.01 79.64 ± 11.81 90.62 ± 4.96 89.58 ± 3.41 92.43 ± 2.27 93.02 ± 6.50

RMTL-Net 96.32 ± 3.82 81.64 ± 16.89 91.94 ± 6.97 91.44 ± 3.90 93.85 ± 2.58 94.63 ± 3.44

Table 6.8: Classification performance (Mean ± SD) of ablation study on dataset BUSI.

Variants SEN SPE PRE ACC F1 AUC

MTL-Net 93.36 ± 2.37 84.67 ± 6.65 92.61 ± 3.18 90.18 ± 3.25 93.07 ± 2.41 96.20 ± 2.08

MTL-Net + P 92.21 ± 1.54 80.48 ± 6.16 90.79 ± 2.79 88.40 ± 2.94 91.49 ± 2.11 93.53 ± 2.49
MTL-Net + T 92.45 ± 0.67 82.38 ± 6.86 91.68 ± 2.99 89.17 ± 2.23 92.04 ± 1.52 94.31 ± 1.15
MTL-Net + B 91.30 ± 1.06 85.24 ± 3.91 92.81 ± 1.76 89.33 ± 1.42 92.04 ± 1.03 94.96 ± 1.56

MTL-Net + T + P 92.41 ± 4.98 83.81 ± 4.88 92.28 ± 2.13 89.63 ± 3.44 92.28 ± 2.67 95.87 ± 1.98
MTL-Net + P + B 91.28 ± 3.89 88.10 ± 4.76 94.13 ± 2.18 90.25 ± 3.01 92.64 ± 2.36 95.89 ± 1.63
MTL-Net + T + B 92.19 ± 3.51 88.10 ± 6.07 94.21 ± 2.76 90.87 ± 3.10 93.15 ± 2.33 95.92 ± 1.22

RMTL-Net 93.34 ± 4.42 86.19 ± 5.68 93.34 ± 2.80 91.02 ± 4.42 93.32 ± 3.35 96.74 ± 1.48
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the RA module in all segmentation metrics. Second, the background region of C5 provides

the most valuable information for both segmentation and classification tasks since variant

4 achieves the best performance among variants involving one region in the RA module.

The tumor region of C5 provides the second most valuable information followed by the

peritumoral region. Third, variants involving two regions in the RA module outperform

variants involving one region in the RA module since a combined larger region provides more

information to facilitate the learning process. Fourth, the variant involving three regions

in the RA module achieves the best performance. Fifth, the weighted feature vector FW ,

which obtains valuable information from multiple regions, better represents BUS images

than C5 without using the RA module.

Comparison with Competing Methods

We implement all compared methods except for SHA-MTL and Residual U-Net and

conduct experiments using the same parameters to ensure a fair comparison. The authors

of SHA-MTL and Residual U-Net did not provide sufficient details on their methods and

did not publish their code either. As a result, we directly use their reported segmentation

and classification results on dataset BUSI in our comparison. We use the symbol of ”—”

to represent a missing result since they did not report their results on each metric. Both

methods did not provide any results on dataset UDIAT. So they are not included when

comparing segmentation and classification results on dataset UDIAT.

Table 6.9 summarizes the segmentation results of RMTL-Net and six methods in terms

of five metrics on the dataset UDIAT. Among four single-task segmentation methods,

Deeplabv3+ achieves the best overall segmentation performance with the highest values

of SEN, DSC, ACC, and tumor IoU. PSPNet achieves the second-best overall segmentation

performance, followed by UResNet and FCN. Among three MTL methods, the proposed

RMTL-Net achieves the best segmentation performance in all metrics except for SPE. It

improves the second-best method MTL-COSA by 2.54%, 1.62%, 0.02%, and 1.79% for SEN,

DSC, ACC, and tumor IoU, respectively.

Table 6.10 summarizes the segmentation results of RMTL-Net and eight methods in
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Table 6.9: Segmentation performance (Mean ± SD) of all compared methods on Dataset
UDIAT.

Methods SEN SPE DSC ACC Tumor IoU

FCN 78.78 ± 6.54 99.08 ± 0.24 76.90 ± 4.69 98.37 ± 0.27 66.49 ± 4.93
PSPNet 83.19 ± 4.60 99.44 ± 0.16 83.08 ± 4.58 98.74 ± 0.31 74.59 ± 5.30
Deeplabv3+ 85.15 ± 3.54 99.34 ± 0.11 83.53 ± 4.28 98.77 ± 0.32 74.60 ± 4.88
UResNet 85.38 ± 3.84 99.20 ± 0.10 81.38 ± 4.86 98.57 ± 0.35 73.08 ± 5.28

MTL-Net 84.28 ± 5.05 99.25 ± 0.14 80.95 ± 5.00 98.65 ± 0.38 72.73 ± 5.49
MTL-COSA 86.97 ± 2.76 99.27 ± 0.25 84.07 ± 3.25 98.77 ± 0.26 76.05 ± 3.71
RMTL-Net 89.51 ± 0.91 99.25 ± 0.19 85.69 ± 2.00 98.79 ± 0.24 77.84 ± 2.45

terms of five metrics on the dataset BUSI. Single-task segmentation methods exhibit sim-

ilar performance trends on dataset BUSI as on dataset UDIAT. The three MTL methods

including MTL-Net, MTL-COSA, and RMTL-Net exhibit similar performance trends on

dataset BUSI as on dataset UDIAT. The proposed RMTL-Net achieves the best overall

segmentation performance and improves the second-best method MTL-COSA by 3.23%,

1.14%, 0.06%, and 1.28% for SEN, DSC, ACC, and tumor IoU, respectively. Two MTL

methods residual-U-Net and SHA-MTL seem to lack credibility since residual-U-Net did

not report its standard deviation values for five runs on all evaluation metrics and SHA-

MTL reported different values for two equivalent metrics DSC and F1 without giving any

explanation. In addition, residual-U-Net seems to have an overfitting issue since its AUC

values of five runs are 0.98, 1, 0.99, 0.97, and 1. As a result, we do not include these two

methods here for comparison and list their results in tables for completeness.

Table 6.10: Segmentation performance (Mean ± SD) of all compared methods on Dataset
BUSI.

Methods SEN SPE DSC ACC Tumor IoU

FCN 78.40 ± 3.33 98.02 ± 0.20 76.87 ± 2.88 96.08 ± 0.12 67.05 ± 2.88
PSPNet 78.28 ± 2.36 98.34 ± 0.28 78.48 ± 2.73 96.31 ± 0.46 70.11 ± 2.51
Deeplabv3+ 80.71 ± 2.40 98.15 ± 0.42 79.14 ± 2.84 96.37 ± 0.31 70.51 ± 3.04
UResNet 79.65 ± 2.16 98.05 ± 0.40 77.98 ± 2.91 96.06 ± 0.18 69.65 ± 2.92

MTL-Net 78.91 ± 2.22 98.30 ± 0.25 77.76 ± 3.11 96.18 ± 0.15 69.33 ± 2.89
MTL-COSA 79.31 ± 2.48 98.31 ± 0.11 78.90 ± 2.03 96.35 ± 0.16 70.65 ± 2.01
SHA-MTL 81.21 ± 4.83 97.36 ± 1.93 81.42 ± 1.53 95.56 ± 1.08 —
Residual-U-Net 86.13 — 84.81 88.08 —
RMTL-Net 82.54 ± 2.31 98.00 ± 0.30 80.04 ± 2.47 96.41 ± 0.27 71.93 ± 2.15
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Table 6.11 summarizes the classification results of RMTL-Net and five methods in

terms of six metrics on the dataset UDIAT. Among three single-task classification methods,

ResNet achieves the best overall classification performance with the highest values of SEN,

ACC, F1, and AUC. DenseNet achieves the second-best overall classification performance,

followed by VGG-16. Among three MTL methods, the proposed RMTL-Net achieves the

best classification performance in all metrics. It improves the second-best method MTL-

COSA by 3.68%, 5.82%, 2.83%, 4.36%, 3.34%, and 1.02% for SEN, SPE, PRE, ACC, F1,

and AUC, respectively.

Table 6.11: Classification performance (Mean ± SD) of all compared methods on Dataset
UDIAT.

Methods SEN SPE PRE ACC F1 AUC

VGG16 85.37 ± 4.86 63.09 ± 13.99 82.67 ± 5.49 77.99 ± 4.66 83.85 ± 3.28 86.24 ± 5.03
DenseNet 89.00 ± 2.42 66.73 ± 13.57 84.57 ± 5.62 81.62 ± 5.95 86.69 ± 4.02 86.93 ± 7.49
ResNet 91.69 ± 7.59 64.91 ± 14.65 84.52 ± 4.61 82.80 ± 1.93 87.65 ± 1.63 90.52 ± 5.08

MTL-Net 89.96 ± 7.43 74.00 ± 13.63 87.99 ± 5.08 84.69 ± 2.85 88.65 ± 2.39 90.82 ± 6.46
MTL-COSA 92.64 ± 7.63 75.82 ± 14.02 89.11 ± 5.41 87.08 ± 2.79 90.51 ± 2.29 93.61 ± 4.55
RMTL-Net 96.32 ± 3.82 81.64 ± 16.89 91.94 ± 6.97 91.44 ± 3.90 93.85 ± 2.58 94.63 ± 3.44

Table 6.12 summarizes the classification results of RMTL-Net and seven methods in

terms of six metrics on the dataset BUSI. Single-task classification methods exhibit simi-

lar performance trends on dataset BUSI as on dataset UDIAT. The three MTL methods

including MTL-Net, MTL-COSA, and RMTL-Net exhibit similar performance trends on

dataset BUSI as on dataset UDIAT. The proposed RMTL-Net achieves the second-best

overall classification performance and MTL-COSA outperforms RMTL-Net by a little bit

in all metrics. Due to the lack of credibility, residual U-Net and SHA-MTL are not included

here for comparison and are listed in tables for completeness.

Tables 6.9, 6.10, 6.11, and 6.12 demonstrate that RMTL-Net achieves the best overall

segmentation and classification results on both datasets. It incorporates the RA module

to improve MTL-COSA by learning the importance of three predicted probability maps

representing tumor, peritumoral, and background regions. MTL-COSA incorporates self-

attention to improve MTL-Net by learning the importance of three regions constructed
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Table 6.12: Classification performance (Mean ± SD) of all compared methods on Dataset
BUSI.

Methods SEN SPE PRE ACC F1 AUC

VGG16 93.80 ± 3.32 77.63 ± 3.61 89.71 ± 1.66 88.55 ± 2.86 91.69 ± 2.15 94.59 ± 2.67
DenseNet 94.26 ± 3.73 83.33 ± 5.32 92.23 ± 2.24 90.71 ± 2.42 93.18 ± 1.85 95.66 ± 2.123
ResNet 93.81 ± 2.41 80.95 ± 9.37 91.22 ± 3.93 89.63 ± 3.52 92.45 ± 2.49 95.74 ± 2.201

MTL-Net 93.36 ± 2.37 84.67 ± 6.65 92.61 ± 3.18 90.18 ± 3.25 93.07 ± 2.41 96.20 ± 2.08
MTL-COSA 93.57 ± 4.04 87.14 ± 3.19 93.81 ± 1.52 91.49 ± 3.02 93.66 ± 2.36 96.77 ± 1.57
SHA-MTL 96.13 ± 2.33 89.93 ± 5.59 — 94.12 ± 2.45 92.93 ± 3.31 96.28
Residual-U-Net 98.79 94.65 98.12 97.86 98.45 99.99
RMTL-Net 93.34 ± 4.42 86.19 ± 5.68 93.34 ± 2.80 91.02 ± 3.42 93.32 ± 3.35 96.74 ± 1.48

from the predicted binary segmentation mask. MTL-Net decreases the values of three seg-

mentation metrics including SEN, DSC, and tumor IoU (i.e., decreasing the segmentation

performance) when compared with the best single-task segmentation method UResNet.

This decrease in performance is caused by reduced segmentation weight, which was added

to the classification task. Therefore, less weight is employed in training to reduce segmen-

tation errors. However, incorporating attention to MTL-Net addresses this issue to achieve

comparable or better segmentation results than UResNet and achieve comparable or better

classification results than ResNet.

Table 6.13 lists the number of trainable parameters of all compared methods. It shows

that MTL-Net increases trainable parameters of UResNet by 0.004% via adding a light-

weight classification task. This simple addition utilizes segmentation results to guide the

classification task, which leads to comparable segmentation results as single-task segmenta-

tion methods and better classification results than single-task classification methods. Table

6.13 also shows that both MTL-COSA and RMTL-Net increase the different amounts of

trainable parameters in networks such as ResNet and UResNet by adding attention mod-

ules to learn important regions. RMTL-Net has a simpler attention mechanism than MTL-

COSA and therefore leads to a reduction of 16.8% trainable parameters when compared

with MTL-COSA. It also outperforms MTL-COSA in segmentation on both datasets and

in classification on dataset UDIAT.

Fig. 6.6 presents the segmentation results of RMTL-Net and six compared methods

on four representative BUS images: two in Dataset UDIAT as shown in the top two rows
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Table 6.13: Summary of the number of trainable parameters of all compared methods.

Methods Number of Trainable Parameters

VGG-16 138,357,544
DenseNet 52,166,124
ResNet-101 44,677,034

FCN 134,270,278
PSPNet 70,295,620
Deeplabv3+ 59,339,426
UResNet 93,500,842

MTL-Net 93,504,940
MTL-COSA 109,241,266
SHA-MTL —
Residual U-Net —
RMTL-Net 93,506,099

and two in Dataset BUSI as shown in the bottom two rows. The UDIAT BUS image

on the first row contains a small tumor with an irregular boundary. All methods fail to

predict a clear and accurate tumor boundary. FCN and MTL-Net completely fail to detect

the tumor region. UResNet mistakenly segments a tumor-like region as a tumor. PSPNet,

Deeplabv3+, and MTL-COSA segment a tumor partially overlapping with the ground truth.

They achieve a tumor IoU value of 61.89%, 60.40%, and 69.23%, respectively. RMTL-Net

yields a more accurate segmentation result with the highest IoU value of 76.65%. The

UDIAT BUS image on the second row contains a small tumor. FCN, UResNet, and MTL-

COSA segment a much bigger tumor region than the ground truth and yield a low tumor

IoU value of 35.00%, 31.27%, and 40.98%, respectively. PSPNet, Deeplabv3+, and MTL-

Net achieve better segmentation results with tumor IoU values of 59.42%, 51.01%, and

63.33%, respectively. RMTL-Net achieves the best segmentation result and the highest

tumor IoU value of 81.60%. The BUSI BUS image on the third row contains a small

tumor and a big tumor-like region. All methods except for RMTL-Net mistakenly segment

the tumor-like region as tumor region and therefore yield low tumor IoU values less than

55.00%. RMTL-Net segments the correct tumor region and achieves large values close to

1 in almost all segmentation metrics (i.e., 99.90% for SPE, 94.95% for DSC, 99.84% for

ACC, and 90.39% for IoU). The BUSI BUS image on the last row contains a small tumor
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Fig. 6.6: Illustration of segmentation results. (a) BUS images; (b) Ground truth; Segmenta-
tion results obtained by (c) FCN; (d) PSPNet; (e) Deeplabv3+; (f) UResNet; (g) MTL-Net;
(h) MTL-COSA; (i) RMTL-Net.

with a blurry boundary. This small tumor locates on the right side towards the middle

row. MTL-Net segments a completely wrong tumor region and obtains the lowest IoU

value of 0.00%. FCN, Deeplabv3+, and MTL-COSA segment a partial tumor region and

mistakenly segment another tumor-like region. Their tumor IoU values are 23.56%, 52.04%,

and 32.67%, respectively. PSPNet and UResNet segment a partial tumor region with a low

IoU value of 17.49%, and 32.58%, respectively. RMTL-Net segments the most accurate

tumor region and achieves the largest values on all five segmentation metrics (94.98% for

SEN, 99.91% for SPE, 92.37% for DSC, 99.86% for ACC, and 85.82% for IoU).
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CHAPTER 7

DISCUSSION

7.1 Comparison of the Proposed Methods

In this section, we compare three proposed methods, including MSSA-Net for BUS

image segmentation and MTL-COSA and RMTL-Net for multi-task learning (MTL) of BUS

image segmentation and classification. Specifically, we compare the segmentation results of

MSSA-Net, MTL-COSA, and RMTL-Net and the classification results of MTL-COSA and

RMTL-Net on two publicly available datasets.

Table 7.1 summarizes the segmentation results of the three proposed methods in terms

of five metrics on dataset UDIAT and dataset BUSI. All three methods yield good seg-

mentation accuracy with tumor IoU greater than 74% and 69% on dataset UDIAT and

dataset BUSI, respectively. RMTL-Net achieves the best overall segmentation result on

both datasets, followed by MTL-COSA and MSSA-Net. For the most important segmenta-

tion metric, tumor IoU, RMTL-Net improves MTL-COSA by 1.59% and 1.28% on dataset

UDIAT and dataset BUSI, respectively. RMTL-Net improves MSSA-Net by 3.28% and

2.51% on dataset UDIAT and dataset BUSI, respectively. Two MTL methods outperform

the single-task MSSA-Net, which indicates that the feature sharing between two tasks leads

to improved feature extraction and thus improves the segmentation performance. In ad-

dition, two MTL methods, RMTL-Net and MTL-COSA, have similar backbone network

architectures but different attention modules. RMTL-Net outperforms MTL-COSA, which

indicates the RA module of RMTL-Net outperforms the COSA module of MTL-COSA.

Fig. 7.1 presents segmentation results of MSSA-Net, MTL-COSA, and RMTL-Net for

two representative BUS images in Dataset UDIAT (top two rows) and two representative

BUS images in Dataset BUSI (bottom two rows). For the BUS image on the first row

containing a small tumor with an irregular boundary, all methods fail to predict a clear
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Table 7.1: Segmentation performance (Mean ± SD) of three proposed methods.

Datasets Methods SEN SPE DSC ACC Tumor IoU

UDIAT
MSSA-Net 84.54 ± 2.49 99.25 ± 0.20 82.96 ± 2.11 98.63 ± 0.51 74.56 ± 2.59
MTL-COSA 86.97 ± 2.76 99.27 ± 0.25 84.07 ± 3.25 98.77 ± 0.26 76.05 ± 3.71
RMTL-Net 89.51 ± 0.91 99.25 ± 0.19 85.69 ± 2.00 98.79 ± 0.24 77.84 ± 2.45

BUSI
MSSA-Net 79.22 ± 2.07 97.93 ± 0.47 78.14 ± 2.84 96.19 ± 0.45 69.42 ± 2.75
MTL-COSA 79.31 ± 2.48 98.31 ± 0.11 78.90 ± 2.03 96.35 ± 0.16 70.65 ± 2.01
RMTL-Net 82.54 ± 2.31 98.00 ± 0.30 80.04 ± 2.47 96.41 ± 0.27 71.93 ± 2.15

tumor boundary. MSSA-Net and MTL-COSA yield tumor IoU values of 69.76% and 69.23%,

respectively. RMTL-Net segments the tumor region more accurately with a tumor IoU

value of 76.65%. For the BUS image on the second row containing a small tumor, MTL-

COSA segments a much bigger tumor region than the ground truth and yields a low tumor

IoU value of 40.98%. MSSA-Net segments the tumor region but mistakenly segments a

non-tumor region as well. It yields a higher tumor IoU value of 71.07% than MSSA-

Net. RMTL-Net achieves the best segmentation result and the highest tumor IoU value

of 81.60%. For the BUS image on the third row containing a small tumor and a big

tumor-like region, MTL-COSA mistakenly segments a tumor-like region, yielding the lowest

tumor IoU values of 47.93%. MSSA-Net and RMTL-Net accurately segment the correct

tumor region with high tumor IoU values of 90.35% and 90.39%, respectively. For the BUS

image on the last row containing a small tumor with a blurry boundary, MSSA-Net and

MTL-COSA mistakenly segment the tumor-like region as the tumor and therefore yield low

tumor IoU values of 4.35% and 32.67%, respectively. Overall, RMTL-Net achieves the best

segmentation results on all presented BUS images. The segmentation results indicate that

RMTL-Net can accurately segment tumor regions and ignore tumor-like regions in BUS

images. However, MSSA-Net and MTL-COSA seem to have difficulty differentiating tumor

and tumor-like regions.

Fig. 7.2 shows confusion matrices of ResNet, MTL-COSA, and RMTL-Net on dataset

UDIAT and dataset BUSI for binary BUS classification. In each confusion matrix, the

top-left, top-right, bottom-left, and bottom-right entries represent TN, FP, FN, and TP,

respectively. On dataset UDIAT, RMTL-Net has the highest TP and TN values and the

lowest FP and FN values and therefore achieves the best classification result. On Dataset
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Fig. 7.1: Illustration of segmentation results. The tumor IoU values for each method are
displayed below the segmentation results.

BUSI, MTL-COSA has the highest TN and the second highest TP values and the lowest

FP and the second lowest FN values. Overall, it achieves the best classification result.

cResNet has lower TP and TN values and higher FP and FN values than MTL-COSA and

RMTL-Net on both datasets, which implies that MTL is more efficient than individual BUS

image classification on both datasets.

Table 7.2 summarizes the classification results of ResNet, MTL-COSA, and RMTL-

Net in terms of six metrics on dataset UDIAT and dataset BUSI. ResNet is a single-task

classification network. MTL-COSA and RMTL-Net are MTL networks that use ResNet

as their encoder. The classification results indicate that MTL of BUS image segmentation

and classification is more efficient than individual classification on small datasets. Feature

sharing with the segmentation task, which has sufficient training data, improves the feature

representation and therefore boosts the classification performance. MTL-COSA and RMTL-
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Fig. 7.2: Confusion matrices of ResNet, MTL-COSA, and RMTL-Net on dataset UDIAT
and dataset BUSI for binary BUS classification.

Net both achieve good classification results on two datasets with high SEN, PRE, ACC,

F1, and AUC values, mostly over 90%. RMTL-Net outperforms MTL-COSA on dataset

UDIAT in terms of all metrics. However, MTL-COSA outperforms RMTL-Net on dataset

BUSI in terms of all metrics. One possible reason is that dataset UDIAT and dataset BUSI

have different characteristics. For example, dataset UDIAT may have simpler features that

can be effectively modeled with a simpler CNN such as RMTL-Net. In contrast, dataset

BUSI may have more complex features that require a more complex CNN architecture, such

as MTL-COSA. A similar trend can be found in Table 6.11 and Table 6.12. DenseNet has a

more complex architecture and higher computational cost than ResNet. ResNet outperforms

DenseNet on dataset UDIAT, whereas DenseNet outperforms ResNet on dataset BUSI.

Table 7.2: Classification performance (Mean ± SD) of two multi-task learning methods.

Datasets Methods SEN SPE PRE ACC F1 AUC

UDIAT
ResNet 91.69 ± 7.59 64.91 ± 14.65 84.52 ± 4.61 82.80 ± 1.93 87.65 ± 1.63 90.52 ± 5.08
MTL-COSA 92.64 ± 7.63 75.82 ± 14.02 89.11 ± 5.41 87.08 ± 2.79 90.51 ± 2.29 93.61 ± 4.55
RMTL-Net 96.32 ± 3.82 81.64 ± 16.89 91.94 ± 6.97 91.44 ± 3.90 93.85 ± 2.58 94.63 ± 3.44

BUSI
ResNet 93.81 ± 2.41 80.95 ± 9.37 91.22 ± 3.93 89.63 ± 3.52 92.45 ± 2.49 95.74 ± 2.201
MTL-COSA 93.57 ± 4.04 87.14 ± 3.19 93.81 ± 1.52 91.49 ± 3.02 93.66 ± 2.36 96.77 ± 1.57
RMTL-Net 93.34 ± 4.42 86.19 ± 5.68 93.34 ± 2.80 91.02 ± 3.42 93.32 ± 3.35 96.74 ± 1.48
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Fig. 7.3 shows ROC curves with values of Area Under the ROC Curve (AUC) for

ResNet, MTL-COSA, and RMTL-Net, where AUC values are computed over all BUS images

in each dataset. MTL-COSA and RMTL-Net yield high and nearly the same AUC values

on both datasets. Specifically, MTL-COSA and RMTL-Net yield AUC values of 0.9268

and 0.9283 on dataset UDIAT and AUC values of 0.9662 and 0.9643 on dataset BUSI,

respectively. ResNet achieves the worst AUC values on both datasets. These results further

demonstrate the superiority of MTL over single-task classification. It should be noted that

these AUC values are not equivalent to the AUC values with standard deviation in Table

7.2, which are computed among five folds in the cross-validation process for each dataset.

Fig. 7.3: ROC curves of ResNet, MTL-COSA, and RMTL-Net on Dataset UDIAT (left)
and Dataset BUSI (right).

Fig. 7.4 presents classification results of ResNet, MTL-COSA, and RMTL-Net for three

representative BUS images in Dataset UDIAT (left three columns) and three representative

BUS images in Dataset BUSI (right three columns). For the first and fourth images with

a benign tumor with a clear boundary, three methods all make a correct prediction. The

second and fifth images contain multiple black areas in the background, which makes the

tumor hard to identify. ResNet fails to classify them, whereas MTL-COSA and RMTL-

Net make correct predictions. The tumors in the third and last images are particularly
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hard to identify, even for humans. Unfortunately, all three methods fail to make a correct

prediction.

Fig. 7.4: Illustration of classification results. “B” represents benign, and “M” represents
malignant. Incorrect predictions are highlighted in red.

Table 7.3 lists the number of trainable parameters and training time of three proposed

methods. The training time is for five-fold cross-validation on two datasets. It shows

that MSSA-Net has the least trainable parameters but the longest training time of 18

hours. It employs a spatial self-attention module to improve the feature extraction, which

is computationally expensive because the spatial self-attention is applied to a high-resolution

multi-scale feature map. Two MTL methods have more trainable parameters than MSSA-

Net because they add a classification network to the segmentation network. MTL-COSA

employs a COSA attention module, which applies a spatial self-attention module to a low-

resolution feature map. It takes about 4 hours to train MTL-COSA. RMTL-Net employs a

RA attention module, which does not contain a spatial self-attention module and thus has

fewer parameters to learn. The RA module is more efficient and much less computationally

expensive. It takes only about 3 hours to train and achieves the best overall segmentation

and classification results on both datasets.

7.2 Advantages and Potential Usefulness

The advantages and potential usefulness of the proposed three methods are summarized

below:
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Table 7.3: Summary of the number of trainable parameters and training time of three
proposed methods.

Methods Trainable Parameters Training Time

MSSA-Net 89,515,791 ≈ 18h
MTL-COSA 109,241,266 ≈ 4h
RMTL-Net 93,506,099 ≈ 3h

1. MSSA-Net improves the original self-attention module by making it take two different

inputs to fuse more information. Specifically, one input is a high-level feature map

extracted by the deepest layer of the network, and the other input is a multi-scale

feature map that is the concatenation of feature maps in different resolutions. The

improved self-attention module improves the segmentation performance with a rela-

tively high computational cost compared to the original self-attention module. It can

be easily applied to any deep neural network for BUS image segmentation.

2. MTL-COSA performs simultaneous BUS image segmentation and classification by

adding a classification branch to U-ResNet. It also proposes a more lightweight and

effective COSA module to improve both segmentation and classification performance.

3. RMTL-Net simultaneously performs segmentation and classification by utilizing pre-

dicted probability maps to guide the classification task to focus on regions of different

importance. It also proposes a more lightweight and effective RA module to improve

both segmentation and classification performance.

4. RMTL-Net incorporates a three-region-based attention module (i.e., RA module) to

automatically assign appropriate weights to tumor, peritumoral, and background re-

gions during the training procedure. The learned weights help to find regions of

importance for better feature representations and therefore improve both the segmen-

tation and classification performance of an MTL method. The RA module aligns

well with doctors’ clinical perspectives on the importance of tumor, peritumoral, and

background regions. The proposed RA module can be easily applied to any existing
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MTL methods to incorporate prior medical knowledge into the attention model to

improve the performance of multiple tasks.

5. The proposed COSA module and RA module can be easily applied to any MTL

network. Our study clearly shows that adding a lightweight classification branch

on most existing segmentation methods, at least U-Net-based ones (e.g., UResNet),

increases very few parameters but yields both good segmentation and classification

results.

6. The study of MTL-COSA and RMTL-Net proves that MTL can achieve better clas-

sification results than a standalone classification network on a dataset with a limited

number of images. Sharing features with the segmentation task, which has enough

training data, can compensate for the lack of training data for the classification task.

7. From a clinical perspective, simultaneous BUS image segmentation and classification

are more practical and appealing than single segmentation and classification tasks, as

they can provide both tumor boundary as well as tumor category. As a result, MTL

in BUS image segmentation and classification is a promising direction that is worthy

of more exploration.

7.3 Limitation and Future Work

Our proposed methods have some limitations, as summarized below:

1. MSSA-Net has a high computational cost because it uses a high-resolution multi-scale

feature map and a self-attention module.

2. MTL-COSA extracts a small tumor margin region of BUS images, which is not enough

to provide the needed information from the peritumoral regions of BUS images.

3. RMTL-Net requires a pre-processing step to generate pseudo ground truths of peri-

tumoral and background regions, which are indispensable in the training procedure

to help the network to learn and produce three regions in any test images.
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4. The effectiveness of the COSA module and the RA module has not been thoroughly

evaluated by comparing them with other traditional spatial or channel attention mod-

ules.

5. We do not have a separate testing set and use five-fold cross-validation to have every

BUS image in the dataset validated and tested due to the limited number of public

BUS images.

In the future, we will test the three proposed methods on larger nuclei segmentation and

classification datasets and explore more strategies to improve their generalization ability.

We will also compare the proposed COSA module and RA module with more recent spatial

and channel attention modules to not only validate its effectiveness but also find a new

perspective to improve it.
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CHAPTER 8

CONCLUSIONS

In this dissertation, we introduced three different methods for BUS image segmenta-

tion and classification and compared their performance with recent state-of-the-art meth-

ods. Each of the proposed methods aims to address some of the drawbacks of their peers.

Specifically, we can summarize the strategy and performance of each proposed method as

follows:

• We propose a novel MSSA-Net for BUS image segmentation. It integrates rich spa-

tial and high-level semantic information via multi-scale feature maps and designs an

MSSA mechanism to explore the rich contextual relationships among pixels to boost

segmentation performance. MSSA-Net outperforms six state-of-the-art deep neural

network-based methods in terms of FPR, JI, DSC, and AER and achieves a compa-

rable performance in TPR on two public datasets.

• We propose a novel MTL-COSA network for simultaneous BUS image segmentation

and binary classification. The COSA module utilizes the segmentation output to

gain estimated prior medical knowledge and use it to learn contextual relationships

for better feature representations in BUS images. MTL-COSA achieves significant

classification improvement and comparable segmentation performance on two datasets

compared to other state-of-the-art deep learning-based methods.

• We propose a novel RMTL-Net for simultaneous BUS image segmentation and clas-

sification. It adopts ResNet-101 as the backbone feature extractor and utilizes a RA

module to automatically learn weighted useful information from the tumor, peritu-

moral, and background regions in BUS images for better segmentation and classifi-

cation performance. We conduct extensive experiments on two public BUS datasets
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UDIAT and BUSI, and the results show that RMTL-Net outperforms recent state-of-

the-art single-task segmentation and classification methods and most MTL methods

on two datasets.

The contributions of our work include:

• We propose three novel deep learning architectures, including MSSA-Net for BUS

image segmentation and MTL-COSA and RMTL-Net for multi-task learning (MTL)

of BUS image segmentation and classification.

• We propose three attention modules, including the MSSA module to improve segmen-

tation performance and COSA module and RA module to improve both the segmen-

tation and classification performance of MTL. The proposed three attention modules

can be easily applied to any existing BUS image segmentation and MTL methods to

improve their performance.

• We evaluate the performance of the three proposed deep learning architectures with

attention modules on two public BUS image datasets in terms of several commonly

used evaluation metrics. The proposed three methods all outperform recent state-of-

the-art methods.

• We prove the effectiveness of MTL of BUS image segmentation and classification on

a dataset with a limited number of images. Feature sharing with the segmentation

task can compensate for the lack of training data for the classification task.
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