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ABSTRACT

Deep Learning with Attention Mechanisms in

Breast Ultrasound Image Segmentation and Classification

by

Meng Xu, Doctor of Philosophy

Utah State University, 2023

Major Professor: Xiaojun Qi, Ph.D.
Department: Computer Science

Breast cancer is a great threat to women’s health. Breast ultrasound (BUS) imaging is
commonly used in the early detection of breast cancer as a portable, valuable, and widely
available diagnosis tool. Automated BUS image segmentation and classification can assist
radiologists in making accurate and fast decisions. Deep neural networks have recently been
employed to achieve better image segmentation and classification results than conventional
approaches. In this dissertation, we introduce three different deep learning architectures,
each of which aims to address the drawbacks of their peers and evaluate their performance
in terms of segmentation and classification accuracy on two public BUS datasets. The
first developed method is called a Multi-Scale Self-Attention Network (MSSA-Net), which
can be trained on small datasets to explore relationships between pixels to achieve bet-
ter segmentation accuracy. Specifically, Our MSSA-Net integrates rich local features and
global contextual information at different scales and applies self-attention to multi-scale
feature maps. The second developed method is called a Multi-Task Learning Network with
Context-Oriented Self-Attention (MTL-COSA) to automatically and simultaneously seg-
ment tumors and classify them as benign or malignant. The COSA module incorporates

prior medical knowledge to guide the network to learn contextual relationships for better
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feature representations in BUS images to improve both segmentation and classification per-
formance. The third developed method is called a Regional-Attentive Multi-Task Learning
framework (RMTL-Net), which simultaneously segments tumor regions in BUS images and
classifies tumors into benign or malignant categories. To improve both segmentation and
classification accuracy, we design a Regional Attention (RA) module that employs the seg-
mentation output to automatically guide the classifier to learn important category-sensitive
information in the tumor, peritumoral, and background regions and seamlessly fuse them to
achieve better classification accuracy. We compare the performance of the three proposed
deep learning architectures with state-of-the-art segmentation and classification methods by
conducting extensive experiments on two publicly available BUS datasets, including Dataset

UDIAT and Dataset BUSI.

(99 pages)



PUBLIC ABSTRACT

Deep Learning with Attention Mechanisms in
Breast Ultrasound Image Segmentation and Classification

Meng Xu

Breast cancer is a great threat to women’s health. Breast ultrasound (BUS) imaging is
commonly used in the early detection of breast cancer as a portable, valuable, and widely
available diagnosis tool. Automated BUS image analysis can assist radiologists in making
accurate and fast decisions. Generally, automated BUS image analysis includes BUS image
segmentation and classification. BUS image segmentation automatically extracts tumor
regions from a BUS image. BUS image classification automatically classifies breast tumors
into benign or malignant categories. Multi-task learning accomplishes segmentation and
classification simultaneously, which makes it more appealing and practical than an either
individual task. Deep neural networks have recently been employed to achieve better image
segmentation and classification results than conventional approaches. In addition, attention
mechanisms are applied to deep neural networks to make them focus on the important parts
of the input to improve the segmentation and classification performance. However, BUS
image segmentation and classification are still challenging due to the lack of public training
data and the high variability of tumors in shape, size, and location.

In this dissertation, we introduce three different deep learning architectures with atten-
tion mechanisms, each of which aims to address the drawbacks of their peers and evaluate
their performance in terms of segmentation and classification accuracy on two public BUS
datasets. First, we propose a Multi-Scale Self-Attention Network (MSSA-Net) for BUS
image segmentation that can be trained on small BUS image datasets. We design a multi-

scale attention mechanism to explore relationships between pixels to improve the feature
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representation and achieve better segmentation accuracy. Second, we propose a Multi-
Task Learning Network with Context-Oriented Self-Attention (MTL-COSA) to segment
tumors and classify them as benign or malignant automatically and simultaneously. We
design a COSA attention mechanism that utilizes segmentation outputs to estimate the
tumor boundary, which is treated as prior medical knowledge, to guide the network to learn
contextual relationships for better feature representations to improve both segmentation
and classification accuracy. Third, we propose a Regional-Attentive Multi-Task Learning
framework (RMTL-Net) for simultaneous BUS image segmentation and classification. We
design a regional attention mechanism that employs the segmentation output to guide the
classifier to learn important category-sensitive information in three regions of BUS images
and fuse them to achieve better classification accuracy. We conduct experiments on two
public BUS image datasets to show the superiority of the proposed three methods to sev-
eral state-of-the-art methods for BUS image segmentation, classification, and Multi-task

learning.
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CHAPTER 1
INTRODUCTION

Breast cancer is a significant threat to women’s health and is the most commonly
diagnosed cancer and the leading cause of cancer mortality among women worldwide in
2020. It accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths in women [1]. A forecast
indicates that breast cancer will result in more than 3 million new cases and 1 million
deaths by 2040 [2]. Breast cancer mortality rates are much higher in low- and middle-
income countries than in high-income countries due to the delayed detection and treatment
[3,4]. Early diagnosis and appropriate treatments can significantly increase survival rates.
Mammography and breast ultrasound (BUS) are two popular screening modalities for early
breast cancer detection. BUS has been commonly used in the early diagnosis of breast
cancer in women of all ages, especially in low- and middle-income countries, because it is
portable, widely available, low-cost, and highly sensitive [5, 6].

Computer-aided-diagnosis (CAD) systems are proposed to help radiologists interpret
BUS images, make a more accurate diagnosis, and reduce their workload [7,8]. In general,
a CAD system for breast cancer detection includes automated segmentation and classifica-
tion as two primary steps for further processing. BUS image segmentation automatically
extracts tumor regions from a BUS image. Accurate segmentation can assist radiologists
in identifying and locating breast tumors precisely. In addition, it can aid in visualizing
and tracking changes in breast tumors over time, which enables radiologists to easily mon-
itor the progress of breast cancer and the efficacy of treatments. BUS image classification
automatically classifies breast tumors into benign or malignant categories. Multi-task learn-
ing (MTL) simultaneously accomplishes BUS image segmentation and classification, which
makes it more appealing and practical than either individual segmentation or classifica-
tion. Figure 1.1 shows an example of a BUS image, its segmentation ground truth and

classification label, and segmentation and classification results.
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Fig. 1.1: An example of a BUS image, its segmentation ground truth and classification
label, and its segmentation and classification results.

Given a BUS image, a BUS image segmentation/classification/MTL CAD system con-
sists of two major components: (1) a feature extraction module to represent breast tumors
in numerical features and (2) a feature segmentation module to draw the tumor contour,
a feature classification module to predict a benign or malignant tumor, or both. Figure
1.2 shows a high-level diagram of a BUS image segmentation CAD system, a BUS image
classification CAD system, and a BUS image MTL CAD system. First, an input BUS image
is fed into a feature extraction module to extract features that are most relevant to the spe-
cific task for later steps. Next, a trainable segmentation/classification/MTL module uses a
machine learning algorithm to segment the tumor region from the input image, categorize
the input image as benign or malignant, or do both based on extracted features.

Automated analysis of BUS images can help radiologists make efficient diagnoses of
breast cancer. However, it is still challenging due to the lack of public training data and
the high variability of tumors in shape, size, and location [9,10]. Supervised learning CAD
methods for image segmentation and classification require a sufficient number of labeled
training data. The quality of the manual annotation process is a vital factor in determining
the performance of the developed CAD methods. But acquiring labeled data is time-
consuming and labor-intensive, especially for medical images. For example, BUS images
need to be manually labeled by experienced radiologists. For each BUS image, radiologists
need to assess whether there is a tumor, classify the tumor into benign or malignant cate-
gories, identify the tumor regions, and draw the tumor contours using specialized software

tools. The high cost of manual annotation and the need to protect patient privacy lead to
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Fig. 1.2: A high-level representation of (a) a BUS image segmentation CAD system, (b) a
BUS image classification CAD system, and (¢) a BUS image MTL CAD system. The input
of three types of CAD systems is a BUS image, and the output is a segmented tumor region
and/or tumor category.

the shortage of high-quality, publicly accessible BUS image datasets for research purposes.
There are only two commonly used high-quality public BUS image datasets, dataset UDI-
AIT [11] and dataset BUSI [12], including only 943 images in total. A few other public
BUS datasets either lack pixel-wise segmentation ground truth of partial or all images or
provide cropped images containing breast tumors at the center with a limited amount of
surrounding background. Therefore, these datasets are not included in our study. The
limited training data makes it more challenging to train a robust CAD method for BUS
image segmentation or classification. In addition, tumors in BUS images exhibit significant
variation in shape, size, and location, making segmentation a daunting task. For example,
Figure 1.3 shows six examples of BUS images from each of the two datasets that contain
benign and malignant tumors, respectively. Red lines delineate tumor regions in various
shapes, sizes, and locations.

In this dissertation, we focus on developing novel deep learning-based CAD methods for
the automated analysis of BUS images. We propose three methods, including a method for
BUS image segmentation and two MTL methods for simultaneous BUS image segmentation
and classification. The remainder of this dissertation is organized as follows: Chapter 2

provides the background of deep learning and attention mechanism and introduces related



Fig. 1.3: Ilustration of BUS images containing benign tumors (the first three columns)
and malignant tumors (the last three columns). The first row shows images from dataset
UDIAT and the second row shows images from dataset BUSI.

works of BUS image segmentation, classification, and MTL performing segmentation and
classification tasks at the same time. Chapters 3, 4, and 5 introduce our proposed MSSA-
Net, MTL-COSA, and RMTL-Net, respectively. Chapter 6 presents datasets, evaluation
metrics, segmentation and classification results of the proposed three methods on two public
BUS datasets, and their comparison with the state-of-the-art methods. Chapter 7 presents
the comparison between the three proposed methods and discusses the advantages, potential
usefulness, limitations, and future work of the proposed methods. Chapter 8 draws a
conclusion. To reduce the notations and increase the readability, notations in each chapter

are only applicable within the chapter itself.



CHAPTER 2
RELATED WORKS

2.1 Deep Learning

Deep learning is a subfield of machine learning that uses artificial neural networks
to solve problems in various fields, such as computer vision, natural language processing,
speech recognition, and robotics. Compared to traditional machine learning algorithms,
deep learning algorithms tend to have better performance on complex tasks, more efficient
feature engineering, and more flexibility and scalability [13-15]. For example, deep learning
models can better fit complex non-linear patterns, which makes them work better on com-
plex tasks (e.g., image recognition, scene understanding, object tracking, etc.) in the real
world. In addition, deep learning models automatically extract the most relevant features
from the input data without or with little human involvement. They can further handle
a wide range of data types and large volumes of data. Deep learning algorithms can be
categorized into three main types: supervised learning, unsupervised learning, and semi-
supervised learning [16]. Supervised learning requires all training data to be labeled to train
a model, while unsupervised learning does not require training data to be labeled to train
a model. Semi-supervised learning uses some labeled training data and some unlabeled
training data to train a model.

In this dissertation, we focus on developing supervised deep learning-based architec-
tures for Breast UltraSound (BUS) image segmentation and classification. In this section,
we introduce the relevant mathematical background of deep learning used in our work.
Specifically, we provide a comprehensive overview of the fundamental concepts in super-
vised learning, loss function, optimization, and Convolutional Neural Networks (CNNs) to

build a BUS image segmentation and classification system.



2.1.1 Supervised Learning

In supervised learning, the model is trained on a labeled dataset, where each input is
paired with an output. We call the output a ”label” or ”"ground truth,” the true answer
to the problem. A supervised learning model learns a pattern (function) that maps from
the input to the output during training. The trained model then makes predictions for new
input based on the pattern it has learned from the labeled dataset. Following [17], given a
training dataset of input-output pairs {(x1,91), (z2,¥2), ..., (N, yn)}, a supervised learning
problem can be formulated as

f:X—=Y (2.1)

where X = {1, 29,...,zx} is the input space and Y = {y1, 92, ..., yn } is the output space.
Each input-output pair was generated by an unknown function y; = f(x;), where i €
{1,..., N} and N is the number of input (i.e., training data). The goal of a supervised
learning problem is to find a function h that approximates the function f. The function h
is called a hypothesis that is drawn from a hypothesis space H of possible functions. We
call the learned function h a trained model of the training data. For each input x; in the
input space, the model makes a prediction y; = h(z;). We cannot expect an exact match
between h and f, but we hope they are as close enough so that the model can make an
accurate prediction y; ~ y; for any input. More formally, we find a best-fit function h in
the space H of possible functions by minimizing a loss function £(g;,y;) over all samples in

the training dataset:

N
= argmin % Z; Ly, b)) (2.2)
where L(y;, h(z;)) measures the difference between the predicted value y; = h(z;) and the
actual value y;. The function h* is the best-fit function we are looking for.

For BUS image segmentation and classification, the input is a set of N BUS images
X ={z1,z2,...,xn}. The label of BUS image classification is Y5 = {y1,v2, ..., yn }, where

each y; is either benign or malignant. For BUS image segmentation, each pixel of a BUS

image is a training sample. In other words, segmentation is a pixel-wise classification.
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The ground truth of BUS image segmentation is a binary image of the same size as the
input, where 0 represents a background pixel and 1 represents a tumor pixel, i.e., Yoy =
{14,925, -, yn,j}, where j € {1,..., M} and M is the total number of pixels in a BUS
image. Training a robust deep learning-based, supervised learning model needs a large
amount of training data. For BUS image segmentation, our two small-size datasets are
sufficient because each pixel is a training sample. However, they are insufficient for training
a classification model. To solve the problem, we propose to do Multi-Task Learning (MTL)
of BUS image segmentation and classification. Training an MTL model for multiple tasks
can help reduce the amount of data required for each individual task and can lead to better
performance on all tasks. MTL helps to improve the efficiency of learning by feature sharing
between tasks. In an MTL model consisting of a segmentation network and a classification
network, the classification network takes advantage of shared features learned from the
segmentation network and therefore achieves better classification results than a single-task
classification network. For an MTL model, the label set includes segmentation ground
truths and classification labels, i.e., Yarrr = {(y1,y1,5): (Y2, Y2,5)s > Wis Yig)s - (UN-UNG) T
where i € {1,..., N} and j € {1,..., M }.

2.1.2 Loss Function

In deep learning, the loss function quantifies the difference between the predicted values
and the true values, and the goal of training a deep learning model is to minimize this
difference or loss. A good loss function is important because it accurately evaluates the
model’s performance on a task during training and testing. In addition, the loss function
is used to optimize the trainable parameters of the model. A good loss function trains a
model that can make accurate predictions on new input data. In this section, we briefly
introduce three commonly used loss functions in deep learning for computer vision tasks,
including Mean squared error (MSE), binary cross-entropy (BCE), and categorical cross-
entropy (CCE).

The MSE loss is commonly used for image regression tasks. It measures the average

squared difference between the predicted values and true values. Given a set of N training



samples, the MSE loss is defined as:

N

_1 2
MSE = N;(yz yz) (23)

where y; is the true label and ¥; is the predicted value of the i** training sample. They
are both continuous values in a regression problem. The MSE loss is simple and easy to
interpret. It penalizes large errors more heavily than small errors, which is often desirable
in regression tasks. However, the MSE loss is sensitive to outliers, which makes it heavily
influenced by extreme values in the training data.

The BCE loss is also known as log loss. It is commonly used for binary classification
problems. It measures the difference between the predicted values and true values of a

binary classification task. The BCE loss is defined as:

N
BCE:_]tz;yi*logmu—ymlog(l—m) (2.4)

where y; is either 0 or 1, representing two categories, and g; is a value in the range [0,1],
representing the probability of the i training sample belonging to a category.
The CCE loss is a popular choice for multi-class classification problems. It is also

known as Softmax loss. Assuming there are C classes, the CCE loss is defined as:

N C

CCE = —% ; ; i j * log U; j (2.5)
where y; ; and ¢; ; are the true label and predicted probability of the ith image that belongs
to the j' class, respectively. Note that y; is a one-hot encoded vector representing the
actual categories, and y; ; is a vector of probability scores in range [0, 1] representing the
predicted categories. For example, y; = [1,0,0,0] means the training sample belongs to
the first category in a four-category classification problem. And ¢; = [0.2,0.2,0.4,0.2] is a
vector of probabilities of the training sample belonging to each category.

The cross-entropy loss is easy to implement and computationally efficient, which makes
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it suitable for large-scale data. In addition, the log operation keeps gradients from varying
too widely, which makes it suitable for gradient-based optimization methods like stochas-
tic gradient descent (SGD). BUS image segmentation is a pixel-wise binary classification
problem, and BUS image classification is a binary classification problem. Considering the
advantages of cross-entropy loss, we adopt the BCE loss as the loss function for both the

segmentation and classification tasks of our three proposed methods.

2.1.3 Optimization

Most deep learning algorithms involve some kind of optimization, which refers to the
task of either minimizing or maximizing a loss function. In deep learning, an optimizer
is an algorithm that updates the parameters of a model in order to minimize the loss
function during training. The goal of the optimizer is to find the optimal values of the
model parameters that result in the lowest loss on the training dataset. Mini-batch SGD
and Adaptive Moment Estimation (Adam) are two commonly used optimizers in computer
vision.

Following [18], suppose we have a function y = h(z) where both = and y are real
numbers. Denote the derivative of this function as h'(x). To reduce h(z), we can move x
in small steps to the direction of —h/(z). We call this technique Gradient Descent (GD).
The GD optimizer iteratively updates the parameters of a deep learning model until the
loss function converges to a minimum or until some other stopping criterion is met. When
B (x) = 0, the derivative gives no information about which direction to move. Points where
R'(xz) = 0 are called critical points. A local minimum is a point where h(z) is smaller than
all neighboring points in a small range of = values. A global minimum is a point where h(z)
is the smallest value for all possible x values. In deep learning, a loss function can have
multiple local minima that are not optimal. It is very difficult to find a global minimum for
all problems, especially when the loss function takes multidimensional inputs. Therefore,
we expect to find a h(x) value that is small enough but not necessarily global minimal for
all possible x values in real-world deep learning problems. In real-world problems like BUS

image segmentation and classification, the loss function takes multi-dimensional inputs. In
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this case, we use a partial derivative %h(:ﬂ) to measure how h changes as z; increases at
2

point x. A critical point is a point where the gradient %h(l‘) = 0 for all possible z;.

The GD optimizer updates the model parameters using the gradient of the loss func-
tion computed over the entire training dataset in each iteration. It converges smoothly.
However, the computational cost of gradients in one iteration is expensive, especially for
large datasets. To solve this problem, the mini-batch SGD algorithm is proposed to update
the model parameters using the gradient computed over a small subset of the training data.
This leads to more frequent updates and a faster convergence speed, but the loss function
is not as well minimized as in the case of GD. In SGD, the updates of model parameters
may not always go in the optimal direction. But in most cases, the learned model param-
eters are good enough. There are several variants of the SGD optimizer that improves its
performance and convergence, including SGD with momentum [19] and weight decay [20].

GD-based optimizers update the model parameters by taking a step in the direction
of the negative gradient of the loss function with respect to each parameter in an iterative
manner during training. We use a hyperparameter named learning rate to control the
size of the step that the optimizer takes when updating the model parameters. For the
mini-batch SGD optimizer, the learning rate is fixed and must be chosen by the user.
The Adam optimizer [21] is an extension of SGD that calculates an adaptive learning rate
when updating each parameter based on estimates of the first and second moments of
the gradients. The first and second moments are the mean and variance of the gradients,
respectively. The Adam optimizer is computationally efficient and typically requires little
tuning. It also has faster convergence and better generalization than SGD. We use the
mini-batch SGD optimizer for the first proposed method and use Adam optimizer for the

second and third methods.

2.1.4 Convolutional Neural Networks
Convolutional Neural Network (CNN) is a class of artificial neural networks. CNNs
are most commonly applied to computer vision tasks, such as image segmentation [22],

image classification [23], and object detection [24]. Our proposed methods for BUS image
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segmentation and classification use CNNs to build its learning architecture. In this section,
we briefly introduce several fundamental concepts of CNN related to our works.
Convolutional Layer. A convolutional layer is where a set of filters (or kernels) are
applied to input images or feature maps to generate a new feature map. The parameters of
the filters are to be learned during training. Convolutional Layers of a CNN extract features
from the input and pass the convolved features to the next layers. Figure 2.1 illustrates
how a 3 x 3 filter convolves an input of size 5 X 5 to produce convolved features. The nine

parameters of the 3 x 3 filter are learned throughout the training.
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Fig. 2.1: An example of a convolution operation with a 3 x 3 filter and stride of 1. The
filter moves across the input and performs a dot product between the nine weights of the
filter and the nine pixel values in the input. The result of the dot product is a single value
in the output feature map.

Pooling Layer. A pooling Layer always follows a convolutional layer to reduce the
spatial dimension of feature maps while retaining the important features. It reduces the
number of parameters to learn and the computational cost during the training and alleviates
the overfitting problem. In other words, the pooling operation summarises the features in
the input feature map. Commonly used pooling operations include max pooling, average
pooling, stochastic pooling [25], and spatial pyramid pooling [26]. Figure 2.2 shows two
examples of max pooling and average pooling, respectively.

Fully Connected layer. A fully connected layer is also known as a dense layer. It

connects all the neurons in one layer to all neurons in the next layer. A fully connected layer
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Fig. 2.2: An example of a 2 x 2 max pooling operation with a stride of 2. It selects the
maximum value in each 2 x 2 region of the input feature map and outputs the single value
for that region. The output feature map is half the size of the input feature map due to the
stride size of 2.

always follows a convolutional layer or a pooling layer. Fully connected layers are usually the
last few layers in a CNN. They convert high-dimension features to low-dimension features,
whose dimension is the same as the number of classes. The value at each dimension gives
the probability of an input belonging to the corresponding class.

In a computer vision task, a typical CNN consists of convolutional layers, pooling
layers, and fully connected layers. It uses convolutional layers to extract features from the
input images, uses pooling layers to reduce the spatial dimension of the extracted features,
and uses fully connected layers to flatten the features and perform image classification or

regression tasks. Figure 2.3 shows an example of a typical CNN for image classification.

2.2 Attention Mechanisms

In artificial neural networks, the attention mechanism is a technique that mimics cog-
nitive attention in humans. It allows neural networks to focus selectively on certain parts
of the input to improve their performance. Attention mechanisms have been commonly
used in different tasks, such as natural language processing and computer vision. Spatial
attention, channel attention, and self-attention are three representative attention mecha-
nisms. Specifi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>