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ABSTRACT

A Classification of Tensors in ECSK Theory

by

Joshua James Leiter, Doctor of Philosophy

Utah State University, 2023

Major Professor: Charles G. Torre, Ph.D.
Department: Physics

This dissertation presents a Petrov/Plebanski/Segre/Algebraic (PPSA) classification

scheme for both the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory

(ECSK); additionally the work includes a software package in Maple with computational

and PPSA classification tools. Six different solutions are classified using the new software

tools developed. We also present a new boundary term for ECSK-NMC scalar theory to

ensure Dirichlet boundary conditions. New work completed includes the decomposition

of an arbitrary 4th rank tensor under SO (p, q), equivalent SL (2,C) irreducible spinor

decompositions of arbitrary 3rd and 4th rank tensors. We provide new proofs that the

corresponding spinors are the irreducible components in the SL (2,C) decomposition of 3rd

and 4th rank tensors using Maple. Additionally, we provide an algebraic decomposition

of the torsion spinors, an algorithm determining their algebraic decomposition, an ECSK-

PPSA classification for the curvature tensor, and finally the Gibbons-Hawking-York (GHY)

- ECSK - Non-Minimally-Coupled (NMC) scalar field boundary term such that the metric

variation vanishes on the boundary without any need to constrain the normal derivatives of

the variation of the metric.

(292 pages)
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PUBLIC ABSTRACT

A Classification of Tensors in ECSK Theory

Joshua James Leiter

You might have heard of Einstein’s theory of General relativity (GR): it is the one

where mass and energy curve the fabric of spacetime to create gravity. This is the major

theory which allows communication through satellites and our GPS to work too! Wormholes

have interested me, but there are some issues about forming them in GR. Interestingly

enough, elementary particles are also characterized by their spin in the standard model.

However, intrinsic spin is nowhere geometrically coupled to the geometry of spacetime in

Einstein’s theory. Later, Élie Cartan, Dennis Sciama, and Tom Kibble all flushed out adding

different aspects of Spin into GR making a new theory called Einstein-Cartan-Sciama-Kibble

(ECSK) theory where spin is linked to the torsion tensor of Cartan. This addition of spin

according to several articles allows for wormholes without any invocation of exotic matter

(negative mass). There’s the background! This dissertation breaks apart ECSK theory into

observable through the use of the Lorentz group, encompassing time dilation and rotations.

The consequences are that we can find new physics through the use of these tools which

correspond to structures in spacetime. Then by forming combinations of these objects (think

x2) we can further analyze the geometrical structures and get a handle on what is happening

physically! Computer tools in the Maple software package have been developed to expedite

calculation on several ECSK problems. Together these tools form an ECSK toolkit which

corresponds to the ideas used by Petrov, Plebanski, Segre, and Penrose (PPSP) to classify

structures in GR.
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CHAPTER 1

INTRODUCTION

This dissertation presents a Petrov/Plebanski/Segre/Algebraic (PPSA) classification

scheme for the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory

(ECSK); additionally, it includes a related software package in Maple with computational

and PPSA classification tools. Six different solutions given in references (Chen et al., 2018),

(Platania & Rosania, 1997), and (Bronnikov & Galiakhmetov, 2015) are classified using the

new software tools developed. We also determine boundary terms for the Einstein-Cartan-

Sciama-Kibble, and Non-Minimally Coupled scalar field action, which we call ECSK-NMC,

such that the boundary conditions needed to get the field equations are Dirichlet conditions;

the normal derivative of the metric at the boundary is unconstrained. We decompose an

arbitrary 4th rank tensor under SO (p, q). Then we for the SL (2,C) irreducible spinor

decompositions for arbitrary 3rd and 4th rank tensors. We provide new proofs that show

these spinors are the irreducible counterparts using Maple. After that, we develop an

algebraic decomposition of the torsion spinors, and an algorithm to determine their algebraic

decomposition. Moving forward we provide an ECSK-PPSA classification for the curvature

tensor. Finally, we present a new GHY boundary term for ECSK-NMC such that the metric

variation vanishes on the boundary without any need to constrain the normal derivatives of

the variation of the metric.

1.1 The History of ECSK Theory

ECSK theory got its name from Albert Einstein, Élie Cartan, Dennis Sciama, and

Thomas Kibble. The gravity theory includes Einstein’s name because he originally developed

the theory of General Relativity (GR). Many of the mathematical parts of GR come from

differential geometry. In GR, the gravitational field is described by the curvature of spacetime;

spacetime curves because of the matter and energy in it. However, in the development of
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GR, the torsion tensor which naturally occurs in differential geometry was left out.

In 1922 Cartan (Cartan, 1922) began working on a generalization of Riemannian

geometry which included the torsion tensor. In 1923 Cartan noticed (Cartan, 1923) that

GR could be generalized with the addition of torsion. This was the birth of ECSK theory;

Cartan is the “C” in the theory.

Cartan theorized torsion would couple to the same spin that was just discovered in

the Stern-Gerlach experiment; it is interesting as a historical note that Cartan’s paper

generalizing Riemannian geometry (Cartan, 1922) was published the same year, just a

bit after the Stern-Gerlach experiment took place. By including torsion in spacetime, the

geometry is augmented even further, leading to new physical phenomena. Einstein did not

add torsion into GR in 1922, but over the next three years Cartan further developed the

theory, (Cartan, 1924), (Cartan, 1925). It was not until 1928, when Einstein tried to match

torsion with electromagnetism, that he became affiliated with the theory; Einstein’s name

is represented by the “E”. The first one to view gravity as a gauge theory was Uityama

(Utiyama, 1956) in 1956. In the 1960s, ECSK theory took off. Sciama (Sciama, 1962) and

Kibble (Kibble, 1961) were the revisers of ECSK theory with both of their papers; they

were the “S” and “K” respectively. Then came the great compilation review paper by Hehl

(F. Hehl et al., 1976) in 1976 which tied the theory together in a beautiful physical package.

Most recently, Hehl (F. W. Hehl, 2023) has presented ECSK theory from a Poincaré gauge

theory viewpoint.

1.2 Significance of this Work

The fundamental part of ECSK that is different from General Relativity (GR) is that

ECSK naturally couples spin to the geometry through torsion. In the standard model of

particle physics, particles are characterized by their mass and spin. Mass/energy generated

the gravitational field in GR, and spin generates a related contorsion gravitational field

in ECSK. It is natural to consider ECSK as an extension to GR to include spin effects.

As an aside, these ECSK tools will help with the development of a wormhole. Stated

in (Mehdizadeh & Ziaie, 2017), wormholes without exotic matter (think negative energy
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density) are possible in ECSK theory; torsion allows this to happen. Wormholes would be

incredibly useful for space exploration, and thus are of physical importance; not to mention

mathematically beautiful.

There are not many experimental results available which constrain torsion, and to

the author’s knowledge, only one of the three possible irreducible representations has an

experimental constraint. The axial torsion has been constrained by Lämmerzahl (Lämmerzahl,

1997) to:

Kz ≤ 1.5× 10−15 m−1

K(0) ≤ 10−2 m−1

where Kz is the z-component of the axial torsion vector in 4 dimensions, and K(0) is the

time component of the axial torsion vector in 4 dimensions.

1.3 Mission Statement

One of the difficulties in GR is the coordinate freedom that solutions to the field

equations have; it is difficult to tell if two solutions are equivalent up to coordinate

transformations just by looking at them. The Cartan-Karlhede algorithm (Karlhede, 1980)

is one method used to distinguish these solutions. To run the algorithm, however, it is

important to have scalars which provide a unique local characterization (See Stephani

(Stephani et al., 2003) Pg. 116). These same scalars are used in the Petrov and Segre

classifications of spacetime and are intimately related to them. There is currently no

corresponding classification of solutions, or equivalence method yet for ECSK Theory; this

is mainly due to the inclusion of the torsion tensor. This dissertation aims to provide several

tools for classifications in ECSK theory. We examine and classify several known solutions

in chapters 6, 7, and 8.

1.4 Survey of the Dissertation

In this section we give an overview and roadmap of the entire dissertation. We discuss

each chapter and its contents with hopefully enough detail to direct the reader to sections
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they will find most interesting for further study. We begin by stating the classification task

we wish to accomplish, and then walk the reader through the relevant chapters relating to

this task.

In our task to classify the curvature and torsion tensors in ECSK theory, we begin by

first finding irreducible representations of arbitrary second, third, and fourth rank tensors

under GL (N). We then proceed to decompose these representations further under the

subgroup SO (p, q) and find the irreducible decomposition of these tensors under this group.

For our classification of the curvature and torsion tensors, we use SL (2,C) spinors; for this,

we also specialize to four dimensions with signature [+,−,−,−].

Once we have all the SL (2,C) irreducible spinors which correspond to second, third,

and fourth rank tensors, we specialize to the cases of the curvature and torsion tensors.

Using the tools we developed in the general case, we find the SO (3, 1) irreducible tensors

which compose both the curvature and torsion tensors. We then turn these tensors into

spinors. There are three spinors which completely determine the torsion tensor which we

call Θ, Ξ, and Ω. Likewise, there are six spinors which completely determine the curvature

tensor. We call these spinors Ψ, Φ, Λ, Ж, Ю, and ℵ.

We classify the curvature and torsion tensors by classifying these nine spinors. For

the curvature spinors we use Petrov-Plebanski-Segre-Algebraic (PPSA) tools, and for the

torsion we use analogous algebraic tools. In both cases, we provide a list of invariants and

covariants to determine the PPSA type. We use the word covariant here in the same fashion

as Olver (Olver, 2003). In this case, a covariant is similar to an invariant other than the

fact that it transforms tensorially.

The three preliminary chapters of this work discuss rank 2, rank 3, and rank 4 tensors

and how to decompose them under GL (N), and SO (p, q). Additionally, these chapters

analyze the SL (2,C) irreducible spinors which correspond to SO (3, 1) irreducible tensors;

there is a 1 to 1 relationship between these irreducible spinors and tensors. In our work, we

discuss this correspondence in signature [+,−,−,−]. Finally, in the last sections of these

chapters PPSA classification tools are discussed with regard to the curvature and torsion
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tensors.

For the later chapters, chapter 5 and onward, we employ variational calculus heavily

and keep the boundary terms the whole way through in the ECSK-Non-Minimally-Coupled

(NMC) scalar field case. The terms we modify the ECSK-NMC Scalar field action guarantee

that the boundary conditions are Dirichlet. For the Dirac field, and the spinning fluid/generalized

ECSK theory chapters, we do not include all the boundary terms. This is an interesting

direction for future work. If this route of research is pursued, we encourage the researcher

to work with the vielbein e µ
a and spin connection ωµ νa as their field variables.

Chapter 2 is the rank 2 tensor decomposition section and walks through the Young,

SO (p, q), and SL (2,C) decompositions. Chapters 3 and 4 apply the same decompositions

to 3rd and 4th rank tensors as well. We use this correspondence to turn the tensors into

spinors because spinors are easier to classify and may reduce further under epsilon spinor

traces than their corresponding tensors would. This is due to how, when irreducible, they

are always symmetric in their unprimed and primed indices respectively. Stewart (Stewart,

1993) states that every SL (2,C) irreducible spinor is totally symmetric in its indices; we use

this fact throughout our work. Another direction for future work would be to accomplish

this classification in N dimensions. The work of Brauer and Weyl (Brauer & Weyl, 1935)

may be of interest in this regard.

Chapter 3 presents a classification of the torsion tensor in terms of the algebraic

reducibility of the SL (2,C) irreducible torsion spinors which we call Θ, Ξ, and Ω. We

present a new algorithm to classify the torsion tensor’s structural reducibility, usually called

algebraic irreducibility in the literature. The algorithm calculates several co(in)variants for

this purpose and is found at the end of chapter 3 in figures (3.1) and (3.2).

Chapter 4 presents decompositions of an arbitrary rank 4 tensor underGL (N), SO (p, q),

and SL (2,C). Many of the explicit formulas we use and derive here can be found in

the appendix due to there being 25 SO (p, q) irreducible subspaces for rank 4 tensors.

Additionally, later in the chapter we present the PPSA classification of the curvature tensor

in terms of the SL (2,C) irreducible curvature spinors which we call Ψ, Φ, Λ, Ж, Ю, and ℵ.
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Each of the above classifications examines a tensor in a different SO (p, q) invariant subspace

of the space of curvature tensor. To make an analogy, decomposing the curvature tensor,

in GR, into irreducible components in these subspaces is called the Ricci decomposition,

i.e. Riemann ∼= Weyl + Trace Free Ricci + Ricci Scalar. The Weyl tensor is classified

via its Petrov classification. The trace-free Ricci tensor is classified through the Plebanski

and Segre Classifications. The Ricci Scalar is classified at a point by whether it is positive,

negative, or zero; we choose this classification because it holds in an open set around any

point chosen, with a small caveat for exceptional points which may change type.

In ECSK there are three more SO (p, q) irreducible representations appearing in the

curvature tensor than in GR because of the addition of the torsion tensor. We present

the PPSA classification of each of the six different tensors resulting from the SO (p, q)

decomposition of the curvature tensor. All the additional irreducible elements of the curvature

tensor not found in GR, but found in ECSK, can be classified using the PPSA like methods

presented. However, determining these elements of the curvature tensor in the first place is

non-trivial; it also requires heavy representation theory and tools from computer algebra to

not be cumbersome.

The idea for the PPSA classification in ECSK theory is to use the spinor methods

along with Young tableaux in references (Penrose & Rindler, 1987a), (Stewart, 1993),

(J. T. Wheeler, unpublished), (Penrose & Rindler, 1987b) to complete the classification

of the curvature and torsion tensors. Maple procedures have been implemented to work

with the DifferentialGeometry package described in (Anderson & Torre, 2012). For the

mathematical background on the Petrov classification and Segre classification, there are

good explanations given by Penrose and Rindler in (Penrose & Rindler, 1987a), (Penrose

& Rindler, 1987b). The Petrov classification asks about the multiplicity of eigenvalues

of the Weyl tensor (from GR) acting on the space of bivectors; this can be reformatted

as finding the multiplicities of the eigenvalues/eigenvectors of the totally symmetric Weyl

Spinor (which is a spinor irreducible representation of the Weyl part of the curvature tensor)

acting on the space of rank 2 symmetric spinors. The Segre classification asks for the Jordan
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normal form of the trace-free Ricci tensor. The Petrov and Segre classifications have been

implemented in Maple for GR by (Anderson & Torre, 2012).

Chapter 5 presents a background on the ECSK field equations, and defines several new

tensors in analogy to GR, most notably we define a “Cartan” tensor labeled by C a bc which

is analogous to the Einstein tensor but for the second field equation arising in ECSK; just as

the Einstein tensor is the left-hand side to the metric gab field equations, the Cartan tensor

is the left-hand side to the contorsion/spin-connection field equations Cabc/ω
µ
νa.

Chapter 6 walks through ECSK-NMC scalar field theory through a comparison to

Bronnikov and Galiakhmetov’s (Bronnikov & Galiakhmetov, 2015) work. We present an

additional Gibbons-Hawking-York (GHY)-like boundary term in the action which prevents

the variational principle from over-constraining the metric variation on the boundary, and

we classify Bronnikov and Galiakhmetov’s solution according to the classification tools

presented in chapters 3 and 4.

Chapter 7 presents a walkthrough on ECSK-Dirac theory, at the end of which we classify

a solution presented by Platania and Rosania (Platania & Rosania, 1997). Chapter 8 gives

a short note on spinning fluids, as they generate the last irreducible representation of the

torsion tensor not covered by the NMC or Dirac fields.

Chapter 8 presents Chen, Zhang, and Jing’s (Chen et al., 2018) extension to ECSK

(cubic torsion action) of which we classify three of the solutions they present. As a note

here, our algorithm does not provide enough information to determine that these solutions

are distinct; to create a Cartan-Karlhede (Karlhede, 1980) algorithm for ECSK we would

need more information; this is an interesting and fruitful direction for future work.

Finally, in chapter 9 we end with a short conclusion of all the new work we have

accomplished.

There are several appendices. The first of these is appendix A which compares the

decomposition of the torsion tensor we present to that in the literature; see Shapiro (Shapiro,

2001) for an example. The next of these, appendix B) formulas for theGL (N) decomposition

of an arbitrary rank 4 tensor; these were developed using Young tableaux tools. We
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continue this in appendix C where we give the formulas for the SO (p, q) decomposition

of an arbitrary rank 4 tensor. Appendix D presents proofs of the SO (p, q) decomposition

of a 4th rank tensor. Appendix E presents the formulas for the number of independent

components/degrees of freedom for SO (p, q) irreducible rank 4 tensors and their corresponding

SL (2,C) irreducible spinors when p = 3, q = 1. Appendix F presents formulas for all 25

SL (2,C) irreducible spinors in terms of their SO (3, 1) irreducible rank 4 tensors. Finally,

appendix G is our last appendix and discusses the Belinfante-Rosenfeld relation. This

relation is incredibly important for relating ECSK theories with differing field variables.

Finally, there are several Maple worksheets and modules which will be available digitally.

The worksheets include: Rank 3 Spinor Proofs, Rank 4 Spinor Proofs, Ricci Canonical

Forms, Platania-Rosania Classification, Chen Classification, Bronnikov Classification, and

Alpha(ABC)A’. The last of these is an explanation on the classification of the torsion Ω

spinor.

The modules include: ECSKModule, Rank2TensorModule, Rank3TensorModule,

Rank4TensorModule, SegreInvariantsModule, and TorsionInvariantsModule. The ECSK

module is the fundamental module and also includes several new Maple procedures for

calculating the contorsion tensor, a metric compatible torsion-full connection, and the

torsion-only part of the ECSK curvature tensor which we call the Alphonse tensor. These

are only a few of the new commands, however. There are many others, all of which are

sufficiently compatible with the DifferentialGeometry package.
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CHAPTER 2

RANK 2 TENSOR DECOMPOSITIONS

This section details: how to decompose rank 2 tensors using Young tableaux, how

to perform a SO (p, q) decomposition of rank 2 tensors in any dimension, how to find

the SL (2,C) irreducible spinors of a rank 2 tensor in dimension 4, and provides Maple

procedures to calculate each of these. Although we could give a comprehensive overview of

Young tableaux in all generality, we will point the reader to the wonderful maple documentation

for tableaux in DifferentialGeometry (Anderson & Torre, 2012); additionally, Young tableaux

are dissected in (Fulton & Harris, 1991) pages 44-52/62.

To begin, we will discuss Young tableaux in terms of how matrices are usually decomposed.

Young tableaux give the irreducible elements of vector spaces under the general linear group

GL (N). This is related to symmetric and antisymmetric/skew-symmetric matrices, for they

are the two GL (N) irreducible elements of rank 2 tensors under that group. We will then

show how the notation used in Young diagrams quickly illustrates this in a computationally

and conceptually useful way. We will next show how to count the independent components

with Young diagrams; to this end, the idea of the hook length product is introduced. The

hook length product will be increasingly important for higher rank tensors.

After that, we will introduce how further specializing the group to SO (p, q), a subgroup

of GL (N), refines the number of irreducible elements we are able to construct from two to

three. Following this, we will give a few short examples of Maple procedures which will do

the same calculation in the Rank2TensorModule module.

Following that we move to spinor calculations, beginning with the same Young calculation

but on a spinor; this example shows how spinors further reduce rank, making their classification

easier, due to the symplectic form ϵAB. Recall that ϵAB is the object left invariant under the

group Sp (2); additionally the symplectic group of dimension 2 is isomorphic to the special

linear group of dimension 2 over C i.e., Sp (2) ∼= SL (2,C); see Stewart (Stewart, 1993).
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After being warmed up by that example, we move to the hermitian spinor, θABA′B′ which

corresponds to a real rank 2 tensor Mab. Following Penrose and Rindler (Penrose & Rindler,

1987a) we decompose θABA′B′ into its irreducible spinor elements and relate the idea back

to what we did with SO (p, q). We summarize the decomposition of a tensor under SO (3, 1)

and how it corresponds to irreducible two-component spinor elements in 4 dimensions; the

notation bab ∼= bABA′B′ refers to the relation bab = bABA′B′σ AA
′

a σ BB
′

b and will be used in

the same way as Penrose and Rindler, and Stewart (Penrose & Rindler, 1987a), (Stewart,

1993). This notation means that the expressions are the same one we apply the Infeld–Van

der Waerden symbols σ AA
′

a . We note that bab is technically not equal to bABA′B′ but the

two are equal once σ AA
′

a is applied. Finally, we illustrate Maple procedures to generate

these irreducible spinors given a rank 2 tensor and the Infeld–Van der Waerden symbols.

2.1 Rank 2 Young Tableaux

Let us review some elementary facts about matrices in linear algebra. Recall that

we could split a matrix M into its symmetric, MS , and antisymmetric (skew-symmetric),

MA, parts by taking combinations of that matrix with its transpose, MT , as shown in the

following formulas:

M = MS +MA (2.1)

MS =
1

2

(
M +MT

)
(2.2)

MA =
1

2

(
M −MT

)
(2.3)

This is a well known fact, but maybe less well known is that it directly corresponds to what

happens in Young tableaux. In Young tableaux terminology, we have boxes. It is these boxes

which correspond to the symmetry of the indices. Horizontally connected blocks correspond

to symmetric indices, and vertical blocks correspond to skew-symmetric indices. If we write
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MS and MA using the Young blocks, which are called Young diagrams, then we would

find that MS corresponds to the horizontal diagram, and MA corresponds to the vertical

diagram:

1 2 1

2
(2.4)

We express the decomposition given in equation (2.1) as

Mab = Y 1 (M)ab + Y 2 (M)ab , (2.5)

Here Y 1 (M)ab corresponds to applying the Young projection defined by the box:

1 2

to M ; this would give us MS as in equation (2.2). Likewise, Y 2 (M)ab corresponds to

applying the Young projection:

1

2

to M ; this would give us MA as in equation (2.3). Right now, there is no ambiguity in

what these mean; later for rank 3 and higher tensors we will find that these projections are

not unique as we can either symmetrize first or skew-symmetrize first. Additionally, we can

check that the Young symmetrizers are projections by applying the same projector twice:

Y 1 (Y 1 (M))ab = Y 1 (M)ab

Y 2 (Y 2 (M))ab = Y 2 (M)ab

Y 1 (Y 2 (M))ab = Y 2 (Y 1 (M))ab = 0
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Let Aab be the symmetric part of Mab and let Bab be the skew part of Mab. We will use

calligraphic script to designate GL (N) irreducible tensor elements.

Aab = Y 1 (M)ab , Bab = Y 2 (M)ab (2.6)

The 1 and 2 inside the boxes correspond to the indices. For example, in

1 2

this means that the first and second index are symmetric. We always start with 1 in the

top left-most corner notationally and proceed increasing the number as we move down and

move to the side.

It is also important for us to discuss Ferrers Diagrams. They are a step before Young

tableaux, which we get from adding on blocks. For example, we build the 2-dimensional

skew and symmetric blocks by starting with 1 dimensional blocks and putting them on the

top and bottom as follows in equation (2.7) which we show below.

⊕
= , (2.7)

We have two Ferrers sectors given by

and

which we then populate with 1 and 2 which correspond to the indices to make the irreducible

Young sectors. The Ferrers diagrams are a useful way to construct all the necessary shapes

of the boxes before enumerating the possible Young tableaux. Here the Ferrers diagrams
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are trivially the same as the Young tableaux, but notice the lack of numbers in the boxes;

this will become important later for higher rank tensors.

The Young sectors are independent and they do not change type under a GL (N)

transformation i.e., an antisymmetric tensor will not become symmetric under a GL (N)

transformation. The factor of a half at the very beginning in our matrix transpose formula

comes from the division by the hook length product. There are formulas to describe this in

complete generality, as in Fulton and Harris (Fulton & Harris, 1991), but we find it easier

to describe the process with some examples. In each box, count that box and then add the

number of the boxes to the right of it, and the number of boxes below it. Then do this for

each box and multiply the result in each box together. We use the diagram:

as our example. For the above diagram, we would take these steps.

Step 1: Count the top box (a = 1) and add the boxes to the left of it (there are none)

so (b = 0). Then add the boxes below it (there is only 1) so (c = 1). Then count the second

box (a = 1) and add the boxes to the left of it (there are none) so, (d = 0). Finally, add

the boxes below it (there are none) so (e = 0). Do this for each box. To help the reader see

where the variables are, we have labeled them.

 a+ b+ c

a+ d+ e


Step 2: Here we have filled in the numbers from before.

 1 + 0 + 1

1 + 0 + 0


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Step 3: Multiply the result in each box together.

 2

1

→ 2 ∗ 1 = 2

That is how we get the 1
2 in the matrix formula above. One over the hook length product,

which in this case is 2. Therefore, we could write the formula:

HookLengthProduct

( )
= 2

Often times the hook length product is denoted µ as in Fulton and Harris (Fulton &

Harris, 1991). Again, an excellent description is found in the help files of Anderson and

Torre (Anderson & Torre, 2012) in the Young Tableaux section. This calculation of course

becomes more difficult and interesting for higher rank tensors.

Similarly, we can also count the number of independent components in each of these

tableaux, as we could for the matrix example above. We will use the terms degrees of freedom

and independent number of components interchangeably throughout this work. Recall that

the formulas yielding the number of independent components for N -dimensional symmetric,

and antisymmetric matrices are:

number of components
(
MS

)
=

1

2
N (N + 1)

number of components
(
MA

)
=

1

2
N (N − 1)

We can get similar formulas with a quick Young tableaux trick. We just put N in the

first box, and then we subtract each time we go down, and add each time we go over, again

dividing by the hook length product.

number of components
(
MS

)
=

[
N N + 1

]
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number of components
(
MA

)
=

 N

N − 1


This can again be extended to higher rank tensors, and makes counting degrees of freedom

conceptually simple. The lower rank tensor, 1st rank, is trivial; it is a vector, which will

always have dimension N . To summarize, we decomposed the space of our covariant tensor

Mab as in equation (2.1) into two other GL (N) irreducible tensors: A, and B as given by

equation (2.6). Again, we repeat that we will always use calligraphic script to represent

GL (N) irreducible tensors. In our notation here, we write:

Mab = Aab + Bab (2.8)

as the GL (N) decomposition of a totally covariant second rank tensor.

2.2 Rank 2 SO (p, q) Trace Decomposition

Our next goal is to find the SO (p, q) irreducible decomposition. In the process of

finding this decomposition, we take traces with the metric tensor gab, the object left invariant

under SO (p, q). Recall from linear algebra, that we can further break apart the symmetric

matrices under SO (p, q) into a trace free piece which we call M̊(ab), and a trace-full piece M .

Recall from earlier how we talked about GL (N); these trace pieces do not suddenly switch

sectors under a SO (p, q) transformation. The symmetric trace free element in the irreducible

decomposition will always stay symmetric trace free under a SO (p, q) transformation. However,

under a GL (N) transformation, a trace free piece may become trace-full.

Under SO (p, q), only MS decomposes further. The matrix MA is already irreducible

under SO (p, q). A formula for how MS decomposes further is shown below.

M(ab) = M̊(ab) +
1

N
Mgab (2.9)

In terms of our tensors, A, and B in equation (2.8) we find that only A becomes further

reducible when we change the group to SO (p, q). This is due to the skew tensor B not having
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any trace portion. We label each of the three SO (p, q) irreducible representations by: A,

a, and b; when viewed as tensors, these will be defined shortly. The tensors represented

by A and a result from the decomposition of A under SO (p, q) . The A tensor will be the

trace-full part and a will be the trace free part. Additionally, we now label B by b to mirror

our notation above.

Similarly to how we wroteGL (N) irreducible tensors in equation (2.8), with calligraphic

script, we also use special script to distinguish SO (p, q) irreducible tensors. For totally trace-

free tensors, we always use lowercase Fraktur script. For trace-full tensors, we always use

uppercase Fraktur script. The SO (p, q) decomposition of Mab is given by:

Mab = M̊(ab) +
1

N
Mgab +M[ab] (2.10)

Mab = aab + Aab + bab (2.11)

with both equations representing the same decomposition. We use the Fraktur notation for

the tensors a, A, and b. The tensors a, and b are defined as follows.

aab = Aab − Aab (2.12)

bab = Bab (2.13)

We now define the tensor A in equation (2.12). We refer to tensors of even rank (tensors

of odd rank) constructed from a scalar (vector) and the metric tensor gab as trace-full; here

we are only concerned for even rank. This comment is used to differentiate the case for a

rank 3 tensor as in chapter 3. We also define N to be the dimension of the vector space we

are working with. Following this definition, the tensor A is defined by:

Aab = gab

(
1

N
gcdAcd

)
(2.14)

In index notation, this calculation is made easier. Here we find that M(ab)g
ab = M ,

and M̊(ab) = aab. We needed the 1
N factor in the Aab equation because gabgab = N . Next,
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we present Maple procedures which calculate the objects in equation (2.11).

2.3 Maple Procedures for the Decomposition of Rank 2 Tensors

The code follows the decomposition given in equation (2.11). There are three commands

which each take a rank 2 tensor as the first argument, and a metric tensor as the second

argument. The command Rank2TraceA makes the trace-full tensor A given by equation

(2.12). The command Rank2FrankA makes the totally trace-free symmetric tensor a. The

last command Rank2FrankB only needs a tensor as its first argument, but can take a metric

tensor as the second argument to match with the prior defined codes. This command makes

the skew-symmetric tensor b given by equation (2.13).

2.4 Summary of SO (p, q) Tensor Decomposition

In the last three sections, we introduced techniques on how to decompose rank two

tensors in terms of GL (N) and SO (p, q) in arbitrary dimensions. Then, for the GL (N)

decomposition, we introduced Young tableaux, which enumerate and break apart a rank two

tensor into its irreducible elements. Specializing further, we chose the subgroup SO (p, q) of

GL (N) and asked for the irreducible elements of it. This lead to one more irreducible sector

than we had before. Following this, we introduced three Maple procedures to compute all

of the above, the rank two commands being new, and the Young tableaux commands being

already in the software. These three commands can be found in the Rank2TensorModule

Maple module.

2.5 Spinor Correspondence to Rank 2 Tensors in 4D

Next we will move to the spinor decomposition of rank two tensors in 4D with signature

[+,−,−,−] and talk about some new interesting phenomena as a result. Spinors are

well explained in Stewart (Stewart, 1993), and Penrose (Penrose & Rindler, 1987a); we

follow their notation. Recall that for two component spinors, we naturally have the group

Spin (3, 1) which is isomorphic to two copies of SL (2,C); we note that Spin (3, 1) is a

double cover of the group SO (3, 1); each of these three groups has real dimension 6. The
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next paragraph is adapted from Stewart.

To discuss spinors, we define the two-dimensional symplectic vector space S. The dual

of this space we denote by S∗. A symplectic linear structure on an even dimensional vector

space S is a non-degenerate bilinear skew-symmetric 2-form in S; we call this 2-form ϵAB.

A linear transformation Q : S → S is called symplectic if it preserves ϵAB. The set of

symplectic transformations forms the symplectic group (of appropriate dimension). The

symplectic group of dimension two, Sp (2,C), is isomorphic to the special linear group of

dimension two over C, i.e., SL (2,C). Let λ ∈ SL (2,C) and ιA ∈ S be a spinor. Then we

can represent the action of SL (2,C) on S by:

ρ(λ) : S → S

ρ(λ)(ιA) = λABι
B

It is useful to define the idea of a p, q spinor. We use capital Latin (A) indices to denote

the parts of the p, q spinor living on S, and capital Latin prime (A
′
) indices to denote the

parts of the p, q spinor living on S. For example, αABCD′ would be a 3,1 spinor. We also

define S as the complex conjugate of the space S. Complex conjugation takes a spinor in S

and maps it to S. Like before, we can represent the action of SL (2,C) on a spinor oA
′
∈ S,

then we can represent the action of SL (2,C) on S by:

ρ(λ) : S → S

ρ(λ)(oA
′
) = λ

A
′

B′ oB
′

Recall, from Stewart (Stewart, 1993), that spinors living on the vector space S ⊗ S are

isomorphic to vectors on the tangent bundle TM of our spacetime manifold M through the

Infeld–Van der Waerden symbols σa
AA′ .

αA → αA = αA
′



19

where similar results hold for lowered indices. Note further that ϵAB = ϵA′B′ . Following the

wording of Stewart: “We may now build a grand tensor algebra out of S, S∗, S, S∗.” We

provide a few more technical details. Since S, and S are different vector spaces, we do not

need to distinguish between spaces like S ×S and S ×S. The means we can shuffle primed

indices through unprimed indices.

αAB′ = αB′
A

The price to be paid for this notational convenience is that we cannot regard αAB′ as a 2×2

matrix.

With that established, we begin by applying our spinor decomposition to a doubly

covariant spinor τAB using Young tableaux.

τAB = Y 1 (τ)AB + Y 2 (τ)AB (2.15)

We can use the epsilon tensor to decompose the second tensor in equation (2.15) further

by taking traces. To do so we define the tensor ϵAB with the following relation of Stewart

(this is his equation 2.2.4):

ϵABϵCB = ϵ A
C = δ A

C = −ϵAC

A pedagogical idea goes as follows “raise on the right, lower on the left.” This means that

when we raise an index with ϵAB, that the B index gets contracted, and the A index is

leftover. Similarly, when we lower an index with ϵAB the A index gets contracted, and the

B index is leftover. This is what allows us to further decompose some tensors when we

could not before. In this case when we take the subgroup Sp (2) of GL (N) we find that

the Y 2 sector decomposed further because it is skew. This results in the sector being fully

determined by a scalar τ .

Y 2 (τ)AB =
1

2
τϵAB
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Y 2 (τ)AB ϵ
AB = τ

Thus, our decomposition of τAB is given in terms of a symmetric spinor and a scalar times

the epsilon tensor.

τAB = τ(AB) +
1

2
τϵAB (2.16)

We find spinors to be useful here because of a theorem from Stewart (Stewart, 1993)

that states any symmetric spinor can be decomposed in terms of its principal spinors:

υ(AB...C) = α(AβB . . . γC) (2.17)

Equation (2.17) will become exceedingly important once we examine the classification

of tensors using spinors. We note that symmetric spinors are irreducible under SL (2,C).

Now that we have established the background of what a spinor is, we discuss which of the

rank 2 spinors correspond to real rank two tensors.

2.6 Hermitian Rank Two Spinor Decomposition

Given a real rank two tensor Mab, once we apply the solder form σa
AA′ we obtain the

hermitian spinor θABA′B′ :

θABA′B′ =Mabσ
a
AA′σbBB′ (2.18)

The spinor θABA′B′ need not be hermitian if Mab is not real. Before examining Young

tableaux and their usefulness in this context, we could have found the decomposition of

θABA′B′ in Penrose & Rindler (Penrose & Rindler, 1987a) (PG 141).

θABA′B′ = θ(AB)(A′B′ ) +
1

2
ϵABθ

C
C (A′B′ )

+
1

2
ϵA′B′θ C

′

(AB)C′ +
1

4
ϵABϵA′B′θ C C

′

C C′ (2.19)

Later, we will provide another form of this decomposition. Upon closer inspection, we can

associate each of these pieces to tensors we already know. For instance, the spinor θ(AB)(A′B′ )

corresponds to the a tensor from equation (2.12). The spinors θ C
C (A′B′ )

and θ C
′

(AB)C′

correspond to the b tensor from equation (2.13). Lastly, the spinor θ C C
′

C C′ corresponds to
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the A tensor from equation (2.14); we will show how exactly this happens soon. To begin the

thought process, we know that that symmetric spinors are irreducible are already. We want

to decompose a spinor into its symmetric parts by taking epsilon traces; this is shown in

equations (2.15) and (2.16). So we apply this to our spinor θABA′B′ using Young tableaux

and traces. To start applying the trace decomposition in equation (2.16), we begin with

θABA′B′ and take an epsilon trace on the AB indices.

θABA′B′ = θ(AB)A′B′ +
1

2
θ C
C A′B′ ϵAB

Next, we take a second trace on the A′
B

′ indices. Simplifying the resulting expression

gives us Penrose’s formula (2.19). Now to condense this and make it match Penrose and

Rindler’s (Penrose & Rindler, 1987a) PGs 148-149, we define the following spinors:

θ(AB)(A′B′ ) = S(AB)(A′B′ )

1

4
θ C C

′

C C′ = τ

1

2
θ C
C (A′B′ )

= ψ(A′B′ )

1

2
θ C

′

(AB)C′ = µ(AB)

We have labeled Penrose and Rindler’s θ in the corresponding reference as µ here to avoid

confusion). Then we obtain a condensed formula as in equation (2.20.

θABA′B′ = S(AB)(A′B′ ) + ϵABψ(A′B′ ) + ϵA′B′µ(AB) + ϵABϵA′B′ τ (2.20)

When we apply the reality condition θABA′B′ = θABA′B′ (hermiticity) we find that

S(AB)(A′B′ ) = S(AB)(A′B′ ), µ(A′B′ ) = ψ(A′B′ ), and τ = τ . Thus, we know that S, τ are

real, and ψ, µ are complex conjugates. Therefore, our hermitian spinor is given by the
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decomposition:

θABA′B′ = S(AB)(A′B′ ) + ϵABψ(A′B′ ) + ϵA′B′ψ(AB) + ϵABϵA′B′ τ (2.21)

The above method produced the decomposition that we were looking for, but there is

a more efficient way to form this decomposition. In our approach, we use Young tableaux

and then specialize to traces. This decomposes each sector under GL (N). Each of these

decomposes further when we look at SL (2,C) irreducibility.

2.6.1 Counting Degrees of Freedom for Rank 2 Tensors and Spinors

We are interested in counting the degrees of freedom of SL (2,C) irreducible spinors

because of the correspondence between them and the SO (3, 1) irreducible tensors. The

easiest way to perform spinor decompositions is to count the independent components for

Mab in terms of its constituent pieces Aab, aab, and bab (note these tensors are defined in

equation (2.11)). The number of independent components (degrees of freedom) of the tensor

Mab is N2; this is the dimension of the tensor space. Similarly, we can use Young tableaux to

count the number of components of Aab and bab. Recall that Aab is the symmetric piece of

the Young/GL (N) decomposition. The tensor Aab has 1
2N (N + 1) number of independent

components, and bab has 1
2N (N − 1) number of independent components. When we break

Aab into Aab and aab, we find that Aab has 1 independent component because it is constructed

from a scalar, and that aab as a result has 1
2 (N + 2) (N − 1) independent components. The

results are repeated below:

deg (Aab) = 1 (2.22)

deg (aab) =
1

2
(N + 2) (N − 1) (2.23)

deg (bab) =
1

2
N (N − 1) (2.24)
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All spinors in this category must be symmetric, because we can take off epsilon spinors to

ensure so. We find four different possibilities:

S(AB)(A′B′ ), ψ(AB), µ(A′B′ ), τ

Penrose and Rindler (Penrose & Rindler, 1987a) list these spinors as corresponding to the

SO (3, 1) irreducible tensor components of a rank 2 tensor. Since we are interested in

real tensors we also have a reality condition. This means that p, q spinor, where p = q,

is hermitian. Likewise, if a p, q spinor, where p ̸= q, is present, then so must its complex

conjugate spinor be present. In this case we see that ψAB = µ̄AB following the decomposition

of Penrose and Rindler for a skew-symmetric second rank tensor. The most useful way to

examine this correspondence is to count the degrees of freedom. Upon counting the degrees

of freedom of these spinors, we find that S(AB)(A′B′ ) has 9 degrees of freedom.

deg
(
S(AB)(A′B′ )

)
=

(
1

2
N (N + 1)

)(
1

2
N (N + 1)

)∣∣∣∣
N=2

= 9

Next, ψ(AB) has 2
(
1
2N (N + 1)

)∣∣
N=2

= 6 degrees of freedom; one may think this should

be 3, but recall that ψ(AB) and µ(A′B′ ) are complex; S(AB)(A′B′ ) has only 9 degrees of freedom

because of the reality condition. As a general statement we can say whenever the number of

S indices does not match the number of S then the spinor’s degrees of freedom are doubled

(because of the complex nature). Finally, τ has only 1 degree of freedom. All of this together

tells us that S(AB)(A′B′ ) will correspond to aab. That ψ(AB), and likewise ψ̄(AB) correspond

to bab. Finally, that τ will correspond to Aab. Now we move to finding explicit formulas for

these spinors. We will begin with the Aab spinor.

2.6.2 Spinor Decomposition of A

Recall that Aab is given by Aab = gab
(
1
N g

cdAcd

)
in equation (2.14). We know that the

metric gab is given in terms of epsilon spinors as gab ∼= ϵABϵA′B′ once the solder form is

applied. Additionally, 1
N g

cdAcd is a scalar, which we will define to be τ . Thus, in this case,
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we may write A in terms of τ and epsilons. The only extra thing we need to remember is

that for our case N = 4.

Aab ∼= τϵABϵA′B′ , τ =
1

4
gcdAcd (2.25)

Next we move onto the aab spinor.

2.6.3 Spinor Decomposition of a

Recall that aab is given by aab = Aab−Aab in equation (2.12). We found that S(AB)(A′B′ )

should correspond to aab, and indeed we find that it does in equation (2.26).

aab ∼= S(AB)(A′B′ ) (2.26)

We can also easily see that aab is trace free from the form of S(AB)(A′B′ ). There are no

epsilon traces we can take off that do not result in 0 because of the symmetry.

2.6.4 Spinor Decomposition of b

Recall that bab is given by bab = M[ab] in equation (2.13). Because of the reality

condition bab = bab. We can write out equation (2.28). We can tell that we can remove a

single epsilon from M[ab] because of the skew tableaux structure:

1

2
(2.27)

Whenever we see this, we can always remove at least one epsilon from the defined tensor.

We can see this as follows.

bab ∼= ψ(AB)ϵA′B′ + ϵABψ(A′B′ ) (2.28)

ψ(AB) =
1

2
bABA′B′ ϵA

′
B

′

ψ(A′B′ ) =
1

2
bABA′B′ ϵAB
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There is no reference to the µ(A′B′ ) spinor from earlier because of the reality condition which

forces µ(A′B′ ) = ψ(A′B′ ). Since we have explicit formulas for the spinors, we can now discuss

Maple procedures to generate these objects for us.

2.7 Maple Procedures for SL (2,C) Irreducible Spinors

There are six different new commands to construct SL (2,C) irreducible spinors, and

to produce tensors from these spinors. They all require a spinor and a solder form as input.

Furthermore, the ψ spinor commands can take a third optional argument. The argument

takes either "spinor" or "barspinor" and will return either the ψ spinor for the "spinor"

argument, or the conjugate spinor ψ for the "barspinor" argument. We recommend using

the optional arguments when using the package.

The command Rank2SSpinor when given a rank 2 totally covariant tensor, and a solder

form, will produce the spinor S(AB)(A′B′ ) in equation (2.26). The command Rank2PsiSpinor

with the same inputs as before, will produce either the spinor ψ(AB) or the spinor ψ(AB) as

in equation (2.28). The last of these three Rank2TauSpinor, again with the same inputs at

the S spinor, produces the spinor τ from equation (2.25).

The next set of three equations takes as input a spinor of type S, ψ, or τ respectively,

and a solder form. It then creates the corresponding SO (3, 1) irreducible tensor from the

spinor. In this way, an arbitrary real totally covariant rank 2 tensor can be constructed from

these three irreducible spinors. We hope these commands will be useful for future research.

The command Rank2GenerateSTensor takes a S type spinor from equation (2.26) and

constructs the corresponding totally symmetric trace-free tensor from it; here this tensor

would be a from equation (2.12). The command Rank2GeneratePsiTensor takes the ψ

spinor, and optionally the ψ spinor as the third argument, and constructs the corresponding

trace-free totally skew tensor b from it; see equation (2.13). Finally, the last command

Rank2GenerateTauTensor takes a real scalar, (the tau spinor), and constructs its corresponding

trace-full tensor; that tensor for us is A from equation (2.14).

These are all the commands to calculate the SL (2,C) irreducible spinors and utilize

them.
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2.8 Summary of Spin (3, 1) ∼= SL (2,C) Spinor decomposition

In the last three sections we have described: how a rank 2 spinor decomposes, how a

rank 4 hermitian spinor decomposes following (Penrose & Rindler, 1987a), how to count the

independent components of rank 2 irreducible tensors and spinors, presented the decomposition

of A, a, and b in terms of spinors, and finally constructed Maple procedures to generate

each of the spinors given a rank 2 tensor and solder form, and make a tensor when given an

irreducible spinor and a solder form. All this together builds a solid foundation on which

to examine rank 3 and later rank 4 tensors in terms of SO (p, q) irreducibility and the

corresponding spinors in terms of SL (2,C).
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CHAPTER 3

RANK 3 TENSOR DECOMPOSITIONS AND THE TORSION TENSOR

This section explains how to decompose rank 3 tensors under various groups. Tools from

representation theory are heavily used, and to this end we make clear what a representation

is. A representation on a vector space of dimension N is a map ρ from some group G to

GL (N).

ρ : G→ GL (N) (3.1)

We will not often use explicit mappings, but they can be inferred without much effort. Here

we remind the reader of the definition of an irreducible representation.

A representation of a group is called irreducible if it cannot be decomposed into smaller,

non-trivial subrepresentations. In other words, there are no proper, non-zero subspaces that

are invariant under the action of the group.

Mathematically, let G be a group, and let V be a vector space over a field F (we

choose F = R for tensors and F = C for spinors). A representation of G on V is a group

homomorphism ρ : G → GL (V ) , where GL (V ) is the general linear group of invertible

linear transformations on V . The representation ρ is called irreducible if the only subspaces

W ⊆ V that are invariant under the action of ρ(g) for all g ∈ G are the trivial subspaces

{0} and V itself.

In the context of matrix representations, a representation is irreducible if it cannot be

brought into a block-diagonal form by a similarity transformation (a change of basis). In

other words, there are no non-trivial, simultaneous block-diagonalizations for all the matrices

representing the group elements.

We examine the vector space V of rank 3 tensors over TM , the tangent bundle of our

spacetime manifold M . We then examine how our group of interest G acts on V , and we use
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this information to decompose V into irreducible subspaces. For the case of the irreducible

representations of GL (N), we look at the map:

ρ : GL (N) → GL (V ) (3.2)

and how this map translates into invariant subspaces. We will use the Young tableaux

methods established in chapter 2, and in Fulton and Harris (Fulton & Harris, 1991) to

generate the four GL (N) irreducible representations of a 3rd rank tensor. We build on

the Young decomposition using the tools of Hammermesh (Hammermesh, 1962/1989). This

follows similarly to what we did in chapter 2. These tools allow us to build the seven

SO (p, q) irreducible representations of a 3rd rank tensor. We then build upon the ideas of

Penrose and Rindler to find the SL (2,C) irreducible spinors. In this case, the representation

would be given by:

ρ : SL (2,C) → GL (V ) (3.3)

where V is now the “grand tensor algebra” of Stewart (Stewart, 1993) (see page 71) built

from S, S∗, S, and S∗. In the case of rank 3 tensors, we will often apply (3.3) when looking

at a hermitian spinor of type aABCA′B′C′ .

Several times throughout this section and in later sections, we use bold font for tensors

and spinors, suppressing the indices to save space. We hope the context the objects are used

in will make this clear.

This section details: how to decompose rank 3 tensors intoGL (N) irreducible components

using Young tableaux, how to decompose rank 3 tensors in any dimension with respect to

SO (p, q), how to find the SL (2,C) irreducible spinors of a rank 3 tensor in dimension 4

with signature [+,−,−,−], and how to use the corresponding Maple procedures to determine

each of these.

We expand upon the work done in the “Rank 2 Tensor Decomposition” section (see

chapter 2) and apply the same Young tableaux tools to rank 3 tensors.
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We also apply this decomposition to the torsion tensor from differential geometry. We

take a moment here to define and describe the torsion tensor when viewed through various

lenses. In differential geometry, the torsion tensor is an object used to describe the non-

commutativity of the covariant derivative, which is a generalization of the ordinary derivative

for curved spaces. It is an important concept in the study of the geometry and topology of

manifolds, and it plays a key role in GR and ECSK. The torsion tensor is defined as:

T (X,Y ) = ∇XY −∇YX − [X,Y ]

where T is the torsion tensor, ∇ is the covariant derivative, X and Y are vector fields on the

manifold, and [X,Y ] is the Lie bracket of the vector fields (also known as the commutator).

The Lie bracket measures the difference between the actions of X and Y when applied in

different orders.

The torsion tensor is antisymmetric, meaning that T (X,Y ) = −T (Y,X). This property

follows directly from the definition.

In coordinate notation, the torsion tensor can be expressed the skew part of the connection:

T abc = 2ωa[bc]

where T abc are the components of the torsion tensor, and ωabc are the connection coefficients,

which describe the affine connection on the manifold.

In a manifold with a torsion-free connection, the torsion tensor vanishes identically. This

is the case for Riemannian manifolds, which are equipped with a Levi-Civita connection. In

general relativity, the Levi-Civita connection is used because it is torsion-free and metric-

compatible, meaning that it preserves the metric tensor under parallel transport.

We can also view the torsion tensor from a Cartan geometry view point (Cartan, 1922)

(Sharpe, 1997). Cartan geometry is a generalization of Riemannian geometry that unifies

the notions of curvature and torsion. It is based on the concept of a principal fiber bundle

with a connection. In Cartan geometry, the geometry of a manifold is described using a
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G-structure, where G is a Lie group acting on the tangent spaces. This G-structure defines

a set of preferred frames (or bases) for the tangent spaces, and the connection is given by a

Cartan connection, which is a Lie algebra-valued 1-form on the manifold.

The curvature (which we will examine in chapter 4) and torsion tensors in Cartan

geometry are defined in terms of the Cartan connection. The curvature tensor measures

the non-integrability of the G-structure, and the torsion tensor measures the failure of the

Cartan connection to be compatible with the G-structure. Both curvature and torsion are

essential features of the geometry in Cartan’s framework.

To relate the torsion tensor in Cartan geometry to the torsion tensor in differential

geometry, let’s consider a specific case: when the G-structure is associated with a linear

connection on the tangent bundle. In this case, the Cartan connection can be identified

with the connection 1-forms in the usual differential geometry setting.

In summary, the torsion tensor in Cartan geometry is a generalization of the torsion

tensor in differential geometry, as it incorporates the failure of the Cartan connection to

be compatible with the G-structure. This allows for a more general framework that can

accommodate both curvature and torsion as fundamental aspects of the geometry. We find

that both viewpoints are useful when discussing torsion and point the reader to Hehl et al.

(F. Hehl et al., 1976) for more discussion on how torsion enters into physics.

There are some new complexities which arise as soon as we try to apply Young tableaux

here that make the decomposition more interesting. The decomposition is no longer unique

because of the choice of either symmetrizing or skew-symmetrizing indices first. This occurs

in both the Y2a and Y2b sectors and both ways result in a different, but likewise irreducible,

decomposition.

The Y2a and Y2b sectors both fall into the Ferrers diagram:

,
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which splits into the Y2a and Y2b Young tableaux:

1 2

3
, 1 3

2

Although we have said before that the horizontal indices are symmetric, and the vertical

ones are skew, there is now ambiguity on whether the tensors corresponding to these objects

are symmetric or skew-symmetric.

For instance, in the Y2a section we could symmetrize the indices 1,2 first then skew-

symmetrize the indices 1,3. This is the convention we will use; “DifferentialGeometry” in

Maple also follows this by default. The skew-symmetrization on the indices 1,3 breaks the

1,2 symmetry but guarantees that the resulting tensor is an irreducible representation. This

representation comes out on the space of 1,3 skew tensors. The other option we could

choose is to skew 1,3 first and then symmetrize 1,2 resulting in a 1,2 symmetric irreducible

tensor element. These representations are not unique, and by a theorem of Young we

know that they represent the same irreducible element in the decomposition under GL (N);

see (Penrose & Rindler, 1987b) for more details. For third rank and higher-order tensors,

the non-uniqueness of the irreducible decomposition is a well known fact, see Landsberg

(Landsberg, 2012).

Following this, we present the Maple procedures in the “Rank3TensorModule” module.

This module feeds into our ECSK module to apply the same calculations to the torsion

tensor for classification purposes.

Next we move to spinor calculations for 3rd rank tensors. For the total decomposition of

an arbitrary rank 3 tensor in 4-dimensions, we find that the tensor is completely characterized

by 7 spinors. For the Y1 sector, these spinors are: S(ABC)(A′B′C′ ) for the totally trace free

part which corresponds to the tensor aabc, and , ωAA′ for the trace-full part which corresponds

to the tensor Aabc. For the Y2a sector, we find the spinors: η(ABC)B′ which corresponds to

the tensor babc, and τAA′ which corresponds to the tensor Babc. For the Y2b sector, we find

the spinors: σ(ABC)B′ which corresponds to the tensor cabc, and ψAA′ which corresponds to

the tensor Cabc. Lastly, for the Y3 sector, we find the spinor ΞDD′ corresponds to the tensor
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dabc.

We can then use these spinors to classify the torsion tensor in 4-D. The torsion tensor

decomposes into 3 irreducible tensors. The first of which is the trace-full tensor, which we

call Qa[bc]. It turns out this tensor equals Babc+Cabc. The second of which is the trace-free,

not-totally-skew tensor, which we call the leftovers piece. We label the leftovers part of the

torsion tensor by qa[bc]. This tensor equals babc + cabc. Finally, the third irreducible part of

the torsion tensor is given by the tensor d[abc]. This is the totally skew part of the torsion

tensor. These tensors are then turned into spinors and classified algebraically.

The irreducible tensor elements of the torsion tensor decompose into the spinors: ΘCC′ ,

Ω(ABC)A′ , and ΞDD′ . These correspond to the trace-full, leftovers, and totally skew parts

respectively. An entirely new classification algorithm is used for Ω(ABC)A′ in terms of

irreducible spinors (see subsection (3.8.1)). This classification method was inspired by

Penrose and Rindler (Penrose & Rindler, 1987b).

The algebraic/structural classification we present can be refined using the tools of

Penrose (Penrose, 1972) with algebraic geometry. We can examine the curve on CP1 ×CP1

in the complex case, again see (Penrose, 1972) for more details. Furthermore, see Crade

and Hall (Crade & Hall, 1982) for a survey of several classification schemes and how they

compare. In this reference, Ludwig and Scanlan’s (Ludwig & Scanlan, 1971) classification

also appears, which is yet another refinement of our classification. Although we will not go

into great depth on these considerations, they are placed here as possible future work. The

other two spinors ΘCC′ , and ΞDD′ have a simpler classification which tells us whether they

correspond to a null vector, or are zero.
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3.1 Rank 3 GL (N) Young Decomposition

We begin with an arbitrary rank 3 tensor Babc. We will then decompose Babc using

Young tableaux. The rank 3 Ferrers diagrams are given in 3.4.

, , (3.4)

We have the usual totally symmetric and totally skew diagrams, which we had for rank 2

tensors. However, there is now a sector in between. This is given by the Ferrers diagram:

It is this sector which is not unique. This is due to the fact we could either first symmetrize,

then second skew-symmetrize or first skew-symmetrize, then second symmetrize. Although

they result in different irreducible representations, they are both subspaces, and irreducible.

Either choice results in an irreducible subspace under GL (N). Recall that we will always

skew-symmetrize last in our convention.

Another interesting phenomenon happens in the rank 3 case that doesn’t happen in the

rank 2 case. The middle Young tableaux splits from the Ferrers diagram into two Young

tableaux. They are different because of the way we can arrange the numbers in each section.

This is seen in equation (3.5).

1 2 3 , 1 2

3
, 1 3

2
, 1

2

3

(3.5)

Recall that we always start with the number 1 in the top left most corner and proceed

increasingly down and to the right. Because of this, there are options where we put the

numbers 2 and 3 in the middle Y 2 diagram. Another difference is that there is no longer

a general way to write these decompositions like in the rank 2 tensor case. We could have

written Mab =M(ab) +M[ab] in that case. If we try to do that here, we would wind up with
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the opaque and nonsensical notation B(a|[b|c]) or things like it. To adopt a convention, we

can find inspiration from Penrose and Rindler (Penrose & Rindler, 1987a). Their notation

can be written as in equation 3.6.

Babc = B
a b c

+B
a b

c

+B
a c

b

+B
a

b

c

(3.6)

However, eventually, we determined that the notation, which we will soon present, better

represents the Young decomposition, as it matches the idea of Young projectors. Since we

can look at Young tableaux as projection operators, we use Y 1, Y 2a, Y 2b, and Y 3 to denote

the same objects as in equation (3.6).

Babc = Y 1 (B)abc + Y 2a (B)abc + Y 2b (B)abc + Y 3 (B)abc (3.7)

In equation (3.7) the Y 1, Y 2a, Y 2b, and Y 3 all correspond to the Young diagrams in (3.5).

For example and clarity: Y 1 means symmetrize on a, b, c; Y 2a means symmetrize on a, b,

then skew-symmetrize on a, c; Y 2b means symmetrize on a, c, then skew-symmetrize on a, b;

finally, Y 3 mean skew-symmetrize on a, b, c.

Although the notation in equation (3.7) is incredibly clear, it feels cumbersome. To the

end of ameliorating the notation, we developed another notation. This new notation consists

of calligraphic letters for the Young decomposition: i.e., A, . . . ,D which we will soon define.

This is the same as how we used calligraphic script in the GL (N) decomposition of rank

two tensors in chapter 2.

In our case for Babc we have 4 tensors under this decomposition: A, B, C, and D.

These are defined as follows:

Aabc = Y 1 (B)abc , Babc = Y 2a (B)abc (3.8)

Cabc = Y 2b (B)abc , Dabc = Y 3 (B)abc
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We use equation (3.8) to write the GL (N) decomposition of a rank 3 tensor as follows:

Babc = Aabc + Babc + Cabc +Dabc (3.9)

and this completes the Young analysis of the tensor Babc. Although we present the GL (N)

irreducible tensor elements in equation (3.8), we still need a way to write out constructively

what each of these tensors is, i.e., a formula. Normally, this calculation would be incredibly

difficult and cumbersome, but the tools of “DifferentialGeometry” have greatly simplified

these calculations, making it possible to work with these objects without lengthy pen and

paper calculations. To be clear, when we see “symmetrize on 1,2 first then skew-symmetrize

on 1,3 next” we do not swap positions, we swap indices. The following example is useful to

describe this. We examine the tensor Babc generated by the

1 2

3

Young diagram to illustrate this. Then we proceed with the following steps:

Babc → 1

3
Babc,

→ 1

3
(Babc +Bbac) ,

=
1

3
(Babc +Bbac −Bcba −Bbca)

to get the proper information out of the Young tableaux. Now we write out how to get each

of these sectors. Formulas are given below in (3.10) by applying the Young tableaux idea.

These formulas also work in Maple. First we have the Y 1 tableaux.

1 2 3

A(abc) =
1

6
(Babc +Bbca +Bcab +Bacb +Bcba +Bbac) (3.10)
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Next the Y 2 pieces. First with the Y 2a tableaux.

1 2

3

B[a|b|c] =
1

3
(Babc +Bbac −Bcba −Bbca) (3.11)

Then we have the Y 2b tableaux.
1 3

2

C[ab]c =
1

3
(Babc +Bcba −Bbac −Bcab) (3.12)

Lastly, we have the Y 3 tableaux.
1

2

3

D[abc] =
1

6
(Babc +Bbca +Bcab −Bacb −Bcba −Bbac) (3.13)

We can calculate the tensors Aabc, . . . ,Dabc in the “DifferentialGeometry” software

package more easily through the use of the “SymmetrizeIndices” command. This makes

the calculation trivial and is what the author uses extensively. Furthermore, the commands:

YoungTableauBasis, and YoungSymmetrizer satisfy this need comprehensively.

Furthermore, to explain the coefficients, recall the hook length product explained in

the rank 2 tensors chapter (see chapter 2). Here we take the top left box and count all the

boxes to the right and down from it plus one. Do this for each box, and then multiply the

product together. For an example, in the Ferrers Y 2 case, we find the hook lengths, and

their product in 3.14.

3 1

1
, HookLengthProduct

( )
= 3 (3.14)

Additionally, although these formulas work for an arbitrary tensor, the decomposition is
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not irreducible unless it has the fundamental symmetries of the original tensor. The torsion

tensor which we will examine later runs into this issue once we apply our decomposition.

Thus, its Young decomposition is smaller than the four subspaces which we have above;

there are only two for the torsion tensor. Itin and Reches (Itin & Reches, 2021) give an

excellent explanation of this phenomenon (see pages 25-26).

Since we have all the Young tableaux information, we can begin taking traces to build

the SO (p, q) irreducible elements of Babc.

3.2 Rank 3 SO (p, q) Trace Decomposition

In this section, we examine the irreducible representations of rank 3 tensors under

SO (p, q). The metric gab is a symmetric, non-degenerate, bilinear form which is preserved

by the special orthogonal group SO (p, q).

We use similar methods to those presented in chapter 2 to decompose rank 3 tensors.

Hammermesh’s tools (Hammermesh, 1962/1989) are incredibly useful as he explains how

taking traces builds SO (p, q) irreducible representations.

Let us first look at the general case to get a feeling for what happens: Babc. Taking

traces of Babc results in equation (3.15) shown below.

Babc = Xagbc + Ybgac + Zcgab +Wabc (3.15)

Where each of the Xa, Yb, Zc,Wabc are to be determined; note this implies that Wabc is a

totally trace free tensor. We are already done taking traces because we can’t take traces of

the vectors Xa. Now take and apply this idea to each of our Young sectors. This was an

idea proposed by Wheeler (J. T. Wheeler, unpublished). We define several 1-forms to make

later calculations easier. These are: Pa, Rb, and Uc:

gabBabc = Pc, , gacBabc = Rb, gbcBabc = Ua (3.16)

The traces from before are defined in equation (3.16). With this idea established, we can



38

decompose the tensors A, B, C, and D under SO (p, q). Notationally, the 4 irreducible

tensors: A, B, C, and D under GL (N) (see equation 3.9) will decompose to 7 irreducible

tensors: A, a, B, b, C, c, and d under SO (p, q) because we can take traces of the tensors

appearing in the GL (N) decomposition. Recall that we use uppercase Fraktur script, i.e.,

A,B,C for trace-full tensors as we did in chapter 2.

We call the tensors A,B,C the trace tensors. We will use lowercase Fraktur script,

i.e., a,b, c,d for the totally-trace free tensors; we call these the frank tensors. This idea will

be further extended and applied to rank 4 tensors later in chapter 4. As an example, the

tensor A will decompose into the tensors: A , and a.

We will also count the degrees of freedom, or the dimension of the vector subspace, of

each of the SO (p, q) irreducible tensors. This will be denoted by deg ( ). Young tableaux

are easily suited for this type of counting, even in the SO (p, q) case with a slight extension.

3.2.1 Decomposing Aabc Under SO (p, q)

We begin by decomposing the tensor Aabc under SO (p, q). Recall that this tensor

corresponds to the tableau:

1 2 3

which is the totally symmetric tableaux sector. Recall that this would give us the following

relation: Aabc = A(abc). Upon decomposing Aabc under SO (p, q) with the

Hammermesh method (Hammermesh, 1962/1989) we produce the following decomposition:

Aabc = aabc + Aabc (3.17)

Aabc =
3

(N + 2)
P(agbc) (3.18)

Pc = gabAabc (3.19)

where the tensor a is determined by equation (3.17).
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Counting the degrees of freedom of A,A, and a

We can count the degrees of freedom of each of these tensors as well. For the tensor A,

as before, we know that the degrees of freedom can be counted using Young tableaux with

the same method presented in chapter 2. We place an N in the top leftmost box, and as

we move right add one to it, as we move down subtract one. For the totally symmetric case

this becomes, N for the top leftmost box, then N + 1 for the middle box, and then N + 2

for the final box. We also still divide by the hook length product, which is 6 in this case.

To make it applicable to spacetime, the reader can choose N = 4 as the dimension.

The results are given below. We find the degrees of freedom in aabc by subtracting the

degrees of freedom of Aabc from Aabc.

deg (Aabc) =
1

6
N (N + 1) (N + 2) (3.20)

deg (aabc) =
1

6
N (N + 4) (N − 1)

deg (Aabc) = N

3.2.2 Decomposing Babc, and Cabc Under SO (p, q)

We will begin with decomposing the Y 2a tensor. The Y 2a Young sector is given by the

tableau:

1 2

3
.

We will label the tensor which represents this sector as Babc. This tensor is equivalent to

applying the Y 2a projection to B i.e. Y 2a (B)abc = Babc. Our convention tells us to first

symmetrize on the a, b indices, and then skew-symmetrize on the a, c indices. This results in

B having the symmetry Babc = B[a|b|c]. Taking traces, we find the following decomposition

for B:

Babc = babc +Babc (3.21)
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Babc = − 2

(N − 1)
P[ag|b|c] (3.22)

Pc = gabBabc (3.23)

Now we move onto the Y 2b sector, which is represented by the tableau

1 3

2

which we represent by the tensor Cabc. This follows similar logic as what we did for B; this

is Y 2b (B)abc = Cabc. We have the symmetry Cabc = C[ab]c. Using the trace decomposition,

we arrive at the following three equations.

Cabc = cabc + Cabc (3.24)

Cabc = − 2

(N − 1)
R[agb]c (3.25)

Rb = gacCabc (3.26)

Counting the degrees of freedom of B,C,B,C,b, and c

Because Y 2a, and Y 2b have the same Ferrers sectors, they have the same degrees of

freedom, i.e., deg (Babc) = deg (Cabc). The degrees of freedom are:

deg (Babc) =
1

3
N (N + 1) (N − 1) (3.27)

deg (babc) =
1

3
N (N + 2) (N − 2)

deg (Babc) = N
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3.2.3 Decomposing Dabc Under SO (p, q)

Since the Y 3 sector is given by the tableaux

1

2

3

the tensor Dabc is totally skew, hence there are no traces we can take. Therefore, it is already

irreducible under SO (p, q). To follow our notation from earlier, we define D = d, since all

lowercase Fraktur tensors are totally trace-free. So the totally skew piece is then defined by

dabc = B[abc].

Degrees of freedom for d

This sector’s degrees of freedom are already counted by the Young tableaux calculation.

We have the result given in equation (3.28).

deg (dabc) =
1

6
N (N − 1) (N − 2) (3.28)

3.3 Summary of the SO (p, q) Decomposition and Maple Procedures

Recall that the GL (N) decomposition using the Young tableaux had 4 sectors, and it

was given by equation (3.7), which we repeat here for convenience.

Babc = Aabc + Babc + Cabc +Dabc

Now the SO (p, q) decomposition, with arbitrary signature, has 7 sectors and is given by:

Babc = Aabc +Babc + Cabc + aabc + babc + cabc + dabc (3.29)

Each of the definitions of these tensors is repeated below. For the Y 1 sector, we have:

Aabc = aabc + Aabc
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Aabc =
3

(N + 2)
P(agbc)

Pc = gabAabc

For the Y 2 sectors, we can look at Y 2a and Y 2b. For the Y 2a sector, we have:

Babc = babc +Babc

Babc = − 2

(N − 1)
P[ag|b|c]

Pc = gabBabc

For the Y 2b sector, we have:

Cabc = cabc + Cabc

Cabc = − 2

(N − 1)
R[agb]c

Rb = gacCabc

For the Y 3 sector, we have:

d[abc] = D[abc] = B[abc]

Finally, as a sanity check, we check that the degrees of freedom of each of these seven sectors

add up to N3 which they do.

We have created Maple procedures that calculate each of these seven tensors in N -

dimensions. The procedures are explained below. Additional procedural details can be

found in the modules and the files included with this work.

First, the code for the Y 1 sector is given by: “Rank3FrankA”, and “Rank3TraceA.”

These commands both take a general tensor (in our case this is Babc) as the first argument

and a metric as the second argument. Then they return the aabc and likewise Aabc tensors.

Furthermore, the following commands all take the same input. For the Y 2 sectors, we have

“Rank3FrankB”, “Rank3TraceB”, “Rank3FrankC”, and “Rank3TraceC”. Finally, for the Y 3

sector, we have the command “Rank3FrankD” to be comprehensive, although this is really
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just the SymmetrizeIndices indices command with totally-skew indices.

3.4 Rank 6 Hermitian Spinor Decomposition

Next we move onto the relevant spinor decompositions for rank 3 tensors. Since tensors

correspond to Hermitian spinors through the Infeld-Van der Waerden symbols σa
AA′ , it is

important to look at them with regard to our rank 3 tensor case. A general rank 3 tensor Babc

would turn into a general rank 6 spinor χABCA′B′C′ . Applying our ideas from before, we can

find the irreducible pieces of χABCA′B′C′ and thus decompose it. At first, we might think

that just taking epsilon traces would be the most expeditious way to analyze χABCA′B′C′ ,

but it is not. Instead, the efficient way to go about it is to use Young tableaux on our tensor

Babc. Then we build the SO (p, q) irreducible representations of Babc, the tensors a,A, . . . ,d.

Last, we convert these pieces into their corresponding Hermitian spinors through the Infeld-

Van der Waerden symbols. Then we build the SL (2,C) irreducible spinors by taking traces

of these spinors with epsilon spinors, ϵAB. Recall from chapter 2 that SO (p, q) irreducible

tensor components correspond to SL (2,C) irreducible spinors.

On the other hand, there are some fruitful ideas which bloom from just starting with

χABCA′B′C′ and decomposing it using traces. One of which is exposing the valency possibilities

of the irreducible spinors. Another is enumerating the number of irreducible spinors. These

are the only two fruits which can be gleaned easily from this approach, in the opinion of the

author. This method is elaborated in the appendix.

After enumerating the types of spinors we can create (taking epsilons off), we find that

we should have a set of: 1 S(ABC)(A′B′C′ ) type spinor, 2 η(ABC)A′ type spinors, and 4 ωAA′

type spinors. Note, the symmetry is due to a theorem of Stewart: irreducible spinors are

symmetric in the same type of indices.

Each of these spinors matches a particular SO (3, 1) irreducible tensor. For instance,

the S(ABC)(A′B′C′ ) tensor matches the aabc tensor in equation (3.17) exactly. When we say

match, we mean that the degrees of freedom match, and that there may be additional epsilon

terms in a linear combination with the spinor needed for equality. In this instance, for aabc,

we have a direct equality from the solder form (Infeld-Van der Waerden symbols) given by



44

equation (3.30).

S(ABC)(A′B′C′ ) = aabc σ
a
AA′σbBB′σcCC′ (3.30)

We will also find equations such as:

Aabc ∼= ωAA′ ϵBCϵB′C′ + ωBB′ ϵACϵA′C′ + ωCC′ ϵABϵA′B′

ωCC′ ∼=
1

6
ϵABϵA

′
B

′
Aabc

which illustrate how the epsilon trace decomposition works. To elaborate on the degrees

of freedom matching, recall that the SO (p, q) irreducible tensor a has 1
6N (N + 4) (N − 1)

degrees of freedom. To further elaborate on equation (3.30) and the correspondence of

SO (p, q) irreducible tensors to SL (2,C) irreducible spinors, we should count the degrees

of freedom of S(ABC)(A′B′C′ ). This is made simpler with Young tableaux, although here

we have restricted ourselves to N = 4 dimensions when working with spinors; recall in

N = 4 that deg (aabc)|N=4 = 16. So to count these, we count the dimension of the unprimed

symmetric indices, and then multiply that by the dimension of the primed symmetric indices.

The dimension of the tangent space at a point p, TpM is 4, but each the primed and

unprimed space lives only on a complex 2-dimensional space, recall S and S; thus the real

dim
(
S ⊗ S

)
= 4. For clarity, let n be the complex dimension of S and S which is 2; this

is halved for hermitian spinors by the reality condition of Penrose and Rindler (Penrose &

Rindler, 1987a). This would tell us that the degrees of freedom of S(ABC)(A′B′C′ ) has to be

16.

deg
(
S(ABC)(A′B′C′ )

)∣∣∣
N=4

=

(
1

6
n (n+ 1) (n+ 2)

)∣∣∣∣
n=2

(
1

6
n (n+ 1) (n+ 2)

)∣∣∣∣
n=2

=

((
1

6
n (n+ 1) (n+ 2)

)∣∣∣∣
n=2

)2

= 16

To elaborate more on the “additional epsilon terms, and a linear combination of that spinor

needed for equality” statement from earlier in this section, we turn to the tensor A, and its
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corresponding spinor ωAA′ as an example. In this case, there were 4 degrees of freedom for

A. Likewise, there are 4 degrees of freedom for ωAA′ ; there are not 8 because although ωAA′

is a spinor, it is Hermitian, and its real dimension as just half of what it would have been

had it had all coefficients in C. Now we move onto how to find a formula for A in terms of

ωAA′ .

It may not be intuitively obvious, but it turns out that the easiest way to begin is

to start with a spinor ωAA′ ϵBCϵB′C′ and then force the index symmetry A(abc) to hold on

ωAA′ ϵBCϵB′C′ . This “turn the crank method” results in the following decomposition for A

given in equation 3.31. Additionally, ωAA′ is a hermitian spinor. Recall that we use the

congruence/isomorphism symbols to mean equal once the Infeld-Van der Waerden symbols

have been applied. See Penrose and Rindler (Penrose & Rindler, 1987a) for more details on

their spinor notation, which we follow here.

Aabc ∼= ωAA′ ϵBCϵB′C′ + ωBB′ ϵACϵA′C′ + ωCC′ ϵABϵA′B′ (3.31)

ωCC′ ∼=
1

6
ϵABϵA

′
B

′
Aabc

And again we can count the degrees of freedom of ωAA′ and find there to be 4.

deg
(
ωAA′

)
= (n)|n=2 (n)|n=2 = 4

At this point, we still need to write the spinor form of each of the other SO (p, q) irreducible

tensors, and write the corresponding SL (2,C) irreducible spinors in terms of traces of the

tensors. From before, we know that we have seven tensors which we need to write the spinor

decomposition for: a,A,b,B, c,C,d. We already have the trace piece Y 1 sector spinor

decomposition. For the tensor Aabc this is given by equation (3.31) which is determined by

the omega spinor ωAA′ . The trace-free part of Y 1 is aabc and is completely determined by

the spinor S. This spinor is already irreducible under SL (2,C) without taking any epsilon

traces as in equation (3.32).

a(abc) ∼= S(ABC)(A′B′C′ ) (3.32)
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The Y 2 and Y 3 irreducible spinor decompositions are similar in structure. The spinor

decompositions of babc, and cabc are given by equations (3.33), and (3.34). Note that we can

get η̄(A′B′C′ )B (σ̄(A′B′C′ )C) by taking a trace with ϵAC (ϵAB) instead of with ϵA
′
C

′
(ϵA

′
B

′
).

babc ∼= ϵA′C′ η(ABC)B′ + ϵAC η̄(A′B′C′ )B, η(ABC)B′ ∼=
1

2
babcϵ

A
′
C

′
(3.33)

cabc ∼= ϵA′B′ σ(ABC)C′ + ϵAB σ̄(A′B′C′ )C , σ(ABC)C′ ∼=
1

2
cabcϵ

A
′
B

′
(3.34)

Furthermore, the spinor decompositions for B[a|b|c], and C[ab]c are given by equations (3.35),

and (3.36). Additionally, τCC′ , and ψBB′ are hermitian spinors; this happens naturally when

taking the epsilon traces and using the Infeld-Van der Waerden symbols.

Babc
∼= τAA′ ϵBC ϵB′C′ − τCC′ ϵAB ϵA′B′ , τCC′ ∼= −1

3
ϵABϵA

′
B

′
Babc (3.35)

Cabc ∼= ψAA′ ϵBC ϵB′C′ − ψBB′ ϵAC ϵA′C′ , ψBB′ ∼= −1

3
ϵACϵA

′
C

′
Cabc (3.36)

To finish, the spinor decomposition for the totally skew piece is more complicated, requiring

six different terms to produce the correct symmetry of the sector. Additionally, the irreducible

spinor ΞDD′ which appears in equation (3.37) naturally occurs as an antihermitian spinor.

It is curious that this occurs in this fashion. Nevertheless, we can turn this antihermitian

spinor into a Hermitian spinor by removing an i from equation (3.37) and defining the new

hermitian spinor. However, we will not do that here, as we believe this is indicative of some

more general trend. Redefining things in this fashion and may obfuscate our classification

aims later.

dabc ∼= ϵBCϵA′C′ΞAB′ − ϵACϵB′C′ΞBA′ (3.37)

+ ϵBCϵA′B′ΞAC′ − ϵABϵB′C′ΞCA′

+ ϵACϵA′B′ΞBC′ − ϵABϵA′C′ΞCB′

ΞDD′ = −1

9
ϵABϵA

′
C

′
dABDA′D′C′ , ΞDD′ = −ΞDD′
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We can further classify these spinors using the tools of Penrose and Rindler (Penrose

& Rindler, 1987b), first by looking at the structural reducibility (algebraic irreducibility)

of these SL (2,C) irreducible spinors. What we mean by structural reducibility is that

a given spinor can be written as a product of lower valence spinors. The spinor ΞDD′

for example, can be written as κDκ̄D′ for some components. This only occurs when the

condition ΞDD′ΞDD
′
= 0 holds. Upon examining the structural reducibility of the spinors,

we can find SL (2,C) or SO (3, 1) invariant quantities. It is these quantities which we

will use to classify possible geometries in ECSK theory. To further build on these ideas,

Penrose (Penrose, 1972) used the ideas of algebraic geometry to examine the topology and

singularity structure of the locus of these spinors (ΞDD′ ξDηD
′
= 0) as viewed on the null

cone (ϵABϵA′B′ ξAξBηA
′
ηB

′
= 0). We will not do this here since there is no algorithm given

in the general case, but it is an exciting possibility for future work.

There are twelve new procedures coded up in the ECSK module to handle and compute

these spinors. The first six which calculate the corresponding spinors given a tensor and

a solder form are: Rank3SSpinor, Rank3OmegaSpinor, Rank3TauSpinor, Rank3PsiSpinor,

Rank3XiSpinor, Rank3EtaSpinor, and Rank3SigmaSpinor. Out of these, the commands

Rank3EtaSpinor, and Rank3SigmaSpinor can take an optional "barspinor" which returns the

conjugate spinor instead of the original spinor. Next we have the other six procedures which

generate a SO (3, 1) irreducible 3rd rank tensor from a given spinor of that type and a solder

form: Rank3GenerateSTensor, Rank3GenerateOmegaTensor, Rank3GenerateTauTensor,

Rank3GeneratePsiTensor, Rank3GenerateXiTensor, Rank3GenerateEtaTensor, and

Rank3GenerateSigmaTensor. Where again the Eta and Sigma options can take an optional

argument, their conjugate spinor as the third argument. We recommend using this optional

argument.

In the next section, we establish and develop a classification for the torsion tensor up

to structural reducibility.

3.5 GL (N) and SO (p, q) Reducibility of the Torsion Tensor

In this section, we establish and develop a classification for the torsion tensor up to
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structural reducibility. We will address the classification of the torsion tensor according to

GL (N), SO (p, q), spinorally under SL (2,C), and then examine the structural reducibility

(algebraic irreducibility) of the spinors in that order.

3.5.1 Decomposing the Torsion Tensor Under GL (N)

To begin, recall that the torsion tensor, which we denote by T a bc, is skew-symmetric

on its last two indices: T a bc = T a [bc]. Because we have a metric in ECSK theory, we can

lower the first index of the torsion tensor to make it totally covariant, Tabc = Ta[bc]. Now,

we apply the ideas we developed for irreducible rank 3 tensors/spinors above to the torsion

tensor. The torsion tensor has three irreducible GL (N) sectors. These are given by the

Young tableaux in equation (3.38).

1 2

3
, 1 3

2
, 1

2

3

(3.38)

However, we will find that the first tableaux do not share the same symmetries of the torsion

tensor, and therefore they cannot be irreducible representations. Itin and Reches (Itin &

Reches, 2021) give an excellent explanation of this and how to account for it. Since these

tableaux do not have the same symmetry as the last two indices of the torsion tensor, we

need to compensate because there still is an irreducible representation in the elbow Ferrers

diagram:

.

We will call this irreducible representation Qabc, where Qabc is defined as follows:

Qabc =
1

3
(2Tabc + Tbac + Tcba) , Qabc = Qa[bc] (3.39)

This tensor has the same symmetry as the torsion tensor, and is in fact irreducible. We can

see that it is irreducible by noting it is the piece leftover once the totally skew part (Y 3

sector) of the torsion is subtracted off. A proof of this method is given by Itin and Reches
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(Itin & Reches, 2021); furthermore, Fulton and Harris also guarantee that this methodology

will work (Fulton & Harris, 1991). The Y 3 Young sector is given by Dabc as before, but the

formula simplifies to three terms because of the skew indices the torsion tensor has. This is

given by equation (3.40).

Dabc =
1

3
(Tabc + Tbca + Tcab) (3.40)

The GL (N) decomposition of the torsion tensor is given by:

Tabc = Qabc +Dabc (3.41)

As an aside, if we add the tensors Babc, and Cabc from equation (2.8) together, we find that

they equal Qabc.

Qabc = Babc + Cabc (3.42)

Moving forward, we count the number of independent components of the irreducible sectors

Q, and D. Formulas are given below.

dim (Q) =
1

3
N (N + 1) (N − 1)

dim (D) =
1

6
N (N − 1) (N − 2)

Let the space of the torsion tensor be T , the space representing the elbow tableau be Q, and

the space representing the vertical tableau space be D, then the final irreducible subspace

decomposition is given by:

T = Q⊕D

3.5.2 Decomposing the Torsion Tensor Under SO (p, q)

Next, we derive the SO (p, q) decomposition for the torsion tensor. The only element

which is further reducible is Qabc from equation (3.41) which splits into two tensors Qabc,

and qabc. Keeping with the earlier notation, Qabc is the trace-full piece, and qabc is the trace-

free not-totally-skew piece (or as the author likes to call it, the leftovers piece); note that
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both of these tensors are skew on the last two indices as well. The SO (p, q) decomposition

is then given by equation (3.43) which is shown below.

Tabc = Qabc + qabc + dabc (3.43)

Qabc =
1

(N − 1)
(Pcgab − Pbgac) , Pc = gefQefc (3.44)

qabc = Qabc −Qabc (3.45)

As another aside, the new tensor Q can be calculated by adding the tensors B, and C

together from equations (3.21) and (3.24). Likewise, the new tensor q can be calculated by

adding the tensors b, and c together from equations (3.22) and (3.25). These both mirror

equation (3.42), and are shown below. Recall that d = D from equation (3.40), we just

rewrote it to keep with our notation.

dabc = Dabc (3.46)

Qabc = Babc + Cabc (3.47)

qabc = babc + cabc (3.48)

Each of these SO (p, q) irreducible tensors can be calculated with the following Maple

procedures: TorsionTraceQ, TorsionFrankQ, and TorsionFrankD. They each take a torsion

tensor and a metric as the inputs.

Before we move to the spinor decomposition of the torsion tensor, we remark that there

are other versions of this decomposition presented in the literature. One of which is that of

Shapiro (Shapiro, 2001). We explore the comparison in appendix A.

3.6 Spinor Decomposition of the Torsion Tensor

With the torsion tensor decomposed under SO (p, q), we would like to find the spinor

representation of the torsion tensor. Because we know the form for the spinors related to the



51

tensors B, (C), and b, (c) we can write out the tensors Q, and q in terms of their related

spinors. We add these spinors together as we did in equations (3.42), (3.47), and (3.48),

then use the Jacobi identity (see Stewart (Stewart, 1993)):

ϵA[BϵCD] = 0

ϵABϵCD + ϵACϵDB + ϵADϵBC = 0

and relabel terms to determine these spinors. Recall that we are using Penrose and Rindler’s

(Penrose & Rindler, 1987a) notation to suppress some indices. The formula for the tensor

Q, in terms of its spinor equivalent, Θ is:

Qabc
∼= ΘBB′ ϵACϵA′C′ −ΘCC′ ϵABϵA′B′ , ΘCC′ ∼= −1

3
ϵABϵA

′
B

′
Qabc (3.49)

Likewise, the formula for the tensor q and its spinor equivalent is:

qabc ∼= ϵB′C′ Ω(ABC)A′ + ϵBC Ω̄(A′B′C′ )A, Ω(ABC)A′ ∼=
1

2
qabcϵ

B
′
C

′
(3.50)

Finally, for completeness we repeat the equation for the spinor equivalent to the tensor d

which was given by equation (3.37) here.

dabc ∼= ϵBCϵA′C′ΞAB′ − ϵACϵB′C′ΞBA′ (3.51)

+ ϵBCϵA′B′ΞAC′ − ϵABϵB′C′ΞCA′

+ ϵACϵA′B′ΞBC′ − ϵABϵA′C′ΞCB′

ΞDD′ = −1

9
ϵABϵA

′
C

′
dABDA′D′C′ , ΞDD′ = −ΞDD′

In our spinor decomposition of the torsion tensor (in 4-D with signature [+,−,−,−]),

we find that Tabc is entirely determined by 3 spinors: Θ, Ω, and Ξ (where we leave ϵ out

because it is the object left invariant by SL (2,C)).

There are 6 new Maple procedures which allow us to work with these three spinors.
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The procedures are: TorsionThetaSpinor, TorsionOmegaSpinor, TorsionXiSpinor,

TorsionGenerateOmegaTensor, TorsionGenerateThetaTensor, and

TorsionGenerateXiTensor. The first three take a torsion tensor and a solder form as their

arguments and output the corresponding spinor. The last three take a spinor and a solder

form as their arguments and form a corresponding SO (3, 1) irreducible part of the torsion

tensor. Furthermore, both of the Omega spinor commands take optional third arguments.

The first Omega command takes "barspinor" to return the conjugate spinor instead. The

second Omega command takes the conjugate spinor as its third optional argument. We

recommend using the optional argument when constructing the tensor from the Omega

spinor.

Now we will look at the structural reducibility of each of the three spinors: Θ, Ω,

and Ξ. The classifications of the spinors Θ, and Ξ are equivalent and relatively simple

due to there being only one invariant which distinguishes the cases which aren’t zero. The

classification of the spinor Ω however is far more interesting and yields several new and

unexplored possibilities for structural classification purposes.

Next we examine the structural classification for each of these spinors and enumerate

all the different possibilities while neglecting any interplay between the spinors such as being

considered in the excellent references (Zakhary & Carminati, 2001), (Carminati et al., 2002),

(Carminati & Zakhary, 2002), (Carminati & McLenaghan, 1991). Applying the mindset of

the references above would be yet another direction for future work. For clarity this means

we neglect any co(in)variants resulting from spinors like ζ(BC) (defined soon), (or Z) which

would arise from calculations like: Ω(ABC)A′ΞAA
′
= ζ(BC), (or Z = ζ(BC)ζ

(BC)). Penrose

and Rindler (Penrose & Rindler, 1987b) make mention of these types of co(in)variants on

Pgs. 262-264, which again would be an excellent direction for further research.

There are three spinors which we need to structurally reduce: Θ, Ξ, and Ω, but because

Θ, and Ξ have the same valence their structural reducibility is the same; this type of analysis

holds for any spinor of said valence. First we will examine the structural reducibility of Ω,

and then look at Θ, and Ξ. Then we will enumerate the number of distinct cases which can
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occur with respect to structural reducibility.

3.6.1 Structural Reducibility of: Ω(ABC)A′

For the torsion Ω spinor there are eight different structural reducibility types. Recall

that by structural reducibility we mean that the spinor cannot be written as a product;

this coincides with the definition of algebraic irreducibility. The eight possible cases are

enumerated below. Following the ideas of Penrose and Rindler (Penrose & Rindler, 1987b)

Pg. 268 we develop a notation which describes the structural decomposition of the spinor

Ω(ABC)A′ ; this is given in table (3.1) shown below. Table (3.1) enumerates the eight different

Cases for the Torsion Omega Spinor
Cases Spinor Our Notation Penrose Notation
Case 1 Ω(ABC)A′ [31] (3, 1)

Case 2 δ(AβBC)A′ [A, 21] (1, 0)(2, 1)

Case 3 δ(AλBθC)A′ [A,B, 11] (1, 0)(1, 0)(1, 1)

Case 4 δ(AδBθC)A′ [A2, 11] (1, 0)2(1, 1)

Case 5 δ(AλBωC)ξA′ [A,B,C,D
′
] (1, 0)(1, 0)(1, 0)(0, 1)

Case 6 δ(AδBωC)ξA′ [A2, B,C
′
] (1, 0)2(1, 0)(0, 1)

Case 7 δ(AδBδC)ξA′ [A3, B
′
] (1, 0)3(0, 1)

Case 8 0 [−] (−)

Table 3.1: Structural Reducibility Table of the Spinor Ω(ABC)A′

cases, the spinors corresponding to those cases, and two different notations to describe those

cases. In each of the cases, we have a p, q spinor where there are p unprimed indices, and q

primed indices; this is important for either notation.

In our notation, we use commas to separate different spinors. Unless the spinor is

valence 1, we have a number which is meant to be read as a pair. The left number in this

pair is the number of unprimed indices the spinor has, and the right number is the number

of primed indices the spinor has. When we have a valence 1 spinor, we represent this with

capital Latin letters or primed letters; the prime distinguishes a valence one spinor living on

S from one living on S. For example, we would write A for a valence one unprimed spinor.

Likewise, we would write A′ for a valence one primed spinor. Any time a spinor of the same
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valence is repeated, we write a number representing how many times it has been repeated

in the exponent. For example, if the spinor represented by A appears twice, we would write

A2. Our notation also represents complex conjugation in the sense that if we write AA′ then

the spinor represented by A′ is the complex conjugate of A. If the spinor is not the complex

conjugate, we would write AB′ . The authors feel it useful to include our new notation here

as a different approach which may be more intuitive with some readers than others.

Penrose and Rindler’s notation accomplishes the same thing, where the numbers in

parentheses represent the valence p, q of the spinor. Similarly to us, they also use an exponent

to represent a repeated spinor.

As an example, in Case 1 in table (3.1), the spinor Ω(ABC)A′ is irreducible, and we would

write [31] in our notation or (3, ) in Penrose and Rindler’s notation. To clarify further, take

Case 2 in table (3.1) for which we have (1, 0)(2, 1). The parenthesis tell us that there are

two spinors which are irreducible one of which is a single unprimed spinor (1, 0), and the

other is an irreducible spinor with two unprimed indices, and one primed index. Finally, to

describe the last piece of possible notation, take case 4, where we have (1, 0)2(1, 1). The

parenthesis indicate that there are three irreducible spinors, two of which are repeated, with

one unprimed index, and the last spinor has one primed and one unprimed index (1, 1). The

very last case where we have [−], and (−) indicate that the entire spinor is zero, hence the

lack of any spinors in the notation.

3.6.2 Structural Reducibility of: ΘCC′ and ΞDD′

Next we consider the spinors ΘCC′ and ΞDD′ . We only need a classification for a spinor

of type ΘCC′ and then we know the structural reducibility for both Θ, and Ξ. Here the

special names or notation are the same as before, but with one addition. We now have

|(1, 0)|2; the absolute value bars with the squared symbol suggests a “square modulus.” This

is different from (1, 0)(0, 1) which would represent a spinor like ξAηA′ , because |(1, 0)|2 means

ξAξ̄A′ . The second spinor is the complex conjugate of the first, hence the “squared modulus.”

In our notation, this is reflected by A,A′ where we can tell by the repeated A that the

spinor represented by A′ is the complex conjugate of the spinor represented by A.
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There are only three cases since Θ is hermitian and Ξ is anti-hermitian. The decomposition

for Ξ is slightly different in Case 2 because of the i included in front; this is to ensure the

decomposition is also antihermitian, just like Ξ is.

We present table (3.2) next to illustrate each of these three cases, as we did for the

spinor Ω(ABC)A
′ in table (3.1). Now that we have the structural reducibility for Ω, Θ,

Cases for the Torsion Theta and Xi Spinors
Cases Spinor Our Notation Penrose Notation
Case 1 ΘCC′ ,ΞDD′ [11] (1, 1)

Case 2 κC κ̄C′ , iκC κ̄C′ [A,A
′
] |(1, 0)|2

Case 3 0 [−] (−)

Table 3.2: Structural Reducibility Table of the Spinors ΘCC′ and ΞDD′

and Ξ, we find that the total number of cases would be (8) (3) (3) = 72. This is already

a large number and could be larger still by refining the classification with the algebraic

geometry methods of Penrose (Penrose, 1972). Future work would be to examine this

“Penrose Refinement” and see how it correlates to physical frame independent observables

in ECSK theory. Additionally, it would be excellent to have an algorithm built to determine

these cases.

3.7 Algorithm to Classify the Torsion Tensor

In the last section, we enumerated all the different structural reducibility cases which

were possible for the torsion tensor. In this section, we present an algorithm to determine

each of the possibilities using covariants and invariants built from the spinors. First, we will

begin with the Ω spinor, and discuss the algorithm to determine its structural reducibility.

We also discuss the co(in)variants that we use to determine the cases. Then we classify the

spinors ΘCC′ , and ΞDD′ with the same method, albeit different co(in)variants. With these

three together, we will have classified the torsion tensor up to structural reducibility and

provided an algorithm which determines the total structural reducibility type as well.
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3.8 The Invariants and Covariants for Ω(ABC)A′

To begin with, there are seven different co(in)variants which determine the structural

reducibility type of the Ω spinor. The insight behind these follows very much from Zakhary

and Carminati (Zakhary & Carminati, 2004), and the spirit with which the algorithm is

constructed also follows them as well; furthermore the following references: (Acvevedo et

al., 2006) (Zakhary et al., 2003) (Zakhary & Carminati, 2004) (Zakhary & Carminati, 2001)

(Carminati et al., 2002) (Carminati & Zakhary, 2002), and (Carminati & McLenaghan,

1991) all expand upon this work as they discuss cross co(in)variants which we do not touch

on here.

The spinor co(in)variants which determine the structural reducibility for Ω will be

denoted by: Ω, N, Υ, Θ, I6, R, and ∆. The Θ here is not to be confused with the torsion

theta spinor, but has an inconvenient name due to the nature of its development. We provide

both a tensor form of the co(in)variants, and a Newman-Penrose (NP) inspired form which is

useful for computer algebra calculations; this makes the calculations more computationally

efficient than applying several tensor contractions. See Penrose and Rindler (Penrose &

Rindler, 1987a), and Stewart (Stewart, 1993) for more details on the Newman-Penrose

formalism. First, Ω(ABC)A′ is itself a covariant (in the words of Olver (Olver, 2003)); we

can use Ω to determine if we are in Case 8/(−) or not.

We define the Ω components by contracting a spin basis oA, ιA for the two-dimensional,

complex, symplectic vector space which we have been calling S onto Ω(ABC)A′ .

Ω(ABC)A′ (3.52)
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Ω0 = Ω(ABC)A′oAoBoC ōA
′

Ω1 = Ω(ABC)A′oAoBoC ῑA
′

Ω2 = Ω(ABC)A′oAoBιC ōA
′

Ω3 = Ω(ABC)A′oAoBιC ῑA
′

Ω4 = Ω(ABC)A′oAιBιC ōA
′

Ω5 = Ω(ABC)A′oAιBιC ῑA
′

Ω6 = Ω(ABC)A′ ιAιBιC ōA
′

Ω7 = Ω(ABC)A′ ιAιBιC ῑA
′

Next, the spinor N is defined as, N(AB)(A′B′ ) which is determined from the following

equation:

N
(A

′
B

′
)

(AB) = Ω
EF (A

′

(A Ω
B

′
)

B)EF (3.53)

where to get the covariant N(AB)(A′B′ ) we just lower the indices in equation (3.53) with

epsilon spinors. To get each of these covariants, we contract on the spin basis to N(AB)(A′B′ )

as follows.

N0 = N(AB)(A′B′ ) o
AoB ōA

′
ōB

′

N1 = N(AB)(A′B′ ) o
AoB ōA

′
ῑB

′

N2 = N(AB)(A′B′ ) o
AoB ῑA

′
ῑB

′

N3 = N(AB)(A′B′ ) o
AιB ōA

′
ōB

′

N4 = N(AB)(A′B′ ) o
AιB ōA

′
ῑB

′

N5 = N(AB)(A′B′ ) o
AιB ῑA

′
ῑB

′

N6 = N(AB)(A′B′ ) ι
AιB ōA

′
ōB

′

N7 = N(AB)(A′B′ ) ι
AιB ōA

′
ῑB

′

N8 = N(AB)(A′B′ ) ι
AιB ῑA

′
ῑB

′
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The NP equations of the N covariant are given below in terms of the Ω covariant.

N0 = 2Ω0Ω4 − 2 (Ω2)
2

N1 = 2Ω0Ω5 + 2Ω1Ω4 − 4Ω2Ω3

N2 = 2Ω1Ω5 − 2 (Ω3)
2

N3 = 2Ω0Ω6 − 2Ω2Ω4

N4 = 2Ω0Ω7 + 2Ω1Ω6 − 2Ω2Ω5 − 2Ω3Ω4

N5 = 2Ω1Ω7 − 2Ω3Ω5

N6 = 2Ω2Ω6 − 2 (Ω4)
2

N7 = 2Ω2Ω7 + 2Ω3Ω6 − 4Ω4Ω5

N8 = 2Ω3Ω7 − 2 (Ω5)
2

We have shown that the N covariant is zero in cases 7 or 8 by a direct calculation proof.

The spinor N(AB)(A′B′ ) is zero if and only if we are in case 7 or 8.

Next, we define the covariant Υ(A′B′C′D′ ) by the following equations.

Υ(A′B′C′D′ ) = NEF (A′B′NEF
C′D′ )

(3.54)

Υ0 = 2N0N6 −
1

2
(N3)

2

Υ1 = 2N0N7 + 2N1N6 −N3N4

Υ2 = 2N0N8 −N3N5 + 2N2N6 + 2N1N7 −
1

2
(N4)

2

Υ3 = 2N1N8 + 2N2N7 −N4N5

Υ4 = 2N2N8 −
1

2
(N5)

2

The covariant Υ(A′B′C′D′ ) is zero in Cases 4,6,7,8 by direct calculation.
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Next we have the Θ(ABCD) covariant which is defined as follows.

Θ(ABCD) = Ω FF
′

(AB ΩCD)FF ′ (3.55)

Θ0 = 2Ω0Ω3 − 2Ω1Ω2

Θ1 = 4Ω0Ω5 − 4Ω1Ω4

Θ2 = 2Ω0Ω7 − 2Ω1Ω6 + 6Ω2Ω5 − 6Ω3Ω4

Θ3 = 4Ω2Ω7 − 4Ω3Ω6

Θ4 = 2Ω4Ω7 − 2Ω5Ω6

This covariant is given by a different contraction of the Ω covariants. The covariant Θ is

zero in Cases 5,6,7,8 by direct calculation. This covariant combined with the covariant Υ

from equation (3.54) can be used to determine if we are in Cases 4,5, or 6.

Next we define the I6 invariant, which is really Ω2. It is given by equation (3.56) shown

below.

I6 = Ω(ABC)A′Ω(ABC)A
′

(3.56)

I6 = 2Ω0Ω7 − 2Ω1Ω6 − 6Ω2Ω5 + 6Ω3Ω4

The invariant I6 is zero in cases 4,5,6,7,8 by direct calculation.

Our penultimate covariant is R(ABCDEF ) which is defined by the following equations.

R(ABCDEF ) = 32Θ K
(ABC Θ LM

DE ΘF )KLM (3.57)
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R0 = −8 (Θ0)
2Θ3 + 4Θ0Θ1Θ2 − (Θ1)

3

R1 = −32 (Θ0)
2Θ4 − 4Θ0Θ1Θ3 + 8Θ0 (Θ2)

2 − 2 (Θ1)
2Θ2

R2 = −40Θ0Θ1Θ4 + 20Θ0Θ2Θ3 − 5 (Θ1)
2Θ3

R3 = 20Θ0 (Θ3)
2 − 20 (Θ1)

2Θ4

R4 = 40Θ0Θ3Θ4 − 20Θ1Θ2Θ4 + 5 (Θ1)
2Θ3

R5 = 32Θ0 (Θ4)
2 + 4Θ1Θ3Θ4 − 8 (Θ2)

2Θ4 + 2Θ2 (Θ3)
2

R6 = 8Θ1 (Θ4)
2 − 4Θ2Θ3Θ4 + (Θ3)

3

The R covariant is zero in cases 3,4,5,6,7,8 by direct calculation. The factor of 32 is in the

definition to simplify the denominator in the resulting NP formulas.

Our final invariant is ∆. To define ∆ we also need to define the invariants Ip, and Jp

which come from (Zakhary & Carminati, 2004). The invariants Ip, and Jp are defined by:

Ip = ΘABCDΘ
ABCD (3.58)

Ip = 2Θ0Θ4 −
1

2
Θ1Θ3 +

1

6
(Θ2)

2 (3.59)

Jp = ΘABCDΘ
CDEFΘ AB

EF (3.60)

Jp = Θ0Θ2Θ4 −
1

36
(Θ2)

3 − 3

8
Θ0 (Θ3)

2 − 3

8
(Θ1)

2Θ4 +
1

8
Θ1Θ2Θ3 (3.61)

which allow us to define ∆ as follows.

∆ = (Ip)
3 − 6 (Jp)

2 (3.62)

The invariant ∆ acts like a discriminant; it tells us when the structure is reducible, and thus

is zero in cases 2,3,4,5,6,7,8. We determined that this is the case by a direct calculation.

Each of these co(in)variants can be calculated in Maple with the following new commands:

TorsionOmegaCovariant, TorsionNuCovariant, TorsionUpsilonCovariant,

TorsionThetaCovariant, TorsionI6Invariant, TorsionRCovariant, TorsionIpInvariant,
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TorsionJpInvariant, and TorsionDeltaInvariant. Each of these only take the Omega spinor

as the input, and calculate the co(in)variant implied by the name as the output.

Having all of our invariants defined, it is now time to discuss how the algorithm works.

3.8.1 The Algorithm Classifying Ω(ABC)A′

We explain the algorithm by a “flow chart” in the same spirit as Zakhary and Carminati

((Zakhary & Carminati, 2004)). We also include a step chart to follow as well. Here is the

step chart for the algorithm.

1.) Calculate Ω.

If Ω = 0 then Case 8. [−]− (−)

If Ω ̸= 0 then:

2.) Calculate N .

If N = 0 then Case 7. [A3, B
′
]− (1, 0)3(0, 1)

If N ̸= 0 then:

3.) Calculate Υ and Θ,

If Υ = 0 then Case 6 or Case 4.

If Θ = 0 then Case 6. [A2, B,C
′
]− (1, 0)2(1, 0)(0, 1)

If Θ ̸= 0 then Case 4. [A2, 11]− (1, 0)2(1, 1)

If Υ ̸= 0 then:

If Θ = 0 then Case 5. [A,B,C,D
′
]− (1, 0)(1, 0)(1, 0)(0, 1)

If Θ ̸= 0 then:

4.) Calculate R.

If R = 0 then Case 3. [A,B, 11]− (1, 0)(1, 0)(1, 1)

If R ̸= 0 then:

5.) Calculate ∆.

If ∆ = 0 then Case 2. [A, 21]− (1, 0)(2, 1)

If ∆ ̸= 0 then Case 1. [31]− (3, 1)

6.) The Algorithm is finished

We present the flowchart for the above step chart next in figure (3.1).
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Start

Calculate Ω Ω = 0 Case 8

Calculate N N = 0 Case 7

Calculate Υ and Θ Υ = 0 Θ = 0

Case 6

Case 4

Θ = 0
Case 5

Calculate R

R = 0

Case 3

Calculate ∆ ∆ = 0
Case 2

Case 1

Yes

No
Yes

No
Yes

Yes

No

No

Yes

No

Yes

No

Yes

No

Start
Input

Decision
Stop

Figure 3.1: Flowchart for the Ω(ABC)A′ Spinor Classification Algorithm

Figure (3.1) is read starting at the yellow start box. Then each of the blue slanted

rectangular boxes are calculations. Each of the green diamonds are checks that are performed.

After each green diamonds, there is an arrow with either a “Yes” or “No” near it. If

the condition in the box is true, we follow the “Yes” path. Likewise, if the condition

in the box is false, we follow the “No” path. Each of the red boxes determines a case
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for which we stop. The cases are listed both in the step chart above the flow chart,

or in the previous section. This algorithm can be called in Maple with the procedure:

TorsionOmegaSpinorReducibilityAlgorithm. As inputs, it takes a torsion tensor or Omega

spinor as its first argument, and solder form as its second argument. It will output the

classification for the Omega spinor.

3.9 The Invariants and Covariants for ΘCC′ and ΞDD′

Now we move to examining the co(in)variants of spinors like ΘCC′ and ΞDD′ . As

we had before, we can formulate an algorithm using one invariant and one covariant.

Given an arbitrary spinor αAA′ , (not necessarily hermitian), we can determine its structural

reducibility with the co(in)variants: α, and O.

The covariant α represents the components of its corresponding spinor. We define it

as follows, where we take the components of α NP style by using a spin basis oA, ιA like

before.

α00 = αAA′oAoA
′

α01 = αAA′oAi
A

′

α10 = αAA′ iAoA
′

α11 = αAA′ iAi
A

′

If the covariant α is zero, then we have case (−). The Omicron invariant O is zero in cases

2 and 3 is given by equations (3.63), and (3.64).

O = αAA′αAA
′

(3.63)

O = 2α00α11 − 2α01α10 (3.64)

There aren’t as many invariants or covariants (only 2) that contribute to the structural

decomposition of αAA′ , and thus the algorithm to determine its structure is simpler.
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These co(in)variants can be calculated newly in Maple with the following commands:

TorsionRank2AlphaCovariant, and TorsionRank2OmicronInvariant. They both take as inputs

either the Θ or Ξ spinor.

3.9.1 The Algorithm Classifying ΘCC′ and ΞDD′

We explain the algorithm by a “flow chart” in the same spirit as Zakhary and Carminati

((Zakhary & Carminati, 2004)) as we did before. We also include a step chart to follow as

well and use both the notation of Penrose and Rindler (Penrose & Rindler, 1987a), and our

notation to describe the cases. Here is the step chart for the algorithm.

1.) Calculate α.

If α = 0 then Case 3. [−] – (−)

If α ̸= 0 then:

2.) Calculate O.

If O = 0 then Case 2. [A,A
′
] – |(1, 0)|2

If O ̸= 0 then Case 1. [11] – (1, 1)

3.) The Algorithm is finished.

We have a flowchart included below.

Start

Calculate α α = 0 Case 3

Calculate O O = 0

Case 2

Case 1

Yes

No

Yes

No

Start
Input

Decision
Stop

Figure 3.2: Flowchart for Classification Algorithm of the ΘAA′ and ΞAA′ Spinors
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The flowchart presented in figure (3.2) is read in the same way that it was for the

Ω(ABC)A′ spinor classification flowchart in figure (3.1).

This algorithm can be called newly in Maple with the following command:

TorsionRank2ReducibilityAlgorithm. It takes as arguments either a torsion tensor, a solder

form, and an argument either “Xi” or “Theta” depending on which spinor the user would

like to look at. Or it can take a valence 1,1 spinor as the input. The algorithm will output

the classification of the Theta and Xi spinors.

3.10 Summarizing the Classification of the Torsion Tensor

We have established and developed a classification for the torsion tensor. We have

constructed an algorithm which classifies the torsion tensor into 72 possible types. This

classification, although we apply it to the torsion tensor, technically applies to all tensors

having the same rank and symmetry as the torsion tensor. The algorithm in the end takes

a torsion tensor and a solder form (the Infeld-Van Der Waerden symbols) and outputs the

structural reducibility type of the torsion tensor given to it. This command can be called

in Maple by TorsionTensorReducibilityAlgorithm when using the “TorsionInvariantsModule”

for calculations. In this algorithm, we construct the metric tensor gab from the inner product

of solder forms. Then we calculate the spinors Θ, Ξ, and Ω. We then take these spinors

and determine their structural reducibility class as per the two algorithms given above.

Further work would include: 1.) how to implement cross co(in)variants as in Zakhary

and Carminati (Zakhary & Carminati, 2001) but for torsion, 2.) how to implement Penrose’s

method from algebraic geometry to look at the singularity structure and topology of the

curves defined by these spinors on the null cone of spacetime, see reference (Penrose, 1972),

and 3.) developing physical characteristics, similar to the classification of principal null

directions of the Weyl tensor (or something similar) which are analogous to the different

reducibility types.

Examples of this classification will be found applied to examples in the NMC scalar

field and Dirac chapters. See chapters 6 and 7 respectively.
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CHAPTER 4

RANK 4 TENSOR DECOMPOSITIONS AND THE CURVATURE TENSOR

Now we move to decomposing rank 4 tensors in terms of GL (N), SO (p, q), and spinors.

This will generalize the Ricci decomposition seen in GR to an arbitrary rank 4 tensor. We

perform a similar analysis of a general 4th rank tensor and apply an analysis to the curvature

tensor in the same spirit with which we analyzed the torsion tensor in chapter 3. This section

outlines the process for decomposing rank 4 tensors using Young tableaux. We also provide

the SO (p, q) decomposition of a rank 4 tensor in any dimension.

We keep the notation we used before in the rank 2 and rank 3 tensor chapters (2), and

(3) where trace-full tensors are denoted in capital Fraktur script i.e., A, and totally trace

free tensors are denoted in lowercase Fraktur script i.e., a. There are new additions however

to our notation for 4th rank tensors. We use curly script to denote tensors generated

by a trace free second rank tensor i.e., A . Furthermore, some of these “curly” tensors

decompose further because they are not irreducible; their trace free second rank tensors are

decomposable under GL (N). In this case, as we will explain for the Y 2 Young tensors, we

write the symmetric part of these trace free rank 2 tensors with Hebrew script i.e., ℶ, and

we write the skew-symmetric part with Cyrillic script i.e., Б. We then find the SL (2,C)

irreducible spinors corresponding to the SO (3, 1) irreducible subspaces of an arbitrary rank

4 tensor in 4 dimensions. Additionally, we provide new Maple procedures for each step.

Building upon the techniques described in the rank 2 and rank 3 tensor decomposition

chapters, the same Young tableaux tools are applied to rank 4 tensors.

Rank 4 tensors decompose into 10 irreducible subspaces under GL (N). These result

from the 5 different types of Ferrers diagrams which occur. These are labeled by the capital

script letters A, . . . ,K to follow the same notation used in the prior chapters. (We skip

I because it is often associated with other things). Furthermore, under SO (p, q) these 10

subspaces decompose further into 25 irreducible subspaces.
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We list all the new notational additions in the rank 4 tensor case that do not occur in

the rank 2 or rank 3 cases. These are the Hebrew ℶ, ,ג ℸ, Cyrillic Б, Ц, Д, and curly B,

C , D , E , F , G , H , and J type tensors. The Hebrew and Cyrillic type tensors specifically

occur in the Y 2 Ferrers diagram during the SO (p, q) decomposition. These are given a

special name because originally they would occur from a B type tensor.

In analogy to the Ricci decomposition of the Riemann tensor in GR, these script type

tensors B etc. are analogous to the tensors generated by the trace-free Ricci tensor. They

have one trace, but the tensor generating them is trace free. These would correspond to the

trace free Ricci tensor in GR.

We give a few short examples of code in Maple which will do these same calculations

in the “Rank4TensorModule” module. This module feeds into our ECSK module to apply

the same calculations to the torsion tensor for classification purposes.

Next we move to spinor calculations for 4th rank tensors. For the total decomposition

of an arbitrary rank 4 tensor in 4-dimensions, we find that a 4th rank tensor is completely

characterized by 25 spinors (the same number which we got in the SO (p, q) decomposition).

For the Y 1 sector, these spinors are: S(ABCD)(A′B′C′D′ ) for the totally trace free part

which corresponds to the tensor aabcd, υ for the trace-full part which corresponds to the

tensor Aabcd, and ι(AB)(A′B′ ) for the curly tensor Aabcd.

For the Y 2 sectors, we find the spinors for the totally trace free parts, and the Hebrew

and Cyrillic parts. The totally trace free spinors for the sections (b, c, d) are: α(ABCD)(B′C′ ),

β(ABCD)(B′C′ ), and γ(ABCD)(B′C′ ). For the Hebrew spinors corresponding to the tensors

(ℶ, (ℸ,ג we have Ω(AB)(A′B′ ), κ(AB)(A′B′ ), and θ(AB)(A′B′ ). For the last of the Y 2 sectors,

we have the Cyrillic tensors (Б,Ц,Д) which correspond to the spinors: µ(AD), ρ(AC), and

o(AB).

Similarly to the Y 1 sector in structure, the Y 3 sectors have totally trace free, trace-full,

and curly spinors. For the totally trace free tensors, (e, f) we have the spinors: δ(ABCD), and

Ψ(ABCD). For the curly tensors. (E ,F ) we have the spinors: π(AB)(A′B′ ), and Φ(AB)(A′B′ ).

For the trace full tensors, (E,F) we have the spinors χ, and Λ.
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The Y 4 sectors are slightly different because there are no total trace pieces due to

the skew symmetry of these sectors. Nevertheless, there are still curly pieces, and totally

trace free pieces. In this case for the totally trace free tensors (g, h, j) we have the spinors:

τ(AB)(C′D′ ), ζ(AB)(C′D′ ), and ξ(AB)(C′D′ ). Furthermore, for the curly tensors (G ,H ,J ) we

have the spinors: ν(AB), η(AB), and σ(AB).

To finish, with the Y 5 there is only one sector k, and its spinor equivalent is ℵ.

We can then use these spinors to classify the curvature tensor in 4-D. The curvature

tensor decomposes into 6 irreducible tensors. The first three of these are analogous to the

tensors which occur in the Ricci decomposition of the Riemann tensor R {}abcd. But they

are modified, and the interpretation is different due to the inclusion of torsion in the theory.

The second three are pieces that occur because of the inclusion of torsion, and they do not

appear in GR. From an SO (p, q) decomposition perspective, we can write the tensors as

fabcd, Fabcd, Fabcd, labcd, Labcd, and kabcd. We have defined l, and L by labcd = habcd + jabcd,

and Labcd = Habcd+Jabcd; this is in the same spirit in which the irreducible torsion tensor

pieces Q and q from equations (3.44) and (3.45) were developed. Adding these sectors

together results in an irreducible subspace for the curvature tensor retaining the correct and

needed symmetries: Rabcd = R[ab][cd].

The irreducible tensor elements of the curvature tensor then decompose into the spinors:

Ψ(ABCD), Φ(AB)(A′B′ ), Λ, Ж(AB)(A′B′ ), Ю(AB), and ℵ. Interestingly enough, the spinors

Ж, and ℵ naturally occur as antihermitian spinors as opposed to Φ and Λ which occur as

hermitian spinors; although no proof is given this seems to be a trend for spinors generated

from a Young tableaux decomposition which have more skew-symmetries than symmetries.

We would again like to point out that this classification can be refined using the tools

of Penrose (Penrose, 1972) with algebraic geometry. We would examine the topology and

multiple point structure of the curve (defined by the locus of the characteristic polynomial

defined by the tensor) as viewed on a two-sphere when the real points are examined. This

is again not done here, but seems to be an interesting and fruitful direction for future work.
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4.1 Rank 4 GL (N) Young Decomposition

We define a rank 4 tensor Qabcd. We decompose it using Young tableaux. The

decomposition gives us the 10 irreducible tensor components of an arbitrary rank 4 tensor.

We begin by presenting the Ferrers diagrams for a 4th rank tensor.

, , , ,

There are more Young tableaux than Ferrers diagrams because of the way we can arrange

the numbers in each sector. This provides us with the Young decomposition:

1 2 3 4

1 2 3

4
, 1 2 4

3
, 1 3 4

2

1 2

3 4
, 1 3

2 4

1 2

3

4

, 1 3

2

4

, 1 4

2

3

1

2

3

4

Using the notation we developed in the sections on Rank 2 and Rank 3 tensors, we can

break a tensor Qabcd into its GL (N) irreducible sectors from the above Young tableaux as
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follows:

Qabcd = Y 1 (Q)abcd

= Y 2a (Q)abcd + Y 2b (Q)abcd + Y 2c (Q)abcd

= Y 3a (Q)abcd + Y 3b (Q)abcd

= Y 4a (Q)abcd + Y 4b (Q)abcd + Y 4c (Q)abcd

= Y 5 (Q)abcd

Since this notation is cumbersome, we define the following tensors A, . . . ,K (minus I) to

help us condense our notation.

Aabcd = Y 1 (Q)abcd ,

Babcd = Y 2a (Q)abcd , Cabcd = Y 2b (Q)abcd , Dabcd = Y 2c (Q)abcd

Eabcd = Y 3a (Q)abcd , Fabcd = Y 3b (Q)abcd

Gabcd = Y 4a (Q)abcd , Habcd = Y 4b (Q)abcd , Jabcd = Y 4c (Q)abcd

Kabcd = Y 5 (Q)abcd

Below, we have the decomposition of an arbitrary rank 4 tensor in terms of our notation

above. This breaks the tensor Q into tensors living in each of its 10 GL (N) irreducible

subspaces:

Qabcd = Aabcd (4.1)

+ Babcd + Cabcd +Dabcd

+ Eabcd + Fabcd

+ Gabcd +Habcd + Jabcd

+ Kabcd

There are ten different subspaces in the rank 4 tensor case; this is a lot more than for the
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3rd rank tensors, where we had four. Explicit formulas for the Young projectors can be

found in appendix B.

If the tensor has additional symmetries, this may cause some of the components to

vanish or combine together. For more information, see Itin and Reches (Itin & Reches,

2021). This happens in the case of the curvature tensor just as for the torsion tensor in

chapter 3.

4.2 Rank 4 SO (p, q) Trace Decomposition

Now we can begin taking traces to construct the irreducible SO (p, q) decomposition of

Qabcd. It turns out that there are 25 irreducible subspaces for an arbitrary rank 4 tensor

under SO (p, q); we will show this below. To begin, following Hammermesh (Hammermesh,

1962/1989) we decompose an arbitrary rank 4 tensor with traces as follows:

Qabcd = Åabgcd + B̊acgbd + C̊adgbc + D̊bcgad + E̊bdgac + F̊cdgab (4.2)

+ Hgabgcd + Jgacgbd +Kgadgbc +Wabcd

where the tensor Wabcd is the totally trace free piece and Åab . . . F̊ab are trace free second

rank tensors with no presumed symmetries. We can take a second trace that we couldn’t in

the case of the rank 3 tensors; this is new and interesting. This decomposition is presented

in Hammermesh (Hammermesh, 1962/1989). We want to be able to decompose this into a

totally trace free part, trace free tensors, and scalars. We note that the superscript Å above

the A indicates a trace free tensor.

We will use equation (4.2) to decompose each of the 10 Young sectors under SO (p, q).

As in the 3rd Rank tensor case, we define tensors that relate our above traces to just traces

on a general fourth rank tensor Qabcd. Later we will think of Qabcd as Aabcd . . .Kabcd as given

by equation (4.1). It will be convenient to have the following definitions:

gabQabcd = Pcd, gacQabcd = Rbd, gadQabcd = Ubc (4.3)
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gbcQabcd = Xad, gbdQabcd = Yac, gcdQabcd = Zab

gabgcdQabcd = P, gacgbdQabcd = R, gadgbcQabcd = U

With all of this established, we can determine all 25 SO (p, q) irreducible tensors. Because

there are an exorbitant amount of tensors to calculate, we will give two example calculations.

We leave the proofs to appendix D for which we also repeat the methodology we show below.

Our examples will be from the Y 1 and Y 2a cases because they provide nearly all the

new information in the rank 4 tensor case

4.2.1 The SO (p, q) Decomposition of the Y 1 Sector of a Rank 4 Tensor

Here, we decompose the tensor A given by the following Young tableaux:

1 2 3 4

into its irreducible components under the action of SO (p, q) (taking traces). This example

is here to illustrate how the new type of tensor (curly tensor) A comes about, and how it

is calculated along with the more familiar totally trace free and trace-full tensors a, and A.

The tensor Aabcd is totally symmetric Aabcd = A(abcd). If we apply equation (4.2) to

the tensor A then we find the following formulas:

Aabcd = aabcd + Aabcd + Aabcd

Aabcd = G̊(ab)gcd + G̊(ac)gbd + G̊(ad)gbc + G̊(bc)gad + G̊(bd)gac + G̊(cd)gab (4.4)

Aabcd = L (gabgcd + gacgbd + gadgbc)

We define G̊ab as a symmetric trace free rank 2 tensor, and L as a scalar, both of which need

to be determined. To determine G̊ab and L, we apply the Y 1 symmetry property (being

totally symmetric) to the list of equations labeled by (4.3) to A where Aabcd = Qabcd. After
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applying the property, we find:

gabA(abcd) = P(cd) = R(cd) = U(cd) = X(cd) = Y(cd) = Z(cd) (4.5)

gabgcdA(abcd) = P = R = U

Which greatly simplifies the number of independent tensors down to two: Pab, and P .

Furthermore, since we can take traces, the two independent tensors are really P̊ab, and P .

Once we solve these equations for G̊ab, L we find that they are given by the following

list where N is a constant which represents the dimension of the space being worked on.

G̊(cd) =
1

(N + 4)
P̊(cd), P̊(cd) = P(cd) −

1

N
Pgcd

L =
1

N (N + 2)
P

Thus, we can now write our Y 1 decomposition in the following list of equations:

Aabcd = aabcd + Aabcd + Aabcd (4.6)

Aabcd =
6

(N + 4)
P̊(abgcd) (4.7)

Aabcd =
3

N (N + 2)
Pg(abgcd) (4.8)

P(cd) = gabA(abcd), P = gabgcdA(abcd) (4.9)

P̊(ab) = P(ab) −
1

N
Pgab (4.10)

Equations (4.6)-(4.10) represent the SO (p, q) irreducible decomposition of a totally symmetric

rank 4 tensor. The methodology here is used throughout all the SO (p, q) decompositions,

and is useful to distinguish all the possibilities when the number of tensors increases so

drastically with each rank of the tensor. We recommend this methodology for all types of

SO (p, q) irreducible decompositions.
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How to use Maple to calculate the tensors above

We have written Maple procedures to calculate the tensors A, A, and a. To calculate

the tensors the following commands can be used: “Rank4FrankA” is used to calculate the

left-hand side of equation (4.6), “Rank4CurlyA” is used to calculate the left-hand side of

equation (4.7), and “Rank4TraceA” is used to calculate the left-hand side of equation (4.8).

Each of these commands take two inputs: for slot 1: a totally covariant rank 4 tensor (Qabcd

for example), and for slot 2: a metric tensor gab.

4.2.2 The SO (p, q) Decomposition of the Y 2a Sector of a Rank 4 Tensor

To illustrate two more new possibilities for irreducible tensors in the rank 4 case, we

examine the Y 2a sector as our second example. We begin in the Young sector described by

the following tableaux:
1 2 3

4

for which we will make the tensor Y 2a (Q)abcd = Babcd. We would have the symmetry

Babcd = Ba(bc)d = B[a|bc|d]. If we use a degrees of freedom argument, we can find that the

trace part: Babcd is generated by a second rank general trace free tensor which we call b̊ad.

This then tells us that we can decompose Babcd as:

Babcd = Babcd + babcd (4.11)

Babcd = Y 2a
(̊
badgbc

)
with no total trace piece due to the skew symmetrization. Expanding out the Young

symmetrizer, allows us to write Babcd as:

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab (4.12)
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The tensor b̊ad is related to the tensor Υ̊ad by a factor of a half. Similarly to what we did

for the Y 1 piece, we make the trace equations:

gabBabcd = Pcd = Rcd = −Ycd = −Zcd = 2Υ̊[cd] + Υ̊cdN

gbcBabcd = Xad = 2P[ab] = 2Υ̊[ad] (N + 2)

gadBabcd = Ubc = 0, gabgcdBabcd = P = R = U = 0

in which we have used the symmetries Babcd = Ba(bc)d = B[a|bc|d] to simplify some of the

equalities. From these, we find that we only have 1 independent equation. We solve it to

find Υ̊ in terms of P :

Υ̊ab =
1

N
Pab −

2

N (N + 2)
P[ab]. (4.13)

However, because Υ̊ab is traceless, we can again use the structure contained in GL (N) to

break off a symmetric and skew piece. We will call the skew part of Υ̊ab the Cyrillic Zhe:

Жab = Υ̊[ab], and the resulting tensor generated by Жab through equation (4.12) will be

called the Cyrillic Be: Бabcd. Next, we will call the symmetric part of Υ̊ab the Cyrillic Yu:

Юab = Υ̊(ab), and the resulting tensor generated by Юab through equation (4.12) will be

called the Hebrew Beth: ℶabcd.

To minimize space, we apply this methodology for splitting Υ̊ into Ж and Ю to

equation (4.13) to get the next few equations instead of going through each step. This then

gives us the irreducible decomposition for the tensor Babcd through the following equations:

Babcd = Бabcd + ℶabcd + babcd (4.14)

Бabcd =
1

N + 2

(
2P[ad]gbc − P[ca]gbd − P[ba]gcd + P[bd]gac + P[cd]gab

)
(4.15)

ℶabcd =
1

N

(
−P(ca)gbd − P(ba)gcd + P(bd)gac + P(cd)gab

)
(4.16)

Pcd = gabBabcd



76

Equations (4.11,4.15,4.16) together result in the SO (p, q) irreducible decomposition for the

tensor Babcd . We have repeated how the tensor Pcd is defined for clarity.

How to use Maple to calculate the tensors above

To calculate the tensors above, the following commands can be used. “Rank4FrankB”

is used to calculate the totally trace free tensor b in equation (4.11), “Rank4CyrillicB” is

used to calculate the left-hand side of equation (4.15), and “Rank4HebrewB” is used to

calculate the left-hand side of equation (4.16). Each of these commands take two inputs,

which are the same as in the Y 1 case. Further code has been written which will calculate

the rest of the 25 SO (p, q) irreducible tensors and is explained in appendix C.

With both the Y 1 example explaining how the tensor A comes to exist, and the Y 2a

section above explaining how the tensors Б and ℶ come to exist, we now have all the

information conceptually to determine the rest of 25 SO (p, q) irreducible tensors.

4.3 The Explicit SO (p, q) Decomposition for an Arbitrary 4th Rank Tensor

The SO (p, q) decomposition of our tensor Qabcd is given as follows:

Qabcd = aabcd + Aabcd + Aabcd (4.17)

+ babcd + Бabcd + ℶabcd

+ cabcd + Цabcd + abcdג

+ dabcd + Дabcd + ℸabcd

+ eabcd + Eabcd + Eabcd

+ fabcd + Fabcd + Fabcd

+ gabcd + Gabcd

+ habcd + Habcd

+ jabcd + Jabcd

+ kabcd
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where the rest of the tensors have been defined explicitly in the appendix. We have sorted

equation (4.17) by each type of tenor in a column, except for the Hebrew and Cyrillic tensors.

Since we have the SO (p, q) decomposition of an arbitrary rank 4 tensor, we now move onto

the spinor decomposition of each of these tensors in 4 dimensions, specifically beginning by

counting degrees of freedom.

4.4 The Tensor-Spinor Correspondence for Rank 4 Tensors in 4 Dimensions

In this section, we enumerate the SL (2,C) irreducible spinors corresponding to an

arbitrary 4th rank tensor in N = 4 dimensions with signature [+,−,−,−]. There are 25

spinors which fully describe a tensor of this form, and there is a one-to-one correspondence

between SO (3, 1) irreducible tensors and SL (2,C) irreducible spinors. We list those spinors

now, along with which irreducible tensor they correspond to. We follow Stewart (Stewart,

1993) in terms of our notation for spinors.

There is one rank 8 hermitian spinor: S(ABCD)(A′B′C′D′ ) which corresponds to the

totally trace free tensor aabcd residing in the Y 1 Ferrers sector with tableau: Y 1.

There are three rank 6 spinors: α(ABCD)(A′B′ ), β(ABCD)(A′B′ ), and γ(ABCD)(A′B′ ) which

correspond to the totally trace free tensors babcd, cabcd, and dabcd residing in the Y 2 Ferrers

sector with tableaux: Y 2a, Y 2b, and Y 2c respectively.

There are eleven rank 4 spinors which break into two categories: hermitian/antihermitian

and non-hermitian.

There are two neither hermitian nor antihermitian spinors: δ(ABCD), and Ψ(ABCD)

which correspond to the totally trace free tensors eabcd, and fabcd living in the Y 3 Ferrers

sector with tableaux: Y 3a, and Y 3b respectively.

The other nine spinors are either hermitian or antihermitian.

The first six out of these nine are hermitian spinors: ι(AB)(A′B′ ), Ω(AB)(A′B′ ), κ(AB)(A′B′ ),

θ(AB)(A′B′ ), π(AB)(A′B′ ), and Φ(AB)(A′B′ ) which correspond to the curly and Hebrew tensors:

Aabcd, ℶabcd, ,abcdג ℸabcd, Eabcd, and Fabcd. They live in the Ferrers sectors: Y 1 (A ), Y 2 (ℶ,

,ג ℸ), and Y 3 (E , F ). They have tableaux: Y 2a, Y 2b, and Y 2c for ℶ, ,ג and ℸ respectively;

we also have tableaux Y 3a, and Y 3b for E , and F respectively.
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There are three antihermitian spinors τ(AB)(A′B′ ), ζ(AB)(A′B′ ), and ξ(AB)(A′B′ ) which

correspond to the totally trace free tensors gabcd, habcd, and jabcd residing in the Y 4 Ferrers

sector with tableaux Y 4a, Y 4b, and Y 4c respectively.

There are six rank 2 spinors: µ(AB), ρ(AB), o(AB), ν(AB), η(AB), and σ(AB) which

correspond to the curly and Cyrillic tensors: Бabcd, Цabcd, Дabcd, Gabcd, Habcd, and Jabcd.

They live in the Ferrers sectors Y 2 (Б, Ц, Д) and Y 4 (G , H , J ). They have tableaux

Y 2a, Y 2b, Y 2c, Y 4a, Y 4b, and Y 4c.

Finally, we have 3 rank 0 spinors: υ, χ, Λ, and ℵ which correspond to the total trace

tensors: Aabcd, Eabcd, Fabcd, and the totally trace free tensor kabcd. These live in the Ferrers

sectors Y 1 (υ), Y 3 (χ, Λ), and Y 5 (ℵ). They have corresponding tableaux Y 1, Y 3a, Y 3b,

and Y 5. Additionally, ℵ is purely imaginary.

These are all the possible irreducible spinors.

We examine the degrees of freedom of each SO (p, q) irreducible tensor, and compare

the formula to that of the spinors in 4D. This is done in appendix E. There we label the

sector with its Ferrers diagram, and then display the formulas for the degrees of freedom

of both the tensors and the spinors. Additionally, we include the degrees of freedom of the

GL (N) irreducible tensors and separate it from the others with a semi-colon. We use the

positive whole number n to represent the dimension of the spinor space S, with a small

sketch on how we calculated the degrees of freedom using Young tableaux ideas. Recall that

for our purposes n = 2, and the tangent space at a point p: TpM (where M is the manifold

being worked on) is isomorphic to the tensor product S ⊗S, where S is the bar spinor space

referenced by Stewart (Stewart, 1993).

4.5 Spinor-Tensor Correspondence Under SO (3, 1) and SL (2,C)

In this section, we establish an explicit description of each of the spinors; listed above,

we build them out of the SO (3, 1) irreducible tensors and give epsilon trace equations which

determine the SL (2,C) irreducible spinors.

Many of the formulas here were determined by using Maple; these are found in the

"Rank 3 Spinor Proofs" Maple file. It was useful to have a computer handle the laborious
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amounts of algebra. Example worksheets of this method are available on the Utah State

University digital commons. The proofs go by having Maple manipulate symbolic variables

in a way to have them match the Young symmetrizers. Examples for all 25 irreducible

spinors are available in the “Rank 4 Spinor Proofs” Maple file.For example, we would give

Maple a spinor µ(AB)ϵCDϵA′
B

′ ϵC′
D

′ , and it would return the correct permutation of indices

to properly represent the corresponding rank 4 SO (3, 1) irreducible tensor.

Following Penrose and Rindler (Penrose & Rindler, 1987a) we will almost always use

the isomorphism symbol ∼= to indicate equality up to the Infeld Van der Waerden symbols

just like before in chapters 2 and 3. For example, we would write the equality below:

S(ABCD)(A′B′C′D′ ) = aabcdσ
a
AA′σbBB′σcCC′σdDD′ (4.18)

as follows:

S(ABCD)(A′B′C′D′ )
∼= aabcd

where the ∼= symbol is suppressing the Infeld-Van der Waerden symbols.

We move to the examples now, the first being how we write the tensor A in terms of

the spinor ι; the next being how we write the tensor b in terms of the spinor α.

4.5.1 The SL (2,C) Decomposition of the Tensor Aabcd

Given the tensor A from equation (4.7), we define ι by:

ι(AB)(A′B′ )
∼=

1

8
gefAefab (4.19)

and then relate it back to A through:

Aabcd
∼= ϵABϵA′B′ ι(CD)(C′D′ ) + ϵACϵA′C′ ι(BD)(B′D′ ) (4.20)

+ ϵADϵA′D′ ι(BC)(B′C′ ) + ϵBCϵB′C′ ι(AD)(A′D′ )

+ ϵBDϵB′D′ ι(AC)(A′C′ ) + ϵCDϵC′D′ ι(AB)(A′B′ )
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The Proof is given in the “Rank 4 Spinor Proofs” Maple worksheet. Iota and all the

other spinors presented here and in appendix F are irreducible because they are completely

symmetric in their unprimed and primed indices respectively.

Equations (4.20), and (4.19) show how the tensor A is given in terms of the spinor ι

and epsilon spinors. This is different from equation (4.18) because we can take epsilon traces

off, and thus we find that the spinor given by: Aabcdσ
a
AA′σbBB′σcCC′σdDD′ is reducible or at

least equivalent to the symmetric trace free rank 2 tensor we get from taking metric traces;

this tensor is G̊ab from equation (4.4).

It may happen that we can take just one epsilon trace, or three epsilon traces, which

would also be reducible under SL (2,C). Recall from Stewart (Stewart, 1993) that the metric

is given in terms of epsilon by gab ∼= ϵABϵA′B′ . With this being said, we move onto the case

for babcd for which this is the case.

4.5.2 The SL (2,C) Decomposition of the Tensor babcd

Recall that the tensor b is given in equation (3.21). We define its corresponding spinor

to be α(ABCD)(B′C′ ) which is given by:

α(ABCD)(B′C′ )
∼=

1

2
babcdϵ

A
′
D

′
(4.21)

We can also write b in terms of α(ABCD)(B′C′ ) as follows:

babcd ∼= α(ABCD)(B′C′ )ϵA′D′ + α(A′B′C′D′ )(BC)ϵAD (4.22)

where, again, the proofs are given in the “Rank 4 Spinor Proofs” Maple worksheet. Similar

calculations happen in all the other 25 cases. These decompositions along with the remaining

23 formulas can be found in appendix F.

4.6 Classification of the Curvature Tensor in ECSK Theory

This section provides a classification of the curvature tensor in ECSK theory. We will



81

see that the curvature tensor classification is far more complex than that of the torsion

tensor as there are six constituent spinors which determine it entirely.

4.6.1 Classification of the Curvature Tensor Under GL (N)

The completely covariant ECSK curvature tensor, which we call Rabcd decomposes into

the following Ferrers sectors:

, , (4.23)

while the other sectors are forced to be zero by the symmetry:

Rabcd = R[ab][cd] (4.24)

Note, that more information on the curvature tensor, when torsion is present and in ECSK

theory, can be found in Jensen (Jensen, 2005), and in our chapter 5. For the first Ferrers

diagram in equation (4.23), only the Y 3b tableaux given by:

1 3

2 4

is non-zero. The Y 3a tableaux vanishes again because of symmetry of the curvature tensor

as in equation (4.24). As shown in appendix C, we write an element in the Y 3b sector by

the tensor F . The tensor F is defined in appendix C. There is no Y 3a sector because taking

the symmetric part of the first two indices results in zero. The second Ferrers diagram in

equation (4.23) naively decomposes further into the Y 4b and Y 4c tableaux sectors:

1 3

2

4

, 1 4

2

3
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However, neither of these sectors have the same symmetries as the curvature tensor. The set

of tensors given by the two tableaux above are not invariant subspaces because they do not

share the same symmetries as the curvature tensor. Nevertheless, there is a single invariant

subspace defined by the elbow Ferrers diagram Y4 sector. We define the tensor L which

represents this sector by:

Labcd =
1

2

(
Q[ab][cd] −Q[cd][ab]

)
(4.25)

It turns out that when we add the tensors H, and J , defined in appendix B we produce

the tensor L. The tensor L has the same symmetries as the curvature tensor that are needed

to form a proper representative element for the irreducible subspace represented by the elbow

Ferrers diagram.

Labcd = Habcd + Jabcd (4.26)

The tensor Labcd in equation (4.26) is analogous to the tensor Qabc in chapter 3 in equation

(3.39).

Finally, for the Y 5 sector given by the tableau:

1

2

3

4

we have the corresponding tensor which we call K as defined in appendix B; this is just

the totally skew-symmetric part of our tensor Qabcd from earlier. Viewing L, F , and K as

subspaces under GL (N), the curvature tensor decomposes into the following subspaces:

R = F ⊕L⊕K (4.27)

under GL (N). Upon adding the degrees of freedom of the subspaces in equation (4.27)

together, we find that there are 36 independent components, which completely determine

the curvature tensor.
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4.6.2 Classification of the Curvature Tensor Under SO (p, q)

Now we consider decomposing Rabcd under SO (p, q). This decomposition was first given

by Hehl (F. W. Hehl et al., 1995) in terms of differential forms. The GL (N) decomposition

further reduces into six subspaces which we label f, F , F, l, L , and k. The subspace F

decomposes into f, F , and F. The subspace L decomposes into l, and L . Finally, the

subspace K we relabel to k to match our notation. Recall that lowercase Fraktur tensors are

required to be totally trace free.

We have repeated the equations for the subspaces f, F , and F from appendix C here

for convenience.

Fabcd = fabcd + Fabcd + Fabcd (4.28)

Fabcd =
1

(N − 2)

(
R̊acgbd − R̊bcgad − R̊adgbc + R̊bdgac

)
(4.29)

Fabcd =
1

N (N − 1)
R (gacgbd − gadgbc) (4.30)

R(bd) = gacFabcd, R = gacgbdFabcd, R̊(ab) = R(ab) −
1

N
Rgab (4.31)

The subspace L decomposes into two subspaces: l, and L in much the same way as all

the other Y 4 sectors decompose. Additionally, it decomposes similarly to how the tensor

Qabc from equation (3.39) decomposed into qabc and Qabc in equation (3.43); this is seen in

chapter 3. We can calculate the tensors corresponding to those subspaces as follows:

R[bd] = gacLabcd

Labcd = Labcd + labcd

Labcd =
1

(N − 2)

(
R[bd]gac −R[bc]gad −R[ad]gbc +R[ac]gbd

)
labcd = habcd + jabcd (4.32)

Labcd = Habcd + Jabcd (4.33)

similarly to equation (4.26). Equation (4.32) shows us how to calculate l in terms of h,
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and j; the tensor l can be constructed with the Maple command “CurvatureFrankL”. Next,

equation (4.33) shows us how to calculate L in terms of H , and J ; the tensor L can be

constructed with the Maple command “CurvatureCurlyL”. The tensor K is the totally skew

part of Rabcd, and does not reduce further under SO (p, q). However, we change its notation

to lowercase Fraktur script to match its totally trace free character.

K = k, kabcd = R[abcd] (4.34)

Equation (4.34) is the last of our tensors which describe how Rabcd decomposes under

SO (p, q). We let R be the vector space describing the curvature tensor. After that work,

we now have how the curvature tensor decomposes under SO (p, q):

R = f⊕ F ⊕ F⊕ l⊕ L ⊕ k . (4.35)

4.6.3 Turning the Curvature Tensor Into SL (2,C) Irreducible Spinors

When we view the curvature tensor as a spinor it is always easiest to break it into its

corresponding SO (p, q) irreducible tensors first. Once we have those, there is a one to one

correspondence between those tensors and irreducible spinors. We present the spinors here

which are related to the decomposition of the curvature tensor starting first with the Y 3b

spinors given by the following tableaux:

1 3

2 4

The spinors Ψ, Φ, and Λ are related to the tensors f, F , and F respectively. The following

equations relate them:

Ψ(ABCD)
∼=

1

4
fabcdϵ

A
′
B

′
ϵC

′
D

′
(4.36)

fabcd ∼= Ψ(ABCD)ϵA′B′ ϵC′D′ +Ψ(A′B′C′D′ )ϵABϵCD (4.37)
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Φ(AC)(A′C′ )
∼=

1

2
gbdFabcd (4.38)

Fabcd
∼= Φ(AC)(A′C′ )ϵBDϵB′D′ − Φ(BC)(B′C′ )ϵADϵA′D′ (4.39)

+ Φ(BD)(B′D′ )ϵACϵA′C′ − Φ(AD)(A′D′ )ϵBCϵB′C′

Λ ∼=
1

12
gacgbdFabcd (4.40)

Fabcd ∼= Λ
(
ϵACϵBDϵA′C′ ϵB′D′ − ϵADϵBCϵA′D′ ϵB′C′

)
(4.41)

Equations (4.36-4.41) are all given in appendix F, and give the SL (2,C) irreducible spinors

for the F sector. These equations also relate the spinors to their corresponding SO (3, 1),

irreducible tensors. Note that p = 2, q = 2 is not allowed nor is p = 4, q = 0.

We have four new equations relating the new L type spinors from the:

Ferrers diagram back to their corresponding tensors. We labeled these spinors by: Ж, and

Ю. They relate to the tensors l, and L as follows.

Ж(AB)(C′D′ )
∼=

1

2
ϵCDϵA

′
B

′
labcd (4.42)

labcd ∼= ϵA′B′ ϵCD

(
Ж(AB)(C′D′ )

)
− ϵC′D′ ϵAB

(
Ж(CD)(A′B′ )

)
(4.43)

Ю(AB)
∼=

1

4
gef ϵA

′
B

′
Leafb (4.44)
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Labcd
∼= ϵBCϵB′C′

(
ϵA′D′Ю(AD) + ϵADЮ(A′D′ )

)
− ϵACϵA′C′

(
ϵB′D′Ю(BD) + ϵBDЮ(B′D′ )

)
+ ϵADϵA′D′

(
ϵB′C′Ю(BC) + ϵBCЮ(B′C′ )

)
(4.45)

− ϵBDϵB′D′

(
ϵA′C′Ю(AC) + ϵACЮ(A′C′ )

)

Equations (4.42)-(4.44) tell us how to convert the tensors l, and L into the Ж(AB)(C′D′ ),

and Ю(AB) spinors; these spinor objects can be called with the following Maple commands:

“CurvatureZheSpinor”, and “CurvatureYuSpinor”. Furthermore, equations (4.43)-(4.45) tell

us how to convert these spinors with a mixture of epsilon spinors back into corresponding

SO (3, 1) irreducible tensors; these objects can be constructed with the Maple commands:

“CurvatureGenerateZheTensor”, and “CurvatureGenerateYuTensor”. For our last sector k,

we again repeat the equations from appendix F. Recall that the tensor k corresponds to the

Young tableau. Its two spinor equations are given by:

ℵ ∼=
1

36
ϵABϵCDϵA

′
C

′
ϵB

′
D

′
kabcd (4.46)

kabcd = ℵ
(
ϵABϵCDϵA′C′ ϵB′D′ − ϵACϵBDϵA′B′ ϵC′D′

)
(4.47)

+ ℵ
(
ϵABϵCDϵA′D′ ϵB′C′ − ϵADϵBCϵA′B′ ϵC′D′

)
+ ℵ

(
ϵACϵBDϵA′D′ ϵB′C′ − ϵADϵBCϵA′C′ ϵB′D′

)
Equations (4.46)-(4.47) tell us how to construct the aleph spinor, and how to convert the

aleph spinor back into the tensor k. We only include these spinors because they are the ones

which are important for the decomposition of the curvature tensor in ECSK theory. Moving
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forward, we then classify each of these 6 spinors using several tools, some already known,

and some newly developed.

4.6.4 Classification of the Curvature Spinors

To classify the curvature tensor, we classify the 6 spinors:

Ψ(ABCD),Φ(AB)(A′B′ ),Λ,Ж(AB)(A′B′ ),Ю(AB),ℵ (4.48)

using several tools: the Petrov classification, the Plebanski classification, the Segre classification,

a positive/negative/zero scalar classification, and a structural reducibility classification (algebraic

irreducibility) developed from the ideas of Penrose and Rindler (Penrose & Rindler, 1987b).

The structural reducibility classification follows in the same spirit as the classification that

we did for the torsion tensor in chapter 3.

The first three spinors are similar to the spinors that are usually classified in GR:

the Weyl spinor Ψ, the Ricci spinor Φ, and the curvature/Ricci scalar Λ; however, do not

mistake these here for those because the spinors in equation (4.48) will include contributions

from the torsion tensor; therefore they are not quite the same objects. Nevertheless, the

classification of these objects is the same. The three new spinors: Ж, Ю, and ℵ are pieces

of the curvature that arise due to the torsion tensor being non-zero.

We classify the spinor Ψ with the Petrov classification; see Acvevedo (Acvevedo et al.,

2006) for an excellent computational reference, and see the following references: (Zakhary

et al., 2003), (Letniowski & McLenaghan, 1988), (DÍnverno & Russell-Clark, 1971) for more

details. We give a short description here for clarity.

4.6.5 The Petrov Classification of Ψ(ABCD)

The Petrov classification can be found in many references in the literature, a good

summary is provided in Stephani (Stephani et al., 2003). We can either examine the eigen-

bivectors of the Weyl tensor, or look at repeated roots in the symmetric spinor decomposition

of the Weyl spinor Ψ(ABCD). We take the second approach and find that there are six
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different cases, the first of which is irreducible in the sense of Stewart’s definition (Stewart,

1993). The Petrov classification classifies the spinor Ψ(ABCD) according to which of these

Cases for the Petrov Classification
Cases Form of Ψ(ABCD) Petrov Type Degrees of Freedom
Case 1 αAβBγCδD I 10
Case 2 αAαBβCγD II 8
Case 3 αAαBβCβD D 6
Case 4 αAαBαCβD III 6
Case 5 αAαBαCαD N 4
Case 6 0 O 0

Table 4.1: Petrov Classification of the Spinor Ψ(ABCD)

six cases it falls into through calculating several invariants to distinguish the cases. Penrose

and Rindler (Penrose & Rindler, 1987b) reference Grace and Young (Grace & Young, 2011),

as do we in the construction of the invariants for the Petrov classification. We relabel some

of the co(in)variants however. A computationally efficient Petrov type algorithm is given by

Zakhary et al. (Zakhary et al., 2003). We begin with viewing the spinor Ψ as a covariant

(like Olver (Olver, 2003)); this covariant is calculated the same way as in the Newman-

Penrose formalism, see Stewart (Stewart, 1993) for more details on this. Then we choose

a spin basis oA, ιA for the spinor space S. Then Ψ as a covariant is given by the following

equations:

Ψ0 = Ψ(ABCD)o
AoBoCoD (4.49)

Ψ1 = Ψ(ABCD)o
AoBoCιD

Ψ2 = Ψ(ABCD)o
AoBιCιD

Ψ3 = Ψ(ABCD)o
AιBιCιD

Ψ4 = Ψ(ABCD)ι
AιBιCιD

If the Petrov type is O then all the Ψ covariants will be zero. We can then build other

covariants out of the Ψ spinors.
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The next of these will be the Q covariants, which if they are all zero and Ψ is non-zero

then we are in a Petrov Type N space. We label the Q covariants the same way we labeled

the Ψ covariants above in equation (4.49)

Q(ABCD) = Ψ EF
(AB ΨCD)EF

Q0 = 2Ψ0Ψ2 − 2 (Ψ1)
2 (4.50)

Q1 = Ψ0Ψ3 −Ψ1Ψ2

Q2 =
1

3
Ψ0Ψ4 +

2

3
Ψ1Ψ3 − (Ψ2)

2

Q3 = Ψ1Ψ4 −Ψ2Ψ3

Q4 = 2Ψ2Ψ4 − 2 (Ψ3)
2

Next, to determine if we are in a type D space we calculate the R covariants. We

calculate these if the other two prior covariants are non-zero. We can calculate the R

covariants with the following equations:

R(ABCDEF ) = Ψ K
(ABC Ψ LM

DE ΨF )KLM

R0 = Q0Ψ1 −Q1Ψ0 (4.51)

R1 =
1

2
(Q0Ψ2 −Q2Ψ0)

R2 = Q1Ψ2 −Q2Ψ1

R3 =
1

2
(Q1Ψ3 −Q3Ψ1)

R4 = Q2Ψ3 −Q3Ψ2

R5 =
1

2
(Q2Ψ4 −Q4Ψ2)

R6 = Q3Ψ4 −Q4Ψ3

which are zero in a type D space.
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To determine the last few three cases, we need to calculate the Ip and Jp invariants.

These are given below:

Ip =
1

3
Ψ0Ψ4 −

4

3
Ψ1Ψ3 + (Ψ2)

2 (4.52)

Jp = Ψ0Ψ2Ψ4 + 2Ψ1Ψ2Ψ3 −Ψ0 (Ψ3)
2 − (Ψ1)

2Ψ4 − (Ψ2)
3 (4.53)

and if both Ip = Jp = 0 then we are in Petrov Type III space.

The last invariant ∆ acts as a discriminant which tells us when there are repeated roots

of the polynomial defined by Ψ. Grace and Young explain more on the quartic polynomial

which is generates by the spinor ΨABCD (Grace & Young, 2011). The invariant ∆ is given

by:

∆ = (Ip)
3 − (Jp)

2 (4.54)

and differentiates the Petrov Type II and Type I cases. If ∆ = 0 we are in Petrov Type

II, however if ∆ ̸= 0 then we are in a Petrov Type I space. There are ways we could

refine this classification further using ideas in invariant theory, seeing if the discriminant is

positive, or negative, but this is made more difficult by the complex coefficients, and we will

not examine it here. Excellent flow charts for this algorithm are presented in both Zakhary

and D’Inverno (Zakhary et al., 2003)(DÍnverno & Russell-Clark, 1971). Furthermore, a

direction for future work would be to incorporate the ideas of Penrose (Penrose, 1972), we

could refine the classification and hopefully have a type for each degree of freedom 0 through

10 based on the multiplicities and classification of the singularities of the curves defined by

the polynomial of Ψ.

4.6.6 The Plebanski Classification of Φ(AB)(A′B′ ) and Ж(AB)(A′B′ )

The Plebanski classification is almost identical to the Petrov classification section. The

only difference is that we begin with a spinor like Φ instead of one like Ψ. All the Plebanski
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classification does is turn Φ into a Ψ-like spinor, call it χ, through squaring it:

χ(ABCD) = Φ E
′
F

′

(AB ΦCD)E′F ′

and then applying the Petrov classification to χ. In NP fashion, the spinors Φ, and χ when

viewed as covariants, are given by the following equations:

Φ00 = ΦABA′B′oAoBoA
′
oB

′
(4.55)

Φ01 = ΦABA′B′oAoBoA
′
ιB

′

Φ02 = ΦABA′B′oAoBιA
′
ιB

′

Φ10 = ΦABA′B′oAιBoA
′
oB

′

Φ11 = ΦABA′B′oAιBoA
′
ιB

′

Φ12 = ΦABA′B′oAιBιA
′
ιB

′

Φ20 = ΦABA′B′ ιAιBoA
′
oB

′

Φ21 = ΦABA′B′ ιAιBoA
′
ιB

′

Φ22 = ΦABA′B′ ιAιBιA
′
ιB

′

χ0 = 2Φ00Φ02 − 2 (Φ01)
2 (4.56)

χ1 = Φ00Φ12 − 2Φ01Φ11 +Φ02Φ10

χ2 =
1

3

(
Φ00Φ22 − 2Φ01Φ21 +Φ02Φ20 + 4Φ12Φ10 − 4 (Φ11)

2
)

χ3 = Φ10Φ22 − 2Φ11Φ21 +Φ12Φ20

χ4 = 2Φ20Φ22 − 2 (Φ21)
2

where oA
′
, and ιB

′
are a spin basis on S. Upon calculating the χ covariants, we treat them

as if they were the Ψ covariant and put them into the Petrov algorithm to determine the

Plebanski type; just like how there are six Petrov types, there are six Plebanski types by

the same reasoning.
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The interesting thing about this classification in ECSK theory is that we now have the

additional antihermitian spinor Ж(AB)(A′B′ ) which we can classify with the same tools as

we could with the Φ spinor. This becomes particularly interesting when two nonidentical

spacetimes have the same classification for Φ but not for Ж(AB)(A′B′ ).

4.6.7 The Segre Classification of Φ(AB)(A′B′ ) and Ж(AB)(A′B′ )

The Segre classification further refines the Plebanski classification. We follow Hall’s

analysis (Hall, 1976) of the canonical forms of the Ricci tensor; this really applies to any

second order symmetric tensor in a space with Lorentzian signature. These tools are then

applied in Zakhary and Carminati (Zakhary & Carminati, 2004) to spinors which yield a

complete algorithm for determining the Segre type of a given spinor in the form Φ(AB)(A′B′ ).

Historically Churchill (Churchill, 1932) was the first to present the canonical forms for second

order symmetric tensors. There are 15 distinct Segre types that can occur.

The Segre classification hinges on determining the Jordan normal form of either a second

order symmetric tensor or equivalently a spinor of the form Φ(AB)(A′B′ ); see Horn (Horn &

Johnson, 1985) for details. Reference (Stephani et al., 2003) presents how both of these

viewpoints yield the same answer, and we will be examining how the tensor case relates to

the spinor case. We begin by constructing the mixed null tetrad la,ma, aa, ba of Hall where

la and ma are null vectors and aa and ba are spacelike vectors. The matrix representation

of the metric tensor in this basis with mostly minus signature is given by:

gab
.
=



0 −1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 −1


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We then write a second order symmetric tensor in this basis, call it Aab:

Aab = −2A1l(amb) −A2lalb −A3mamb − 2A4l(aab) − 2A5l(abb) (4.57)

− 2A6m(aab) − 2A7m(abb) − 2A8a(abb) −A9aaab −A10babb

where the coefficients Ai ∈ R. Hall then proceeds to present two cases, one in which the

tensor Aab has a null eigenvector and the other being when the tensor Aab does not have

a null eigenvector. As an aside, Hall does his analysis with signature [−,+,+,+] which

is different that what we are using (mostly minus [+,−,−,−]) thus we decided to change

equation (4.57) to have negatives in front for ease. A mostly minus signature can be used

just as well, but the analysis done works regardless of the signature convention we pick. At

this point we find it easiest to give canonical forms for every possible Segre type that Hall

presents. We will then use these canonical forms to relate to the conditions that Zakhary

and Carminati present in their Segre classification algorithm.

The Segre classification gives us information on the algebraic and geometric multiplicities

of the eigenvalues and eigenvectors. We will provide how many eigenvectors of each type

(timelike, spacelike, lightlike) there are later. Additionally, we can tell just from the Segre

notation how many timelike, lightlike, and spacelike eigenvectors there are. For there to

exist a timelike eigenvector the first number must be a one and must not appear in any

of the parenthesis. If it does appear in parentheses then it must be a lightlike eigenvector.

There are two cases for which there are complex eigenvectors and those also appear first, the

other eigenvectors being spacelike. For example [(1, 111)] would have two null eigenvectors

and two spacelike eigenvectors. There are always two null eigenvectors (except of course

when the first number is a one and appears without parenthesis) unless the first number is

greater than one, then there is just a single null eigenvector.

The Segre notation is meant to mirror the information given by the Jordan normal

(canonical) form of the matrix. Plebanski and Stephani (Stephani et al., 2003), (Plebanski,

1964), additionally both give the Segre types in Plebanski notation, which we will not do

here, but are good references.
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The dimension of the eigenspace is represented in the Segre notation by the amount of

numbers inside the square brackets; this is related to the geometric multiplicity. Recall

that the geometric multiplicity for a given eigenvalue is the number of Jordan blocks

corresponding to that value; we can also think of the geometric multiplicity as the dimension

of the eigenspace for a given eigenvalue. For example in [2, 11] we only have three eigenvectors,

each with geometric multiplicity one. The dimension of the eigenspace of a matrix of type

[2, 11] is only 3. The presence of the 2 is telling us that the eigenspace is degenerate.

The algebraic multiplicity is represented in Segre notation by either normal parenthesis

or by a number higher than one. Recall that the algebraic multiplicity for a given eigenvalue

is the sum of the sizes of all the Jordan blocks corresponding to that value; we can also think

of the algebraic multiplicity of an eigenvalue as the number of times it appears as a root

of the characteristic polynomial of our matrix of interest. For clarity, when we see [(2, 11)]

we would have a single eigenvalue of algebraic multiplicity 4; the parenthesis are telling us

about repeated eigenvalues.

Before we provide a list of all the Segre types and information about them, it is useful to

describe the invariants we use to differentiate the different cases. The first invariant will be

the Plebanski type discussed above. Zakhary and Carminati (Zakhary & Carminati, 2004),

whom we will follow, first calculate the Plebanski type to sort the Segre types, and then

calculate further invariants to determine the Segre type. Accordingly, we group the Segre

types according to their Plebanski type first, then specialize to the Segre type.

Invariants and Covariants for the Segre Classification

There are several co(in)variants we need to determine the Segre classification after

applying the Plebanski classification: Φab, Eab, I6, I7 χa, χ̃a,H, ka, and ∆. The co(in)variants:

Φab, χa, and ∆ are given above in equations (4.55), (4.56), and (4.54). The other co(in)variants:

Eab, I6, I7, χ̃a, H, and ka we will define below.

To move forward we make a few observations. There is an erroneous minus sign in front

of the invariant I7 (their equation (25)) in the Zakhary and Carminati paper (Zakhary &

Carminati, 2004); removing the minus sign there makes their equation (25) consistent with
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their equation (28). The covariant χ̃a is labeled the same way that the covariant Ψ is labeled

in the Petrov classification. To calculate the invariants Ip and Jp in equations (4.52), and

(4.53) we replace the covariant Ψ used in the Petrov classification with the covariant χ used

in the Plebanski classification, see equation (4.56).

E
(AB)

(C′D′ )
= 2Φ

(A

EF ′ (C′Φ
B)EF

′

D′ )

E00 = 4 (Φ00Φ11 − Φ01Φ10) (4.58)

E01 = 2 (Φ00Φ12 − Φ02Φ10)

E02 = 4 (Φ01Φ12 − Φ02Φ11)

E10 = 2 (Φ00Φ21 − Φ01Φ20)

E11 = Φ00Φ22 − Φ02Φ20

E12 = 2 (Φ01Φ22 − Φ02Φ21)

E20 = 4 (Φ10Φ21 − Φ11Φ20)

E21 = 2 (Φ10Φ22 − Φ12Φ20)

E22 = 4 (Φ11Φ22 − Φ12Φ21)

I6 =
1

3
ΦABA′B′ΦABA

′
B

′

I6 =
1

3

(
2Φ00Φ22 − 4Φ01Φ21 + 2Φ02Φ20 − 4Φ12Φ10 + 4 (Φ11)

2
)

(4.59)

I7 =
1

3
ΦABC′D′ΦA C

′

E F ′ΦBED
′
F

′
(4.60)

I7 = 2 (Φ00Φ11Φ22 +Φ01Φ12Φ20 +Φ02Φ10Φ21)

+ 2 (−Φ00Φ12Φ21 − Φ01Φ10Φ22 − Φ02Φ11Φ20)

χ̃(ABCD) = E E
′
F

′

(AB ECD)E′F ′
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χ̃0 = 2E00E02 − 2 (E01)
2 (4.61)

χ̃1 = E00E12 − 2E01E11 + E02E10

χ̃2 =
1

3
E00E22 −

2

3
E01E21 +

1

3
E02E20 +

4

3
E12E10 −

4

3
(E11)

2

χ̃3 = E10E22 − 2E11E21 + E12E20

χ̃4 = 2E20E22 − 2 (E21)
2

H = I6Ip − Jp (4.62)

ka = Jp

(
Eaa − 2

1

H
I7IpΦaa

)
, (a = 0, 1, 2; no summing) (4.63)

Below we have a list of the possible Segre types, their corresponding canonical form as a

tensor, and conditions upon which an arbitrary tensor will be in that form. It is these forms

for which the tensor Aab in equation (4.57) can be put into if it is the corresponding Segre

type. Note that the parameters λ, σ, ρ1, ρ2, ρ3 ∈ R. Plebanski (Plebanski, 1964) gives an

excellent diagram on his pgs. 990 and 1001, describing how all the Segre types degenerate

into each other upon changes in the invariants provided above. To determine the Segre type

first we follow Zakhary and Carminati (Zakhary & Carminati, 2004), who first determine

the Plebanski type, and then calculate extra invariants for the Segre classification.

Plebanski Type O

For Plebanski type O there are four different possible Segre types: [(1, 111)], [(2, 11)],

[1, (111)], and [(1, 11) 1]. They are given below with their corresponding completely covariant

canonical forms along with the conditions on the covariants which force them to be that

particular Segre type. First we have Segre type [(1, 111)] which has two null eigenvectors,

and two spacelike eigenvectors with only one eigenvalue of algebraic multiplicity 4.

[(1, 111)]

Aab = −2ρ1l(amb) − ρ1aaab − ρ1babb
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Φab = 0

Next we have Segre type [(2, 11)], which has one null eigenvector, and two spacelike eigenvectors

with only one eigenvalue of algebraic multiplicity 4.

[(2, 11)]

Aab = −λlalb − 2ρ1l(amb) − ρ1aaab − ρ1babb

Φab ̸= 0, and (Φ11)
2 − Φ01Φ21 = 0

Next we have Segre type [1, (111)], which has one timelike eigenvector, and three spacelike

eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and the other of

algebraic multiplicity 1.

[1, (111)]

Aab = −ρ2lalb − 2ρ1l(amb) − ρ2mamb − (ρ1 + ρ2) aaab − (ρ1 + ρ2) babb

E00 > 0

The last Segre type in Plebanski type O is [(1, 11) 1], which has two null eigenvectors, and

two spacelike eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and

the other of algebraic multiplicity 1.

[(1, 11) 1]

Aab = −2ρ1l(amb) − ρ1aaab − ρ3babb

Eab ̸= 0, for some a, b, and E00 ≤ 0

Plebanski Type N

For Plebanski type N there are two different possible Segre types: [(3, 1)], and [(2, 1) 1].

They are given below with their corresponding completely covariant canonical forms along

with the conditions on the covariants which force them to be that particular Segre type. First
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we have Segre type [(3, 1)] which has one null eigenvector, and one spacelike eigenvector with

only one eigenvalue of algebraic multiplicity 4.

[(3, 1)]

Aab = −2ρ1l(amb) − 2σl(aab) − ρ1aaab − ρ1babb

I6 = 0

The other Segre type in Plebanski type N is [(2, 1) 1], which has one null eigenvector, and

two spacelike eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and

the other of algebraic multiplicity 1.

[(2, 1) 1]

Aab = −λlalb − 2ρ1l(amb) − ρ1aaab − ρ3babb

I6 ̸= 0

Plebanski Type D

For Plebanski type D there are five different possible Segre types: [(1, 1) (11)], [2, (11)],[
ZZ, (11)

]
[1, 1 (11)], and [(1, 1) 11]. They are given below with their corresponding completely

covariant canonical forms along with the conditions on the covariants which force them to

be that particular Segre type. First we have Segre type [(1, 1) (11)] which has two null

eigenvectors, and two spacelike eigenvectors with two distinct eigenvalues both of algebraic

multiplicity 2.

[(1, 1) (11)]

Aab = −2ρ1l(amb) − ρ2aaab − ρ2babb

I6 ̸= 0, and Eab = 0
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Next we have Segre type [2, (11)], which has one null eigenvector, and two spacelike eigenvectors

with two distinct eigenvalues, both of algebraic multiplicity 2.

[2, (11)]

Aab = −λlalb − 2ρ1l(amb) − ρ2aaab − ρ2babb

I6 ̸= 0, and (χ̃0 = 0, if χ0 ̸= 0, or χ̃2 = 0 otherwise) or just χ̃a = 0, ∀a

Next we have Segre type
[
ZZ, (11)

]
, which has a pair of complex conjugate eigenvectors,

and two spacelike eigenvectors with three distinct eigenvalues, one of algebraic multiplicity

2, and the other two being complex conjugate eigenvalues with algebraic multiplicities 1

each. [
ZZ, (11)

]
Aab = −ρ2lalb − 2ρ1l(amb) + ρ2mamb − ρ3aaab − ρ3babb

I6 = 0, or (I6 ̸= 0, and H < 0)

Next we have Segre type [1, 1 (11)], which has one timelike eigenvector, and three spacelike

eigenvectors with three distinct eigenvalues, two of algebraic multiplicity 1, and the third of

algebraic multiplicity 2.

[1, 1 (11)]

Aab = −ρ2lalb − 2ρ1l(amb) − ρ2mamb − ρ3aaab − ρ3babb

I6 ̸= 0, and H > 0, and ka < 0 for some a

The last Segre type for Plebanski type D is [(1, 1) 11], which has two null eigenvectors, and

two spacelike eigenvectors with three distinct eigenvalues, two of algebraic multiplicity 1,

and the third of algebraic multiplicity 2.

[(1, 1) 11]
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Aab = −2ρ1l(amb) − ρ2aaab − ρ3babb

I6 ̸= 0, and H > 0, and ka > 0 for some a

Plebanski Type III

This case of Plebanski type III requires no further calculations because the only possible

Segre type is [3, 1]. This type has one null eigenvector and one spacelike eigenvector. There

are two distinct eigenvalues one with algebraic multiplicity 3 and the other of algebraic

multiplicity 1.

[3, 1]

Aab = −2ρ1l(amb) − 2σl(aab) − ρ1aaab − ρ2babb

Plebanski Type II

This case of Plebanski type II requires no further calculations because the only possible

Segre type is [2, 11]. This type has one null eigenvector and two spacelike eigenvectors. There

are three distinct eigenvalues one with algebraic multiplicity 2 and the other two of algebraic

multiplicity 2.

[2, 11]

Aab = −λlalb − 2ρ1l(amb) − ρ2aaab − ρ3babb

Plebanski Type I

For Plebanski type I there are two different possible Segre types: [1, 111], and
[
ZZ, 11

]
.

They are given below with their corresponding completely covariant canonical forms along

with the conditions on the covariants which force them to be that particular Segre type.

We begin with Segre type [1, 111] which has one timelike eigenvector, and three spacelike

eigenvectors with four distinct eigenvalues all of algebraic multiplicity 1.

[1, 111]
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Aab = −ρ2lalb − 2ρ1l(amb) − ρ2mamb − ρ3aaab − ρ4babb

∆ < 0

Next we have Segre type
[
ZZ, 11

]
, which has a pair of complex conjugate eigenvectors, and

two spacelike eigenvectors with four distinct eigenvalues, two of algebraic multiplicity 1, and

the other two being complex conjugate eigenvalues with algebraic multiplicities 1 each.

[
ZZ, 11

]
Aab = −ρ2lalb − 2ρ1l(amb) + ρ2mamb − ρ3aaab − ρ4babb

∆ > 0

Altogether there are 15 distinct Segre types that can occur. When we perform our

classification of the curvature tensor in ECSK theory we often convert the curvature tensor

into its 6 constituent spinors. We can then apply the Segre classification to the spinor

Φ because it corresponds to a symmetric rank 2 tensor. Recall that Φ is a hermitian

spinor. In our classification we also apply the Segre classification to the spinor Ж, which is

antihermitian, in the same exact way. To turn this into a hermitian spinor, we could just

multiply it by i but we believe it is better for classification purposes to keep the spinor in

its naturally occurring form. Additionally, the Segre classification is sensitive to signs for

some of the co(in)variants, so we do not take the route of multiplying by i. For the most

part the classification does not change in either approach.

The classification still works on Ж because instead of all the co(in)variants working off

all the real parts of the spinor, it instead works with the imaginary parts; e.g., we could

just multiply by i. However, if the classification is applied to an arbitrary spinor of the

form A(AB)(A′B′ ), the resulting classification will acquire complex coefficients in several of

the invariants and a new classification will be needed to account for complex values; this is

not needed here since such a spinor would correspond to a complex valued world tensor in

the words of Penrose and Rindler (Plebanski, 1964).
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The Segre types can be calculated in Maple through the command “SegreType” which

can take as its input the covariant Φ, then returning its Segre type.

There are ways to further refine the Segre classification such as through the ideas

presented by Ludwig and Scanlan (Ludwig & Scanlan, 1971), and Penrose (Penrose, 1972).

We do not examine these ideas here, but note that Crade and Hall (Crade & Hall, 1982)

have an excellent summary article which compares all the different classifications including

the Segre classification. This would be an excellent direction for future work.

4.6.8 The Structural Reducibility of Φ(AB)(A′B′ ) and Ж(AB)(A′B′ )

Now we turn to the structural reducibility for ΦABA′B′ and ЖABA′B′ . Penrose and

Rindler (Penrose & Rindler, 1987b) originally constructed all the cases we provide here,

but did not present co(in)variants to differentiate the different types. We make use of the

invariants in Zakhary and Carminati (Zakhary & Carminati, 2004), which differentiate all

of Penrose and Rindler’s cases except cases 2 and 3. There are eight different cases in total.

We use the same definition for structural reducibility which we used with the torsion tensor

Cases for the Curvature Phi Spinor
Cases Spinor Our Notation Penrose Notation Deg. Freedom
Case 1 Φ(AB)(A′B′ ) [22] (2, 2) 9
Case 2 ΛAA′ΥBB′ [11, 11] (1, 1)(1, 1) 7
Case 3 ΓAA′ Γ̄BB′ [(11, 11)] |(1, 1)|2 7
Case 4 ΛAA′ΛBB′ [112] (1, 1)2 4
Case 5 ΛAA′ρBρB′ [(A,A

′
), 11] (1, 1)|(1, 0)|2 6

Case 6 ρAρ̄A′σBσ̄B′ [(A,A
′
), (B,B

′
)] |(1, 0)|2|(1, 0)|2 5

Case 7 ρAρ̄A′ρB ρ̄B′ [A3, B
′
] |(1, 0)2|2 3

Case 8 0 [−] (−) 0

Table 4.2: Structural Reducibility Table of the Spinor Φ(AB)(A′B′ )

in chapter 3. Recall that a spinor is structurally reducible if it can be written as a product.

Recall that for a valence 2 spinor, it is structurally reducible if it can be written as products

of lower valence spinors. The eight different cases are given below with their classification

type next and their degrees of freedom following; this can be found in Penrose and Rindler
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(Penrose & Rindler, 1987b). These cases apply to a hermitian spinor Φ(AB)(A′B′ ). However,

they can be made to work for an antihermitian spinor like Ж(AB)(A′B′ ) if there is an i placed

in front of each of the cases. For example, case 2 would become Ж(AB)(A′B′ ) = iΛAA′ΥBB′ ,

and we would add an i similarly for each of the other cases as well. We present these

cases in the following table, where all primed and unprimed indices, though not explicit for

typesetting constraints, are totally symmetric. The spinors ΛAA′ , and ΥAA′ , are hermitian,

while ΓAA′ is complex.

Since we have all the cases laid out, we must now define the invariants to distinguish

each of these cases. The only cases we were unable to distinguish were cases 2 and 3, all

the others have covariants determining their case. We present the algorithm through both

a step chart and a flow chart:

1.) Calculate Φab.

if Φab = 0 then Case 8. [−]− (−)

2.) Calculate I6

if I6 = 0 then Case 7. [A3, B
′
]− |(1, 0)2|2

3.) Calculate Eab

if Eab = 0 then Case 6. [(A,A
′
), (B,B

′
)]− |(1, 0)|2|(1, 0)|2

4.) Calculate I7

if I7 = 0 then Case 5. [(A,A
′
), 11]− (1, 1)|(1, 0)|2

5.) Calculate χ̃a

if χ̃a = 0 then Case 4. [112]− (1, 1)2

6.) Calculate Ra

if Ra = 0 then Case 2 or 3 [11, 11]− (1, 1)(1, 1) or [(11, 11)]− |(1, 1)|2,

else Case 1. [22]− (2, 2)

7.) The Algorithm is finished

We present the flowchart for the above step chart next in figure (4.1). All the co(in)variants

presented above can be found in the Segre type section. This classification in addition to the

Segre classification can sometimes differentiate unique solutions that the Segre type alone
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Start

Calculate Φ Φ = 0 Case 8

Calculate I6 I6 = 0 Case 7

Calculate E E = 0 Case 6

Calculate I7 I7 = 0 Case 5

Calculate χ̃a
χ̃a = 0 Case 4

Calculate R R = 0
Case 2 or 3

Case 1

Yes

No
Yes

No

Yes

No

Yes

No

Yes

No
Yes

No

Start
Input

Decision
Stop

Figure 4.1: Flowchart for the Φ(AB)(A′B′ ) Spinor Classification Algorithm

cannot differentiate. Our labeling scheme seen here is the same notation that Penrose and

Rindler (Penrose & Rindler, 1987b) use. Furthermore, figure (4.1) is read the same way as

figure (3.1) is from chapter 3. The problem in differentiating cases 2 and 3 is that they have

a very similar tensor structure.
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4.6.9 The Classification of Λ

The classification of Λ is straightforward because it is a scalar. All that is needed is

to see if Λ is positive, negative, or zero. Because lambda can vary from point to point, we

classify it into these three sectors. The positive and negative cases are generic unless Λ is 0

everywhere. We use the notation: “+,−, 0” to differentiate these cases. In more complicated

spacetimes this can be sufficiently interesting as the classification of Λ can vary from region

to region in spacetime just as all the other classifications can. We use the terminology

exceptional point for a point at which the classification of Λ changes, but for an open set

around that point the type does not vary. For the nonzero case, an open set around an

exceptional point is either positive or negative.

4.6.10 The Structural Reducibility Classification of Ю(AB)

Here we classify the Ю(AB) spinor which arises as a new irreducible sector due to the

inclusion of torsion. This classification is a primitive Petrov classification because it examines

multiplicities of a lower degree polynomial. Unlike the Petrov classification which examines

a quartic polynomial and its repeated roots, the classification of the spinor Ю(AB) examines

a simpler quadratic polynomial which is significantly simpler. There is only one invariant O

which determines when the roots are repeated, and it takes the same role that the invariant

∆ in equation (4.54); the invariant O is the discriminant for the quadratic equation which

Ю(AB) defines. This is different from what we had for the torsion spinor in table (3.2) in

that we now only have unprimed indices. Having only unprimed indices automatically forces

our spinor to decompose into two valence 1 spinors per Stewart’s theorem (Stewart, 1993).

Hence, the notation [A,B]. The case
[
A2
]

indicates that the spinors are repeated. The

three different cases come as follows in table (4.3):

The notation with the square brackets we developed for all spinor structural reducibility

classifications in p = 3, q = 1 signature spacetimes. Recall that it is read in the same way

it was for the torsion spinor Ω(ABC)A′ from the torsion tensor in chapter 3. As a reminder,

in the first case we use [A,B] to represent that the spinor is irreducible.

The two co(in)variants: Ю, and O are used to differentiate the 3 cases from table
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Cases for the Yu Spinor
Cases Ю(AB) Our Notation Penrose Notation Deg. Freedom
Case 1 αAβB [A,B] (1, 0)(1, 0) 6
Case 2 αAαB [A2] (1, 0)2 4
Case 3 0 [−] (−) 0

Table 4.3: Structural Reducibility Table of the ЮCC′ Spinor

(4.3). The co(in)variants are shown below in which we give a NP style form, and a spinor

contraction form for them. We again pick a spin basis oA, ιA to form the NP style covariants.

Ю00 = Ю(AB)o
AoB (4.64)

Ю01 = Ю(AB)o
AιA

Ю11 = Ю(AB)ι
AιA

O = Ю(AB)Ю(AB)

O = 2
(
Ю00Ю11 − (Ю01)

2
)

(4.65)

To differentiate each of the three cases begin by calculating the Ю covariant. If Ю is zero

then we are in case [−]. Then we calculate the invariant O, which if it is zero and Ю ̸= 0,

then we are in case [(11)]. Lastly, if neither Ю or O are zero then we are in the general case

[11]. The algorithm goes as follows which we present in both a step chart and a flow chart.

1.) Calculate Юab.

if Юab = 0 then type [−],

2.) Calculate O.

if O = 0 then type
[
A2
]

if O ̸= 0 then type [A,B]

2.) The Algorithm is Complete.

We have a flowchart included below which illustrates the Ю spinor algorithm. This

classification can be called in Maple by the command “CurvatureYuReducibilityAlgorithm”.

Likewise, the covariant Ю can be called with “CurvatureYuCovariant”, and the invariant
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O can be called with “CurvatureOmicronInvariant”. All of these three commands take the

spinor Ю as an input

Start

Calculate Ю Ю = 0 Case 3

Calculate O O = 0

Case 2

Case 1

Yes

No

Yes

No

Start
Input

Decision
Stop

Figure 4.2: Flowchart for Classification Algorithm of the Ю Spinor

This is the classification for the Ю spinor.

4.6.11 The Classification of ℵ

The classification of the spinor ℵ is the same as it is for Λ other than the fact that it

is purely imaginary. To classify ℵ we check if it is positive imaginary, negative imaginary,

or zero. We use the notation “+i, −i, 0” to distinguish these cases. Again, like in the case

for Λ, the spinor ℵ may also change its type in different in spacetime, or at exceptional

points (just like for the Λ spinor). The type will remain consistent for some open set around

a chosen generic point; if an open set is examined around an exceptional point there is a

chance that the exceptional point is the boundary between two differing regions.

4.7 Refinements for the Classification of the Curvature Tensor in ECSK Theory

There are a few other viewpoints that can be taken in regard to the curvature tensor

classification that do not arise in the classification of the torsion tensor. The first of these
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is that we are able to break the curvature into different pieces by using the Levi-Civita

connection. This allows us to write Rabcd = R {}abcd + Aabcd, where R {}abcd is the Levi-

Civita generated curvature tensor, and Aabcd is the Alphonse tensor piece generated by

torsion; we define this Alphonse tensor to be the part of the curvature purely generated by

torsion and derivatives of torsion. This piece is explained further in the ECSK field equation

chapter; see chapter 5.

With our classification algorithm already established, we could also classify the tensors

R {}abcd, and Aabcd in the same way we calculated the ECSK curvature tensor. The

classification of R {}abcd is already well understood through the Petrov, Segre, and Λ types of

classification we presented earlier, nevertheless there are ways to refine those classifications

even further through either the tools of Ludwig and Scanlan (Ludwig & Scanlan, 1971), or

Penrose (Penrose, 1972). The ideas in both of these are significantly developed but have yet

to be implemented in computer algebra. In particular, there is no algorithm to determine

the way to calculate out the Penrose type yet.

In the case of the Alphonse tensor it would be interesting to see how its classification

differs from that of the ECSK Riemann tensor because the Alphonse tensor does not only

contribute to the Y 4, and Y 5 irreducible sectors, it also contributes to the Y 3 sector. This

could lead to potentially different classifications and may yield new physical information

such as a refinement of principal null directions, or a nuanced observable in terms of geodesic

deviation. This also provides, in addition, a simple way to compare back to GR when the

torsion tensor is zero. Furthermore, the tools of Ludwig and Scanlan and Penrose could be

applied to this viewpoint as well, yielding a fruitful new direction for further work.

In the next section we examine the gravitational side of the field equations in ECSK

theory with the aim of eventually applying the tools developed here for curvature, and before

in chapter 3 for torsion, to physical problems.
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CHAPTER 5

THE ECSK FIELD EQUATIONS

In this section we begin with the action of ECSK theory which depends on the fields

gab, T abc, and any arbitrary matter fields, for example scalar ϕ, or a spin 1
2 fermionic Dirac

field. We will explain the differences between this action and that of GR, which is due to

the coupling of torsion to spin. Additionally, we will define several new objects such as

the Cartan tensor C a
bc which is an analogue to the Einstein tensor but for torsion, and the

notation R {}abcd , R {} for the Levi-Civita generated curvature tensors. We will use ∇ for

the metric affine covariant derivative and ∇̃ for the Levi-Civita covariant derivative.

We then proceed to discuss the symmetry properties of the curvature tensor in ECSK

and how show how some differ from those in GR. Many of the definitions here follow Torre

(Torre, 2020), Carroll (Carroll, 1997), and Poplawski (Poplawski, 2013) of which Poplawski

gives wonderful clarity when it comes to densities; that clarity is especially useful in making

an analogue in ECSK theory to what we already know in GR. After establishing some facts

we vary the action with respect to the fields gab, and T abc while creating useful definitions

along the way. From Hehl, (F. Hehl et al., 1976) we find that it is actually the contorsion

tensor Cabc which couples to spin, and we decide to vary with respect to it instead of the

torsion tensor in the derivation; this decision also makes several of the computations easier

as well.

We would also like to refer the reader to Wheeler (J. T. Wheeler, 2023) who clarifies

the differences between the choice of field variables clearly. Additionally, the methodology

he presents is applicable to our interests, and we would like to state that the Poincaré gauge

theory approach to ECSK theory seems to be the most fruitful approach to take.

After the variation the first and second ECSK field equations are produced. Boundary

terms are kept throughout, and we discuss the Gibbons-Hawking-York term as it appears

in ECSK theory; this term changes slightly because of a modified/generalized definition of
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the extrinsic curvature of the boundary to include torsion. Finally, we discuss how to invert

the spin tensor in terms of the contorsion tensor, along with making some final comments

in a summary.

5.1 The Einstein-Hilbert Action for ECSK

We begin with the Einstein-Hilbert action SEH (plus cosmological constant Λ), but

without the torsion-free assumption, and its Lagrangian density.

SEH =

ˆ

Ω

LEHdΩ (5.1)

LEH =
1

2κ
(R− 2Λ)

√
−g (5.2)

This will later get modified to include the Gibbons-Hawking-York boundary term. R is the

torsion-full metric affine Ricci scalar, Λ is the cosmological constant, g is the metric density,

κ = 8πGc−3 is the Einstein gravitational constant (this is different from the c−4 usually

seen because we are using dx0 = cdt (one coordinate represents time) instead of without the

c. An excellent explanation is given in Misner, Thorne, and Wheeler (Misner et al., 1973).

The constant c is the speed of light in a vacuum, G is Newton’s Gravitational constant

6.674 × 10−11m3kg−1s−2, and Ω is the 4D region in spacetime of interest. Recall that the

action has units of energy times time. Note the Ricci scalar has units of m−2. Thus, when

the units of κ, R, and Λ above are simplified, we find the units of the action to be energy

times time just like we would expect.

Several of the usual properties of the curvature tensor in general change in ECSK due

to the presence of torsion; Jensen (Jensen, 2005) provides an excellent explanation of these

differences, although he uses a different notation than we do (he uses Wald’s (Wald, 1984)

convention for the curvature tensor). Specifically some of the algebraic tensor symmetries

we would have had in GR are different. We will go over these properties now, and note

when they are different from those in GR.
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5.1.1 Symmetry Properties of the Curvature Tensor in ECSK

We will write these in a list, and make a sub list when the property differs from that in

GR. For the boldfaced letters, we follow Wheeler’s notation for differential forms (J. Wheeler,

2021). For instance D is the covariant exterior derivative, Rµ
ν is the curvature two-form, eν

is the solder form/orthonormal frame field, and ∧ is the wedge product. Recall that there

are five main algebraic tensor symmetries of the curvature tensor in GR. We have:

1) the skew-symmetry of the last two indices R {}abcd = R {}ab[cd].

2) when lowered the skew-symmetry of the first two indices R {}abcd = R {}[ab]cd.

3) the interchange symmetry R {}abcd = R {}cdab

4) the first (algebraic) Bianchi identity R {}a[bcd] = 0 or eν ∧Rµ
ν = 0, and

5) the second (differential) Bianchi identity R {}ab[cd:e] = 0, or DRµ
ν = 0.

These all define the GR curvature tensor which happens to lie irreducible in the Y 3b

Young tableaux sector.

R {}abcd ∈ 1 3

2 4
(5.3)

We proceed to go over these same five identities and see how they change in ECSK theory.

We would not expect all of them to hold because now the curvature tensor breaks not

only into the Y 3b sector, but a Y 4b, Y 4c combination sector (they turn out to be linearly

dependent) and a Y 5 sector. We use the elbow Ferrers diagram to represent the combination

sector.

Rabcd ∈ 1 3

2 4
⊕ ⊕ 1

2

3

4

(5.4)

Now we discuss how the symmetry properties are different than they were before:

1.) The first property in GR was R {}abcd = R {}ab[cd]. This skew symmetry of the last

two indices is unchanged in ECSK.

Rabcd = Rab[cd]
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2.) The second property was R {}abcd = R {}[ab]cd. This skew symmetry of the first two

indices is unchanged in ECSK.

Rabcd = R[ab]cd

3.) The third property was R {}abcd = R {}cdab.

The interchange symmetry is no longer valid Rabcd ̸= Rcdab. The obstruction to Rabcd =

Rcdab here is the addition of torsion in the connection; this can be inferred from the new

Young sectors which appear in the irreducibility of Rabcd. We can recover the identity

Rabcd = Rcdab in the
1 3

2 4

piece of the Riemann tensor using Young tableaux, however. The new interchange formula

is given in the equation which follows. We have checked and modified this equation from

Jensen’s formula (Jensen, 2005).

2Rabcd = 2Rcdab + 3
(
∇[b|Ta|cd] +∇[a|Tb|cd] +∇[d|Tc|ab] +∇[c|Td|ab]

)
(5.5)

+ 3
(
Tae[bT

e
cd] + Tbe[aT

e
cd] + Tce[dT

e
ab] + Tde[cT

e
ab]

)

4.) The fourth property was R {}a[bcd] = 0.

The first Bianchi identity changes in ECSK to include a covariant derivative of torsion

and a torsion squared term which is given as follows in both differential form language and

abstract indices. Note that d is the exterior derivative.

Rd[cab] = ∇[bT
d
ca] + T de[cT

e
ab] (5.6)

DT µ = eν ∧Rµ
ν

dT µ + T ν ∧ ωµν = eν ∧Rµ
ν

5.) The fifth property was R {}ab[cd:e] = 0.
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The differential Bianchi identity changes in ECSK and now includes a torsion contracted

with curvature term as follows in both differential form language and abstract indices.

∇[e|R
d
c|ab] = −Rdcf [aT

f
be] (5.7)

DRµ
ν = 0

dRµ
ν +Rα

ν ∧ ωµα +Rµ
α ∧ ωαν = 0

These are how the ECSK curvature identities change in the presence of torsion. Next, we

move onto the matter action and the entire gravity action.

5.2 The Matter Action and Whole Gravitational ECSK Action

We begin with defining the matter action SM , which incorporates all the different

variational matter sources for gravity. LM is an arbitrary matter Lagrangian density; it can

be broken into a Lagrangian times a metric/tetrad density: LM = LM
√
−g = LMe.

SM =

ˆ

Ω

LMdΩ (5.8)

Together we can write the total action S = SEH + SM in equation (5.9) shown below.

S =

ˆ

Ω

([
1

2κ
(R− 2Λ)

]√
−g + LM

)
dΩ (5.9)

In ECSK, the action is a bit more complicated than in GR. Although the action looks the

same as in GR it is different is because of the presence of torsion.

Now we have five equivalent choices on how to vary the action:

1) with respect to the metric and the torsion tensor gab and T abc,

2) with respect to the metric and the contorsion tensor gab and Cabc,

3) with respect to the tetrad and the spin connection eaµ and ωµνc,

4) with respect to the tetrad and the torsion tensor eaµ and T abc, and
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5) with respect to the tetrad and the contorsion tensor eaµ and Cabc.

In our case we will focus on 2), however we will examine parts of 1); furthermore, we

will elaborate on 3) and 5) at the very end.

The contorsion tensor is defined by:

Cabc =
1

2
(−Tabc + Tbac + Tcab) , Tabc = −2Ca[bc] (5.10)

Cfbf = −T fbf = T ffb = Tb (5.11)

Recall also that the contorsion tensor is skew in the first two indices.

Cabc = C[ab]c

Now we vary equation (5.9) with respect to the fields gab and T abc (or Cabc, we show both).

We find

δS =

ˆ

Ω

(
δ
√
−g
[
1

2κ
(R− 2Λ)

]
+
√
−g 1

2κ
δR+ δLM

)
dΩ (5.12)

Now since we have two independent fields: gab and T abc we will break off those variations as

separate parts; this will produce a variation looking like δS = δSg + δST . Likewise, we can

break off similar pieces in any of the five cases from earlier, which we will do for eaµ and

ωµνa for example.

5.2.1 First ECSK Field Equation from Inverse Metric Tensor gab Variation

Following Hehl (F. Hehl et al., 1976), we find that the variation of the field equations

with respect to the metric yields:

G(ab) + Λgab = κTab (5.13)
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The first of the objects above is the Einstein Tensor Gab, given as follows:

Gab = Rab −
1

2
Rgab . (5.14)

where Rab is the Ricci tensor, and R is the Ricci scalar; recall that the Ricci tensor is defined

as the 1,3 contraction on the curvature tensor, and R is the metric contraction on the two

indices of the Ricci tensor. Next we have the stress energy tensor Tab; this is given as follows:

Tab = − 2√
−g

δLM
δgab

(5.15)

Recall that δ
√
−g = −1

2

√
−ggabδgab from Carroll (Carroll, 1997).We note that the Einstein

Field Equation has a spin contribution due to torsion inside the Einstein tensor as does Hehl

in his equation (3.23) (F. Hehl et al., 1976).

For calculation purposes, it is also useful to define the stress energy density Tab as in

equation (5.16).

Tab = −2
δLM
δgab

(5.16)

Although we could look at the vielbein variation next, the author feels that it is better for

clarity if the vielbein and spin connection variation is discussed later. Next we discuss some

independent variable considerations which are important in ECSK theory.

5.2.2 Preliminaries Before the Second Field Equation, and Independent Variable

Clarification for gab, eaµ, T abc, C
a
bc,and ωµνa

Although we got the equation for the tetrad variation approximately above, there was

an equation we used which related the metric variation and tetrad variation to do so. This

subtlety addresses the importance of picking our independent variables in the variation.

Above, we talked about five different cases in ECSK which we can pick to vary. Each of

these will lead to different field equations and have different interpretations. Additionally,

there is the need to be particular about the covariance/contravariance of the tensors we are

varying. Although we say we were varying with respect to the metric, we really varied with
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respect to the inverse metric once the contravariance of the variation is considered. Likewise,

in the tetrad section above, we chose the variance of the tetrad eaµ to be one abstract index

up, and one orthonormal index down.

Tensor variance becomes important for the torsion tensor, contorsion tensor, and spin

connection. The torsion tensor naturally comes in the form T abc so it is preferable to vary it

with this variance; the interpretation becomes easier since in this form it is also completely

decoupled from the metric. Because the contorsion tensor can be viewed as part of a

connection 1-form, on one hand it makes sense to vary it as Cabc; on the other hand however,

because the first two indices are skew it makes it easier computationally to vary Cabc; we

will choose Cabc as our object to vary because we can write
(
A bc
a

)
δCabc =

(
gbdA c

[ad]

)
δCabc

(for some tensor A bc
a appearing in a variational principle) to still properly account for the

skewness of the indices a, b once one is lowered. This is also what seems to work best for

many formulas, and the author would recommend that Cabc be varied instead of Cabcfor

simplicity. Note that if we choose gab and Cabc as our independent variables, we can still

relate back to gab and Cabc with equation (5.17).

δCabc = δgadCdbc + gadδCdbc (5.17)

These type equations relating different valences in variations are not terribly difficult to

derive as all we did was lower an index with the metric and carry the variation through.

The difficulty comes when the independent variables are not chosen exactly and explicitly

from the start.

Moving forward, the spin connection naturally comes as ωµνa with the first two indices

skew symmetric as well. Similarly to the contorsion case we could choose to vary ωµνa

instead. Note however, that δωµνa = ηµαδωανa, so there is really no difference here because

ηαβ does not vary. Nevertheless, to relate a theory with independent variables eaµ and ωµνa

back to a theory with independent variables eaµ and Cabc requires what is known as the

Belinfante-Rosenfeld relation; see (Gotay & Marsden, 1986) for reference, and (Belinfante,

1940), (Rosenfeld, 1940) for the papers of Belinfante and Rosenfeld. Furthermore, we refer
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the reader to appendix G, and to Wheeler’s paper (J. T. Wheeler, 2023) whom we believe

gives the best explanation of the Belinfante-Rosenfeld relation. This relation is important

because it produces a way to turn the tetrad energy momentum tensor back into the Hilbert

stress energy tensor; this makes it incredibly useful for physical interpretations.

There are several equations which relate all these variations together however, the first

of which is:

δgab = 2ηµνδ(ace
b)
νδe

c
µ (5.18)

This equation is lovely in the fact that there is no mixing of fields/variations as in equation

(5.17). However, there is no way to turn a vielbein variation back into a metric variation in

general because of the lack of guaranteed symmetry of the abstract indices. Past that, there

is the equation relating the contorsion variation to the metric and torsion variation; we will

choose the contorsion tensor Cabc in natural form as our independent variable. This relation

is given in equation (5.19); likewise, this relation can be inverted to give equation (5.20).

δCabc =
1

2

(
−δae δdb δgc + gadgbeδ

g
c + gadgceδ

g
b

)
δT edg + (5.19)

1

2

(
δaf (Tbgc + Tcgb)−

(
T a
f cgbg + T a

f bgcg
))
δgfg

δT abc = −2δe[bδ
f
c]δC

a
ef (5.20)

For clarity, we have also included these equations when we choose Cabc as the independent

variable. It is an algebraic exercise to check that these equations are inversions of each other,

in the sense that if we substitute δT abc into the δCabc equation, that we get δCabc = δCabc.

δCabc = −1

2
(−gagThbc + gbgThac + gcgThab) δg

gh +
1

2

(
−gadδebδfc + gbdδ

e
aδ
f
c + gcdδ

e
[aδ

f
b]

)
δT def

δT abc =
(
−2Cd[bc]

)
δgad +

(
−2gadδe[bδ

f
c]

)
δCdef

The next equation which relates variations relates the torsion variation to the solder form

eaµ and spin connection ωµνa. When we look at the definition of torsion given by T (X,Y ) =
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∇XY − ∇YX − [X,Y ], we can find an equivalent definition in terms of differential forms

given by equation (5.21):

T α = deα + ωαβ ∧ eβ . (5.21)

Recall that the bold letters denote differential forms. This is the form most often seen when

working with Cartan geometries; see Sharpe (Sharpe, 1997), Choquet-Bruhat (Choquet-

Bruhat et al., 1996), and Stone (Stone, 2008) for excellent references on these. Upon

expanding equation (5.21), varying and simplifying it, we find how the torsion variation

relates to the spin connection and solder form variations. One thing that is interesting

about this relation however, is the piece ∂[b
(
e σ
c] δ

a
fδe

f
σ

)
which will turn into a boundary

term in the action.

δT abc =
(
2eaµe

ν
[c δ

f
b]

)
δωµνf +(

2eaµe
ν
f ω

µ
ν[ce

σ
b] − 2δafω

σ
ν[ce

ν
b] + 2δaf∂[be

σ
c] + 2e σ

[c ∂b]e
a
µe

µ
f

)
δefσ −

2∂[b

(
e σ
c] δ

a
fδe

f
σ

)
Furthermore, we can use both of the prior variational relations to see how the spin connection

variation can be written in terms of a contorsion and vielbein variation; the usefulness of this

comes from the fact that once we do this, the coefficient of the vielbein variation becomes

exactly the Hilbert stress energy momentum tensor, and can be interpreted the same way as

in GR. This relation is what becomes the Belinfante-Rosenfeld relation once applied to the

action principle. We will explore more on this later and in appendix G, and we also refer

the reader to Wheeler (J. T. Wheeler, 2023) who provides an excellent explanation of this

relation.

Before we move onto the variation of the action with respect to the torsion tensor,

contorsion tensor (by the algebraic relation relating, this relation is given in equation (5.10),

or the spin connection, it is important to define the quantities which appear once the matter

Lagrangian is varied with respect to these objects. At least for the torsion and contorsion

the algebraic relation relating them as we saw above is incredibly useful in relating the

variations.
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We define the following spin energy potential density M bc
a , the Palatini potential density

Yaµν , and spin angular momentum density Saµν in equation (5.22); see Hehl (F. Hehl et

al., 1976) with slight modification. The Palatini spin potential density Yaµν is a new object

not defined in Hehl’s paper. The index arrangement of both Sabc, and Yaµν are to follow

the spirit of Hehl (F. Hehl et al., 1976) as in equation (3.6) there.

M bc
a = −2

δLM
δT abc

, Yaµν = −2
δLM
δωµνa

, Sa c
b = −2

δLM
δCbca

(5.22)

In equation (5.22) ωµνc is the spin connection. The relation between the δCbca and δωµνa is

given by the Belinfante-Rosenfeld relation in appendix G. Recall that the spin connection

can be broken into the Levi-Civita spin connection ϖν
µa and contorsion tensor.

ωνµae
b
ν = ϖν

µae
b
ν + Cbcae

c
µ (5.23)

Because the torsion and contorsion are related through equation (5.10) we can write M bc
a in

terms of S bc
a ; lowering the indices makes the derivation easier. We then find the relations:

Mabc =
1

2
(Sabc +Scba −Sbca) , Scab = −2M[ab]c (5.24)

Likewise, we can make the densities M bc
a , Yaµν , and Sabc into tensors with the following

definitions for the spin energy potential tensor µ bc
a , Palatini potential tensor yaµν , and spin

angular momentum tensor sabc (5.25).

µ bc
a =

1√
−g

M bc
a , yaµν =

1√
−g

Yaµν , sabc =
1√
−g

Sabc (5.25)

If we apply the Belinfante-Rosenfeld relation from appendix G, which is just that the action

variations for the tetrad & spin connection, and metric and torsion be equivalent, then we

find that the Palatini spin potential density and spin angular momentum density are equal

as in equation (5.26).

e
[µ
b e ν]

c Sabc = Yaµν (5.26)
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Before we go about the variation with respect to torsion and/or contorsion it is useful to know

the formula for the Ricci scalar R in terms of the Levi-Civita connection generated Ricci

scalar R {}. The difference is precisely given in terms of torsion and or contorsion terms.

We can find this from the fact that the difference of covariant derivatives is a tensor; in this

case the difference between the metric affine connection and the Levi-Civita connection is

given by the contorsion tensor, see equation (5.27); Xa is an arbitrary vector field. This is

the same idea that we used in our equation (5.23) which relates spin connections.

(
∇a − ∇̃a

)
Xb = CbcaX

c (5.27)

Applying this idea allows us to write the difference of curvature tensors in terms of torsion

and or contorsion pieces; we need this in order to write the ECSK Ricci scalar in terms of

the Levi-Civita generated Ricci scalar and torsion/contorsion pieces. We will now define the

Alphonse Tensor Adcab, which we referenced in the summary section of chapter 4. It is a new

object which is the difference between the curvature tensor generated by the metric affine

connection Rdcab and the Riemann tensor of the Levi-Civita connection R {}abcd in equation

(5.28).

Adcab = Rdcab −R {}dcab , Adcab = 2∇̃[aC
d
|c|b] + 2Cdf [aC

f
|c|b] (5.28)

Taking a d, a trace of the Alphonse Tensor gives us what we define to be and call the Edward

Tensor Ecb. This is the same procedure as forming the Ricci tensor in GR. Note also that the

Edward Tensor is the difference between the metric affine Ricci tensor and the Levi-Civita

Ricci tensor. Equation (5.29) contains the definitions of what we call the Edward tensor.

Ecb = Adcdb = Rcb −R {}cb , Ecb = 2∇̃[dC
d
|c|b] + 2Cdf [dC

f
|c|b] (5.29)

This also lets us write a few more formulas regarding Ecb. Ecb contains the skew part of the

Ricci tensor in ECSK, see equation (5.30). The symmetric part of Ecb is more than just the

Levi-Civita generated piece of the Ricci tensor however; this is due to the presence of new
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Young tableaux sectors for the curvature tensor in ECSK.

R[cb] = E[cb], R(cb) = R {}cb + E(cb) (5.30)

Lastly we have the Edward Scalar E which is the trace of the Edward Tensor, and again

this corresponds to how we would form the Ricci Scalar in GR; this is given in equation

(5.31). We have used Cabc = C[ab]c to combine the covariant derivative terms. Note also

that the Edward scalar is the difference between the metric affine Ricci scalar and the Levi-

Civita Ricci scalar; there is a parallel for each of these to the ones constructed naturally in

GR. Additionally, we can finally write the Edward Scalar/Ricci scalar in terms of torsion;

previously this was cumbersome because of the number of torsion terms. Finally, it is useful

to define one more piece U which becomes useful in the variational principle for ECSK. We

decided on U because Hehl describes ECSK as a U4 theory (F. Hehl et al., 1976); this U will

be called the Hehl scalar, see equation 5.33. The U scalar is the part of the Edward scalar

which does not have a covariant derivative in it.

E = gcbEcb = R−R {} , E = −2∇̃bC
db
d − CdbdC

c
bc + CdbcC

c
bd (5.31)

E =
1

4
TabcT

abc +
1

2
TabcT

bac − T aabT
c b
c − 2∇̃bT

a b
a (5.32)

U = −gab
(
CdadC

c
bc − CdacC

c
bd

)
, U = E + 2∇̃bC

db
d (5.33)

Now that we have defined several new objects, the variations with respect to the torsion

and contorsion become manageable and easier to follow as well. We will move onto the

differences in the next section.

5.2.3 Second ECSK Field Equations from Torsion T abc, and Contorsion Cabc

We have the freedom to vary the action with respect to the torsion or the contorsion

tensor. At first, it may make more sense to vary with respect to the torsion tensor because

it is completely independent of the metric; the contorsion tensor depends on the metric
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through the raising and lowering of the torsion tensor. This does change a few things, but

never too much because the torsion and contorsion are always related algebraically. Hehl et

al. (F. Hehl et al., 1976) give a good explanation of why it is the contorsion which should

couple to the spin of matter on page 398 the last paragraph in section F:

“We have seen that the presence of contortion in a U4 supplies space-time with new

rotational degrees of freedom. We know that matter possesses spin angular momentum

in general, and, in the spirit of general relativity, we would like space-time to reflect the

properties of matter. In the next section we will achieve this result by coupling the contortion

of space-time to the spin of matter.”

This comes about because now the metric-compatible affine connection is modified by

the contorsion, not the torsion tensor. Nevertheless, for completeness the torsion variation

may one day be valuable as a mathematical check elsewhere and for pedagogical reasons

also. From this standpoint, we move onto the torsion variation.

5.2.4 The Torsion Variation

From equation (5.32) we can write the Edward scalar in terms of the difference of Ricci

tensors and torsion. When E is varied with respect to torsion we find that the Levi-Civita

generated Ricci scalar R {} vanishes because it does not contain torsion; this yields equation

(5.34).

δTR =
(
A bc
a

)
δT abc + ∇̃f

(
−2δbag

fcδT abc

)
(5.34)

Furthermore, when we take the variation in equation (5.12) to be with respect to torsion,

we find the torsion variation δST is given by equation (5.35).

δST =

ˆ

Ω

(
1

2κ

δR

δT abc
+
δLM
δT abc

)
δT abc

√
−gd4x (5.35)

Applying equations (5.25) and (5.34) to equation (5.35), we then find the Second ECSK field

equations, which we will call the Alpha Cartan equation, to be given by equation (5.36) with
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definition of the Alpha Cartan tensor in equation (5.37). It is precisely the Alpha Cartan

tensor with which we would like to draw an analogy to the Einstein Tensor Gab. Notice how

both Gab and Aabc appear on the left-hand side of their respective field equations, and how

κTab and κµabc appear on the right-hand side of their respective field equations. This is the

good mathematical analogy to make in ECSK theory.

A bc
a = κµ bc

a (5.36)

A bc
a =

1

2

(
T bc
a − 2gadT

[bc]d
)
− 2δ [b

a T c] (5.37)

Although the Tabc + Tbac − Tcab term looks like the definition of the contorsion tensor, it is

not as it is off by just a few indices. The second ECSK field equation generated from the

torsion variation is equivalent to the one generated from the contorsion variation as we will

show. We now move onto the contorsion variation and then compare the field equations.

5.2.5 The Contorsion Variation

The contorsion variation is a bit different from the torsion tensor relation, however the

difference is subtle. The contorsion tensor is skew on its first two indices when they have

the same valence. However, the contorsion tensor naturally comes with the first two indices

being different valences. We deal with this through the following relation:
(
A bc
a

)
δCabc =(

gbdA c
[ad]

)
δCabc. Without proper care taken in this relation we do not get out the proper

field equations. Furthermore, it is precisely this relation which allows us to compare the

torsion and contorsion field equations.

In the case of the contorsion variation, the variation of the Ricci tensor, much like

and equivalent to equation (5.34), is given by equation (5.38). We can find this from the

contorsion form of the Edward scalar in equation (5.31).

δCR =
(
gbdC c

ad

)
δCabc − 2gdbδca∇̃d (δC

a
bc) (5.38)
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Likewise, the contorsion variation δSC is given by equation (5.39).

δSC =

ˆ

Ω

(
1

2κ

δR

δCabc
+
δLM
δCabc

)
δCabc

√
−gdΩ (5.39)

When we apply equations (5.25) and (5.38) to equation (5.39), we then find the Second

ECSK field equation, what we will call the Cartan Equation, when we vary with respect

to the contorsion in equation (5.40), with the definition of the Cartan tensor C c
ab given in

equation (5.41). Interestingly enough, the Cartan tensor, unlike the Alpha Cartan tensor

A a
bc, can be defined purely in terms of the torsion, as in the second half of equation (5.41).

Cabc = κsabc (5.40)

C c
ab = −2

(
Cc[ab] + δc[aC

f
b]f

)
, C c

ab = T cab + 2δc[aT
f
b]f (5.41)

We have said that both of the Second field equations are equivalent, but it is important to

show this as we have not found it anywhere else. A derivation of equivalence is shown in

the “Equivalence between the Second field equations” section utilizing equations (5.24).

5.2.6 Equivalence Between the Second Field Equations

We begin with writing the spin angular momentum tensor in terms of the spin energy

potential tensor by the skew symmetry relation and then plug in the definition of the Alpha

Cartan tensor, and then simplify the resultant right-hand side to reproduce the Cartan

equation. Recall that this is entirely due to the algebraic relation between the torsion tensor

and the contorsion tensor.

scab = −2µ[ab]c
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κscab = −2

{
1

2

[(
1

2
(Tabc + Tbac − Tcab) + gabT

f
cf − gacT

f
bf

)]}
+2

{
1

2

[(
1

2
(Tbac + Tabc − Tcba) + gbaT

f
cf − gbcT

f
af

)]}
= −

{
1

2
(Tabc + Tbac − Tcab − Tbac − Tabc + Tcba)

}
+

{
����������:0

−gabT fcf + gbaT
f
cf − gacT

f
bf + gbcT

f
af

}

= −
{
1

2
(−2Tcab)− 2gc[aT

f
b]f

}
=

{
Tcab + 2gc[aT

f
b]f

}
= Ccab

This proves equivalence going one way, we now check everything the opposite way. For the

second equivalence, we write the spin energy potential tensor in terms of the spin angular

momentum tensor and then simplify the right-hand side.

µabc =
1

2
(−sabc + scba + sbca)

κµabc =
1

2

(
−
(
−2
(
Cc[ab] + gc[aC

f
b]f

))
−
(
−2
(
Cb[ca] + gb[cC

f
a]f

)))
+

1

2

(
−2
(
Ca[bc] + ga[bC

f
c]f

))
=

1

2

((
2Cc[ab] + 2Cb[ca] − 2Ca[bc]

))
+

1

2

(
2gc[aC

f
b]f + 2gb[cC

f
a]f − 2ga[bC

f
c]f

)
=

1

2

(
(−Tcab − Tbca + Tabc) + 2gacC

f
bf − 2gabC

f
cf

)
=

1

2

(
(−Tcab − Tbca + Tabc)− 4ga[bC

f
c]f

)
=

1

2
(Tabc + Tbac − Tcab) + 2ga[bT

f
c]f

= Aabc

And again we have equivalence, showing that either equation we choose to solve is equivalent

to the other.
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5.2.7 First and Second ECSK Field Equation from the Vielbein eaµ, and Spin

Connection ωµνa Variations

There are plenty of subtleties in comparing an ECSK theory built on the variables eaµ,

and ωµνa instead of gab, and T abc or Cabc. We can compare all of them and interpret them

the same every time, but getting to that point requires a deep understanding of boundary

terms, and a lot of clarity. Naively we could just use equation (5.18) and convert what

we already discovered in the metric theory, however, this does not work because the spin

connection has some dependence on the vielbein; this is unlike the torsion tensor and metric

which do not depend on each other ab initio; the contorsion tensor has some similarities,

but is not as complex as the spin connection and vielbein relation. Before we start, there

are several reasons why we might be interested in an ECSK theory on the variables eaµ, and

ωµνa.

Sometimes the matter action does not explicitly depend on the metric as in Dirac theory,

but we would still like to have an ECSK theory of gravity in this case; more generally this

becomes important when we discuss fermions. When this occurs, we can vary with respect

to the vielbein eaµ instead of the metric. When we build on this idea it becomes important

to define a few other terms which have not shown up yet. These new objects are related to

the tetrad eaµ. The first of these is the tetrad stress energy density T µ
a . We can turn T µ

a

into a density with abstract indices by contracting on a eµb, which gives us Tab; note that

this is not necessarily symmetric unlike Tab. Furthermore, the next definition defines tab the

tetrad stress energy tensor. Finally, e = det
(
eaµ
)

is the determinant of the vielbein. These

are all seen in equations (5.42).

T µ
a = −δLM

δeaµ
, tab =

1

e
Tab (5.42)

This is shown by the Belinfante-Rosenfeld relation (in appendix G) to convert this theory

into an ECSK theory built on the variables eaµ, and Cabc. Note that the vielbein starts as a

form in this theory instead of a vector; the conversion back is given by δe µ
a = −e µ

f e
σ
a δe

f
σ.
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5.2.8 The Vielbein and Spin Connection Variation

We begin with the ECSK action given in terms of differential forms (and a matter

Lagrangian density) as in equation (5.43); it can be shown that this is equivalent to the

action we have in equation (5.9).

S = − 1

4κ

ˆ

Ω

(
Rµν ∧ eα ∧ eβ +

1

6
Λeµ ∧ eν ∧ eα ∧ eβ

)
eµναβ +

ˆ

Ω

LMdΩ (5.43)

When we vary this with respect to eµ and ωµν we find the following field equations in

equations (5.44) and (5.45). See Wheeler (J. T. Wheeler, 2023) for more details.

Rµν −
1

2
ηµνR = tµν (5.44)

C c
ab = ycab (5.45)

5.3 The ECSK Action

The ECSK action we will use is the same action as the one used in GR, but with

the addition of torsion. Furthermore, we also choose to include the Gibbons-Hawking-York

(GHY) term so that we only need to specify that δgab vanish on the boundary for all the

boundary terms to vanish; see York’s paper for more specifics on why this works and is

important (York, 1986).

The Gibbons-Hawking-York term is also modified as well such that the extrinsic curvature

scalar (trace of the second fundamental form) K now contains torsion as well. The K0 is

the extrinsic curvature scalar of the boundary embedded flat spacetime, and Σ is some

hypersurface subset of Ω. The action is given in equation (5.46).

S =

ˆ

Ω

[
1

2κ
(R− 2Λ)

]√
−gd4x+ SM + SGHY (5.46)

Through the rest of the sections we refer to equation (5.46) as the gravitational action.
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CHAPTER 6

ECSK-NMC SCALAR FIELD THEORY

In this chapter we will examine a non-minimally coupled (NMC) scalar field and scalar

field action and vary the action with respect to the metric, contorsion tensor, and the fields.

We use the action provided by Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov,

2015). The purpose of this chapter is to derive and classify Bronnikov and Galiakhmetov’s

solution with the tools we developed in chapters 3 and 4. The Lagrangian density depends

on the following fields:
{
ϕ, ϕ,a, ψ, ψ,a, g

ab, Cabc
}
. ϕ is the non-minimally coupled scalar field.

ψ is a minimally coupled scalar field. ϕ,a and ψ,a are derivatives of the respective fields. gab

is the inverse metric tensor, and Cabc is the contorsion tensor.

The action is given by Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015)

and is special because the solutions to the field equations generated by the variational

principle form a wormhole solution. Additionally, when no other spin-density is present,

the field ϕ generates the SO (p, q) irreducible trace Qabc element of the torsion. This is the

only part of the torsion which exists in this solution. From earlier we know that the trace

Qabc piece of the torsion corresponds through the Infeld–Van der Waerden symbols σa
AA′

directly to the torsion ΘAA′ spinor, which we have developed the tools to classify. The

non-minimally coupled scalar field is a great example to see how this piece of the torsion

not only fills out its own irreducible sector, but also to see the resulting effects on the total

curvature as well.

While we are rederiving the equations Bronnikov and Galiakhmetov have, we will

additionally include every boundary term arising in the variation. Usually we specify that

the metric variation δgab vanishes on the boundary which is what we choose here. We do

not actually have to specify that the contorsion tensor vanishes on the boundary. Gibbons-

Hawking-York terms arise again but with a slight addition due to the non-minimal coupling.

Furthermore, we will derive these NMC field equations in N−dimensions. As an aside,
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notice that the functions V (ϕ) and W (ψ) are arbitrary and can contain the mass terms

usually seen in a Klein-Gordon action. The sign in front of the Einstein-Hilbert piece is also

a minus as opposed to the positive sign we had before; this will alter our explicit definition

of the stress energy tensor. The relative sign is important here however to get the correct

field equations. Note how it is different from our other derivation in the “Derivation of the

ECSK Field Equations” section where we had R+ LM .

For an action S of the following form in N−dimensions we define the following variables:

Ω is the region of integration, ϵ = ±1 = n̂an̂a is the signature of the unit vector normal to

some three dimensional hypersurface ∂Ω, R is the Ricci scalar, κ is the Einstein gravitational

constant, g is the determinant of the metric, gab is the inverse metric, ϕ is a NMC scalar field,

ξ is the NMC coupling constant, ψ is a minimally coupled scalar field. η1 = ±1, η2 = ±1,

these two are for canonical (1) or phantom (−1) scalar fields. γ is the first fundamental form

(for the boundary of the region Ω (∂Ω) being examined), K is the extrinsic curvature trace

(mean curvature), K0, K1 are variables not depending on the fields which make the action

finite, �̃ is the Levi-Civita generated Dalembertian, ccab is the Cartan tensor, scab is the spin

density tensor, Tab is the stress energy tensor, Uab is the spin stress energy tensor, and Cabc

is the contorsion tensor. Additionally, SGHY is the Gibbons-Hawking-York (GHY) term,

and S∂NMC is the GHY analogue term for NMC scalar fields coupled in this way. The new

S∂NMC term (labeled as such to signify “boundary of NMC”) is included so that we have the

freedom to prescribe that δgab vanishes on the boundary and not some combination of its

derivatives. Notice the addition of the K1 term; for minimally coupled fields we do not need

to add a GHY type term to compensate for additional boundary effects. However, we need

the K1 here to prevent any divergent (running off to infinity) behavior due to properties of

the scalar field ϕ; K1 also does not contribute to the field equations. Further explanation

of K0 and K1 can be found in Hawking and Horowitz (Hawking & Horowitz, 1996). The

action is given as follows:

S =

ˆ

Ω

[
− R

2κ

]√
−gd4x+ Sϕ + Sψ + SGHY + S∂NMC (6.1)
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Sϕ =

ˆ

Ω

[η1
2

(
gabϕ,aϕ,b + ξRϕ2 − 2V (ϕ)

)]√
−gd4x (6.2)

Sψ =

ˆ

Ω

[η2
2

(
gabψ,aψ,b − 2W (ψ)

)]√
−gd4x (6.3)

SGHY =

˛

∂Ω

( ϵ
κ
(K −K0)

)√
γd3y (6.4)

S∂NMC =

˛

∂Ω

(
−η1ξϕ2ϵ (K −K1)

)√
γd3y (6.5)

by the sum of the three terms S, SGHY , and S∂NMC above. Equation (6.1) is the same

action as Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015) except for the

SGHY and S∂NMC terms which we have included in the style of York (York, 1986), and the

redefinition of V (ϕ), and W (ψ) which equal 1
η1
, 1η2 times the same variables they defined.

We redefined these terms to make the field equations more compact later. Erdmenger

(Erdmenger et al., 2022) gives further discussion of boundary terms in ECSK theory, and

there are many boundary terms which appear in NMC scalar field ECSK theory. Equations

(6.2), and (6.3) are the actions for a NMC scalar field (ϕ), and a minimally-coupled (MC)

scalar field (ψ). We vary the action constructed from equation (6.1) with respect to the

fields: ϕ, ψ, gab, and Cabc. This produces the following field equations:

�̃ϕ− ξRϕ+
dV (ϕ)

dϕ
= 0 (6.6)

�̃ψ +
dW (ψ)

dψ
= 0 (6.7)

G {}ab + Uab = κ (Tab [ϕ] + Tab [ψ]) (6.8)

C ab
c = κs ab

c (6.9)

Equation (6.6) is the field equation for ϕ; equation (6.7) is the field equation for ψ; equation

(6.8) is the field equation for gab; lastly, equation (6.9) is the field equation for Cabc. In
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equation (6.8) the stress energy tensors are given by:

Tab [ψ] =
η2
2

[
ψ,aψ,b −

1

2
gabψ

,cψ,c + gabW (ψ)

]
(6.10)

Tab [ϕ] =

[
η1

(
ϕ,aϕ,b −

1

2
gabϕ,cϕ

,c + gabV (ϕ)

)]
(6.11)

+
[
η1ξ
(
2T(a∇̃b)ϕ

2 − gabT
c∇̃cϕ

2
)]

(6.12)

+
[
η1ξϕ

2 (G {}ab + Uab)
]

+
[
η1ξ
(
gab�̃ϕ2 − ∇̃(a∇̃b)ϕ

2
)]

Uab = Uab −
1

2
Ugab (6.13)

Uab = −
(
CdadC

c
bc − CdacC

c
bd

)
U = −gab

(
CdadC

c
bc − CdacC

c
bd

)
where define what we call the Hehl-Gravity (HG) tensor by equation (6.13), with what we

call the Hehl scalar defined below. Additionally we have used Cfbf = −T fbf = T ffb = Tb

to write the trace of the contorsion tensor in terms of the trace of the torsion tensor Ta in

equation (6.11). Finally we have removed the Uab contribution to the ϕ stress energy tensor

because we place it on the other side of the field equations to contribute to the Einstein

tensor term. Equations (6.10), and (6.11) represent the contributions to the total stress

energy by the fields ψ, and ϕ respectively.

In the second ECSK field equation (6.9) the spin density tensor generated by the matter

content of the field ϕ is given by the following equation:

scab = 2η1ξ
(
C c
abϕ

2 + δc[a∇̃b]ϕ
2
)

(6.14)

C c
ab =

1

2
T cab + δc[aT

f
b]f (6.15)

where we have also repeated the definition of the Cartan tensor C c
ab in equation (6.15).
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We note that the spin density the would be generated by the field ψ is zero, as it does not

contribute.

This action given by the by the sum of equations (6.1), (6.4), and (6.5) produes

boundary terms, of which the metric variation is zero on the boundary (Dirischlet condition),

and the contorion variaion is unconstrained. We use subscripts on the deltas to signify which

field produced them; as an example δg signifies a variation with respect to the metric. The

non-canceling boundary terms are presented below:

δϕS∂ϕ =

˛

∂Ω

(
η1ϵ
(
n̂bϕ,b − 2ξϕ (K −K1)

))
δϕ

√
γd3y (6.16)

δψS∂ψ =

˛

∂Ω

(
ϵη2n̂

bψ,b

)
δψ

√
γd3y (6.17)

δgSEHCB =

˛

∂Ω

( ϵ
κ
n̂aTb

)
δgab

√
γd3y

δgSNMCCB =

˛

∂Ω

(
−η1ξϵϕ2n̂aTb

)
δgab

√
γd3y

δgS�ϕ1∂ =

˛

∂Ω

(η1
2
ξϵn̂a∇̃b

(
ϕ2
))
δgab

√
γd3y

δgS�ϕ2∂ =

˛

∂Ω

(
−η1

2
ξϵn̂d∇̃d

(
ϕ2
)
gab

)
δgab

√
γd3y

Once we prescribe that the fields ϕ,ψ, and gab are fixed on the boundary, eg. δϕ|∂Ω =

0,δψ|∂Ω = 0,δgab
∣∣
∂Ω

= 0 then all the boundary terms given by equations (6.16) vanish.

We now move onto the variation of the action with respect to the fields: gab, Cabc, ϕ,

and ψ. We begin with varying the action with respect to the field ϕ, then move onto the

variation with respect to the field ψ. Before we vary the action with respect to gab or Cabc

we put the action in a form more useful to computation.

6.1 Variation with Respect to ϕ

In this section we varying the action with respect to ϕ. We first arrive at a piece with
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covariant derivatives which will be come our field equations and a new boundary piece due

to S∂NMC . We give a quick sketch of our steps for the reader. First we perform integration

by parts. Then break off the Levi-Civita part of the covariant derivative to apply Stokes’

theorem. Then we simplify the result, winding up with the following field equation labeled

by Eϕ.

Eϕ = η1

(
− � ϕ+ T bϕ,b + ξRϕ− V ′ (ϕ)

)
(6.18)

This equation can be simplified to what we have in equation (6.6) with an equation which

relates the d’alembertian to the Levi-Civita connection generated d’alembertian.

� ϕ = �̃ϕ+ T aϕ,a (6.19)

The d’alembertian equation (6.19) can be derived using the fact that the difference of

covariant derivatives is a tensor (Wald, 1984). Upon applying this idea to our action, we find

that the contorsion pieces cancel and that we now have the torsion free d’alembertian instead

of the ECSK one in our field equation. Additionally we have the boundary pieces given too.

We can see that when we apply the vanishing of the variation of ϕ on the boundary, the

boundary term δS∂ϕ vanishes. We repeat the boundary term here for clarity and note it is

given by equation (6.16) in the introduction also.

δϕS∂ϕ =

˛

∂Ω

(η1ϵ (n̂
aϕ,a − 2ξϕ (K −K1))) δϕ

√
γd3y

Once we extermize the action we find that the field equation for ϕ is given by:

�̃ϕ− ξRϕ+
dV (ϕ)

dϕ
= 0

which is the same as equation (6.6). We are now finished with the variation of the action

with respect to ϕ.
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6.2 Variation with Respect to ψ

Next we vary the action with respect to ψ. Similarly to the previous section, and after

applying an integration by parts, we find the following to be the variation of the action; we

have also included the boundary term. We can see that when we apply the vanishing of the

variation of ψ on the boundary, that the boundary piece vanishes.

Eψ = η2
(
− � ψ + T aψ,a −W ′ (ψ)

)
(6.20)

δS∂ψ =

˛

∂Ω

(η2ϵn̂
aψ,a) δψ

√
γd3y

Upon applying the extremal action principal we get the following field equation:

�̃ψ +
dW (ψ)

dψ
= 0

which we repeat here for clarity. This is the same as equation (6.7) in the introduction.

6.3 Preparation Before the Variation with Respect to gab and Cabc

Before we move to varying equation (6.1) with respect to the metric gab and the

contorsion tensor Cabc, it is useful to split off the contorsion contribution in the action

from the ECSK Ricci scalar in equation (6.2). We need to recall how to expand R in terms

of its Christoffel and contorsion pieces from chapter 5.

R = R {} − 2gab∇̃aTb + U

We apply this decomposition to our action. The term SNMCCB arises due to an integration

by parts on the derivative of the torsion form Ta. The term SEHCB arises from splitting off

the contorsion in the gravitational part of the action. Due to the non-minimal coupling, we
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have to apply Stoke’s theorem once to the ξϕ2R term. This yields the following action:

S =

ˆ

Ω

[
− 1

2κ
(R {}+ U)

]√
−gd4x (6.21)

+

ˆ

Ω

LMϕ
√
−gd4x+

ˆ

Ω

LMψ
√
−gd4x

+ SGHY + S∂NMC + SEHCB + SNMCCB

LMϕ =
η1
2

(
gabϕ,aϕ,b − 2V (ϕ)

)
(6.22)

+
η1
2
ξϕ2 (R {}+ U) + η1ξg

abTa∇̃b

(
ϕ2
)

LMψ =
[η2
2

(
gabψ,aψ,b − 2W (ψ)

)]
(6.23)

SEHCB =

˛

∂Ω

( ϵ
κ
gabn̂aTb

)√
γd3y (6.24)

SNMCCB =

˛

∂Ω

(
−ϵη1ξϕ2gabn̂aTb

)√
γd3y (6.25)

Following Bronnikov, and Galiakhmetov (Bronnikov & Galiakhmetov, 2015), we seperate

the ϕ, and ψ matter fields in the action; this allows to in tern define a stress energy tensor

related to each individual field as in equations (6.10), and (6.11).

6.4 Variation with Respect to gab

Now we vary the action with respect to the metric gab. This gives us the following form

for the action variation:

δgS =

ˆ

Ω

[
− 1

2κ
(G {}ab + Uab)

]
δgab

√
−gd4x (6.26)

+ δgS [ϕ] + δgS [ψ]

+ δgS∂NMC1 + δgS∂NMC2 + δgSNMCCB + δgSG + δgST
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δgS [ψ] =

ˆ

Ω

(
δLMψ − 1

2
gabLMψδg

ab

)√
−gd4x (6.27)

δgS [ϕ] =

ˆ

Ω

(
δLMϕ −

1

2
gabLMϕδg

ab

)√
−gd4x (6.28)

δgSG =
ϵ

κ

˛

∂Ω

(
1

2
n̂c∇cgab +

1

2
K0γab

)
δgab

√
γd3y (6.29)

+
ϵ

κ

˛

∂Ω

(
−∇(an̂b) + n̂(aTb) −

1

2
n̂cT

cgab

)
δgab

√
γd3y

δgST =

˛

∂Ω

(
− ϵ

2κ
n̂(aγ

d
b)

)
δgab:d

√
γd3y (6.30)

δgSNMCCB =

˛

∂Ω

(
−η1ξϕ2ϵ

(
n̂(aTb) −

1

2
gef n̂eTfgab

))
δgab

√
γd3y (6.31)

δgS∂NMC1 =

˛

∂Ω

(
−η1ξϕ2ϵ

(
−∇(an̂b)

))
δgab

√
γd3y (6.32)

+

˛

∂Ω

(
−η1ξϕ2ϵ

(
1

2
ϵgcd∇cn̂dn̂an̂b

))
δgab

√
γd3y

+

˛

∂Ω

(
−η1ξϕ2ϵ

(
−1

2
(K −K1) γab

))
δgab

√
γd3y

δgS∂NMC2 =

˛

∂Ω

(
−η1ξϕ2ϵ

(
−n̂(aγ d

b) +
1

2
γabn̂

d

))
δgab:d

√
γd3y (6.33)

The first line, which is the Einstein-Hilbert term, turns into a combination of the Einstein

tensor and the spin stress energy term from before. The first also produces a boundary

term δS1 which results from the variation of the Ricci tensor with respect to the metric

δR {}ab. The next two lines correspond to the stress energy tensors for the ϕ and ψ fields

respectively. Last, the final line is what happens to the boundary terms after the variation.

The boundary term which resulted from the variation of the Ricci tensor with respect to the

metric cancels out the one which results from the variation of the GHY term with respect



137

to the metric. The δSGHY 1 term is the variation of SGHY with respect to the metric; the

δS∂NMC1 is the variation of S∂NMC with respect to the metric also; this follows for the

others as well where a 1 at the end denotes variation with respect to the metric. The term

δgSG is a combination of the of the reamining parts of the GHY term and the EHCB term.

The boundary terms arising from the variation of the Ricci tensor and part of the GHY

variation cancel each other out. Additionally, once we apply δgab
∣∣
∂Ω

= 0 the δgS∂NMC1, and

δgSNMCCB pieces vanish. We will see later that the normal derivative terms in δgS∂NMC2

term will cancel out with the variation of the Ricci tensor piece arising from the NMC term.

G {}ab is the Einstein tensor generated by the Levi-Civita connection, and Uab is the Hehl

gravity tensor. Both of these tensors are repeated below for convienence.

G {}ab = R {}ab −
1

2
R {} gab

Uab = Uab −
1

2
Ugab

We have also used use the variation of the determinant of the metric which is given by

δ
√
−g = −1

2

√
−ggabδgab to simiplify equation (6.26). Now we vary the matter Lagrangians

(ϕ, ψ) to make their corresponding stress energy tensors.

6.4.1 The Energy Momentum Tensor ψ

First we will vary the ψ piece to find its stress energy tensor, as in equation (6.27).

After variation, we find that the piece of the action which corresponds to the gravity field

generated by the ψ stress enert=gy tensor is given as follows:

δgS [ψ] =

ˆ

Ω

(
η2
2

[
ψ,aψ,b −

1

2
gabψ

,cψ,c + gabW (ψ)

])
δgab

√
−gd4x (6.34)

which we will soon write as the ψ stress energy tensor. The stress energy tensor is the object

which prescribes Gab − Tab = 0 in GR. When we apply that idea in ECSK theory there are

a few modification, but the spirit is very much the same. Recall the definition of the stress
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energy tensor is:

Tab = − 2√
−g

δ (
√
−gLM )

δgab

However, this definition only holds when there is not a minus sign outside the Ricci scalar;

we need Gab−Tab = 0. In our case we have a minus sign. To get what we need the definition

just changes by a sign to: Tab = 2√
−g

δ(
√
−gLM )
δgab

. Applying this the same exact way we did

in our ECSK field equation derivation then gives us our ψ action piece and ψ stress energy

tensor Tab [ψ] as:

δgS [ψ] =

ˆ

Ω

[
1

2
Tab [ψ]

]
δgab

√
−gd4x (6.35)

Tab [ψ] =
η2
2

[
ψ,aψ,b −

1

2
gabψ

,cψ,c + gabW (ψ)

]
(6.36)

The metric action variation is now given by:

δgS =

ˆ

Ω

[
− 1

2κ
(G {}ab + Uab)

]
δgab

√
−gd4x (6.37)

+ δgS [ϕ] +

ˆ

Ω

[
1

2
Tab [ψ]

]
δgab

√
−gd4x

+ δgS∂NMC1 + δgS∂NMC2 + δgSNMCCB + δgSG + δgST

with equation (6.36) substituted into equation (6.26).

6.4.2 The Energy Momentum Tensor for ϕ

Now we derive the stress energy tensor for the field ϕ as in equation (6.28). To vary

LMϕ we go through many of the prior steps as before: we vary R {}, U , and get the boundary

terms. Upon varying LMϕ we find the following form for δLMϕ:

δLMϕ =
(η1
2
ϕ,aϕ,b + η1ξT(a∇̃b)ϕ

2
)
δgab +

η1
2
ξϕ2∇̃dB

d (6.38)

+
(η1
2
ξϕ2 (R {}ab + Uab)

)
δgab

Now we substitute back into the action variation for ϕ given by equation (6.37); this allows
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us to examine the ∇̃dB
d term. We write out δgS [ϕ] =

´
Ω

(
δLMϕ − 1

2gabLMϕδg
ab
)√

−gd4x

with each of the terms explicitly shown.

δgS [ϕ] =

ˆ

Ω

η1
2

[
ϕ,aϕ,b −

1

2
gabϕ,cϕ

,c + gabV (ϕ)

]
δgab

√
−gd4x (6.39)

+

ˆ

Ω

η1ξ

[
T(a∇̃b)ϕ

2 − 1

2
gabT

c∇̃cϕ
2

]
δgab

√
−gd4x

+

ˆ

Ω

[η1
2
ξϕ2 [G {}ab + Uab]

]
δgab

√
−gd4x

+

ˆ

Ω

[η1
2
ξϕ2∇̃dB

d
]√

−gd4x

The top line in equation (6.39) mirrors that of the stress energy tensor for the MC scalar

field ψ. The second and third lines arise from the NMC and each have the coupling constant

ξ in front of them. The fourth line has an interesting term
´
Ω

[
η1
2 ξϕ

2∇̃dB
d
]√

−gd4x which

arises again from the variation of the Ricci tensor, this time on the NMC part. We can

further decompose equation (6.39) by expanding the last term. In the last line we use

Bdn̂
d =

(
γabn̂

d − n̂(aγ
d
b)

)
δgab:d which is shown by Carroll (Carroll, 1997).

ˆ

Ω

[η1
2
ξϕ2∇̃dB

d
]√

−gd4x =

ˆ

Ω

[
∇̃d

(η1
2
ξϕ2Bd

)
− η1

2
ξ∇̃d

(
ϕ2
)
Bd
]√

−gd4x

=

˛

∂Ω

ϵ
η1
2
ξϕ2Bdn

d√γd3y

−
ˆ

Ω

η1
2
ξ∇̃d

(
ϕ2
)
Bd√−gd4x

=

˛

∂Ω

(
ϵ
η1
2
ξϕ2

(
γabn̂

d − n̂(aγ
d
b)

))
δgab:d

√
γd3y

−
ˆ

Ω

η1
2
ξ∇̃d

(
ϕ2
)
Bd√−gd4x

= δgSB + δgS�ϕ

δgSB =

˛

∂Ω

(
η1ξϕ

2ϵ

(
−1

2
n̂(aγ

d
b) +

1

2
γabn̂

d

))
δgab:d

√
γd3y
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δgS�ϕ = −
ˆ

Ω

η1
2
ξ∇̃d

(
ϕ2
)
Bd√−gd4x

At this point we rewrite equation (6.37) in terms of these new definitions, which cancel some

of the boundary terms. Most notably all the tangential derivative pieces are now given by

δgST ′ which is a combination of δgSB, δgS∂NMC2, and δgST .

δgS =

ˆ

Ω

[
− 1

2κ
(G {}ab + Uab)

]
δgab

√
−gd4x (6.40)

+ (δgS [ϕ]− δgSB − δgS�ϕ) +

ˆ

Ω

[
1

2
Tab [ψ]

]
δgab

√
−gd4x

+ δgS�ϕ + δgS∂NMC1 + δgSNMCCB + δgSG + δgST ′

δgST ′ = δgSB + δgS∂NMC2 + δgST (6.41)

=

˛

∂Ω

(
ϵ

2

(
η1ξϕ

2 − 1

κ

)
n̂(aγ

d
b)

)
δgab:d

√
γd3y

Now we will look at the δS�ϕ term which we break into two terms: δS�ϕ1, and δS�ϕ2. This

is done through the defnition of Bb which can be derived by modifying a few terms from

what we already accomplished in the ECSK field equation chapter, and raising an index.

Bd = −
(
δc(aδ

d
b) − gabg

dc
)
δgab:c

δgS�ϕ = δgS�ϕ1 + δgS�ϕ2 (6.42)

δgS�ϕ1 =

ˆ

Ω

η1
2
ξ∇̃d

(
ϕ2
)
δc(aδ

d
b)δg

ab
:c

√
−gd4x (6.43)

δgS�ϕ2 = −
ˆ

Ω

η1
2
ξ∇̃d

(
ϕ2
)
gabg

dcδgab:c
√
−gd4x (6.44)

We will look at δS�ϕ1 in equation (6.43) first. This term ends up producing a boundary

term and a symmetrized double covariant derivative term. We use Stokes’ theorem to get

the boundary term. It is interesting to note that this seemingly tangential derivative of the
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variation of the metric term turns into something that contributes to the field equations,

along with a boundary term.

δgS�ϕ1 = δS�ϕ1∂ −
ˆ

Ω

(η1
2
ξ∇̃(a∇̃b)ϕ

2
)
δgab

√
−gd4x (6.45)

δgS�ϕ1∂ =

˛

∂Ω

(η1
2
ξn̂(a∇̃b)ϕ

2
)
δgab

√
γd3y (6.46)

We now look at δS�ϕ2 given by equation (6.44) now. We find yet another boundary term,

and a new piece which contributes to the field equations, the Dalembertian of ϕ2.

δgS�ϕ2 = δS�ϕ2∂ +

ˆ

Ω

(η1
2
ξgab�̃ϕ2

)
δgab

√
−gd4x (6.47)

δgS�ϕ2∂ =

˛

∂Ω

(
−η1

2
ξϵn̂d∇̃d

(
ϕ2
)
gab

)
δgab

√
γd3y (6.48)

Now if we put all these terms back together, we find something suitable to be turned into

a stress energy tensor for ϕ. By using Tab = 2√
−g

δ(
√
−gLM )
δgab

we find the compact form for

δgS [ϕ] along with the ϕ stress energy tensor Tab [ϕ]:

Tab [ϕ] =

[
η1

(
ϕ,aϕ,b −

1

2
gabϕ,cϕ

,c + gabV (ϕ)

)]
(6.49)

+
[
η1ξ
(
2T(a∇̃b)ϕ

2 − gabT
c∇̃cϕ

2
)]

+
[
η1ξϕ

2 (G {}ab + Uab)
]

+
[
η1ξ
(
gab�̃ϕ2 − ∇̃(a∇̃b)ϕ

2
)]
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δgS =

ˆ

Ω

[
− 1

2κ
(G {}ab + Uab)

]
δgab

√
−gd4x (6.50)

+

ˆ

Ω

[
1

2
Tab [ϕ]

]
δgab

√
−gd4x

+

ˆ

Ω

[
1

2
Tab [ψ]

]
δgab

√
−gd4x

+ δS�ϕ1∂ + δS�ϕ2∂ + δgS∂NMC1 + δgSNMCCB + δgSG + δgST ′

All of the boundary terms in equation (6.50) vanish once we apply δgab
∣∣
∂Ω

= 0. Furthermore,

the stress energy tensor given by equation (6.49) is the same as the stress energy tensor in

GR once torsion is set to zero; specifically the second line in equation (6.49) vanishes. Next,

upon extremizing the action given by equation (6.49), we find our ECSK-NMC field equation

for gab to be:

G {}ab + Uab = κ (Tab [ϕ] + Tab [ψ]) (6.51)

This is very similar to the Einstein-NMC Field equation in GR, but with the addition of

the Hehl gravity tensor too.

6.4.3 Comparison of the ϕ Stress Energy Tensor to Bronnikov

In this section we will compare the ϕ stress energy tensor we derived to that of

Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015). Bronnikov has a different

stress energy tensor than we do, however they are equal when a condition on the torsion

tensor holds. The condition, which we will call S, on the torsion tensor is given by Tabc ≡
2

(N−1)ga[bTc]; in other words the torsion tensor is only determined by its irreducible trace

Qabc piece.

To try and get this closer to Bronnikov we will use the definition of the contorsion tensor

to relate back to the torsion tensor. Bronnikov’s calculation only holds in 4 dimensions,

whereas ours holds in N -dimensions. This is the reason why we have Uab instead of

Bronnikov’s Λab tensor. The condition above will help us simplify U and turn it into

Bronnikov’s Λab. It is important to note that although it is not explicitly stated we can
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see that Bronnikov uses the following definition for the contorsion tensor CB: (CB)abc =

−Tabc− Tbca+ Tcab; the B subscript is to let us distinguish the Bronnikov contorsion tensor

from ours. The lack of the factor of a half in Bronnikov’s definition means that each term

with the Torsion vector T a will have an extra 2 in it in his paper as opposed to ours;

additionally we can see this from his definition of the torsion as (TB)
c
ab = Γc[ab] instead of

T cab = −2Γc[ab] as we have defined it.

To be especially clear the convention which we are using has the torsion tensor defined as

follows: T (X,Y ) = ∇XY −∇YX− [X,Y ]. This is the definition, along with the convention

∇µe
c
ν = Γcbµe

b
ν , which produces the spirit of what we are doing through almost all of these

calculations. The nabla covariant derivative above follows Misner, Thorne, and Wheeler.

Greek indices are components/lists, and latin ones are Penrose abstract indices.

The first thing we will take a look at is the contorsion vector and how it relates to

the torsion vector. Bronnikov defines the torsion covector Ta as Ta = T dda. By taking a

trace of the contorsion tensor on the first and third index, we find a a relation between the

contorsion trace and the torsion vector.

Cdad = Ta

The symmetry of the metric and T abc = −T acb are used to produce the above relation. Next,

recall that the torsion tensor can be decomposed into its SO (p, q) irreducible elements as

follows.

Tabc = Θ(N − 3)

(
1

6 (N − 3)!
Sd1...dN ϵd1...dNabc

)
+ Θ(N − 2)

(
2

(N − 1)
ga[bTc] + qabc

)

Θ(. . . ) is the Heaviside step function; we have included it above because, similarly to the

irreducible elements of the curvature tensor certain pieces of the torsion tensor do not exist

in lower dimensions. Our other reference [2] states that for NMC scalar fields in ECSK only

the torsion trace exists; we will prove this later. Because of that, since the action only has
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torsion vector pieces, that means we can write:

Tabc|S ≡ 2

(N − 1)
ga[bTc]

We evaluate the torsion tensor on the condition S. This then quickly shows our definition

is consistent with the above decomposition, yielding T aba = −Tb. Next we would like to

apply this idea to U ; recall U = −gab
(
CdadC

c
bc − CdacC

c
bd

)
. There are two pieces in U :

CdadC
c
bc, and CdacC

c
bd. The first term we readily find, and the second term appears after

some algebra. Together we find that these terms and U are:

CdadC
c
bc

∣∣∣
S
= TaTb

CdacC
c
bd

∣∣∣
S

=
1

N − 1
TaTb

U|S = −
(
N − 2

N − 1

)
TcT

c

Using these relations and S yield a new form for Tab [ϕ]. This is the form for Tab [ϕ] that

Bronnikov has. Additionally, Bronnikov defines a tensor Λab which we also reproduce; this

tensor is just the spin density tensor evaluated on S: Uab|S = Λab.

Tab [ϕ] =

[
η1

(
ϕ,aϕ,b −

1

2
gabϕ,cϕ

,c + gabV (ϕ)

)]
+

[
η1ξ
(
2T(a∇̃b)ϕ

2 − gabT
c∇̃cϕ

2
)]

+
[
η1ξϕ

2 (G {}ab + Uab)
]

+
[
η1ξ
(
gab�̃ϕ2 − ∇̃(a∇̃b)ϕ

2
)]

Λab =

(
N − 2

N − 1

)
TaTb −

1

2
gab

(
N − 2

N − 1

)
TcT

c (6.52)

Upon choosing our dimension to be 4, N = 4, we reproduce Bronnikov’s (7) & (9). The

factors of 2 are different because of the definiton of the torison tensor. Recall that Cabc is
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equal to Bronnikov’s contorsion but with an extra factor of 2.

Λab|N=4 =
2

3
TaTb − gab

1

3
TcT

c

Our torsion terms differ by a factor of a half because of Bronnokov did not include that

in his definition of the connection; see the bottom of his page 1. Now we move on to the

variation with respect to the contorsion.

6.5 Variation with Respect to Cabc

To vary with respect to the contorsion Cabc we start again by looking at our prepared

action given by equation (6.26). Using what we know from before, we find that two terms

vanish outright: R {}, and LMψ because they do not depend at all on the contorsion tensor.

The variation with respect to the contorsion tensor of SGHY and the other action pieces will

have a C in them at the end to denote variation of the contorsion tensor just like the 1 at

the end denoted variation with respect to the metric. The contorsion variation of S is then:

δCS =

ˆ

Ω

[
− 1

2κ
(δCU)

]√
−gd4x

+

ˆ

Ω

δCLMϕ
√
−gd4x

+ δCSGHY + δCS∂NMC + δCSEHCB + δCSNMCCB

δCK =
(
n̂aγ

bc
)
δCabc

δCU =
(
gbdC c

ad

)
δCabc

C c
ab = −2

(
Cc[ab] + δc[aC

f
b]f

)
, C c

ab = T cab + 2δc[aT
f
b]f

Where the boundary terms are again given by:

δCSEHCB =

˛

∂Ω

(
− ϵ

κ
gadn̂

[dγb]c
)
δCabc

√
γd3y
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δCSGHY =

˛

∂Ω

( ϵ
κ
gadn̂

[dγb]c
)
δCabc

√
γd3y

δCS∂NMC =

˛

∂Ω

(
−ϵη1ξϕ2gbdn̂[aγ c

d]

)
δCabc

√
γd3y

δCSNMCCB =

˛

∂Ω

(
ϵη1ξϕ

2gbdn̂[aγ
c
d]

)
δCabc

√
γd3y

All the boundary terms vanish; the δCSGHY term and the δCSEHCB term cancel; the term

δCS∂NMC cancels with the term δCSNMCCB. This is interesting in its own right because we

didn’t ever need to impose δCabc|∂Ω = 0. Now we just need what the contorsion variation

of U and LMϕ are. We already know that the variation of U is given by a combination with

the Cartan tensor: δCU =
(
gbdC c

ad

)
δCabc. The variation of LMϕ is slightly longer. For now

the action simplifies to the following form.

δCS =

ˆ

Ω

[
− 1

2κ

(
gbdC c

ad

)
δCabc

]√
−gd4x

+

ˆ

Ω

δCLMϕ
√
−gd4x

C c
ab = −2

(
Cc[ab] + δc[aC

f
b]f

)
= T cab − 2δc[aTb]

Our next course of action is to vary LMϕ. Since the contorsion tensor is skew in the first

2 indices, i.e. Ccad = Cacd we obtain some skew brackets in our equation above. Thus we

arrive an our δLMϕ equation.

δCLMϕ =
η1
2
ξgbd

(
ϕ2C c

ad + 2δc[a∇̃d]

(
ϕ2
))
δCabc
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Thus, all together, this gives us:

δCS =

ˆ

Ω

[
− 1

2κ

(
gbdC c

ad

)]
δCabc

√
−gd4x

+

ˆ

Ω

(η1
2
ξgbd

(
ϕ2C c

ad + 2δc[a∇̃d]

(
ϕ2
)))

δCabc
√
−gd4x

The bottom piece in the equation here is the part which corresponds to the spin density since

it was generated by LMϕ. Recall that the spin density is defined by equation C bc
a −s bc

a = 0.

Originally we had this relation given by Sa c
b = −2 δLM

δCb
ca

, but it is modified here to Sa c
b =

2 δLM

δCb
ca

to make the above equation hold. This arises from the negative in front of the Ricci

scalar. This gives us our spin density and action variation as:

δCS =

ˆ

Ω

[
− 1

2κ

(
gbdC c

ad

)]
δCabc

√
−gd4x (6.53)

+

ˆ

Ω

[
1

2
gbdscad

]
δCabc

√
−gd4x

scad = η1ξ
(
ϕ2C c

ad + 2δc[a∇̃d]

(
ϕ2
))

(6.54)

To be specific we say scad = scad [ϕ] and scad [ψ] = 0; this mirrors our notation from earlier

for example, in equation (6.35). Now we can extremize the action to find our field equation.

C c
ad = κscad (6.55)

Next we can examine how this corresponds to Bronnikov’s Ta equation in the limit when we

apply the condition S.

6.5.1 Comparison of the Spin Stress Energy Tensor to Bronnikov

Our goal in this section is to reproduce what Bronnikov has in his paper. It is also here

we will show that only the trace Qabc piece of the torsion tensor is non-vanishing for NMC

scalar fields in ECSK. We will prove that the d and q pieces of the torsion tensor vanish
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for NMC fields. To do this we will use the field equations and the definition of the Cartan

tensor. We now find the SO (p, q) irreducible elements of these two tensors because the field

equation for them will give us insight into what is really going on.

Theorem: For a NMC scalar field subject to the second ECSK field equation (6.55),

the only non-zero irreducible element of the torsion tensor is the trace piece of the torsion

tensor, the Q piece. This piece is in turn given by the formula in N−dimensions:

Ta = −2

(
N − 1

N − 2

)
ξΨϕϕ,a

Ψ =
κ(

1
η1

− κξϕ2
)

Proof : We begin by getting the irreducible elements of the Cartan and Spin density tensors

respectively from the following definitions. The Cartan tensor definition (in terms of torsion),

and the spin density tensor are repeated here with all indices lowered.

C c
ab = T cab + 2δc[aT

f
b]f

scab = η1ξ
(
Ccabϕ

2 + 2gc[a∇̃b]ϕ
2
)

First we have the totally skew pieces given by the d element.

C[cab] = d[cab]

s[cab] = η1ξϕ
2d[cab]

Next we have the trace pieces given by the Q element.

Ccab|S = −2

(
N − 2

N − 1

)
gc[aTb]

scab|S = 2η1ξ

(
−
(
N − 2

N − 1

)
gc[aTb]ϕ

2 + gc[a∇̃b]ϕ
2

)
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We finally have the leftover pieces q, which are marked by an evaluation on q symbol.

Ccab|q = qc[ab]

scab|q = η1ξϕ
2qc[ab]

Now we can apply the field equation Cabc = κsabc to each different part and prove that

only the Q piece is non-zero. When we apply the field equation to the d piece, we find

that T[abc] ≡ 0 from 1
2

(
1− κη1ξϕ

2
)
T[abc] = 0; note that

(
1− κη1ξϕ

2
)

cannot vanish because

oherwise Ψ would diverge. Similarly for the q piece, once we apply the field equation we find

that qa[bc] = 0 from 1
2

(
1− κη1ξϕ

2
)
qa[bc] = 0. The only piece that remains is the Ta piece

which corresponds to the Q sector. Now we move onto getting the simplified field equation

for Ta. Like before once we apply the field equations the prior relations to the left hand side

of our field equation gives us:

gc[aTb] = −
(
N − 1

N − 2

)
Ψξgc[a∇̃b]ϕ

2

Ψ =
κ(

1
η1

− κξϕ2
)

This is non zero, and upon taking a trace, we find that the torsion vector is related to the

scalar field ϕ by the following equation.

Ta = −2

(
N − 1

N − 2

)
ξΨϕϕ,a

and thus we are done with our proof ■.

To compare with Bronnokov’s form, we choose η1 = ±1 and N = 4. Doing so reduced

our form of the torsion equation in our proof to a simplier form. Tb|N=4,η1=±1 = −3ξΨϕϕ,b,

and Ψ|η1=±1 = κ
(η1−κξϕ2) . Note that the factor of 2 is here again. To convert back to

Bronnikov, take Ta → −2Ta and we reproduce his results. This is again because of the

difference in the definition of the torsion; we had minus 2 of what he has. Finally , we can
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reproduce full torsion tensor using just the trace with our trace only formula of the torsion:

Tabc ≡ 1
(N−1) (gabTc − gacTb).

T abc =
−4

(N − 2)
ξΨϕδa[bϕ,c]

We have now reproduced all of Bronnikov’s field equations, but in N -dimensions with the

extermal action principal gab, ψ, ϕ, and Cabc. Additionally we only needed to prescribe the

following three things vanish on the boundary: δϕ|∂Ω = 0,δψ|∂Ω = 0,δgab
∣∣
∂Ω

= 0.

6.6 Classifying the Bronnikov Solution

Using the classification tools we developed in the Rank 3 Tensors and Rank 4 Tensors

sections, we classify Bronnikov’s and Galiakhmetov’s solution (Bronnikov & Galiakhmetov,

2015). We examine their ECSK-NMC scalar field solution where the fields of interest are:

ϕ, ψ, gab, and Cabc. The field equations for the fields gab, Cabc, ϕ, and ψ are:

G {}ab + Uab = κ (Tab [ϕ] + Tab [ψ])

Cabc = κsabc

�̃ϕ− ξRϕ+
dV (ϕ)

dϕ
= 0

�̃ψ +
dW (ψ)

dψ
= 0

The solution presented has coordinates: (t, u, θ, ϕ). The metric gab is presented with

signature [+,−,−,−] in the following general static, spherically symmetric form:

gab = A (u) dt⊗ dt− 1

A (u)
du⊗ du− r2 (u)

(
dθ ⊗ dθ + sin2 (θ) dϕ⊗ dϕ

)
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They make the coordinate transformation x = u
b , with b ∈ R−{0}. This puts the metric in

the following form:

gab = A (x) dt⊗ dt− b2

A (x)
dx⊗ dx− r2 (x)

(
dθ ⊗ dθ + sin2 (θ) dϕ⊗ dϕ

)
We then have the exact solution given by:

A (x) =
(
x2 + 1

) [
B0 − 2

arctan (x)

x
− arctan2 (x)

]

r (x) = b2
√
x2 + 1

ϕ (x) =
(
κξ
(
x2 + 1

))− 1
2

ψ (x) = ψ0 ± 2x
(
κ
(
x2 + 1

))− 1
2 , ψ0 ∈ R

W (x) = W0 +
(
8κb2

(
x2 + 1

)2)−1 [
8B0x

2
(
2 + x2

)
+ 25x2

(
5 + 4x2

)
− 2

(
75x4 + 125x2 + 32

) arctan (x)
x

−
(
75x4 + 150x2 + 67

)
arctan2 x

]

V (x) =
(
8κb2

(
x2 + 1

)2)−1 [
−8κb2W0

+ −8B0

(
4x4 + 6x2 + 1

)
− 100x4 − 101x2 + 16

+ 2
(
99x4 + 149x2 + 32

) arctan (x)
x

+
(
99x4 + 182x2 + 75

)
arctan2 x

]
Where Tab [ϕ], and Tab [ψ] are given respectively by equations (6.11), and (6.10) evaluated

on the solution above. We take C1 = 0 following Bronnikov’s reasoning that A (x) should

be regular everywhere. Additionally we take η1 = η2 = 1 to specify that both scalar fields
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are canonical and non-phantom. Evaluating the torsion tensor trace on the solution gives:

Ta = − 3

2 (x2 + 1)x
dx (6.56)

We can now classify the solution using our tools from before.

6.6.1 Torsion Tensor Classification

We take equation (6.56), and build the torsion tensor out of it using the trace piece of

the torsion tensor from equation (3.44) in chapter 3.

Qabc =
2

(N − 1)
ga[bTc]

Then upon applying our algorithm we recieve:

[Θ = (1, 1) ,Ξ = (−) ,Ω = (−)] (6.57)

as our classification. We expect that the spinors Ξ, and Ω would be zero because the axial

part (Ξ) and leftovers piece (Ω) vanish in our derivation. Additionally we find that the

spinor Θ which corresponds to the trace part of the torsion is of general type. We look to

see if there are any exceptional points on which Θ decomposes further. To do so we examine

the O (Omicron) invariant. In this case it is given by:

O =
1

4

arctan2 (x)x−B0x+ 2arctan (x)

x3b2 (x2 + 1)

The only way O can be zero is if x is the root O. Because of the parameters B0, b and the

transcendental nature of the equation it is difficult to find x for which O (x) = 0. However,

if b = 1, and 2.35 ≳ B0 > 2 there exist two roots, and thus there 2 exceptional points where

the character of Θ degenerates to be of type |(1, 0)|2; we note here that the number 2.35 is

not an upper bound on the existence of roots, there exist higher numbers, but the bound

is close to this number. Additionally, this may change for other values of b, but should not
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change the character of the roots much since it appears in the denominator.

6.6.2 Curvature Tensor Classification

Now we present the classification of the ECSK curvature tensor. We see that Ψ =

D implies Petrov type D. That Φ = {[11, 11] OR [(11, 11)], D, [1, 1(11)]} implies the

structural reducibility type for the Phi spinor, the Plebanski type, and the Segre type. That

Λ = ”Indeterminant” means that the algorithm was unable to tell if Lambda is positive

negative or zero. That Ж = {(−), O, [(1, 111)]} means that the structural reducibility type

is empty, the Plebanski type is zero, and the Segre type is trivial. That Ю = [−] means that

the Yu spinor is zero. Finally, that ℵ = 0 means that the aleph spinor is zero everywhere.

[
Ψ = D,Φ = {[11, 11] OR [(11, 11)], D, [1, 1(11)]},Λ = ”Indeterminant”

]
(6.58)

[Ж = {(−) , O, [(1, 111)]} ,Ю = [−],ℵ = 0] (6.59)

Equation (6.59) is interesting because it implies that Labcd, labcd, and kabcd are all zero.

Thus, the torsion here only contributes to the Fsectors as defined in the Rank 4 Tensors

section. Recall that the F type tensors have tableaux:

1 3

2 4

which decomposes into the three other F sectors: F, F , and f under SO (p, q).

We will first examine if there is any way for the Petrov type to degenerate further at

exceptional points. Petrov type D is determined by the the covariant Ψ being non-zero and

the covariant R being equal to zero. According to Penrose and Rindler (Penrose & Rindler,

1987b), the only ways a general type D spacetime can degenerate further is either into type

N , or type O. Recall that for a type N spacetime that the covariant Ψ is non-zero and the

covariant Q is zero; similarly for a type O spacetime the covariant Ψ must be zero. Upon
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calculating these co(in)variants we find that

Ψ0 = −1

3
Ψ2 = Ψ4 =

1

2

arctan (x)x2 + arctan (x)− x

x (x2 + 1)

Ψ1 = Ψ3 = 0

Q0 = −1

3
Q2 = Q4 = −1

6

(
arctan (x)x2 + arctan (x)− x

)2
x6 (x2 + 1)2

Q1 = Q3 = 0

Thus, Q = 0 if and only if Ψ = 0, where Q, Ψ signify Qa, Ψa for all a. This tells us that

the only way that this solution can degenerate in Petrov type is straight from type D to

type O. There is no way for the solution to degenerate to a type N spacetime.

The structural reduciblity algorithm for Φ tells us that it is either type (1, 1) (1, 1), or

|(1, 1)|2. The co(in)variants arising from this classification are rather large and complicated

so we do not examine the exceptional points, if any, that could arise.

The Segre classifiation when applied in Maple was unable to determine what Segre

type we are dealing with originally; in equation (6.58) the Segre algorithm originally fails.

However we will show that this solution is type [1, 1 (11)]. We begin by noting that we are

in a Plebanski type D spacetime, and find that the algorithm was unable to determine the

sign of the H invariant defined in equation 4.62. The H invariant once simplified shows us

that each term is squared and can therefore only be positive; it has several terms so we omit

writing it here.

The next thing we calculate in the case of Plebanski type D and H > 0 is the covariant

ka defined in equation 4.63. In a similar fashion to H, we find every term except the leading

coefficient is squared. The leading coefficient is negative and thus we determine the Segre

type to be [1, 1 (11)] per the algorithm of Zakhary and Carminati (Zakhary & Carminati,

2004).

Finally we examine the classification of Λ. Here the rank 0 spinor Λ is given by:
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Λ =
1

24

(
−24x5 − 6x3 − 9x

)
arctan2 (x)

x3 (x2 + 1)
(6.60)

+
1

24

(
−48x4 + 4x2 − 38

)
arctan (x)

x3 (x2 + 1)

+
1

24

24B0x
5 + (6B0 − 24)x3 + (9B0 + 20)x

x3 (x2 + 1)

Upon analyzing Λ we again find that for 2.35 ≳ B0 > 2 that there are 2 roots. We can

classify this further however. First for B0 ≤ 2, we have that Λ (x) < 0 ∀x. For B0 ≥ 2.5 we

can see that Λ (x) > 0 ∀x. In the region 2.5 ≥ B0 ≳ 2.35 it is difficult to tell if Λ is always

positive or if it changes based on the value of x. To clarify on the region we also determined

that for 2.35 ≳ B0 > 2 there are 3 regions distinguished by the roots of equation (6.60).

Let the first root be called x−1, and the second root be called x1, where x−1 < x1. Then

the regions can be defined as follows: for x < x−1 we know Λ (x) < 0; for x−1 < x < x1 we

know Λ (x) > 0; finally for x > x1 we know Λ (x) < 0. This again only occurs in the region

2.35 ≳ B0 > 2.

One more interesting thing about the classification of this solution is that the spinors:

Ж(AB)(A
′
B

′
), Ю(AB), and ℵ are all zero even with non-vanishing torsion. With this our

classification is complete.
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CHAPTER 7

ECSK-DIRAC THEORY

Much of the background here was expressed well in reference (Poplawski, 2013); it is

precisely those ideas that helped cement so much of this chapter. The clarity of the ideas

in reference (Poplawski, 2013) led to the development of code which upon completion of

this dissertation will hopefully be added to USU’s “DifferentialGeometry” package for Dirac

spinors. Reference (Poplawski, 2013) has been invaluable in many aspects and ideas beyond

just this Dirac spinor section as well. Wheeler (J. Wheeler, 2021) has also been incredibly

useful in solidifying technical points relating to Dirac spinors. We begin the chapter with the

section on Dirac spinors, gamma matrices, and how Lorentz transformations act on Dirac

spinors. Next we examine derivatives of spinors and the Dirac spinor connection, or the

Fock-Ivaneko coefficients. Following that we have a short section on the curvature spinor.

The last three sections focus on:

1) the Dirac Lagrangian and field equations with torsion,

2) the irreducible sectors in ECSK theory generated by a Dirac spinor, and

3) the classification of a solution presented by Platania.

7.1 Dirac Spinors, Gamma Matrices, and Lorentz Transformations on Spinors

In this section we will examine Dirac spinors and the gamma matrices. First, we

will define what a Dirac spinor ψ (or if we include the Dirac indices ψÅ) is in terms of

a complex mapping. We will express this mapping as a column vector and then proceed

to define what the derivative of a Dirac spinor, ∂µψ, is. Next we will present the gamma

matrices γµ as a set of complex linear transformations which satisfy a Clifford algebra

relation. The Clifford algebra relation relates the gamma matrices back to the spacetime

Minkowski metric in special relativity. This relation can be upgraded in a sense to include

gravity by including orthonormal frame fields e µ
a which can be combined with the gamma
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matrices, to make the spacetime dependent gamma matrices γa = e µ
a γµ. To end this section

we examine how Lorentz transformations on spinors are carried out in this new projective

unitary representation of the Lorentz group. A Lorentz transformation is then applied to

the gamma matrices so we can see how they transform.

7.1.1 The Dirac spinor ψ, ψ and their derivatives

We begin by looking at the Dirac spinor ψ. Notationally we will flip between ψ and ψÅ

which are equivalent; here the superscript A indicates a column vector. Usually this index

is suppressed in the literature, but we believe that including it can help elucidate concepts

in a few areas like transformations of spinors. Similarly, we will also represent ψ by ψÅ,

which will indicate a row vector. We think of ψ as the mapping:

ψ :M → C4

The spinor ψ viewed in this way can be written as a column vector. Note that ψ is given

in terms of the hermitian conjugate of ψ multiplied by γ0 i.e., ψ = ψ†γ0 which will be

elaborated on later in more detail; this ensures that it transforms the correct way under

Lorentz transformations. ψ viewed in this way can be written as a row vector. The 2 × 2

identity matrix is denoted I2.

ψ = ψ†γ0

γ0 =

 0 I2

I2 0


Let α, β, γ, δ ∈ C, and xα be coordinates on M , then ψ is given by the following column

vector. Similarly, we can also write ψ as a row vector.

ψ =



α (xα)

β (xα)

γ (xα)

δ (xα)


, ψ =

[
γ∗ (xα) δ∗ (xα) α∗ (xα) β∗ (xα)

]
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If we explicitly include indices: ψ becomes ψÅ, and ψ becomes ψÅ. The Å index is an

abstract Dirac spinor index. We also write the derivative of ψ: ∂µψ, and the derivative of

ψ: ∂µψ as partials onto the column and row vectors.

∂µψ =



∂µα

∂µβ

∂µγ

∂µδ


, ∂µψ =

[
∂µγ ∂µδ ∂µα ∂µβ

]

This will be the basic notation we use when working with Dirac spinors. We will also use

ηµν to raise and lower Greek indices.

7.1.2 The gamma matrices γµ

To work further with spinors we need to define the gamma matrices. These allow us to

relate special relativity to our spinors, and perform Lorentz transformations. The gamma

matrices in our case are four (indexed by µ) linear transformations on C4. The following

mapping gives them.

γµ : C4 → C4

We could write these as a list of linear transformations on the spinor space represented by

γ Å
µ B̊

. Here we can view the Å, B̊ indices as explicitly creating this linear transformation.

Furthermore, the gamma matrices satisfy the following relation:

{γµ, γν} = γµγν + γνγµ = 2ηµνI4 (7.1)

γ Å
µ C̊

γ C̊
ν B̊

+ γ Å
ν C̊

γ C̊
µ B̊

= 2ηµνδ
Å
B̊

Below in equation (7.1) we have also included explicitly the Å, B̊ indices for further clarity.

The set of gammas with {, } as the multiplication (anti-commutator i.e., {a, b} = ab+ba)

generate a Clifford Algebra which is used to define the spinor representation of the Lorentz

group. The Dirac matrices are not uniquely determined by their anti-commutation relations.
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It is possible to find other, equivalent representations. However, Pauli showed that if two sets

of matrices γµ and γ′µ satisfy the anti-commutation relations and the Hermiticity relations

of the gamma matrices as shown above, then there is a unitary transformation U on C4 such

that the following relation holds.

γ′µ = U−1γµU

As we can see in equation (7.1) above, ηµν is the Minkowski metric, relates spacetime to the

gamma matrices. The gamma matrices are constructed from the Pauli matrices as follows:

γ0 =

 0 I2

I2 0

 , γj =

 0 −σj

σj 0

 , j ∈ {1, 2, 3} (7.2)

This is often called the Weyl or Chiral representation of the gamma matrices. The σi’s

above represent the Pauli matrices in quantum mechanics. The Pauli matrices are repeated

below for clarity.

σ1 =

 0 1

1 0

 , σ2 =
 0 −i

i 0

 , σ3 =
 1 0

0 −1

 (7.3)

Additionally, there are some valuable relations of the gamma matrices to each other. These

relations are derived from the structure of the Pauli matrices. The first few relations are

given by the hermitian adjoints, †, of the gamma matrices. The next several relations

give us how contractions of the gamma matrices act, and simplify to much simpler objects.

The second to last relation gives us how three gamma matrices act on each other to give

back ηµν ’s. The last relations show what the anti commutator & commutator of the skew

symmetrized product of the gamma matrices becomes.

γ†0 = γ0, γ
†
j = −γj , γ†0 = γ−1

0 , γ†j = γ−1
j

γµγµ = 4I4, γ
µγνγλγργµ = −2γργλγν (7.4)



160

γµγνγµ = −2γν , γµγνγλγµ = 4ηνλI4 (7.5)

γµγνγλ = γ[µγνγλ] + ηµνγλ + ηνλγµ − ηµλγν (7.6){
γµ, γ[νγρ]

}
= 2γ[µγνγρ] (7.7)

[
γµ, γ[νγρ]

]
= 4ηµ[νγρ] (7.8)

Moving forward, when we do relativistic quantum mechanics, we need an additional matrix

to correctly reflect the addition of time t into the geometry; think Lorentzian boosts. This

additional matrix, which we will call σ0, is the 2× 2 identity matrix. Recall that this same

idea leads to the Infeld-Van der Waerden symbols used in Stewart (Stewart, 1993). We get

something that makes more intuitive sense if we write γ0 in terms of σ0 as well.

σ0 =

 1 0

0 1

 , γ0 =

 0 σ0

σ0 0


7.1.3 The Infeld-Van Der Waerden symbols, and the two-component spinor/Dirac

spinor correspondence

Now we have each of the γ’s written in terms of the σ’s. Each of the sigmas: σ0, . . . , σ3

correspond to σt, . . . , σz etc. On a bit of a side note which will be explored later, the set

of these four σ’s can be used to create a useful correspondence to two-component spinors.

These objects are called the Infeld-Van Der Waerden symbols σ AA′
a (the capital indices label

the entries of the matrix like below) where the line element is given as the determinant of a

combination of the gamma matrices.

dxασα = dtσt + dxσx + dyσy + dzσz =

 dt+ dz dx− idy

dx+ idy dt− dz


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det (dxασα) = (dt+ dz) (dt− dz)− (dx− idy) (dx+ idy)

ds2 = dt2 − dx2 − dy2 − dz2

More generally on a manifold we use an orthonormal frame
{
eaµ, . . .

}
in 4D. This is different

than usual, but let e µ
a be given as a list indexed by a of 1-forms indexed by µ; here we have

swapped our usual notation to make a point that we can do this in any orthonormal frame;

the Θ’s form an orthonormal dual basis. Then we have the same relation as above, but in

an orthonormal frame.

eaµ =

[
Θ0 Θ1 Θ2 Θ3

]

eaµσ
AA′
a =

 Θ0 +Θ3 Θ1 − iΘ2

Θ1 + iΘ2 Θ0 −Θ3



det
(
e µ
a σ

AA′
µ

)
= (Θ0 +Θ3)⊗ (Θ0 −Θ3)− (Θ1 − iΘ2)⊗ (Θ1 + iΘ2)

gab = Θ0 ⊗Θ0 −Θ1 ⊗Θ1 −Θ2 ⊗Θ2 −Θ3 ⊗Θ3

Next we introduce a useful quantity, γ5. γ5 allows us to make a projection from our Dirac

spinors to 2-component spinors; we will show how in a moment. First γ5 is defined in terms

of the other gamma matrices, see equation (7.9); the matrix representation of γ5 is given

below as well.

γ5 =
i

24
eµνλργ

µγνγλγρ = −iγ0γ1γ2γ3 (7.9)

γ5
.
=

 I2 0

0 −I2


γ5 has some unique properties in terms of the anti-commutator, and the derivative Da. The

first is that the anti-commutator of γ5 with any of the other gamma matrices is zero. The

next is that the square of γ5 is the identity matrix. The penultimate one can be derived

from the anti-commutator relation and lets us move γ5 through the other γ’s. The last is
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that the derivative of γ5 is zero.

{
γµ, γ5

}
= 0,

(
γ5
)2

= I4, γµγ5 = −γ5γµ, Daγ
5 = 0

We can now define projections to make 2 component spinors by using γ5. These projections

ψL, and ψR project us to 2-component spinors of left and likewise right chirality (handedness).

ψL =
I4 − γ5

2
ψ, ψR =

I4 + γ5

2
(7.10)

Now we move on to the spacetime gamma matrices and finding a representation of the

Lorentz group on spinors.

7.1.4 Spacetime gamma matrices and a representation of the Lorentz group on

Dirac spinors

So far, we have not included gravity in our formalism for Dirac spinors. We can begin

to include gravity with a simple addition to the gamma matrices: eaµ. By using the vielbein

to convert our orthonormal Greek indices to abstract Latin indices, we can couple gravity

in easily.

γa = e µ
a γµ (7.11)

As a reminder, we know the vielbein satisfies the orthonormality relation ηµνe
µ
a e ν

b = gab,

where gab is the metric on spacetime. γa are the spacetime dependent gamma matrices,

and now satisfy the new Clifford algebra relation, where the metric g replaces η. This also

changes the matrix representation for γa:

γaγb + γbγa = 2gabI4 (7.12)

We get the spacetime-Clifford algebra relation from writing γµ in terms of γa in equation

(7.1). Next we need to look at how spinors transform under Lorentz transformations. We



163

really want to know how the Å index of the spinor transforms. It would be something like:

ψÅ → LÅ
B̊
ψB̊. But how do we determine LÅ

B̊
? This question is asking about the spinor

representation of the Lorentz group, which we need to determine. We know that infinitesimal

Lorentz transformations are given by ωµν = δµν + ϵλµν . ϵ is some small parameter, which

we would say for good measure is three orders of magnitude smaller than the smallest value

in the relevant equation being transformed. Here we use ωµν to symbolize only infinitesimal

Lorentz transformations. These ωµν objects form a one parameter subgroup of the Lorentz

group when Taylor expanded to first order in the parameter ϵ.

A side note on Lorentz generators:

The λ’s are the generators of the Lorentz group, and satisfy λµν = −λνµ; note that the

standard matrix representation of the generators is written from λµν not λµν . As a clarifying

example we write a t-x boost generator λµν as the 4× 4 matrix below.

λµν
.
=



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


We write the λ generators in this form because it forms a basis. This basis is a basis for

the Lorentz Lie algebra using antisymmetric matrices for the vector space, and the matrix

commutator as the algebra structure.

To provide clarity, we could technically give the λ’s an abstract Lie algebra index a like

λaµ ν , this is the most transparent notation for what these objects actually are. However,

if we write this a index as [bc], an anti-symmetric pair, we are able to write some formulas

which also give intuitive understanding to our group; pedagogically, we can think of the pair

as labeling rotations and boosts in some orthonormal frame, i.e., “[tx]” labels one element

etc. The first formula is given by:

λ[ab]µν = ηaµηbν − ηbµηaν
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If we lower in index, we find that the above formula reproduces the 4×4 matrix representation

of the generators.

λ[12]µν
.
=



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


The Lie bracket of the generators (with proper µ, ν indices on the λ’s of the right-hand side)

is given by:

[
λ[ab], λ[cd]

]
=

(
λdbηac + λadηbc + λbcηad + λcaηbd

)
(7.13)

Any representation of the Lorentz algebra must satisfy (7.13). We can use this idea to

determine a representation of the Lorentz group for our Dirac spinors. If we consider the

commutator of the gamma matrices, call it Sµν , it turns out we can find a representation

of the Lorentz group on our Dirac spinors. This Sµν object is a set of 6 independent linear

transformations on C4. We have also included what this looks like with Dirac indices.

Sµν =
1

4
[γµ, γν ] (7.14)

S Å
µν B̊

=
1

4

(
γ Å
µ C̊

γ C̊
ν B̊

− γ Å
ν C̊

γ C̊
µ B̊

)
Using the anti-commutator, we can simplify this:

Sµν =
1

2
(γµγν − ηµνI4)

To show that Sµν defines a representation of the Lorentz group, we need to show that[
Sµν , Sαβ

]
satisfies the same bracket relation as the λ’s do. Before we show this, it is

advantageous to examine [Sµν , γα].

[Sµν , γα] =
1

2
(γµηνα − ηαµγν)



165

With this identity, we can now show that Sµν satisfies the Lorentz generator relations, and

is a spinor representation of the Lorentz group. It is shown below for convenience and can

be derived from the definition of Sµν and the identity above.

[
Sµν , Sαβ

]
= Sµβηνα + Sβνηαµ + Sαµηνβ + Sναηβµ

Then given any Lorentz generator (any linear combination of the λµν ’s) we can define the

representative S (λ) or LÅ
B̊

on C4 by equation (7.15).

l = S (λ) =
1

2
λµνSµν

lÅ
B̊
=

1

2
λµνS Å

µν B̊
(7.15)

Note that equation (7.15) cannot be inverted to solve for Sµν because Sµν is defined by

a commutator and the trace of a commutator is zero. Now that we know what l is, we

can get the corresponding Lorentz group transformation which acts on spinors from our

infinitesimal one. To do so, we take the matrix exponential elt, with t the parameter, of the

generator l; we will write this Lorentz group transformation on spinors as LÅ
B̊

= e

(
lÅ

B̊
t
)
.

We have a projective spinor representation of both the Lorentz generators and the Lorentz

group. These l constitute the generators of the Lorentz group in terms of the group’s spinor

representation on C4.

We can use these l’s to define infinitesimal Lorentz transformations on spinors, call

them L, by: LÅ
B̊
= δÅ

B̊
+ ϵlÅ

B̊
.

To make an analogy with what we said before, we know that LÅ
B̊

is a one parameter

subgroup of the Lorentz group up to a first order Taylor expansion in ϵ. From all this

information, we can determine how our spinors transform in general under a Lorentz transformation.

The Lorentz group acts on ψ from the left, and ψ as an inverse from the right.

ψ′ → Lψ, ψ
′
= ψL−1 (7.16)
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ψÅ
)′

→ LÅ
B̊
ψB̊,

(
ψÅ
)′
= ψB̊

(
L−1

)B̊
Å

There is some ambuiguity however as to why ψÅ transforms as ψL−1 however. We came

up with ψ = ψ†γ0 because we needed an object which transforms as ψL−1. Initially, we

may have started by guessing that ψ† transforms in this way. It however does not, and

transforms as follows: (
ψ′)† = (Lψ)† = ψ†L†

We know that L† is not necessarily equal to L−1. There are some identities however, which

facilitate how we determine that ψ = ψ†γ0. The first of which is the relation which expresses

hermitian adjoints in terms of the original gamma matrix and γ0’s.

(γµ)† = γ0γµγ0

This can be proven easily with some component manipulation due to the properties of the

Pauli matrices; see also Poplawski pg. 111 for comments (Poplawski, 2013). With that

identity we can now prove our next relation, which shows how γ0 can turn L† into L−1, see

equation (7.17) below.

L†γ0 = γ0L−1 (7.17)

The relation above can be realized by applying the γ0 formula and noting that L−1 =

I4 − ϵ18λ
µν (γµγν − γνγµ); we work out the transformation using an infinitesimal Lorentz

transformation. With all this, we can prove that ψ transforms with L−1. When we let
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ψ′ → Lψ, we find:

ψ
′

=
(
ψ†γ0

)′
=

(
ψ′)† (γ0)′

= (Lψ)† γ0

= ψ†L†γ0

= ψ†γ0L−1

= ψL−1

Now we can examine how the gamma matrices transform under a Lorentz transformation.

There are two interpretations or viewpoints we can take regarding how the gamma matrices

transform; one is they do not transform, and the other is that they do. The transformation

properties of the gamma matrices are tricky to dissect because they have two spinor indices

and one spacetime/orthonormal index. We will examine how to interpret this by going

through an example in quantum mechanics.

Recall states |ψ⟩ in quantum mechanics and the Pauli matrices σi. We transform the

states and not the matrix operators themselves; there is no x̂′, only x̂. Here is the example,

we take a state |ψ⟩ and say we want to calculate the expected angular momentum in the

x-direction for this state; this is given by ⟨ψ| Ĵx |ψ⟩; Ĵx is the x-direction angular momentum

operator. If we rotate the state around the z-axis first we find that although we rotated the

states |ψ⟩, that we could interpret this transformation as the operator transforming and the

states not transforming, as in line two below.

〈
ψ′∣∣ Jx ∣∣ψ′〉 = ⟨ψ| eiσz

θ
2Jxe

−iσz θ
2 |ψ⟩

= ⟨ψ| (cos (θ) Jx − sin (θ) Jy) |ψ⟩

= cos (θ) ⟨Jx⟩ − sin (θ) ⟨Jy⟩

Note that ⟨ψ| Jx |ψ⟩ = ⟨Jx⟩. “It’s as if we left our particle alone and rotated the Pauli
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matrices. But note that if we apply the rotation to |ψ⟩, then we don’t touch the matrices.

Also, we never say that we transformed the matrices. We just transformed the state, and

then found out that we could leave it alone and rotate the matrices. The situation for a

Dirac spinor is similar” (Javier, 2015). This example can also be found in Sakurai (Sakurai

& Napolitano, 2021) on pg. In analogue to the classical quantum mechanics approach, we

similarly take the approach that the gamma matrices “don’t transform” we only transform

the “states” (spinors) like before.

When we write ψγµψ, we would like for it to be a vector. Then it must transform as a

vector as in equation (7.18) below.

(
ψγµψ

)′
= Λµνψγ

νψ (7.18)

Likewise, if we perform a Lorentz transformation in analogue to classical quantum mechanics,

we only transform the states (the gamma matrices can be interpreted as an operator in this

sense.” This leads to the relation in equation (7.19).

˜(ψγµψ) = ψ̃γµψ̃ = ψL−1γµLψ (7.19)

To have consistency in how we transform, we require that
(
ψγµψ

)′
= ˜(ψγµψ), which results

in relation (7.20).

Λµνγ
ν = L−1γµL (7.20)

Like before, we can find similarities to the “States do not transform, but operators do”

interpretation by moving the L’s to the other side of the equation, resulting in equation

(7.21). Although this looks like a transformation, it is not because of the lack of primes;

this is important.

ΛµνLγ
νL−1 = γµ (7.21)

We now have all the tools we need to calculate Lorentz transformations of spinors.
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7.2 Derivatives of Dirac Spinors & the Spin Connection

Since we have finished with Dirac spinor algebra, we now move onto Dirac spinor

analysis and examine how derivatives of spinors transform. We will begin with the coordinate

partial derivative, and show how this derivative acting on a spinor fails to transform as a

spinor. Because of the failure of this derivative to transform the way a spinor does, we

introduce the Dirac spinor connection Γa, or ΓÅ
B̊a

. With this object we can define a spinor

covariant derivative which indeed transforms the way a normal spinor does. Furthermore,

we develop a formula for this spin connection in terms of the gamma matrices γµ, the spin

connection ωµνa, and an arbitrary form Aa. What is called the Dirac spinor connection here

is the connection form of the Fock-Ivaneko coefficients. We finish this section with some

notes on how Dirac spinor connections differ if there is torsion present in the spacetime, and

how to break off the torsion-full part of this connection as well.

7.2.1 The Covariant Derivative of a spinor ψ, and a spinor ψ

To begin we examine the derivative of a Dirac spinor. We quickly see that this derivative

does not transform as a spinor.

∂µψ
′ = ∂µ (Lψ) = ∂µLψ + L∂µψ

This is a problem, but we can rectify it with the Dirac spinor covariant derivative. To build

a spinor covariant object, we need a connection on the Dirac spinor bundle. We introduce

this connection as Γa, or ΓÅ
B̊a

. Γa transforms according to the usual connection law given

in equation (7.22). (
Γ′)

a
= LΓaL

−1 + ∂aLL
−1 (7.22)

(
Γ′)A

Ba
= LACΓ

C
Da

(
L−1

)D
B
+ ∂aL

A
C

(
L−1

)C
B

This is exactly the way any connection transforms under a group transformation (in our

case we use the Lorentz group). Recall that this is exactly the same way a connection on

a principal fiber bundle transforms. Following this idea, we can deduce that the covariant
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derivative of a spinor transforms the same way a spinor would. The ∇ we use here is the ∇

of Wald. (Wald, 1984)

∇aψ
′ = ∂aψ

′ −
(
Γ′)

a
ψ′

= (∂aLψ + L∂aψ)−
(
LΓaL

−1 + ∂aLL
−1
)
(Lψ)

= ∂aLψ + L∂aψ − LΓaψ − ∂aLψ

= L (∂aψ − Γaψ)

= L∇aψ

∇aψ = ∂aψ − Γaψ (7.23)

We can also examine ψ′ which we can derive the transformation from by the fact that ψψ

must be a scalar. We begin by assuming the following form for how ψ transforms.

∇aψ
′
= ∂aψ

′ − ψ
′
Γ̃′
a

Γ̃a is a new connection to be determined in terms of Γa. After shoving this into ∇a

(
ψ
′
ψ′
)

and solving for Γ̃′
a, we find that:

Γ̃′
a = −

(
Γ′)

a

Which tells us about the covariant derivative of the bar spinor in terms of the connection

on the non-bar spinor.:

∇aψ = ∂aψ + ψΓa (7.24)

7.3 The Gamma Matrices and the Fock-Ivaneko Coefficients

Next we examine the covariant derivative of the gamma matrices. This becomes more

interesting than before because of the addition of the orthonormal index µ. Taking the

covariant derivative of the gamma matrices gives the relation in equation (7.25).

∇aγµ =���*
0

∂aγµ − Γaγµ + γµΓa
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∇aγµ = −2 [Γa, γµ] (7.25)

The nabla derivative of Wald does not see the orthonormal indices. Equation (7.25) by itself

gives us no additional information on how to determine what Γa is, nevertheless it is useful

conceptually. To get any more information we need to use the universal covariant derivative

which we will call D; this is the same covariant derivative that Carroll (Carroll, 1997) uses,

and it is different from Wald’s (Wald, 1984); D sees both abstract and orthonormal indices.

Recall that D is defined by leaving the tetrad covariantly constant (Tetrad Postulate).

Dae
b
µ = 0 (7.26)

In the case of ONLY the Dirac spinors ψ and ψ and scalars we know that ∇ and D are the

same because they do not contain any orthonormal indices.

Daψ = ∇aψ, Daψ = ∇aψ

One important result from this is that we can use the spin connection to see how orthonormal

indices vary. We can see the need for this in multiple ways. The first is when we take the D

covariant derivative of the gamma matrices. With this derivative we get the spin connection

contribution ωνµa which in turn causes this whole formula to be zero.

To clarify we have three different connections floating around. These are sections of a

bundle which we label with three different indices, lowercase Latin, Greek, and uppercase

Latin with a circle above: a, µ, Å. The first represents the connection for vector fields

determined by ∇gab = 0. The next is the connection determined by the orthonormal frame

field ∇eaµ = 0. The last is the connection for spinors determined from ∇γ = 0. All of these

connections tell us the same information, but in different parts of the whole fiber bundle.

Daγµ = −ωνµaγν − 2 [Γa, γµ] = 0

Since γµ is written purely in terms of ηµν and Dirac pieces, we can say Daγµ = 0. This



172

small idea originally was incredibly confusing, but what makes it coherent is the fact that

the spinor indices on [γµ]
Å
B̊

get hit along with the orthonormal µ index. The combination of

these both together with their respective connection pieces becomes zero; this can be shown

in maple after making some connections; additionally we can see this from the fact that

the gamma matrices need to be covariantly constant, otherwise the spinors would not be

coupled to spacetime correctly. One other way we can think of this, is it had better be zero

or else we are no longer generally covariant. Moving on, once we multiply this relation by

a γµ from the right we find a relation that gives us Γa in terms of the spin connection and

the gamma matrices.

Daγµγ
µ = 0 = −ωµνaγµγν − 4Γa + γµΓaγ

µ (7.27)

To solve this for Γa we try a solution which is the spin connection term plus some other

piece Aa, or A Å
a B̊

; this is equation (7.28). Applying this assumption to equation (7.27), we

find that Aa must be some form Va times the identity matrix.

Γa = −1

4
ωµνaγ

µγν −Aa (7.28)

Aa = VaI4, Va ∈ T ∗ (M)

Therefore, up to an arbitrary form Va we have a calculatable form for the Dirac connection

given in equation (7.29). This object is usually called the Fock-Ivaneko coefficients, and

acts as a connection on the Dirac spinor bundle.

Γa = −1

4
ωµνaγ

µγν (7.29)

∇aψ = ∂aψ +
1

4
ωµνaγ

µγνψ, ∇aψ = ∂aψ − 1

4
ωµνaψγ

µγν

7.3.1 Dirac Connection with Torsion

The formula we had for the Fock-Ivaneko coefficients in general includes torsion. Since
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the difference of any 2 connections is a tensor, we can do our usual trick and find the Levi-

Civita generated Fock-Ivaneko coefficients and break them off with a contorsion piece. To do

this, since we already know the spin connection, we can just break off the Levi-Civita piece

from Γa and we will already have our solution. Since we know ωµνa = ϖµνa + ebµe
c
νCbca,

where ϖµνa is the Levi-Civita generated Fock-Ivaneko coefficients, and Cbca is the contorsion

tensor, we can get the following formula for the affine Dirac connection in terms of the Levi-

Civita Dirac connection minus the contorsion tensor.

Γa = Γa {} −
1

4
Cbcaγ

bγc (7.30)

Γa {} = −1

4
ϖµνaγ

µγν

Finally, we can apply this principle to the derivatives of our Dirac spinors, and likewise

break off the contorsion from them. This results in the following two equations where ∇̃ is

the Levi-Civita covariant derivative.

∇aψ = ∇̃aψ +
1

4
Cbcaγ

[bγc]ψ, ∇aψ = ∇̃aψ − 1

4
Cbcaψγ

[bγc]

With our new connection, we are ready to move onto what the curvature and torsion spinors

look like in the Dirac formalism.

7.4 The Curvature Spinor

In this section, we will delve into the curvature and torsion of our connection of interest,

represented by Γa. The torsion tensor, as described by Cartan, is only present on the

tangent bundle, whereas the curvature can exist with indices in the fibers. To understand

the concept of a connection on the spin bundle better, we calculate its curvature. We will

apply the curvature operator to a spinor ψA and observe the outcome. This generates the

curvature spinor which we label Kab or KÅ
B̊cd

. A detailed explanation is provided below.

Since we have a connection, we can ask about its curvature and torsion, which is what

we will do in this section. The connection of interest will be Γa. The torsion tensor only
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exists as an object on the tangent bundle from a Cartan viewpoint (Sharpe, 1997), but the

curvature can exist with indices in the fibers; this is what will happen in the case of Γa. We

will apply the curvature operator to a spinor ψA and see what happens as a result. This

will generate the curvature spinor Kab, or KA
Bcd. A derivation is given below.

(
∇a∇b −∇b∇a + T dab∇d

)
ψ = ∇a∇bψ −∇b∇aψ + T dab∇dψ

= ∂a (∇bψ)− Γcba∇cψ − Γa∇bψ

+ −∂b (∇aψ) + Γcab∇cψ + Γb∇aψ

+ T dab∇dψ

= ∂a (∂bψ − Γbψ)− Γa (∂bψ − Γbψ)

+ −∂b (∂aψ − Γaψ) + Γb (∂aψ − Γaψ)

= −∂aΓbψ + ∂bΓaψ + ΓaΓbψ − ΓbΓaψ

= Γa,bψ − Γb,aψ + ΓaΓbψ − ΓbΓaψ

= Kabψ

We now have an expression for the curvature spinor in terms of the Dirac connection. This

is given in equation (7.31).

Kab = Γa,b − Γb,a + [Γa,Γb] (7.31)

KC̊
D̊ab

= ΓC̊
D̊a,b

− ΓC̊
D̊b,a

+ ΓC̊
E̊a

ΓE̊
D̊b

− ΓC̊
E̊b
ΓE̊
D̊a

There is a way to get the curvature spinor straight from the curvature tensor Rabcd by using

the gamma matrices. Recall that Daγb = 0. By using this idea and looking at D[aDb]γc = 0,

we can find a similar formula relating Kab and Rabcd. Recall the Ricci Identity:

(∇a∇b −∇b∇a) v
c = Rcdabv

d − T fab∇fv
c (7.32)
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If we apply this to γc we find an equation which relates the curvature tensor to the curvature

spinor.

Rcdabγ
cγd + γcKabγc − 4Kab = 0 (7.33)

We can solve this equation for Kab by making an assumption that Kibble (Kibble, 1961)

does. Following Poplawski (Poplawski, 2013), who makes this assumption, we try a solution

which has curvature pieces along with an arbitrary spinor-tensor Bab where Bab ≡ BÅ
B̊ab

.

Kab =
1

4
Rcdabγ

cγd +Bab (7.34)

Upon substituting this assumption into our equation relating R and K, see equation (7.33),

we then find that Bab has to be a skew-symmetric tensor B[ab] censored to the Dirac indexed

Kronecker delta tensor. Finding this relation requires the triple gamma matrix relation in

(7.5).

BÅ
B̊cd

= B[cd]δ
Å
B̊

We can relate Bab back to our Aa = VaI4 which we used in the Fock-Ivaneko coefficients by

looking at our formula for Kab. If we put in the Aa here, we can find a formula for Bab as

well. Let Γ′
a = Γa −Aa, then K ′

ab = Kab +Bab. We use the minus here because that is how

Aa originally appeared; this in turn makes the Bab term appear with a plus sign in front.

K ′
ab = Γ′

a,b − Γ′
b,a + 2

[
Γ′
a,Γ

′
b

]
Kab +Bab = Γa,b −Aa,b − Γb,a +Ab,a + 2 [Γa −Aa,Γb −Ab]

Since Aa is a vector times the identity, we can simplify the bracket term:

[Γa −Aa,Γb −Ab] = [Γa,Γb −Ab]− [Aa,Γb −Ab]

= [Γa,Γb]− [Γa, Ab]− [Aa,Γb] + [Aa, Ab]

= [Γa,Γb]
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And now we have the formula relating our Bab tensor to Aa. Additionally, we can relate Bab

to Va as well with the relations from before.

Bab = −Aa,b +Ab,a, Bab = −2V[a,b]

If we set Aa = 0 as in the Fock-Ivaneko case, then likewise Bab = 0 for our curvature spinor.

Thus, we find a formula for the curvature spinor in terms of the curvature tensor.

Kab =
1

4
Rcdabγ

cγd (7.35)

Now since we have all the connection and multilinear algebra pieces well established for Dirac

spinors, we can move onto the generally covariant Dirac action for ECSK and consider its

variation with respect to various fields.

7.5 Dirac Action and Field Equations

The Dirac action with a mass term is given in the form of equation (7.36).

S =

ˆ

Ω

[
iℏc
2

(
ψγaDaψ −Daψγ

aψ
)
−mc2ψψ

]
ed4x (7.36)

Recall that ℏ has units of Js. Then ℏc has units of Jm, and since Da adds units of 1
m , we

then have the units of Js which we need for our action. Now it is time to vary the action.

We will vary it with respect to the tetrad eaµ, the spin connection ωµνa, and the Dirac fields

Ψ, and Ψ. From Poplawski (Poplawski, 2013) there is an equivalence between varying the

spin connection and varying the contorsion tensor; this can also been seen in Sciama, and

Kibble’s papers (Kibble, 1961), (Sciama, 1962).

First, we need to write the spacetime gamma matrices in terms of orthonormal gamma

matrices i.e., γa = eaµγ
µ. Then we must also decompose the Fock-Ivaneko coefficients in

the connection into a Levi-Civita generated part and a torsion part. This step is important

because the torsion terms are concentrated in the spin connection. We can use the normal
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partial derivative to break the coefficients off.

S =

ˆ

Ω

[
iℏc
2
eaµ
(
ψγµψ,a − ψ,aγ

µψ − ψ {γµ,Γa}ψ
)
−mc2ψψ

]
ed4x

Next recall from equation (7.27), that Γa = −1
4ωµνaγ

µγν , and note we have also used

equation (7.7)
{
γµ, γ[νγρ]

}
= 2γ[µγνγρ]. This renders us the following action which will be

much easier to vary in terms of what we are interested in.

S =

ˆ

Ω

[
iℏc
2

(
ψγa∂aψ − ∂aψγ

aψ +
1

2
ωµνaψγ

[aγµγν]ψ

)
−mc2ψψ

]
ed4x (7.37)

Equivalently, we can write the action in terms of the contorsion tensor in equation (7.38).

This comes from breaking apart the connection ∇a in terms of its Levi-Civita and contorsion

pieces.

S =

ˆ

Ω

[
iℏc
2

(
ψγa∇̃aψ − ∇̃aψγ

aψ +
1

2
Cbcaψγ

[aγbγc]ψ

)
−mc2ψψ

]
ed4x (7.38)

Now we vary the Dirac-ECSK action with respect to the fields: ψ,ψ, eaµ, ωαβa which we

choose as our independent variables. First we will vary the ψ field.

7.5.1 Variation with respect to ψ

For this one it is easier to start with the Dirac action before it is broken apart as in

(7.38). This results in:

δS =

ˆ

Ω

(Eψ) δψed
4x+

˛

∂Ω

ϵnaΘ
a {δψ} d3y

The variational piece Eψ (given in two equivalent forms) and boundary piece Θa {δψ} are

given by:

Eψ = iℏc
(
−∇̃aψγ

a +
1

4
Cabcψγ

[aγbγc]
)
−mc2ψ
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Eψ = iℏc
(
−∇aψγ

a +
1

2
Cabaψγ

b

)
−mc2ψ (7.39)

Θa {δψ} =
iℏc
2
ψγaδψe

The critical points of the action are Eψ = 0. We note that in the literature people often set

Caba = 0 because of the spin connection field equation; the spin connection field equation,

which we called the Cartan equation in chapter 5, specifies that the contorsion is totally

skew, thus the trace we presented Caba is identically zero. We choose not to set Caba = 0

because it obfuscates any further couplings that can occur with the addition of other matter.

Notice, that once the second field equation is applied this looks very similar to the Dirac

equation for ψ in a flat spacetime. We will mainly use equation (7.39) instead of the one

directly above it because, as we will see it closely follows exactly what happens in GR. Later,

we will show that the trace piece of the torsion/contorsion drops out for a pure ECSK-Dirac

theory, and thus the contorsion trace above vanishes. However, if other matter is present

this piece will not necessarily vanish. Thus, we are done with the ψ variation.

7.5.2 Variation with respect to ψ

In a similar manner, we can derive the field equations for ψ.

δS =

ˆ

Ω

δψ
(
Eψ

)
ed4x+

˛

∂Ω

ϵnaΘ
a
{
δψ
}
d3y

The variational piece Eψ and boundary piece Θa
{
δψ
}

are given by:

Eψ = iℏc
(
γa∇̃aψ +

1

4
Cabcγ

[aγbγc]ψ

)
−mc2ψ = 0

Eψ = iℏc
(
γa∇aψ − 1

2
Cabaγ

bψ

)
−mc2ψ = 0 (7.40)

Θa
{
δψ
}
= − iℏc

2
δψγaψe

Notice that once again this looks very similar to the Dirac equation for ψ in a flat spacetime.
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Again, the same logic applies here, we will find later that the trace piece of the torsion/contorsion

vanishes in a pure ECSK-Dirac theory. Thus, we are done with the ψ variation.

7.5.3 Variation with respect to eaµ and ωµνa

Originally, we would not be so wrong to vary the tetrad and spin connection separately

and get the field equations relatively quickly. However, there is some nuance here that needs

to be accounted for. Namely, that ωµνa partly depends on the vielbein; it also depends

on the torsion of course. When we assume that these are independent in our variation we

get different field equations. We need to account for this to get the Hilbert stress-energy

tensor. Nevertheless, the field equations are still correct without converting to the Hilbert

stress energy tensor with the Belinfante-Rosenfeld relation. See Wheeler (J. T. Wheeler,

2023), and our appendix G for more details. There is nothing wrong with varying the

tetrad and spin connection separately. This is the mentality which we will follow here. For

interpretation however, it is useful to convert back to the Hilbert stress energy tensor.

The variation with respect to eaµ closely follows Wheeler (J. Wheeler, 2021). We begin

with the action in which the spin connection is separated out as in equation (7.37). First

we need to break off the eaµ dependence on the spacetime gamma matrices, this puts the

action in the form of equation (7.41)

S =

ˆ

Ω

[
iℏc
2

(
ψγλ∂aψ − ∂aψγ

λψ +
1

2
ωµνaψγ

[λγµγν]ψ

)
eaλ −mc2ψψ

]
ed4x (7.41)

And now we begin with the variation. We get two pieces, one from the variation of eaµ

and the other from the variation of ωµνa. This gives us the action variation in the form

δS = δeS + δωS. We first will look at δeS, and then look at δωS.

7.5.4 Variation with respect to eaµ

When we vary S with respect to eaµ we get two pieces, one from the variation of e and

the other from the variation of the eaµ which comes from the gamma matrices. To calculate

out these pieces it is useful to break δeS into two pieces: I1 for the eaµ piece and I2 from
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the e part; this lets us write δeS = I1 + I2. The I1 term, after simplification is given by

equation (7.42). Likewise, the I2 after simplification is given by equation (7.43); to simplify

this term we use the equation for the variation of the determinant of the vielbein in terms

of the variation of the vielbein: δe = ee µ
a δeaµ.

I1 =

ˆ

Ω

[
iℏc
2

(
ψγλ∇aψ −∇aψγ

λψ
)
−mc2ψψ

]
δeaλed

4x (7.42)

I2 =

ˆ

Ω

(
1

2

[
ψEψ + Eψψ

]
e λ
a

)
δeaλed

4x (7.43)

Putting I1 and I2 together we find the tetrad energy momentum tensor t λa for an ECSK-

Dirac theory, which is given by equation (7.44). From this definition, we can use the ψ, and

ψ equations of motion: Eψ = 0 and Eψ = 0 respectively to simplify the EMT. All of this

together yields the vielbein variation in the form of equation (7.45).

t λa = − iℏc
2

(
ψγλ∇aψ −∇aψγ

λψ
)
− 1

2

{
ψEψ + Eψψ

}
e λ
a (7.44)

δeS =

ˆ

Ω

[
−t λa

]
δeaλed

4x (7.45)

Next we move onto the variation with respect to the spin connection.

7.5.5 Variation with respect to ωµνa

The variation of the action with respect to the spin connection δωS, once simplified, is

given by equation (7.46). We can write this piece as the Palatini spin potential Yaµν , but a

more useful object is the spin angular momentum density Saµν ; The Belinfante-Rosenfeld

relation tells us that these objects are equivalent, and thus we can write the spin angular

momentum density in the form of equation (7.47) (once we make the density into a tensor).

This results in the action being written by δωS =
´
Ω

(
−1

2S
abce µ

b e
ν
c

)
δωµνaed

4x.

δωS =

ˆ

Ω

(
iℏc
4
ψγ[aγµγν]ψ

)
δωµνaed

4x (7.46)
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sabc = − iℏc
2
ψγ[aγbγc]ψ (7.47)

With all these together, we have all the field equation information we need to describe an

ECSK-Dirac theory. The field equations are given in the form: Rµν − 1
2ηµνR = tµν , and

C c
ab = scab. Since we have this, we now move onto classifying an ECSK-Dirac example from

Platania and Rosania (Platania & Rosania, 1997).

7.6 Classifying an ECSK-Dirac Example: “A Universe with Torsion”

Platania and Rosania (Platania & Rosania, 1997) found a solution to the ECSK-Dirac

field equations. Their solution models a universe with torsion. In this section we will use

the tools from chapters 3 and 4 to classify the curvature and torsion tensor of their solution.

To classify this example using the tools we’ve built, fundamentally, we need the metric

tensor gab and the torsion tensor T abc. These in turn allow us to make the metric affine

connection Γabc, and then the curvature tensor Rabcd. We are given from the beginning a

line element, and thus a metric tensor in the form of equation (7.48).

ds2 = dt2 −R2 (t)
(
dx2 + dy2 + dz2

)
(7.48)

We are then given an axial torsion vector in the form of equation (7.49); this is equation

(17) in (Platania & Rosania, 1997); we have a factor of two difference because of the way

our contorsion tensor is defined as opposed to theirs, additionally we have not set ℏ = c = 1

but included it; finally we have the “5” on γ5 up instead of down like theirs for consistency

with our notation. This θd is the same object as our dabc from equation (3.46) from chapter

3 upon applying a Levi-Civita symbol to it ϵdabc. We further note that without loss of

generality the vector θa is spacelike.

θd = dabcϵ
dabc

θd =
ℏc
2

(
ψγ5γdψ

)
(7.49)
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To show that θdϵdabc = sabc (in their equation 47) and compare our results to that of

(Platania & Rosania, 1997) it is useful to have the following equations: γ5γa = −γaγ5 from

earlier, and equation (7.50) which is shown below. Noting this, we can now see that we have

a consistent notation and can move forward towards writing the torsion tensor. We can take

the Levi-Civita tensor dual of θa to get what we need through the following identity:

iγ[aγbγc] = eabcdγdγ
5 (7.50)

Recall that, in the ECSK field, the Cartan equation (5.40) is given by Cabc = κsabc. This

equation reduces to T[abc] = κs[abc] in an ECSK-Dirac theory because sabc = s[abc] from

equation (7.47). Furthermore, because the torsion tensor is completely determined by the

irreducible torsion tensor subspace d, which is totally skew-symmetric, we know Tabc = dabc,

from equation (7.51).

Tabc = − iℏcκ
2

(
ψγ[aγbγc]ψ

)
(7.51)

Platania and Rosania (Platania & Rosania, 1997) take a slightly different approach than

just substituting equation (7.51) into the Cartan equation however, and they write θd as τd

with components given by equation (7.52), and the relation τµ = Λµν
(
xi
)
θν . The object

Λµν
(
xi
)

is a local Lorentz transformation; through the application of one boost, and two

rotations, any spacelike vector can be put into the form of equation (7.52) shown below.

Note that e1 is an orthonormal basis vector.

τµ = τ1e1 (7.52)

We then use the same relation τdϵdabc = sabc to write sabc, and then convert it to the torsion

tensor with the second field equation. We then can write the torsion tensor as in equation

(7.53).

Tabc = κτdϵdabc (7.53)

We now have everything we need tensor wise to calculate our solution and classify it.
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Platania and Rosania present the solution shown below in equation (7.54), where µ,R0, t1, t2 ∈

R. The symbols R0 and b are real integration constants, B, C, D, and F are complex

integration constants. We note that t = t1 and t = t2 are singularities of the metric tensor

and spin vector. They are physical because the curvature scalar diverges at t = t1, t2.

[
R (t) = 3

√
R0 (t− t1) (t− t2), τ

1 =
µ

R0 (t− t1) (t− t2)

]
(7.54)

ψ1 =
1

2R3/2
e−imt

(
Be−iG(t) + CeiG(t)

)
ψ2 =

1

2R3/2
e−imt

(
Be−iG(t) − CeiG(t)

)
ψ3 =

1

2R3/2
eimt

(
De−iG(t) + FeiG(t)

)
ψ4 =

1

2R3/2
eimt

(
De−iG(t) − FeiG(t)

)

G(t) =
1

2
ln
t− t1
t− t2

t1 = −b+ 1

2|R0|
√

3γ

t2 = −b− 1

2|R0|
√

3γ

γ = 3 (8πGµ)2

ν =
1

2

(
|B|2 + |C|2 − |D|2 − |F |2

)
µ =

1

8

(
|C|2 + |F |2 − |B|2 − |D|2

)
R0 = −6πGmν

Platania and Rosania point out that there are two different types of solution. One for ν < 0,

and one for ν > 0. For ν < 0, t ∈ [t1,∞) ∪ (−∞, t2]. For ν > 0, t ∈ [t2, t1]. In the most
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general case for the constants arbitrary, we cannot determine the Segre type, but we are

able to determine all the other types; additionally we can determine the Plebanski Type

when the constants are arbitrary as well. We first examine the classification of the torsion

tensor, then the curvature tensor classification.

7.6.1 Classification of the Torsion tensor in “A Universe with Torsion”

These results are presented below for the torsion tensor classification, see equation

(7.55).

[Θ = (−) ,Ξ = (1, 1) ,Ω = (−)] (7.55)

We find that the solution in the general case is irreducible. However, we can examine when

Ξ becomes reducible by examining the omicron invariant from equation (3.63) in chapter

3. In this case the omicron invariant is given by (7.56). The omicron invariant is only zero

when µ is zero or when t approaches infinity (t→ ∞) and t > t1 and t > t2 hold. However,

it is trivially reducible because the alpha invariant is also zero when µ = 0 and in the t→ ∞

case. Therefore, it is not possible to have the |(1, 0)|2 case for Ξ in this solution; we could

only possibly reduce to the case where Ξ = (−), and thus the entire torsion tensor would be

zero.

O =
1

9

κ2µ2

(R0)
2 (t− t1)

2 (t− t2)
2 (7.56)

Next we move to the classification of the curvature tensor.

7.6.2 Classification of the Curvature tensor in “A Universe with Torsion”

The results in the arbitrary constant case are given in (7.57), and (7.58). Notice that

the Λ classification is indeterminant. This is because of its dependence on t, and the values

of the constants. All the structural reducibility pieces were completely determined generally

without dependence on any parameters. The same holds for the Plebanski classifications of

the spinors Φ and Ж from equations (4.38) and (4.42). The Plebanski type is D for both

the Φ spinor and the Ж spinor. We now present the information in the same way that we
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did for the NMC classification of the Bronnikov and Galiakhmetov solution of chapter 6.

[
Ψ = O,Φ =

{
(1, 1) (1, 1) OR |(1, 1)|2 , D, ”FAIL”]

}
,Λ = ”Indeterminant”,

]
(7.57)

[
Ж =

{
(1, 1) |(1, 0)|2 , D, ”FAIL”

}
,Ю = [A,B] ,ℵ = 0

]
(7.58)

To help the Segre classification algorithm along we picked some parameters to determine

the generic type. We evaluate the curvature tensor at a point in the parameter space of

µ,R0, t1, t2, additionally we evaluate t at some value not equal to t1 or t2. We pick the

values: t1 = 1, t2 = 2, µ = 1, R0 = 1, and κ = 1. We set κ = 1 here not because it is

actually that value, but to help the computer along in the calculation. Maple can encounter

some difficulty in determining if certain values are zero in this calculation due to the cubic

roots. Furthermore, we choose t = 0 because it is a generic point and not exceptional. This

results in the following classification of the ECSK-Dirac solution at a point given by (7.59),

and (7.60). The classification around an open set of this point will also be the same type.

[
Ψ = O,Φ =

{
(1, 1) (1, 1) OR |(1, 1)|2 , D, [1, 1 (11)]]

}
,Λ = −

]
(7.59)

[
Ж =

{
(1, 1) |(1, 0)|2 , D, [1, 1 (11)]

}
,Ю = [A,B],ℵ = 0

]
(7.60)

Now we can see more information than before. Λ is now negative, and Φ and Ж have

the same Segre type; this is interesting because they are still distinct in their structural

reducibilities. This illustrates the usefulness of the structural reducibility as a useful tool

on top of the Segre classification. We can explore the entire reducibility structure in depth

by looking at how the parameters change the co(in)variants and how this in turn changes

the type this solution is with regard to its classification. However, we will not do this fully,

but we will explore both the structure making Λ originally indeterminant, and if there is a

possibility for Ю to reduce further.

First we look at Λ in general. We can determine that there are values of the parameters

for which Λ is positive, negative, and zero from equation (7.61). This clarifies why we got
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the indeterminant result earlier.

Λ =

(
−32 (R0)

2 t2 + 32 (R0)
2 (t1 + t2) t+ 16

(
(t1)

2 − 4t1t2 + (t2)
2
)
(R0)

2 − 9κ2µ2
)

288 (R0)
2 (t− t2)

2 (t− t1)
2

(7.61)

Upon evaluating equation (7.61) on the values we picked earlier except for t, we find that

its structure simplifies considerably as seen in equation (7.62).

Λ =
1

288

−32t2 + 96t− 57

(t− 2)2 (t− 1)2
(7.62)

Upon examining the roots of the numerator for t, we find that there are three different regions

of classification for Λ. Λ is negative in the region: t ∈
(
−∞, 32 − 1

8

√
30
)
∪
(
3
2 + 1

8

√
30,∞

)
.

Lambda is zero in the region t ∈
{
3
2 − 1

8

√
30, 32 + 1

8

√
30
}
. Lastly Λ is positive in the region

t ∈
(
3
2 − 1

8

√
30, 1

)
∪ (1, 2) ∪

(
2, 32 + 1

8

√
30
)
. This should be able to be refined for arbitrary

parameters µ,R0, t1, t2. Finally, a figure of the different regions of Lambda is presented in

figure (7.1) below: Here the solid blue line is the plot of Λ on the vertical vs. t on the

horizontal. The dashed blue lines represent the values we chose for t1 and t2. Additionally,

the green dots represent the roots of the graph, which are also exceptional points.

Next we move onto looking at the Ю spinor’s reducibility. Similarly to what happens

to the torsion tensor, there is no way for the Ю spinor to be of type [2]. For the same

parameters we chose above in the case for Λ, the curvature omicron invariant is given by

(7.63).

O =
1

288

(2t− 3)2

(t− 1)4 (t− 2)4
(7.63)

This can be zero when t = 3
2 , but this also forces the entire Ю spinor to be zero as well,

thus precluding the [2] case as only [11] and [(11)] are possible. We now end with a short

summary.

7.7 ECSK-Dirac Classification Summary

For an ECSK-Dirac theory, the only non-zero piece of the torsion tensor is generated
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Figure 7.1: Plot of Lambda Spinor for Platania and Rosania Solution

by dabc. We described the action and the field equations, along with the boundary terms for

ψ, and ψ. Interestingly enough, the Dirac equation is modified in this format due to spin

coupling to torsion; this is what augments the Dirac equation to the Hehl-Datta equation as

we found in equations (7.39), and (7.40). Furthermore, the contorsion piece in both of these

equations reduces to a Dirac-like equation because of the second field equation’s constraint

on the torsion; having only axial torsion
(
T[abc]

)
forces the contorsion tensor to also be

purely skew-symmetric. This causes Dirac particles to behave differently just by loosening

the constraint that torsion be zero from GR. The classification was also interesting because

it shows us just how complicated things can get. We are successfully able to classify the

solution and see that there is no Weyl curvature, which is particularly interesting.
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CHAPTER 8

RELATIVISTIC SPINNING FLUIDS AND EXTENDED ECSK

We include this section although somewhat short and incomplete on its background to

cover the last irreducible piece of torsion qabc as in the rank 3 tensors chapter 3 in equation

(3.45); we will do this with a short note on spinning fluids, including references for the

reader. We will present an example from Chen (Chen et al., 2018) in an extended ECSK

theory which also acts as a source for qabc. We begin with the spinning fluid. Further

references on spinning fluids include Poplawski (Poplawski, 2013) in his section (2.5.11) on

“Relativistic spin fluids”, and Westenholz (Westenholz, 1978) in his section on “Relativistic

Fluid Mechanics” see pg 456 and onward.

8.1 A Short Note on Spinning Fluids

Spinning fluids are fluids which include some macroscopic spin density in them; the

microscopic spin density does not average out to zero. Weyssenhoff justifies this by calling

it the density of angular momentum per unit rest volume. The author has been unable to

find a kinetic, moment, or variational approach which leads to the spin density presented

by Weyssenhoff. Nevertheless, this variational/kinetic problem seems to be an interesting

heading for future work. Tsoubelis (Tsoubelis, 1981) presents a spinning fluid solution,

although we will not examine it here. We will not examine any more background on spinning

fluids here, but refer the reader to the prior citations.

A source for the leftovers sector of torsion is a spinning fluid. Spinning fluids date back

to Weyssenhoff and Raabe (Weyssenhoff & Raabe, 1947) in the late 1940s. Spinning fluids

also source an axial torsion piece which we called qabc in equation (3.46). Recall that we

represented the leftovers sector by qabc in equation (3.45) additionally qabc resides in the
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Ferrers diagram as the trace free part of this diagram.

8.2 An Example From Extended ECKS Theory

In this section our goal will be to apply the classification tools we have developed to

three solutions presented by Chen (Chen et al., 2018). We also take note that although Chen

uses a modified ECSK theory which includes a quadratic torsion term, our classification tools

are still applicable because they focus purely on the curvature and torsion without regard

to the field equations. Furthermore, in this theory the torsion satisfies a differential, not

algebraic equation for torsion. This allows the torsion tensor to be non-zero despite lacking

any matter source in the action. This arises from the RT term in the action.

Chen’s action is given as follows:

S =

ˆ

Ω

[
1

2κ
(R+RT )

]√
−gd4x (8.1)

in which R is the ECSK Ricci scalar and T is given by:

T = a1TabcT
abc + a2TabcT

bac + a3T
a b
a T

c
bc (8.2)

with a1, a2, a3 ∈ R being some arbitrary torsion coupling constants. The field equations

for equation (8.1) are complicated, and as such we refer the reader to reference (Chen et

al., 2018). Nevertheless, we produce the field equations here albeit without a compensating

GHY term. The GHY term will not cancel the boundary terms in the given action and

additional terms will be needed. This would be interesting to explore.

As our field variables, we choose the inverse metric (which we will again just call the

metric), and the torsion tensor: gab, and T abc. To make varying equation (8.1) easier, we

include the following equations:

δgT = Tabδgab (8.3)

Tab =
(
a1

(
−T ef

(a Tb)ef + 2Tef(aT
ef
b)

)
+
(
a2Tef(aT

fe
b) − a3T(aTb)

))
(8.4)
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δTT = T bc
a δT abc (8.5)

T bc
a = 2

(
a1T

bc
a + a2T

b c
a − a3δ

[b
a T c]

)
(8.6)

δgR = (R {}ab + Uab) δgab + ∇̃b

(
−2Taδg

ab +
(
gqbgef − δbfδ

q
e

)
δgef:q

)
(8.7)

Recall that Uab is the Hehl Tensor defined in equation (6.13).

δTR = A bc
a δT abc + ∇̃q

(
−2gcqδbaδT

a
bc

)
(8.8)

Recall that A bc
a is the Alpha Cartan Tensor defined in equation (5.37).

The equations above represent the variation of R, and T with respect to the fields gab

and T abc. The metric variation of equation (8.1) produces the following field equations:

(R {}ab + Uab) (1 + T ) +RTab −
1

2
gabR (1 + T ) = 0 (8.9)

A bc
a (1 + T ) +RT bc

a = 0 (8.10)

where we have used δ
√
−g = −1

2

√
−ggabδgab and equations (8.3)-(8.8) above.

Moving forward to find solutions to equations (8.9), and (8.10) we begin with coordinates

(t, r, θ, ϕ) and a metric gab with signature [+,−,−,−] in the following form where the

functions H (r) and F (r) are part of what we will solve for in the field equations.

gab = H (r) dt⊗ dt− 1

F (r)
dr ⊗ dr − r2

(
dθ ⊗ dθ + sin2 (θ) dϕ⊗ dϕ

)
(8.11)

This is Chen’s metric up to the signature change. We have changed the signature to mostly

minus, which is different from Chen’s mostly plus signature, so that we can apply our Maple

algorithm which requires the mostly minus signature. Furthermore, the torsion tensor is

given by:

T rtr = −T rrt = A (r) (8.12)

T θtθ = −T θθt = T ϕtϕ = −T ϕϕt = B (r) (8.13)
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with A (r), and B (r) being functions which only depending on r. Chen provides 3 different

solutions which we have checked, and adapted to our mostly minus signature. The three

solutions are black hole solutions in braneworlds which he names after the branes in string

theory. The third solution is similar to a Reissner-Nordström black hole with charge q. To

classify these solutions, we begin by presenting the first solution.

8.3 Braneworld I Solution

Chen’s first solution adapted to our signature is given by the following three equations:

F (r) =
(2r + C1) (2m− r)

(3m− 2r) r

H (r) = −φ
(
2m− r

r

)

B (r) =

√
1− 2m

r
, A (r) = −1

2
B (r)

where φ, C1, C2, and γ are constants and φ is given by φ = −9
4 (2a1 − 2a2 + a3) in terms of

the ai constants in equation (8.2). Next we classify the curvature and torsion of this solution

using our tools from the previous sections.

8.3.1 Torsion Classification of Solution 1

Upon running our algorithm, we find that the classification of the torsion tensor is given

by:

[Θ = (1, 1) ,Ξ = (−) ,Ω = (1, 0) (1, 0) (1, 1)]

where the spinors Θ, Ξ, and Ω are defined as before in the Rank 3 tensor section. Upon

examining the co(in)variants, we find that there are no exceptional points in this solution

for either Θ or Ω.

8.3.2 Curvature Classification of Solution 1

We find that the subspaces F, l, and k for this solution are empty, meaning that their
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corresponding tensors are zero. This in turn implies that the spinors Λ, Ж, and ℵ are zero,

implying that they are types 0, (−), and 0 respectively.

Upon running the classification algorithm we find the following classification for the

curvature given as Maple output.

[
Ψ = D,Φ =

{
(1, 1) (1, 1) OR |(1, 1)|2 , D, ”Indeterminant”]

}
,Λ = 0

]

[Ж = {(−) , O, [(1, 111)]} ,Ю = [A,B],ℵ = 0]

There is some information we can determine about the Segre type. For instance, the sign of

the H invariant depends on the choice of parameters. However, the ka invariant is always

negative, except at some possible exceptional points. We can make the following remarks:

when H > 0 we have Segre Type [1, 1 (11)], when H = 0 then the Segre type is [2, (11)],

finally when H < 0, then the Segre type
[
ZZ, (11)

]
.

8.4 Braneworld II Solution

Chen’s second solution adapted to our signature is given by the following three equations:

F (r) = 1− 2γm

r

H (r) = φ

(
C1 + C2

√
2γm− r

r

)2

B (r) = C1 + C2

√
2γm− r

r
, A (r) = −1

2
B (r)

where φ, C1, C2, and γ are constants and φ is given by φ = −9
4 (2a1 − 2a2 + a3) in terms

of the ai constants in equation (8.2). Next, we classify the curvature and torsion of this

solution using our tools from the previous sections.
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8.4.1 Torsion Classification of Solution 2

Upon running our algorithm, we find that the classification of the torsion tensor is given

by:

[Θ = (1, 1) ,Ξ = (−) ,Ω = (1, 0) (1, 0) (1, 1)]

where the spinors Θ, Ξ, and Ω are defined as before in the Rank 3 tensor section. Upon

examining the co(in)variants, we find that there are no exceptional points in this solution

for either Θ, or Ω.

8.4.2 Curvature Classification of Solution 2

We find that this classification is generally the same as for solution 1. However, the

Plebanski and Segre types may be different depending on the parameters than in solution.

8.5 Extended ECSK Reissner-Nordström Black Hole Solution

Chen’s third solution adapted to our signature is given by the following three equations:

F (r) = 1− 2γm

r
+
q2

r2

H (r) = φ
(C1)

2
(
γmr + C2q

√
2γmr − q2 − r2 − q2

)2
r2 (γ2m2 − q2)

B (r) =
C1

(
γmr + C2q

√
2γmr − q2 − r2 − q2

)
r
√
γ2m2 − q2

, A (r) = −1

2
B (r)

where φ, C1, C2, and γ are constants and φ is given by φ = −9
4 (2a1 − 2a2 + a3) in terms of

the ai constants in equation (8.2). Next we classify the curvature and torsion of this solution

using our tools from the previous sections.
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8.5.1 Torsion Classification of Solution 3

Upon running our algorithm, we find that the classification of the torsion tensor is given

by:

[Θ = (1, 1) ,Ξ = (−) ,Ω = (1, 0) (1, 0) (1, 1)]

where the spinors Θ, Ξ, and Ω are defined as before in the Rank 3 tensor section. Upon

examining the co(in)variants, we find that there are exceptional points in this solution.

The spinors Θ, and Ω share the same exceptional points. We find that there are

exceptional points for these spinors if C1 = 0, or at roots of either of the expressions:(
γmr + C2q

√
2γmr − q2 − r2 − q2

)
,
(
2γmr − q2 − r2

)
. In each of these cases Θ can only

reduce to type (−); type |(1, 0)|2 is not possible. Similarly, Ω can only reduce to type (−)

as well.

8.5.2 Curvature Classification of Solution 3

We find that this classification is generally the same as for solution 1. However,

the Plebanski and Segre types may vary differently depending on the parameters than

in solutions 1 and 2. Additionally, there are some exceptional points depending on the

parameters, which we do not get in the other two cases.

8.6 Summary

Altogether, we presented information and references (Westenholz, 1978), (Poplawski,

2013), (Weyssenhoff & Raabe, 1947), and (Tsoubelis, 1981) on spinning fluids, commented

on how our classification still works in a generalized ECSK theory, and classified the three

solutions of Chen (Chen et al., 2018). Although we classified these solutions, we were

unable to tell any general differences other than at some exceptional points. This presents

the question on how to develop a better classification, and to what extent these classification

tools can tell us about the spacetime we are in. For example, if we were to try to make

a Cartan-Karlhede (Karlhede, 1980) algorithm for ECSK, these invariants would not be

enough information to determine when solutions are equivalent. We would need more
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information. To be more specific, take for example that all three solutions are of Petrov

type D. This invariant alone is not enough to distinguish the 3 different solutions that Chen

et al. (Chen et al., 2018) present.
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CHAPTER 9

CONCLUSION

The dissertation presents a classification scheme, Petrov/Plebanski/Segre-like (PPS),

for the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory (ECSK).

ECSK is an extension of General Relativity that naturally couples spin to the geometry

through torsion. The PPS classification method was developed for ECSK to classify solutions

and provide an equivalence method, which is not currently available due to the inclusion of

the torsion tensor. This classification scheme is important because it allows for the invariant

distinction of solutions in ECSK theory, which includes the addition of torsion and the

coupling of spin to geometry. The new software package in Maple includes computational and

PPS classification tools, which were used to classify six different solutions given in references.

In addition to the PPS classification, the dissertation includes several new works, such as

the decomposition of an arbitrary 4th rank tensor under SO (p, q), equivalent SL (2,C)

irreducible spinor decompositions to arbitrary 3rd and 4th rank tensors, an algorithm to

determine the algebraic decomposition of the torsion spinors, an algorithm for the algebraic

decomposition of the ECSK F spinor (a part of the curvature tensor), and Gibbons-Hawking-

York complete ECSK-non-minimally-coupled boundary terms. Overall, the work presented

in this dissertation is significant in furthering our understanding of ECSK theory and its

applications.

We provide a table, see table (9.1) below which shows whwhich types of matter are

sources for torsion. This is not an exhaustive list, but it does touch on many types of

matter. We present increasing spin as the list descends, ending with the spinning fluid

example presented by Weyssenhoff and Raabe (Weyssenhoff & Raabe, 1947), and Tsoubelis

(Tsoubelis, 1981). We include a spin 3
2 , Rarita-Schwinger field the same way Wheeler

presents it (J. T. Wheeler, 2023); we note he provides a proof that Rarita-Schwinger is

a source for all three irreducible representations of the torsion tensor. Additionally, Wheeler
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provides the form for higher spin n
2 with n > 3 and odd. Future work would be to examine

the irreducible representations for the torsion tensor for these higher spin cases.

The table is read as follows: if there is a circle that means that this matter type does

not generate the corresponding torsion of that type, if there is a checkmark it means that

this matter source does generate torsion of this type, if there is a question mark that means

that it is unknown if this matter type generates the corresponding torsion type or not. We

use the symbols Q, D, and q to represent the irreducible representations of the torsion tensor

as in chapter 3. These represent the trace, axial, and leftovers parts as in equations (3.44),

(3.46), and (3.45) respectively.

We do not include a similar table for curvature; although we would like to, it would

be a significant undertaking. Furthermore, the nonlinearity of the field equations makes

determining a general Petrov type for the Weyl tensor an undertaking that will hopefully

one day be examined in future work.

Matter Sources for Torsion
Matter Q d q

MC Scalar ◦ ◦ ◦
NMC Scalar ✓ ◦ ◦
Dirac ◦ ✓ ◦
Maxwell ◦ ◦ ◦
Rarita-Schwinger ✓ ✓ ✓
Spin n

2 , n odd, n>3 ✓ ✓ ✓
Spinning Fluid ◦ ✓ ✓

Table 9.1: Table for Matter Sources of Torsion
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Cartan, E. (1922). Sur une généralisation de la notion de courbure de riemann et les espaces
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APPENDIX A

THE TORSION TENSOR DECOMPOSITION IN THE LITERATURE

There are other forms of the decomposition we presented of the torsion tensor in the

literature. The most common of these is that given by Shapiro (Shapiro, 2001). To compare

our notation to that of (Shapiro, 2001) we first define two objects: the trace of the torsion

tensor given by Ta in equation (A.1). Recall, this is also defined in the ECSK field equation

section, see chapter 5. The axial trace of the torsion tensor given by Sa in equation (A.2).

Ta = T eea (A.1)

Sa = Tefgϵ
efga (A.2)

The SO (p, q) decomposition of the torsion tensor is often given in the form of equation

(A.3); this decomposition is only valid in N = 4 dimensions however, and must be modified

if the dimension is changed.

Tabc =
1

6
Seϵeabc +

2

3
ga[bTc] + qabc (A.3)

In N -dimensions the decomposition in equation (A.3) can be written as (A.4). Where we

have defined Θ(N − 3) as the Heaviside step function and where the number of dots is

equal to N − 3. Note that S... doesn’t exist in dimensions lower than 3, and the torsion

tensor doesn’t exist in dimensions lower than 2 because it would be instantly zero due to

its skew-symmetry. The dots are in the axial “vector” due to the number changing in each

dimension; for every additional dimension S becomes a bivector of higher rank, for clarity

in N = 5 we have an axial bivector Sab. Lastly qabc is what is defined as the “leftovers” piece
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(the trace free, and axial trace free piece).

Tabc =
Θ(N − 3)

6 (N − 3)!
S...ϵ...abc +

2Θ (N − 2)

(N − 1)
ga[bTc] + qabc (A.4)

The decomposition (A.4) relates to our SO (p, q) decomposition as by the use of equations:

(A.5), (A.6), and (A.7).

Qabc =
2Θ (N − 2)

(N − 1)
ga[bTc] (A.5)

qabc = qabc (A.6)

dabc =
Θ(N − 3)

6 (N − 3)!
S...ϵ...abc (A.7)

This concludes the comparison of our SO (p, q) decomposition to the literature, and we find

that everything matches exactly.
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APPENDIX B

FORMULAS FOR THE GL (N) DECOMPOSITION OF AN ARBITRARY RANK 4

TENSOR

The Young decomposition is a powerful mathematical tool that provides a way to

break down, in this case, an arbitrary rank 4 tensor into its irreducible subspaces. Since the

Young tableaux are a graphical representation of the decomposition, they act as a shortcut

to understanding the complexities of irreducible GL (N) subspaces quickly. This results in

a comprehensive understanding of the internal structure of the tensor and its relationships

with the corresponding subspaces. Below we present formulas which produce the proper

Young decomposition of an arbitrary rank 4 tensor.

One issue that may arise however, is that these subspaces may not be linearly independent,

and this must be checked for before deciding that the subspaces are irreducible. We follow

the definition of Itin and Reches on independence (Itin & Reches, 2021) (See page 7):

Independence: The sub-tensors T(p)a...b must be linearly independent, i.e., any equation

of the form
∑n

p=1 αp
(
T(p)a...b

)
= 0 yields αp = 0 for all p. For more on this phenomenon

see (Itin & Reches, 2021) (pages 25-26) for an excellent explanation of what occurs for the

piezoelectric tensor; we take that methodology and expand on it here.

First we present the Y 1 decomposition of our an arbitrary rank 4 tensor Qabcd. We

symmetrize on the indices a, b, c, d and then we have A.

1 2 3 4
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Aabcd =
1

24
(Qabcd +Qabdc +Qacbd +Qacdb +Qadbc +Qadcb)

+
1

24
(Qbacd +Qbadc +Qbcad +Qbcda +Qbdac +Qbdca)

+
1

24
(Qcabd +Qcadb +Qcbad +Qcbda +Qcdab +Qcdba)

+
1

24
(Qdabc +Qdacb +Qdbac +Qdbca +Qdcab +Qdcba)

Next we have the Y 2 decomposition which results in three tensors B, C, and D. For B we

symmetrize on a, b, c first and then skew symmetrize on a, d. Next, for C we symmetrize on

a, b, d first and then skew symmetrize on a, c. Finally, for D we symmetrize on a, c, d first

and then skew symmetrize on a, b.

Here is the Y 2a piece:
1 2 3

4

Babcd =
1

8
(+Qabcd +Qbcad +Qcabd +Qacbd +Qcbad +Qbacd)

+
1

8
(−Qdbca −Qbcda −Qcdba −Qdcba −Qcbda −Qbdca)

Here is the Y 2b piece:
1 2 4

3

Cabcd =
1

8
(+Qabcd +Qadcb +Qbacd +Qbdca +Qdacb +Qdbca)

+
1

8
(−Qcbad −Qcdab −Qbcad −Qbdac −Qdcab −Qdbac)

Here is the Y 2c piece:
1 3 4

2

Dabcd =
1

8
(+Qabcd +Qabdc +Qcbad +Qcbda +Qdbac +Qdbca)

+
1

8
(−Qbacd −Qbadc −Qcabd −Qcadb −Qdabc −Qdacb)
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There are two irreducible GL (N) subspaces for the Y 3 tableaux. They are given by E , and

F . For E we first symmetrize on the pairs a, b and c, d, (not totally symmetrized though

as per the tableaux) then we skew symmetrize on the pairs a, c and b, d. Then for F we

first symmetrize on the pairs a, c and b, d, then we skew symmetrize on the pairs a, b and

c, d. As an aside the tensor F has the same symmetry as the Riemann tensor of GR: i.e.

Fabcd = F[ab][cd] = Fcdab. These sectors also have the additional simultaneous symmetric

index swap; the last equality in above for F , and for E we would have Eabcd = Ebadc.

Here is the Y 3a piece:
1 2

3 4

Eabcd =
1

12
(+Qabcd +Qabdc +Qbacd +Qbadc)

+
1

12
(−Qcbad −Qcbda −Qbcad −Qbcda)

+
1

12
(−Qadcb −Qadbc −Qdacb −Qdabc)

+
1

12
(+Qcdab +Qcdba +Qdcab +Qdcba)

Here is the Y 3b piece:
1 3

2 4

Fabcd =
1

12
(+Qabcd +Qadcb +Qcbad +Qcdab)

+
1

12
(−Qbacd −Qbdca −Qcabd −Qcdba)

+
1

12
(−Qabdc −Qacdb −Qdbac −Qdcab)

+
1

12
(+Qbadc +Qbcda +Qdabc +Qdcba)

The Y4 subspaces are the more skew symmetric ones and are presented by the tensors G, H,

and J ; we skipped I which, although is alphabetically before J , reminds us too much of

the identity. Moving forward, to get G we first symmetrize on a, b, then we skew symmetrize
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on a, c, d. To get H we first symmetrize on a, c, then we skew symmetrize on a, b, d. Finally,

to get J we first symmetrize on a, d, then we skew symmetrize on a, b, c.

Here is the Y 4a piece:
1 2

3

4

Gabcd =
1

8
(Qabcd +Qcbda +Qdbac −Qabdc −Qdbca −Qcbad)

+
1

8
(Qbacd +Qbcda +Qbdac −Qbadc −Qbdca −Qbcad)

Here is the Y 4b piece:
1 3

2

4

Habcd =
1

8
(Qabcd +Qbdca +Qdacb −Qadcb −Qdbca −Qbacd)

+
1

8
(Qcbad +Qcadb +Qcdba −Qcbda −Qcdab −Qcabd)

Here is the Y 4c piece:
1 4

2

3

Jabcd =
1

8
(Qabcd +Qbcad +Qcabd −Qacbd −Qcbad −Qbacd)

+
1

8
(Qdbca +Qdcab +Qdabc −Qdbac −Qdacb −Qdcba)
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Lastly we have the Y 5 piece for which we totally skew symmetrize on the a, b, c, d indices.

1

2

3

4

Kabcd =
1

24
(Qabcd −Qabdc −Qacbd +Qacdb +Qadbc −Qadcb)

+
1

24
(−Qbacd +Qbadc +Qbcad −Qbcda −Qbdac +Qbdca)

+
1

24
(Qcabd −Qcadb −Qcbad +Qcbda −Qcdba +Qcdab)

+
1

24
(−Qdabc +Qdacb +Qdbac −Qdbca +Qdcba −Qdcab)

If we were to follow the wonderful notation of Itin and Reches (Itin & Reches, 2021) on page

9, then we would write a first reducible decomposition as:

Q = A⊕B ⊕E ⊕G⊕K (B.1)

Here in equation (B.1) A, and K are irreducible but B,E, and G are not irreducible.

However A,B,E,G, and K are orthogonal to each other, i.e.

AabcdKabcd = BabcdE
abcd = · · · = 0 (B.2)

In equations (B.1), and (B.2) we have that B is given by the irreducible decomposition

B = B⊕C⊕D. Likewise E and G are given irreducibly by: E = E⊕F , and G = G⊕H⊕J .

Similarly to equation (B.2) there are some orthogonality conditions on these tensors. The

first of which is that the sub decompositions are all orthogonal if the decomposition is

linearly independent. We would write this as:

GabcdHabcd = · · · = 0
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Where the sub decompositions are given by the B,E, and G equals lines above. Furthermore,

these subspaces may not necessarily be orthogonal to the other subspaces:

GabcdEabcd ̸= BabcdHabcd ̸= CabcdFabcd ̸= 0

All in all this results in the GL (N) irreducible, non-orthogonal decomposition Q being given

by:

Q = A⊕B ⊕ C ⊕D ⊕ E ⊕F ⊕ G ⊕H⊕J ⊕K (B.3)

The decomposition in equation (B.3) can be shown to decompose further under SO (p, q).
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APPENDIX C

FORMULAS FOR THE SO (p, q) DECOMPOSITION OF AN ARBITRARY RANK 4

TENSOR

In this appendix we present all 25 SO (p, q) rank 4 irreducible tensors; given an arbitrary

tensor these can all be calculated out. However, just as in the Rank 3 tensor case, it

is also important for one to ensure linear independence of these tensors, otherwise the

decomposition will be dependent if the given tensor has any additional GL (N) type index

symmetries. This section will delve into the concept of SO (p, q) irreducible tensors by

examining the interplay between the structure of the tensors and the structure of the group,

this section provides a comprehensive list of rank 4 SO (p, q) irreducible tensors.

As a refresher, the concept of irreducibility is fundamental to the study of Lie groups

and Lie algebras. It refers to the property of a tensor that cannot be decomposed into

a direct sum of simpler tensors under a given transformation. In the context of SO (p, q)

irreducible tensors, this means that the tensor cannot be broken down into simpler tensors

that transform differently under the action of the special orthogonal group. This property

makes SO (p, q) irreducible tensors particularly useful for describing physical phenomena,

as it ensures that all the degrees of freedom of the tensor are captured by its irreducible

representation. The decomposition of a tensor into irreducible components provides a way

to understand the symmetry structure of the tensor, as well as its relationships with other

mathematical objects. Additionally, the analysis of irreducible tensors can reveal new

mathematical relationships and structures that are hidden in the tensor.

We will define each of these 25 irreducible tensors below, beginning with the Y 1 sector,

and ending with the Y 5 sector.

For the Y 1 sector, we begin with the tableaux:

1 2 3 4
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which determines the GL (N) irreducible tensor A. We call the subspace A the subspace

determined by the tensor A through an abuse of notation; context should make it apparent

which of the two we are using at any given moment. The subspace A decomposes under

SO (p, q) into the following three subspaces:

A = a⊕ A ⊕A

The three pieces: a, A , and A determined by the following equations:

aabcd = Aabcd − Aabcd − Aabcd

Aabcd =
6

(N + 4)
P̊(abgcd), Aabcd =

3

N (N + 2)
Pg(abgcd)

P(ab) = gefA(efab), P = gabgcdA(abcd), P̊(ab) = P(ab) −
1

N
Pgab

For the Y 2 sector, we begin with the Ferrers diagram:

for which there are three Young tableaux:

1 2 3

4
, 1 2 4

3
, 1 3 4

2

which correspond to 3 GL (N) irreducible tensors B, C, and D. The subspaces B, C, and

D decompose under SO (p, q) in the following way:

B = b⊕ Б ⊕ ℶ

C = c⊕ Ц ⊕ ג

D = d⊕ Д ⊕ ℸ
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The nine pieces: b,c,d, Б, Ц, Д, ℶ, ,ג and ℸ are explicitly given below grouped by their

corresponding tableaux to make finding them easier while doing research.

For the Y 2a sector we have:
1 2 3

4

babcd = Babcd − Бabcd − ℶabcd

Бabcd =
1

N + 2

(
2P[ad]gbc − P[ca]gbd − P[ba]gcd + P[bd]gac + P[cd]gab

)
ℶabcd =

1

N

(
−P(ca)gbd − P(ba)gcd + P(bd)gac + P(cd)gab

)
Pcd = gabBabcd

For the Y 2b sector we have:
1 2 4

3

cabcd = Cabcd − Цabcd − abcdג

Цabcd =
1

N + 2

(
−2P[ac]gbd + P[ba]gcd − P[bc]gad + P[da]gbc − P[dc]gab

)
abcdג =

1

N

(
−P(ba)gcd + P(bc)gad − P(da)gbc + P(dc)gab

)
Pcd = gabCabcd

For the Y 2c sector we have:
1 3 4

2

dabcd = Dabcd − Дabcd − ℸabcd.

Дabcd =
1

N + 2

(
−2R[ab]gbd +R[ca]gbd −R[cb]gad +R[da]gbc −R[db]gac

)
ℸabcd =

1

N

(
−R(ca)gbd +R(cb)gad −R(da)gbc +R(db)gac

)
Rbd = gacDabcd
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For the Y 3 sector, we begin with the Ferrers diagram:

for which there are two Young tableaux:

1 2

3 4
, 1 3

2 4

which correspond to 2 GL (N) irreducible tensors E , and F . The subspaces E , and F

decompose under SO (p, q) in the following way:

E = e⊕ E ⊕E

F = f⊕ F ⊕ F

The six pieces: e,f, E , F , E and F are explicitly given below grouped by their corresponding

tableaux to make finding them easier while doing research.

For the Y 3a sector we have:
1 2

3 4

eabcd = Eabcd − Eabcd − Eabcd

Eabcd =
1

(N − 2)

(
P̊abgcd − P̊cbgad − P̊adgcb + P̊cdgab

)
Eabcd =

1

N (N − 1)
P (gabgcd − gadgcb)

Pcd = gabEabcd, P = gabgcdEabcd, P̊(ab) = P(ab) −
1

N
Pgab

For the Y 3b sector we have:
1 3

2 4

fabcd = Fabcd − Fabcd − Fabcd
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Fabcd =
1

(N − 2)

(
R̊acgbd − R̊bcgad − R̊adgbc + R̊bdgac

)
Fabcd =

1

N (N − 1)
R (gacgbd − gadgbc)

R(bd) = gacFabcd, R = gacgbdFabcd, R̊(ab) = R(ab) −
1

N
Rgab

For the Y 4 sector, we begin with the Ferrers diagram:

for which there are three Young tableaux:

1 2

3

4

, 1 3

2

4

, 1 4

2

3

which correspond to 3 GL (N) irreducible tensors G, H, and J . The subspaces G, H, and

J decompose under SO (p, q) in the following way:

G = g⊕ G

H = h⊕ H

J = j⊕ J

The nine pieces: g, h, j, G , H , and J are explicitly given below grouped by their

corresponding tableaux to make finding them easier while doing research.

1 2

3

4

gabcd = Gabcd − Gabcd
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Gabcd =
1

(N − 2)

(
P[cd]gab − P[ad]gbc + P[ac]gbd

)
Pcd = gabGabcd

For the Y 4b sector we have:
1 3

2

4

habcd = Habcd − Habcd

Habcd =
1

(N − 2)

(
R[bd]gac −R[ad]gbc +R[ab]gcd

)
Rcd = gacHabcd

For the Y 4c sector we have:
1 4

2

3

jabcd = Jabcd − Jabcd

Gabcd =
1

(N − 2)

(
U[bc]gad − U[ac]gbd + U[ab]gcd

)
Ucd = gadJabcd

The Y 5 sector does not compose further under SO (p, q). To keep with the notation however

we write:

K = k

kabcd = Q[abcd]
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Like we did in the rank 4 GL (N) appendix, see appendix (B), we follow the notation of Itin

and Reches (Itin & Reches, 2021) on page 9. This results in the SO (p, q) decomposition:

Q = a⊕ A ⊕A⊕ (C.1)

b⊕ Б ⊕ ℶ⊕ c⊕ Ц ⊕ ⊕ג d⊕ Д ⊕ ℸ⊕

e⊕ E ⊕E⊕ f⊕ F ⊕ F⊕

g⊕ G ⊕ h⊕ H ⊕ j⊕ J ⊕

k

which we have grouped in lines according to their Ferrers diagram. This is the irreducible

SO (p, q) decomposition for an arbitrary rank 4 tensor; again if the tensor Q has any

additional symmetries one must check that these spaces are independent in a similar manner

to how we checked in the GL (N) case.
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APPENDIX D

RANK 4 SO (p, q) DECOMPOSITION PROOFS

In this appendix we provide proofs for the SO (p, q) decomposition of a 4th rank tensor.

Recall that the GL (N) irreducible tensors are given by the following decomposition:

Qabcd = Aabcd (D.1)

+ Babcd + Cabcd +Dabcd

+ Eabcd + Fabcd

+ Gabcd +Habcd + Jabcd

+ Kabcd

where each of the calligraphic letters represent the Young projectors. We follow Hammermesh

(Hammermesh, 1962/1989) and apply the decomposition:

Qabcd = Åabgcd + B̊acgbd + C̊adgbc + D̊bcgad + E̊bdgac + F̊cdgab (D.2)

+ Hgabgcd + Jgacgbd +Kgadgbc +Wabcd

to each of the GL (N) irreducible tensors to decompose them under SO (p, q). The tensor

Wabcd is the totally trace free piece and Åab . . . F̊ab are trace free second rank tensors with

no presumed symmetries. We will use equation (D.2) to decompose each of the 10 Young

sectors under SO (p, q). As in the 3rd Rank tensor case, we define tensors that relate our

above traces to just traces on a general fourth rank tensor Qabcd. Later we will think of

Qabcd as Aabcd . . .Kabcd as given by equation (D.1). It will be convenient to have the following

definitions:

gabQabcd = Pcd, gacQabcd = Rbd, gadQabcd = Ubc (D.3)

gbcQabcd = Xad, gbdQabcd = Yac, gcdQabcd = Zab
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gabgcdQabcd = P, gacgbdQabcd = R, gadgbcQabcd = U

With all of this established, we can determine all 25 SO (p, q) irreducible tensors, and we

give proofs to show how we decomposed them. Hammermesh (Hammermesh, 1962/1989)

guarantees that taking traces in this fashion and applying Young tableaux methods will

produce the SO (p, q) irreducible elements.

D.1 Y1 - a,A ,A

Below we give a proof for the Y 1 sector SO (p, q) decomposition.

1 2 3 4

Let us first look at the totally symmetric piece: Y 1 (Q)abcd = Aabcd. We would have the

symmetry Aabcd = A(abcd). Let us also define Y 1 (W )abcd = aabcd. Then, breaking up using

the idea of the general trace gives us the following formula:

Aabcd =
1

24
(Qabcd +Qabdc +Qacbd +Qacdb +Qadbc +Qadcb)

+
1

24
(Qbacd +Qbadc +Qbcad +Qbcda +Qbdac +Qbdca)

+
1

24
(Qcabd +Qcadb +Qcbad +Qcbda +Qcdab +Qcdba)

+
1

24
(Qdabc +Qdacb +Qdbac +Qdbca +Qdcab +Qdcba)

This then shows us that we can write Aabcd as:

Aabcd = G̊(ab)gcd+G̊(ac)gbd+G̊(ad)gbc+G̊(bc)gad+G̊(bd)gac+G̊(cd)gab+L (gabgcd + gacgbd + gadgbc)+aabcd

Next we will define 2 more tensors:

Aabcd = G̊(ab)gcd + G̊(ac)gbd + G̊(ad)gbc + G̊(bc)gad + G̊(bd)gac + G̊(cd)gab

Aabcd = L (gabgcd + gacgbd + gadgbc)
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Let us apply total symmetry to the equations we got from maple before. Doing this by hand

would have been a pain! We find: We can write:

gabA(abcd) = P(cd)

gacA(abcd) = R(bd) = gacA(acbd) = P(bd)

gadA(abcd) = U(bc) = gadA(adbc) = P(bc)

gbcA(abcd) = X(ad) = gbcA(bcad) = P(ad)

gbdA(abcd) = Y(ac) = gbdA(bdac) = P(ac)

gcdA(abcd) = Z(ab) = gcdA(cdab) = P(ab)

gabgcdA(abcd) = P

gacgbdA(abcd) = R = gacgbdA(acbd) = P

gadgbcA(abcd) = U = gadgbcA(adbc) = P

Solving these equations for G̊ab, L gives us:

G̊(cd) =
1

(N + 4)
P(cd) −

(N + 2)

(N + 4)
Lgcd

L =
1

N (N + 2)
P

Simplifying, we find:

G̊(cd) =
1

(N + 4)
P̊(cd)

P̊(cd) = P(cd) −
1

N
Pgcd

L =
1

N (N + 2)
P
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This in turn lets us write Aabcd, and Aabcd as:

Aabcd =
1

(N + 4)

(
P̊(ab)gcd + P̊(ac)gbd + P̊(ad)gbc + P̊(bc)gad + P̊(bd)gac + P̊(cd)gab

)

Aabcd =
1

N (N + 2)
P (gabgcd + gacgbd + gadgbc)

Thus, we can now write our Y 1 decomposition as:

Aabcd = aabcd + Aabcd + Aabcd

Aabcd =
6

(N + 4)
P̊(abgcd)

Aabcd =
3

N (N + 2)
Pg(abgcd)

P(cd) = gabA(abcd)

P = gabgcdA(abcd)

P̊(ab) = P(ab) −
1

N
Pgab

D.2 Y2 - b, c, d,ℶ, ℸ,Б,Ц,Д,ג

Below we give proofs for the Y 2 sector SO (p, q) decomposition.

D.3 Y2a - b,ℶ,Б

Below we give a proof for the Y 2a sector SO (p, q) decomposition.

1 2 3

4

Let us first look at the Y 2a piece: Y 2a (Q)abcd = Babcd. We would have the symmetryBabcd =

Ba(bc)d = B[a|bc|d]. Let us also define Y 2a (W )abcd = babcd. Then, breaking up using the idea
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of the general trace gives us the following formula:

Babcd =
1

8
(+Qabcd +Qbcad +Qcabd +Qacbd +Qcbad +Qbacd)

+
1

8
(−Qdbca −Qbcda −Qcdba −Qdcba −Qcbda −Qbdca)

If we use a degrees of freedom argument, we can find that the trace part: Babcd is generated

by a second rank general trace free tensor åad. This then tells us that we can write Babcd as:

Babcd = Babcd + babcd

Babcd = Y 2a (̊aadgbc)

After applying the Young symmetrizer, we have:

Babcd = 2 (̊aad − åda) gbc − 2̊acagbd − 2̊abagcd + 2̊abdgac + 2̊acdgab

Let us absorb the factor of 2 into åab and call it Υ:

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab

We will now go on to show that this is not the irreducible form of B. We now decompose

B further. Recall from earlier that we defined the P,R,U,X, Y, Z tensors and the P,R,U

scalars. Their definitions on any 4th rank tensor B are below:

gabBabcd = Pcd

gacBabcd = Rbd

gadBabcd = Ubc

gbcBabcd = Xad
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gbdBabcd = Yac

gcdBabcd = Zab

gabgcdBabcd = P

gacgbdBabcd = R

gadgbcBabcd = U

However, we know that in our case B has symmetries. This will in turn make some of these

definitions overlap. Let us begin by shoving our definition of B, Babcd =
(
Åab − F̊ba

)
gcd +

C̊adgbc +Hgabgcd +Wabcd into the above equations. Then we find:

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab + babcd

gabBabcd = Pcd = 2Υ̊[cd] + Υ̊cdN

gacBabcd = Rbd = 2Υ̊[bd] + Υ̊bdN

gadBabcd = 0 = −Υ̊cb − Υ̊bc + Υ̊bc + Υ̊cb = 0

gbcBabcd = Xad = 2Υ̊[ad] (N + 2)

gbdBabcd = Yac = 2Υ̊[ac] − Υ̊caN

gcdBabcd = Zab = 2Υ̊[ab] − Υ̊baN

gabgcdBabcd = 0

gacgbdBabcd = 0

gadgbcBabcd = 0

From here we will use the symmetries Babcd = Ba(bc)d = B[a|bc|d] to cut down some definitions.

For example, we will find that Rbd = Pbd, etc. This very much simplifies the computation
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down to something manageable.

gabBabcd = Pcd

gacBabcd = Rbd = gacBacbd = Pbd

gadBabcd = 0

gbcBabcd = X[ad]

gbdBabcd = Yac = −gbdBdbca = −Pca

gcdBabcd = Zab = −gcdBdcba = −Pba

gabgcdBabcd = P

gacgbdBabcd = R = gacgbdBacbd = P

gadgbcBabcd = 0

Now since we have simplified some equations, we shove them back into our starting 6.

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab + babcd

Pcd = Pcd = 2Υ̊[cd] + Υ̊cdN

Pbd = Rbd = 2Υ̊[bd] + Υ̊bdN

0 = 0

X[ad] = 2Υ̊[ad] (N + 2)

−Pca = 2Υ̊[ac] − Υ̊caN

−Pba = 2Υ̊[ab] − Υ̊baN

P = 0
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There are many indices floating around now. To relate these equations, let us relabel these

only using the indices ab, and then get rid of repeated equations:

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab + babcd

Pab = 2Υ̊[ab] + Υ̊abN

X[ab] = 2Υ̊[ab] (N + 2)

P = 0

Before that, we can find something out using the skew part of Pab:

P[ab] =
1

2
(Pab − Pba) = Υ̊[ab] (N + 2)

We find that:

P[ab] =
1

2
X[ab]

Therefore, we really only have 1 independent equation:

Babcd =
(
Υ̊ad − Υ̊da

)
gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab + babcd

Pab = 2Υ̊[ab] + Υ̊abN

P[ab] = Υ̊[ab] (N + 2)

P = 0

Now we solve. The Second equation gives us:

Υ̊[ab] =
1

(N + 2)
P[ab]
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Shoving the second into the first gives us:

Υ̊ab =
1

N
Pab −

2

N (N + 2)
P[ab]

We are done. Now we have a way to calculate our equation.

Babcd = 2Υ̊[ad]gbc − Υ̊cagbd − Υ̊bagcd + Υ̊bdgac + Υ̊cdgab

However, because Υ̊ab is only traceless we can again use the structure contained in GL (N)

to break off a symmetric and skew piece. We will call the Skew part of Υ̊ab the Cyrillic

Zhe: Жab = Υ̊[ab], and the resulting tensor generated by Жab will be called the Cyrillic Be:

Бabcd. Next, we will call the symmetric part of Υ̊ab the Cyrillic Yu: Юab = Υ̊(ab), and the

resulting tensor generated by Юab will be called the Hebrew Beth: ℶabcd.This then gives us:

Babcd = Бabcd + ℶabcd

Бabcd = 2Ж[ad]gbc − Жcagbd − Жbagcd + Жbdgac + Жcdgab

ℶabcd = −Юcagbd − Юbagcd + Юbdgac + Юcdgab

And we are left with what we should actually have as our trace decomposition of Y 2a:

Babcd = Бabcd + ℶabcd + babcd

babcd = Babcd − Бabcd − ℶabcd

Υ̊ab =
1

N
Pab −

2

N (N + 2)
P[ab]

Жab = Υ̊[ab]

Юab = Υ̊(ab)
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Then we find:

Жab =
1

N + 2
P[ab]

Юab =
1

N
P(ab)

Which gives us:

Бabcd =
1

N + 2

(
2P[ad]gbc − P[ca]gbd − P[ba]gcd + P[bd]gac + P[cd]gab

)
ℶabcd =

1

N

(
−P(ca)gbd − P(ba)gcd + P(bd)gac + P(cd)gab

)
The irreducible form of Babcd is given by:

Babcd = Бabcd + ℶabcd + babcd

babcd = Babcd − Бabcd − ℶabcd

Бabcd =
1

N + 2

(
2P[ad]gbc − P[ca]gbd − P[ba]gcd + P[bd]gac + P[cd]gab

)
ℶabcd =

1

N

(
−P(ca)gbd − P(ba)gcd + P(bd)gac + P(cd)gab

)
Pcd = gabBabcd

D.4 Y2b - c, Ц,ג

Below we give a proof for the Y 2b sector SO (p, q) decomposition.

1 2 4

3

Let us first look at the Y 2b piece: Y 2b (Q)abcd = Cabcd. We would have the symmetryCabcd =

Ca(b|c|d) = C[a|b|c]d. Let us also define Y 2b (W )abcd = cabcd. Then, breaking up using the idea
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of the general trace gives us the following formula:

Cabcd =
1

8
(+Qabcd +Qadcb +Qbacd +Qbdca +Qdacb +Qdbca)

+
1

8
(−Qcbad −Qcdab −Qbcad −Qbdac −Qdcab −Qdbac)

If we use a degrees of freedom argument, we can find that the trace part: Cabcd is generated

by a second rank general trace free tensor b̊ac. This then tells us that we can write Cabcd as:

Cabcd = Cabcd + cabcd

Cabcd = Y 2b
(̊
bacgbd

)
After applying the Young symmetrizer, we have:

Cabcd = 2
(̊
bac − b̊ca

)
gbd − 2̊bbagcd + 2̊bbcgad − 2̊bdagbc + 2̊bdcgab

Let us absorb the factor of 2 into b̊ab and call it Υ:

Cabcd =
(
Υ̊ac − Υ̊ca

)
gbd − Υ̊bagcd + Υ̊bcgad − Υ̊dagbc + Υ̊dcgab

We will now go on to show that this is NOT the simplest form of C as we previously thought.

The derivation comes next. Recall from earlier that we defined the P,R,U,X, Y, Z tensors

and the P,R,U scalars. Their definitions on any 4th rank tensor B are below:

gabCabcd = Pcd

gacCabcd = Rbd

gadCabcd = Ubc

gbcCabcd = Xad
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gbdCabcd = Yac

gcdCabcd = Zab

gabgcdCabcd = P

gacgbdCabcd = R

gadgbcCabcd = U

From here we will use the symmetries Cabcd = Ca(b|c|d) = C[a|b|c]d to cut down some definitions.

For example, we will find that Rbd = Pbd, etc. This very much simplifies the computation

down to something manageable.

gabCabcd = Pcd

gacCabcd = 0

gadCabcd = Ubc = gadCadcb = Pbc

gbcCabcd = Xad = −gbcCcbad = −Pad

gbdCabcd = Y[ac]

gcdCabcd = Zab = −gcdCcdab = −Pab

gabgcdCabcd = P

gacgbdCabcd = 0

gadgbcCabcd = U = gadgbcCadcb = P

However, we know that in our case C has symmetries. This will in turn make some of these

definitions overlap. Let us begin by shoving our definition of C into the above equations.

Then we find:

Cabcd =
(
Υ̊ac − Υ̊ca

)
gbd − Υ̊bagcd + Υ̊bcgad − Υ̊dagbc + Υ̊dcgab
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Pcd = 2Υ̊[dc] + Υ̊dcN

Y[ac] = 2 (N + 2) Υ̊[ac]

P = 0

There are many indices floating around now. To relate these equations, let us relabel

these only using the indices ab, and then get rid of repeated equations:

Cabcd =
(
Υ̊ac − Υ̊ca

)
gbd − Υ̊bagcd + Υ̊bcgad − Υ̊dagbc + Υ̊dcgab

Pcd = 2Υ̊[dc] + Υ̊dcN

Y[ab] = 2 (N + 2) Υ̊[ab]

P = 0

Before that, we can find something out using the skew part of Pab:

Pab = 2Υ̊[ba] + Υ̊baN

P[ab] =
1

2
(Pab − Pba) = −Υ̊[ab] (N + 2)

Υ̊[ab] = − 1

(N + 2)
P[ab]

We find that:

Y[ab] = −2P[ab]

Therefore, we really only have 1 independent equation:

Pab = 2Υ̊[ba] + Υ̊baN
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Now solve for Υ̊ab. Let us use the skew equation.

P[ba] = −Υ̊[ba] (N + 2)

Then we find that:

Pab =
2

(N + 2)
P[ab] + Υ̊baN

Υ̊ba =
1

N
Pab −

2

N (N + 2)
P[ab]

Υ̊[ab] = − 1

(N + 2)
P[ab]

And, we are done! And now we have a way to calculate our equation!

Cabcd = 2Υ̊[ac]gbd − Υ̊bagcd + Υ̊bcgad − Υ̊dagbc + Υ̊dcgab

However, because Υ̊ab is only traceless we can again use the structure contained in GL (N)

to break off a symmetric and skew piece. We will call the Skew part of Υ̊ab the Cyrillic

Zhe: Жab = Υ̊[ab], and the resulting tensor generated by Жab will be called the Cyrillic Ce:

Цabcd. Next, we will call the symmetric part of Υ̊ab the Cyrillic Yu: Юab = Υ̊(ab), and the

resulting tensor generated by Юab will be called the Hebrew Gimel: .abcdג This then gives

us:

Cabcd = Цabcd + abcdג

Цabcd = 2Ж[ac]gbd − Жbagcd + Жbcgad − Жdagbc + Жdcgab

abcdג = −Юbagcd + Юbcgad − Юdagbc + Юdcgab

And we are left with what we should actually have as our trace decomposition of Y 2a:

Cabcd = Цabcd + abcdג + cabcd

cabcd = Cabcd − Цabcd − abcdג
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Υ̊ba =
1

N
Pab −

2

N (N + 2)
P[ab]

Жab = −Υ̊[ab]

Юab = Υ̊(ab)

We then find that:

Жab = − 1

N + 2
P[ab]

Юab =
1

N
P(ab)

Цabcd =
1

N + 2

(
−2P[ac]gbd + P[ba]gcd − P[bc]gad + P[da]gbc − P[dc]gab

)
abcdג =

1

N

(
−P(ba)gcd + P(bc)gad − P(da)gbc + P(dc)gab

)
The irreducible form of Cabcd is given by:

Cabcd = Цabcd + abcdג + cabcd

cabcd = Cabcd − Цabcd − abcdג

Цabcd =
1

N + 2

(
−2P[ac]gbd + P[ba]gcd − P[bc]gad + P[da]gbc − P[dc]gab

)
abcdג =

1

N

(
−P(ba)gcd + P(bc)gad − P(da)gbc + P(dc)gab

)
Pcd = gabCabcd

Notice that the indices on Υ̊ are reversed from the definition in Y 2a

Υ̊ba =
1

N
Pab −

2

N (N + 2)
P[ab]
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D.5 Y2c - d,ℸ,Д

Below we give a proof for the Y 2c sector SO (p, q) decomposition.

1 3 4

2

Let us look at the Y 2c piece: Y 2c (Q)abcd = Dabcd. We would have the symmetry Dabcd =

D[ab](cd). Let us also define Y 2c (W )abcd = dabcd. Then, breaking up using the idea of the

general trace gives us the following formula:

Dabcd =
1

8
(+Qabcd +Qabdc +Qcbad +Qcbda +Qdbac +Qdbca)

+
1

8
(−Qbacd −Qbadc −Qcabd −Qcadb −Qdabc −Qdacb)

If we use a degrees of freedom argument, we can find that the trace part: Cabcd is generated

by a second rank general trace free tensor c̊ac. This then tells us that we can write Dabcd as:

Dabcd = Dabcd + dabcd

Dabcd = Y 2c (̊cabgcd)

After applying the Young symmetrizer, we have:

Dabcd = 4̊c[ab]gbd − 2̊ccagbd + 2̊ccbgad − 2̊cdagbc + 2̊cdbgac

Let us absorb the factor of 2 into c̊ab and call it Υ:

Dabcd = 2Υ̊[ab]gbd − Υ̊cagbd + Υ̊cbgad − Υ̊dagbc + Υ̊dbgac

However, because Υ̊ab is only traceless we can again use the structure contained in GL (N)

to break off a symmetric and skew piece. We will call the Skew part of Υ̊ab the Cyrillic Zhe:

Жab = Υ̊[ab], and the resulting tensor generated by Жab will be called the Cyrillic De: Дabcd.

Next, we will call the symmetric part of Υ̊abthe Cyrillic Yu: Юab = Υ̊(ab), and the resulting
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tensor generated by Юab will be called the Hebrew Daleth: ℸabcd. The same methodology

we applied for the Y 2a, and Y 2b sectors works here, and we leave out the intermediate steps;

after establishing the proofs for Y 2a, and Y 2b, we can see by examination the way the Y 2c

sector decomposes. This then gives us:

Dabcd = Дabcd + ℸabcd.

Жab = −Υ̊[ab]

Юab = Υ̊(ab)

Υ̊ba =
1

N
Rab −

2

N (N + 2)
R[ab]

Жab = − 1

N + 2
R[ab]

Юab =
1

N
R(ab)

Дabcd = 2Ж[ab]gbd − Жcagbd + Жcbgad − Жdagbc + Жdbgac

ℸabcd = −Юcagbd + Юcbgad − Юdagbc + Юdbgac

And we are left with what we should actually have as our trace decomposition of Y 2c:

Dabcd = Дabcd + ℸabcd.+ dabcd

We will now go on to show that this is NOT the simplest form of C as we previously thought.

The derivation comes next. The simplest form of Dabcd is given by:

Dabcd = Дabcd + ℸabcd.+ dabcd

dabcd = Dabcd − Дabcd − ℸabcd.

Дabcd =
1

N + 2

(
−2R[ab]gbd +R[ca]gbd −R[cb]gad +R[da]gbc −R[db]gac

)
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ℸabcd =
1

N

(
−R(ca)gbd +R(cb)gad −R(da)gbc +R(db)gac

)
Rbd = gacDabcd

D.6 Y3 - e, f,E ,F ,E,F

Below we give proofs for the Y 3 sector SO (p, q) decomposition.

D.7 Y3a - e,E ,E

Below we give a proof for the Y 3a sector SO (p, q) decomposition.

1 2

3 4

Let us look at the Y 3a piece: Y 3a (Q)abcd = Eabcd. We would have the symmetryEabcd =

E[a|b|c]d = Ea[b|c|d] = Ebacd. Let us also define Y 3a (W )abcd = eabcd. Then, breaking up using

the idea of the general trace gives us the following formula:

Eabcd =
1

12
(+Qabcd +Qabdc +Qbacd +Qbadc)

+
1

12
(−Qcbad −Qcbda −Qbcad −Qbcda)

+
1

12
(−Qadcb −Qadbc −Qdacb −Qdabc)

+
1

12
(+Qcdab +Qcdba +Qdcab +Qdcba)

We can define the following orthogonal sectors:

Eabcd =
4

(N − 2)
Y 3a

(
P̊abgcd

)

Eabcd =
2P

N (N − 1)
Y 3a (gabgcd)
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All we have to do now is apply symmetrizations:

Eabcd → 4

(N − 2)
P̊abgcd

→ 2

(N − 2)

(
P̊abgcd − P̊cbgad

)
=

1

(N − 2)

(
P̊abgcd − P̊cbgad − P̊adgcb + P̊cdgab

)

Eabcd → 2

N (N − 1)
Pgabgcd

→ 1

N (N − 1)
P (gabgcd − gcbgad)

=
1

2N (N − 1)
P (gabgcd − gcbgad − gadgcb + gcdgab)

=
1

N (N − 1)
P (gabgcd − gadgcb)

Recall that we had:

gabAabcd = Pcd

gacAabcd = Rbd

gadAabcd = Ubc

gbcAabcd = Xad

gbdAabcd = Yac

gcdAabcd = Zab

gabgcdAabcd = P

gacgbdAabcd = R

gadgbcAabcd = U
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Now before we sub in the E equation, we can simplify the above relations due to the

symmetries: Eabcd = E[a|b|c]d = Ea[b|c|d] = Ebacd. We find:

Xab = Uab

Pab = Zab

Rbd = 0

Yac = 0

Pab = −Xab

Where the last relation comes from Pcd = gabEabcd = −gabEcbad = −gabEcabd = −Xcd. These

relations also imply that:

P = −U

R = 0

Last there are some symmetry relations on these as well. We have:

Pab = P(ab) = Z(ab) = −X(ab) = −U(ab)

Applying these relations to our very first messy equations gives us:

νÅab = PabN
3 + (−Pgab + 6Pab)N

2

+ (−6Pgab + 8Pab)N

+ (−8Pgab)

B̊ab = 0
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νC̊ab = −PabN3 + (Pgab − Pab − 4Pab − Pab)N
2

+ (6Pgab − 3Pab + Pba − 3Pab + Pab − 4Pab)N

+ (8Pgab)

νD̊ab = −PabN3 + (Pgab − Pab − 4Pab − Pba)N
2

+ (6Pgab + Pab − 3Pba + Pab − 3Pab − 4Pab)N

+ (8Pgab)

E̊ab = 0

νF̊ab = PabN
3 + (−Pgab + 2Pab + 4Pab)N

2

+ (−6Pgab + 4Pab + 2Pab + 2Pab)N

+ (−8Pgab − 4Pab − 4Pba + 4Pab + 4Pab)

H =
1

µ
P (N + 2)

J = 0

K = − 1

µ
P (N + 2)

gabEabcd = Pcd = gcd + (H −K)Ngcd

gacEabcd = 0 = Ådb − C̊db − D̊bd + F̊db + (H −K) gdb

And two traces from those equations:

gabgcdEabcd = P = N + (H −K)N2

gacgbdEabcd = 0 = (H −K)N
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gabEabcd = Pcd = gcd + (H −K)Ngcd

gacEabcd = Rbd = 0 = Ådb − C̊db − D̊bd + F̊db + (H −K) gdb

gadEabcd = Ubc = Åcb − C̊cb − D̊bc + F̊cb + (H −K) gcb

gbcEabcd = Xad =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

gbdEabcd = Yac =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

gcdEabcd = Zab =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

gabgcdEabcd = P =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

gacgbdEabcd = R =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

gadgbcEabcd = U =
(
Åab − C̊ab − D̊ba + F̊ab

)
gcd + (H −K) gabgcd

Or we can skip to the end with Maple:

Eabcd =
4

(N − 2)
P̊abgcd

Eabcd =
2

N (N − 1)
Pgabgcd

gabEabcd = Pcd

P̊(ab) = P(ab) −
1

N
Pgab

Therefore, when we make orthogonal sectors we define the following:

Eabcd = eabcd + Eabcd + Eabcd

eabcd = Eabcd − Eabcd − Eabcd

Eabcd =
1

(N − 2)

(
P̊abgcd − P̊cbgad − P̊adgcb + P̊cdgab

)
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Eabcd =
1

N (N − 1)
P (gabgcd − gadgcb)

Pcd = gabEabcd

P = gabgcdEabcd

P̊(ab) = P(ab) −
1

N
Pgab

D.8 Y3b - f,F ,F

Below we give a proof for the Y 3b sector SO (p, q) decomposition.

1 3

2 4

Let us look at the Y 3b piece: Y 3b (Q)abcd = Fabcd. We would have the symmetryFabcd =

F[ab][cd] = Fcdab. Let us also define Y 3b (W )abcd = fabcd. Similarly to what we did in the

Y 2c section, we apply the same rationale here to make the proof shorter. Then, breaking

up using the idea of the general trace gives us the following formula:

Fabcd =
1

12
(+Qabcd +Qadcb +Qcbad +Qcdab)

+
1

12
(−Qbacd −Qbdca −Qcabd −Qcdba)

+
1

12
(−Qabdc −Qacdb −Qdbac −Qdcab)

+
1

12
(+Qbadc +Qbcda +Qdabc +Qdcba)

We can define the following orthogonal sectors:

Fabcd =
4

(N − 2)
Y 3b

(
R̊acgbd

)

Fabcd =
2R

N (N − 1)
Y 3b (gacgbd)
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All we have to do now is apply symmetrizations:

Fabcd → 4

(N − 2)
R̊acgbd

→ 2

(N − 2)

(
R̊acgbd − R̊bcgad

)
=

1

(N − 2)

(
R̊acgbd − R̊bcgad − R̊adgbc + R̊bdgac

)

Fabcd → 2

N (N − 1)
Rgacgbd

→ 1

N (N − 1)
R (gacgbd − gbcgad)

=
1

2N (N − 1)
R (gacgbd − gbcgad − gadgbc + gbdgac)

=
1

N (N − 1)
R (gacgbd − gadgbc)

Therefore, when we make orthogonal sectors we define the following:

Fabcd = fabcd + Fabcd + Fabcd

fabcd = Fabcd − Fabcd − Fabcd

Fabcd =
1

(N − 2)

(
R̊acgbd − R̊bcgad − R̊adgbc + R̊bdgac

)
Fabcd =

1

N (N − 1)
R (gacgbd − gadgbc)

R(bd) = gacFabcd

R = gacgbdFabcd

R̊(ab) = R(ab) −
1

N
Rgab

D.9 Y4 - g, h, j,G ,H ,J

Below we give proofs for the Y 4 sector SO (p, q) decomposition.
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D.10 Y4a - g,G

Below we give a proof for the Y 4a sector SO (p, q) decomposition.

1 2

3

4

Let us look at the Y 4a piece: Y 4a (Q)abcd = Gabcd. We would have the symmetryGabcd =

G[a|b|cd]. Let us also define Y 4a (W )abcd = gabcd. Then, breaking up using the idea of the

general trace gives us the following formula:

Gabcd =
1

8
(Qabcd +Qcbda +Qdbac −Qabdc −Qdbca −Qcbad)

+
1

8
(Qbacd +Qbcda +Qbdac −Qbadc −Qbdca −Qbcad)

Which implies that G is of the form:

Gabcd =
(
C̊cd − C̊dc

)
gab −

(
C̊ad − C̊da

)
gbc +

(
C̊ac − C̊ca

)
gbd + gabcd

Simplifying gives us:

Gabcd = 2
(
C̊[cd]gab − C̊[ad]gbc + C̊[ac]gbd

)
+ gabcd

Gabcd = Υ̊[cd]gab − Υ̊[ad]gbc + Υ̊[ac]gbd + gabcd

Gabcd = Υ̊[cd]gab − Υ̊[ad]gbc + Υ̊[ac]gbd

Recall that we had:

gabGabcd = Pcd

gacGabcd = Rbd

gadGabcd = Ubc
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gbcGabcd = Xad

gbdGabcd = Yac

gcdGabcd = Zab

gabgcdGabcd = P

gacgbdGabcd = R

gadgbcGabcd = U

Now before we sub in the G equation, we can simplify the above relations due to the

symmetries: Gabcd = G[a|b|cd]. We find:

Rbd = 0

Ubc = 0

Zab = 0

Pcd = P[cd]

R = 0

U = 0

P = 0

gbcGabcd = Xad = −Pad

gbdGabcd = Yac = Pac

Shoving these all into our original equations we find that:

Gabcd = Υ̊[cd]gab − Υ̊[ad]gbc + Υ̊[ac]gbd
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Pcd = (N − 2) Υ̊[cd]

Υ̊[ab] =
1

(N − 2)
P[ab]

This gives us:

Gabcd =
1

(N − 2)

(
P[cd]gab − P[ad]gbc + P[ac]gbd

)
We have:

Gabcd = Gabcd + gabcd

gabcd = Gabcd − Gabcd

Gabcd =
1

(N − 2)

(
P[cd]gab − P[ad]gbc + P[ac]gbd

)
Pcd = gabGabcd

D.11 Y4b - h,H

Below we give a proof for the Y 4b sector SO (p, q) decomposition.

1 3

2

4

Let us look at the Y 4b piece: Y 4b (Q)abcd = Habcd. We would have the symmetryHabcd =

H[ab|c|d]. Let us also define Y 4b (W )abcd = habcd. Similarly to what we did in the Y 2c section,

we apply the same rationale here to make the proof shorter. Then, breaking up using the

idea of the general trace gives us the following formula:

Habcd =
1

8
(Qabcd +Qbdca +Qdacb −Qadcb −Qdbca −Qbacd)

+
1

8
(Qcbad +Qcadb +Qcdba −Qcbda −Qcdab −Qcabd)
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Which implies that H is of the form:

Habcd = Υ̊[bd]gac − Υ̊[ad]gbc + Υ̊[ab]gcd + habcd

Simplifying gives us:

Habcd = Υ̊[bd]gac − Υ̊[ad]gbc + Υ̊[ab]gcd

We have:

Habcd = Habcd + habcd

habcd = Habcd − Habcd

Habcd =
1

(N − 2)

(
R[bd]gac −R[ad]gbc +R[ab]gcd

)
Rcd = gacHabcd

D.12 Y4c - j,J

Below we give a proof for the Y 4c sector SO (p, q) decomposition.

1 4

2

3

Let us look at the Y 4c piece: Y 4c (Q)abcd = Jabcd. We would have the symmetryJabcd =

J[abc]d. Let us also define Y 4c (W )abcd = jabcd. Similarly to what we did in the Y 2c section,

we apply the same rationale here to make the proof shorter. Then, breaking up using the

idea of the general trace gives us the following formula:

Jabcd =
1

8
(Qabcd +Qbcad +Qcabd −Qacbd −Qcbad −Qbacd)

+
1

8
(Qdbca +Qdcab +Qdabc −Qdbac −Qdacb −Qdcba)
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Which implies that J is of the form:

Jabcd = Υ̊[bc]gad − Υ̊[ac]gbd + Υ̊[ab]gcd + jabcd

Simplifying gives us:

Jabcd = Υ̊[bc]gad − Υ̊[ac]gbd + Υ̊[ab]gcd

We have:

Jabcd = Jabcd + jabcd

jabcd = Jabcd − Jabcd

Gabcd =
1

(N − 2)

(
U[bc]gad − U[ac]gbd + U[ab]gcd

)
Ucd = gadJabcd

D.13 Y5 - k

The Y 5 sector does not decompose further under SO (p, q). We however repeat results

here on it from before.
1

2

3

4

Let us look at the Y 5 piece: Y 5 (Q)abcd. We would have the symmetry Y 5 (Q)abcd =

Y 2b (Q)[abcd]. Breaking up:

kabcd =
1

24
(Qabcd −Qabdc −Qacbd +Qacdb +Qadbc −Qadcb)

+
1

24
(−Qbacd +Qbadc +Qbcad −Qbcda −Qbdac +Qbdca)

+
1

24
(Qcabd −Qcadb −Qcbad +Qcbda −Qcdba +Qcdab)

+
1

24
(−Qdabc +Qdacb +Qdbac −Qdbca +Qdcba −Qdcab)
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We only have one piece, therefore:

Y 5 (Q)abcd = kabcd

kabcd = Q[abcd]
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APPENDIX E

DEGREES OF FREEDOM OF IRREDUCIBLE RANK 4 TENSORS AND THEIR

RELATED SPINORS IN 4-DIMENSIONS

In the Rank 4 Tensors section, we began talking about degrees (notated “deg”) of

freedom and how they correspond regarding rank 4 tensors and spinors. Here we show how

the degrees of freedom match exactly between all the rank 4 SO (p, q) irreducible tensors, and

SL (2,C) irreducible spinors in 4D. We will go through each sector labeled by their Ferrers

diagrams, starting with Y 1, and ending with Y 5. We also include the GL (N) irreducible

tensors like A and count their components. This is important in helping us calculate the

components of the SO (p, q) irreducible tensors. What we do to find those, is we can calculate

through Young tableaux methods the number of components of the GL (N) irreducible

tensors. Then we can calculate the curly tensors A . . . through the same methods applied

to trace free rank two tensors. The difference of these sectors gives the totally trace free

degrees of freedom for tensors like a.

Furthermore, to calculate the degrees of the freedom of the spinors, we can also use

Young tableaux tools because we can count the degrees of freedom of totally symmetric

tensors. Applying this method to both S and S and then multiplying the results together

because of the tensor product S ⊗ S being the spinor space then gives us the degrees of

freedom of any of the spinors that we are interested in. Notice that for each of these, the

degrees of freedom of all the SO (p, q) irreducible tensors add up to the degrees of freedom

of the single GL (N) irreducible tensor. Now we move onto the presentation of the results.

For the Y 1 sector, we have the following tensors and spinors: Aabcd; aabcd, Aabcd, Aabcd,

S(ABCD)(A′B′C′D′ ), ι(AB)(A′B′ ), and υ. The degrees of freedom of each of the tensors are

given below. The degrees of freedom of S, and a are equal in 4D; likewise the degrees of
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freedom of A and ι are equal in 4D; last the degrees of freedom of A and υ are equal in 4D.

deg (A) =
1

24
(N) (N + 1) (N + 2) (N + 3)

deg (a) =
1

24
(N) (N + 1) (N − 1) (N + 6)

deg (A ) =
1

2
(N) (N + 1)− 1, deg (A) = 1

For the Y 2 sector, we have the following tensors and spinors: Babcd, Cabcd, Dabcd; babcd, cabcd,

dabcd, ℶabcd, ,abcdג ℸabcd, Бabcd, Цabcd, Дabcd, α(ABCD)(A′B′ ), β(ABCD)(A′B′ ), γ(ABCD)(A′B′ ),

Ω(AB)(A′B′ ), κ(AB)(A′B′ ), θ(AB)(A′B′ ), µ(AB), ρ(AB), and o(AB). The degrees of freedom of

all the totally trace free tensors are the same; likewise the same holds for all the Cyrillic

tensors, and the Hebrew tensors. Note that we multiply both the spinors α and µ by 2

because they are arbitrary complex spinors with no reality condition of Penrose (Penrose

& Rindler, 1987a); in a similar vein the spinor Ω does not get multiplied by 2 because of

hermiticity/the same reality condition. The degrees of freedom of each of the tensors and

relevant spinors are given below. The degrees of freedom of the Hebrew tensors match those

of the hermitian spinors in 4D; likewise the totally trace free tensors’ degrees of freedom

match that of the 6th rank spinors in 4D; finally the degrees of freedom of the Cyrillic

tensors match that of the rank 2 spinors in 4D.

deg (B) =
1

8
(N) (N + 1) (N + 2) (N − 1)

deg (b) =
1

8
(N − 1) (N − 2) (N + 4) (N + 1)

deg (ℶ) =
1

2
N (N + 1)− 1, deg (Б) =

1

2
N (N − 1)

For the Y 3 sector, we have the following tensors and spinors: Eabcd, Fabcd; eabcd, fabcd, Eabcd,



252

Fabcd, Eabcd, Fabcd, δ(ABCD), Ψ(ABCD), π(AB)(A′B′ ), Φ(AB)(A′B′ ), χ and Λ. The degrees of

freedom of all the totally trace free tensors are the same; likewise the same holds for all the

curly tensors, and the scalars. Like before, we multiply the degrees of freedom of δ and Ψ

by two because they are generally complex; with the same idea the spinors π and Φ do not

get multiplied by two just like before. The degrees of freedom of each of the tensors and

relevant spinors are given below. The degrees of freedom of the curly tensors match those

of the hermitian (4th rank) spinors in 4D; likewise the totally trace free tensors’ degrees

of freedom match that of the 4th rank spinors in 4D; finally the degrees of freedom of the

trace-full tensors match that of the rank 0 spinors in 4D.

deg (E) = 1

12

(
N2
)
(N + 1) (N − 1)

deg (e) =
1

12
(N) (N + 1) (N + 2) (N − 3)

deg (E) =
1

2
(N) (N + 1)− 1, deg (E) = 1

For the Y 4 sector, we have the following tensors and spinors: the following tensors and

spinors: Gabcd, Habcd, Jabcd; gabcd, habcd, jabcd, Gabcd, Habcd, Jabcd, τ(AB)(A′B′ ), ζ(AB)(A′B′ ),

ξ(AB)(A′B′ ), ν(AB), η(AB), and σ(AB). Again, the degrees of freedom of all the totally trace

free tensors are the same; likewise the same holds for all the curly tensors. The degrees of

freedom of each of the tensors and relevant spinors are given below. The degrees of freedom

of the curly tensors match those of the rank 2 spinors in 4D; finally the totally trace free

tensors’ degrees of freedom match that of the antihermitian (4th rank) spinors in 4D.

deg (Gabcd) =
1

8
(N) (N + 1) (N − 1) (N − 2)
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deg (gabcd) =
1

8
(N) (N − 1) (N − 3) (N + 2) ,

deg (Gabcd) =
1

2
(N) (N − 1)

For the Y 5 sector we have the following tensor and spinor: Kabcd; kabcd, and ℵ. The degrees

of freedom of the tensors and relevant spinors are given below. The degrees of freedom of

the totally trace free, skew-symmetric tensor matches that of a rank 0 spinor in 4D.

deg (kabcd) =
1

24
(N) (N − 1) (N − 2) (N − 3)

deg (kabcd)|N=4 = deg (ℵ) = 1

And with that we have all the relations on degrees of freedom for rank 4 spinors in relation

to real 4th rank tensors (in N -dimensions for the tensors, while the spinor degrees of freedom

we looked at matched in 4D which interests us because it is the dimension of spacetime in

ECSK theory).
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APPENDIX F

FORMULAS FOR ALL 25 SL (2,C) IRREDUCIBLE SPINORS IN TERMS OF THEIR

SO (3, 1) IRREDUCIBLE RANK 4 TENSORS

Two component spinors are mathematical objects used to describe the spin of particles

in physics; they are made through the Pauli matrices and an identity matrix. They are

represented by two complex numbers on a vector space S. The degrees of freedom of a

two component spinor describe the number of real independent variables needed to specify

the state of the spinor. In the case of a two component spinor the two complex variables

correlate directly to the four coordinates of spacetime through the Pauli matrices.

We can describe the state of the spinor in terms of its orientation in a complex plane,

which is closely related to the properties of spacetime through the above correspondence.

It is also worth noting that the number of degrees of freedom of a two component spinor is

related to the number of independent components of the rank 2 spinor field that it represents.

Furthermore, these spinors are related to spacetime through the Infeld-Van Der Waerden

symbols σ AA
′

a ; we can convert a vector va to a spinor ωAA
′
with these symbols. Expressions

such as ϵA
′
D

′
ϵBCϵB

′
C

′
Бabcd really represent:

ϵA
′
D

′
ϵBCϵB

′
C

′
Бabcd ∼= ϵA

′
D

′
ϵBCϵB

′
C

′
БAA′BB′CC′DD′

Where we have defined the Cyrillic spinor in terms of the Infeld-Van der Waerden symbols

by:

БAA′BB′CC′DD′ = БabcdσaAA′σbBB′σcCC′σdDD′

but we omit this to save space in our equations below. This is in the same fashion as Penrose

and Rindler in (Penrose & Rindler, 1987a).

For the purposes of computer algebra, we also give the calling commands to use in the

ECSK package below the subsequent equations in each section. Many of the commands just
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require a tensor and a soldering form. Any of the commands to generate a tensor from a

given spinor require the spinor and a soldering form; we write this as the inputs: 1.) a 4th

rank tensor, 2.) a solder form. The solder forms we use are the Infeld-Van Der Waerden

symbols. Furthermore, we do not say this every time, but it will be implied.

For the cases in which the formulas have a spinor bar, an optional argument is able to

be added in the third slot which is the bar spinor. For example in the Y 2a equations later

on there is an α spinor and an α spinor in the equation to generate the tensor b. The inputs

are: 1.) a spinor, 2.) a solder form, 3.) {optional argument} a spinor conjugate to input 1.

To calculate b we would use the command “Rank4GenerateAlphaTensor” with the following

inputs: (α, σ AA
′

a , α). This also helps the computer to better handle complex conjugation.

The sections below begin with the Y 1 sector and end with the Y 5 sector.

F.1 The Y1 Spinors - S, ι, υ

The Y 1 spinors are S, ι, and υ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

S(ABCD)(A′B′C′D′ )
∼= aabcd (F.1)

ι(AB)(A′B′ )
∼=

1

8
gefAefab (F.2)

Aabcd
∼= ϵABϵA′B′ ι(CD)(C′D′ ) + ϵACϵA′C′ ι(BD)(B′D′ ) (F.3)

+ ϵADϵA′D′ ι(BC)(B′C′ ) + ϵBCϵB′C′ ι(AD)(A′D′ )

+ ϵBDϵB′D′ ι(AC)(A′C′ ) + ϵCDϵC′D′ ι(AB)(A′B′ )

υ =
1

24
gefgghAefgh (F.4)
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Aabcd ∼= υ
(
ϵABϵA′B′ ϵCDϵC′D′

)
(F.5)

+ υ
(
ϵACϵA′C′ ϵBDϵB′D′

)
+ υ

(
ϵADϵA′D′ ϵBCϵB′C′

)
Here we list the code used to calculate the left-hand side of each of the above equations;

first though the right-hand side of equation (F.1) can be calculated from a given S spinor

and soldering from by the command “Rank4GenerateSTensor”.

We have: “Rank4SSpinor” for equation (F.1), “Rank4IotaSpinor” for equation (F.2),

“Rank4GenerateIotaTensor” for equation (F.3), “Rank4UpsilonSpinor” for equation (F.4),

“Rank4GenerateUpsilonTensor” for equation (F.5)

F.2 The Y2 Spinors - α, β, γ,Ω, κ, θ, µ, ρ, o

The Y 2 spinors are α, β, γ, Ω, κ, θ, µ, ρ, and o. We split the spinors into the Y 2a,

Y 2b, and Y 2c tableaux sectors to sort them further.

F.3 The Y2a Spinors - α,Ω, µ

The Y 2a spinors are α, Ω, and µ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

α(ABCD)(B′C′ )
∼=

1

2
babcdϵ

A
′
D

′
(F.6)

babcd ∼= α(ABCD)(B′C′ )ϵA′D′ + α(A′B′C′D′ )(BC)ϵAD (F.7)

µ(CD)
∼=

1

12
ϵC

′
D

′
gabБabcd (F.8)
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Бabcd ∼= 2gbc

(
ϵA′D′µ(AD) + ϵADµ(A′D′ )

)
+ gab

(
ϵC′D′µ(CD) + ϵCDµ(C′D′ )

)
+ gac

(
ϵB′D′µ(BD) + ϵBDµ(B′D′ )

)
(F.9)

+ gbd

(
ϵA′C′µ(AC) + ϵACµ(A′C′ )

)
+ gcd

(
ϵA′B′µ(AB) + ϵABµ(A′B′ )

)

Ω(CD)(C′D′ )
∼=

1

4
gabℶabcd (F.10)

ℶabcd ∼= gabΩ(CD)(C′D′ ) + gacΩ(BD)(B′D′ ) (F.11)

− gbdΩ(AC)(A′C′ ) − gcdΩ(AB)(A′B′ )

Here we list the code used to calculate the left-hand side of each of the above equations. We

have: “Rank4AlphaSpinor” for equation (F.6), “Rank4OmegaSpinor” for equation (F.10),

“Rank4MuSpinor” for equation (F.8), “Rank4GenerateAlphaTensor” for equation (F.7),

“Rank4GenerateOmegaTensor” for equation (F.11), and “Rank4GenerateMuTensor” for

equation (F.9).

F.4 The Y2b Spinors - β, κ, ρ

The Y 2b spinors are β, κ, and ρ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

β(ABCD)(B′D′ )
∼=

1

2
cabcdϵ

A
′
C

′
(F.12)

cabcd ∼= β(ABCD)(B′D′ )ϵA′C′ + β(A′B′C′D′ )(BD)ϵAC (F.13)

ρ(CD)
∼=

1

12
ϵC

′
D

′
gabЦabcd (F.14)
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Цabcd
∼= −2gbd

(
ϵA′C′ρ(AC) + ϵACρ(A′C′ )

)
(F.15)

+ gab

(
ϵC′D′ρ(CD) + ϵCDρ(C′D′ )

)
− gad

(
ϵB′C′ρ(BC) + ϵBCρ(B′C′ )

)
− gbc

(
ϵA′D′ρ(AD) + ϵADρ(A′D′ )

)
− gcd

(
ϵA′B′ρ(AB) + ϵABρ(A′B′ )

)

κ(CD)(C′D′ )
∼=

1

4
gabגabcd (F.16)

abcdג ∼= gabκ(CD)(C′D′ ) + gadκ(BC)(B′C′ ) (F.17)

− gbcκ(AD)(A′D′ ) − gcdκ(AB)(A′B′ )

Here we list the code used to calculate the left-hand side of each of the above equations. We

have: “Rank4BetaSpinor” for equation (F.12), “Rank4KappaSpinor” for equation (F.16),

“Rank4RhoSpinor” for equation (F.14), “Rank4GenerateBetaTensor” for equation (F.13),

“Rank4GenerateKappaTensor” for equation (F.17), and “Rank4GenerateRhoTensor” for

equation (F.15).

F.5 The Y2c Spinors - γ, θ, o

The Y 2c spinors are γ, θ, and o. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

γ(ABCD)(C′D′ )
∼=

1

2
dabcdϵ

A
′
B

′
(F.18)

dabcd ∼= γ(ABCD)(C′D′ )ϵA′B′ + γ(A′B′C′D′ )(CD)ϵAB (F.19)

o(BD)
∼=

1

12
ϵB

′
D

′
gacДabcd (F.20)
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Дabcd
∼= −2gcd

(
ϵA′B′o(AB) + ϵABo(A′B′ )

)
(F.21)

+ gac

(
ϵB′D′o(BD) + ϵBDo(B′D′ )

)
+ gad

(
ϵB′C′o(BC) + ϵBCo(B′C′ )

)
− gbc

(
ϵA′D′o(AD) + ϵADo(A′D′ )

)
− gbd

(
ϵA′C′o(AC) + ϵACo(A′C′ )

)

θ(BD)(B′D′ )
∼=

1

4
gacℸabcd (F.22)

ℸabcd ∼= gacθ(BD)(B′D′ ) + gadθ(BC)(B′C′ ) (F.23)

− gbcθ(AD)(A′D′ ) − gbdθ(AC)(A′C′ )

Here we list the code used to calculate the left-hand side of each of the above equations. We

have: “Rank4GammaSpinor” for equation (F.18), “Rank4ThetaSpinor” for equation (F.22),

“Rank4OmicronSpinor” for equation (F.20), “Rank4GenerateGammaTensor” for equation

(F.19), “Rank4GenerateThetaTensor” for equation (F.23), and “Rank4GenerateOmicronTensor”

for equation (F.21).

F.6 The Y3 Spinors - δ,Ψ, π,Φ, χ,Λ

The Y 3 spinors are δ, Ψ, π, Φ, χ, and Λ. We split the spinors into the Y 3a, and Y 3b

tableaux sectors to sort them further.

F.7 The Y3a Spinors - δ, π, χ

The Y 3a spinors are δ, π, and χ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

δ(ABCD)
∼=

1

4
eabcdϵ

A
′
C

′
ϵB

′
D

′
(F.24)
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eabcd ∼= δ(ABCD)ϵA′C′ ϵB′D′ + δ(A′B′C′D′ )ϵACϵBD (F.25)

π(AB)(A′B′ ) =
1

2
gcdEabcd (F.26)

Eabcd ∼= π(AB)(A′B′ )ϵCDϵC′D′ − π(BC)(B′C′ )ϵADϵA′D′ (F.27)

+ π(CD)(C′D′ )ϵABϵA′B′ − π(AD)(A′D′ )ϵBCϵB′C′

χ ∼=
1

12
gabgcdEabcd (F.28)

Eabcd ∼= χ
(
ϵABϵCDϵA′B′ ϵC′D′ − ϵADϵBCϵA′D′ ϵB′C′

)
(F.29)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4DeltaSpinor” for equation (F.24), “Rank4PiSpinor” for equation (F.26),

“Rank4ChiSpinor” for equation (F.28), “Rank4GenerateDeltaTensor” for equation (F.25),

“Rank4GeneratePiTensor” for equation (F.27), and “Rank4GenerateChiTensor” for equation

(F.29).

F.8 The Y3b Spinors - Ψ,Φ,Λ

The Y 3b spinors are Ψ, Φ, and Λ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

Ψ(ABCD)
∼=

1

4
fabcdϵ

A
′
B

′
ϵC

′
D

′
(F.30)

fabcd ∼= Ψ(ABCD)ϵA′B′ ϵC′D′ +Ψ(A′B′C′D′ )ϵABϵCD (F.31)

Φ(AC)(A′C′ )
∼=

1

2
gbdFabcd (F.32)

Fabcd = Φ(AC)(A′C′ )ϵBDϵB′D′ − Φ(BC)(B′C′ )ϵADϵA′D′ (F.33)

+ Φ(BD)(B′D′ )ϵACϵA′C′ − Φ(AD)(A′D′ )ϵBCϵB′C′
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Λ ∼=
1

12
gacgbdFabcd (F.34)

Fabcd ∼= Λ
(
ϵACϵBDϵA′C′ ϵB′D′ − ϵADϵBCϵA′D′ ϵB′C′

)
(F.35)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4PsiSpinor” for equation (F.30), “Rank4PhiSpinor” for equation (F.32),

“Rank4LambdaSpinor” for equation (F.34), “Rank4GeneratePsiTensor” for equation (F.31),

“Rank4GeneratePhiTensor” for equation (F.33), and “Rank4GenerateLambdaTensor” for

equation (F.35).

F.9 The Y4 Spinors - τ, ζ, ξ, ν, η, σ

The Y 4 spinors are τ , ζ, ξ, ν, η, and σ. We split the spinors into the Y 2a, Y 2b, and

Y 2c tableaux sectors to sort them further.

F.10 The Y4a Spinors - τ, ν

The Y 4a spinors are τ , and ν. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

τ(AB)(C′D′ ) =
1

2
gabcdϵ

A
′
B

′
ϵCD (F.36)

gabcd ∼= ϵA′C′ ϵBDτ(AC)(B′D′ ) − ϵB′D′ ϵACτ(BD)(A′C′ ) (F.37)

+ ϵA′B′ ϵCDτ(AB)(C′D′ ) − ϵC′D′ ϵABτ(CD)(A′B′ )

− ϵA′D′ ϵBCτ(AD)(B′C′ ) + ϵB′C′ ϵADτ(BC)(A′D′ )

ν(CD)
∼=

1

4
ϵC

′
D

′
gabGabcd (F.38)
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Gabcd = ϵABϵA′B′

(
ϵC′D′ν(CD) + ϵCDν(C′D′ )

)
(F.39)

− ϵBCϵB′C′

(
ϵA′D′ν(AD) + ϵADν(A′D′ )

)
+ ϵBDϵB′D′

(
ϵA′C′ν(AC) + ϵACν(A′C′ )

)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4TauSpinor” for equation (F.36), “Rank4NuSpinor” for equation (F.38),

“Rank4GenerateTauTensor” for equation (F.37), and “Rank4GenerateNuTensor” for equation

(F.39).

F.11 The Y4b Spinors - ζ, η

The Y 4b spinors are ζ, and η. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

ζ(AB)(C′D′ ) =
1

2
habcdϵ

A
′
B

′
ϵCD (F.40)

habcd ∼= ϵA′C′ ϵBDζ(AC)(B′D′ ) − ϵB′D′ ϵACζ(BD)(A′C′ ) (F.41)

+ ϵA′B′ ϵCDζ(AB)(C′D′ ) − ϵC′D′ ϵABζ(CD)(A′B′ )

+ ϵA′D′ ϵBCζ(AD)(B′C′ ) − ϵB′C′ ϵADζ(BC)(A′D′ )

η(BD)
∼=

1

4
ϵB

′
D

′
gacHabcd (F.42)

Habcd = ϵACϵA′C′

(
ϵB′D′η(BD) + ϵBDη(B′D′ )

)
(F.43)

− ϵBCϵB′C′

(
ϵA′D′η(AD) + ϵADη(A′D′ )

)
+ ϵCDϵC′D′

(
ϵA′B′η(AB) + ϵABη(A′B′ )

)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4ZetaSpinor” for equation (F.40), “Rank4EtaSpinor” for equation (F.42),

“Rank4GenerateZetaTensor” for equation (F.41), and “Rank4GenerateEtaTensor” for equation
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(F.43).

F.12 The Y4c Spinors - ξ, σ

The Y 4c spinors are ξ, and σ. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

ξ(AB)(C′D′ ) =
1

2
jabcdϵ

A
′
B

′
ϵCD (F.44)

jabcd ∼= ϵA′C′ ϵBDξ(AC)(B′D′ ) − ϵB′D′ ϵACξ(BD)(A′C′ ) (F.45)

− ϵA′B′ ϵCDξ(AB)(C′D′ ) + ϵC′D′ ϵABξ(CD)(A′B′ )

+ ϵA′D′ ϵBCξ(AD)(B′C′ ) − ϵB′C′ ϵADξ(BC)(A′D′ )

σ(BC)
∼=

1

4
ϵB

′
C

′
gadJabcd (F.46)

Jabcd = ϵADϵA′D′

(
ϵB′C′σ(BC) + ϵBCσ(B′C′ )

)
(F.47)

− ϵBDϵB′D′

(
ϵA′C′σ(AC) + ϵACσ(A′C′ )

)
+ ϵCDϵC′D′

(
ϵA′B′σ(AB) + ϵABσ(A′B′ )

)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4XiSpinor” for equation (F.44), “Rank4SigmaSpinor” for equation (F.46),

“Rank4GenerateXiTensor” for equation (F.45), and “Rank4GenerateSigmaTensor” for equation

(F.47).



264

F.13 The Y5 Spinor - ℵ

The Y 5 spinor is ℵ. Two equations relating this spinor to its corresponding 4th rank

SO (p, q) irreducible tensor in 4 dimensions are given below.

ℵ ∼=
1

36
ϵABϵCDϵA

′
C

′
ϵB

′
D

′
kabcd (F.48)

kabcd = ℵ
(
ϵABϵCDϵA′C′ ϵB′D′ − ϵACϵBDϵA′B′ ϵC′D′

)
(F.49)

+ ℵ
(
ϵABϵCDϵA′D′ ϵB′C′ − ϵADϵBCϵA′B′ ϵC′D′

)
+ ℵ

(
ϵACϵBDϵA′D′ ϵB′C′ − ϵADϵBCϵA′C′ ϵB′D′

)
Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4AlephSpinor” for equation (F.48), and “Rank4GenerateAlephTensor” for

equation (F.49).
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APPENDIX G

THE BELINFANTE-ROSENFELD RELATION

We will follow Poplawski Pg. 68, but have modified it slightly to suit our definitions

and needs. Also see Wheeler (J. T. Wheeler, 2023) for clarification. The total variation of

the matter action with respect to geometrical variables is either equation (G.1) or equation

(G.2). Equation (G.2) is in a way more fundamental because we can interpret gab as a

function of eaµ from the orthonormality relation gab = eaµe
b
νη
µν .

δSM = −1

2

ˆ

Ω

TabδgabdΩ− 1

2

ˆ

Ω

M bc
a δT abcdΩ (G.1)

δSM = −
ˆ

Ω

T µ
a δe

a
µdΩ− 1

2

ˆ

Ω

YaµνδωµνadΩ (G.2)

Equivalently, we could write the torsion piece in terms of the contorsion. The motivation for

this comes from Hehl. Hehl (F. Hehl et al., 1976) examines parallelly transported tetrads in

an ECSK (he uses the term U4) spacetime. Going further he says that the connection 1-forms

ωµνa describe “the rotation of the parallelly transported tetrad relative to the given tetrad

system. This rotation consists of two pieces, the Ricci rotation ϖµ
νa due to the Riemannian

metric [...], and an independent "added twist" Cbca proportional to the contortion. The

tetrad vectors in a U4 thus have new degrees of freedom - independent rotations not specified

by the metric structure” (F. Hehl et al., 1976) (See section II.F Pg 6). In this light Hehl

couples the spin angular momentum to the contorsion tensor, not the torsion tensor. This

equivalent variation is given by equation (G.3).

δSM = −1

2

ˆ

Ω

TabδgabdΩ− 1

2

ˆ

Ω

(
gbdS

adc
)
δCbcadΩ (G.3)

In each of these equations (1,2,3) we have only specified our independent variables: for
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equation (G.1) the independent variables are gab and T abc, for equation (G.2) the independent

variables are eaµ and ωµνa, and for equation (G.3) that the independent variables are gab

and Cabc.

Our goal here is to relate these two actions together, the metric/contorsion one, and the

vielbein/spin connection one. This relation is called the Belinfante-Rosenfeld relation which

we will derive shortly. See Belinfante (Belinfante, 1940), and Rosenfeld (Rosenfeld, 1940)

for the historical references. To begin with, this relation exists in the first place because

of the orthonormality relation generated by eaµ, and because the spin connection’s Levi-

Civita generated piece ϖµ
νa depends on the vielbein. These ideas give us a way to relate

these two different action variations under the same principles. The relation is essential

in understanding a gravity theory coupled to Dirac spinors for example because the action

does not depend on the metric, only on the vielbein. A relation between equation (G.2) and

equation (G.3) is what we ultimately want.

To get down to it, we start by writing the metric variation δgab in terms of the vielbein

variation δeaµ. If we use the orthonormality relation gab = e µ
a e ν

b ηµν , and then vary it,

δgab = 2ηµνδ
(a
c e

b)
νδecµ, then we find that the metric variation piece in equation (G.1) can be

written as is in equation (G.4.)

1

2

ˆ

Ω

TabδgabdΩ =

ˆ

Ω

TabeaµδebµdΩ (G.4)

Although we want to get a relation between equations (G.2) and (G.3), it is beneficial

calculation wise to examine equation (G.1) because of a relation on the torsion tensor in

terms of the spin connection.

Similarly to what we did above, we can examine the torsion part. By making use of

the tetrad postulate, we can expand the torsion tensor in terms of the spin connection and

tetrad as in equation (G.6); see Poplawski (Poplawski, 2013) pg 45 (1.5.31).

Dae
b
µ = ∂ae

b
µ + Γbcae

c
µ − ωνµae

b
ν = 0 (G.5)
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Recall that even in an anholonomic basis, we can use Lie’s third theorem, turning the lie

algebra basis into a coordinate one with coordinate coefficients, to write the torsion as

T abc = −2Γa[bc]. This combined with the tetrad postulate results in a way to write the

torsion tensor in terms of the spin connection and tetrad, see equation (G.6).

T abc = 2ωa[cb] + 2eaµ∂[be
µ
c] (G.6)

The variation of equation (G.6) becomes equation (G.7). It has been simplified considerably

using an incredibly useful relation between the vielbein and inverse vielbein: δe β
c = −e β

a e
µ
c δeaµ,

and by an integration by parts to isolate an eventual boundary term.

δT abc = 2δωa[cb] +
(
2δaf∂[be

σ
c] + 2e σ

[c ∂b]e
a
µe

µ
f

)
δefσ − 2∂[b

(
e σ
c] δ

a
fδe

f
σ

)
(G.7)

Now substitute the torsion variation above into the torsion variation piece of equation (G.1).

We can simplify off some pieces first by isolating the boundary term δS {e} and the spin

connection variation piece δS {ω}. We will then examine the tetrad variation piece δS {e}

and simplify it. We begin by turning the abstract indices on δω into orthonormal ones: i.e.

δωacb = δ
(
eaµe

ν
c ω

µ
νb

)
. This results in equation (G.7) simplifying down to equation (G.8).

δT abc = (G.8)

(
2eaµe

ν
[c δ

f
b]

)
δωµνf − 2∂[b

(
e σ
c] δ

a
fδe

f
σ

)
+
(
2eaµe

ν
f ω

µ
ν[ce

σ
b] − 2δafω

σ
ν[ce

ν
b] + 2δaf∂[be

σ
c] + 2e σ

[c ∂b]e
a
µe

µ
f

)
δefσ

Below we have substituted the torsion variation in terms of the vielbein and spin connection

and simplified. Furthermore, we have broken off each of the pieces corresponding to the

vielbein variation δS {e}, the spin connection variation δS {ω}, and the vielbein boundary

piece δS {∂e}.
1

2

ˆ

Ω

M bc
a δT abcdΩ =
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=

ˆ

Ω

M bc
a

(
δ
(
eaµe

ν
c ω

µ
νb

)
+
(
δaf∂be

σ
c + e σ

c ∂be
a
µe

µ
f

)
δefσ

)
dΩ

−
ˆ

Ω

M bc
a ∂b

(
e σ
c δ

a
fδe

f
σ

)
dΩ

= δS {e}+ δS {ω}+ δS {∂e}

Here we have each of the pieces δS {e}, δS {ω}, and δS {∂e} defined as follows in equations:

(G.9), (G.10), and (G.11). We have used Scab = −2M[ab]c in equation G.11, and we

have used Stokes’ theorem in equation (G.9) to convert the region Ω integral to a closed

hypersurface Σ integral.

δS {e} =

ˆ

Ω

(
M bc

a δ
(
eaµe

ν
c

)
ωµνb

)
dΩ (G.9)

+

ˆ

Ω

((
M bc

a δaf∂be
σ
c +M bc

a e σ
c ∂be

a
µe

µ
f

)
δefσ

)
dΩ

+

ˆ

Ω

((
∂bM

bc
a e σ

c δ
a
f

)
δefσ

)
dΩ

δS {∂e} = −
ˆ

Ω

∂b

(
M bc

a e σ
c δ

a
fδe

f
σ

)
dΩ = −

˛

Σ

nbM
bc
f e σ

c δe
f
σdΣ (G.10)

δS {ω} = −
ˆ

Ω

M νb
µ δωµνbdΩ =

ˆ

Ω

(
1

2
Sbµν

)
δωµνbdΩ (G.11)

We will now simplify the non-boundary tetrad piece and give a derivation.

δS {e} =
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=

ˆ

Ω

(
M bc

a δ
(
eaµe

ν
c

)
ωµνb

)
dΩ

+

ˆ

Ω

((
M bc

a δaf∂be
σ
c +M bc

a e σ
c ∂be

a
µe

µ
f

)
δefσ

)
dΩ

+

ˆ

Ω

((
∂bM

bc
a e σ

c δ
a
f

)
δefσ

)
dΩ

=

ˆ

Ω

(
M bc

f δefσe
ν
c ω

σ
νb +M bc

a eaµ

(
−e ν

f e
σ
c δe

f
σ

)
ωµνb

)
dΩ

+

ˆ

Ω

((
M bc

a δaf∂be
σ
c +M bc

a e σ
c ∂be

a
µe

µ
f

)
δefσ

)
dΩ

+

ˆ

Ω

((
∂bM

bc
a e σ

c δ
a
f

)
δefσ

)
dΩ

=

ˆ

Ω

(
M bc

f e ν
c ω

σ
νb −M bc

a eaµe
ν
f e

σ
c ω

µ
νb

)
δefσdΩ

+

ˆ

Ω

(
M bc

a δaf∂be
σ
c +M bc

a e σ
c ∂be

a
µe

µ
f

)
δefσdΩ

+

ˆ

Ω

(
∂bM

bc
a e σ

c δ
a
f

)
δefσdΩ

=

ˆ

Ω

(
M bc

f e ν
c ω

σ
νb −M bc

a eaµe
ν
f e

σ
c ω

µ
νb+

)
δefσdΩ

+

ˆ

Ω

(
M bc

a δaf

(
Γfcbe

σ
f − ωσλbe

λ
c

)
+M bc

a e σ
c ∂be

a
µe

µ
f

)
δefσdΩ

+

ˆ

Ω

(
∂bM

bc
a e σ

c δ
a
f

)
δefσdΩ



270

=

ˆ

Ω

(
M bc

a e σ
c e

µ
f

(
∂be

a
µ − ωνµbe

a
ν

))
δefσdΩ

+

ˆ

Ω

(
M bc

a δafΓ
d
cbe

σ
d + ∂bM

bc
a e σ

c δ
a
f

)
δefσdΩ

+

ˆ

Ω

(
∂bM

bc
a e σ

c δ
a
f

)
δefσdΩ

=

ˆ

Ω

(
M bc

a e σ
c e

µ
f

(
−Γadbe

d
µ

)
+M bc

a δafΓ
d
cbe

σ
d

)
δefσdΩ

=

ˆ

Ω

(
∂bM

bc
a e σ

c δ
a
f

)
δefσdΩ

=

ˆ

Ω

(
−M bc

a e σ
c e

µ
f Γadbe

d
µ +M bc

a δafΓ
d
[cb]e

σ
d

)
δefσdΩ

=

ˆ

Ω

((
DbM

bc
a + ΓdabM

bc
d − 2Γg[bg]M

bc
a − 1

2
T cbdM

bd
a

)
e σ
c δ

a
f

)
δefσdΩ

=

ˆ

Ω

(
DbM

bc
f + T gbgM

bc
f

)
e σ
c δe

f
σdΩ

In the derivation above, we needed to use the covariant derivative of a tensor density. This

is given by equation (G.12) because it does not come up very often. Upon the many steps

of simplification, equation (G.9) reduces to the compact form of equation (G.13).

DfM
bc
a = ∂fM

bc
a − ΓdafM

bc
d + ΓbdfM

dc
a + ΓcdfM

bd
a − ΓggfM

bc
a (G.12)

δS {e} =

ˆ

Ω

((
DbM

bc
f + T gbgM

bc
f

)
e σ
c

)
δefσdΩ (G.13)

We can furthermore simplify δS to write the torsion variation as the tetrad and contorsion

variation. Recall: Tabc = −2Ca[bc], Mabc = 1
2 (Sabc +Scba −Sbca). These result in an

interesting formula which shows us how the contorsion tensor variation is related to the
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torsion tensor variation in equation (G.14). Recall also that Scab = −2M[ab]c.

1

2

ˆ

Ω

M bc
a δT abcdΩ =

ˆ

Ω

(
1

2
gbdS

adc

)
δCbcadΩ (G.14)

To move forward, we make one assumption which will later be found out true in the

same vein as the arguments from Belinfante, Rosenfeld, and Poplawski ((Belinfante, 1940),

(Rosenfeld, 1940) (Poplawski, 2013) respectively). We assume that the equations of motion

for a variational theory starting from the same action with independent variables eaµ,and

Cabc must always be the same; Wheeler assumes less (J. T. Wheeler, 2023), and thus his

argument shows this procedure is even more general; to clarify, we can always vary whatever

we would like, this just means that if we vary with respect to a variable not eaµ,and Cabc

that the resulting equations can always be written in terms of a variation of eaµ, and Cabc.

This assumption results in equation (G.15) where Saµν = e
[µ
a e

ν]
b Sabc. It will also result in

the Belinfante-Rosenfeld relation, equation (G.18).

Saµν = Yaµν (G.15)

This turns out to be at the core of the argument that Belinfante and Rosenfeld used to

prove that the Belinfante-Rosenfeld tensor was the same as the Hilbert energy momentum

tensor. With this assumption, just by using equation (G.14) and that equations (G.10),

(G.11), and (G.13) together equal the left-hand side of equation (G.14), we find how a spin

connection variation decomposes into tetrad and contorsion pieces if we choose them as the

independent variables in our theory. This is one of the most useful relations that we will

show eventually relates our physics back to the Hilbert energy momentum tensor of general

relativity. Substituting this all in we get a relation for the spin connection variation of matter

in terms of the vielbein and contorsion variation plus a boundary term as in equation (G.16).

1

2

ˆ

Ω

YaµνδωµνadΩ = (G.16)
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ˆ

Ω

((
DcM

bc
f − T ggcM

bc
f

)
e σ
b

)
δefσdΩ

+

ˆ

Ω

(
1

2
gbdS

adc

)
δCbcadΩ+

˛

Σ

nbM
bc
f e σ

c δe
f
σdΣ

To use everything we have so far, and to make the Belinfante-Rosenfeld relation all we need

to do it substitute equation (G.16) into our original variation, equation (G.2). This results

in equation (G.17), where now our independent variables are the vielbein and contorsion

tensor Cabc.

δSM =

ˆ

Ω

(
−T σ

f −
(
DcM

bc
f − T ggcM

bc
f

)
e σ
b

)
δefσdΩ (G.17)

−
ˆ

Ω

(
1

2
gadS

fde

)
δCaefdΩ−

˛

Σ

nbM
bc
f e σ

c δe
f
σdΣ

In GR, Belinfante (Belinfante, 1940) and Rosenfeld (Rosenfeld, 1940) showed that the

coefficient of δefσ in equation (G.17) is exactly the Hilbert energy momentum tensor; of

course in GR the torsion tensor is zero, and the relation is simplified. By an extension

of their logic we can say that the coefficient of δefσ above is exactly the Hilbert energy

momentum tensor in ECSK theory, making this the natural extension of Belinfante and

Rosenfeld’s logic when we include torsion. Furthermore, this resolves our assumption that

“ that the equations of motion for a variational theory starting from the same action with

independent variables eaµ, and Cabc must always be the same.” The assumption turns out

to be true always by Belinfante & Rosenfeld’s arguments. Thus, we wind up with a way

to interpret tetrad and spin connection energy momentum tensors in ECSK to metric and

contorsion energy momentum tensors in ECSK as well how to relate Palatini spin potential

tensors to spin angular momentum tensors. This Belinfante-Rosenfeld relation is shown

below in equation (G.18).

Tafeaσ = T σ
f +DcM

bc
f e σ

b − T ggcM
bc
f e σ

b (G.18)
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Hehl (Belinfante, 1940) on pg. 75 has a form version of the Belinfante-Rosenfeld Relation

also for an ECSK spacetime in terms of differential forms, however he drops the boundary

term as implied by his approximate equal sign in equations (5.2.19) on said page. Applying

the Belinfante-Rosenfeld relation to equation (G.2) is insightful into the structure we are

used to in general relativity. Once we use the Belinfante-Rosenfeld relation on equation

(G.17), we get equation (G.19).

δSM =

ˆ

Ω

(−Tafeaσ) δefσdΩ−
ˆ

Ω

(
1

2
gbdS

adc

)
δCbcadΩ−

˛

Σ

nbM
bc
f e σ

c δe
f
σdΣ (G.19)

Upon comparing equation (G.19) to equation (G.3) with equation (G.4) applied, we find

that we have the same exact theory up to a boundary term. This furthermore goes along

with Belinfante and Rosenfeld’s work and is incredibly clarifying when we look physically

at what couples to gravity matter wise.

A slight nuance when examining the boundary term occurs, however. If one takes the

viewpoint that the spin connection depends on the tetrad and contorsion tensor; this is an

important philosophical and mathematical distinction. For instance if we are able to vary

with respect to the tetrad and contorsion at the beginning, and we are able to vary with

respect to the tetrad and spin connection, we must wind up with the same thing if we pick

the tetrad and contorsion as our independent variables.

This comes up in Dirac theory where it is easier to vary with respect to the spin

connection and tetrad, and use the Belinfante relation. The difficulty in varying with

respect to contorsion and the tetrad at the get go comes from the fact that the Levi-Civita

spin connection (ϖµ
νa) appears when breaking off the contorsion tensor from the covariant

derivative, resulting in the same boundary term as we found above.

All in all, this relation relates many of the different theories of gravity together.
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