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ABSTRACT

A Classification of Tensors in ECSK Theory

by

Joshua James Leiter, Doctor of Philosophy

Utah State University, 2023

Major Professor: Charles G. Torre, Ph.D.
Department: Physics

This dissertation presents a Petrov/Plebanski/Segre/Algebraic (PPSA) classification
scheme for both the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory
(ECSK); additionally the work includes a software package in Maple with computational
and PPSA classification tools. Six different solutions are classified using the new software
tools developed. We also present a new boundary term for ECSK-NMC scalar theory to
ensure Dirichlet boundary conditions. New work completed includes the decomposition
of an arbitrary 4th rank tensor under SO (p,q), equivalent SL (2,C) irreducible spinor
decompositions of arbitrary 3rd and 4th rank tensors. We provide new proofs that the
corresponding spinors are the irreducible components in the SL (2,C) decomposition of 3rd
and 4th rank tensors using Maple. Additionally, we provide an algebraic decomposition
of the torsion spinors, an algorithm determining their algebraic decomposition, an ECSK-
PPSA classification for the curvature tensor, and finally the Gibbons-Hawking-York (GHY)
- ECSK - Non-Minimally-Coupled (NMC) scalar field boundary term such that the metric
variation vanishes on the boundary without any need to constrain the normal derivatives of

the variation of the metric.

(292 pages)
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PUBLIC ABSTRACT

A Classification of Tensors in ECSK Theory

Joshua James Leiter

You might have heard of Einstein’s theory of General relativity (GR): it is the one
where mass and energy curve the fabric of spacetime to create gravity. This is the major
theory which allows communication through satellites and our GPS to work too! Wormholes
have interested me, but there are some issues about forming them in GR. Interestingly
enough, elementary particles are also characterized by their spin in the standard model.
However, intrinsic spin is nowhere geometrically coupled to the geometry of spacetime in
Einstein’s theory. Later, Elie Cartan, Dennis Sciama, and Tom Kibble all flushed out adding
different aspects of Spin into GR making a new theory called Einstein-Cartan-Sciama-Kibble
(ECSK) theory where spin is linked to the torsion tensor of Cartan. This addition of spin
according to several articles allows for wormholes without any invocation of exotic matter
(negative mass). There’s the background! This dissertation breaks apart ECSK theory into
observable through the use of the Lorentz group, encompassing time dilation and rotations.
The consequences are that we can find new physics through the use of these tools which
correspond to structures in spacetime. Then by forming combinations of these objects (think
x?) we can further analyze the geometrical structures and get a handle on what is happening
physically! Computer tools in the Maple software package have been developed to expedite
calculation on several ECSK problems. Together these tools form an ECSK toolkit which
corresponds to the ideas used by Petrov, Plebanski, Segre, and Penrose (PPSP) to classify

structures in GR.
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NOTATION

Tensors

Contorsion ~ Contortion!, the tensor: C ..

Variation
g a variation with respect to the field g.
Ey the field equation for 1.

©%{dp}  the boundary term related to 1.

Invariants and Covariants

co(in)variant ~ Covariant or Invariant.

!(Contortion & Contorsion: Both of these terms are used in the literature. Hehl (F. Hehl et al., 1976)
would call this object the Contortion)



CHAPTER 1
INTRODUCTION

This dissertation presents a Petrov/Plebanski/Segre/Algebraic (PPSA) classification
scheme for the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory
(ECSK); additionally, it includes a related software package in Maple with computational
and PPSA classification tools. Six different solutions given in references (Chen et al., 2018),
(Platania & Rosania, 1997), and (Bronnikov & Galiakhmetov, 2015) are classified using the
new software tools developed. We also determine boundary terms for the Einstein-Cartan-
Sciama-Kibble, and Non-Minimally Coupled scalar field action, which we call ECSK-NMC,
such that the boundary conditions needed to get the field equations are Dirichlet conditions;
the normal derivative of the metric at the boundary is unconstrained. We decompose an
arbitrary 4th rank tensor under SO (p,q). Then we for the SL (2,C) irreducible spinor
decompositions for arbitrary 3rd and 4th rank tensors. We provide new proofs that show
these spinors are the irreducible counterparts using Maple. After that, we develop an
algebraic decomposition of the torsion spinors, and an algorithm to determine their algebraic
decomposition. Moving forward we provide an ECSK-PPSA classification for the curvature
tensor. Finally, we present a new GHY boundary term for ECSK-NMC such that the metric
variation vanishes on the boundary without any need to constrain the normal derivatives of

the variation of the metric.

1.1 The History of ECSK Theory

ECSK theory got its name from Albert Einstein, Elie Cartan, Dennis Sciama, and
Thomas Kibble. The gravity theory includes Einstein’s name because he originally developed
the theory of General Relativity (GR). Many of the mathematical parts of GR come from
differential geometry. In GR, the gravitational field is described by the curvature of spacetime;

spacetime curves because of the matter and energy in it. However, in the development of



GR, the torsion tensor which naturally occurs in differential geometry was left out.

In 1922 Cartan (Cartan, 1922) began working on a generalization of Riemannian
geometry which included the torsion tensor. In 1923 Cartan noticed (Cartan, 1923) that
GR could be generalized with the addition of torsion. This was the birth of ECSK theory;
Cartan is the “C” in the theory.

Cartan theorized torsion would couple to the same spin that was just discovered in
the Stern-Gerlach experiment; it is interesting as a historical note that Cartan’s paper
generalizing Riemannian geometry (Cartan, 1922) was published the same year, just a
bit after the Stern-Gerlach experiment took place. By including torsion in spacetime, the
geometry is augmented even further, leading to new physical phenomena. Einstein did not
add torsion into GR in 1922, but over the next three years Cartan further developed the
theory, (Cartan, 1924), (Cartan, 1925). It was not until 1928, when Einstein tried to match
torsion with electromagnetism, that he became affiliated with the theory; Einstein’s name
is represented by the “E”. The first one to view gravity as a gauge theory was Uityama
(Utiyama, 1956) in 1956. In the 1960s, ECSK theory took off. Sciama (Sciama, 1962) and
Kibble (Kibble, 1961) were the revisers of ECSK theory with both of their papers; they
were the “S” and “K” respectively. Then came the great compilation review paper by Hehl
(F. Hehl et al., 1976) in 1976 which tied the theory together in a beautiful physical package.
Most recently, Hehl (F. W. Hehl, 2023) has presented ECSK theory from a Poincaré gauge

theory viewpoint.

1.2 Significance of this Work

The fundamental part of ECSK that is different from General Relativity (GR) is that
ECSK naturally couples spin to the geometry through torsion. In the standard model of
particle physics, particles are characterized by their mass and spin. Mass/energy generated
the gravitational field in GR, and spin generates a related contorsion gravitational field
in ECSK. It is natural to consider ECSK as an extension to GR to include spin effects.
As an aside, these ECSK tools will help with the development of a wormhole. Stated

in (Mehdizadeh & Ziaie, 2017), wormholes without exotic matter (think negative energy



3

density) are possible in ECSK theory; torsion allows this to happen. Wormholes would be
incredibly useful for space exploration, and thus are of physical importance; not to mention
mathematically beautiful.

There are not many experimental results available which constrain torsion, and to
the author’s knowledge, only one of the three possible irreducible representations has an
experimental constraint. The axial torsion has been constrained by Lammerzahl (Lammerzahl,
1997) to:

K, <15x107% m™!
Ky <1072 m™!

where K is the z-component of the axial torsion vector in 4 dimensions, and K is the

time component of the axial torsion vector in 4 dimensions.

1.3 Mission Statement

One of the difficulties in GR is the coordinate freedom that solutions to the field
equations have; it is difficult to tell if two solutions are equivalent up to coordinate
transformations just by looking at them. The Cartan-Karlhede algorithm (Karlhede, 1980)
is one method used to distinguish these solutions. To run the algorithm, however, it is
important to have scalars which provide a unique local characterization (See Stephani
(Stephani et al., 2003) Pg. 116). These same scalars are used in the Petrov and Segre
classifications of spacetime and are intimately related to them. There is currently no
corresponding classification of solutions, or equivalence method yet for ECSK Theory; this
is mainly due to the inclusion of the torsion tensor. This dissertation aims to provide several
tools for classifications in ECSK theory. We examine and classify several known solutions

in chapters 6, 7, and 8.

1.4 Survey of the Dissertation
In this section we give an overview and roadmap of the entire dissertation. We discuss

each chapter and its contents with hopefully enough detail to direct the reader to sections
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they will find most interesting for further study. We begin by stating the classification task
we wish to accomplish, and then walk the reader through the relevant chapters relating to
this task.

In our task to classify the curvature and torsion tensors in ECSK theory, we begin by
first finding irreducible representations of arbitrary second, third, and fourth rank tensors
under GL (N). We then proceed to decompose these representations further under the
subgroup SO (p, ¢) and find the irreducible decomposition of these tensors under this group.
For our classification of the curvature and torsion tensors, we use SL (2, C) spinors; for this,
we also specialize to four dimensions with signature [+, —, —, —].

Once we have all the SL (2,C) irreducible spinors which correspond to second, third,
and fourth rank tensors, we specialize to the cases of the curvature and torsion tensors.
Using the tools we developed in the general case, we find the SO (3,1) irreducible tensors
which compose both the curvature and torsion tensors. We then turn these tensors into
spinors. There are three spinors which completely determine the torsion tensor which we
call ©, =, and 2. Likewise, there are six spinors which completely determine the curvature
tensor. We call these spinors ¥, ®, A, 2K, FO, and X.

We classify the curvature and torsion tensors by classifying these nine spinors. For
the curvature spinors we use Petrov-Plebanski-Segre-Algebraic (PPSA) tools, and for the
torsion we use analogous algebraic tools. In both cases, we provide a list of invariants and
covariants to determine the PPSA type. We use the word covariant here in the same fashion
as Olver (Olver, 2003). In this case, a covariant is similar to an invariant other than the
fact that it transforms tensorially.

The three preliminary chapters of this work discuss rank 2, rank 3, and rank 4 tensors
and how to decompose them under GL (N), and SO (p,q). Additionally, these chapters
analyze the SL (2,C) irreducible spinors which correspond to SO (3, 1) irreducible tensors;
there is a 1 to 1 relationship between these irreducible spinors and tensors. In our work, we
discuss this correspondence in signature [+, —, —, —|. Finally, in the last sections of these

chapters PPSA classification tools are discussed with regard to the curvature and torsion



tensors.

For the later chapters, chapter 5 and onward, we employ variational calculus heavily
and keep the boundary terms the whole way through in the ECSK-Non-Minimally-Coupled
(NMC) scalar field case. The terms we modify the ECSK-NMC Scalar field action guarantee
that the boundary conditions are Dirichlet. For the Dirac field, and the spinning fluid /generalized
ECSK theory chapters, we do not include all the boundary terms. This is an interesting
direction for future work. If this route of research is pursued, we encourage the researcher
to work with the vielbein e, * and spin connection w" ,, as their field variables.

Chapter 2 is the rank 2 tensor decomposition section and walks through the Young,
SO (p,q), and SL (2,C) decompositions. Chapters 3 and 4 apply the same decompositions
to 3rd and 4th rank tensors as well. We use this correspondence to turn the tensors into
spinors because spinors are easier to classify and may reduce further under epsilon spinor
traces than their corresponding tensors would. This is due to how, when irreducible, they
are always symmetric in their unprimed and primed indices respectively. Stewart (Stewart,
1993) states that every SL (2, C) irreducible spinor is totally symmetric in its indices; we use
this fact throughout our work. Another direction for future work would be to accomplish
this classification in N dimensions. The work of Brauer and Weyl (Brauer & Weyl, 1935)
may be of interest in this regard.

Chapter 3 presents a classification of the torsion tensor in terms of the algebraic
reducibility of the SL (2,C) irreducible torsion spinors which we call 0, Z, and Q2. We
present a new algorithm to classify the torsion tensor’s structural reducibility, usually called
algebraic irreducibility in the literature. The algorithm calculates several co(in)variants for
this purpose and is found at the end of chapter 3 in figures (3.1) and (3.2).

Chapter 4 presents decompositions of an arbitrary rank 4 tensor under GL (N), SO (p, q),
and SL(2,C). Many of the explicit formulas we use and derive here can be found in
the appendix due to there being 25 SO (p,q) irreducible subspaces for rank 4 tensors.
Additionally, later in the chapter we present the PPSA classification of the curvature tensor

in terms of the SL (2, C) irreducible curvature spinors which we call ¥, ®, A, 2K, O, and N.
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Each of the above classifications examines a tensor in a different SO (p, ¢) invariant subspace
of the space of curvature tensor. To make an analogy, decomposing the curvature tensor,
in GR, into irreducible components in these subspaces is called the Ricci decomposition,
i.,e. Riemann = Weyl + Trace Free Ricci + Ricci Scalar. The Weyl tensor is classified
via its Petrov classification. The trace-free Ricci tensor is classified through the Plebanski
and Segre Classifications. The Ricci Scalar is classified at a point by whether it is positive,
negative, or zero; we choose this classification because it holds in an open set around any
point chosen, with a small caveat for exceptional points which may change type.

In ECSK there are three more SO (p, q) irreducible representations appearing in the
curvature tensor than in GR because of the addition of the torsion tensor. We present
the PPSA classification of each of the six different tensors resulting from the SO (p,q)
decomposition of the curvature tensor. All the additional irreducible elements of the curvature
tensor not found in GR, but found in ECSK, can be classified using the PPSA like methods
presented. However, determining these elements of the curvature tensor in the first place is
non-trivial; it also requires heavy representation theory and tools from computer algebra to
not be cumbersome.

The idea for the PPSA classification in ECSK theory is to use the spinor methods
along with Young tableaux in references (Penrose & Rindler, 1987a), (Stewart, 1993),
(J. T. Wheeler, unpublished), (Penrose & Rindler, 1987b) to complete the classification
of the curvature and torsion tensors. Maple procedures have been implemented to work
with the DifferentialGeometry package described in (Anderson & Torre, 2012). For the
mathematical background on the Petrov classification and Segre classification, there are
good explanations given by Penrose and Rindler in (Penrose & Rindler, 1987a), (Penrose
& Rindler, 1987b). The Petrov classification asks about the multiplicity of eigenvalues
of the Weyl tensor (from GR) acting on the space of bivectors; this can be reformatted
as finding the multiplicities of the eigenvalues/eigenvectors of the totally symmetric Weyl
Spinor (which is a spinor irreducible representation of the Weyl part of the curvature tensor)

acting on the space of rank 2 symmetric spinors. The Segre classification asks for the Jordan
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normal form of the trace-free Ricci tensor. The Petrov and Segre classifications have been
implemented in Maple for GR by (Anderson & Torre, 2012).

Chapter 5 presents a background on the ECSK field equations, and defines several new
tensors in analogy to GR, most notably we define a “Cartan” tensor labeled by € bc which
is analogous to the Einstein tensor but for the second field equation arising in ECSK; just as
the Einstein tensor is the left-hand side to the metric g4, field equations, the Cartan tensor
is the left-hand side to the contorsion/spin-connection field equations C%_/wq.

Chapter 6 walks through ECSK-NMC scalar field theory through a comparison to
Bronnikov and Galiakhmetov’s (Bronnikov & Galiakhmetov, 2015) work. We present an
additional Gibbons-Hawking-York (GHY)-like boundary term in the action which prevents
the variational principle from over-constraining the metric variation on the boundary, and
we classify Bronnikov and Galiakhmetov’s solution according to the classification tools
presented in chapters 3 and 4.

Chapter 7 presents a walkthrough on ECSK-Dirac theory, at the end of which we classify
a solution presented by Platania and Rosania (Platania & Rosania, 1997). Chapter 8 gives
a short note on spinning fluids, as they generate the last irreducible representation of the
torsion tensor not covered by the NMC or Dirac fields.

Chapter 8 presents Chen, Zhang, and Jing’s (Chen et al., 2018) extension to ECSK
(cubic torsion action) of which we classify three of the solutions they present. As a note
here, our algorithm does not provide enough information to determine that these solutions
are distinct; to create a Cartan-Karlhede (Karlhede, 1980) algorithm for ECSK we would
need more information; this is an interesting and fruitful direction for future work.

Finally, in chapter 9 we end with a short conclusion of all the new work we have
accomplished.

There are several appendices. The first of these is appendix A which compares the
decomposition of the torsion tensor we present to that in the literature; see Shapiro (Shapiro,
2001) for an example. The next of these, appendix B) formulas for the GL (IV) decomposition

of an arbitrary rank 4 tensor; these were developed using Young tableaux tools. We
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continue this in appendix C where we give the formulas for the SO (p,q) decomposition
of an arbitrary rank 4 tensor. Appendix D presents proofs of the SO (p,q) decomposition
of a 4th rank tensor. Appendix E presents the formulas for the number of independent
components/degrees of freedom for SO (p, q) irreducible rank 4 tensors and their corresponding
SL (2,C) irreducible spinors when p = 3,¢ = 1. Appendix F presents formulas for all 25
SL(2,C) irreducible spinors in terms of their SO (3,1) irreducible rank 4 tensors. Finally,
appendix G is our last appendix and discusses the Belinfante-Rosenfeld relation. This
relation is incredibly important for relating ECSK theories with differing field variables.
Finally, there are several Maple worksheets and modules which will be available digitally.
The worksheets include: Rank 3 Spinor Proofs, Rank 4 Spinor Proofs, Ricci Canonical
Forms, Platania-Rosania Classification, Chen Classification, Bronnikov Classification, and
Alpha(ABC)A’. The last of these is an explanation on the classification of the torsion
Spinor.

The modules include: ECSKModule, Rank2TensorModule, Rank3TensorModule,
Rank4TensorModule, SegrelnvariantsModule, and TorsionlnvariantsModule. The ECSK
module is the fundamental module and also includes several new Maple procedures for
calculating the contorsion tensor, a metric compatible torsion-full connection, and the
torsion-only part of the ECSK curvature tensor which we call the Alphonse tensor. These
are only a few of the new commands, however. There are many others, all of which are

sufficiently compatible with the DifferentialGeometry package.



CHAPTER 2
RANK 2 TENSOR DECOMPOSITIONS

This section details: how to decompose rank 2 tensors using Young tableaux, how
to perform a SO (p,q) decomposition of rank 2 tensors in any dimension, how to find
the SL (2,C) irreducible spinors of a rank 2 tensor in dimension 4, and provides Maple
procedures to calculate each of these. Although we could give a comprehensive overview of
Young tableaux in all generality, we will point the reader to the wonderful maple documentation
for tableaux in DifferentialGeometry (Anderson & Torre, 2012); additionally, Young tableaux
are dissected in (Fulton & Harris, 1991) pages 44-52/62.

To begin, we will discuss Young tableaux in terms of how matrices are usually decomposed.
Young tableaux give the irreducible elements of vector spaces under the general linear group
GL (N). This is related to symmetric and antisymmetric/skew-symmetric matrices, for they
are the two GL (N) irreducible elements of rank 2 tensors under that group. We will then
show how the notation used in Young diagrams quickly illustrates this in a computationally
and conceptually useful way. We will next show how to count the independent components
with Young diagrams; to this end, the idea of the hook length product is introduced. The
hook length product will be increasingly important for higher rank tensors.

After that, we will introduce how further specializing the group to SO (p, ¢), a subgroup
of GL (N), refines the number of irreducible elements we are able to construct from two to
three. Following this, we will give a few short examples of Maple procedures which will do
the same calculation in the Rank2TensorModule module.

Following that we move to spinor calculations, beginning with the same Young calculation
but on a spinor; this example shows how spinors further reduce rank, making their classification
easier, due to the symplectic form e4p. Recall that €4p is the object left invariant under the
group Sp (2); additionally the symplectic group of dimension 2 is isomorphic to the special

linear group of dimension 2 over C i.e., Sp(2) = SL(2,C); see Stewart (Stewart, 1993).
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After being warmed up by that example, we move to the hermitian spinor, 6, 4/ 5 Which
corresponds to a real rank 2 tensor M. Following Penrose and Rindler (Penrose & Rindler,
1987a) we decompose 6 45 4/ into its irreducible spinor elements and relate the idea back
to what we did with SO (p, ¢). We summarize the decomposition of a tensor under SO (3, 1)
and how it corresponds to irreducible two-component spinor elements in 4 dimensions; the
notation by, = b 454/ 5 refers to the relation by, = bABA/B/aaAA, abBB/ and will be used in
the same way as Penrose and Rindler, and Stewart (Penrose & Rindler, 1987a), (Stewart,
1993). This notation means that the expressions are the same one we apply the Infeld-Van
der Waerden symbols aaAA/. We note that by, is technically not equal to b5 45 but the

Ad

; is applied. Finally, we illustrate Maple procedures to generate

two are equal once o

these irreducible spinors given a rank 2 tensor and the Infeld—Van der Waerden symbols.

2.1 Rank 2 Young Tableaux

Let us review some elementary facts about matrices in linear algebra. Recall that
we could split a matrix M into its symmetric, M*, and antisymmetric (skew-symmetric),
MA, parts by taking combinations of that matrix with its transpose, M', as shown in the

following formulas:

M = M* + M (2.1)
M?® = % (M +M") (2.2)
M4 = % (M —MT) (2.3)

This is a well known fact, but maybe less well known is that it directly corresponds to what
happens in Young tableaux. In Young tableaux terminology, we have boxes. It is these boxes
which correspond to the symmetry of the indices. Horizontally connected blocks correspond

to symmetric indices, and vertical blocks correspond to skew-symmetric indices. If we write
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M?® and M* using the Young blocks, which are called Young diagrams, then we would
find that M?® corresponds to the horizontal diagram, and M A corresponds to the vertical

diagram:
(2.4
We express the decomposition given in equation (2.1) as

Mgy, = Y1 (M), + Y2 (M) (2.5)

ab

Here Y1 (M), corresponds to applying the Young projection defined by the box:

to M; this would give us M® as in equation (2.2). Likewise, Y2 (M), corresponds to

applying the Young projection:

to M; this would give us M* as in equation (2.3). Right now, there is no ambiguity in
what these mean; later for rank 3 and higher tensors we will find that these projections are

not unique as we can either symmetrize first or skew-symmetrize first. Additionally, we can

check that the Young symmetrizers are projections by applying the same projector twice:

YI(YL(M))g =Y1(M)g,

Y2(Y2(M))y, = Y2(M)g,

Y1(Y2(M))y, =Y2(Y1(M)),, =0

a
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Let Ay, be the symmetric part of My, and let By, be the skew part of My, We will use

calligraphic script to designate GL (N) irreducible tensor elements.

Ap=Y1(M),,, Bu=Y2(M), (2.6)

ab >

The 1 and 2 inside the boxes correspond to the indices. For example, in

this means that the first and second index are symmetric. We always start with 1 in the
top left-most corner notationally and proceed increasing the number as we move down and
move to the side.

It is also important for us to discuss Ferrers Diagrams. They are a step before Young
tableaux, which we get from adding on blocks. For example, we build the 2-dimensional
skew and symmetric blocks by starting with 1 dimensional blocks and putting them on the

top and bottom as follows in equation (2.7) which we show below.
e ll-L11, H (27)
We have two Ferrers sectors given by

L[]

and

5

which we then populate with 1 and 2 which correspond to the indices to make the irreducible
Young sectors. The Ferrers diagrams are a useful way to construct all the necessary shapes

of the boxes before enumerating the possible Young tableaux. Here the Ferrers diagrams
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are trivially the same as the Young tableaux, but notice the lack of numbers in the boxes;
this will become important later for higher rank tensors.

The Young sectors are independent and they do not change type under a GL (N)
transformation i.e., an antisymmetric tensor will not become symmetric under a GL (N)
transformation. The factor of a half at the very beginning in our matrix transpose formula
comes from the division by the hook length product. There are formulas to describe this in
complete generality, as in Fulton and Harris (Fulton & Harris, 1991), but we find it easier
to describe the process with some examples. In each box, count that box and then add the
number of the boxes to the right of it, and the number of boxes below it. Then do this for

each box and multiply the result in each box together. We use the diagram:

=

as our example. For the above diagram, we would take these steps.

Step 1: Count the top box (a = 1) and add the boxes to the left of it (there are none)
so (b =0). Then add the boxes below it (there is only 1) so (¢ = 1). Then count the second
box (a = 1) and add the boxes to the left of it (there are none) so, (d = 0). Finally, add
the boxes below it (there are none) so (e = 0). Do this for each box. To help the reader see

where the variables are, we have labeled them.

a+b+c

a+d+e

Step 2: Here we have filled in the numbers from before.

1+0+1
1+0+0
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Step 3: Multiply the result in each box together.

—2*x1=2

That is how we get the % in the matrix formula above. One over the hook length product,

which in this case is 2. Therefore, we could write the formula:

HookLengthProduct ( H ) =2

Often times the hook length product is denoted p as in Fulton and Harris (Fulton &
Harris, 1991). Again, an excellent description is found in the help files of Anderson and
Torre (Anderson & Torre, 2012) in the Young Tableaux section. This calculation of course
becomes more difficult and interesting for higher rank tensors.

Similarly, we can also count the number of independent components in each of these
tableaux, as we could for the matrix example above. We will use the terms degrees of freedom
and independent number of components interchangeably throughout this work. Recall that
the formulas yielding the number of independent components for N-dimensional symmetric,

and antisymmetric matrices are:

1
number of components (MS) = §N (N+1)

1
number of components (MA) = 5]\7 (N—-1)

We can get similar formulas with a quick Young tableaux trick. We just put N in the
first box, and then we subtract each time we go down, and add each time we go over, again

dividing by the hook length product.

number of components (MS) = {N N + 1]
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" N
number of components (M ) =

N -1

This can again be extended to higher rank tensors, and makes counting degrees of freedom
conceptually simple. The lower rank tensor, 1st rank, is trivial; it is a vector, which will
always have dimension N. To summarize, we decomposed the space of our covariant tensor
Mgy as in equation (2.1) into two other GL (N) irreducible tensors: A, and B as given by
equation (2.6). Again, we repeat that we will always use calligraphic script to represent

GL (N) irreducible tensors. In our notation here, we write:
Map = Aap + Bap (28)

as the GL (N) decomposition of a totally covariant second rank tensor.

2.2 Rank 2 SO (p,q) Trace Decomposition

Our next goal is to find the SO (p,q) irreducible decomposition. In the process of
finding this decomposition, we take traces with the metric tensor g,p, the object left invariant
under SO (p, q). Recall from linear algebra, that we can further break apart the symmetric
matrices under SO (p, ¢) into a trace free piece which we call M, (ab), and a trace-full piece M.
Recall from earlier how we talked about GL (N); these trace pieces do not suddenly switch
sectors under a SO (p, q) transformation. The symmetric trace free element in the irreducible
decomposition will always stay symmetric trace free under a SO (p, q) transformation. However,
under a GL (N) transformation, a trace free piece may become trace-full.

Under SO (p, q), only M*® decomposes further. The matrix M* is already irreducible

under SO (p, q). A formula for how M S decomposes further is shown below.

o 1
Mapy = Map) + - Mgay (2.9)

In terms of our tensors, A, and B in equation (2.8) we find that only A becomes further

reducible when we change the group to SO (p, ¢). This is due to the skew tensor B not having
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any trace portion. We label each of the three SO (p,q) irreducible representations by: A,
a, and b; when viewed as tensors, these will be defined shortly. The tensors represented
by 2 and a result from the decomposition of A under SO (p,q) . The 2 tensor will be the
trace-full part and a will be the trace free part. Additionally, we now label B by b to mirror
our notation above.

Similarly to how we wrote GL (N) irreducible tensors in equation (2.8), with calligraphic
script, we also use special script to distinguish SO (p, ¢) irreducible tensors. For totally trace-
free tensors, we always use lowercase Fraktur script. For trace-full tensors, we always use

uppercase Fraktur script. The SO (p, q) decomposition of My, is given by:

o 1
My = Map) + 1 Mab + Miay (2.10)
Mab = agp + Qlab + bab (211)

with both equations representing the same decomposition. We use the Fraktur notation for

the tensors a, %A, and b. The tensors a, and b are defined as follows.
Aap = -Aab - Qlab (212)

bap = Bup (2.13)

We now define the tensor 2 in equation (2.12). We refer to tensors of even rank (tensors
of odd rank) constructed from a scalar (vector) and the metric tensor gq as trace-full; here
we are only concerned for even rank. This comment is used to differentiate the case for a
rank 3 tensor as in chapter 3. We also define IV to be the dimension of the vector space we

are working with. Following this definition, the tensor 2 is defined by:

1
Aoy = gap | — g% A, 2.14
b gb<Ng Ad) (2.14)

In index notation, this calculation is made easier. Here we find that M, g = M,

and M(ab) = ag,. We needed the % factor in the Ay, equation because gq59%° = N. Next,
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we present Maple procedures which calculate the objects in equation (2.11).

2.3 Maple Procedures for the Decomposition of Rank 2 Tensors

The code follows the decomposition given in equation (2.11). There are three commands
which each take a rank 2 tensor as the first argument, and a metric tensor as the second
argument. The command Rank2TraceA makes the trace-full tensor 2 given by equation
(2.12). The command Rank2FrankA makes the totally trace-free symmetric tensor a. The
last command Rank2FrankB only needs a tensor as its first argument, but can take a metric
tensor as the second argument to match with the prior defined codes. This command makes

the skew-symmetric tensor b given by equation (2.13).

2.4 Summary of SO (p,q) Tensor Decomposition

In the last three sections, we introduced techniques on how to decompose rank two
tensors in terms of GL (N) and SO (p,q) in arbitrary dimensions. Then, for the GL (N)
decomposition, we introduced Young tableaux, which enumerate and break apart a rank two
tensor into its irreducible elements. Specializing further, we chose the subgroup SO (p, q) of
GL (N) and asked for the irreducible elements of it. This lead to one more irreducible sector
than we had before. Following this, we introduced three Maple procedures to compute all
of the above, the rank two commands being new, and the Young tableaux commands being
already in the software. These three commands can be found in the Rank2TensorModule

Maple module.

2.5 Spinor Correspondence to Rank 2 Tensors in 4D

Next we will move to the spinor decomposition of rank two tensors in 4D with signature
[+,—,—,—] and talk about some new interesting phenomena as a result. Spinors are
well explained in Stewart (Stewart, 1993), and Penrose (Penrose & Rindler, 1987a); we
follow their notation. Recall that for two component spinors, we naturally have the group
Spin (3,1) which is isomorphic to two copies of SL(2,C); we note that Spin(3,1) is a

double cover of the group SO (3,1); each of these three groups has real dimension 6. The
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next paragraph is adapted from Stewart.

To discuss spinors, we define the two-dimensional symplectic vector space S. The dual
of this space we denote by S*. A symplectic linear structure on an even dimensional vector
space S is a non-degenerate bilinear skew-symmetric 2-form in S; we call this 2-form e4p.
A linear transformation @@ : S — S is called symplectic if it preserves e4p. The set of
symplectic transformations forms the symplectic group (of appropriate dimension). The
symplectic group of dimension two, Sp(2,C), is isomorphic to the special linear group of
dimension two over C, i.e., SL(2,C). Let A € SL(2,C) and 4 € S be a spinor. Then we

can represent the action of SL(2,C) on S by:
p(A): S =S8

p(N) () = A P

It is useful to define the idea of a p,q spinor. We use capital Latin (A) indices to denote
the parts of the p, ¢ spinor living on S, and capital Latin prime (A/) indices to denote the
parts of the p, ¢ spinor living on S. For example, o apcp Would be a 3,1 spinor. We also
define S as the complex conjugate of the space S. Complex conjugation takes a spinor in S
and maps it to S. Like before, we can represent the action of SL (2,C) on a spinor OAI €S,

then we can represent the action of SL (2,C) on S by:

pN):S—S

’ !

PN (™) =N P

/

Recall, from Stewart (Stewart, 1993), that spinors living on the vector space S ® S are
isomorphic to vectors on the tangent bundle T'M of our spacetime manifold M through the

Infeld—Van der Waerden symbols o A
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where similar results hold for lowered indices. Note further that €ap = €4/ 5. Following the
wording of Stewart: “We may now build a grand tensor algebra out of S, S*, S, S*.” We
provide a few more technical details. Since S, and S are different vector spaces, we do not
need to distinguish between spaces like S x S and S x S. The means we can shuffle primed

indices through unprimed indices.

Qupg = Ay

The price to be paid for this notational convenience is that we cannot regard a 45 as a 2x 2
matrix.
With that established, we begin by applying our spinor decomposition to a doubly

covariant spinor 74p using Young tableaux.

TAB =Y 1(T) 45 +Y2(7) 45 (2.15)

We can use the epsilon tensor to decompose the second tensor in equation (2.15) further

A

by taking traces. To do so we define the tensor eA? with the following relation of Stewart

(this is his equation 2.2.4):

ABeop = ecA = 50’4 = —EAC

A pedagogical idea goes as follows “raise on the right, lower on the left.” This means that
when we raise an index with €A%, that the B index gets contracted, and the A index is
leftover. Similarly, when we lower an index with e4p the A index gets contracted, and the
B index is leftover. This is what allows us to further decompose some tensors when we
could not before. In this case when we take the subgroup Sp(2) of GL (N) we find that
the Y2 sector decomposed further because it is skew. This results in the sector being fully

determined by a scalar 7.

1

Y2(r)4p5 = 57’6,43
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Y2(r) g P =1

Thus, our decomposition of 745 is given in terms of a symmetric spinor and a scalar times

the epsilon tensor.

1
TAB:T(AB)"i_iTGAB (2.16)

We find spinors to be useful here because of a theorem from Stewart (Stewart, 1993)

that states any symmetric spinor can be decomposed in terms of its principal spinors:

U(AB..C) = Q(ABB - - - Y0) (2.17)

Equation (2.17) will become exceedingly important once we examine the classification
of tensors using spinors. We note that symmetric spinors are irreducible under SL (2,C).
Now that we have established the background of what a spinor is, we discuss which of the

rank 2 spinors correspond to real rank two tensors.

2.6 Hermitian Rank Two Spinor Decomposition

Given a real rank two tensor M,, once we apply the solder form o, ., we obtain the

AA
hermitian spinor 6 , 5 4/ '

Ospan = Mapo® 0" 5 (2.18)

The spinor 6,5 4/ need not be hermitian if My, is not real. Before examining Young
tableaux and their usefulness in this context, we could have found the decomposition of
0 sp g in Penrose & Rindler (Penrose & Rindler, 1987a) (PG 141).
o y Leaso © Loyt Oyt 0.C (219
ABA'B' = VaB)a'B) T 5648 (wp) T 5fa B Y apc T 1eABA B Y0 (2.19)
Later, we will provide another form of this decomposition. Upon closer inspection, we can

associate each of these pieces to tensors we already know. For instance, the spinor 9( AB)(A'B')
Cl
(AIB/) and Q(AB)C/

correspond to the b tensor from equation (2.13). Lastly, the spinor 6 CCC,C corresponds to

corresponds to the a tensor from equation (2.12). The spinors 6 CC
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the 2( tensor from equation (2.14); we will show how exactly this happens soon. To begin the
thought process, we know that that symmetric spinors are irreducible are already. We want
to decompose a spinor into its symmetric parts by taking epsilon traces; this is shown in
equations (2.15) and (2.16). So we apply this to our spinor 0 , 5 4/ 5 using Young tableaux
and traces. To start applying the trace decomposition in equation (2.16), we begin with

0 yp 4’ and take an epsilon trace on the AB indices.

e
Oapa's = Oapap + 590 A'B'€AB

Next, we take a second trace on the A'B’ indices. Simplifying the resulting expression
gives us Penrose’s formula (2.19). Now to condense this and make it match Penrose and

Rindler’s (Penrose & Rindler, 1987a) PGs 148-149, we define the following spinors:

Oapya'p) = Sap)a'B)
Ly c ¢
100 c’ =T

L) ¢

500 (A'B"y = ¢(A/B’)

1 c
§O(AB)C' = H(AB)
We have labeled Penrose and Rindler’s € in the corresponding reference as p here to avoid

confusion). Then we obtain a condensed formula as in equation (2.20.

HABA/B, = S(AB)(A,B/) + EABw(A/BI) + €4’ B' IM(AB) + €EABEL4' B'T (220)

When we apply the reality condition 0,5, 5 = 0 apa' g (hermiticity) we find that

S(AB)(A/B’) == S(AB)(A’B/)7 E(A/B/) == w(A/B/), and T = T. ’I‘l’llls7 we kIIOW that S,T are

real, and v, are complex conjugates. Therefore, our hermitian spinor is given by the



22

decomposition:

Oapa s = Supya sy T e py t ey piap) +eapey T (2.21)

The above method produced the decomposition that we were looking for, but there is
a more efficient way to form this decomposition. In our approach, we use Young tableaux
and then specialize to traces. This decomposes each sector under GL (N). Each of these

decomposes further when we look at SL (2, C) irreducibility.

2.6.1 Counting Degrees of Freedom for Rank 2 Tensors and Spinors

We are interested in counting the degrees of freedom of SL (2,C) irreducible spinors
because of the correspondence between them and the SO (3,1) irreducible tensors. The
easiest way to perform spinor decompositions is to count the independent components for
Mgy in terms of its constituent pieces 245, agqp, and by, (note these tensors are defined in
equation (2.11)). The number of independent components (degrees of freedom) of the tensor
M,y is N'?; this is the dimension of the tensor space. Similarly, we can use Young tableaux to
count the number of components of A, and b,,. Recall that A, is the symmetric piece of
the Young/GL (N) decomposition. The tensor Agp, has 2N (N + 1) number of independent
components, and b, has %N (N — 1) number of independent components. When we break
Agp into Ay and agp, we find that 2, has 1 independent component because it is constructed
from a scalar, and that ag, as a result has 3 (N + 2) (N — 1) independent components. The
results are repeated below:

deg (Agp) =1 (2.22)
deg (agy) = % (N+2)(N-1) (2.23)

deg (byy) = %N (N—1) (2.24)
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All spinors in this category must be symmetric, because we can take off epsilon spinors to

ensure so. We find four different possibilities:

Spya'py VB Huapy T

Penrose and Rindler (Penrose & Rindler, 1987a) list these spinors as corresponding to the
SO (3,1) irreducible tensor components of a rank 2 tensor. Since we are interested in
real tensors we also have a reality condition. This means that p,q spinor, where p = ¢,
is hermitian. Likewise, if a p,q spinor, where p # ¢, is present, then so must its complex
conjugate spinor be present. In this case we see that Y ap = jiap following the decomposition
of Penrose and Rindler for a skew-symmetric second rank tensor. The most useful way to
examine this correspondence is to count the degrees of freedom. Upon counting the degrees

of freedom of these spinors, we find that S( AB)(A'B') has 9 degrees of freedom.

deg (S(AB)(A/B')) = (;N(N+ 1)) <;N(N+ 1)) ‘N_Q =9

Next, ¥ (4p) has 2 (%N (N + 1)) ‘N:Q = 6 degrees of freedom; one may think this should
be 3, but recall that 145y and I’ gy Bre complex; S(AB)(A’B’) has only 9 degrees of freedom
because of the reality condition. As a general statement we can say whenever the number of
S indices does not match the number of S then the spinor’s degrees of freedom are doubled
(because of the complex nature). Finally, 7 has only 1 degree of freedom. All of this together
tells us that S( AB)(A'B) will correspond to agp. That ¢ 4py, and likewise 1,5( AB) correspond
to bgp. Finally, that 7 will correspond to 2,,. Now we move to finding explicit formulas for

these spinors. We will begin with the 2(,; spinor.

2.6.2 Spinor Decomposition of 2
Recall that 21, is given by e = gap (% ngAcd) in equation (2.14). We know that the
metric gqp, is given in terms of epsilon spinors as g, = €ape 7 once the solder form is

applied. Additionally, % g°®A.q is a scalar, which we will define to be 7. Thus, in this case,
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we may write 2 in terms of 7 and epsilons. The only extra thing we need to remember is
that for our case N = 4.
1

Qlab = TEABEA/B/, T = Z Cd_Acd (225)

Next we move onto the a,p spinor.

2.6.3 Spinor Decomposition of a
Recall that a, is given by a.p = Agp—2Agp in equation (2.12). We found that S, (AB)(A'B')

should correspond to a,p, and indeed we find that it does in equation (2.26).

Aab = S(AB)(A/B,) (226)

We can also easily see that a,p is trace free from the form of S( AB)(A'B'): There are no

epsilon traces we can take off that do not result in 0 because of the symmetry.

2.6.4 Spinor Decomposition of b
Recall that by is given by b, = My in equation (2.13). Because of the reality
condition by, = by We can write out equation (2.28). We can tell that we can remove a

single epsilon from Mg because of the skew tableaux structure:

(2.07)
Whenever we see this, we can always remove at least one epsilon from the defined tensor.

We can see this as follows.

bap = w(AB)EA’B/ + EABJ(A’B/) (228)
1 A'B
Yiap) = §bABA'B’€

- 1 AB
Vapy = §bABA’B’6
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There is no reference to the I B spinor from earlier because of the reality condition which
forces A By = @( A'BY- Since we have explicit formulas for the spinors, we can now discuss

Maple procedures to generate these objects for us.

2.7 Maple Procedures for SL (2,C) Irreducible Spinors

There are six different new commands to construct SL (2,C) irreducible spinors, and
to produce tensors from these spinors. They all require a spinor and a solder form as input.
Furthermore, the 1 spinor commands can take a third optional argument. The argument
takes either "spinor" or "barspinor" and will return either the 1 spinor for the "spinor"
argument, or the conjugate spinor ¢ for the "barspinor" argument. We recommend using
the optional arguments when using the package.

The command Rank2S5Spinor when given a rank 2 totally covariant tensor, and a solder
form, will produce the spinor S( AB)(A'B) in equation (2.26). The command Rank2PsiSpinor
with the same inputs as before, will produce either the spinor 1(4py or the spinor J(AB) as
in equation (2.28). The last of these three Rank2TauSpinor, again with the same inputs at
the S spinor, produces the spinor 7 from equation (2.25).

The next set of three equations takes as input a spinor of type S, ¢, or T respectively,
and a solder form. It then creates the corresponding SO (3,1) irreducible tensor from the
spinor. In this way, an arbitrary real totally covariant rank 2 tensor can be constructed from
these three irreducible spinors. We hope these commands will be useful for future research.

The command Rank2GenerateSTensor takes a S type spinor from equation (2.26) and
constructs the corresponding totally symmetric trace-free tensor from it; here this tensor
would be a from equation (2.12). The command Rank2GeneratePsiTensor takes the
spinor, and optionally the 1 spinor as the third argument, and constructs the corresponding
trace-free totally skew tensor b from it; see equation (2.13). Finally, the last command
Rank2Generate TauTensor takes a real scalar, (the tau spinor), and constructs its corresponding
trace-full tensor; that tensor for us is 2 from equation (2.14).

These are all the commands to calculate the SL (2,C) irreducible spinors and utilize

them.
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2.8 Summary of Spin (3,1) = SL(2,C) Spinor decomposition
In the last three sections we have described: how a rank 2 spinor decomposes, how a
rank 4 hermitian spinor decomposes following (Penrose & Rindler, 1987a), how to count the
independent components of rank 2 irreducible tensors and spinors, presented the decomposition
of 2, a, and b in terms of spinors, and finally constructed Maple procedures to generate
each of the spinors given a rank 2 tensor and solder form, and make a tensor when given an
irreducible spinor and a solder form. All this together builds a solid foundation on which
to examine rank 3 and later rank 4 tensors in terms of SO (p,q) irreducibility and the

corresponding spinors in terms of SL (2,C).
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CHAPTER 3
RANK 3 TENSOR DECOMPOSITIONS AND THE TORSION TENSOR

This section explains how to decompose rank 3 tensors under various groups. Tools from
representation theory are heavily used, and to this end we make clear what a representation
is. A representation on a vector space of dimension N is a map p from some group G to

GL(N).

p:G— GL(N) (3.1)

We will not often use explicit mappings, but they can be inferred without much effort. Here
we remind the reader of the definition of an irreducible representation.

A representation of a group is called irreducible if it cannot be decomposed into smaller,
non-trivial subrepresentations. In other words, there are no proper, non-zero subspaces that
are invariant under the action of the group.

Mathematically, let G be a group, and let V' be a vector space over a field F (we
choose F' = R for tensors and F' = C for spinors). A representation of G on V is a group
homomorphism p : G — GL (V) , where GL (V) is the general linear group of invertible
linear transformations on V. The representation p is called irreducible if the only subspaces
W C V that are invariant under the action of p(g) for all ¢ € G are the trivial subspaces
{0} and V itself.

In the context of matrix representations, a representation is irreducible if it cannot be
brought into a block-diagonal form by a similarity transformation (a change of basis). In
other words, there are no non-trivial, simultaneous block-diagonalizations for all the matrices
representing the group elements.

We examine the vector space V' of rank 3 tensors over T'M, the tangent bundle of our

spacetime manifold M. We then examine how our group of interest G acts on V', and we use
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this information to decompose V into irreducible subspaces. For the case of the irreducible

representations of GL (), we look at the map:

p:GL(N) = GL(V) (3.2)

and how this map translates into invariant subspaces. We will use the Young tableaux
methods established in chapter 2, and in Fulton and Harris (Fulton & Harris, 1991) to
generate the four GL (N) irreducible representations of a 3rd rank tensor. We build on
the Young decomposition using the tools of Hammermesh (Hammermesh, 1962/1989). This
follows similarly to what we did in chapter 2. These tools allow us to build the seven
SO (p, q) irreducible representations of a 3rd rank tensor. We then build upon the ideas of
Penrose and Rindler to find the SL (2, C) irreducible spinors. In this case, the representation

would be given by:

p:SL(2,C) = GL(V) (3.3)

where V' is now the “grand tensor algebra” of Stewart (Stewart, 1993) (see page 71) built
from S, §*, S, and S*. In the case of rank 3 tensors, we will often apply (3.3) when looking
at a hermitian spinor of type a g4/ 5/

Several times throughout this section and in later sections, we use bold font for tensors
and spinors, suppressing the indices to save space. We hope the context the objects are used
in will make this clear.

This section details: how to decompose rank 3 tensors into GL (N) irreducible components
using Young tableaux, how to decompose rank 3 tensors in any dimension with respect to
SO (p,q), how to find the SL (2,C) irreducible spinors of a rank 3 tensor in dimension 4
with signature [+, —, —, —|, and how to use the corresponding Maple procedures to determine
each of these.

We expand upon the work done in the “Rank 2 Tensor Decomposition” section (see

chapter 2) and apply the same Young tableaux tools to rank 3 tensors.
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We also apply this decomposition to the torsion tensor from differential geometry. We
take a moment here to define and describe the torsion tensor when viewed through various
lenses. In differential geometry, the torsion tensor is an object used to describe the non-
commutativity of the covariant derivative, which is a generalization of the ordinary derivative
for curved spaces. It is an important concept in the study of the geometry and topology of

manifolds, and it plays a key role in GR and ECSK. The torsion tensor is defined as:
T(X,Y)=VxY —-VyX — [X,Y]

where T' is the torsion tensor, V is the covariant derivative, X and Y are vector fields on the
manifold, and [X, Y] is the Lie bracket of the vector fields (also known as the commutator).
The Lie bracket measures the difference between the actions of X and Y when applied in
different orders.

The torsion tensor is antisymmetric, meaning that 7'(X,Y) = —T(Y, X). This property
follows directly from the definition.

In coordinate notation, the torsion tensor can be expressed the skew part of the connection:

C%Jc = 2wa[bc}

where T are the components of the torsion tensor, and w?, are the connection coefficients,
which describe the affine connection on the manifold.

In a manifold with a torsion-free connection, the torsion tensor vanishes identically. This
is the case for Riemannian manifolds, which are equipped with a Levi-Civita connection. In
general relativity, the Levi-Civita connection is used because it is torsion-free and metric-
compatible, meaning that it preserves the metric tensor under parallel transport.

We can also view the torsion tensor from a Cartan geometry view point (Cartan, 1922)
(Sharpe, 1997). Cartan geometry is a generalization of Riemannian geometry that unifies
the notions of curvature and torsion. It is based on the concept of a principal fiber bundle

with a connection. In Cartan geometry, the geometry of a manifold is described using a
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G-structure, where G is a Lie group acting on the tangent spaces. This G-structure defines
a set of preferred frames (or bases) for the tangent spaces, and the connection is given by a
Cartan connection, which is a Lie algebra-valued 1-form on the manifold.

The curvature (which we will examine in chapter 4) and torsion tensors in Cartan
geometry are defined in terms of the Cartan connection. The curvature tensor measures
the non-integrability of the G-structure, and the torsion tensor measures the failure of the
Cartan connection to be compatible with the G-structure. Both curvature and torsion are
essential features of the geometry in Cartan’s framework.

To relate the torsion tensor in Cartan geometry to the torsion tensor in differential
geometry, let’s consider a specific case: when the G-structure is associated with a linear
connection on the tangent bundle. In this case, the Cartan connection can be identified
with the connection 1-forms in the usual differential geometry setting.

In summary, the torsion tensor in Cartan geometry is a generalization of the torsion
tensor in differential geometry, as it incorporates the failure of the Cartan connection to
be compatible with the G-structure. This allows for a more general framework that can
accommodate both curvature and torsion as fundamental aspects of the geometry. We find
that both viewpoints are useful when discussing torsion and point the reader to Hehl et al.
(F. Hehl et al., 1976) for more discussion on how torsion enters into physics.

There are some new complexities which arise as soon as we try to apply Young tableaux
here that make the decomposition more interesting. The decomposition is no longer unique
because of the choice of either symmetrizing or skew-symmetrizing indices first. This occurs
in both the Y2a and Y2b sectors and both ways result in a different, but likewise irreducible,
decomposition.

The Y2a and Y2b sectors both fall into the Ferrers diagram:
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which splits into the Y2a and Y2b Young tableaux:

Although we have said before that the horizontal indices are symmetric, and the vertical
ones are skew, there is now ambiguity on whether the tensors corresponding to these objects
are symmetric or skew-symmetric.

For instance, in the Y2a section we could symmetrize the indices 1,2 first then skew-
symmetrize the indices 1,3. This is the convention we will use; “DifferentialGeometry” in
Maple also follows this by default. The skew-symmetrization on the indices 1,3 breaks the
1,2 symmetry but guarantees that the resulting tensor is an irreducible representation. This
representation comes out on the space of 1,3 skew tensors. The other option we could
choose is to skew 1,3 first and then symmetrize 1,2 resulting in a 1,2 symmetric irreducible
tensor element. These representations are not unique, and by a theorem of Young we
know that they represent the same irreducible element in the decomposition under GL (N);
see (Penrose & Rindler, 1987b) for more details. For third rank and higher-order tensors,
the non-uniqueness of the irreducible decomposition is a well known fact, see Landsberg
(Landsberg, 2012).

Following this, we present the Maple procedures in the “Rank3TensorModule” module.
This module feeds into our ECSK module to apply the same calculations to the torsion
tensor for classification purposes.

Next we move to spinor calculations for 3rd rank tensors. For the total decomposition of
an arbitrary rank 3 tensor in 4-dimensions, we find that the tensor is completely characterized
by 7 spinors. For the Y1 sector, these spinors are: S( ABC)(A'B'C") for the totally trace free
part which corresponds to the tensor agpc, and ,w 4 4+ for the trace-full part which corresponds
to the tensor Agp.. For the Y2a sector, we find the spinors: N(ABC)B' which corresponds to
the tensor bgpe, and 7,4, which corresponds to the tensor 2B 4.. For the Y2b sector, we find
the spinors: T(ABC)B' which corresponds to the tensor ¢4, and 1, ,» which corresponds to

the tensor €qp.. Lastly, for the Y3 sector, we find the spinor Z, 5/ corresponds to the tensor
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Oabe-

We can then use these spinors to classify the torsion tensor in 4-D. The torsion tensor
decomposes into 3 irreducible tensors. The first of which is the trace-full tensor, which we
call Q- It turns out this tensor equals B4pe + Cape. The second of which is the trace-free,
not-totally-skew tensor, which we call the leftovers piece. We label the leftovers part of the
torsion tensor by Qa[be] - This tensor equals bgpe + Cape- Finally, the third irreducible part of
the torsion tensor is given by the tensor (4. This is the totally skew part of the torsion
tensor. These tensors are then turned into spinors and classified algebraically.

The irreducible tensor elements of the torsion tensor decompose into the spinors: © .,
Q( ABC)A and Z5,r. These correspond to the trace-full, leftovers, and totally skew parts
respectively. An entirely new classification algorithm is used for Q( ABC)A! in terms of
irreducible spinors (see subsection (3.8.1)). This classification method was inspired by
Penrose and Rindler (Penrose & Rindler, 1987b).

The algebraic/structural classification we present can be refined using the tools of
Penrose (Penrose, 1972) with algebraic geometry. We can examine the curve on CP' x CP*
in the complex case, again see (Penrose, 1972) for more details. Furthermore, see Crade
and Hall (Crade & Hall, 1982) for a survey of several classification schemes and how they
compare. In this reference, Ludwig and Scanlan’s (Ludwig & Scanlan, 1971) classification
also appears, which is yet another refinement of our classification. Although we will not go
into great depth on these considerations, they are placed here as possible future work. The
other two spinors © ., and Z, have a simpler classification which tells us whether they

correspond to a null vector, or are zero.
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3.1 Rank 3 GL(N) Young Decomposition
We begin with an arbitrary rank 3 tensor Bgp.. We will then decompose Bgp. using

Young tableaux. The rank 3 Ferrers diagrams are given in 3.4.

HEEy , (3.4)

We have the usual totally symmetric and totally skew diagrams, which we had for rank 2

tensors. However, there is now a sector in between. This is given by the Ferrers diagram:

It is this sector which is not unique. This is due to the fact we could either first symmetrize,
then second skew-symmetrize or first skew-symmetrize, then second symmetrize. Although
they result in different irreducible representations, they are both subspaces, and irreducible.
Either choice results in an irreducible subspace under GL (N). Recall that we will always
skew-symmetrize last in our convention.

Another interesting phenomenon happens in the rank 3 case that doesn’t happen in the
rank 2 case. The middle Young tableaux splits from the Ferrers diagram into two Young
tableaux. They are different because of the way we can arrange the numbers in each section.

This is seen in equation (3.5).

[1]2]s]  [1[2] (3.5)

Recall that we always start with the number 1 in the top left most corner and proceed
increasingly down and to the right. Because of this, there are options where we put the
numbers 2 and 3 in the middle Y2 diagram. Another difference is that there is no longer
a general way to write these decompositions like in the rank 2 tensor case. We could have

written Mgy = M(qp) + Mgy in that case. If we try to do that here, we would wind up with
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the opaque and nonsensical notation B,p|) or things like it. To adopt a convention, we
can find inspiration from Penrose and Rindler (Penrose & Rindler, 1987a). Their notation

can be written as in equation 3.6.

By =B + B + B + B (3.6)
a b c a b a c a
c b b
c

However, eventually, we determined that the notation, which we will soon present, better
represents the Young decomposition, as it matches the idea of Young projectors. Since we
can look at Young tableaux as projection operators, we use Y'1,Y 2a, Y 2b, and Y3 to denote

the same objects as in equation (3.6).

Baye = Y1(B),,. +Y2a(B),, +Y2b(B),. +Y3(B) (3.7)

abc abc abc abc

In equation (3.7) the Y'1,Y2a,Y2b, and Y3 all correspond to the Young diagrams in (3.5).
For example and clarity: Y1 means symmetrize on a, b, c; Y2a means symmetrize on a, b,
then skew-symmetrize on a, ¢; Y 2b means symmetrize on a, ¢, then skew-symmetrize on a, b;
finally, Y3 mean skew-symmetrize on a, b, c.

Although the notation in equation (3.7) is incredibly clear, it feels cumbersome. To the
end of ameliorating the notation, we developed another notation. This new notation consists
of calligraphic letters for the Young decomposition: i.e., A,...,D which we will soon define.
This is the same as how we used calligraphic script in the GL (N) decomposition of rank
two tensors in chapter 2.

In our case for By, we have 4 tensors under this decomposition: A, B, C, and D.

These are defined as follows:

Awe = Y1(B) Bupe = Y2a (B) (3.8)

abc abc

Cabe = Y2b (B)abc7 Dape = Y3 (B)abc
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We use equation (3.8) to write the GL (IN) decomposition of a rank 3 tensor as follows:

Babc = Aabc + Babc + Cabc + Dabc (39)

and this completes the Young analysis of the tensor Bgp.. Although we present the GL (V)
irreducible tensor elements in equation (3.8), we still need a way to write out constructively
what each of these tensors is, i.e., a formula. Normally, this calculation would be incredibly
difficult and cumbersome, but the tools of “DifferentialGeometry” have greatly simplified
these calculations, making it possible to work with these objects without lengthy pen and
paper calculations. To be clear, when we see “symmetrize on 1,2 first then skew-symmetrize
on 1,3 next” we do not swap positions, we swap indices. The following example is useful to

describe this. We examine the tensor B, generated by the

Young diagram to illustrate this. Then we proceed with the following steps:

Babc — Bab07

1

3

1

g (Babc + Bbac) )

1

§ (Babc + Bbac - Bcba - Bbca)

to get the proper information out of the Young tableaux. Now we write out how to get each
of these sectors. Formulas are given below in (3.10) by applying the Young tableaux idea.

These formulas also work in Maple. First we have the Y'1 tableaux.

1
A(abc) = 6 (Babc + Bbca + Bcab + Bacb + Bcba + Bbac) (310)
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Next the Y2 pieces. First with the Y 2a tableaux.

2
3
1
B[a\b|c} = g (Babc + Bpac — Beba — Bbca) (311)
Then we have the Y2b tableaux.
1(3
2
1
C[ab]c = g (Babc + Beba — Bbac — Bcab) (312)
Lastly, we have the Y 3 tableaux.
1
D[abc] - 6 (Babc + Bica + Beab — Bach — Beba — Bbac) (313)
We can calculate the tensors Agpe, - - -, Dape in the “DifferentialGeometry” software

package more easily through the use of the “Symmetrizelndices” command. This makes
the calculation trivial and is what the author uses extensively. Furthermore, the commands:
YoungTableauBasis, and YoungSymmetrizer satisfy this need comprehensively.
Furthermore, to explain the coefficients, recall the hook length product explained in
the rank 2 tensors chapter (see chapter 2). Here we take the top left box and count all the
boxes to the right and down from it plus one. Do this for each box, and then multiply the
product together. For an example, in the Ferrers Y2 case, we find the hook lengths, and

their product in 3.14.

,  HookLengthProduct (

‘) =3 (3.14)

Additionally, although these formulas work for an arbitrary tensor, the decomposition is
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not irreducible unless it has the fundamental symmetries of the original tensor. The torsion
tensor which we will examine later runs into this issue once we apply our decomposition.
Thus, its Young decomposition is smaller than the four subspaces which we have above;
there are only two for the torsion tensor. Itin and Reches (Itin & Reches, 2021) give an
excellent explanation of this phenomenon (see pages 25-26).

Since we have all the Young tableaux information, we can begin taking traces to build

the SO (p, q) irreducible elements of Bype.

3.2 Rank 3 SO (p,q) Trace Decomposition

In this section, we examine the irreducible representations of rank 3 tensors under
SO (p,q). The metric ggp is a symmetric, non-degenerate, bilinear form which is preserved
by the special orthogonal group SO (p, q).

We use similar methods to those presented in chapter 2 to decompose rank 3 tensors.
Hammermesh’s tools (Hammermesh, 1962/1989) are incredibly useful as he explains how
taking traces builds SO (p, q) irreducible representations.

Let us first look at the general case to get a feeling for what happens: Bgp.. Taking

traces of By results in equation (3.15) shown below.

Babc = Xagbc + Yi)gac + chab + Wabc (315)

Where each of the X, Yy, Z., Wy are to be determined; note this implies that Wy, is a
totally trace free tensor. We are already done taking traces because we can’t take traces of
the vectors X,. Now take and apply this idea to each of our Young sectors. This was an
idea proposed by Wheeler (J. T. Wheeler, unpublished). We define several 1-forms to make

later calculations easier. These are: P,, Ry, and U,:

gabBabc = Pca 7gacBabc = Rb, gchabc = Ua (316)

The traces from before are defined in equation (3.16). With this idea established, we can
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decompose the tensors A, B, C, and D under SO (p,q). Notationally, the 4 irreducible
tensors: A, B, C, and D under GL (N) (see equation 3.9) will decompose to 7 irreducible
tensors: 2, a, B, b, €, ¢, and d under SO (p, q) because we can take traces of the tensors
appearing in the GL (V) decomposition. Recall that we use uppercase Fraktur script, i.e.,
A, B, € for trace-full tensors as we did in chapter 2.

We call the tensors A, 8, &€ the trace tensors. We will use lowercase Fraktur script,
ie., a,b, ¢, 0 for the totally-trace free tensors; we call these the frank tensors. This idea will
be further extended and applied to rank 4 tensors later in chapter 4. As an example, the
tensor A will decompose into the tensors: 21 , and a.

We will also count the degrees of freedom, or the dimension of the vector subspace, of
each of the SO (p, q) irreducible tensors. This will be denoted by deg( ). Young tableaux

are easily suited for this type of counting, even in the SO (p, q) case with a slight extension.

3.2.1 Decomposing A, Under SO (p, q)
We begin by decomposing the tensor Agp. under SO (p,q). Recall that this tensor

corresponds to the tableau:

which is the totally symmetric tableaux sector. Recall that this would give us the following
relation: Agpe = A(qpe)- Upon decomposing Agpe under SO (p, q) with the

Hammermesh method (Hammermesh, 1962/1989) we produce the following decomposition:

»Aabc = Ogpe + QLabc (317)
Qla c — 7Pa C 318
b (N +2) (a9be) (3.18)
P = gab-Aabc (319)

where the tensor a is determined by equation (3.17).
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Counting the degrees of freedom of A,2, and a

We can count the degrees of freedom of each of these tensors as well. For the tensor A,
as before, we know that the degrees of freedom can be counted using Young tableaux with
the same method presented in chapter 2. We place an N in the top leftmost box, and as
we move right add one to it, as we move down subtract one. For the totally symmetric case
this becomes, N for the top leftmost box, then N + 1 for the middle box, and then N + 2
for the final box. We also still divide by the hook length product, which is 6 in this case.
To make it applicable to spacetime, the reader can choose N = 4 as the dimension.

The results are given below. We find the degrees of freedom in au,. by subtracting the

degrees of freedom of Agpe from Agpe.
1
deg (Aape) = N (N +1) (N +2) (3.20)
1
deg (agpc) = 6N (N+4)(N-1)

deg (Qlabc) =N

3.2.2 Decomposing By, and Cu,. Under SO (p, q)
We will begin with decomposing the Y 2a tensor. The Y 2a Young sector is given by the

tableau:

We will label the tensor which represents this sector as Byy.. This tensor is equivalent to
applying the Y2a projection to B ie. Y2a(B),,. = Babe. Our convention tells us to first
symmetrize on the a, b indices, and then skew-symmetrize on the a, ¢ indices. This results in
B having the symmetry Bupe = Bjgp)- Taking traces, we find the following decomposition
for B:

Babe = babe + Bane (3.21)
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Bope = — (3.22)

2
N =1y bl
P, = ¢™Bape (3.23)

Now we move onto the Y2b sector, which is represented by the tableau

1(3
2

which we represent by the tensor Cu,.. This follows similar logic as what we did for B; this

is Y2b(B) Cabe- We have the symmetry Cope = Clgpje- Using the trace decomposition,

abe —

we arrive at the following three equations.

Cabc = Cabe 1 Cape (324)

2
Cape = _mR[agb]c (3.25)
Rb = g“Cabc (3.26)

Counting the degrees of freedom of B,C,25, &, b, and ¢
Because Y2a, and Y2b have the same Ferrers sectors, they have the same degrees of

freedom, i.e., deg (Bap.) = deg (Cape). The degrees of freedom are:
1
deg (Bape) = gN (N+1)(N-1) (3.27)

deg (base) = 3N (N +2) (N ~2)

deg (Bape) = N
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3.2.3 Decomposing D, Under SO (p,q)

Since the Y3 sector is given by the tableaux

the tensor Dy, is totally skew, hence there are no traces we can take. Therefore, it is already
irreducible under SO (p,q). To follow our notation from earlier, we define D = 0, since all
lowercase Fraktur tensors are totally trace-free. So the totally skew piece is then defined by

Ogbe = B[abc] :

Degrees of freedom for
This sector’s degrees of freedom are already counted by the Young tableaux calculation.

We have the result given in equation (3.28).
1
deg (ure) = 5V (N = 1) (N = 2) (3.28)

3.3 Summary of the SO (p,q) Decomposition and Maple Procedures
Recall that the GL (N) decomposition using the Young tableaux had 4 sectors, and it

was given by equation (3.7), which we repeat here for convenience.
Babe = Aabe + Babe + Cabe + Dabe
Now the SO (p, q) decomposition, with arbitrary signature, has 7 sectors and is given by:
Bape = Aabe + Bave + Cave + ave + bave + Cabe + Dabe (3.29)
Each of the definitions of these tensors is repeated below. For the Y1 sector, we have:

Aabc = Ogpc + QLabc
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3

-2 p
Qlabc (N T 2) (agbc)

Pc = gab-Aabc

For the Y2 sectors, we can look at Y2a and Y2b. For the Y2a sector, we have:

Babc = b0Lbc + %abc

2
Bape = _mp[agwc]

Pc = gabBabc

For the Y'2b sector, we have:

Cabc = Cqbe T Q:abc

2
Cabe = — mR[agb]c

Rb = gaccabc

For the Y3 sector, we have:

o[abc] - D[abc] =B [abc]

Finally, as a sanity check, we check that the degrees of freedom of each of these seven sectors
add up to N2 which they do.

We have created Maple procedures that calculate each of these seven tensors in N-
dimensions. The procedures are explained below. Additional procedural details can be
found in the modules and the files included with this work.

First, the code for the Y1 sector is given by: “Rank3FrankA”, and “Rank3TraceA.”
These commands both take a general tensor (in our case this is Byp.) as the first argument
and a metric as the second argument. Then they return the a,,. and likewise 2. tensors.
Furthermore, the following commands all take the same input. For the Y2 sectors, we have
“Rank3FrankB”, “Rank3TraceB”, “Rank3FrankC”, and “Rank3TraceC”. Finally, for the Y3

sector, we have the command “Rank3FrankD” to be comprehensive, although this is really
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just the Symmetrizelndices indices command with totally-skew indices.

3.4 Rank 6 Hermitian Spinor Decomposition

Next we move onto the relevant spinor decompositions for rank 3 tensors. Since tensors

a
AAD

correspond to Hermitian spinors through the Infeld-Van der Waerden symbols o it is
important to look at them with regard to our rank 3 tensor case. A general rank 3 tensor By,
would turn into a general rank 6 spinor x 4 o4’ g/ - Applying our ideas from before, we can
find the irreducible pieces of X 454/’ and thus decompose it. At first, we might think
that just taking epsilon traces would be the most expeditious way to analyze X ,poa’ /o>
but it is not. Instead, the efficient way to go about it is to use Young tableaux on our tensor
Bape- Then we build the SO (p, ) irreducible representations of By, the tensors a, 21, ..., .
Last, we convert these pieces into their corresponding Hermitian spinors through the Infeld-
Van der Waerden symbols. Then we build the SL (2, C) irreducible spinors by taking traces
of these spinors with epsilon spinors, e4p. Recall from chapter 2 that SO (p, q) irreducible
tensor components correspond to SL (2, C) irreducible spinors.

On the other hand, there are some fruitful ideas which bloom from just starting with
Xapca' g ¢ and decomposing it using traces. One of which is exposing the valency possibilities
of the irreducible spinors. Another is enumerating the number of irreducible spinors. These
are the only two fruits which can be gleaned easily from this approach, in the opinion of the
author. This method is elaborated in the appendix.

After enumerating the types of spinors we can create (taking epsilons off), we find that
we should have a set of: 1 S(ABC)(A/B/C/) type spinor, 2 NABC)A’ type spinors, and 4 w4 4/
type spinors. Note, the symmetry is due to a theorem of Stewart: irreducible spinors are
symmetric in the same type of indices.

Each of these spinors matches a particular SO (3,1) irreducible tensor. For instance,
the S(ABC)(A’B’C’) tensor matches the agp. tensor in equation (3.17) exactly. When we say
match, we mean that the degrees of freedom match, and that there may be additional epsilon

terms in a linear combination with the spinor needed for equality. In this instance, for agp,

we have a direct equality from the solder form (Infeld-Van der Waerden symbols) given by
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equation (3.30).

b
SaBoyA' B ¢y = Yabe 04 4T g0 oo (3.30)

We will also find equations such as:

Rlabe = W o0 €BCER o +Wpp €ACE 4/ o + Woe! EABE 4/ !

1 A 1
~ B _A'B
Woer = 66 € A b

which illustrate how the epsilon trace decomposition works. To elaborate on the degrees
of freedom matching, recall that the SO (p, q) irreducible tensor a has #N (N +4) (N — 1)
degrees of freedom. To further elaborate on equation (3.30) and the correspondence of
SO (p,q) irreducible tensors to SL (2,C) irreducible spinors, we should count the degrees
of freedom of S( ABC)(A'B'C'- This is made simpler with Young tableaux, although here
we have restricted ourselves to N = 4 dimensions when working with spinors; recall in
N = 4 that deg (agpe)|y_y, = 16. So to count these, we count the dimension of the unprimed
symmetric indices, and then multiply that by the dimension of the primed symmetric indices.
The dimension of the tangent space at a point p, T,M is 4, but each the primed and
unprimed space lives only on a complex 2-dimensional space, recall S and S; thus the real
dim (S ® g) = 4. For clarity, let n be the complex dimension of S and S which is 2; this
is halved for hermitian spinors by the reality condition of Penrose and Rindler (Penrose &
Rindler, 1987a). This would tell us that the degrees of freedom of S( ABC)(A'B'C) has to be
16.

1
deg (S(ABC’)(A'B'C')> ‘N:4 = <6” (n+1)(n+ 2)) -

= <<én(n+1)(n+2)>

= 16

n=2

To elaborate more on the “additional epsilon terms, and a linear combination of that spinor

needed for equality” statement from earlier in this section, we turn to the tensor 2, and its
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corresponding spinor w, 4+ as an example. In this case, there were 4 degrees of freedom for
A. Likewise, there are 4 degrees of freedom for w , 4/; there are not 8 because although w , ,/
is a spinor, it is Hermitian, and its real dimension as just half of what it would have been
had it had all coefficients in C. Now we move onto how to find a formula for A in terms of
Wy

It may not be intuitively obvious, but it turns out that the easiest way to begin is
to start with a spinor w4 €épcép v and then force the index symmetry 24 to hold on
Wy 4 €BCEp - This “turn the crank method” results in the following decomposition for A
given in equation 3.31. Additionally, w, , is a hermitian spinor. Recall that we use the
congruence/isomorphism symbols to mean equal once the Infeld-Van der Waerden symbols
have been applied. See Penrose and Rindler (Penrose & Rindler, 1987a) for more details on

their spinor notation, which we follow here.

Abe = WA €EBCER! + WpRR €EACEL + Woo! EABE 4 g (331)

1 o
Woer ~ EEABEAB A

abc

And again we can count the degrees of freedom of w, ,» and find there to be 4.

deg (WAA’) = (n)‘n=2 (n)’n:Q =4

At this point, we still need to write the spinor form of each of the other SO (p, q) irreducible
tensors, and write the corresponding SL (2, C) irreducible spinors in terms of traces of the
tensors. From before, we know that we have seven tensors which we need to write the spinor
decomposition for: a,A,b,2B,¢, €, 0. We already have the trace piece Y1 sector spinor
decomposition. For the tensor . this is given by equation (3.31) which is determined by
the omega spinor w4 ,+. The trace-free part of Y'1 is au and is completely determined by
the spinor S. This spinor is already irreducible under SL (2, C) without taking any epsilon

traces as in equation (3.32).

I

O(abe) = S(apcya'B'¢’) (3.32)
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The Y2 and Y3 irreducible spinor decompositions are similar in structure. The spinor

decompositions of by, and cqpe are given by equations (3.33), and (3.34). Note that we can

get ' p' '\ (6(A’B'C')C) by taking a trace with 1€ (¢4B) instead of with €4 ¢ (¢4 ).
~ _ I el

babe = €4’ Napeyp +€AC Nw'p'c'ypr Napeyp = 5Pabee (3-33)
~ _ ~1 AB

Cabe = €4'B' O(ABC)C' T €AB O(A'B'C)0r 9(ABO)C! = g Cabet (3.34)

Furthermore, the spinor decompositions for B4y, and €|y are given by equations (3.35),
and (3.36). Additionally, 7, and ¥ are hermitian spinors; this happens naturally when
taking the epsilon traces and using the Infeld-Van der Waerden symbols.

L ap A'B
Babe = Tay' €BC €5'cd — Too! €AB €'y Too! = —g€ e B abe (3.35)

1 o
~ ~ AC _AC
Cabe = VY0 €BC €'’ — Ypp €AC €A’ Ypp = _ge € Cabe (3.36)

To finish, the spinor decomposition for the totally skew piece is more complicated, requiring
six different terms to produce the correct symmetry of the sector. Additionally, the irreducible
spinor Z,,y which appears in equation (3.37) naturally occurs as an antihermitian spinor.
It is curious that this occurs in this fashion. Nevertheless, we can turn this antihermitian
spinor into a Hermitian spinor by removing an i from equation (3.37) and defining the new
hermitian spinor. However, we will not do that here, as we believe this is indicative of some
more general trend. Redefining things in this fashion and may obfuscate our classification

aims later.

Dabc = 6BC€A/C/EAB/ — EACEB/C/EBA/ (337)
+ EBCGA/B/EAC/ — EABGB/C/ECA/

+ €aceypEpe —€ABEy ' Eop

—_
— —_

_ 6ABGA’C’a =
=pD" — 9 ABDA'D'C’> —=DD' —
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We can further classify these spinors using the tools of Penrose and Rindler (Penrose
& Rindler, 1987b), first by looking at the structural reducibility (algebraic irreducibility)
of these SL (2,C) irreducible spinors. What we mean by structural reducibility is that
a given spinor can be written as a product of lower valence spinors. The spinor Z,
for example, can be written as xKpk s for some components. This only occurs when the
condition =, D/ED D' _ 0 holds. Upon examining the structural reducibility of the spinors,
we can find SL(2,C) or SO (3,1) invariant quantities. It is these quantities which we
will use to classify possible geometries in ECSK theory. To further build on these ideas,
Penrose (Penrose, 1972) used the ideas of algebraic geometry to examine the topology and
singularity structure of the locus of these spinors (EDDzﬁDnD/ = 0) as viewed on the null
cone (eape €28 nA, nB/ = 0). We will not do this here since there is no algorithm given
in the general case, but it is an exciting possibility for future work.

There are twelve new procedures coded up in the ECSK module to handle and compute
these spinors. The first six which calculate the corresponding spinors given a tensor and
a solder form are: Rank3SSpinor, Rank30OmegaSpinor, Rank3TauSpinor, Rank3PsiSpinor,
Rank3XiSpinor, Rank3EtaSpinor, and Rank3SigmaSpinor. Out of these, the commands
Rank3FEtaSpinor, and Rank3SigmaSpinor can take an optional "barspinor" which returns the
conjugate spinor instead of the original spinor. Next we have the other six procedures which
generate a SO (3, 1) irreducible 3rd rank tensor from a given spinor of that type and a solder
form: Rank3GenerateSTensor, Rank3GenerateOmegaTensor, Rank3Generate TauTensor,
Rank3GeneratePsiTensor, Rank3GenerateXiTensor, Rank3GenerateEtaTensor, and
Rank3GenerateSigmaTensor. Where again the Eta and Sigma options can take an optional
argument, their conjugate spinor as the third argument. We recommend using this optional
argument.

In the next section, we establish and develop a classification for the torsion tensor up

to structural reducibility.

3.5 GL(N) and SO (p,q) Reducibility of the Torsion Tensor

In this section, we establish and develop a classification for the torsion tensor up to
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structural reducibility. We will address the classification of the torsion tensor according to
GL(N), SO (p,q), spinorally under SL (2,C), and then examine the structural reducibility

(algebraic irreducibility) of the spinors in that order.

3.5.1 Decomposing the Torsion Tensor Under GL (N)

To begin, recall that the torsion tensor, which we denote by T, , is skew-symmetric
on its last two indices: T, = T lbe] Because we have a metric in ECSK theory, we can
lower the first index of the torsion tensor to make it totally covariant, Ty = Typpg. Now,
we apply the ideas we developed for irreducible rank 3 tensors/spinors above to the torsion
tensor. The torsion tensor has three irreducible GL (N) sectors. These are given by the

Young tableaux in equation (3.38).

1]2] 1]3]

9

(3.38)

However, we will find that the first tableaux do not share the same symmetries of the torsion
tensor, and therefore they cannot be irreducible representations. Itin and Reches (Itin &
Reches, 2021) give an excellent explanation of this and how to account for it. Since these
tableaux do not have the same symmetry as the last two indices of the torsion tensor, we
need to compensate because there still is an irreducible representation in the elbow Ferrers

diagram:

We will call this irreducible representation Qgp., where Q. is defined as follows:

1
Qabe = § (2Tabc + Tpae + cha) v Qabe = Qa[bc] (339>

This tensor has the same symmetry as the torsion tensor, and is in fact irreducible. We can
see that it is irreducible by noting it is the piece leftover once the totally skew part (Y3

sector) of the torsion is subtracted off. A proof of this method is given by Itin and Reches
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(Itin & Reches, 2021); furthermore, Fulton and Harris also guarantee that this methodology
will work (Fulton & Harris, 1991). The Y3 Young sector is given by Dy as before, but the
formula simplifies to three terms because of the skew indices the torsion tensor has. This is
given by equation (3.40).

1

Dabc = g (Tabc + Tbca + Tcab) (340)

The GL (N) decomposition of the torsion tensor is given by:

Tabc = Qabc + Dabc (341)

As an aside, if we add the tensors By, and Cgpe from equation (2.8) together, we find that
they equal Qgp..
Qabc = Babc + Cabc (342)

Moving forward, we count the number of independent components of the irreducible sectors

@, and D. Formulas are given below.
) 1
dim (Q) = gN(NJr 1)(N -1)

dim (D) — éN(N 1) (N—2)

Let the space of the torsion tensor be T, the space representing the elbow tableau be @, and
the space representing the vertical tableau space be D, then the final irreducible subspace
decomposition is given by:

T=QdD

3.5.2 Decomposing the Torsion Tensor Under SO (p, q)

Next, we derive the SO (p,q) decomposition for the torsion tensor. The only element
which is further reducible is Qg from equation (3.41) which splits into two tensors Qgupe,
and qgp.. Keeping with the earlier notation, Qg is the trace-full piece, and qqpc is the trace-

free not-totally-skew piece (or as the author likes to call it, the leftovers piece); note that
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both of these tensors are skew on the last two indices as well. The SO (p, q) decomposition

is then given by equation (3.43) which is shown below.

Tabc = Qabc + dape + Oube (343)
aczipca_P ac) s Pc: ef efc 44
Qap (N—l)( 9ab — PoGac) 97 Qey (3.44)
Jabe = Qabc - Qabc (345)

As another aside, the new tensor £ can be calculated by adding the tensors 2, and €
together from equations (3.21) and (3.24). Likewise, the new tensor q can be calculated by
adding the tensors b, and ¢ together from equations (3.22) and (3.25). These both mirror
equation (3.42), and are shown below. Recall that @ = D from equation (3.40), we just

rewrote it to keep with our notation.

Oabe = Dabc (346)
Qabc = %abc + Q:abc (347)
Jabe = babc + Cabe (348)

Each of these SO (p,q) irreducible tensors can be calculated with the following Maple
procedures: TorsionTrace®, TorsionFrank(@), and TorsionFrankD. They each take a torsion
tensor and a metric as the inputs.

Before we move to the spinor decomposition of the torsion tensor, we remark that there
are other versions of this decomposition presented in the literature. One of which is that of

Shapiro (Shapiro, 2001). We explore the comparison in appendix A.

3.6 Spinor Decomposition of the Torsion Tensor
With the torsion tensor decomposed under SO (p, q), we would like to find the spinor

representation of the torsion tensor. Because we know the form for the spinors related to the
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tensors B, (€), and b, (¢) we can write out the tensors £, and q in terms of their related

spinors. We add these spinors together as we did in equations (3.42), (3.47), and (3.48),
then use the Jacobi identity (see Stewart (Stewart, 1993)):

eapecp) =0

€ABecD + €acepB + €apepc =0

and relabel terms to determine these spinors. Recall that we are using Penrose and Rindler’s

(Penrose & Rindler, 1987a) notation to suppress some indices. The formula for the tensor

£, in terms of its spinor equivalent, © is:
1 r
>~ __ABAB (3.49)

Qabe = Opp €cacey ot = Oper €ABéy s Oper =

Likewise, the formula for the tensor q and its spinor equivalent is:
>~ e v Q 1+ € Q 1 ol Q P == EB/C/ (3.50)
Qabe B'C’ **(ABC)A BC 4A'B'C")A (ABC)A' = §fabe

Finally, for completeness we repeat the equation for the spinor equivalent to the tensor 0

which was given by equation (3.37) here.
Oabe = €BCEY g — €ACER " Ega’ (3.51)
+ GBCEA/B/EAC/ 7€ABEB/C/ECA/
+ 6AC€A/B/EBC/ —EABGA/C/ECB/

[1]]

__Loapacy =
DD T T ABDA'D'C'>  —DD' — DD’
In our spinor decomposition of the torsion tensor (in 4-D with signature [+, —, —, —]),

we find that Ty is entirely determined by 3 spinors: O, Q, and = (where we leave € out

because it is the object left invariant by SL (2, C))
There are 6 new Maple procedures which allow us to work with these three spinors.
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The procedures are: TorsionThetaSpinor, TorsionOmegaSpinor, TorsionXiSpinor,
TorsionGenerateOmegaTensor, TorsionGenerateThetaTensor, and
TorsionGenerateXiTensor. The first three take a torsion tensor and a solder form as their
arguments and output the corresponding spinor. The last three take a spinor and a solder
form as their arguments and form a corresponding SO (3, 1) irreducible part of the torsion
tensor. Furthermore, both of the Omega spinor commands take optional third arguments.
The first Omega command takes "barspinor" to return the conjugate spinor instead. The
second Omega command takes the conjugate spinor as its third optional argument. We
recommend using the optional argument when constructing the tensor from the Omega
Spinor.

Now we will look at the structural reducibility of each of the three spinors: O, €,
and =. The classifications of the spinors ©, and = are equivalent and relatively simple
due to there being only one invariant which distinguishes the cases which aren’t zero. The
classification of the spinor 2 however is far more interesting and yields several new and
unexplored possibilities for structural classification purposes.

Next we examine the structural classification for each of these spinors and enumerate
all the different possibilities while neglecting any interplay between the spinors such as being
considered in the excellent references (Zakhary & Carminati, 2001), (Carminati et al., 2002),
(Carminati & Zakhary, 2002), (Carminati & McLenaghan, 1991). Applying the mindset of
the references above would be yet another direction for future work. For clarity this means
we neglect any co(in)variants resulting from spinors like ((p¢) (defined soon), (or Z) which
would arise from calculations like: Q(ABC)A’ 244 — C(BC), (or Z = C(BC)C(BC)). Penrose
and Rindler (Penrose & Rindler, 1987b) make mention of these types of co(in)variants on
Pgs. 262-264, which again would be an excellent direction for further research.

There are three spinors which we need to structurally reduce: O, =, and €2, but because
0O, and = have the same valence their structural reducibility is the same; this type of analysis
holds for any spinor of said valence. First we will examine the structural reducibility of €2,

and then look at ©, and =. Then we will enumerate the number of distinct cases which can
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occur with respect to structural reducibility.

3.6.1 Structural Reducibility of: Q(ABC)A'

For the torsion €2 spinor there are eight different structural reducibility types. Recall
that by structural reducibility we mean that the spinor cannot be written as a product;
this coincides with the definition of algebraic irreducibility. The eight possible cases are
enumerated below. Following the ideas of Penrose and Rindler (Penrose & Rindler, 1987b)

Pg. 268 we develop a notation which describes the structural decomposition of the spinor

Q(4pc)ar; this is given in table (3.1) shown below. Table (3.1) enumerates the eight different

Cases for the Torsion Omega Spinor
Cases Spinor Our Notation Penrose Notation
Case 1 Qe apoya’ [31] (3,1)
Case 2 oaBpeya’ [A,21] (1,0)(2,1)
Case 3 6(A)\BGC)A/ [A, B, 11] (1,0)(1,0)(1,1)
Case 4 340800y o' [A2,11] (1,0)%(1,1)
Case 5 Sarpweyéy | [A,B,C, D] (1,0)(1,0)(1,0)(0,1)
Case 6 Sabpweyly | [A%,B,C] (1,0)%(1,0)(0,1)
Case 7 5680y | [A3, B (1,0)3(0,1)
Case 8 0 [—] (-)

Table 3.1: Structural Reducibility Table of the Spinor Q( ABC) A’

cases, the spinors corresponding to those cases, and two different notations to describe those
cases. In each of the cases, we have a p, g spinor where there are p unprimed indices, and ¢
primed indices; this is important for either notation.

In our notation, we use commas to separate different spinors. Unless the spinor is
valence 1, we have a number which is meant to be read as a pair. The left number in this
pair is the number of unprimed indices the spinor has, and the right number is the number
of primed indices the spinor has. When we have a valence 1 spinor, we represent this with
capital Latin letters or primed letters; the prime distinguishes a valence one spinor living on
S from one living on S. For example, we would write A for a valence one unprimed spinor.

Likewise, we would write A for a valence one primed spinor. Any time a spinor of the same
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valence is repeated, we write a number representing how many times it has been repeated
in the exponent. For example, if the spinor represented by A appears twice, we would write
A2, Our notation also represents complex conjugation in the sense that if we write AA" then
the spinor represented by A’ is the complex conjugate of A. If the spinor is not the complex
conjugate, we would write AB'. The authors feel it useful to include our new notation here
as a different approach which may be more intuitive with some readers than others.

Penrose and Rindler’s notation accomplishes the same thing, where the numbers in
parentheses represent the valence p, g of the spinor. Similarly to us, they also use an exponent
to represent a repeated spinor.

As an example, in Case 1 in table (3.1), the spinor Q( ABC)A! is irreducible, and we would
write [31] in our notation or (3,) in Penrose and Rindler’s notation. To clarify further, take
Case 2 in table (3.1) for which we have (1,0)(2,1). The parenthesis tell us that there are
two spinors which are irreducible one of which is a single unprimed spinor (1,0), and the
other is an irreducible spinor with two unprimed indices, and one primed index. Finally, to
describe the last piece of possible notation, take case 4, where we have (1,0)2(1,1). The
parenthesis indicate that there are three irreducible spinors, two of which are repeated, with
one unprimed index, and the last spinor has one primed and one unprimed index (1,1). The
very last case where we have [—], and (—) indicate that the entire spinor is zero, hence the

lack of any spinors in the notation.

3.6.2 Structural Reducibility of: ©,. and =,

Next we consider the spinors © s and =, . We only need a classification for a spinor
of type ©, and then we know the structural reducibility for both ©, and E. Here the
special names or notation are the same as before, but with one addition. We now have
|(1,0)?; the absolute value bars with the squared symbol suggests a “square modulus.” This
is different from (1, 0)(0, 1) which would represent a spinor like 47,7, because | (1, 0)|? means
3 - The second spinor is the complex conjugate of the first, hence the “squared modulus.”

In our notation, this is reflected by A, A" where we can tell by the repeated A that the

spinor represented by A’ is the complex conjugate of the spinor represented by A.
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There are only three cases since © is hermitian and E is anti-hermitian. The decomposition
for E is slightly different in Case 2 because of the i included in front; this is to ensure the
decomposition is also antihermitian, just like = is.

We present table (3.2) next to illustrate each of these three cases, as we did for the

spinor Q( ABC)A’ 1D table (3.1). Now that we have the structural reducibility for Q, ©,

Cases for the Torsion Theta and Xi Spinors
Cases Spinor Our Notation | Penrose Notation
Case 1 Occ»Epp [11] (1,1)
Case 2 KCRer, IKCR o [A, A (1,0)?
Case 3 0 [—] (—)

Table 3.2: Structural Reducibility Table of the Spinors © . and =,

and =, we find that the total number of cases would be (8)(3) (3) = 72. This is already
a large number and could be larger still by refining the classification with the algebraic
geometry methods of Penrose (Penrose, 1972). Future work would be to examine this
“Penrose Refinement” and see how it correlates to physical frame independent observables
in ECSK theory. Additionally, it would be excellent to have an algorithm built to determine

these cases.

3.7 Algorithm to Classify the Torsion Tensor

In the last section, we enumerated all the different structural reducibility cases which
were possible for the torsion tensor. In this section, we present an algorithm to determine
each of the possibilities using covariants and invariants built from the spinors. First, we will
begin with the € spinor, and discuss the algorithm to determine its structural reducibility.
We also discuss the co(in)variants that we use to determine the cases. Then we classify the
spinors O, and =, with the same method, albeit different co(in)variants. With these
three together, we will have classified the torsion tensor up to structural reducibility and

provided an algorithm which determines the total structural reducibility type as well.
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3.8 The Invariants and Covariants for Q(ABC’)A'

To begin with, there are seven different co(in)variants which determine the structural
reducibility type of the € spinor. The insight behind these follows very much from Zakhary
and Carminati (Zakhary & Carminati, 2004), and the spirit with which the algorithm is
constructed also follows them as well; furthermore the following references: (Acvevedo et
al., 2006) (Zakhary et al., 2003) (Zakhary & Carminati, 2004) (Zakhary & Carminati, 2001)
(Carminati et al., 2002) (Carminati & Zakhary, 2002), and (Carminati & McLenaghan,
1991) all expand upon this work as they discuss cross co(in)variants which we do not touch
on here.

The spinor co(in)variants which determine the structural reducibility for © will be
denoted by: €2, N, X', O, Ig, R, and A. The O here is not to be confused with the torsion
theta spinor, but has an inconvenient name due to the nature of its development. We provide
both a tensor form of the co(in)variants, and a Newman-Penrose (NP) inspired form which is
useful for computer algebra calculations; this makes the calculations more computationally
efficient than applying several tensor contractions. See Penrose and Rindler (Penrose &
Rindler, 1987a), and Stewart (Stewart, 1993) for more details on the Newman-Penrose
formalism. First, Q(ABC)A’ is itself a covariant (in the words of Olver (Olver, 2003)); we
can use € to determine if we are in Case 8/(—) or not.

A A

We define the 2 components by contracting a spin basis 0, +** for the two-dimensional,

complex, symplectic vector space which we have been calling S onto Q( ABC)A'
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Qy = Q(ABC)A’ voBocéA/
0 = Q(ABC)A’ OAOBOCZA/
Qy = Q(ABC)A/ voBLC(SA/
Q3 = Q(ABC)A’ OAOBLCZA/
U = Q(ABC)A/ OALBbcaAI
Qs = Q(ABC)A’ OALBLCZAI
Qg = Q(ABC)A’ LALBLCEA/
Q; = Q(ABC)A/ LALBLCZA/

Next, the spinor N is defined as, N( AB)(A'B) which is determined from the following

equation:
/

“a., .72 (3.53)

(A'B) _ EF -

Niap) =0,

where to get the covariant N( AB)(A'B) We just lower the indices in equation (3.53) with
epsilon spinors. To get each of these covariants, we contract on the spin basis to IV, (AB)(A'B')

as follows.

Ny = N(AB)(A’B’) voBéAléB/
N, = N(AB)(A'B/) OAOB(_)AIZB/
Ny = N(AB)(A’B’) voBZAI[B/
N3 = N(AB)(A’B’) oALBéAléB/
Ny = N(AB)(A/B/) OALBéA/ZB/
Ny = N(AB)(A’B’) OALBZA/ZB/
Ng = N(AB)(A'B/) LALB(_)A/GBI
Ny = N(AB)(A’B’) LALBéAIEBI

A B-A B
Ng = N(AB)(A/B/)L LTt L
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The NP equations of the N covariant are given below in terms of the € covariant.

No
Ny

Ny

Ng

= 2000 — 2 ()

= 20005 + 20,y — 40203

= 20105 — 2 (Q3)?

= 20006 — 20

= 20007 + 2010 — 20505 — 2Q3€
= 20107 — 20505

= 20506 — 2 ()?

= 20507 4 20306 — 49405

= 20307 —2(Q5)?

We have shown that the N covariant is zero in cases 7 or 8 by a direct calculation proof.

The spinor N(AB)(A’B/) is zero if and only if we are in case 7 or 8.

Next, we define the covariant T( A'B D) by the following equations.

To
T
1o
T3

Ty

EF
T(A/B/C,D/) = NEF(A/B,N C/Dl) (354)

2NoNg — % (N3)*

9NoNy + 2N, Ng — N3N,

9NoNs — N3Ns + 2Ny Ng 4+ 2N, Ny — % (Ny)?
9N Ng + 2NNy — NyNs

1
2N>Ns — 5 (N5)?

The covariant T( A'B'C'D) is zero in Cases 4,6,7,8 by direct calculation.
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Next we have the ©(4pcp) covariant which is defined as follows.

Ouscp) = Qap’ Qcpyrr (3.55)

Oy = 2000 — 20,0,
1 = 4005 — 4018y
Oy = 20007 — 20106 + 62205 — 62382
O3 = 40507 — 40306

Q4 = 20407 — 20506

This covariant is given by a different contraction of the €2 covariants. The covariant © is
zero in Cases 5,6,7,8 by direct calculation. This covariant combined with the covariant Y
from equation (3.54) can be used to determine if we are in Cases 4,5, or 6.

Next we define the I invariant, which is really Q2. It is given by equation (3.56) shown

below.

Is = Qypeyar QAP (3.56)
Iﬁ = 2Q097 — 29196 — 6QQQ5 + 69394

The invariant Ig is zero in cases 4,5,6,7,8 by direct calculation.

Our penultimate covariant is R 4pcpgr) which is defined by the following equations.

RapcpEr) = 32@(A3§®DELM@F)KLM (3.57)



Ry
Ry
Ry
R3
Ry
Rs

Rg

60
—8(00)? 03+ 4000,0, — (6,)*

—32(00)? 04 — 4600103 + 80 (02)* —2(01)* O,

—4000010, + 20000,03 — 5(01)? O3

200 (©3)* — 20 (01)* O,

4000030, — 200,0,04 + 5 (01)? O3

3200 (04)? + 40,0350, — 8(02)2 O4 + 20, (03)?

801 (04)? — 40,0304 + (03)°

The R covariant is zero in cases 3,4,5,6,7,8 by direct calculation. The factor of 32 is in the

definition to simplify the denominator in the resulting NP formulas.

Our final invariant is A. To define A we also need to define the invariants I,,, and J,

which come from (Zakhary & Carminati, 2004). The invariants I,,, and J, are defined by:

— 1 3
Jp = 0020, 36 (O2)

which allow us to define A as follows.

I, = ©4pcpOABCP (3.58)
1 1 9
Ip = 20004 — 5@1@3 + 6 (@2) (3.59)
Jp = ©apcpO°PEr @ AP (3.60)
3 3 1

— g@o (@3)2 — g (@1)2 O4 + §@1@2@3 (3.61)

_ 3 2
A= (1) -6(%) (3.6

The invariant A acts like a discriminant; it tells us when the structure is reducible, and thus

is zero in cases 2,3,4,5,6,7,8. We determined that this is the case by a direct calculation.

Each of these co(in)variants can be calculated in Maple with the following new commands:

TorsionOmegaCovariant, TorsionNuCovariant, TorsionUpsilonCovariant,

TorsionThetaCovariant, Torsionl6Invariant, TorsionRCovariant, TorsionIpInvariant,
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TorsionJpInvariant, and TorsionDeltalnvariant. Each of these only take the Omega spinor
as the input, and calculate the co(in)variant implied by the name as the output.

Having all of our invariants defined, it is now time to discuss how the algorithm works.

3.8.1 The Algorithm Classifying Q(ABC)A’

We explain the algorithm by a “flow chart” in the same spirit as Zakhary and Carminati
((Zakhary & Carminati, 2004)). We also include a step chart to follow as well. Here is the
step chart for the algorithm.

1.) Calculate Q.

If Q2 =0 then Case 8. [-] — (—)
If Q # 0 then:
2.) Calculate N.
If N =0 then Case 7. [43, B'] — (1,0)3(0,1)
If N # 0 then:
3.) Calculate T and O,
If T = 0 then Case 6 or Case 4.
If © = 0 then Case 6. [A2, B,C"] — (1,0)2(1,0)(0,1)
If © # 0 then Case 4. [A%,11] — (1,0)%(1,1)
If T # 0 then:
If © = 0 then Case 5. [A, B,C,D'] — (1,0)(1,0)(1,0)(0,1)
If © # 0 then:
4.) Calculate R.
If R =0 then Case 3. [4, B,11] — (1,0)(1,0)(1,1)
If R # 0 then:
5.) Calculate A.
If A =0 then Case 2. [A,21] — (1,0)(2,1)
If A # 0 then Case 1. [31] — (3,1)
6.) The Algorithm is finished

We present the flowchart for the above step chart next in figure (3.1).
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O Start
[7 Input

[ Start } Q Decision

O Stop

Y
/ Calculate €2 /; e ‘ Case 8
No
Yes

/ Calculate N

No
/ Calculate Y and © 0
No

/ Calculate R

Case 3

No
Yes ‘ Case 2 ’
/ Calculate A
No
Case 1 ’

Figure 3.1: Flowchart for the Q( ABC)A’ Spinor Classification Algorithm

Figure (3.1) is read starting at the yellow start box. Then each of the blue slanted
rectangular boxes are calculations. Each of the green diamonds are checks that are performed.
After each green diamonds, there is an arrow with either a “Yes” or “No” near it. If
the condition in the box is true, we follow the “Yes” path. Likewise, if the condition

in the box is false, we follow the “No” path. FEach of the red boxes determines a case



63

for which we stop. The cases are listed both in the step chart above the flow chart,
or in the previous section. This algorithm can be called in Maple with the procedure:
TorsionOmegaSpinorReducibilityAlgorithm. As inputs, it takes a torsion tensor or Omega
spinor as its first argument, and solder form as its second argument. It will output the

classification for the Omega spinor.

3.9 The Invariants and Covariants for O, and =

Now we move to examining the co(in)variants of spinors like ©, and Z,,. As
we had before, we can formulate an algorithm using one invariant and one covariant.
Given an arbitrary spinor a4 4/, (not necessarily hermitian), we can determine its structural
reducibility with the co(in)variants: «, and O.

The covariant a represents the components of its corresponding spinor. We define it
as follows, where we take the components of @ NP style by using a spin basis o?, 4 like

before.

Qo0 = Oy 0A5A
/

aplr — OéAA/ OAE
A-A'

Qalp = Quut o0
/

a1 = CkAA/Z'A%

If the covariant « is zero, then we have case (—). The Omicron invariant O is zero in cases

2 and 3 is given by equations (3.63), and (3.64).

/

O =a,a*’ (3.63)

O = 20400&11 - 20[010410 (3.64)

There aren’t as many invariants or covariants (only 2) that contribute to the structural

decomposition of a4 4/, and thus the algorithm to determine its structure is simpler.
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These co(in)variants can be calculated newly in Maple with the following commands:

TorsionRank2AlphaCovariant, and TorsionRank20micronInvariant. They both take as inputs

either the ® or E spinor.

3.9.1 The Algorithm Classifying O, and =,

We explain the algorithm by a “flow chart” in the same spirit as Zakhary and Carminati
((Zakhary & Carminati, 2004)) as we did before. We also include a step chart to follow as
well and use both the notation of Penrose and Rindler (Penrose & Rindler, 1987a), and our
notation to describe the cases. Here is the step chart for the algorithm.

1.) Calculate a.

If & = 0 then Case 3. [—] - (—)
If a # 0 then:

2.) Calculate O.

If O = 0 then Case 2. [A, A'] —|(1,0)|?
If O # 0 then Case 1. [11] — (1,1)
3.) The Algorithm is finished.

We have a flowchart included below.

O Start
[7 Input
[ Start J Q Decision
QO Stop
Y ~
/ Calculate o /—> = Case 3
No
Yes Case 2
/ Calculate O /—>
No
Case 1

Figure 3.2: Flowchart for Classification Algorithm of the © , ,» and =, ,» Spinors
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The flowchart presented in figure (3.2) is read in the same way that it was for the
Q4pcya spinor classification flowchart in figure (3.1).

This algorithm can be called newly in Maple with the following command:
TorsionRank2ReducibilityAlgorithm. 1t takes as arguments either a torsion tensor, a solder
form, and an argument either “Xi” or “Theta” depending on which spinor the user would
like to look at. Or it can take a valence 1,1 spinor as the input. The algorithm will output

the classification of the Theta and Xi spinors.

3.10 Summarizing the Classification of the Torsion Tensor

We have established and developed a classification for the torsion tensor. We have
constructed an algorithm which classifies the torsion tensor into 72 possible types. This
classification, although we apply it to the torsion tensor, technically applies to all tensors
having the same rank and symmetry as the torsion tensor. The algorithm in the end takes
a torsion tensor and a solder form (the Infeld-Van Der Waerden symbols) and outputs the
structural reducibility type of the torsion tensor given to it. This command can be called
in Maple by TorsionTensorReducibilityAlgorithm when using the “TorsionlnvariantsModule”
for calculations. In this algorithm, we construct the metric tensor g,; from the inner product
of solder forms. Then we calculate the spinors ®, 2, and £2. We then take these spinors
and determine their structural reducibility class as per the two algorithms given above.

Further work would include: 1.) how to implement cross co(in)variants as in Zakhary
and Carminati (Zakhary & Carminati, 2001) but for torsion, 2.) how to implement Penrose’s
method from algebraic geometry to look at the singularity structure and topology of the
curves defined by these spinors on the null cone of spacetime, see reference (Penrose, 1972),
and 3.) developing physical characteristics, similar to the classification of principal null
directions of the Weyl tensor (or something similar) which are analogous to the different
reducibility types.

Examples of this classification will be found applied to examples in the NMC scalar

field and Dirac chapters. See chapters 6 and 7 respectively.
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CHAPTER 4
RANK 4 TENSOR DECOMPOSITIONS AND THE CURVATURE TENSOR

Now we move to decomposing rank 4 tensors in terms of GL (N), SO (p, q), and spinors.
This will generalize the Ricci decomposition seen in GR to an arbitrary rank 4 tensor. We
perform a similar analysis of a general 4th rank tensor and apply an analysis to the curvature
tensor in the same spirit with which we analyzed the torsion tensor in chapter 3. This section
outlines the process for decomposing rank 4 tensors using Young tableaux. We also provide
the SO (p, q) decomposition of a rank 4 tensor in any dimension.

We keep the notation we used before in the rank 2 and rank 3 tensor chapters (2), and
(3) where trace-full tensors are denoted in capital Fraktur script i.e., 21, and totally trace
free tensors are denoted in lowercase Fraktur script i.e., a. There are new additions however
to our notation for 4th rank tensors. We use curly script to denote tensors generated
by a trace free second rank tensor i.e., /. Furthermore, some of these “curly” tensors
decompose further because they are not irreducible; their trace free second rank tensors are
decomposable under GL (N). In this case, as we will explain for the Y2 Young tensors, we
write the symmetric part of these trace free rank 2 tensors with Hebrew script i.e., 3, and
we write the skew-symmetric part with Cyrillic script i.e., B. We then find the SL (2,C)
irreducible spinors corresponding to the SO (3,1) irreducible subspaces of an arbitrary rank
4 tensor in 4 dimensions. Additionally, we provide new Maple procedures for each step.
Building upon the techniques described in the rank 2 and rank 3 tensor decomposition
chapters, the same Young tableaux tools are applied to rank 4 tensors.

Rank 4 tensors decompose into 10 irreducible subspaces under GL (N). These result
from the 5 different types of Ferrers diagrams which occur. These are labeled by the capital
script letters A, ..., K to follow the same notation used in the prior chapters. (We skip
7 because it is often associated with other things). Furthermore, under SO (p,q) these 10

subspaces decompose further into 25 irreducible subspaces.
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We list all the new notational additions in the rank 4 tensor case that do not occur in
the rank 2 or rank 3 cases. These are the Hebrew 3, 1, 71, Cyrillic B, II, [, and curly 4,
€, 9,8, 9,9, 7, and Z type tensors. The Hebrew and Cyrillic type tensors specifically
occur in the Y2 Ferrers diagram during the SO (p,q) decomposition. These are given a
special name because originally they would occur from a % type tensor.

In analogy to the Ricci decomposition of the Riemann tensor in GR, these script type
tensors & etc. are analogous to the tensors generated by the trace-free Ricci tensor. They
have one trace, but the tensor generating them is trace free. These would correspond to the
trace free Ricci tensor in GR.

We give a few short examples of code in Maple which will do these same calculations
in the “Rank4TensorModule” module. This module feeds into our ECSK module to apply
the same calculations to the torsion tensor for classification purposes.

Next we move to spinor calculations for 4th rank tensors. For the total decomposition
of an arbitrary rank 4 tensor in 4-dimensions, we find that a 4th rank tensor is completely
characterized by 25 spinors (the same number which we got in the SO (p, ¢) decomposition).

For the Y1 sector, these spinors are: S(ABCD)(A’B/C’D/) for the totally trace free part
which corresponds to the tensor a,peq, v for the trace-full part which corresponds to the
tensor Ayped, and L(AB)(A'B) for the curly tensor < p.q.

For the Y2 sectors, we find the spinors for the totally trace free parts, and the Hebrew
and Cyrillic parts. The totally trace free spinors for the sections (b, ¢,0) are: Y ABCD)(B'C')
IB(ABC’D)(B’C')’ and YABCD)(B' Y- For the Hebrew spinors corresponding to the tensors
(3,3,77) we have Qapya' By Eapya' sy and 0 4p) 4 ). For the last of the Y2 sectors,
we have the Cyrillic tensors (B, I, /T) which correspond to the spinors: H(AD), P(AC); and
O(AB)-

Similarly to the Y1 sector in structure, the Y3 sectors have totally trace free, trace-full,
and curly spinors. For the totally trace free tensors, (¢, f) we have the spinors: d(aBcD), and
V(apcpy- For the curly tensors. (&,.7) we have the spinors: T(AB)(A'B): and (I)(AB)(A'B’)’

For the trace full tensors, (€, §) we have the spinors x, and A.
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The Y4 sectors are slightly different because there are no total trace pieces due to
the skew symmetry of these sectors. Nevertheless, there are still curly pieces, and totally
trace free pieces. In this case for the totally trace free tensors (g,h,j) we have the spinors:
T(AB)(C'D')’ C(AB)(C’D’)’ and f(AB)(C’D’)' Furthermore, for the curly tensors (¢, ¢, 7) we
have the spinors: v(4p), 1(aB), and o(4p).

To finish, with the Y5 there is only one sector £, and its spinor equivalent is N.

We can then use these spinors to classify the curvature tensor in 4-D. The curvature
tensor decomposes into 6 irreducible tensors. The first three of these are analogous to the
tensors which occur in the Ricci decomposition of the Riemann tensor R{},,.;- But they
are modified, and the interpretation is different due to the inclusion of torsion in the theory.
The second three are pieces that occur because of the inclusion of torsion, and they do not
appear in GR. From an SO (p,q) decomposition perspective, we can write the tensors as
fabeds Fabeds Sabeds labeds Labed, and qped. We have defined [, and & by labed = Dabed + Jabed:
and ZLoped = Hoped + _Fabed; this is in the same spirit in which the irreducible torsion tensor
pieces 9 and q from equations (3.44) and (3.45) were developed. Adding these sectors
together results in an irreducible subspace for the curvature tensor retaining the correct and
needed symmetries: Raped = Riap)[cd)-

The irreducible tensor elements of the curvature tensor then decompose into the spinors:
Y aBcD)s q)(AB)(A’B’)v A, }K(AB)(A’B’)v FO(4p), and N. Interestingly enough, the spinors
2K, and N naturally occur as antihermitian spinors as opposed to ® and A which occur as
hermitian spinors; although no proof is given this seems to be a trend for spinors generated
from a Young tableaux decomposition which have more skew-symmetries than symmetries.

We would again like to point out that this classification can be refined using the tools
of Penrose (Penrose, 1972) with algebraic geometry. We would examine the topology and
multiple point structure of the curve (defined by the locus of the characteristic polynomial
defined by the tensor) as viewed on a two-sphere when the real points are examined. This

is again not done here, but seems to be an interesting and fruitful direction for future work.
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4.1 Rank 4 GL(N) Young Decomposition
We define a rank 4 tensor Qupq- We decompose it using Young tableaux. The
decomposition gives us the 10 irreducible tensor components of an arbitrary rank 4 tensor.

We begin by presenting the Ferrers diagrams for a 4th rank tensor.

RNy iy

There are more Young tableaux than Ferrers diagrams because of the way we can arrange

the numbers in each sector. This provides us with the Young decomposition:

[1]2]3]¢]

2|3\ 12|4\ 13|4\
4 B 2]
1]3
314 [2]4
1 1 4\
3 "2
4] 3

Using the notation we developed in the sections on Rank 2 and Rank 3 tensors, we can

break a tensor Qupcq into its GL (IN) irreducible sectors from the above Young tableaux as
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follows:

Qabed = Y1(Q),pea
= Y2a(Q) g + Y20 (Q)gpeg + Y 2¢ (Q) ppea
= Y3a(Q) g+ Y30(Q) ey
= Y4a(Q)apeq T Y4 (Q) gpea + Y4 (Q) pea

= Y5(Q)upeq

Since this notation is cumbersome, we define the following tensors A, ..., (minus Z) to

help us condense our notation.

Aabed = Y1(Q) gpea »
Babed = Y20 (Q)gpeqr  Cabed = Y20 (Q)gpeqs  DPabed = Y 2¢(Q) gpeq
Eabed = Y30 (Q)gpear  Fabed =Y 30(Q)gpeq
Gabed = Y40 (Q) ypea s Haved = Y40 (Q) ypoaq s Tabed = Y4¢ (Q) yped

ICabcd =Y5 (Q)abcd

Below, we have the decomposition of an arbitrary rank 4 tensor in terms of our notation
above. This breaks the tensor @ into tensors living in each of its 10 GL (N) irreducible

subspaces:

Qabcd = Aabcd (41)
Babcd + Cabcd + Dabcd
gabcd + fabcd

gabcd + ,Habcd + j abed

+ o+ o+ o+

Kabcd

There are ten different subspaces in the rank 4 tensor case; this is a lot more than for the
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3rd rank tensors, where we had four. Explicit formulas for the Young projectors can be
found in appendix B.

If the tensor has additional symmetries, this may cause some of the components to
vanish or combine together. For more information, see Itin and Reches (Itin & Reches,
2021). This happens in the case of the curvature tensor just as for the torsion tensor in

chapter 3.

4.2 Rank 4 SO (p,q) Trace Decomposition

Now we can begin taking traces to construct the irreducible SO (p, q) decomposition of
Qaped- 1t turns out that there are 25 irreducible subspaces for an arbitrary rank 4 tensor
under SO (p, q); we will show this below. To begin, following Hammermesh (Hammermesh,

1962/1989) we decompose an arbitrary rank 4 tensor with traces as follows:

Qabcd - fziabgcd + éacgbd + CO(obdgbc + bbcgad + Eobdgac + chgab (42)

+ Hgawgea + J9acvd + K gaiagve + Wabca

where the tensor Wy.q is the totally trace free piece and /Olab e l:"ab are trace free second
rank tensors with no presumed symmetries. We can take a second trace that we couldn’t in
the case of the rank 3 tensors; this is new and interesting. This decomposition is presented
in Hammermesh (Hammermesh, 1962/1989). We want to be able to decompose this into a
totally trace free part, trace free tensors, and scalars. We note that the superscript A above
the A indicates a trace free tensor.

We will use equation (4.2) to decompose each of the 10 Young sectors under SO (p, q).
As in the 3rd Rank tensor case, we define tensors that relate our above traces to just traces
on a general fourth rank tensor Qupeq. Later we will think of Qupeq as Aabed - - - Kaped as given

by equation (4.1). It will be convenient to have the following definitions:

9"°Qabed = Pea,  9°Qabed = Roa, 9 Qabed = Upe (4.3)
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gchade = Xada gbanbcd = YaCa ngQabcd = Zab
gabQCanbcd = P’ gacgbanbcd = R7 gadgbCQabcd =U

With all of this established, we can determine all 25 SO (p, ¢) irreducible tensors. Because
there are an exorbitant amount of tensors to calculate, we will give two example calculations.
We leave the proofs to appendix D for which we also repeat the methodology we show below.

Our examples will be from the Y1 and Y2a cases because they provide nearly all the

new information in the rank 4 tensor case

4.2.1 The SO (p,q) Decomposition of the Y1 Sector of a Rank 4 Tensor

Here, we decompose the tensor A given by the following Young tableaux:

into its irreducible components under the action of SO (p, q) (taking traces). This example
is here to illustrate how the new type of tensor (curly tensor) 2/ comes about, and how it
is calculated along with the more familiar totally trace free and trace-full tensors a, and 2A.

The tensor Agpeq is totally symmetric Agpea = A(apea)- If we apply equation (4.2) to

the tensor A then we find the following formulas:
Aabed = Aabed + Dabed + Aabed

Daped = é(ab)gcd + é(ac)gbd + é(ad)gbc + é(bc)gad + é(bd)gac + é(cd)gab (4.4)
Aapved = L (gabged + JacIbd + JadJve)

We define éab as a symmetric trace free rank 2 tensor, and L as a scalar, both of which need
to be determined. To determine Gg, and L, we apply the Y1 symmetry property (being

totally symmetric) to the list of equations labeled by (4.3) to A where Agpeq = Qaped- After
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applying the property, we find:

gabA(abcd) = P(cd) = R(cd) = U(cd) = X(cd) = Yv(cd) = Z(cd) (45)

99 Aaheay = P= R=U

Which greatly simplifies the number of independent tensors down to two: Pa, and P.
Furthermore, since we can take traces, the two independent tensors are really ]DDab, and P.
Once we solve these equations for éab, L we find that they are given by the following

list where N is a constant which represents the dimension of the space being worked on.

o o o ].
Gleay = mp(cdy Pleay = Pleay — Nchd

1

L=———Pp
N (N +2)

Thus, we can now write our Y1 decomposition in the following list of equations:

Aabed = abed + Pabed + Aabed (4.6)
6
'Q{CL cd — Pa C 47
bed (N+4)(bgd) (4.7)
3
Agbed = mpg(abgcd) (48)
P — abA P = ab ch 4.9
(cd) g (abed) s g9 (abed) ( : )
o 1
P(ab) = P(ab) - Npgab (410)

Equations (4.6)-(4.10) represent the SO (p, q) irreducible decomposition of a totally symmetric
rank 4 tensor. The methodology here is used throughout all the SO (p,q) decompositions,
and is useful to distinguish all the possibilities when the number of tensors increases so
drastically with each rank of the tensor. We recommend this methodology for all types of

SO (p, q) irreducible decompositions.
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How to use Maple to calculate the tensors above

We have written Maple procedures to calculate the tensors A, 2, and a. To calculate
the tensors the following commands can be used: “Rank4FrankA” is used to calculate the
left-hand side of equation (4.6), “Rank4CurlyA” is used to calculate the left-hand side of
equation (4.7), and “Rank4TraceA” is used to calculate the left-hand side of equation (4.8).
Each of these commands take two inputs: for slot 1: a totally covariant rank 4 tensor (Qaped

for example), and for slot 2: a metric tensor gqp.

4.2.2 The SO (p,q) Decomposition of the Y2a Sector of a Rank 4 Tensor
To illustrate two more new possibilities for irreducible tensors in the rank 4 case, we
examine the Y2a sector as our second example. We begin in the Young sector described by

the following tableaux:

2[3]

4

for which we will make the tensor Y2a(Q),p.q = Babed- We would have the symmetry
Babed = Ba(be)d = Blafpela)- If we use a degrees of freedom argument, we can find that the
trace part: Bapeq 1S generated by a second rank general trace free tensor which we call Io)ad.

This then tells us that we can decompose B,peq as:
Babcd = e@abcd + babcd (411)

<@abcd =Y2a (lo)adgbc>

with no total trace piece due to the skew symmetrization. Expanding out the Young

symmetrizer, allows us to write PBupeq as:

Baped = (fad - Yda> 9be — Yeagva — Toaged + Toagac + Teagab (4.12)
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The tensor i)ad is related to the tensor Yad by a factor of a half. Similarly to what we did

for the Y1 piece, we make the trace equations:
9"Baped = Pea = Rea = —Yeq = —Zeg = Q'f[cd] + TN

9" Babed = Xaa = 2Py = 2 (o) (N +2)
gadBade - ch - 07 gabQCdBabcd = P - R = U = O

in which we have used the symmetries Buped = Bapeya = Blafpeq) to simplify some of the
equalities. From these, we find that we only have 1 independent equation. We solve it to
find Y in terms of P:

1 2

Yop=—Pp——"
@ N TN (N +2)

Pay.- (4.13)
However, because Ty is traceless, we can again use the structure contained in GL (N) to
break off a symmetric and skew piece. We will call the skew part of Yab the Cyrillic Zhe:
Kap = 'i”[ab}, and the resulting tensor generated by 2K, through equation (4.12) will be
called the Cyrillic Be: Bgpeq. Next, we will call the symmetric part of fab the Cyrillic Yu:
04 = Y(ab), and the resulting tensor generated by FO,, through equation (4.12) will be
called the Hebrew Beth: Jgpeq.

To minimize space, we apply this methodology for splitting Y into YK and IO to
equation (4.13) to get the next few equations instead of going through each step. This then

gives us the irreducible decomposition for the tensor Bg;.q through the following equations:

Babcd = Babcd + :abcd + babcd (414)

Babed = N2 (2Pagi9ve — Prea9bd — Prpaj9ed + Pia9ac + Piedj9ab) (4.15)
1

Tabed = N (=Preaygvd — Ppa)9ed + Pioay9ac + Plea)gab) (4.16)

Pcd = gabBabcd
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Equations (4.11,4.15,4.16) together result in the SO (p, q) irreducible decomposition for the

tensor Buy.q - We have repeated how the tensor P,.4 is defined for clarity.

How to use Maple to calculate the tensors above

To calculate the tensors above, the following commands can be used. “Rank4FrankB”
is used to calculate the totally trace free tensor b in equation (4.11), “Rank4CyrillicB” is
used to calculate the left-hand side of equation (4.15), and “Rank4HebrewB” is used to
calculate the left-hand side of equation (4.16). Each of these commands take two inputs,
which are the same as in the Y1 case. Further code has been written which will calculate
the rest of the 25 SO (p, q) irreducible tensors and is explained in appendix C.

With both the Y1 example explaining how the tensor .2/ comes to exist, and the Y2a
section above explaining how the tensors B and J come to exist, we now have all the

information conceptually to determine the rest of 25 SO (p, q) irreducible tensors.

4.3 The Explicit SO (p,q) Decomposition for an Arbitrary 4th Rank Tensor

The SO (p, q) decomposition of our tensor Qupeq is given as follows:

Qabed = Qabed + Dabed + Aabed (4.17)
babed + Babed + Jabed

Cabed + Waped + Javed

Vabed + Haped + Taved

Cabed + Eabed t+ Cabed

fabed + Fabed + Fabed

Gabed T Yabed

Babed + Habed

jabed + _Fabed

+ o+ o+ o+ o+ o+ o+ o+ o+

Eabcd
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where the rest of the tensors have been defined explicitly in the appendix. We have sorted
equation (4.17) by each type of tenor in a column, except for the Hebrew and Cyrillic tensors.
Since we have the SO (p, q) decomposition of an arbitrary rank 4 tensor, we now move onto
the spinor decomposition of each of these tensors in 4 dimensions, specifically beginning by

counting degrees of freedom.

4.4 The Tensor-Spinor Correspondence for Rank 4 Tensors in 4 Dimensions

In this section, we enumerate the SL (2,C) irreducible spinors corresponding to an
arbitrary 4th rank tensor in N = 4 dimensions with signature [+, —, —, —]. There are 25
spinors which fully describe a tensor of this form, and there is a one-to-one correspondence
between SO (3, 1) irreducible tensors and SL (2, C) irreducible spinors. We list those spinors
now, along with which irreducible tensor they correspond to. We follow Stewart (Stewart,
1993) in terms of our notation for spinors.

There is one rank 8 hermitian spinor: S(ABCD)(A’B’C/D’) which corresponds to the
totally trace free tensor aupeq residing in the Y'1 Ferrers sector with tableau: Y1.

There are three rank 6 spinors: Q(ABCD)(A'B') B(ABCD)(A/B/), and Y(ABCD)(A'B') which
correspond to the totally trace free tensors bguped, Caped, and 0gpeq residing in the Y2 Ferrers
sector with tableaux: Y 2a, Y2b, and Y 2c respectively.

There are eleven rank 4 spinors which break into two categories: hermitian/antihermitian
and non-hermitian.

There are two neither hermitian nor antihermitian spinors: dapcp), and V(4pcp)
which correspond to the totally trace free tensors egpeq, and fupeq living in the Y3 Ferrers
sector with tableaux: Y3a, and Y 3b respectively.

The other nine spinors are either hermitian or antihermitian.

The first six out of these nine are hermitian spinors: L(AB)(A'B')’ Q(AB)(A/B/), K(AB)(A'B')’
H(AB)(A’B/)v T(AB)(A'B) and (I)(AB)(A’B/) which correspond to the curly and Hebrew tensors:
Habeds Sabeds Jabeds Vabeds Gabed, a0d Fapeq. They live in the Ferrers sectors: Y1 (&), Y2 (3,
J,7), and Y3 (&, F). They have tableaux: Y 2a, Y2b, and Y2c for 3,7, and 7 respectively;

we also have tableaux Y'3a, and Y3b for &, and .# respectively.
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There are three antihermitian spinors T(AB)(A'B')’ C(AB)(A'B’)’ and f(AB)(A’B’) which
correspond to the totally trace free tensors gaped, Habed, and japeq residing in the Y4 Ferrers
sector with tableaux Y4a, Y4b, and Y4c respectively.

There are six rank 2 spinors: papy, P(AB), O(AB)s Y(AB)s M(AB), and o(4p) which
correspond to the curly and Cyrillic tensors: Buped, apeqs Hapeds Gaveds Haveds and _Zaped-
They live in the Ferrers sectors Y2 (B, LI, /1) and Y4 (¢, 2, #). They have tableaux
Y2a, Y2b, Y2¢, Yda, Y4b, and Y4ec.

Finally, we have 3 rank 0 spinors: v, x, A, and X which correspond to the total trace
tensors: Aaped, Eapeds Sabed, and the totally trace free tensor €,p.9. These live in the Ferrers
sectors Y1 (v), Y3 (x, A), and Y5 (X). They have corresponding tableaux Y1, Y3a, Y 3b,
and Y'5. Additionally, N is purely imaginary.

These are all the possible irreducible spinors.

We examine the degrees of freedom of each SO (p, q) irreducible tensor, and compare
the formula to that of the spinors in 4D. This is done in appendix E. There we label the
sector with its Ferrers diagram, and then display the formulas for the degrees of freedom
of both the tensors and the spinors. Additionally, we include the degrees of freedom of the
GL (N) irreducible tensors and separate it from the others with a semi-colon. We use the
positive whole number n to represent the dimension of the spinor space S, with a small
sketch on how we calculated the degrees of freedom using Young tableaux ideas. Recall that
for our purposes n = 2, and the tangent space at a point p: T,M (where M is the manifold
being worked on) is isomorphic to the tensor product S® S, where S is the bar spinor space

referenced by Stewart (Stewart, 1993).

4.5 Spinor-Tensor Correspondence Under SO (3,1) and SL (2,C)

In this section, we establish an explicit description of each of the spinors; listed above,
we build them out of the SO (3, 1) irreducible tensors and give epsilon trace equations which
determine the SL (2,C) irreducible spinors.

Many of the formulas here were determined by using Maple; these are found in the

"Rank 3 Spinor Proofs" Maple file. It was useful to have a computer handle the laborious
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amounts of algebra. Example worksheets of this method are available on the Utah State
University digital commons. The proofs go by having Maple manipulate symbolic variables
in a way to have them match the Young symmetrizers. Examples for all 25 irreducible
spinors are available in the “Rank 4 Spinor Proofs” Maple file.For example, we would give
Maple a spinor pyap)€cDE 4 g €/ pr» and it would return the correct permutation of indices
to properly represent the corresponding rank 4 SO (3,1) irreducible tensor.

Following Penrose and Rindler (Penrose & Rindler, 1987a) we will almost always use
the isomorphism symbol 2 to indicate equality up to the Infeld Van der Waerden symbols

just like before in chapters 2 and 3. For example, we would write the equality below:

_ a b c d
S(ABCD)(A/BICIDI) - a(ledO- AA/U BB/O- CC/U DD/ (418)

as follows:
S(ABCD)(A' B ¢! D'y = Gabed
where the = symbol is suppressing the Infeld-Van der Waerden symbols.

We move to the examples now, the first being how we write the tensor 7 in terms of

the spinor ¢; the next being how we write the tensor b in terms of the spinor a.

4.5.1 The SL (2,C) Decomposition of the Tensor 7;.q

Given the tensor &7 from equation (4.7), we define ¢ by:

1
LAB)(A'B) = ggef%fab (4.19)
and then relate it back to &/ through:
Habed = €ABEY g'licpyc' D'y T EACEN o' Y BDY (B D) (4.20)

T €AD€y p'YpoyB'c’) T EBCER ¢’ l(AD)(A' D)

+ €BDER pliacya’c’y T ECDEC D' l(aB) (A B
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The Proof is given in the “Rank 4 Spinor Proofs” Maple worksheet. Iota and all the
other spinors presented here and in appendix F are irreducible because they are completely
symmetric in their unprimed and primed indices respectively.

Equations (4.20), and (4.19) show how the tensor .7 is given in terms of the spinor ¢

and epsilon spinors. This is different from equation (4.18) because we can take epsilon traces

a b c d
44'% BB’ cc’? pp

off, and thus we find that the spinor given by: .40 , is reducible or at
least equivalent to the symmetric trace free rank 2 tensor we get from taking metric traces;
this tensor is Ggp from equation (4.4).

It may happen that we can take just one epsilon trace, or three epsilon traces, which
would also be reducible under SL (2, C). Recall from Stewart (Stewart, 1993) that the metric
is given in terms of epsilon by gq, = €ape 4 5. With this being said, we move onto the case

for bgpeq for which this is the case.

4.5.2 The SL (2,C) Decomposition of the Tensor b,j.q
Recall that the tensor b is given in equation (3.21). We define its corresponding spinor

to be Y ABCD)(B ) which is given by:

! ’

1 A'D
O[(ABCD)(B/C/) ibabcde (421)

12

We can also write b in terms of QABCD)(BC') B follows:

babed = QapcpyB ¢ Yea' D T QA B ' DY (BC)EAD (4.22)

where, again, the proofs are given in the “Rank 4 Spinor Proofs” Maple worksheet. Similar
calculations happen in all the other 25 cases. These decompositions along with the remaining

23 formulas can be found in appendix F.

4.6 Classification of the Curvature Tensor in ECSK Theory

This section provides a classification of the curvature tensor in ECSK theory. We will
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see that the curvature tensor classification is far more complex than that of the torsion

tensor as there are six constituent spinors which determine it entirely.

4.6.1 Classification of the Curvature Tensor Under GL (N)
The completely covariant ECSK curvature tensor, which we call Rg;.q decomposes into

the following Ferrers sectors:

, : (4.23)

while the other sectors are forced to be zero by the symmetry:

Rabed = Rjapj[eq) (4.24)

Note, that more information on the curvature tensor, when torsion is present and in ECSK
theory, can be found in Jensen (Jensen, 2005), and in our chapter 5. For the first Ferrers

diagram in equation (4.23), only the Y 3b tableaux given by:

is non-zero. The Y 3a tableaux vanishes again because of symmetry of the curvature tensor
as in equation (4.24). As shown in appendix C, we write an element in the Y'3b sector by
the tensor F. The tensor F is defined in appendix C. There is no Y 3a sector because taking
the symmetric part of the first two indices results in zero. The second Ferrers diagram in

equation (4.23) naively decomposes further into the Y4b and Y4c tableaux sectors:

=]~

1
2
3
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However, neither of these sectors have the same symmetries as the curvature tensor. The set
of tensors given by the two tableaux above are not invariant subspaces because they do not
share the same symmetries as the curvature tensor. Nevertheless, there is a single invariant
subspace defined by the elbow Ferrers diagram Y4 sector. We define the tensor £ which

represents this sector by:

1

Laped = 5 (Q[ab][cd] - Q[cd} [ab]) (425>

It turns out that when we add the tensors H, and J, defined in appendix B we produce
the tensor L. The tensor £ has the same symmetries as the curvature tensor that are needed
to form a proper representative element for the irreducible subspace represented by the elbow
Ferrers diagram.

*Cabcd = Habcd + jabcd (426)

The tensor Lgpeq in equation (4.26) is analogous to the tensor Q. in chapter 3 in equation
(3.39).

Finally, for the Y'5 sector given by the tableau:

we have the corresponding tensor which we call IC as defined in appendix B; this is just
the totally skew-symmetric part of our tensor QQupeq from earlier. Viewing £, F, and K as

subspaces under GL (N), the curvature tensor decomposes into the following subspaces:

R=FaLoK (4.27)

under GL (N). Upon adding the degrees of freedom of the subspaces in equation (4.27)
together, we find that there are 36 independent components, which completely determine

the curvature tensor.
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4.6.2 Classification of the Curvature Tensor Under SO (p,q)

Now we consider decomposing Rgpeq under SO (p, ¢). This decomposition was first given
by Hehl (F. W. Hehl et al., 1995) in terms of differential forms. The GL (N) decomposition
further reduces into six subspaces which we label f, #, §, [, £, and €. The subspace F
decomposes into f, .%, and §. The subspace £ decomposes into [, and .. Finally, the
subspace K we relabel to £ to match our notation. Recall that lowercase Fraktur tensors are
required to be totally trace free.

We have repeated the equations for the subspaces f, %, and § from appendix C here

for convenience.

Faved = Fabed + Fabed + Sabed (4.28)

Fabed = ( Nli %) (éacgbd — RycGad — Raagoe + ébanc) (4.29)
Sabed = N(]\;—l)R (GacGod — Gadgbe) (4.30)

Rpay = 9" Faveas R = 9°°0" Fapea, R(ab) = R(ap) — %Rgab (4.31)

The subspace £ decomposes into two subspaces: [, and .Z in much the same way as all
the other Y4 sectors decompose. Additionally, it decomposes similarly to how the tensor
Qabe from equation (3.39) decomposed into qupe and Qgpe in equation (3.43); this is seen in

chapter 3. We can calculate the tensors corresponding to those subspaces as follows:
Ripq) = 9" Labed

Eabcd = gabcd + [abcd
1
Labed = )] (Rpdj9ac — Rip9ad — Riaagbe + Riac9bd)
[abcd = habcd + jabcd (432)

Labed = Haped + Fabed (4.33)

similarly to equation (4.26). Equation (4.32) shows us how to calculate [ in terms of b,
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and j; the tensor [ can be constructed with the Maple command “CurvatureFrankLl.”. Next,
equation (4.33) shows us how to calculate .Z in terms of J#, and _¢#; the tensor .Z can be
constructed with the Maple command “CurvatureCurlyL,”. The tensor I is the totally skew
part of Rgpeq, and does not reduce further under SO (p, ¢). However, we change its notation

to lowercase Fraktur script to match its totally trace free character.

K=%¢ Eued = Riabed (4.34)

Equation (4.34) is the last of our tensors which describe how Rgp.q decomposes under
SO (p,q). We let R be the vector space describing the curvature tensor. After that work,

we now have how the curvature tensor decomposes under SO (p, q):

R=fo 7oFalalat . (4.35)

4.6.3 Turning the Curvature Tensor Into SL (2,C) Irreducible Spinors

When we view the curvature tensor as a spinor it is always easiest to break it into its
corresponding SO (p, q) irreducible tensors first. Once we have those, there is a one to one
correspondence between those tensors and irreducible spinors. We present the spinors here
which are related to the decomposition of the curvature tensor starting first with the Y'3b

spinors given by the following tableaux:

The spinors ¥, ®, and A are related to the tensors §, %, and § respectively. The following
equations relate them:

1 ror ;!
V(apcp) = ZfabchA B P (4.36)

fabea = W(apcop)enpecp + ¥ u por pyEABECD (4.37)
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1
‘I’(AC)(A’c/) = §9bdd@abcd (4.38)
Fabed = (I)(AC)(A'C')EBDEB’D/ — <I>(BC)(B/C”)6AD6A'D/ (4.39)

+ (I)(BD)(B/D/)EACEA/C/ — @(AD)(A/D/)EBCGB/C/

1
A= Egacgbdgabcd (440)
gabcd =A (EACEBDGA/C/ €p'p’ — €ADEBCE ' D' EB/C/) (441)

Equations (4.36-4.41) are all given in appendix F, and give the SL (2, C) irreducible spinors
for the F sector. These equations also relate the spinors to their corresponding SO (3,1),
irreducible tensors. Note that p =2, ¢ = 2 is not allowed nor is p =4, ¢ = 0.

We have four new equations relating the new L type spinors from the:

Ferrers diagram back to their corresponding tensors. We labeled these spinors by: 2K, and

FO. They relate to the tensors [, and . as follows.

1 r
Koapyc'ny = §€CD6A P labed (4.42)

[abcd =~ 6A/B/€CD (H{(AB)(C,D,)) — GC/D/ €AB (>K(CD)(A/B/)> (443)

]_ 1
OBy = defﬁA B Loy (4.44)
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Lobed = €BCER (EA ' ¥O0(ap) + 6ADIO(A D' )>
)

+ €EADE 4 D' ((EB C/I’O BC) +€BCI’O B/C/)> (445)

— €ACEy ¢ (63 'p'¥0(BD) + €8I0 5 1y

- GBDEB/D <€A C'/IO AC) +6ACI‘OAC

Equations (4.42)-(4.44) tell us how to convert the tensors [, and . into the Kupyc'p'y:
and FO(4p) spinors; these spinor objects can be called with the following Maple commands:
“CurvatureZheSpinor”, and “CurvatureYuSpinor”. Furthermore, equations (4.43)-(4.45) tell
us how to convert these spinors with a mixture of epsilon spinors back into corresponding
SO (3,1) irreducible tensors; these objects can be constructed with the Maple commands:
“CurvatureGenerateZheTensor”, and “CurvatureGenerateYuTensor”. For our last sector &,

we again repeat the equations from appendix F. Recall that the tensor € corresponds to the

Young tableau. Its two spinor equations are given by:

1 g o
N = %EABECDEA CeBDE (4.46)
Livea = N (EABGCDGA/C/ €g'p — EAcéBDEA/BIGC/D/) (4.47)

+ N (EABECDEA'D'GB'C' - €AD€BC€A'B'€C'D’)

+ N(EACGBDEA/DIEB/C/ —€AD€BC€A/C/EB/D,)

Equations (4.46)-(4.47) tell us how to construct the aleph spinor, and how to convert the
aleph spinor back into the tensor €. We only include these spinors because they are the ones

which are important for the decomposition of the curvature tensor in ECSK theory. Moving
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forward, we then classify each of these 6 spinors using several tools, some already known,

and some newly developed.

4.6.4 Classification of the Curvature Spinors

To classify the curvature tensor, we classify the 6 spinors:

U asen)y ®apya 5y N K apy 5y F0an): X (4.48)

using several tools: the Petrov classification, the Plebanski classification, the Segre classification,
a positive /negative/zero scalar classification, and a structural reducibility classification (algebraic
irreducibility) developed from the ideas of Penrose and Rindler (Penrose & Rindler, 1987b).
The structural reducibility classification follows in the same spirit as the classification that

we did for the torsion tensor in chapter 3.

The first three spinors are similar to the spinors that are usually classified in GR:
the Weyl spinor ¥, the Ricci spinor @, and the curvature/Ricci scalar A; however, do not
mistake these here for those because the spinors in equation (4.48) will include contributions
from the torsion tensor; therefore they are not quite the same objects. Nevertheless, the
classification of these objects is the same. The three new spinors: 2K, FO, and N are pieces
of the curvature that arise due to the torsion tensor being non-zero.

We classify the spinor ¥ with the Petrov classification; see Acvevedo (Acvevedo et al.,
2006) for an excellent computational reference, and see the following references: (Zakhary
et al., 2003), (Letniowski & McLenaghan, 1988), (Dinverno & Russell-Clark, 1971) for more

details. We give a short description here for clarity.

4.6.5 The Petrov Classification of ¥ 4pcp)

The Petrov classification can be found in many references in the literature, a good
summary is provided in Stephani (Stephani et al., 2003). We can either examine the eigen-
bivectors of the Weyl tensor, or look at repeated roots in the symmetric spinor decomposition

of the Weyl spinor V(4pcp). We take the second approach and find that there are six
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different cases, the first of which is irreducible in the sense of Stewart’s definition (Stewart,

1993). The Petrov classification classifies the spinor V' 4pcp) according to which of these

Cases for the Petrov Classification
Cases Form of ¥ 4pcp) Petrov Type Degrees of Freedom
Case 1 aABBYcdD I 10
Case 2 o apBcYD II 8
Case 3 asapBeBp D 6
Case 4 aqagacfBp 117 6
Case 5 QABOCOD N 4
Case 6 0 O 0

Table 4.1: Petrov Classification of the Spinor ¥(4pcp)

six cases it falls into through calculating several invariants to distinguish the cases. Penrose
and Rindler (Penrose & Rindler, 1987b) reference Grace and Young (Grace & Young, 2011),
as do we in the construction of the invariants for the Petrov classification. We relabel some
of the co(in)variants however. A computationally efficient Petrov type algorithm is given by
Zakhary et al. (Zakhary et al., 2003). We begin with viewing the spinor ¥ as a covariant
(like Olver (Olver, 2003)); this covariant is calculated the same way as in the Newman-
Penrose formalism, see Stewart (Stewart, 1993) for more details on this. Then we choose
a spin basis 04,14 for the spinor space S. Then ¥ as a covariant is given by the following

equations:

Uy = UapopooPool (4.49)
v, = \I’(ABCD)OAOBOCLD
Uy = \I/(ABCD)OAOBLCLD
Uy = \IJ(ABCD)OALBLCLD
v, = \I’(ABCD)LALBLCLD

If the Petrov type is O then all the W covariants will be zero. We can then build other

covariants out of the ¥ spinors.
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The next of these will be the @ covariants, which if they are all zero and W is non-zero

then we are in a Petrov Type N space. We label the @ covariants the same way we labeled

the ¥ covariants above in equation (4.49)

Qo
@1
Q@2
@3
Q4

QaBcD) = ‘I’(AgF‘I’CD)EF

2W oWy — 2 ()2 (4.50)

YoWUs — U Wy
1 2
g‘I’o‘IM + 5‘111\1/3 — (Uy)?

U0y — WoWs

2Wy Wy — 2 (W3)?

Next, to determine if we are in a type D space we calculate the R covariants. We

calculate these if the other two prior covariants are non-zero. We can calculate the R

covariants with the following equations:

Rapeper) = Yiapt Yor " VekLy

Ry
Ry
Ry
R3
Ry
Rs

Rg

which are zero in a type D space.

= Qo¥1— Q1% (4.51)
= (@0~ Qs)

= Q- Qo

= @ - Q)

= Qs Qs

= Q- Q)

= QoW Quly
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To determine the last few three cases, we need to calculate the I, and J, invariants.
These are given below:
1 4

Iy = g%y — W1 W3+ (y)? (4.52)

Jy = UgUUy 4 20,003 — Uy (U3)? — (01)2 Ty — (Ty)? (4.53)

and if both I, = J, = 0 then we are in Petrov Type II1 space.

The last invariant A acts as a discriminant which tells us when there are repeated roots
of the polynomial defined by ¥. Grace and Young explain more on the quartic polynomial
which is generates by the spinor ¥ spop (Grace & Young, 2011). The invariant A is given
by:

A= (Ip)g - (Jp>2 (4.54)

and differentiates the Petrov Type II and Type I cases. If A = 0 we are in Petrov Type
II, however if A # 0 then we are in a Petrov Type I space. There are ways we could
refine this classification further using ideas in invariant theory, seeing if the discriminant is
positive, or negative, but this is made more difficult by the complex coefficients, and we will
not examine it here. Excellent flow charts for this algorithm are presented in both Zakhary
and D’Inverno (Zakhary et al., 2003)(DInverno & Russell-Clark, 1971). Furthermore, a
direction for future work would be to incorporate the ideas of Penrose (Penrose, 1972), we
could refine the classification and hopefully have a type for each degree of freedom 0 through
10 based on the multiplicities and classification of the singularities of the curves defined by

the polynomial of .

4.6.6 The Plebanski Classification of (I)(AB)(A’B’) and >K(AB)(A/B’)
The Plebanski classification is almost identical to the Petrov classification section. The

only difference is that we begin with a spinor like ® instead of one like ¥. All the Plebanski
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classification does is turn ® into a W-like spinor, call it x, through squaring it:

i

FE F
XBcp) = ®up " Popyp e

and then applying the Petrov classification to x. In NP fashion, the spinors ®, and x when

viewed as covariants, are given by the following equations:

/ ’

by = (I)ABA/B/OAOB5A oP (4.55)
by = (I)ABA/B/OAOBBAIZB/
Pgy = (I)ABA/BIOAOBZA/ZB/
Py = @ABA/B/OALBEAIEBI
b, = (I)ABA/B/OALB5A/ZBI
b5 = (I)ABA/B/OALBZA,ZBI
dyy = (I)ABA'B/ LALBaAlaBI
by = (I)ABA'B' LALB5A,ZB/
Py = (I)ABA'B/ LALBZA/ZB/
Xo = 20y —2(Pp1)? (4.56)
X1 = PooPi2 — 2Pp1 P11 + Po2Pio
X2 = é (@00‘1)22 —2®g1Po1 + P Pog + 4P12P1 — 4 (‘1311)2>

X3 = P1oPox — 2011 P21 + P12Pyg

X4 = 2(1320(1)22—2(@21)2

where 64 | and 7% are a spin basis on 8. Upon calculating the y covariants, we treat them
as if they were the ¥ covariant and put them into the Petrov algorithm to determine the
Plebanski type; just like how there are six Petrov types, there are six Plebanski types by

the same reasoning.
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The interesting thing about this classification in ECSK theory is that we now have the
additional antihermitian spinor }K( AB)(A'B') which we can classify with the same tools as
we could with the ® spinor. This becomes particularly interesting when two nonidentical

spacetimes have the same classification for ® but not for >K(AB)(A’B’)'

4.6.7 The Segre Classification of <I>(AB)(A/B/) and }K(AB)(A/B/)

The Segre classification further refines the Plebanski classification. We follow Hall’s
analysis (Hall, 1976) of the canonical forms of the Ricci tensor; this really applies to any
second order symmetric tensor in a space with Lorentzian signature. These tools are then
applied in Zakhary and Carminati (Zakhary & Carminati, 2004) to spinors which yield a
complete algorithm for determining the Segre type of a given spinor in the form ® (AB)(A'B')"
Historically Churchill (Churchill, 1932) was the first to present the canonical forms for second
order symmetric tensors. There are 15 distinct Segre types that can occur.

The Segre classification hinges on determining the Jordan normal form of either a second
order symmetric tensor or equivalently a spinor of the form <I>( AB)(A'B'); S€e Horn (Horn &
Johnson, 1985) for details. Reference (Stephani et al., 2003) presents how both of these
viewpoints yield the same answer, and we will be examining how the tensor case relates to
the spinor case. We begin by constructing the mixed null tetrad [*, m®, a®, b* of Hall where
[* and m® are null vectors and a® and b® are spacelike vectors. The matrix representation

of the metric tensor in this basis with mostly minus signature is given by:

Gadb =
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We then write a second order symmetric tensor in this basis, call it Agp:

A = _2A1l(amb) — Aolyly — Asmamy, — 2A4l(aab) — 2A5l(abb) (4.57)

= 2Agmaap) — 2A7m by — 2Asa,by) — Agagap — A10baby

where the coefficients A; € R. Hall then proceeds to present two cases, one in which the
tensor Ay has a null eigenvector and the other being when the tensor A, does not have
a null eigenvector. As an aside, Hall does his analysis with signature [—, 4+, +, 4] which
is different that what we are using (mostly minus [+, —, —, —]) thus we decided to change
equation (4.57) to have negatives in front for ease. A mostly minus signature can be used
just as well, but the analysis done works regardless of the signature convention we pick. At
this point we find it easiest to give canonical forms for every possible Segre type that Hall
presents. We will then use these canonical forms to relate to the conditions that Zakhary
and Carminati present in their Segre classification algorithm.

The Segre classification gives us information on the algebraic and geometric multiplicities
of the eigenvalues and eigenvectors. We will provide how many eigenvectors of each type
(timelike, spacelike, lightlike) there are later. Additionally, we can tell just from the Segre
notation how many timelike, lightlike, and spacelike eigenvectors there are. For there to
exist a timelike eigenvector the first number must be a one and must not appear in any
of the parenthesis. If it does appear in parentheses then it must be a lightlike eigenvector.
There are two cases for which there are complex eigenvectors and those also appear first, the
other eigenvectors being spacelike. For example [(1,111)] would have two null eigenvectors
and two spacelike eigenvectors. There are always two null eigenvectors (except of course
when the first number is a one and appears without parenthesis) unless the first number is
greater than one, then there is just a single null eigenvector.

The Segre notation is meant to mirror the information given by the Jordan normal
(canonical) form of the matrix. Plebanski and Stephani (Stephani et al., 2003), (Plebanski,
1964), additionally both give the Segre types in Plebanski notation, which we will not do

here, but are good references.
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The dimension of the eigenspace is represented in the Segre notation by the amount of
numbers inside the square brackets; this is related to the geometric multiplicity. Recall
that the geometric multiplicity for a given eigenvalue is the number of Jordan blocks
corresponding to that value; we can also think of the geometric multiplicity as the dimension
of the eigenspace for a given eigenvalue. For example in [2, 11] we only have three eigenvectors,
each with geometric multiplicity one. The dimension of the eigenspace of a matrix of type
[2,11] is only 3. The presence of the 2 is telling us that the eigenspace is degenerate.

The algebraic multiplicity is represented in Segre notation by either normal parenthesis
or by a number higher than one. Recall that the algebraic multiplicity for a given eigenvalue
is the sum of the sizes of all the Jordan blocks corresponding to that value; we can also think
of the algebraic multiplicity of an eigenvalue as the number of times it appears as a root
of the characteristic polynomial of our matrix of interest. For clarity, when we see [(2,11)]
we would have a single eigenvalue of algebraic multiplicity 4; the parenthesis are telling us
about repeated eigenvalues.

Before we provide a list of all the Segre types and information about them, it is useful to
describe the invariants we use to differentiate the different cases. The first invariant will be
the Plebanski type discussed above. Zakhary and Carminati (Zakhary & Carminati, 2004),
whom we will follow, first calculate the Plebanski type to sort the Segre types, and then
calculate further invariants to determine the Segre type. Accordingly, we group the Segre

types according to their Plebanski type first, then specialize to the Segre type.

Invariants and Covariants for the Segre Classification

There are several co(in)variants we need to determine the Segre classification after
applying the Plebanski classification: @y, Eqap, I6, I7 Xa, Xa, H, ka, and A. The co(in)variants:
®ap, Xa, and A are given above in equations (4.55), (4.56), and (4.54). The other co(in)variants:
Euw, I, I7, Xa, H, and k, we will define below.

To move forward we make a few observations. There is an erroneous minus sign in front
of the invariant 7 (their equation (25)) in the Zakhary and Carminati paper (Zakhary &

Carminati, 2004); removing the minus sign there makes their equation (25) consistent with
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their equation (28). The covariant X, is labeled the same way that the covariant W is labeled
in the Petrov classification. To calculate the invariants I, and J, in equations (4.52), and
(4.53) we replace the covariant ¥ used in the Petrov classification with the covariant x used

in the Plebanski classification, see equation (4.56).

(AB) L oa(A B)EF
E (C/D/) —2q) EF/(C,/<D D/)
Eqp = 4(PooP11 — Po1P1o) (4.58)
Epp = 2(PooPi12 — Po2P10)

Eopy = 4(Po1P12 — Po2®11)
Eip = 2(®ooP21 — Po1P20)
Ein = PgpPaz — Pp2Pao

Eiy = 2(®o1P2 — Pp2P2)
Eyy = 4(®10P21 — ©11P20)
By = 2(®19Pa2 — P12Pa0)

Eyy = 4(P11Po2 — P12Po1)

1 ABA'B'
ls = gq’ABA’B’q’
1
Io=3 (2@00@22 — 4Dy Doy + 2BgaDag — AD19B 1y + 4 (@11)2) (4.59)
1 AC +BED'F
I = 2015 py 5 @ (4.60)

Ir = 2(PooP11Pa2 + Po1P12P20 + Po2P10P21)

+ 2(—PpP12P21 — Po1P10P22 — Po2P11Pao)

~ E'F
XBcp) = Eap " Ecpyp' v
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Xo = 2EgEo —2(En)’ (4.61)
X1 = FEoE12 —2EoEn + EpEr

~ 1 2 1 4 4

X2 = §E00E22 — §E01E21 + §E02E20 + §E12E10 —3 (En)?

X3 = FEi0Ex» —2E11Ey + E12Ey

Xa = 2B9Ey —2(Fay)?

H=1Isl, - J, (4.62)
1 .
ko = Jp (Eaa - 2HI7Ipq)aa> , (a=0,1,2; no summing) (4.63)

Below we have a list of the possible Segre types, their corresponding canonical form as a
tensor, and conditions upon which an arbitrary tensor will be in that form. It is these forms
for which the tensor A, in equation (4.57) can be put into if it is the corresponding Segre
type. Note that the parameters A, o, p1, p2, p3 € R. Plebanski (Plebanski, 1964) gives an
excellent diagram on his pgs. 990 and 1001, describing how all the Segre types degenerate
into each other upon changes in the invariants provided above. To determine the Segre type
first we follow Zakhary and Carminati (Zakhary & Carminati, 2004), who first determine

the Plebanski type, and then calculate extra invariants for the Segre classification.

Plebanski Type O

For Plebanski type O there are four different possible Segre types: [(1,111)], [(2,11)],
[1,(111)], and [(1,11) 1]. They are given below with their corresponding completely covariant
canonical forms along with the conditions on the covariants which force them to be that
particular Segre type. First we have Segre type [(1,111)] which has two null eigenvectors,

and two spacelike eigenvectors with only one eigenvalue of algebraic multiplicity 4.
[(1,111)]

A = —2pll(amb) — p1aaap — p1babe
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Qop =0

Next we have Segre type [(2, 11)], which has one null eigenvector, and two spacelike eigenvectors

with only one eigenvalue of algebraic multiplicity 4.

[(2,11)]

Aap = = Nalp — 2p1lgmy) — pragap — p1baby
Dy # 0, and (B17)° — gy Py = 0

Next we have Segre type [1, (111)], which has one timelike eigenvector, and three spacelike
eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and the other of
algebraic multiplicity 1.

[1, (111)]

Aap = —p2laly — 2p1l(gmy) — pamamy — (p1 + p2) aaapr — (p1 + p2) baby
Eopo >0

The last Segre type in Plebanski type O is [(1,11) 1], which has two null eigenvectors, and
two spacelike eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and
the other of algebraic multiplicity 1.

[(1,11)1]

Aab = —2p1l(amb) — P10qap — p3babb

Eu #0, for some a,b, and Egy <0

Plebanski Type N
For Plebanski type N there are two different possible Segre types: [(3,1)], and [(2, 1) 1].
They are given below with their corresponding completely covariant canonical forms along

with the conditions on the covariants which force them to be that particular Segre type. First
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we have Segre type [(3, 1)] which has one null eigenvector, and one spacelike eigenvector with

only one eigenvalue of algebraic multiplicity 4.
[(3,1)]

A = —2p1lgmy) — 201 qap) — praqap — p1babs
Ig =0

The other Segre type in Plebanski type N is [(2,1) 1], which has one null eigenvector, and

two spacelike eigenvectors with two distinct eigenvalues, one of algebraic multiplicity 3 and

the other of algebraic multiplicity 1.
[(2,1) 1]

Aab = —)\lalb — QPll(amb) — P10qgap — p3babb

Is #0

Plebanski Type D

For Plebanski type D there are five different possible Segre types: [(1,1) (11)], [2, (11)],
(ZZ,(11)] [1,1(11)], and [(1,1) 11]. They are given below with their corresponding completely
covariant canonical forms along with the conditions on the covariants which force them to
be that particular Segre type. First we have Segre type [(1,1) (11)] which has two null
eigenvectors, and two spacelike eigenvectors with two distinct eigenvalues both of algebraic

multiplicity 2.

[(1,1) (11)]
Ay = —2p1l(amb) — P20q0p — prbe

Ig #0, and Fu, =0
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Next we have Segre type [2, (11)], which has one null eigenvector, and two spacelike eigenvectors

with two distinct eigenvalues, both of algebraic multiplicity 2.

2, (11)]

Aab = —Aalp — 2p1l(gmy) — p2aaap — p2baby
Is # 0, and (xo0 =0, if xo # 0, or X2 = 0 otherwise) or just x, =0, Va

Next we have Segre type [Z?, (11)], which has a pair of complex conjugate eigenvectors,
and two spacelike eigenvectors with three distinct eigenvalues, one of algebraic multiplicity
2, and the other two being complex conjugate eigenvalues with algebraic multiplicities 1
each.

(Z2Z,(11)]
Aah = —p2laly = 2p1l(my) + pamammy — p3aaas — p3babe
Is =0, or (I #0, and H < 0)

Next we have Segre type [1,1(11)], which has one timelike eigenvector, and three spacelike
eigenvectors with three distinct eigenvalues, two of algebraic multiplicity 1, and the third of
algebraic multiplicity 2.

1,1 (1)

Aap = —p2laly — 2p1lgmy) — pamamp — p3aqap — p3babe
I #0, and H > 0, and k, < 0 for some a

The last Segre type for Plebanski type D is [(1,1) 11], which has two null eigenvectors, and
two spacelike eigenvectors with three distinct eigenvalues, two of algebraic multiplicity 1,

and the third of algebraic multiplicity 2.

[(1,1)11]
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Ay = —2p1l(amb) — p2aaap — p3babs

Ig #0, and H > 0, and k, > 0 for some a

Plebanski Type III
This case of Plebanski type 111 requires no further calculations because the only possible
Segre type is [3,1]. This type has one null eigenvector and one spacelike eigenvector. There
are two distinct eigenvalues one with algebraic multiplicity 3 and the other of algebraic
multiplicity 1.
3,1]

Aap = —2p1lgmy) — 20l qap) — p1aaap — p2baby

Plebanski Type II
This case of Plebanski type I requires no further calculations because the only possible
Segre type is [2, 11]. This type has one null eigenvector and two spacelike eigenvectors. There
are three distinct eigenvalues one with algebraic multiplicity 2 and the other two of algebraic
multiplicity 2.
[2,11]

Aap = —Maly — 2p1lgmy) — p2aaay — p3babe

Plebanski Type I

For Plebanski type I there are two different possible Segre types: [1,111], and [ZZ, 11] .
They are given below with their corresponding completely covariant canonical forms along
with the conditions on the covariants which force them to be that particular Segre type.
We begin with Segre type [1,111] which has one timelike eigenvector, and three spacelike

eigenvectors with four distinct eigenvalues all of algebraic multiplicity 1.

[1,111]



101

Aay = —palaly — 2p1l(amp) — pamamy, — pzaqap — pababy
A <O

Next we have Segre type [Z?, 11], which has a pair of complex conjugate eigenvectors, and
two spacelike eigenvectors with four distinct eigenvalues, two of algebraic multiplicity 1, and

the other two being complex conjugate eigenvalues with algebraic multiplicities 1 each.
(Z2Z,11]

Aap = —p2laly — 2p1lgmy) + pamamp — p3agap — pababy
A>0

Altogether there are 15 distinct Segre types that can occur. When we perform our
classification of the curvature tensor in ECSK theory we often convert the curvature tensor
into its 6 constituent spinors. We can then apply the Segre classification to the spinor
® because it corresponds to a symmetric rank 2 tensor. Recall that ® is a hermitian
spinor. In our classification we also apply the Segre classification to the spinor 2K, which is
antihermitian, in the same exact way. To turn this into a hermitian spinor, we could just
multiply it by ¢ but we believe it is better for classification purposes to keep the spinor in
its naturally occurring form. Additionally, the Segre classification is sensitive to signs for
some of the co(in)variants, so we do not take the route of multiplying by . For the most
part the classification does not change in either approach.

The classification still works on 2K because instead of all the co(in)variants working off
all the real parts of the spinor, it instead works with the imaginary parts; e.g., we could
just multiply by ¢. However, if the classification is applied to an arbitrary spinor of the
form A( AB)(A'B') the resulting classification will acquire complex coefficients in several of
the invariants and a new classification will be needed to account for complex values; this is
not needed here since such a spinor would correspond to a complex valued world tensor in

the words of Penrose and Rindler (Plebanski, 1964).
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The Segre types can be calculated in Maple through the command “SegreType” which
can take as its input the covariant ®, then returning its Segre type.

There are ways to further refine the Segre classification such as through the ideas
presented by Ludwig and Scanlan (Ludwig & Scanlan, 1971), and Penrose (Penrose, 1972).
We do not examine these ideas here, but note that Crade and Hall (Crade & Hall, 1982)
have an excellent summary article which compares all the different classifications including

the Segre classification. This would be an excellent direction for future work.

4.6.8 The Structural Reducibility of @(AB)(A/B/) and }K(AB)(A/B/)

Now we turn to the structural reducibility for ® ,, 5 and 2K, 5, 5. Penrose and
Rindler (Penrose & Rindler, 1987b) originally constructed all the cases we provide here,
but did not present co(in)variants to differentiate the different types. We make use of the
invariants in Zakhary and Carminati (Zakhary & Carminati, 2004), which differentiate all
of Penrose and Rindler’s cases except cases 2 and 3. There are eight different cases in total.

We use the same definition for structural reducibility which we used with the torsion tensor

Cases for the Curvature Phi Spinor
Cases Spinor Our Notation Penrose Notation | Deg. Freedom
Case 1 P upy A B) [22] (2,2) 9
Case 2 Ay Tpp | [11,11] (1,1)(1,1) 7
Case 3 Lo Tpy [(11,11)] I(1,1)? 7
Case 4 Ay Mgy [11%] (1,1)? 4
Case 5 Ay pepg | (A A), 1] (1,1)|(1,0)? 6
Case 6 pAﬁA’UBa-B’ [(A’A/)a(BvB/)] |(170)|2|(170)|2 i)
Case 7 papypBig | [A% B] (1,0)%? 3
Case 8 0 [—] (-) 0

Table 4.2: Structural Reducibility Table of the Spinor (I)(AB)(A/B')

in chapter 3. Recall that a spinor is structurally reducible if it can be written as a product.
Recall that for a valence 2 spinor, it is structurally reducible if it can be written as products
of lower valence spinors. The eight different cases are given below with their classification

type next and their degrees of freedom following; this can be found in Penrose and Rindler
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(Penrose & Rindler, 1987b). These cases apply to a hermitian spinor <I>( AB)(A'B'): However,
they can be made to work for an antihermitian spinor like }K( AB)(A'B') if there is an 7 placed
in front of each of the cases. For example, case 2 would become >K(AB)(A/B/) =AYy,
and we would add an ¢ similarly for each of the other cases as well. We present these
cases in the following table, where all primed and unprimed indices, though not explicit for
typesetting constraints, are totally symmetric. The spinors A , ,/, and T , ,+, are hermitian,
while I' , ,/ is complex.

Since we have all the cases laid out, we must now define the invariants to distinguish
each of these cases. The only cases we were unable to distinguish were cases 2 and 3, all
the others have covariants determining their case. We present the algorithm through both
a step chart and a flow chart:

1.) Calculate ®gy,.

if 4, = 0 then Case 8. [-] — (—)
2.) Calculate I
if I = 0 then Case 7. [A3, B'] —|(1,0)%?
3.) Calculate Eq,
if By = 0 then Case 6. [(4,A4"), (B, B")] —|(1,0)[?|(1,0)?
4.) Calculate I7
if I; = 0 then Case 5. [(4,A"),11] — (1,1)|(1,0)?
5.) Calculate Y,
if Xo = 0 then Case 4. [112] — (1,1)?
6.) Calculate R,
if R, = 0 then Case 2 or 3 [11,11] — (1,1)(1,1) or [(11,11)] — |(1,1)|?,
else Case 1. [22] — (2,2)

7.) The Algorithm is finished

We present the flowchart for the above step chart next in figure (4.1). All the co(in)variants
presented above can be found in the Segre type section. This classification in addition to the

Segre classification can sometimes differentiate unique solutions that the Segre type alone
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O Start
[7 Input
[ Start } Q Decision
O Stop
Yo
/ Calculate ® = ‘ Case 8
No
/ Calculate Ig Yes Case 7 ’
No
/ Calculate E Yes Case 6 ’
No
Yes
/ Calculate Iy Case 5
No
/ Calculate xq s Case 4

Z j
o
’-<

Yes Case 2 or 3

/ Calculate R

Case 1

Figure 4.1: Flowchart for the <I>( AB)(A'B) Spinor Classification Algorithm

cannot differentiate. Our labeling scheme seen here is the same notation that Penrose and
Rindler (Penrose & Rindler, 1987b) use. Furthermore, figure (4.1) is read the same way as
figure (3.1) is from chapter 3. The problem in differentiating cases 2 and 3 is that they have

a very similar tensor structure.
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4.6.9 The Classification of A

The classification of A is straightforward because it is a scalar. All that is needed is
to see if A is positive, negative, or zero. Because lambda can vary from point to point, we
classify it into these three sectors. The positive and negative cases are generic unless A is 0
everywhere. We use the notation: “+, —, 0” to differentiate these cases. In more complicated
spacetimes this can be sufficiently interesting as the classification of A can vary from region
to region in spacetime just as all the other classifications can. We use the terminology
exceptional point for a point at which the classification of A changes, but for an open set
around that point the type does not vary. For the nonzero case, an open set around an

exceptional point is either positive or negative.

4.6.10 The Structural Reducibility Classification of ¥O,p)

Here we classify the FO(4p) spinor which arises as a new irreducible sector due to the
inclusion of torsion. This classification is a primitive Petrov classification because it examines
multiplicities of a lower degree polynomial. Unlike the Petrov classification which examines
a quartic polynomial and its repeated roots, the classification of the spinor }0(4py examines
a simpler quadratic polynomial which is significantly simpler. There is only one invariant O
which determines when the roots are repeated, and it takes the same role that the invariant
A in equation (4.54); the invariant O is the discriminant for the quadratic equation which
FO(4p) defines. This is different from what we had for the torsion spinor in table (3.2) in
that we now only have unprimed indices. Having only unprimed indices automatically forces
our spinor to decompose into two valence 1 spinors per Stewart’s theorem (Stewart, 1993).
Hence, the notation [A, B]. The case [AQ] indicates that the spinors are repeated. The
three different cases come as follows in table (4.3):

The notation with the square brackets we developed for all spinor structural reducibility
classifications in p = 3, ¢ = 1 signature spacetimes. Recall that it is read in the same way
it was for the torsion spinor Q( ABC)A' from the torsion tensor in chapter 3. As a reminder,
in the first case we use [A, B] to represent that the spinor is irreducible.

The two co(in)variants: IO, and O are used to differentiate the 3 cases from table
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Cases for the Yu Spinor
Cases FOam) Our Notation | Penrose Notation | Deg. Freedom
Case 1 aAfB [A, B] (1,0)(1,0) 6
Case 2 as0p [A2] (1,0)? 4
Case 3 0 [—] (—-) 0

Table 4.3: Structural Reducibility Table of the FO, s Spinor

(4.3). The co(in)variants are shown below in which we give a NP style form, and a spinor

contraction form for them. We again pick a spin basis 04, ¢ to form the NP style covariants.

000 = I0(4pyo”o” (4.64)
I‘O()l = I‘O(AB)OALA

I‘OH = I‘O(AB)LALA

O = 10(4p)I0AP)
0=2 (IOOOIOH - (}001)2> (4.65)

To differentiate each of the three cases begin by calculating the FO covariant. If IO is zero
then we are in case [—]. Then we calculate the invariant O, which if it is zero and 1O # 0,
then we are in case [(11)]. Lastly, if neither FO or O are zero then we are in the general case
[11]. The algorithm goes as follows which we present in both a step chart and a flow chart.
1.) Calculate O .
if FO4p = 0 then type [—],
2.) Calculate O.
if O = 0 then type [AQ]
if O # 0 then type [A, B]
2.) The Algorithm is Complete.
We have a flowchart included below which illustrates the FO spinor algorithm. This
classification can be called in Maple by the command “CurvatureYuReducibility Algorithm”.

Likewise, the covariant FO can be called with “CurvatureYuCovariant”, and the invariant
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O can be called with “CurvatureOmicronInvariant”. All of these three commands take the

spinor FO as an input

O Start
[7 Input

[ Start J Q Decision

O Stop

Y
/ Calculate IO /—> & Case 3
No
Yes Case 2
/ Calculate O /—>

Figure 4.2: Flowchart for Classification Algorithm of the KO Spinor

Case 1

This is the classification for the FO spinor.

4.6.11 The Classification of N

The classification of the spinor N is the same as it is for A other than the fact that it
is purely imaginary. To classify N we check if it is positive imaginary, negative imaginary,
or zero. We use the notation “+i, —i, 0” to distinguish these cases. Again, like in the case
for A, the spinor N may also change its type in different in spacetime, or at exceptional
points (just like for the A spinor). The type will remain consistent for some open set around
a chosen generic point; if an open set is examined around an exceptional point there is a

chance that the exceptional point is the boundary between two differing regions.

4.7 Refinements for the Classification of the Curvature Tensor in ECSK Theory
There are a few other viewpoints that can be taken in regard to the curvature tensor

classification that do not arise in the classification of the torsion tensor. The first of these
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is that we are able to break the curvature into different pieces by using the Levi-Civita
connection. This allows us to write Raped = R{} peq + Aabed, Where R{} ;.4 is the Levi-
Civita generated curvature tensor, and Ag.eq is the Alphonse tensor piece generated by
torsion; we define this Alphonse tensor to be the part of the curvature purely generated by
torsion and derivatives of torsion. This piece is explained further in the ECSK field equation
chapter; see chapter 5.

With our classification algorithm already established, we could also classify the tensors
R{} peqr @and Agpeq in the same way we calculated the ECSK curvature tensor. The
classification of R {} ., is already well understood through the Petrov, Segre, and A types of
classification we presented earlier, nevertheless there are ways to refine those classifications
even further through either the tools of Ludwig and Scanlan (Ludwig & Scanlan, 1971), or
Penrose (Penrose, 1972). The ideas in both of these are significantly developed but have yet
to be implemented in computer algebra. In particular, there is no algorithm to determine
the way to calculate out the Penrose type yet.

In the case of the Alphonse tensor it would be interesting to see how its classification
differs from that of the ECSK Riemann tensor because the Alphonse tensor does not only
contribute to the Y4, and Y5 irreducible sectors, it also contributes to the Y3 sector. This
could lead to potentially different classifications and may yield new physical information
such as a refinement of principal null directions, or a nuanced observable in terms of geodesic
deviation. This also provides, in addition, a simple way to compare back to GR when the
torsion tensor is zero. Furthermore, the tools of Ludwig and Scanlan and Penrose could be
applied to this viewpoint as well, yielding a fruitful new direction for further work.

In the next section we examine the gravitational side of the field equations in ECSK
theory with the aim of eventually applying the tools developed here for curvature, and before

in chapter 3 for torsion, to physical problems.
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CHAPTER 5
THE ECSK FIELD EQUATIONS

In this section we begin with the action of ECSK theory which depends on the fields
g, T4, and any arbitrary matter fields, for example scalar ¢, or a spin % fermionic Dirac
field. We will explain the differences between this action and that of GR, which is due to
the coupling of torsion to spin. Additionally, we will define several new objects such as
the Cartan tensor ¢4, which is an analogue to the Einstein tensor but for torsion, and the
notation R{},,.;, R{} for the Levi-Civita generated curvature tensors. We will use V for
the metric affine covariant derivative and V for the Levi-Civita covariant derivative.

We then proceed to discuss the symmetry properties of the curvature tensor in ECSK
and how show how some differ from those in GR. Many of the definitions here follow Torre
(Torre, 2020), Carroll (Carroll, 1997), and Poplawski (Poplawski, 2013) of which Poplawski
gives wonderful clarity when it comes to densities; that clarity is especially useful in making
an analogue in ECSK theory to what we already know in GR. After establishing some facts
we vary the action with respect to the fields g, and T4, while creating useful definitions
along the way. From Hehl, (F. Hehl et al., 1976) we find that it is actually the contorsion
tensor C'%. which couples to spin, and we decide to vary with respect to it instead of the
torsion tensor in the derivation; this decision also makes several of the computations easier
as well.

We would also like to refer the reader to Wheeler (J. T. Wheeler, 2023) who clarifies
the differences between the choice of field variables clearly. Additionally, the methodology
he presents is applicable to our interests, and we would like to state that the Poincaré gauge
theory approach to ECSK theory seems to be the most fruitful approach to take.

After the variation the first and second ECSK field equations are produced. Boundary
terms are kept throughout, and we discuss the Gibbons-Hawking-York term as it appears

in ECSK theory; this term changes slightly because of a modified /generalized definition of
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the extrinsic curvature of the boundary to include torsion. Finally, we discuss how to invert
the spin tensor in terms of the contorsion tensor, along with making some final comments

in a summary.

5.1 The Einstein-Hilbert Action for ECSK
We begin with the Einstein-Hilbert action Sppy (plus cosmological constant A), but

without the torsion-free assumption, and its Lagrangian density.

Spn = / LpdQ (5.1)
Q

Lepg = i (R—=2A)—yg (5.2)

This will later get modified to include the Gibbons-Hawking-York boundary term. R is the
torsion-full metric affine Ricci scalar, A is the cosmological constant, g is the metric density,
k = 87Gc 3 is the Einstein gravitational constant (this is different from the ¢=* usually
seen because we are using dz¥ = cdt (one coordinate represents time) instead of without the
¢. An excellent explanation is given in Misner, Thorne, and Wheeler (Misner et al., 1973).
The constant ¢ is the speed of light in a vacuum, G is Newton’s Gravitational constant
6.674 x 107 "'m3kg~1s72, and Q is the 4D region in spacetime of interest. Recall that the
action has units of energy times time. Note the Ricci scalar has units of m~2. Thus, when
the units of k, R, and A above are simplified, we find the units of the action to be energy
times time just like we would expect.

Several of the usual properties of the curvature tensor in general change in ECSK due
to the presence of torsion; Jensen (Jensen, 2005) provides an excellent explanation of these
differences, although he uses a different notation than we do (he uses Wald’s (Wald, 1984)
convention for the curvature tensor). Specifically some of the algebraic tensor symmetries
we would have had in GR are different. We will go over these properties now, and note

when they are different from those in GR.
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5.1.1 Symmetry Properties of the Curvature Tensor in ECSK

We will write these in a list, and make a sub list when the property differs from that in
GR. For the boldfaced letters, we follow Wheeler’s notation for differential forms (J. Wheeler,
2021). For instance D is the covariant exterior derivative, R*, is the curvature two-form, e”
is the solder form/orthonormal frame field, and A is the wedge product. Recall that there
are five main algebraic tensor symmetries of the curvature tensor in GR. We have:

1) the skew-symmetry of the last two indices R{},p.q = B {}4pjcq)-

2) when lowered the skew-symmetry of the first two indices R {} . = B {}5pjca-

3) the interchange symmetry R{} ;.. = R {} .4

4) the first (algebraic) Bianchi identity R{},p.q = 0 or €” A R, =0, and

5) the second (differential) Bianchi identity R{},.4. =0, or DRF, = 0.

cd:e

These all define the GR curvature tensor which happens to lie irreducible in the Y 3b

Young tableaux sector.

3
214

R{}apea € (5.3)

We proceed to go over these same five identities and see how they change in ECSK theory.
We would not expect all of them to hold because now the curvature tensor breaks not
only into the Y'3b sector, but a Y4b, Y4¢ combination sector (they turn out to be linearly
dependent) and a Y'5 sector. We use the elbow Ferrers diagram to represent the combination

sector.

1
Rabcd € i S

Now we discuss how the symmetry properties are different than they were before:
1.) The first property in GR was R{},,.q = R{}p[cq- This skew symmetry of the last

two indices is unchanged in ECSK.

Rabed = Rapjed)
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2.) The second property was R{},,.; = B{}4cq- This skew symmetry of the first two
indices is unchanged in ECSK.

Rabcd = R[ab} cd

3.) The third property was R{} ;.0 = R{}cqup-

The interchange symmetry is no longer valid Rgpeq # Redap- The obstruction to Rgpeq =
Regap here is the addition of torsion in the connection; this can be inferred from the new
Young sectors which appear in the irreducibility of Rgp.q. We can recover the identity

Rabcd = Rcdab in the

3
214

piece of the Riemann tensor using Young tableaux, however. The new interchange formula
is given in the equation which follows. We have checked and modified this equation from

Jensen’s formula (Jensen, 2005).

2Raped = 2Rcaas + 3 (Vi Tujed) + Vil DTojed + ViagLejan) + Vie Tuja)) (5.5)

3 (Taep T + Tocta Ty + Teetd Tty + Tacte Ty )

4.) The fourth property was R{},p.q = 0.
The first Bianchi identity changes in ECSK to include a covariant derivative of torsion
and a torsion squared term which is given as follows in both differential form language and

abstract indices. Note that d is the exterior derivative.
d d d
R [cab] = v[bT cal +T e[cTeab] (56)

DT" =e” AR,
dT" +T" Nw#, =e” N RF,

5.) The fifth property was R {} .z = 0.
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The differential Bianchi identity changes in ECSK and now includes a torsion contracted

with curvature term as follows in both differential form language and abstract indices.
d d
Vie Rt = =R T (5.7)

DR", =0
dR!, + R°, Nw!, + RV, AW, =0

These are how the ECSK curvature identities change in the presence of torsion. Next, we

move onto the matter action and the entire gravity action.

5.2 The Matter Action and Whole Gravitational ECSK Action
We begin with defining the matter action Sps, which incorporates all the different
variational matter sources for gravity. £y is an arbitrary matter Lagrangian density; it can

be broken into a Lagrangian times a metric/tetrad density: Ly = Las/—g = Lyse.
Sur = / Lard® (5.8)
Q
Together we can write the total action S = Sgy + Sis in equation (5.9) shown below.
1
S— / ([25 (R— 2A)] Vg4 £M> a9 (5.9)
Q

In ECSK, the action is a bit more complicated than in GR. Although the action looks the
same as in GR it is different is because of the presence of torsion.
Now we have five equivalent choices on how to vary the action:

1) with respect to the metric and the torsion tensor ¢® and T e

a

. and whe,

)
2) with respect to the metric and the contorsion tensor g2 and %,
3) with respect to the tetrad and the spin connection e

)

4) with respect to the tetrad and the torsion tensor e, and 7%, and
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5) with respect to the tetrad and the contorsion tensor e, and C.
In our case we will focus on 2), however we will examine parts of 1); furthermore, we
will elaborate on 3) and 5) at the very end.

The contorsion tensor is defined by:

Cabe = (_Tabc + Thac + Tcab) s Tape = _QCa[bc] (510)

| =

Chy=-T), =1, =1 (5.11)

Recall also that the contorsion tensor is skew in the first two indices.
C’abc = C[ab}c

Now we vary equation (5.9) with respect to the fields g? and 7% _ (or C%_, we show both).
We find

5SS = / (5\/—7 [;R (R — 2A)] + \/Tg;HaRJré.cM) ds (5.12)
Q

Now since we have two independent fields: ¢*® and T4, we will break off those variations as

separate parts; this will produce a variation looking like 65 = 0.5, 4+ 6S7. Likewise, we can

a

L and

break off similar pieces in any of the five cases from earlier, which we will do for e

wh,, for example.

5.2.1 First ECSK Field Equation from Inverse Metric Tensor ¢®® Variation
Following Hehl (F. Hehl et al., 1976), we find that the variation of the field equations

with respect to the metric yields:

G (ab) + Mgab = KT (5.13)
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The first of the objects above is the Einstein Tensor G, given as follows:
1
Gab = Rab - §Rgab . (514)

where Ry, is the Ricci tensor, and R is the Ricci scalar; recall that the Ricci tensor is defined
as the 1,3 contraction on the curvature tensor, and R is the metric contraction on the two

indices of the Ricci tensor. Next we have the stress energy tensor T,; this is given as follows:

2 0Lm

Ty = — o oM
v =g g

(5.15)

Recall that §\/—¢g = —%\/jggabég“b from Carroll (Carroll, 1997).We note that the Einstein
Field Equation has a spin contribution due to torsion inside the Einstein tensor as does Hehl
in his equation (3.23) (F. Hehl et al., 1976).

For calculation purposes, it is also useful to define the stress energy density 7, as in
equation (5.16).

Tab = —2—5gab (5.16)

Although we could look at the vielbein variation next, the author feels that it is better for
clarity if the vielbein and spin connection variation is discussed later. Next we discuss some

independent variable considerations which are important in ECSK theory.

5.2.2 Preliminaries Before the Second Field Equation, and Independent Variable
Clarification for g%, % T, C% and W'y,

Although we got the equation for the tetrad variation approximately above, there was
an equation we used which related the metric variation and tetrad variation to do so. This
subtlety addresses the importance of picking our independent variables in the variation.
Above, we talked about five different cases in ECSK which we can pick to vary. Each of
these will lead to different field equations and have different interpretations. Additionally,
there is the need to be particular about the covariance/contravariance of the tensors we are

varying. Although we say we were varying with respect to the metric, we really varied with
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respect to the inverse metric once the contravariance of the variation is considered. Likewise,
in the tetrad section above, we chose the variance of the tetrad e, to be one abstract index
up, and one orthonormal index down.

Tensor variance becomes important for the torsion tensor, contorsion tensor, and spin
connection. The torsion tensor naturally comes in the form 7% so it is preferable to vary it
with this variance; the interpretation becomes easier since in this form it is also completely
decoupled from the metric. Because the contorsion tensor can be viewed as part of a
connection 1-form, on one hand it makes sense to vary it as C' ; on the other hand however,
because the first two indices are skew it makes it easier computationally to vary Cype; we
will choose C'% as our object to vary because we can write (Aabc) 0C%,. = <gbdA[ad}c) O
(for some tensor AabC appearing in a variational principle) to still properly account for the
skewness of the indices a, b once one is lowered. This is also what seems to work best for
many formulas, and the author would recommend that C9_ be varied instead of Cgp.for
simplicity. Note that if we choose g and (%, as our independent variables, we can still

relate back to g% and Cype with equation (5.17).
3C%. = 69°'Cape + 9"*6Cape (5.17)

These type equations relating different valences in variations are not terribly difficult to
derive as all we did was lower an index with the metric and carry the variation through.
The difficulty comes when the independent variables are not chosen exactly and explicitly
from the start.

Moving forward, the spin connection naturally comes as w',, with the first two indices
skew symmetric as well. Similarly to the contorsion case we could choose to vary wyua

instead. Note however, that dw",q = 7"*06wWava, so there is really no difference here because

a

nap does not vary. Nevertheless, to relate a theory with independent variables e,

and wyq

a

back to a theory with independent variables e,

and Cgp. requires what is known as the
Belinfante-Rosenfeld relation; see (Gotay & Marsden, 1986) for reference, and (Belinfante,

1940), (Rosenfeld, 1940) for the papers of Belinfante and Rosenfeld. Furthermore, we refer
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the reader to appendix G, and to Wheeler’s paper (J. T. Wheeler, 2023) whom we believe
gives the best explanation of the Belinfante-Rosenfeld relation. This relation is important
because it produces a way to turn the tetrad energy momentum tensor back into the Hilbert
stress energy tensor; this makes it incredibly useful for physical interpretations.

There are several equations which relate all these variations together however, the first
of which is:

5g% = 217“”5(%6%’2,560“ (5.18)

This equation is lovely in the fact that there is no mixing of fields/variations as in equation
(5.17). However, there is no way to turn a vielbein variation back into a metric variation in
general because of the lack of guaranteed symmetry of the abstract indices. Past that, there
is the equation relating the contorsion variation to the metric and torsion variation; we will
choose the contorsion tensor C'% . in natural form as our independent variable. This relation

is given in equation (5.19); likewise, this relation can be inverted to give equation (5.20).

5C%, = 5 (—0000 + 9" 'g0e08 + 9"'90c0] ) 0T + (5.19)

N | =

(6% (Toge + Tegh) — (T4%90q + T4%9eq) ) 0977

N | —

0T, = —26,655C", (5.20)

For clarity, we have also included these equations when we choose Cgp. as the independent
variable. It is an algebraic exercise to check that these equations are inversions of each other,

in the sense that if we substitute 7', into the 0Cg. equation, that we get dCqp. = dCqpc.
L oh 1 esf esf e 51\ s
0Cape = —5 (=9agThve + gvgThac + 9egThav) 69" + 3 <—gad5b5c + gradg 00 + gcd5[a5b]) 0T ¢y

0T = (=2C4pn) 09" + (—2g“d5fb f]) 3C. e

The next equation which relates variations relates the torsion variation to the solder form

a

€

and spin connection w',,,. When we look at the definition of torsion given by T'(X,Y) =
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VxY — VyX — [X,Y], we can find an equivalent definition in terms of differential forms
given by equation (5.21):

T =de® + w3 nel . (5.21)

Recall that the bold letters denote differential forms. This is the form most often seen when
working with Cartan geometries; see Sharpe (Sharpe, 1997), Choquet-Bruhat (Choquet-
Bruhat et al., 1996), and Stone (Stone, 2008) for excellent references on these. Upon
expanding equation (5.21), varying and simplifying it, we find how the torsion variation
relates to the spin connection and solder form variations. Omne thing that is interesting
about this relation however, is the piece Jj, (ecj’ (5?(56];) which will turn into a boundary
term in the action.

0T%, = (26(1#6[:;51{]) &u“l,f +

(267wl e = 2050,y + 2050pe,] + 2 Ope e ') del,
20 (ec]”éjﬁéefo)

Furthermore, we can use both of the prior variational relations to see how the spin connection
variation can be written in terms of a contorsion and vielbein variation; the usefulness of this
comes from the fact that once we do this, the coefficient of the vielbein variation becomes
exactly the Hilbert stress energy momentum tensor, and can be interpreted the same way as
in GR. This relation is what becomes the Belinfante-Rosenfeld relation once applied to the
action principle. We will explore more on this later and in appendix G, and we also refer
the reader to Wheeler (J. T. Wheeler, 2023) who provides an excellent explanation of this
relation.

Before we move onto the variation of the action with respect to the torsion tensor,
contorsion tensor (by the algebraic relation relating, this relation is given in equation (5.10),
or the spin connection, it is important to define the quantities which appear once the matter
Lagrangian is varied with respect to these objects. At least for the torsion and contorsion
the algebraic relation relating them as we saw above is incredibly useful in relating the

variations.
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We define the following spin energy potential density 9t ¢, the Palatini potential density
D and spin angular momentum density G**¥ in equation (5.22); see Hehl (F. Hehl et
al., 1976) with slight modification. The Palatini spin potential density 9)** is a new object
not defined in Hehl’s paper. The index arrangement of both &%¢, and 9 are to follow

the spirit of Hehl (F. Hehl et al., 1976) as in equation (3.6) there.

0Lar

0Wpva

0L
5Ct,,

m be _ _25£M

Y= =2
“ 0T,

. 6% =—2 (5.22)

In equation (5.22) w'}. is the spin connection. The relation between the §Cheq and dwy, is

given by the Belinfante-Rosenfeld relation in appendix G. Recall that the spin connection

v

can be broken into the Levi-Civita spin connection @"),

. and contorsion tensor.

v b

w e

0o = wVwe’; +Cb e (5.23)

I

Because the torsion and contorsion are related through equation (5.10) we can write 9.¢ in

terms of &,2¢; lowering the indices makes the derivation easier. We then find the relations:

Mape = (Gabc + Sepa — 6bca> v Seap = _2m[ab]c (524)

N |

Likewise, we can make the densities S)ﬁabc, N and G%¢ into tensors with the following
definitions for the spin energy potential tensor ¢, Palatini potential tensor y** and spin

angular momentum tensor s%¢ (5.25).

1 1 1
be __ be apy __ apy abc __ abe
Hle = P,y — g = (5.25)
SN V3 N
If we apply the Belinfante-Rosenfeld relation from appendix G, which is just that the action
variations for the tetrad & spin connection, and metric and torsion be equivalent, then we
find that the Palatini spin potential density and spin angular momentum density are equal
as in equation (5.26).

eb[#ecu]Gabc _ Q‘jauy (526)
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Before we go about the variation with respect to torsion and /or contorsion it is useful to know
the formula for the Ricci scalar R in terms of the Levi-Civita connection generated Ricci
scalar R{}. The difference is precisely given in terms of torsion and or contorsion terms.
We can find this from the fact that the difference of covariant derivatives is a tensor; in this
case the difference between the metric affine connection and the Levi-Civita connection is
given by the contorsion tensor, see equation (5.27); X is an arbitrary vector field. This is

the same idea that we used in our equation (5.23) which relates spin connections.
(va - %) Xt =t xe (5.27)

Applying this idea allows us to write the difference of curvature tensors in terms of torsion
and or contorsion pieces; we need this in order to write the ECSK Ricci scalar in terms of
the Levi-Civita generated Ricci scalar and torsion/contorsion pieces. We will now define the
Alphonse Tensor AdC ab» Which we referenced in the summary section of chapter 4. It is a new
object which is the difference between the curvature tensor generated by the metric affine
connection Rdcab and the Riemann tensor of the Levi-Civita connection R {}%_,; in equation
(5.28).

Ay =Ry — R}y A%y = 2V1C%y + 2Cdf[acf|c\b] (5.28)

Taking a d, a trace of the Alphonse Tensor gives us what we define to be and call the Edward
Tensor E. This is the same procedure as forming the Ricci tensor in GR. Note also that the
Edward Tensor is the difference between the metric affine Ricci tensor and the Levi-Civita

Ricci tensor. Equation (5.29) contains the definitions of what we call the Edward tensor.

This also lets us write a few more formulas regarding E.,. E contains the skew part of the
Ricci tensor in ECSK, see equation (5.30). The symmetric part of E, is more than just the

Levi-Civita generated piece of the Ricci tensor however; this is due to the presence of new
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Young tableaux sectors for the curvature tensor in ECSK.

Ry = By Riapy = R{}op + E(eh) (5.30)

Lastly we have the Edward Scalar E' which is the trace of the Edward Tensor, and again
this corresponds to how we would form the Ricci Scalar in GR; this is given in equation
(5.31). We have used Cype = Clqp)c to combine the covariant derivative terms. Note also
that the Edward scalar is the difference between the metric affine Ricci scalar and the Levi-
Civita Ricci scalar; there is a parallel for each of these to the ones constructed naturally in
GR. Additionally, we can finally write the Edward Scalar/Ricci scalar in terms of torsion;
previously this was cumbersome because of the number of torsion terms. Finally, it is useful
to define one more piece U which becomes useful in the variational principle for ECSK. We
decided on U because Hehl describes ECSK as a Uy theory (F. Hehl et al., 1976); this ¢/ will
be called the Hehl scalar, see equation 5.33. The U scalar is the part of the Edward scalar

which does not have a covariant derivative in it.

E = ngECb = R - R{} ) E = *2%bcdb - Cdbd Cbc + Cdbc de (531)
1 abc 1 bac a qicb <. a b

E= Z abcT + iTabcT - abT c = QVbTa (532)

U= —g" (C%Ch = CuCfha) . U= E+2V,C" (5.33)

Now that we have defined several new objects, the variations with respect to the torsion

and contorsion become manageable and easier to follow as well. We will move onto the

differences in the next section.

5.2.3 Second ECSK Field Equations from Torsion 7%, and Contorsion (%
We have the freedom to vary the action with respect to the torsion or the contorsion

tensor. At first, it may make more sense to vary with respect to the torsion tensor because

it is completely independent of the metric; the contorsion tensor depends on the metric
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through the raising and lowering of the torsion tensor. This does change a few things, but
never too much because the torsion and contorsion are always related algebraically. Hehl et
al. (F. Hehl et al., 1976) give a good explanation of why it is the contorsion which should
couple to the spin of matter on page 398 the last paragraph in section F:

“We have seen that the presence of contortion in a Uy supplies space-time with new
rotational degrees of freedom. We know that matter possesses spin angular momentum
in general, and, in the spirit of general relativity, we would like space-time to reflect the
properties of matter. In the next section we will achieve this result by coupling the contortion
of space-time to the spin of matter.”

This comes about because now the metric-compatible affine connection is modified by
the contorsion, not the torsion tensor. Nevertheless, for completeness the torsion variation
may one day be valuable as a mathematical check elsewhere and for pedagogical reasons

also. From this standpoint, we move onto the torsion variation.

5.2.4 The Torsion Variation
From equation (5.32) we can write the Edward scalar in terms of the difference of Ricci
tensors and torsion. When F is varied with respect to torsion we find that the Levi-Civita

generated Ricci scalar R {} vanishes because it does not contain torsion; this yields equation

(5.34).
SrR = (%“) 5T, + Vs (—25f;gfcaTth) (5.34)

Furthermore, when we take the variation in equation (5.12) to be with respect to torsion,

we find the torsion variation St is given by equation (5.35).

o 1 (SR 6£M a A
(5ST = / <2[{(ST%C =+ m) (ST be'V gd X (535)
Q

Applying equations (5.25) and (5.34) to equation (5.35), we then find the Second ECSK field

equations, which we will call the Alpha Cartan equation, to be given by equation (5.36) with
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definition of the Alpha Cartan tensor in equation (5.37). It is precisely the Alpha Cartan
tensor with which we would like to draw an analogy to the Einstein Tensor Gg;. Notice how
both G, and &7, appear on the left-hand side of their respective field equations, and how
kT, and Kpgpe appear on the right-hand side of their respective field equations. This is the
good mathematical analogy to make in ECSK theory.

o, % = kpube (5.36)

a

1
%abc _ 5

(Tabc - 29adT[bc}d) — 24, b7 (5.37)
Although the Type + Thae — Teap term looks like the definition of the contorsion tensor, it is
not as it is off by just a few indices. The second ECSK field equation generated from the

torsion variation is equivalent to the one generated from the contorsion variation as we will

show. We now move onto the contorsion variation and then compare the field equations.

5.2.5 The Contorsion Variation

The contorsion variation is a bit different from the torsion tensor relation, however the
difference is subtle. The contorsion tensor is skew on its first two indices when they have
the same valence. However, the contorsion tensor naturally comes with the first two indices
being different valences. We deal with this through the following relation: (Aabc) 0CY, =
(gbdA[a d ’3) 0C%,.. Without proper care taken in this relation we do not get out the proper
field equations. Furthermore, it is precisely this relation which allows us to compare the
torsion and contorsion field equations.

In the case of the contorsion variation, the variation of the Ricci tensor, much like
and equivalent to equation (5.34), is given by equation (5.38). We can find this from the

contorsion form of the Edward scalar in equation (5.31).

bR = (916%,4) 6C%. — 29™55¥4 (6C%,) (5.38)
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Likewise, the contorsion variation dS¢ is given by equation (5.39).

1 OR 0L\

= —_— s a - Q .

0Sc / <2K 5Ce + 5Cabc> 0C %/ —gd (5.39)
Q

When we apply equations (5.25) and (5.38) to equation (5.39), we then find the Second
ECSK field equation, what we will call the Cartan Equation, when we vary with respect
to the contorsion in equation (5.40), with the definition of the Cartan tensor ¢, given in
equation (5.41). Interestingly enough, the Cartan tensor, unlike the Alpha Cartan tensor

/9., can be defined purely in terms of the torsion, as in the second half of equation (5.41).

Gabe = KSabe (5 40)

la

€= =2 (Cuy +09uCyy) s Cn = T+ 20T, (5.41)

We have said that both of the Second field equations are equivalent, but it is important to
show this as we have not found it anywhere else. A derivation of equivalence is shown in

the “Equivalence between the Second field equations” section utilizing equations (5.24).

5.2.6 Equivalence Between the Second Field Equations

We begin with writing the spin angular momentum tensor in terms of the spin energy
potential tensor by the skew symmetry relation and then plug in the definition of the Alpha
Cartan tensor, and then simplify the resultant right-hand side to reproduce the Cartan
equation. Recall that this is entirely due to the algebraic relation between the torsion tensor

and the contorsion tensor.

Scab = _2:U'[ab}c



125

1 1
KSeab = —2947 Py (Tabc + Thac — Tcab) + gabT}; - gacTu;7
2\ 2 f f
1 1 f ¥
) ) (Tbac + Tape — cha) + gba T ef ~ Gbe T af
1

- - (Tabc + Tbac - Tcab - Tbac - Tabc + cha)}
0

+ {_gaij; gban;f - gach(;f + gbch;f}
1 f
= {Tcab + 29c[aT];]f}

= Cgcab

This proves equivalence going one way, we now check everything the opposite way. For the
second equivalence, we write the spin energy potential tensor in terms of the spin angular

momentum tensor and then simplify the right-hand side.

(_Sabc + Scha + Sbca)

N | =

Habe =

- (-2 (Cc[ab] + gc[aC];]f» - (-2 <Cb[ca} + gb[ccfa]f)>>
—2 (Ca[bc] + ga[bcfc}f>>

(QCc[ab} + 2Cb[ca] - 2Ca[bc}))

Rlabe

f f f
2gc[ac blf + 2gb[cc af 2ga[b0 c]f)

(_Tcab - Tbca + Tabc) + QQaCCfbf - 2gabcfcf)

MmN 7T N TN T N /N

(_Tcab - Tbca + Tabc) - 4ga[bcfc}f>

NN RN RN =N RN N -
~

Tave + Toac — Tcab) + 29a[bT];]f

I
X

be

And again we have equivalence, showing that either equation we choose to solve is equivalent

to the other.
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5.2.7 First and Second ECSK Field Equation from the Vielbein ¢, and Spin

Connection w",, Variations

a

There are plenty of subtleties in comparing an ECSK theory built on the variables e,

and w",, instead of g*°, and T4, or C%.. We can compare all of them and interpret them
the same every time, but getting to that point requires a deep understanding of boundary
terms, and a lot of clarity. Naively we could just use equation (5.18) and convert what
we already discovered in the metric theory, however, this does not work because the spin
connection has some dependence on the vielbein; this is unlike the torsion tensor and metric
which do not depend on each other ab initio; the contorsion tensor has some similarities,
but is not as complex as the spin connection and vielbein relation. Before we start, there

are several reasons why we might be interested in an ECSK theory on the variables e, and

w
wa.

Sometimes the matter action does not explicitly depend on the metric as in Dirac theory,
but we would still like to have an ECSK theory of gravity in this case; more generally this
becomes important when we discuss fermions. When this occurs, we can vary with respect
to the vielbein e, instead of the metric. When we build on this idea it becomes important
to define a few other terms which have not shown up yet. These new objects are related to
the tetrad e”,. The first of these is the tetrad stress energy density Td'. We can turn T/
into a density with abstract indices by contracting on a e, which gives us Ty;; note that
this is not necessarily symmetric unlike 7,;. Furthermore, the next definition defines ¢4, the

tetrad stress energy tensor. Finally, e = det (e“u) is the determinant of the vielbein. These

are all seen in equations (5.42).

0L\

1
‘Ialt = _ma tap = gzab (542)
"

This is shown by the Belinfante-Rosenfeld relation (in appendix G) to convert this theory
into an ECSK theory built on the variables e,, and C%_. Note that the vielbein starts as a

form in this theory instead of a vector; the conversion back is given by de ' = —e fﬂ eaa(?efg.
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5.2.8 The Vielbein and Spin Connection Variation
We begin with the ECSK action given in terms of differential forms (and a matter
Lagrangian density) as in equation (5.43); it can be shown that this is equivalent to the

action we have in equation (5.9).

1
S =— i (R‘“’/\e AeP + Ae“/\e N e* /\eﬁ> e,wag—k/[,MdQ (5.43)
Q
When we vary this with respect to e and w', we find the following field equations in

equations (5.44) and (5.45). See Wheeler (J. T. Wheeler, 2023) for more details.

1
R/u/ - in'uVR == tuy (544)
Cab = Yab (5.45)

5.3 The ECSK Action

The ECSK action we will use is the same action as the one used in GR, but with
the addition of torsion. Furthermore, we also choose to include the Gibbons-Hawking-York
(GHY) term so that we only need to specify that §g® vanish on the boundary for all the
boundary terms to vanish; see York’s paper for more specifics on why this works and is
important (York, 1986).

The Gibbons-Hawking-York term is also modified as well such that the extrinsic curvature
scalar (trace of the second fundamental form) K now contains torsion as well. The K is
the extrinsic curvature scalar of the boundary embedded flat spacetime, and ¥ is some

hypersurface subset of 2. The action is given in equation (5.46).
S = / [ (R —2A) } V—gd*z + Sy + Scry (5.46)

Through the rest of the sections we refer to equation (5.46) as the gravitational action.
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CHAPTER 6
ECSK-NMC SCALAR FIELD THEORY

In this chapter we will examine a non-minimally coupled (NMC) scalar field and scalar
field action and vary the action with respect to the metric, contorsion tensor, and the fields.
We use the action provided by Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov,
2015). The purpose of this chapter is to derive and classify Bronnikov and Galiakhmetov’s
solution with the tools we developed in chapters 3 and 4. The Lagrangian density depends
on the following fields: {gb, D, VsV, g, C’abc}. ¢ is the non-minimally coupled scalar field.
1 is a minimally coupled scalar field. ¢ , and v, are derivatives of the respective fields. g2
is the inverse metric tensor, and C%, is the contorsion tensor.

The action is given by Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015)
and is special because the solutions to the field equations generated by the variational
principle form a wormhole solution. Additionally, when no other spin-density is present,
the field ¢ generates the SO (p, q) irreducible trace Qgp. element of the torsion. This is the
only part of the torsion which exists in this solution. From earlier we know that the trace
Nape piece of the torsion corresponds through the Infeld—Van der Waerden symbols o o
directly to the torsion © , , spinor, which we have developed the tools to classify. The
non-minimally coupled scalar field is a great example to see how this piece of the torsion
not only fills out its own irreducible sector, but also to see the resulting effects on the total
curvature as well.

While we are rederiving the equations Bronnikov and Galiakhmetov have, we will
additionally include every boundary term arising in the variation. Usually we specify that
the metric variation 6g® vanishes on the boundary which is what we choose here. We do
not actually have to specify that the contorsion tensor vanishes on the boundary. Gibbons-
Hawking-York terms arise again but with a slight addition due to the non-minimal coupling.

Furthermore, we will derive these NMC field equations in N—dimensions. As an aside,
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notice that the functions V (¢) and W (¢)) are arbitrary and can contain the mass terms
usually seen in a Klein-Gordon action. The sign in front of the Einstein-Hilbert piece is also
a minus as opposed to the positive sign we had before; this will alter our explicit definition
of the stress energy tensor. The relative sign is important here however to get the correct
field equations. Note how it is different from our other derivation in the “Derivation of the
ECSK Field Equations” section where we had R + L)y.

For an action S of the following form in N —dimensions we define the following variables:
Q is the region of integration, e = £1 = n%n, is the signature of the unit vector normal to
some three dimensional hypersurface 9€2, R is the Ricci scalar, x is the Einstein gravitational
constant, ¢ is the determinant of the metric, g% is the inverse metric, ¢ is a NMC scalar field,
& is the NMC coupling constant, 1 is a minimally coupled scalar field. n; = £1, no = +1,
these two are for canonical (1) or phantom (—1) scalar fields. = is the first fundamental form
(for the boundary of the region © (9f2) being examined), K is the extrinsic curvature trace
(mean curvature), K¢, K; are variables not depending on the fields which make the action
finite, O is the Levi-Civita generated Dalembertian, c€,p 1s the Cartan tensor, s¢,; is the spin
density tensor, Tj; is the stress energy tensor, Uy, is the spin stress energy tensor, and C%,
is the contorsion tensor. Additionally, Sgry is the Gibbons-Hawking-York (GHY) term,
and Sy e is the GHY analogue term for NMC scalar fields coupled in this way. The new
Sanmce term (labeled as such to signify “boundary of NMC”) is included so that we have the
freedom to prescribe that §¢g® vanishes on the boundary and not some combination of its
derivatives. Notice the addition of the K7 term; for minimally coupled fields we do not need
to add a GHY type term to compensate for additional boundary effects. However, we need
the K here to prevent any divergent (running off to infinity) behavior due to properties of
the scalar field ¢; K7 also does not contribute to the field equations. Further explanation
of Ky and K can be found in Hawking and Horowitz (Hawking & Horowitz, 1996). The

action is given as follows:

R
S — / {—%} V—gd*z + Sy + Sy + Scry + Sanmc (6.1)
0



Sy = / 2 (9000 + €RE* 2V (9)) | v=gd's (6.2)
Q

L T (6.3

Q
Sany = (£ (0 — Ko)) vid'y (64

o0
Sanmc = yg (—mé&e®e (K — K1) \/vd®y (6.5)
o0

by the sum of the three terms S, Sgpy, and Synyc above. Equation (6.1) is the same
action as Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015) except for the
Scry and Synare terms which we have included in the style of York (York, 1986), and the
redefinition of V' (¢), and W () which equal 77%’77% times the same variables they defined.
We redefined these terms to make the field equations more compact later. Erdmenger
(Erdmenger et al., 2022) gives further discussion of boundary terms in ECSK theory, and
there are many boundary terms which appear in NMC scalar field ECSK theory. Equations
(6.2), and (6.3) are the actions for a NMC scalar field (¢), and a minimally-coupled (MC)
scalar field (¢). We vary the action constructed from equation (6.1) with respect to the

fields: ¢, v, ¢g*, and C%.. This produces the following field equations:

O¢ — ERY + d‘gf) =0 (6.6)

O + dVZﬁ) =0 (6.7)

G{}ap + Uab = £ (Tap [¢] + Tap [¥]) (6.8)
€, = ks (6.9)

Equation (6.6) is the field equation for ¢; equation (6.7) is the field equation for ¥; equation

(6.8) is the field equation for ¢g%; lastly, equation (6.9) is the field equation for C%.. In
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equation (6.8) the stress energy tensors are given by:

1
Ta [¢] = % |:¢,a¢,b - igab¢’c¢,c + gabW (1/1)} (610)
[ 1
Tafo) = [ (6060 S0 +0uV 0))] (6.11)
- :7715 <2T(a%b)¢2 - gabTC%c¢2>:| (6.12)

+ [m&* (G{}ap + Un)]

+ :7715 (gab‘id)Q - 6(a%b)¢2>}

1
Uab = Z/{ab - iu.gab (613)
Uap = — (Cdadccbc - Cdzzcccbd>
U=—g* (Cdadccbc - Cdacccbd>

where define what we call the Hehl-Gravity (HG) tensor by equation (6.13), with what we

call the Hehl scalar defined below. Additionally we have used Cfb —TJ; ;= Tj}b =1,

;=
to write the trace of the contorsion tensor in terms of the trace of the torsion tensor 7T in
equation (6.11). Finally we have removed the Uy, contribution to the ¢ stress energy tensor
because we place it on the other side of the field equations to contribute to the Einstein
tensor term. Equations (6.10), and (6.11) represent the contributions to the total stress
energy by the fields ¢, and ¢ respectively.

In the second ECSK field equation (6.9) the spin density tensor generated by the matter

content of the field ¢ is given by the following equation:
s%ap = 2mé <Cgcab¢2 + 6%,V ¢2) (6.14)

1
w= 5T+ T (6.15)

la

where we have also repeated the definition of the Cartan tensor ¢, in equation (6.15).
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We note that the spin density the would be generated by the field 1 is zero, as it does not
contribute.

This action given by the by the sum of equations (6.1), (6.4), and (6.5) produes
boundary terms, of which the metric variation is zero on the boundary (Dirischlet condition),
and the contorion variaion is unconstrained. We use subscripts on the deltas to signify which
field produced them; as an example d, signifies a variation with respect to the metric. The

non-canceling boundary terms are presented below:

0505 = 95 (me (Ao, — 260 (K — K1) ) d6/7dy (6.16)
o0
0y Say = yg (enzﬁ%,b) 5 /AdPy (6.17)
o0

€. a
d¢SEHCB = §1§ (;naTb> 5%\ /ydy
o0

dgSNmceB = 35 (—m&ed*naTy) 690\ /Ad>y
80

SyScmo = b ("B ena¥y (67)) 0 Ay

onN
SyScmo = b (~ B 6eSs (62) gun) g™ Ay
onN

Once we prescribe that the fields ¢,1), and ¢g® are fixed on the boundary, eg. 0Ploq =
0,0t|50 = O,(Sg“b‘aQ = 0 then all the boundary terms given by equations (6.16) vanish.

We now move onto the variation of the action with respect to the fields: ¢, C%er 0,
and ¥. We begin with varying the action with respect to the field ¢, then move onto the
variation with respect to the field ¢). Before we vary the action with respect to g% or %

we put the action in a form more useful to computation.

6.1 Variation with Respect to ¢

In this section we varying the action with respect to ¢. We first arrive at a piece with
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covariant derivatives which will be come our field equations and a new boundary piece due
to Sognnc. We give a quick sketch of our steps for the reader. First we perform integration
by parts. Then break off the Levi-Civita part of the covariant derivative to apply Stokes’
theorem. Then we simplify the result, winding up with the following field equation labeled
by Eg.

Ey=m (~0¢+T,+ERp— V' (4)) (6.18)

This equation can be simplified to what we have in equation (6.6) with an equation which

relates the d’alembertian to the Levi-Civita connection generated d’alembertian.
O¢=00+T%., (6.19)

The d’alembertian equation (6.19) can be derived using the fact that the difference of
covariant derivatives is a tensor (Wald, 1984). Upon applying this idea to our action, we find
that the contorsion pieces cancel and that we now have the torsion free d’alembertian instead
of the ECSK one in our field equation. Additionally we have the boundary pieces given too.
We can see that when we apply the vanishing of the variation of ¢ on the boundary, the
boundary term ¢Sp4 vanishes. We repeat the boundary term here for clarity and note it is

given by equation (6.16) in the introduction also.
GoS00 = G (me (6.0 — 266 (K — K1) 36 /5y
o0

Once we extermize the action we find that the field equation for ¢ is given by:

dv (¢)
d¢

O¢ — ERG + =0

which is the same as equation (6.6). We are now finished with the variation of the action

with respect to ¢.
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6.2 Variation with Respect to ¥
Next we vary the action with respect to +. Similarly to the previous section, and after
applying an integration by parts, we find the following to be the variation of the action; we
have also included the boundary term. We can see that when we apply the vanishing of the

variation of 1) on the boundary, that the boundary piece vanishes.
Ey = m(=0%+T%,—W () (6.20)

§Soy = 55 (n2en o) S\ /yd>y

o0

Upon applying the extremal action principal we get the following field equation:

Oy +

which we repeat here for clarity. This is the same as equation (6.7) in the introduction.

6.3 Preparation Before the Variation with Respect to ¢* and e,

Before we move to varying equation (6.1) with respect to the metric ¢*® and the
contorsion tensor C9 , it is useful to split off the contorsion contribution in the action
from the ECSK Ricci scalar in equation (6.2). We need to recall how to expand R in terms

of its Christoffel and contorsion pieces from chapter 5.
R=R{}—2¢"V, T, +U

We apply this decomposition to our action. The term Syarcop arises due to an integration
by parts on the derivative of the torsion form 7. The term Sgpcp arises from splitting off

the contorsion in the gravitational part of the action. Due to the non-minimal coupling, we
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have to apply Stoke’s theorem once to the £¢?R term. This yields the following action:

S = /[—;H(R{}JFU)] V—gd'z
Q

+ /£M¢\/—gd4a:+/L’M¢v—gd4a:
Q Q

+ Scuy + Sonmvc + Sencs + Snmces

Lyy = % <9ab¢,a¢,b -2V (¢))

RS (R U+ mEg" TV (#7)

Lue = |2 (6™ bats —2W ()]

€ abn
SEHCB = yg (EgabnaTb) Vdy
o0

SnmceoB = ?5 <—€7715¢29abﬁaTb) VYdPy
o0

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

Following Bronnikov, and Galiakhmetov (Bronnikov & Galiakhmetov, 2015), we seperate

the ¢, and v matter fields in the action; this allows to in tern define a stress energy tensor

related to each individual field as in equations (6.10), and (6.11).

6.4 Variation with Respect to g%

Now we vary the action with respect to the metric 2. This gives us the following form

for the action variation:

5,9

/ [—;(G{}ab%—Uab) 5™/ =gd's
Q

+ 0,59l + 0,5 Y]

+ g8 Nnmct + 6gSanmce + 0gSNmceB + 0gSa + 04ST

(6.26)
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1
dgS [¥] = / <5£M¢ - 2gab£M¢59ab> V—gd'z (6.27)
Q
g5 [¢] = / <55M¢ - gabﬁM¢5gab) V—gd'z (6.28)
Q
€ 1 O 1 ab 3
5gSG = E 5” chab + §K07ab 59 \ﬁd Yy (6'29>
89
¢ AV - lA c ab 3
t o= —V(ap) + 1o Tp) — §ncT Jab | 0977/ vdy
89
€ al
0gST = 515 (— 5, Ma ) )59 b/ dy (6.30)
89

1
dgSNMcCB = §l§ ( méo 6( alp) — 59 nengab>) 5g\/yd3y (6.31)

o0

R 515( mERe (=% i) 5g™ /Ay (6.32)
- < mée 6< GQCchndnanb»&g“bﬁd?’y

+ < mée 6<— (K — K1) vab>>5g“bﬁd3y

1
dgSanmce = 55 < mépPe ( a%) + 2’Yabn >) 59" gv/dy (6.33)
09

The first line, which is the Einstein-Hilbert term, turns into a combination of the Einstein
tensor and the spin stress energy term from before. The first also produces a boundary
term 057 which results from the variation of the Ricci tensor with respect to the metric
dR{},- The next two lines correspond to the stress energy tensors for the ¢ and v fields
respectively. Last, the final line is what happens to the boundary terms after the variation.
The boundary term which resulted from the variation of the Ricci tensor with respect to the

metric cancels out the one which results from the variation of the GHY term with respect
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to the metric. The 0Sqyy1 term is the variation of Sqyy with respect to the metric; the
0Sanmct is the variation of Synarc with respect to the metric also; this follows for the
others as well where a 1 at the end denotes variation with respect to the metric. The term
04S¢ is a combination of the of the reamining parts of the GHY term and the EHCB term.

The boundary terms arising from the variation of the Ricci tensor and part of the GHY

variation cancel each other out. Additionally, once we apply dg = 0 the d4Spnarc1, and

ab‘

o0
dgSNMccoB pieces vanish. We will see later that the normal derivative terms in 6458 mc2
term will cancel out with the variation of the Ricci tensor piece arising from the NMC term.

G {},p is the Einstein tensor generated by the Levi-Civita connection, and Uy, is the Hehl

gravity tensor. Both of these tensors are repeated below for convienence.

G 0= R s~ 5B 1} g0

1
Uab = Z/lab - iu.Qab

We have also used use the variation of the determinant of the metric which is given by
0/—g = —%,/—ggabégab to simiplify equation (6.26). Now we vary the matter Lagrangians

(¢,1) to make their corresponding stress energy tensors.

6.4.1 The Energy Momentum Tensor
First we will vary the v piece to find its stress energy tensor, as in equation (6.27).
After variation, we find that the piece of the action which corresponds to the gravity field

generated by the ¢ stress enert=gy tensor is given as follows:
1 C a
545 [] = / <"22 [w,aw,b = 59tV + garW (¢>D 09y =gd'z  (6.34)
Q

which we will soon write as the 1) stress energy tensor. The stress energy tensor is the object
which prescribes G, — T,y = 0 in GR. When we apply that idea in ECSK theory there are

a few modification, but the spirit is very much the same. Recall the definition of the stress
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energy tensor is:

T, — — 2 6(vV=9Lm)
T g g

However, this definition only holds when there is not a minus sign outside the Ricci scalar;

we need Gup — T, = 0. In our case we have a minus sign. To get what we need the definition

_2 dV=9Lwm)

just changes by a sign to: T, = Ve T Applying this the same exact way we did

in our ECSK field equation derivation then gives us our ¢ action piece and 1) stress energy

tensor Ty [¢] as:

sl = [ [;Tab w}@ 59/ g (6.35)
Q

1 C
T, [1/}] = % {%ﬂﬁ,b - igabw7 w,c + gabW (W (636)
The metric action variation is now given by:
1
095 = / [—% (G{}as+ Uab)] 0g**/—gd'x (6.37)
Q

+ 8,80+ [ |yTatvl] dev=ade
Q

+ dgSanmct + 0gSanmc2 + 0gSnmeeB + 0gSa + 04ST

with equation (6.36) substituted into equation (6.26).

6.4.2 The Energy Momentum Tensor for ¢
Now we derive the stress energy tensor for the field ¢ as in equation (6.28). To vary
Ly we go through many of the prior steps as before: we vary R {}, U, and get the boundary

terms. Upon varying L4 we find the following form for 6Lz4:

0Lyy = (%qb,acb,b + mgT(ﬁb)qb?) 59 + %wQ%Bd (6.38)

+ (B8 (R{}ay +Uan)) 0™

Now we substitute back into the action variation for ¢ given by equation (6.37); this allows
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us to examine the %dBd term. We write out 6,5 [¢] = fQ (6EM¢ — %gabLng&gab) V—gd*z

with each of the terms explicitly shown.

648 [¢] = / [¢a¢b gab¢ @+ gapV (¢ )} 8g®/—gd'x (6.39)
+ f mf[ 08 — 59TV ccﬂ o9V =gd'
(2667 1G {}op + Unrl] 09" v=gd*s

[%gqs?%dBd] J—=gd*z

The top line in equation (6.39) mirrors that of the stress energy tensor for the MC scalar
field ¥. The second and third lines arise from the NMC and each have the coupling constant
& in front of them. The fourth line has an interesting term fQ [%fﬁ%dBd} v/—gd*z which
arises again from the variation of the Ricci tensor, this time on the NMC part. We can
further decompose equation (6.39) by expanding the last term. In the last line we use

Bgnd = <'yabﬁd - ﬁ(afybgi) 69 ; which is shown by Carroll (Carroll, 1997).

[ [BeorSupt] v=gate = [ [Ta(BeoB") - BeTa(e?) BY] v=gd'a

Q Q

_ yﬁezlgqﬁ?Bdndﬁd%
o0

_ /7721£§d (¢2) Bl —gd'a
Q
(e (i = et ) ™y
o0

- [ BeSa (o) Byt

Q
= 045B + 04504

1
0gSB = §l§ <n1§¢ € (— A + 3 YabTt >> 39" a4’y

o0
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8yS0p = — / %5% (¢*) B/ —gd*z

Q
At this point we rewrite equation (6.37) in terms of these new definitions, which cancel some
of the boundary terms. Most notably all the tangential derivative pieces are now given by

045+ which is a combination of §,5p, d4Sanrrc2, and dyST.

08 = [ |50 (€ 0t U | 057yt (6.40)

Q

+ ((595 [(z)] - (5gSB - 6gSD¢) +/ [;Tab [¢]:| 59ab\/jgd4g;
Q

+ 04S¢ + 0gSanmc1 + 0gSNmccs + 045G + 89S

dgSp = 0¢Sp + 0gSanmc2 + dgST (6.41)
€ 1\ . a
- 55 (2 <771§¢2 B /<;> ”(a7b5i> 39”4/ d%y
890

Now we will look at the 0S4 term which we break into two terms: dSpg1, and 0Sgg2. This
is done through the defnition of B® which can be derived by modifying a few terms from

what we already accomplished in the ECSK field equation chapter, and raising an index.

B = — (6,08 — gug™) 49"

6gSIZI¢ = (5gSD¢1 + (5gS|:|¢2 (6.42)

045061 = / %g%d (6%) 80,0109 r/—gd*x (6.43)
Q

8gSmse = — / %E%d (6%) gabg™69™ o/ —gd'x (6.44)
Q

We will look at §Sg41 in equation (6.43) first. This term ends up producing a boundary
term and a symmetrized double covariant derivative term. We use Stokes’ theorem to get

the boundary term. It is interesting to note that this seemingly tangential derivative of the
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variation of the metric term turns into something that contributes to the field equations,

along with a boundary term.

85,5061 = 0Snsto — / (%gﬁ(ﬁb)&) g%/ —gd'x (6.45)
Q
89St610 = yﬁ (%gﬁ(ﬁb)&) 59 /7d3y (6.46)
o0

We now look at §Shg2 given by equation (6.44) now. We find yet another boundary term,

and a new piece which contributes to the field equations, the Dalembertian of ¢?.

0gSng2 = 5SD¢26+/ (%ﬁgabﬁqbQ) 59"/ —gd'x (6.47)
Q
dgSne20 = yg (—E enV, (¢2) gab) 5gab\fyd3y (6.48)
99

Now if we put all these terms back together, we find something suitable to be turned into

a stress energy tensor for ¢. By using T, = \/%6(7@%”’) we find the compact form for

945 [¢] along with the ¢ stress energy tensor Tgy, [¢]:

T [0] = [77 ( adpb— gab¢c¢ +gabV(¢)>] (6.49)
+ [ m€ (2T - guTVed?) |
[m&d? (G {}op + Uap)]

+ [mé (gwde? - Vi)

_I_
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1
88 = ~5- (G{}ap + Uab)} 5gt\/—gdiz (6.50)

[
[ i) st v=gats
J

/

1

T [w@ 59/ —gd'z

0
+  0Sg¢10 + 0Snges + 0gSanmct + 0gSNmceB + 0gSa + 89Sy

All of the boundary terms in equation (6.50) vanish once we apply dg = 0. Furthermore,

ab‘aﬁ
the stress energy tensor given by equation (6.49) is the same as the stress energy tensor in
GR once torsion is set to zero; specifically the second line in equation (6.49) vanishes. Next,
upon extremizing the action given by equation (6.49), we find our ECSK-NMC field equation
for g2 to be:

G{}ap + Uab = £ (T [9] + Tup [¢]) (6.51)

This is very similar to the Einstein-NMC Field equation in GR, but with the addition of

the Hehl gravity tensor too.

6.4.3 Comparison of the ¢ Stress Energy Tensor to Bronnikov

In this section we will compare the ¢ stress energy tensor we derived to that of
Bronnikov and Galiakhmetov (Bronnikov & Galiakhmetov, 2015). Bronnikov has a different
stress energy tensor than we do, however they are equal when a condition on the torsion
tensor holds. The condition, which we will call S, on the torsion tensor is given by Typ. =
ﬁga[ch]; in other words the torsion tensor is only determined by its irreducible trace
Qape piece.

To try and get this closer to Bronnikov we will use the definition of the contorsion tensor
to relate back to the torsion tensor. Bronnikov’s calculation only holds in 4 dimensions,
whereas ours holds in N-dimensions. This is the reason why we have U, instead of
Bronnikov’s A, tensor. The condition above will help us simplify &/ and turn it into

Bronnikov’s Agp. It is important to note that although it is not explicitly stated we can
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see that Bronnikov uses the following definition for the contorsion tensor Cp: (CB),. =
—Tave — Thea + Teap; the B subscript is to let us distinguish the Bronnikov contorsion tensor
from ours. The lack of the factor of a half in Bronnikov’s definition means that each term
with the Torsion vector T will have an extra 2 in it in his paper as opposed to ours;
additionally we can see this from his definition of the torsion as (Tg),, = %, instead of
T, = —2I“[3ab] as we have defined it.

To be especially clear the convention which we are using has the torsion tensor defined as
follows: T'(X,Y) = VxY — Vy X — [X,Y]. This is the definition, along with the convention
Ve, = Fcbﬂel,j, which produces the spirit of what we are doing through almost all of these
calculations. The nabla covariant derivative above follows Misner, Thorne, and Wheeler.
Greek indices are components/lists, and latin ones are Penrose abstract indices.

The first thing we will take a look at is the contorsion vector and how it relates to
the torsion vector. Bronnikov defines the torsion covector T, as T, = Tdda. By taking a

trace of the contorsion tensor on the first and third index, we find a a relation between the

contorsion trace and the torsion vector.
d
Cha=1Ta

The symmetry of the metric and 7'}, = —T%, are used to produce the above relation. Next,
recall that the torsion tensor can be decomposed into its SO (p, q) irreducible elements as

follows.

2
+ O(N-2) <(N_1)9a[ch] + szbc>
O (...) is the Heaviside step function; we have included it above because, similarly to the
irreducible elements of the curvature tensor certain pieces of the torsion tensor do not exist

in lower dimensions. Our other reference [2] states that for NMC scalar fields in ECSK only

the torsion trace exists; we will prove this later. Because of that, since the action only has
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torsion vector pieces, that means we can write:

2

(N — 1) ga[bT

q

Tabc|§ =

We evaluate the torsion tensor on the condition S. This then quickly shows our definition
is consistent with the above decomposition, yielding 7%, = —T;. Next we would like to
apply this idea to U; recall U = —g® (C’dadC'cbc — CdaCchd). There are two pieces in U:
CdadCCbc, and Cdacchd. The first term we readily find, and the second term appears after

some algebra. Together we find that these terms and U are:

d c
C adC be

S = TaTb

1
- ———TT
S N_1%7?

N -2

d c
C ac™~ bd

Using these relations and S yield a new form for T, [¢]. This is the form for T, [¢] that
Bronnikov has. Additionally, Bronnikov defines a tensor A,; which we also reproduce; this

tensor is just the spin density tensor evaluated on S: Ugplg = Agp.

1
Twlg] = |m <¢,a¢,b - 59ab¢,c¢’c + gV (@)]
+ [me (2TVie? — guTVer?) |
+ [més* (G {}ap + Ua)]

+ :7715 (gabﬁﬁbQ - %(aﬁb)¢2>}

N —2 1 N —2
Ap=|——T,T, — = — | T.T¢ .52
ab (N—l) atb 2gab(N_1> c (65)

Upon choosing our dimension to be 4, N = 4, we reproduce Bronnikov’s (7) & (9). The

factors of 2 are different because of the definiton of the torison tensor. Recall that C'9_ is
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equal to Bronnikov’s contorsion but with an extra factor of 2.

2 1
Aab|N:4 = gTaTb - gabchTc

Our torsion terms differ by a factor of a half because of Bronnokov did not include that
in his definition of the connection; see the bottom of his page 1. Now we move on to the

variation with respect to the contorsion.

6.5 Variation with Respect to C%

To vary with respect to the contorsion C'% we start again by looking at our prepared
action given by equation (6.26). Using what we know from before, we find that two terms
vanish outright: R {}, and Ly, because they do not depend at all on the contorsion tensor.
The variation with respect to the contorsion tensor of S¢gy and the other action pieces will
have a C in them at the end to denote variation of the contorsion tensor just like the 1 at

the end denoted variation with respect to the metric. The contorsion variation of S is then:
1 4
écS = “or (0cU)| /—gd*x
K
Q
+ /5CEM¢\/—gd4x
Q
+ dcSeuy +dcSonmce + dcSenCB + 0cSNMOCB
oK = (ﬁﬂ’m) s,
bl = (9165, 5C°,
cab = -2 (Cc[ab} + 6C[acfb}f> ) Cab = Cab + 25[CaT];}f

Where the boundary terms are again given by:

€ A C a
dcSEHCB = 55 <_Egadn[d'7b] > 5C%/Yd%y
59
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€ ~ C a
dcSauy = yg (;gadn[d')/b] ) 60 /Ay
50

dcSonmc = §£<€mf¢29bdﬁ[ﬂdf> 0C /7%y
9

dcSNmecB = 55 (€n15¢29bdﬁ[a’7df) 0C /Ay
B

All the boundary terms vanish; the dcSggy term and the dcSggcop term cancel; the term
dcSon e cancels with the term dcSyarcop. This is interesting in its own right because we
didn’t ever need to impose 6C% |, = 0. Now we just need what the contorsion variation
of U and L4 are. We already know that the variation of U is given by a combination with
the Cartan tensor: dclf = (gbd‘fcad) 0C%,.. The variation of L4 is slightly longer. For now

the action simplifies to the following form.

_ _i bdcpc a — 4
0cS = /[ o (g ‘Kad)5Cbc] vV—gd'z

Q
+ /5C£M¢\/ —gd4x
Q

c _ c c f _ e c
€ = =2 (Clagy + 09,C% ) = T — 205,y

]

Our next course of action is to vary Ly4. Since the contorsion tensor is skew in the first
2 indices, i.e. Cruqg = Cheq we obtain some skew brackets in our equation above. Thus we
arrive an our 0L y74 equation.

bclas = 5ég" (62 + 26,V (6%)) 6C%
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Thus, all together, this gives us:

— i bdcpc a — g4
5oS = /[—% (g %ad)](scbcx/igdx

[ (Beg" (065 + 20,V (67)) ) 6Cv/~gd'a

D\D

The bottom piece in the equation here is the part which corresponds to the spin density since

it was generated by Ly/4. Recall that the spin density is defined by equation €, be _g be =,

a

Originally we had this relation given by 6% ¢ = —2%%, but it is modified here to &% ¢ =

2 fcﬁ,f” to make the above equation hold. This arises from the negative in front of the Ricci

scalar. This gives us our spin density and action variation as:

1

_ o bdcpc a — 4
5eS = /[ o (g %ad)}wbc\ﬁgdw (6.53)
Q

1
+ / |:2gbd56ad:| 6Cabc\/ —gd4ﬂf
Q

$%ad = M¢ <¢2‘€ ©d T 269,V (¢2)) (6.54)

To be specific we say s¢,; = s¢,, [¢] and s, [1)] = 0; this mirrors our notation from earlier

for example, in equation (6.35). Now we can extremize the action to find our field equation.
%Cad = HScad (655)

Next we can examine how this corresponds to Bronnikov’s T}, equation in the limit when we

apply the condition S.

6.5.1 Comparison of the Spin Stress Energy Tensor to Bronnikov
Our goal in this section is to reproduce what Bronnikov has in his paper. It is also here
we will show that only the trace Qg piece of the torsion tensor is non-vanishing for NMC

scalar fields in ECSK. We will prove that the 9 and q pieces of the torsion tensor vanish
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for NMC fields. To do this we will use the field equations and the definition of the Cartan
tensor. We now find the SO (p, ¢) irreducible elements of these two tensors because the field
equation for them will give us insight into what is really going on.

Theorem: For a NMC scalar field subject to the second ECSK field equation (6.55),
the only non-zero irreducible element of the torsion tensor is the trace piece of the torsion

tensor, the £ piece. This piece is in turn given by the formula in N—dimensions:

T, = 2 <N‘1) Vb,

N -2
. K
)

Proof: We begin by getting the irreducible elements of the Cartan and Spin density tensors
respectively from the following definitions. The Cartan tensor definition (in terms of torsion),

and the spin density tensor are repeated here with all indices lowered.

ab = T + 207, TJ;]f

la

Seab = M (Geard® + 290V 6°

First we have the totally skew pieces given by the 0 element.
%cab] = a[cab]

S[cab] = 771£¢20[cab]
Next we have the trace pieces given by the £ element.

N -2
Cgcab‘g = -2 <Z\7—1> gc[aTb]

N =2 ~
Scab‘g =2mé (_ (]\7—1) gc[aTb]¢2 + gc[avb]¢2>
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We finally have the leftover pieces ¢, which are marked by an evaluation on ¢ symbol.
(gcab|q = Ycfab]

Scab ‘ q 771§¢2qc[ab]

Now we can apply the field equation %5, = KkSqpe to each different part and prove that
only the £ piece is non-zero. When we apply the field equation to the 0 piece, we find
that T4 = 0 from % (1 — fmlfgbz) Tlabe) = 0; note that (1 — m]l£¢2) cannot vanish because
oherwise ¥ would diverge. Similarly for the q piece, once we apply the field equation we find
that q,ppq = 0 from % (1 — /<n71§<;52) dafp = 0. The only piece that remains is the T, piece
which corresponds to the £ sector. Now we move onto getting the simplified field equation
for T,,. Like before once we apply the field equations the prior relations to the left hand side

of our field equation gives us:

N-—-1 ~
gc[aTb} = - (]\7—2> ‘ljé-gc[avb]gbz
K
v "
()

This is non zero, and upon taking a trace, we find that the torsion vector is related to the
scalar field ¢ by the following equation.

N -1
Ta = -2 <]V—2) 6\1I¢¢,a

and thus we are done with our proof H.

To compare with Bronnokov’s form, we choose 171 = 1 and N = 4. Doing so reduced
our form of the torsion equation in our proof to a simplier form. Tj|5_, met1 = =3V o0y,
and ¥ _,, = m Note that the factor of 2 is here again. To convert back to
Bronnikov, take T, — —27, and we reproduce his results. This is again because of the

difference in the definition of the torsion; we had minus 2 of what he has. Finally , we can
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reproduce full torsion tensor using just the trace with our trace only formula of the torsion:

Tabe = ﬁ (9arTe — gacTy).

—4

T = mﬁ‘l’wa[bqﬁ,c]

We have now reproduced all of Bronnikov’s field equations, but in N-dimensions with the
extermal action principal g%, ¢, ¢, and C'%.. Additionally we only needed to prescribe the

following three things vanish on the boundary: d¢|,q = 0,0%|50 = (),(Sgab|aQ =0.

6.6 Classifying the Bronnikov Solution

Using the classification tools we developed in the Rank 3 Tensors and Rank 4 Tensors
sections, we classify Bronnikov’s and Galiakhmetov’s solution (Bronnikov & Galiakhmetov,
2015). We examine their ECSK-NMC scalar field solution where the fields of interest are:
&, 1, g?°, and C%.- The field equations for the fields g, C%. ¢, and 7 are:

G {}ap + Uab = 5 (Tap [¢] + Tup [¥])

(gabc = KSabc

~ dv (¢)
— &R =0
B0~ ERo+ =
- dw (v)
=0
Oy + a0
The solution presented has coordinates: (¢,u,6,¢). The metric g, is presented with
signature [+, —, —, —| in the following general static, spherically symmetric form:
1

Gap = A (u) dt @ dt — du ® du — r* (u) (df ® df + sin’ (0) d¢ ® do)

A (u)
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They make the coordinate transformation x = ¢, with b € R — {0}. This puts the metric in

the following form:

2
Al(z)

Jap = A (z) dt @ dt — dz ® dz — r? (z) (d6 ® dO + sin® (0) dp @ d@)

We then have the exact solution given by:

A(z) = (:C2+1) By—2———=

W(z) = Wo+ (8552 (= + 1)2)_1 [8Boa? (2 + 2?)

+ 250° (5 +40”) — 2 (752" + 1252° + 32) W

— (751‘4 + 15022 + 67) arctan? x]

-1
Viz) = <8/<ch (2 + 1)2> [—8Kb* Wy

+ =8By (42" + 62® 4+ 1) — 100z* — 101z* + 16
) arctan (z)

+ 2(992" + 1492% + 32

+ (99x4 + 18222 + 75) arctan? x]

Where Ty [¢], and Ty [¢0] are given respectively by equations (6.11), and (6.10) evaluated
on the solution above. We take 'y = 0 following Bronnikov’s reasoning that A (x) should

be regular everywhere. Additionally we take 11 = 19 = 1 to specify that both scalar fields
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are canonical and non-phantom. Evaluating the torsion tensor trace on the solution gives:

3
a = T a/.9 , 4N .
1 2 (22 1)gcala: (6.56)

We can now classify the solution using our tools from before.
6.6.1 Torsion Tensor Classification

We take equation (6.56), and build the torsion tensor out of it using the trace piece of

the torsion tensor from equation (3.44) in chapter 3.

2
abc = 777 1\ Ya Tc
Qab (N =1y el
Then upon applying our algorithm we recieve:
©=01,1),E=(-),2=(-) (6.57)

as our classification. We expect that the spinors 2, and £ would be zero because the axial
part (2) and leftovers piece (2) vanish in our derivation. Additionally we find that the
spinor ® which corresponds to the trace part of the torsion is of general type. We look to
see if there are any exceptional points on which ® decomposes further. To do so we examine

the O (Omicron) invariant. In this case it is given by:

O— larctaum2 (z) x — Box + 2 arctan (x)
4 2302 (22 + 1)

The only way O can be zero is if = is the root O. Because of the parameters By, b and the
transcendental nature of the equation it is difficult to find x for which O (z) = 0. However,
if b =1, and 2.35 2 By > 2 there exist two roots, and thus there 2 exceptional points where
the character of ® degenerates to be of type |(1, O)|2; we note here that the number 2.35 is
not an upper bound on the existence of roots, there exist higher numbers, but the bound

is close to this number. Additionally, this may change for other values of b, but should not
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change the character of the roots much since it appears in the denominator.

6.6.2 Curvature Tensor Classification

Now we present the classification of the ECSK curvature tensor. We see that ¥ =
D implies Petrov type D. That ® = {[11,11] OR [(11,11)],D,[1,1(11)]} implies the
structural reducibility type for the Phi spinor, the Plebanski type, and the Segre type. That
A = 7 Indeterminant” means that the algorithm was unable to tell if Lambda is positive
negative or zero. That 2K = {(—), O, [(1,111)]} means that the structural reducibility type
is empty, the Plebanski type is zero, and the Segre type is trivial. That FO = [—] means that

the Yu spinor is zero. Finally, that N = 0 means that the aleph spinor is zero everywhere.
[V =D,®={[11,11] OR [(11,11)], D, [1,1(11)]}, A = " Indeterminant”] (6.58)

7K = {(=), 0. [(1L, 111)]} ,FO = [-],N = (6.59)

Equation (6.59) is interesting because it implies that Zopeq, laped, and Eupeq are all zero.
Thus, the torsion here only contributes to the Fsectors as defined in the Rank 4 Tensors

section. Recall that the F type tensors have tableaux:

which decomposes into the three other F sectors: §, %, and § under SO (p, q).

We will first examine if there is any way for the Petrov type to degenerate further at
exceptional points. Petrov type D is determined by the the covariant W being non-zero and
the covariant R being equal to zero. According to Penrose and Rindler (Penrose & Rindler,
1987b), the only ways a general type D spacetime can degenerate further is either into type
N, or type O. Recall that for a type N spacetime that the covariant ¥ is non-zero and the

covariant @ is zero; similarly for a type O spacetime the covariant ¥ must be zero. Upon
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calculating these co(in)variants we find that

1 arctan (z) 22 + arctan (z) —

1
Uy =5y =Ty =

2 z(z2+1)
U =U3=0
2
1 1 (arctan (z) 2% + arctan (z) —
Qoz—*Q2:Q4:—*( 3 )
3 6 x6 (22 + 1)
Q1=Q3=0

Thus, @ = 0 if and only if ¥ = 0, where Q, ¥ signify @,, ¥, for all a. This tells us that
the only way that this solution can degenerate in Petrov type is straight from type D to
type O. There is no way for the solution to degenerate to a type N spacetime.

The structural reduciblity algorithm for ® tells us that it is either type (1,1)(1,1), or
|(1,1)|?. The co(in)variants arising from this classification are rather large and complicated
so we do not examine the exceptional points, if any, that could arise.

The Segre classifiation when applied in Maple was unable to determine what Segre
type we are dealing with originally; in equation (6.58) the Segre algorithm originally fails.
However we will show that this solution is type [1,1(11)]. We begin by noting that we are
in a Plebanski type D spacetime, and find that the algorithm was unable to determine the
sign of the H invariant defined in equation 4.62. The H invariant once simplified shows us
that each term is squared and can therefore only be positive; it has several terms so we omit
writing it here.

The next thing we calculate in the case of Plebanski type D and H > 0 is the covariant
ko defined in equation 4.63. In a similar fashion to H, we find every term except the leading
coefficient is squared. The leading coefficient is negative and thus we determine the Segre
type to be [1,1(11)] per the algorithm of Zakhary and Carminati (Zakhary & Carminati,
2004).

Finally we examine the classification of A. Here the rank 0 spinor A is given by:
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1 (—24a° — 62° — 9z) arctan? ()

A= 23 (22 + 1) (6.60)
n 1 (—482* 4 422 — 38) arctan (z)
24 z3 (22 4 1)
N 1 24Byz”® + (6By — 24) 2 + (9By +20) =
24 z3 (22 + 1)

Upon analyzing A we again find that for 2.35 2 By > 2 that there are 2 roots. We can
classify this further however. First for By < 2, we have that A (z) < 0 Vz. For By > 2.5 we
can see that A (x) >0 Vz. In the region 2.5 > By 2 2.35 it is difficult to tell if A is always
positive or if it changes based on the value of x. To clarify on the region we also determined
that for 2.35 2 By > 2 there are 3 regions distinguished by the roots of equation (6.60).
Let the first root be called x_1, and the second root be called z1, where z_1 < x1. Then
the regions can be defined as follows: for z < x_; we know A () < 0; for x_1 < z < 1 we
know A (z) > 0; finally for x > 21 we know A (z) < 0. This again only occurs in the region
2.35 2 By > 2.

One more interesting thing about the classification of this solution is that the spinors:
K(AB)(A'B), FO(4p), and R are all zero even with non-vanishing torsion. With this our

classification is complete.
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CHAPTER 7
ECSK-DIRAC THEORY

Much of the background here was expressed well in reference (Poplawski, 2013); it is
precisely those ideas that helped cement so much of this chapter. The clarity of the ideas
in reference (Poplawski, 2013) led to the development of code which upon completion of
this dissertation will hopefully be added to USU’s “Differential Geometry” package for Dirac
spinors. Reference (Poplawski, 2013) has been invaluable in many aspects and ideas beyond
just this Dirac spinor section as well. Wheeler (J. Wheeler, 2021) has also been incredibly
useful in solidifying technical points relating to Dirac spinors. We begin the chapter with the
section on Dirac spinors, gamma matrices, and how Lorentz transformations act on Dirac
spinors. Next we examine derivatives of spinors and the Dirac spinor connection, or the
Fock-Ivaneko coefficients. Following that we have a short section on the curvature spinor.

The last three sections focus on:

1) the Dirac Lagrangian and field equations with torsion,

2) the irreducible sectors in ECSK theory generated by a Dirac spinor, and

3) the classification of a solution presented by Platania.

7.1 Dirac Spinors, Gamma Matrices, and Lorentz Transformations on Spinors

In this section we will examine Dirac spinors and the gamma matrices. First, we
will define what a Dirac spinor ¢ (or if we include the Dirac indices wﬁ) is in terms of
a complex mapping. We will express this mapping as a column vector and then proceed
to define what the derivative of a Dirac spinor, 9,%, is. Next we will present the gamma
matrices 7, as a set of complex linear transformations which satisfy a Clifford algebra
relation. The Clifford algebra relation relates the gamma matrices back to the spacetime
Minkowski metric in special relativity. This relation can be upgraded in a sense to include

gravity by including orthonormal frame fields e/ which can be combined with the gamma
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matrices, to make the spacetime dependent gamma matrices v, = e4"7,. To end this section
we examine how Lorentz transformations on spinors are carried out in this new projective
unitary representation of the Lorentz group. A Lorentz transformation is then applied to

the gamma matrices so we can see how they transform.

7.1.1 The Dirac spinor 1, ¢ and their derivatives

We begin by looking at the Dirac spinor . Notationally we will flip between ¢ and w“i
which are equivalent; here the superscript A indicates a column vector. Usually this index
is suppressed in the literature, but we believe that including it can help elucidate concepts
in a few areas like transformations of spinors. Similarly, we will also represent 1 by 1) i

which will indicate a row vector. We think of ¢ as the mapping;:
Y : M — C*

The spinor 7 viewed in this way can be written as a column vector. Note that v is given
in terms of the hermitian conjugate of ¢ multiplied by 7° i.e., ¥ = ¥f7° which will be
elaborated on later in more detail; this ensures that it transforms the correct way under
Lorentz transformations. 1 viewed in this way can be written as a row vector. The 2 x 2

identity matrix is denoted Is.

=yl
0 I

Yo =
I, 0

Let a,8,7,0 € C, and % be coordinates on M, then 9 is given by the following column

vector. Similarly, we can also write 1 as a row vector.

<
|

V(@) 6t (%) ar(x®) BT (2%)
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If we explicitly include indices: 1 becomes LZJA, and v becomes 1 4 The A index is an
abstract Dirac spinor index. We also write the derivative of ¢: 9,1, and the derivative of

P GME as partials onto the column and row vectors.

Ouo
one
Ouy
0o

This will be the basic notation we use when working with Dirac spinors. We will also use

N to raise and lower Greek indices.

7.1.2 The gamma matrices 7,

To work further with spinors we need to define the gamma matrices. These allow us to
relate special relativity to our spinors, and perform Lorentz transformations. The gamma,
matrices in our case are four (indexed by p) linear transformations on C*. The following
mapping gives them.

Yu:Ct = C*

We could write these as a list of linear transformations on the spinor space represented by
’yfé. Here we can view the fol, B indices as explicitly creating this linear transformation.

Furthermore, the gamma matrices satisfy the following relation:

YWl =M + 0 = 20w s (7.1)

i i_é i
Ve, BT 6V s = 2wl

Below in equation (7.1) we have also included explicitly the A, B indices for further clarity.
The set of gammas with {, } as the multiplication (anti-commutator i.e., {a,b} = ab+ba)
generate a Clifford Algebra which is used to define the spinor representation of the Lorentz

group. The Dirac matrices are not uniquely determined by their anti-commutation relations.
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It is possible to find other, equivalent representations. However, Pauli showed that if two sets
of matrices vy, and 'yL satisfy the anti-commutation relations and the Hermiticity relations
of the gamma matrices as shown above, then there is a unitary transformation U on C* such
that the following relation holds.

Y =U"U

As we can see in equation (7.1) above, 7, is the Minkowski metric, relates spacetime to the

gamma matrices. The gamma matrices are constructed from the Pauli matrices as follows:

0 Ip 0 —oj .
Yo = y V5= J € {17273} (72)
IQ 0 g 0
This is often called the Weyl or Chiral representation of the gamma matrices. The o;’s

above represent the Pauli matrices in quantum mechanics. The Pauli matrices are repeated

below for clarity.
o1 = ;09 = ,03 = (7.3)

Additionally, there are some valuable relations of the gamma matrices to each other. These
relations are derived from the structure of the Pauli matrices. The first few relations are
given by the hermitian adjoints, T, of the gamma matrices. The next several relations
give us how contractions of the gamma matrices act, and simplify to much simpler objects.
The second to last relation gives us how three gamma matrices act on each other to give
back 7,,’s. The last relations show what the anti commutator & commutator of the skew

symmetrized product of the gamma matrices becomes.

W= ==t =7

Vg = Ay, Py P = = 29PN (7.4)
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VAN, = =297 APy, = A (7.5)
oyt = ANl o oAt — A (7.6)
{7”77[”7”]} = 2ylHn¥yF] (7.7)

[,Y;g V[V’Yp]] — 4yl ) (7.8)

Moving forward, when we do relativistic quantum mechanics, we need an additional matrix
to correctly reflect the addition of time t into the geometry; think Lorentzian boosts. This
additional matrix, which we will call oy, is the 2 x 2 identity matrix. Recall that this same
idea leads to the Infeld-Van der Waerden symbols used in Stewart (Stewart, 1993). We get

something that makes more intuitive sense if we write 7 in terms of ¢ as well.

7.1.3 The Infeld-Van Der Waerden symbols, and the two-component spinor/Dirac
spinor correspondence
Now we have each of the «’s written in terms of the ¢’s. Each of the sigmas: oy, ..., 03
correspond to oy,...,0, etc. On a bit of a side note which will be explored later, the set
of these four o’s can be used to create a useful correspondence to two-component spinors.
These objects are called the Infeld-Van Der Waerden symbols O'QAA/ (the capital indices label
the entries of the matrix like below) where the line element is given as the determinant of a

combination of the gamma matrices.

dt +dz dx —idy
dx“cq = dtoy + dxo, + dyoy + dzo, =

dr +idy dt—dz
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det (dz%c,) = (dt +dz)(dt — dz) — (dz — idy) (dz + idy)

ds? = dt? —da? — dy? — d2?

More generally on a manifold we use an orthonormal frame {e“u, . } in 4D. This is different
than usual, but let e/ be given as a list indexed by a of 1-forms indexed by j; here we have
swapped our usual notation to make a point that we can do this in any orthonormal frame;
the ©’s form an orthonormal dual basis. Then we have the same relation as above, but in
an orthonormal frame.

=16y 0 6y O3

Oy + 03 O —i6y
O1+1i102 O — O3

det <e i AA’) = (Q9+03)® (Og — ©3) — (O — iO2) ® (O +iO3)

a " p

Jab = OgRO)—0; R0 —0O3R 0 —0O3R O3

Next we introduce a useful quantity, 7°. v° allows us to make a projection from our Dirac
spinors to 2-component spinors; we will show how in a moment. First 4% is defined in terms
of the other gamma matrices, see equation (7.9); the matrix representation of 7° is given

below as well.

5 ?

S ﬂewpv“v”va = —iny1y2? (7.9)
e L 0
0 —1I

+® has some unique properties in terms of the anti-commutator, and the derivative D,. The
first is that the anti-commutator of 4% with any of the other gamma matrices is zero. The
next is that the square of 4° is the identity matrix. The penultimate one can be derived

from the anti-commutator relation and lets us move v° through the other 4’s. The last is
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that the derivative of ~° is zero.
2
{2’ =0, (") =L, 7" =" Di’=0
We can now define projections to make 2 component spinors by using v°. These projections
Y1, and ¥ g project us to 2-component spinors of left and likewise right chirality (handedness).

Ii+7°

_ Iy —~°
2

YL

Now we move on to the spacetime gamma matrices and finding a representation of the

Lorentz group on spinors.

7.1.4 Spacetime gamma matrices and a representation of the Lorentz group on
Dirac spinors

So far, we have not included gravity in our formalism for Dirac spinors. We can begin

to include gravity with a simple addition to the gamma matrices: e?,. By using the vielbein

to convert our orthonormal Greek indices to abstract Latin indices, we can couple gravity

in easily.

Ya = eg“%i (7.11)

As a reminder, we know the vielbein satisfies the orthonormality relation nwjea" ey’ = Yabs
where g, is the metric on spacetime. <, are the spacetime dependent gamma matrices,
and now satisfy the new Clifford algebra relation, where the metric g replaces n. This also

changes the matrix representation for ,:

Ya Vb + V6 Va = 29abla (7.12)

We get the spacetime-Clifford algebra relation from writing +, in terms of -, in equation

(7.1). Next we need to look at how spinors transform under Lorentz transformations. We
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really want to know how the A index of the spinor transforms. It would be something like:
w‘j‘ — L“iéwé . But how do we determine LAB? This question is asking about the spinor
representation of the Lorentz group, which we need to determine. We know that infinitesimal
Lorentz transformations are given by w', = 6", + e\,. € is some small parameter, which
we would say for good measure is three orders of magnitude smaller than the smallest value
in the relevant equation being transformed. Here we use w',, to symbolize only infinitesimal
Lorentz transformations. These w, objects form a one parameter subgroup of the Lorentz

group when Taylor expanded to first order in the parameter e.

A side note on Lorentz generators:

: note that the

The A’s are the generators of the Lorentz group, and satisfy A, = —A,u;

standard matrix representation of the generators is written from A\, not A,,. As a clarifying

example we write a t-x boost generator A\, as the 4 x 4 matrix below.

0100
1000
U
0000
0000

We write the A generators in this form because it forms a basis. This basis is a basis for
the Lorentz Lie algebra using antisymmetric matrices for the vector space, and the matrix
commutator as the algebra structure.

To provide clarity, we could technically give the \’s an abstract Lie algebra index a like
A™ . this is the most transparent notation for what these objects actually are. However,
if we write this a index as [bc], an anti-symmetric pair, we are able to write some formulas
which also give intuitive understanding to our group; pedagogically, we can think of the pair
as labeling rotations and boosts in some orthonormal frame, i.e., “[tz]” labels one element

etc. The first formula is given by:

)\[ab}uu _ naunby o nbunau
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If we lower in index, we find that the above formula reproduces the 4 x4 matrix representation

of the generators.

0100

1 0 00
ARl =

00 00

0 00O

The Lie bracket of the generators (with proper u, v indices on the A’s of the right-hand side)

is given by:
[)\[ub]7>\[cb]:| _ <)\Dbnac+)\abnbc+)\bcnab_|_)\ca,’7(10> (7.13)

Any representation of the Lorentz algebra must satisfy (7.13). We can use this idea to
determine a representation of the Lorentz group for our Dirac spinors. If we consider the
commutator of the gamma matrices, call it S,,,, it turns out we can find a representation
of the Lorentz group on our Dirac spinors. This S, object is a set of 6 independent linear

transformations on C*. We have also included what this looks like with Dirac indices.

1
S,uz/ = 1 ['7,117'71/] (7'14)

o 1 ° ° o >
A _ Y A e A ¢
S,uzz B~ 4 (r}/,u Cc”yu B ’71/ C’y,u B)
Using the anti-commutator, we can simplify this:

1

Sﬂl/:i

(’YM’YV - "7;u/[4)
To show that S, defines a representation of the Lorentz group, we need to show that
[S”",SO‘B] satisfies the same bracket relation as the A’s do. Before we show this, it is

advantageous to examine [S*, y?].

1
[SH,~Y] = 5(7“77””—77““7”)
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With this identity, we can now show that S*” satisfies the Lorentz generator relations, and
is a spinor representation of the Lorentz group. It is shown below for convenience and can

be derived from the definition of S,,, and the identity above.
[SHU,SQB} — SH 771/04 + Sﬁyna,u + Sa,unuﬁ + SVQUB/'L

Then given any Lorentz generator (any linear combination of the A\*,’s) we can define the

representative S (A) or L‘Z‘é on C* by equation (7.15).
1 v

. 1 .
A v A
Uy =538, (7.15)

Note that equation (7.15) cannot be inverted to solve for S,, because S, is defined by
a commutator and the trace of a commutator is zero. Now that we know what [ is, we
can get the corresponding Lorentz group transformation which acts on spinors from our
infinitesimal one. To do so, we take the matrix exponential e, with ¢ the parameter, of the
generator [; we will write this Lorentz group transformation on spinors as L‘ié = e<lA§t>.
We have a projective spinor representation of both the Lorentz generators and the Lorentz
group. These [ constitute the generators of the Lorentz group in terms of the group’s spinor
representation on c*.

We can use these I’s to define infinitesimal Lorentz transformations on spinors, call
them £, by: Sﬁé = 5‘4;% + el“ié.

To make an analogy with what we said before, we know that SAB is a one parameter
subgroup of the Lorentz group up to a first order Taylor expansion in e. From all this
information, we can determine how our spinors transform in general under a Lorentz transformation.

The Lorentz group acts on v from the left, and v as an inverse from the right.

W = Ly, ¥ =Lt (7.16)
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A L 7A B (7N 7. (1-1\B

(w ) = Logy? (04) =¥ (L71)7
There is some ambuiguity however as to why v i transforms as Y L~! however. We came
up with ¥ = 91~? because we needed an object which transforms as ¥ L~!. Initially, we
may have started by guessing that ' transforms in this way. It however does not, and

transforms as follows:

()" = (Le)f = wiLf

We know that L' is not necessarily equal to L=!. There are some identities however, which
facilitate how we determine that 1) = 1)74%. The first of which is the relation which expresses

hermitian adjoints in terms of the original gamma matrix and %’s.
(7)1 = 0990

This can be proven easily with some component manipulation due to the properties of the
Pauli matrices; see also Poplawski pg. 111 for comments (Poplawski, 2013). With that
identity we can now prove our next relation, which shows how 7° can turn LT into L~!, see
equation (7.17) below.

Liy0 =401t (7.17)

The relation above can be realized by applying the 7° formula and noting that £7! =
Iy — 6%)\“” (YuYv — YwYu); we work out the transformation using an infinitesimal Lorentz

transformation. With all this, we can prove that v transforms with L=!. When we let
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Y — L1, we find:

<
|

oo ()
= () (")
= (Ly)'y’°
= YLl
ol

= L7}

Now we can examine how the gamma matrices transform under a Lorentz transformation.
There are two interpretations or viewpoints we can take regarding how the gamma matrices
transform; one is they do not transform, and the other is that they do. The transformation
properties of the gamma matrices are tricky to dissect because they have two spinor indices
and one spacetime/orthonormal index. We will examine how to interpret this by going
through an example in quantum mechanics.

Recall states |1)) in quantum mechanics and the Pauli matrices o;. We transform the
states and not the matrix operators themselves; there is no 2/, only Z. Here is the example,
we take a state |1)) and say we want to calculate the expected angular momentum in the
a-direction for this state; this is given by (4| J [¢0); J, is the z-direction angular momentum
operator. If we rotate the state around the z-axis first we find that although we rotated the
states 1), that we could interpret this transformation as the operator transforming and the

states not transforming, as in line two below.

W) T ) = (@l e e o2 |y)
= (¥[(cos(0) Jo —sin(0) Jy) [)
= cos (0) (Jp) —sin(8) (Jy)

Note that (| J;|Y) = (Jz). “It’s as if we left our particle alone and rotated the Pauli
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matrices. But note that if we apply the rotation to [¢), then we don’t touch the matrices.
Also, we never say that we transformed the matrices. We just transformed the state, and
then found out that we could leave it alone and rotate the matrices. The situation for a
Dirac spinor is similar” (Javier, 2015). This example can also be found in Sakurai (Sakurai
& Napolitano, 2021) on pg. In analogue to the classical quantum mechanics approach, we
similarly take the approach that the gamma matrices “don’t transform” we only transform
the “states” (spinors) like before.

When we write ¢y*1), we would like for it to be a vector. Then it must transform as a

vector as in equation (7.18) below.
(979) = My (7.18)

Likewise, if we perform a Lorentz transformation in analogue to classical quantum mechanics,
we only transform the states (the gamma matrices can be interpreted as an operator in this

sense.” This leads to the relation in equation (7.19).

—_—~—

(yp) =y = L~ A" Ly (7.19)

To have consistency in how we transform, we require that (E’yuw)/ = (ﬂwﬂw), which results
in relation (7.20).

A* Y = L7IyP L (7.20)

Like before, we can find similarities to the “States do not transform, but operators do”
interpretation by moving the L’s to the other side of the equation, resulting in equation
(7.21). Although this looks like a transformation, it is not because of the lack of primes;
this is important.

A Ly L7 = A# (7.21)

We now have all the tools we need to calculate Lorentz transformations of spinors.
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7.2 Derivatives of Dirac Spinors & the Spin Connection

Since we have finished with Dirac spinor algebra, we now move onto Dirac spinor
analysis and examine how derivatives of spinors transform. We will begin with the coordinate
partial derivative, and show how this derivative acting on a spinor fails to transform as a
spinor. Because of the failure of this derivative to transform the way a spinor does, we
introduce the Dirac spinor connection I',, or PA§a~ With this object we can define a spinor
covariant derivative which indeed transforms the way a normal spinor does. Furthermore,
we develop a formula for this spin connection in terms of the gamma matrices 7, the spin
connection w4, and an arbitrary form A,. What is called the Dirac spinor connection here
is the connection form of the Fock-Ivaneko coefficients. We finish this section with some
notes on how Dirac spinor connections differ if there is torsion present in the spacetime, and

how to break off the torsion-full part of this connection as well.

7.2.1 The Covariant Derivative of a spinor 1, and a spinor
To begin we examine the derivative of a Dirac spinor. We quickly see that this derivative

does not transform as a spinor.
o = 0, (L) = 0, Ly + L,

This is a problem, but we can rectify it with the Dirac spinor covariant derivative. To build
a spinor covariant object, we need a connection on the Dirac spinor bundle. We introduce
this connection as I'y, or Fﬁéa. I’y transforms according to the usual connection law given
in equation (7.22).

(I"), = LToL™" + 0,LL™" (7.22)

()5 = LAl e (LYY + 8uLA 0 (171,

This is exactly the way any connection transforms under a group transformation (in our
case we use the Lorentz group). Recall that this is exactly the same way a connection on

a principal fiber bundle transforms. Following this idea, we can deduce that the covariant
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derivative of a spinor transforms the same way a spinor would. The V we use here is the V

of Wald. (Wald, 1984)

Vo' = 0 = (T') ¢/
= (OaLtp + LOgY) — (LToL™" + 0, LL™") (L)
= Oaltp + L0y — LTatp — OaL)
= L(0a¥ —Ta¥)
= LVuy

Valb = 8a¢ - Fa¢ (723)

We can also examine E, which we can derive the transformation from by the fact that 1)

must be a scalar. We begin by assuming the following form for how 1 transforms.
— — =1
vaw = aq/} - ¢ F;

I, is a new connection to be determined in terms of I'y. After shoving this into V, (@/1// )

and solving for f;, we find that:

Which tells us about the covariant derivative of the bar spinor in terms of the connection

on the non-bar spinor.:

Va@ = 35@ + EFCL (7'24)

7.3 The Gamma Matrices and the Fock-Ivaneko Coefficients
Next we examine the covariant derivative of the gamma matrices. This becomes more
interesting than before because of the addition of the orthonormal index p. Taking the

covariant derivative of the gamma matrices gives the relation in equation (7.25).

0
Va’}’u =0, w Fa’Y/L + ’Yura
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va'Yu =-2 [Faa ’Yu] (7'25)

The nabla derivative of Wald does not see the orthonormal indices. Equation (7.25) by itself
gives us no additional information on how to determine what I', is, nevertheless it is useful
conceptually. To get any more information we need to use the universal covariant derivative
which we will call D; this is the same covariant derivative that Carroll (Carroll, 1997) uses,
and it is different from Wald’s (Wald, 1984); D sees both abstract and orthonormal indices.

Recall that D is defined by leaving the tetrad covariantly constant (Tetrad Postulate).

Daeb, =0 (7.26)

In the case of ONLY the Dirac spinors ¢ and 1) and scalars we know that V and D are the

same because they do not contain any orthonormal indices.

Dy = Va1/17 Da& = va@

One important result from this is that we can use the spin connection to see how orthonormal
indices vary. We can see the need for this in multiple ways. The first is when we take the D
covariant derivative of the gamma matrices. With this derivative we get the spin connection
contribution w,, which in turn causes this whole formula to be zero.

To clarify we have three different connections floating around. These are sections of a
bundle which we label with three different indices, lowercase Latin, Greek, and uppercase
Latin with a circle above: a, pu, A. The first represents the connection for vector fields
determined by Vgu, = 0. The next is the connection determined by the orthonormal frame

field Ve, = 0. The last is the connection for spinors determined from Vv = 0. All of these

connections tell us the same information, but in different parts of the whole fiber bundle.

Doy = —wamw — 2 Tasvul =0

Since 7, is written purely in terms of 7,, and Dirac pieces, we can say D,7y, = 0. This
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small idea originally was incredibly confusing, but what makes it coherent is the fact that
the spinor indices on [%]Aé get hit along with the orthonormal y index. The combination of
these both together with their respective connection pieces becomes zero; this can be shown
in maple after making some connections; additionally we can see this from the fact that
the gamma matrices need to be covariantly constant, otherwise the spinors would not be
coupled to spacetime correctly. One other way we can think of this, is it had better be zero
or else we are no longer generally covariant. Moving on, once we multiply this relation by
a y* from the right we find a relation that gives us I', in terms of the spin connection and

the gamma matrices.
Da’)/,u')/u =0= _Ww/a'Y'u’YV — 4l + 'Yura’)/# (727)

To solve this for I';, we try a solution which is the spin connection term plus some other
piece Ag, or Aaﬁé; this is equation (7.28). Applying this assumption to equation (7.27), we

find that A, must be some form V, times the identity matrix.

1
r, = fzwu,,ay“v” — A, (7.28)

Ay =Voly, Vy,eT*(M)

Therefore, up to an arbitrary form V, we have a calculatable form for the Dirac connection
given in equation (7.29). This object is usually called the Fock-Ivaneko coefficients, and

acts as a connection on the Dirac spinor bundle.

1
Fa = —ZWuuaryu’YV (729)

1 _ _ 1 _
Vot = 0% + Ewuva’)’u’YV?ﬂ, Vo = 0uyp — waawv“v”

7.3.1 Dirac Connection with Torsion

The formula we had for the Fock-Ivaneko coefficients in general includes torsion. Since
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the difference of any 2 connections is a tensor, we can do our usual trick and find the Levi-
Civita generated Fock-Ivaneko coefficients and break them off with a contorsion piece. To do
this, since we already know the spin connection, we can just break off the Levi-Civita piece
from I'; and we will already have our solution. Since we know w;,q = @uva + ebuecycbca,
where w@,,,, is the Levi-Civita generated Fock-Ivaneko coefficients, and Cj, is the contorsion
tensor, we can get the following formula for the affine Dirac connection in terms of the Levi-

Civita Dirac connection minus the contorsion tensor.
1
L,=T,{}— Zcbcﬂbyc (7.30)

1
Lo {} = —waa’y“’y”

Finally, we can apply this principle to the derivatives of our Dirac spinors, and likewise
break off the contorsion from them. This results in the following two equations where V is

the Levi-Civita covariant derivative.
= 1 b.c] R~ T PV
Vm = vaw + Zcbca')/ v ¢7 Vtﬂb = Vaw - ZCbca¢’Y v

With our new connection, we are ready to move onto what the curvature and torsion spinors

look like in the Dirac formalism.

7.4 The Curvature Spinor

In this section, we will delve into the curvature and torsion of our connection of interest,
represented by I'y,. The torsion tensor, as described by Cartan, is only present on the
tangent bundle, whereas the curvature can exist with indices in the fibers. To understand
the concept of a connection on the spin bundle better, we calculate its curvature. We will
apply the curvature operator to a spinor 1) and observe the outcome. This generates the
curvature spinor which we label K, or K ‘%c " A detailed explanation is provided below.

Since we have a connection, we can ask about its curvature and torsion, which is what

we will do in this section. The connection of interest will be I';. The torsion tensor only
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exists as an object on the tangent bundle from a Cartan viewpoint (Sharpe, 1997), but the
curvature can exist with indices in the fibers; this is what will happen in the case of I',. We
will apply the curvature operator to a spinor ¥4 and see what happens as a result. This

will generate the curvature spinor K, or K ABcd' A derivation is given below.

(VaVo = VoV + T9Va) ¥ = VaVit) = VyVath + T9 V)

= aa (VW) - Fcbavcw - 1—‘avbw
+ _8b (vaw) + Fcabvcw + I\bvaw

+ T4V

= 04 (Optp — Tptp) — Ty (Optp — Tpt))
+ =0 (0g) — Tath) 4 Ty (0gt) — Tath)

= =00 + L) + Ty — Ty gt)
= Fa,bw - Fb,a"vz} + Fal—‘b¢ - Fbrad)

= Kabw

We now have an expression for the curvature spinor in terms of the Dirac connection. This
is given in equation (7.31).
Kab = Fa,b - 1_‘b,a + [Faa Fb] (731)

o & B G B
Ko = U pas = Vpna Tl 00 = T il pa

There is a way to get the curvature spinor straight from the curvature tensor R% _; by using
the gamma matrices. Recall that Dy, = 0. By using this idea and looking at Dy, Dyye = 0,

we can find a similar formula relating K, and R% ;. Recall the Ricci Identity:

(VaVi — VVa) 0° = R vt — T,V 0 (7.32)
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If we apply this to v¢ we find an equation which relates the curvature tensor to the curvature
spinor.

Rcdab'yc’yd + ’YcKab’Yc - 4Kab =0 (733>

We can solve this equation for K, by making an assumption that Kibble (Kibble, 1961)
does. Following Poplawski (Poplawski, 2013), who makes this assumption, we try a solution

which has curvature pieces along with an arbitrary spinor-tensor B,, where By, = BAéab'

1
Kab = ZRcdab’Ynyd + Bab (734)

Upon substituting this assumption into our equation relating R and K, see equation (7.33),
we then find that By has to be a skew-symmetric tensor By, censored to the Dirac indexed
Kronecker delta tensor. Finding this relation requires the triple gamma matrix relation in
(7.5).

i i
B" 5.4 = Blea)93

We can relate By, back to our A, = V,I; which we used in the Fock-Ivaneko coefficients by
looking at our formula for K. If we put in the A, here, we can find a formula for B, as
well. Let I}, =T'q — A,, then K], = Ko, + Bgy. We use the minus here because that is how

A, originally appeared; this in turn makes the B, term appear with a plus sign in front.
aw=Top—That+2 5, T
Kab + Bab = I\a,b - Aa,b - I\b,a + Ab,a +2 [Fa - Aa7 Fb - Ab]
Since A, is a vector times the identity, we can simplify the bracket term:

Lo —Ag, Ty — Ap] = [o, Ty — Ap] — [Ag, Ty — Ap]
= [Fm Fb] - [Fa7 Ab] - [Am Fb] + [A(M Ab]

= [Fav Fb]
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And now we have the formula relating our By tensor to A,. Additionally, we can relate By

to V, as well with the relations from before.
Bab = _Aa,b + Ab,av Bab = _2‘/[(1717]

If we set A, = 0 as in the Fock-Ivaneko case, then likewise By, = 0 for our curvature spinor.
Thus, we find a formula for the curvature spinor in terms of the curvature tensor.

1
Kab = ZRcdab'yc’}/d (735)

Now since we have all the connection and multilinear algebra pieces well established for Dirac
spinors, we can move onto the generally covariant Dirac action for ECSK and consider its

variation with respect to various fields.

7.5 Dirac Action and Field Equations

The Dirac action with a mass term is given in the form of equation (7.36).
the — , — . 0 .
S = o5 (V1" Datp — Dapy*p) — mc*pip| ed' (7.36)
Q

Recall that A has units of Js. Then Ac has units of Jm, and since D, adds units of %, we
then have the units of Js which we need for our action. Now it is time to vary the action.
We will vary it with respect to the tetrad e, the spin connection w",q, and the Dirac fields
U, and W. From Poplawski (Poplawski, 2013) there is an equivalence between varying the
spin connection and varying the contorsion tensor; this can also been seen in Sciama, and
Kibble’s papers (Kibble, 1961), (Sciama, 1962).

First, we need to write the spacetime gamma matrices in terms of orthonormal gamma
matrices Le., v* = €% 7". Then we must also decompose the Fock-Ivaneko coefficients in
the connection into a Levi-Civita generated part and a torsion part. This step is important

because the torsion terms are concentrated in the spin connection. We can use the normal



177

partial derivative to break the coefficients off.
zhc L = <o 9— 4
S = (00 = A = P {Y Ta} ) — mc® | ed'a

Next recall from equation (7.27), that 'y, = —%wwa’y“’y”, and note we have also used
equation (7.7) {7“,7[” 7”]} = 27lty¥~Pl This renders us the following action which will be

much easier to vary in terms of what we are interested in.

the (— — 1 — y _
/ [2 (W W = 0u " + Swwaty 'y w) - mczw} ed'z  (7.37)
Q
Equivalently, we can write the action in terms of the contorsion tensor in equation (7.38).
This comes from breaking apart the connection V, in terms of its Levi-Civita and contorsion

pieces.
Z.hc*aﬂ/ T A0 1 Talasbacl 27 4
S= | |5 (97"Va¥ = Va1 ™ + 5Coeatpr v | —meii) | ed’a (7.38)
Q

Now we vary the Dirac-ECSK action with respect to the fields: 1,1, e, Wapa Which we

choose as our independent variables. First we will vary the 1) field.

7.5.1 Variation with respect to
For this one it is easier to start with the Dirac action before it is broken apart as in

(7.38). This results in:

68 = / (Ey) Spedts + ygena@a {64} d3y
Q o0
The variational piece Ey (given in two equivalent forms) and boundary piece ©¢ {1} are
given by:
Ew = ihc( aw’}' + Cabcw’}’[a b C]> - mCQE
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_ 1 _ _
Ew = the <—Vaw7“ + QCabad}’}/b) - ’I?’LC21/J (739)

b
6° {50} = i aipe

The critical points of the action are Ey, = 0. We note that in the literature people often set
C%, = 0 because of the spin connection field equation; the spin connection field equation,
which we called the Cartan equation in chapter 5, specifies that the contorsion is totally
skew, thus the trace we presented C, is identically zero. We choose not to set C% = 0
because it obfuscates any further couplings that can occur with the addition of other matter.

Notice, that once the second field equation is applied this looks very similar to the Dirac
equation for ¢ in a flat spacetime. We will mainly use equation (7.39) instead of the one
directly above it because, as we will see it closely follows exactly what happens in GR. Later,
we will show that the trace piece of the torsion/contorsion drops out for a pure ECSK-Dirac
theory, and thus the contorsion trace above vanishes. However, if other matter is present

this piece will not necessarily vanish. Thus, we are done with the ¢ variation.

7.5.2 Variation with respect to 1

In a similar manner, we can derive the field equations for .

5S = / 5 (E@ edz + %ena@“ (53} dy

Q o0

The variational piece E@ and boundary piece ©% {(5@} are given by:
~ 1
By = ihe (W%lﬁ + 4Cabc’y[“vb7%) —mc*) =0

By = ihe <7ava¢ — % “ba'yb@b> —mc*p =0 (7.40)
o (o the —
© {5¢} = —751/)7 e

Notice that once again this looks very similar to the Dirac equation for 1 in a flat spacetime.
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Again, the same logic applies here, we will find later that the trace piece of the torsion/contorsion

vanishes in a pure ECSK-Dirac theory. Thus, we are done with the 1) variation.

7.5.3 Variation with respect to ¢, and w",,

I

Originally, we would not be so wrong to vary the tetrad and spin connection separately
and get the field equations relatively quickly. However, there is some nuance here that needs
to be accounted for. Namely, that w',, partly depends on the vielbein; it also depends
on the torsion of course. When we assume that these are independent in our variation we
get different field equations. We need to account for this to get the Hilbert stress-energy
tensor. Nevertheless, the field equations are still correct without converting to the Hilbert
stress energy tensor with the Belinfante-Rosenfeld relation. See Wheeler (J. T. Wheeler,
2023), and our appendix G for more details. There is nothing wrong with varying the
tetrad and spin connection separately. This is the mentality which we will follow here. For
interpretation however, it is useful to convert back to the Hilbert stress energy tensor.

The variation with respect to e?, closely follows Wheeler (J. Wheeler, 2021). We begin
with the action in which the spin connection is separated out as in equation (7.37). First

we need to break off the e, dependence on the spacetime gamma matrices, this puts the

action in the form of equation (7.41)
the [— — 1 — _
S = / [2 (z/rwaaw = 07+ 2wwa¢’y“7"v”]w> ey - mc%w] ed'z  (T41)
Q

a

And now we begin with the variation. We get two pieces, one from the variation of e,

and the other from the variation of w,,,. This gives us the action variation in the form

058 = 6.5 + 6,S. We first will look at 6.5, and then look at 6,,S.

7.5.4 Variation with respect to ¢?,

a

. We get two pieces, one from the variation of e and

When we vary S with respect to e

the other from the variation of the €%, which comes from the gamma matrices. To calculate

out these pieces it is useful to break 4.5 into two pieces: Iy for the e, piece and I3 from
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the e part; this lets us write §.S = Iy + Is. The I; term, after simplification is given by
equation (7.42). Likewise, the I3 after simplification is given by equation (7.43); to simplify
this term we use the equation for the variation of the determinant of the vielbein in terms

of the variation of the vielbein: de = eeauée“u.

_ B .
L= / [Z; (97 Vath = Vo) mc?w@b] deyed'x (7.42)

Q
I = / (; VE5 + By e(ﬁ> Se%yed*z (7.43)
Q

Putting I; and I3 together we find the tetrad energy momentum tensor t,* for an ECSK-
Dirac theory, which is given by equation (7.44). From this definition, we can use the v, and
1) equations of motion: Ey =0 and E@ = 0 respectively to simplify the EMT. All of this
together yields the vielbein variation in the form of equation (7.45).

P the

& == (57 Varr — V) — 5 (BB + By} e (744

0eS = / [—ta’\} deyed (7.45)
Q

Next we move onto the variation with respect to the spin connection.

7.5.5 Variation with respect to w;,,

The variation of the action with respect to the spin connection 4,,S, once simplified, is
given by equation (7.46). We can write this piece as the Palatini spin potential **, but a
more useful object is the spin angular momentum density G**; The Belinfante-Rosenfeld
relation tells us that these objects are equivalent, and thus we can write the spin angular
momentum density in the form of equation (7.47) (once we make the density into a tensor).

This results in the action being written by 6,5 = fQ (—%GGbcebuecy) 5wuyaed4x.

0uS = / <ZZCw,},[a7u,},u}¢> Swyaed e (7.46)
Q
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the—
=~ U4y ly (7.47)

Sabc
With all these together, we have all the field equation information we need to describe an
ECSK-Dirac theory. The field equations are given in the form: R, — %nWR = t,, and

¢°,, = s, Since we have this, we now move onto classifying an ECSK-Dirac example from

Platania and Rosania (Platania & Rosania, 1997).

7.6 Classifying an ECSK-Dirac Example: “A Universe with Torsion”

Platania and Rosania (Platania & Rosania, 1997) found a solution to the ECSK-Dirac
field equations. Their solution models a universe with torsion. In this section we will use
the tools from chapters 3 and 4 to classify the curvature and torsion tensor of their solution.

To classify this example using the tools we’ve built, fundamentally, we need the metric
tensor gq, and the torsion tensor 7'% .. These in turn allow us to make the metric affine
connection I'% , and then the curvature tensor R% _,. We are given from the beginning a

line element, and thus a metric tensor in the form of equation (7.48).
ds® = dt* — R* (t) (da? + dy® + dz?) (7.48)

We are then given an axial torsion vector in the form of equation (7.49); this is equation
(17) in (Platania & Rosania, 1997); we have a factor of two difference because of the way
our contorsion tensor is defined as opposed to theirs, additionally we have not set h =c =1
but included it; finally we have the “5” on +° up instead of down like theirs for consistency
with our notation. This 6 is the same object as our 4. from equation (3.46) from chapter
3 upon applying a Levi-Civita symbol to it €gup.. We further note that without loss of

generality the vector 6% is spacelike.
Hd _ Dabcedabc

e R (7.49)
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To show that 0%gup. = sape (in their equation 47) and compare our results to that of
(Platania & Rosania, 1997) it is useful to have the following equations: 7°y® = —v%° from
earlier, and equation (7.50) which is shown below. Noting this, we can now see that we have
a consistent notation and can move forward towards writing the torsion tensor. We can take

the Levi-Civita tensor dual of 8% to get what we need through the following identity:
iyloyPyd = ey (7.50)

Recall that, in the ECSK field, the Cartan equation (5.40) is given by %up. = K£Sape- This
equation reduces to Tjgpq = KS[ape in an ECSK-Dirac theory because sgpe = S[qp¢ from
equation (7.47). Furthermore, because the torsion tensor is completely determined by the
irreducible torsion tensor subspace 9, which is totally skew-symmetric, we know Typ. = 0gpe,
from equation (7.51).

ihek —
Tabe = _T (QW[a’Yb%W) (751)

Platania and Rosania (Platania & Rosania, 1997) take a slightly different approach than
just substituting equation (7.51) into the Cartan equation however, and they write ¢ as ¢
with components given by equation (7.52), and the relation 7# = A", (1'7’) 0”. The object
A", (xl) is a local Lorentz transformation; through the application of one boost, and two

rotations, any spacelike vector can be put into the form of equation (7.52) shown below.

Note that e is an orthonormal basis vector.
™ =rle; (7.52)

We then use the same relation 7%€ggpe = Sqpe t0 Write sqpe, and then convert it to the torsion
tensor with the second field equation. We then can write the torsion tensor as in equation
(7.53).

Tube = KT%dabe (7.53)

We now have everything we need tensor wise to calculate our solution and classify it.
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Platania and Rosania present the solution shown below in equation (7.54), where u, Ry, t1,t2 €
R. The symbols Ry and b are real integration constants, B, C', D, and F are complex
integration constants. We note that ¢ = ¢; and ¢ = {9 are singularities of the metric tensor

and spin vector. They are physical because the curvature scalar diverges at t = t1, to.

_ 3 o w
R(t) = V/Ro(t—t1) (t —t2), 7" = Foll —t) (= tQ)] (7.54)

_ —imt —iG(¢) iG(t)
U 2R3/26 (Be + Ce )
L imt ((p—iG(t) iG(t)
o = SRt (Be Ce )
L imt (p—iG() iG(t)
3 2R3/26 (De + Fe )
L im —iG(t) e0)
o 2R3/2e (De — Fe )
1. t—1
G(t) = =1
(0 =g mi—
1
th=—b+-——1/3
1 + 2 Ro| Y
1
ty=—b————1/3
2 2[Ro| Y
v =3(87Gp)”
1
V=3 (IB* +|C]> = |DI* = |FJ?)
1
p= g (IC1 + PP - |BP ~ |DP)

Ry = —6mGmv

Platania and Rosania point out that there are two different types of solution. One for v < 0,

and one for v > 0. For v < 0, t € [t;,00) U (—00,t2]. For v > 0, t € [t2,t1]. In the most
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general case for the constants arbitrary, we cannot determine the Segre type, but we are
able to determine all the other types; additionally we can determine the Plebanski Type
when the constants are arbitrary as well. We first examine the classification of the torsion

tensor, then the curvature tensor classification.

7.6.1 Classification of the Torsion tensor in “A Universe with Torsion”
These results are presented below for the torsion tensor classification, see equation
(7.55).
©=(-),E=(11),02=(-) (7.55)

We find that the solution in the general case is irreducible. However, we can examine when
E becomes reducible by examining the omicron invariant from equation (3.63) in chapter
3. In this case the omicron invariant is given by (7.56). The omicron invariant is only zero
when p is zero or when ¢ approaches infinity (t — co) and ¢ > ¢; and ¢ > ¢2 hold. However,
it is trivially reducible because the alpha invariant is also zero when p = 0 and in the ¢ — oo
case. Therefore, it is not possible to have the |(1,0)|? case for = in this solution; we could
only possibly reduce to the case where Z = (—), and thus the entire torsion tensor would be

Zero.
K202

1
R NP R LIV TR .

(7.56)

Next we move to the classification of the curvature tensor.

7.6.2 Classification of the Curvature tensor in “A Universe with Torsion”

The results in the arbitrary constant case are given in (7.57), and (7.58). Notice that
the A classification is indeterminant. This is because of its dependence on t, and the values
of the constants. All the structural reducibility pieces were completely determined generally
without dependence on any parameters. The same holds for the Plebanski classifications of
the spinors ® and 2K from equations (4.38) and (4.42). The Plebanski type is D for both

the ® spinor and the 2K spinor. We now present the information in the same way that we
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did for the NMC classification of the Bronnikov and Galiakhmetov solution of chapter 6.
V=0,0= {(1, 1)(1,1) OR |1, 1)]2,D,”FAIL”]} A= ”Indetermmant”,} (7.57)

[)K _ {(1, 1) \(1,0)|2,D,”FAIL”} 10 = [A,B] X = 0} (7.58)

To help the Segre classification algorithm along we picked some parameters to determine
the generic type. We evaluate the curvature tensor at a point in the parameter space of
u, Ro, t1,t2, additionally we evaluate ¢ at some value not equal to t; or to. We pick the
values: t1 = 1, i =2, u =1, Ry =1, and Kk = 1. We set k = 1 here not because it is
actually that value, but to help the computer along in the calculation. Maple can encounter
some difficulty in determining if certain values are zero in this calculation due to the cubic
roots. Furthermore, we choose ¢ = 0 because it is a generic point and not exceptional. This
results in the following classification of the ECSK-Dirac solution at a point given by (7.59),

and (7.60). The classification around an open set of this point will also be the same type.
w=o0.0={0111) OR [(LYP D1} A= -] (7.59)

[}K - {(1, 1)](1,0)2, D, [1,1 (11)]} 10 = [A, B],R = 0} (7.60)

Now we can see more information than before. A is now negative, and ® and 2K have
the same Segre type; this is interesting because they are still distinct in their structural
reducibilities. This illustrates the usefulness of the structural reducibility as a useful tool
on top of the Segre classification. We can explore the entire reducibility structure in depth
by looking at how the parameters change the co(in)variants and how this in turn changes
the type this solution is with regard to its classification. However, we will not do this fully,
but we will explore both the structure making A originally indeterminant, and if there is a
possibility for FO to reduce further.

First we look at A in general. We can determine that there are values of the parameters

for which A is positive, negative, and zero from equation (7.61). This clarifies why we got
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the indeterminant result earlier.

(—32 (Ro)2 12 + 32 (Ro)2 (t1 + t2) ¢ + 16 ((t1)2 ~ Aty + (t2)2) (Ro)? — 9&2;})

A= 288 (Ro)2 (t — t2)2 (t — t1)°

(7.61)
Upon evaluating equation (7.61) on the values we picked earlier except for ¢, we find that

its structure simplifies considerably as seen in equation (7.62).

_ 1 —32* 4+ 96t — 57
288 (¢t —2)? (t — 1)

(7.62)

Upon examining the roots of the numerator for ¢, we find that there are three different regions
of classification for A. A is negative in the region: t € (—oo, % — é\/%) U (% + %\/%, oo).
Lambda is zero in the region ¢t € {% — %\/@, % + é\/%} Lastly A is positive in the region
t e (% — %\/%, 1) U(L,2)u (2, % + %\/%) This should be able to be refined for arbitrary
parameters p, Rg,t1,to. Finally, a figure of the different regions of Lambda is presented in
figure (7.1) below: Here the solid blue line is the plot of A on the vertical vs. ¢ on the
horizontal. The dashed blue lines represent the values we chose for t; and ¢5. Additionally,
the green dots represent the roots of the graph, which are also exceptional points.

Next we move onto looking at the FO spinor’s reducibility. Similarly to what happens
to the torsion tensor, there is no way for the FO spinor to be of type [2]. For the same
parameters we chose above in the case for A, the curvature omicron invariant is given by

(7.63).
1 (2t-3)
0= -T2 (7.63)

This can be zero when ¢t = %, but this also forces the entire FO spinor to be zero as well,
thus precluding the [2] case as only [11] and [(11)] are possible. We now end with a short

summary.

7.7 ECSK-Dirac Classification Summary

For an ECSK-Dirac theory, the only non-zero piece of the torsion tensor is generated
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Figure 7.1: Plot of Lambda Spinor for Platania and Rosania Solution

by 0ape- We described the action and the field equations, along with the boundary terms for
1, and 1. Interestingly enough, the Dirac equation is modified in this format due to spin
coupling to torsion; this is what augments the Dirac equation to the Hehl-Datta equation as
we found in equations (7.39), and (7.40). Furthermore, the contorsion piece in both of these
equations reduces to a Dirac-like equation because of the second field equation’s constraint
on the torsion; having only axial torsion (T[abc]) forces the contorsion tensor to also be
purely skew-symmetric. This causes Dirac particles to behave differently just by loosening
the constraint that torsion be zero from GR. The classification was also interesting because
it shows us just how complicated things can get. We are successfully able to classify the

solution and see that there is no Weyl curvature, which is particularly interesting.
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CHAPTER 8
RELATIVISTIC SPINNING FLUIDS AND EXTENDED ECSK

We include this section although somewhat short and incomplete on its background to
cover the last irreducible piece of torsion qup. as in the rank 3 tensors chapter 3 in equation
(3.45); we will do this with a short note on spinning fluids, including references for the
reader. We will present an example from Chen (Chen et al., 2018) in an extended ECSK
theory which also acts as a source for qu.. We begin with the spinning fluid. Further
references on spinning fluids include Poplawski (Poplawski, 2013) in his section (2.5.11) on
“Relativistic spin fluids”, and Westenholz (Westenholz, 1978) in his section on “Relativistic

Fluid Mechanics” see pg 456 and onward.

8.1 A Short Note on Spinning Fluids

Spinning fluids are fluids which include some macroscopic spin density in them; the
microscopic spin density does not average out to zero. Weyssenhoff justifies this by calling
it the density of angular momentum per unit rest volume. The author has been unable to
find a kinetic, moment, or variational approach which leads to the spin density presented
by Weyssenhoff. Nevertheless, this variational /kinetic problem seems to be an interesting
heading for future work. Tsoubelis (Tsoubelis, 1981) presents a spinning fluid solution,
although we will not examine it here. We will not examine any more background on spinning
fluids here, but refer the reader to the prior citations.

A source for the leftovers sector of torsion is a spinning fluid. Spinning fluids date back
to Weyssenhoff and Raabe (Weyssenhoff & Raabe, 1947) in the late 1940s. Spinning fluids
also source an axial torsion piece which we called qup. in equation (3.46). Recall that we

represented the leftovers sector by gqp in equation (3.45) additionally 4. resides in the
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Ferrers diagram as the trace free part of this diagram.

8.2 An Example From Extended ECKS Theory

In this section our goal will be to apply the classification tools we have developed to
three solutions presented by Chen (Chen et al., 2018). We also take note that although Chen
uses a modified ECSK theory which includes a quadratic torsion term, our classification tools
are still applicable because they focus purely on the curvature and torsion without regard
to the field equations. Furthermore, in this theory the torsion satisfies a differential, not
algebraic equation for torsion. This allows the torsion tensor to be non-zero despite lacking
any matter source in the action. This arises from the R7 term in the action.

Chen’s action is given as follows:
1
S = / [% (R+ RT)] V—gd'z (8.1)
Q
in which R is the ECSK Ricci scalar and 7T is given by:
T = a1 Tupe T + aoTpc TP + a3T4 0TS, (8.2)

with a1, ao, ag € R being some arbitrary torsion coupling constants. The field equations
for equation (8.1) are complicated, and as such we refer the reader to reference (Chen et
al., 2018). Nevertheless, we produce the field equations here albeit without a compensating
GHY term. The GHY term will not cancel the boundary terms in the given action and
additional terms will be needed. This would be interesting to explore.

As our field variables, we choose the inverse metric (which we will again just call the
metric), and the torsion tensor: ¢, and T4.. To make varying equation (8.1) easier, we
include the following equations:

5T = Tapdg™ (8.3)

Toy = <a1 (—T(jf Ther + 2Tef(aT€{,)> + <CL2Tef(an 5~ GBT(aTb))) (8.4)
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orT = 7,675, (8.5)
T, =2 (alTabc + a1 — agéa[de) (8.6)
0R = (R {}ap + Ua) 0g™ + Vs (21089 + (9% g5 — 8307) 097, (8.7)

Recall that Uy is the Hehl Tensor defined in equation (6.13).
7R = of,"5T%, + ¥, (—QgcchZéT%c) (8.8)

Recall that o7, " is the Alpha Cartan Tensor defined in equation (5.37).
The equations above represent the variation of R, and T with respect to the fields gq

and 7. The metric variation of equation (8.1) produces the following field equations:
1
(R {3y + Ua) 1+ T) + RTap = 59aR(1+T) =0 (8.9)

A1+ T)+RT,*=0 (8.10)

where we have used §,/—g = —3+/—ggap09?® and equations (8.3)-(8.8) above.
Moving forward to find solutions to equations (8.9), and (8.10) we begin with coordinates
(t,7,0,¢) and a metric g,y with signature [+,—, —,—] in the following form where the

functions H (r) and F' (r) are part of what we will solve for in the field equations.

gap = H (r) dt ® dt —

Fl(r) dr @ dr —r* (df ® df + sin® () d¢ ® dg) (8.11)
This is Chen’s metric up to the signature change. We have changed the signature to mostly
minus, which is different from Chen’s mostly plus signature, so that we can apply our Maple
algorithm which requires the mostly minus signature. Furthermore, the torsion tensor is
given by:

T, = 17, = A(r) (8.12)

0 0
Tt0 = _Tot :Td)

1o =—T% =B(r) (8.13)
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with A (r), and B (r) being functions which only depending on r. Chen provides 3 different
solutions which we have checked, and adapted to our mostly minus signature. The three
solutions are black hole solutions in braneworlds which he names after the branes in string
theory. The third solution is similar to a Reissner-Nordstrém black hole with charge ¢. To

classify these solutions, we begin by presenting the first solution.

8.3 Braneworld I Solution

Chen’s first solution adapted to our signature is given by the following three equations:

(2r+C1)(2m —r)

F(r) =
(r) (3m —2r)r
2m —r
H(r)=-¢ < )
,
2m 1
B(r)y=4/1-—, A(r)=--B
(r) n AW =3B ()
where ¢, C1, Cy, and 7y are constants and ¢ is given by ¢ = —% (2a1 — 2a2 + a3) in terms of

the a; constants in equation (8.2). Next we classify the curvature and torsion of this solution

using our tools from the previous sections.

8.3.1 Torsion Classification of Solution 1
Upon running our algorithm, we find that the classification of the torsion tensor is given
by:
©=(11),2=(-),2=(1,0)(1,0)(1,1)]

where the spinors ®, 2, and €2 are defined as before in the Rank 3 tensor section. Upon

examining the co(in)variants, we find that there are no exceptional points in this solution

for either ® or .

8.3.2 Curvature Classification of Solution 1

We find that the subspaces §, [, and £ for this solution are empty, meaning that their
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corresponding tensors are zero. This in turn implies that the spinors A, 2K, and N are zero,
implying that they are types 0, (—), and 0 respectively.
Upon running the classification algorithm we find the following classification for the

curvature given as Maple output.
V=D &= {(1, 1)(1,1) OR |(1,1)*,D, ”Indeterminant”]} A= 0}

PK = {(_) .0, [(1? 111)]} 10 = [A7B]7N = O]

There is some information we can determine about the Segre type. For instance, the sign of
the H invariant depends on the choice of parameters. However, the k, invariant is always
negative, except at some possible exceptional points. We can make the following remarks:
when H > 0 we have Segre Type [1,1(11)], when H = 0 then the Segre type is [2, (11)],

finally when H < 0, then the Segre type [ZZ, (11)].

8.4 Braneworld II Solution

Chen’s second solution adapted to our signature is given by the following three equations:

2
Firy=1-2"

r

2
H(r)=¢ <cl+cm/mr_7">
B(r) =0+ O/ Ay =~ B ()

where ¢, C7, Co, and  are constants and ¢ is given by ¢ = —% (2a1 — 2a9 + a3) in terms
of the a; constants in equation (8.2). Next, we classify the curvature and torsion of this

solution using our tools from the previous sections.
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8.4.1 Torsion Classification of Solution 2
Upon running our algorithm, we find that the classification of the torsion tensor is given
by:
©=(11),2=(-),2=(1,0)(1,0)(1,1)]

where the spinors ®, 2, and €2 are defined as before in the Rank 3 tensor section. Upon
examining the co(in)variants, we find that there are no exceptional points in this solution

for either @, or Q.

8.4.2 Curvature Classification of Solution 2
We find that this classification is generally the same as for solution 1. However, the

Plebanski and Segre types may be different depending on the parameters than in solution.

8.5 Extended ECSK Reissner-Nordstrom Black Hole Solution

Chen'’s third solution adapted to our signature is given by the following three equations:

29m 2
_m @
r T

F(r)=1

2
(01)2 (rymr + ng\/2er — - q2>

2 = )

H(r)=¢

Cy (’ymr + ng\/Z'ymr —q®—1r2— q2>

1
B(r) = , A(r)=—5B(r)
r/2m? — ¢ 2
where ¢, C1, Cy, and ~ are constants and ¢ is given by ¢ = —% (2a1 — 2a9 + a3) in terms of

the a; constants in equation (8.2). Next we classify the curvature and torsion of this solution

using our tools from the previous sections.
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8.5.1 Torsion Classification of Solution 3
Upon running our algorithm, we find that the classification of the torsion tensor is given
by:
©=(11),2=(-),2=(1,0)(1,0)(1,1)]

where the spinors ®, 2, and €2 are defined as before in the Rank 3 tensor section. Upon
examining the co(in)variants, we find that there are exceptional points in this solution.
The spinors @, and €2 share the same exceptional points. We find that there are

exceptional points for these spinors if C; = 0, or at roots of either of the expressions:

<7m1" + C’gq\/var —q%—r?— q2>, (27m7’ Y 1"2). In each of these cases ® can only
reduce to type (—); type |(1,0)|? is not possible. Similarly, @ can only reduce to type (—)

as well.

8.5.2 Curvature Classification of Solution 3

We find that this classification is generally the same as for solution 1. However,
the Plebanski and Segre types may vary differently depending on the parameters than
in solutions 1 and 2. Additionally, there are some exceptional points depending on the

parameters, which we do not get in the other two cases.

8.6 Summary

Altogether, we presented information and references (Westenholz, 1978), (Poplawski,
2013), (Weyssenhoff & Raabe, 1947), and (Tsoubelis, 1981) on spinning fluids, commented
on how our classification still works in a generalized ECSK theory, and classified the three
solutions of Chen (Chen et al., 2018). Although we classified these solutions, we were
unable to tell any general differences other than at some exceptional points. This presents
the question on how to develop a better classification, and to what extent these classification
tools can tell us about the spacetime we are in. For example, if we were to try to make
a Cartan-Karlhede (Karlhede, 1980) algorithm for ECSK, these invariants would not be

enough information to determine when solutions are equivalent. We would need more
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information. To be more specific, take for example that all three solutions are of Petrov

type D. This invariant alone is not enough to distinguish the 3 different solutions that Chen

et al. (Chen et al., 2018) present.
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CHAPTER 9
CONCLUSION

The dissertation presents a classification scheme, Petrov/Plebanski/Segre-like (PPS),
for the curvature and torsion tensors in Einstein-Cartan-Sciama-Kibble theory (ECSK).
ECSK is an extension of General Relativity that naturally couples spin to the geometry
through torsion. The PPS classification method was developed for ECSK to classify solutions
and provide an equivalence method, which is not currently available due to the inclusion of
the torsion tensor. This classification scheme is important because it allows for the invariant
distinction of solutions in ECSK theory, which includes the addition of torsion and the
coupling of spin to geometry. The new software package in Maple includes computational and
PPS classification tools, which were used to classify six different solutions given in references.
In addition to the PPS classification, the dissertation includes several new works, such as
the decomposition of an arbitrary 4th rank tensor under SO (p,q), equivalent SL (2,C)
irreducible spinor decompositions to arbitrary 3rd and 4th rank tensors, an algorithm to
determine the algebraic decomposition of the torsion spinors, an algorithm for the algebraic
decomposition of the ECSK F spinor (a part of the curvature tensor), and Gibbons-Hawking-
York complete ECSK-non-minimally-coupled boundary terms. Overall, the work presented
in this dissertation is significant in furthering our understanding of ECSK theory and its
applications.

We provide a table, see table (9.1) below which shows whwhich types of matter are
sources for torsion. This is not an exhaustive list, but it does touch on many types of
matter. We present increasing spin as the list descends, ending with the spinning fluid
example presented by Weyssenhoff and Raabe (Weyssenhoff & Raabe, 1947), and Tsoubelis
(Tsoubelis, 1981). We include a spin %, Rarita-Schwinger field the same way Wheeler
presents it (J. T. Wheeler, 2023); we note he provides a proof that Rarita-Schwinger is

a source for all three irreducible representations of the torsion tensor. Additionally, Wheeler
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provides the form for higher spin § with n > 3 and odd. Future work would be to examine
the irreducible representations for the torsion tensor for these higher spin cases.

The table is read as follows: if there is a circle that means that this matter type does
not generate the corresponding torsion of that type, if there is a checkmark it means that
this matter source does generate torsion of this type, if there is a question mark that means
that it is unknown if this matter type generates the corresponding torsion type or not. We
use the symbols 9, D, and q to represent the irreducible representations of the torsion tensor
as in chapter 3. These represent the trace, axial, and leftovers parts as in equations (3.44),
(3.46), and (3.45) respectively.

We do not include a similar table for curvature; although we would like to, it would
be a significant undertaking. Furthermore, the nonlinearity of the field equations makes
determining a general Petrov type for the Weyl tensor an undertaking that will hopefully

one day be examined in future work.

Matter Sources for Torsion
Matter 9 0 q
MC Scalar o o o
NMC Scalar v o o
Dirac o v o
Maxwell o o o
Rarita-Schwinger v v v
Spin 7, n odd, n>3 v v v
Spinning Fluid o v v

Table 9.1: Table for Matter Sources of Torsion
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APPENDIX A
THE TORSION TENSOR DECOMPOSITION IN THE LITERATURE

There are other forms of the decomposition we presented of the torsion tensor in the
literature. The most common of these is that given by Shapiro (Shapiro, 2001). To compare
our notation to that of (Shapiro, 2001) we first define two objects: the trace of the torsion
tensor given by T, in equation (A.1). Recall, this is also defined in the ECSK field equation

section, see chapter 5. The axial trace of the torsion tensor given by S in equation (A.2).
T,=T°, (A1)

S = T, ppecl00 (A.2)

The SO (p,q) decomposition of the torsion tensor is often given in the form of equation
(A.3); this decomposition is only valid in N = 4 dimensions however, and must be modified
if the dimension is changed.

1 2
Tope = 6Seeeabc + gga[ch] =+ Qabe (AB)

In N-dimensions the decomposition in equation (A.3) can be written as (A.4). Where we
have defined © (N — 3) as the Heaviside step function and where the number of dots is
equal to N — 3. Note that S~ doesn’t exist in dimensions lower than 3, and the torsion
tensor doesn’t exist in dimensions lower than 2 because it would be instantly zero due to
its skew-symmetry. The dots are in the axial “vector” due to the number changing in each
dimension; for every additional dimension S becomes a bivector of higher rank, for clarity

in N = 5 we have an axial bivector S%. Lastly g is what is defined as the “leftovers” piece
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(the trace free, and axial trace free piece).

O (N —3)

3 20 (N — 2)
6(N —3)!

Tope = B -
abc (N—l)

S€. abe + ga[ch] + Qabe (A4)

The decomposition (A.4) relates to our SO (p, q) decomposition as by the use of equations:

(A5), (A.6), and (A.7).

20 (N —2)
Qabc = ﬂga[bT(}] (A5)
Qabc = dabe (A.6)
_ OV -3) .
Ogbe = ms €...abc (A.7)

This concludes the comparison of our SO (p, q¢) decomposition to the literature, and we find

that everything matches exactly.
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APPENDIX B
FORMULAS FOR THE GL (N) DECOMPOSITION OF AN ARBITRARY RANK 4
TENSOR

The Young decomposition is a powerful mathematical tool that provides a way to
break down, in this case, an arbitrary rank 4 tensor into its irreducible subspaces. Since the
Young tableaux are a graphical representation of the decomposition, they act as a shortcut
to understanding the complexities of irreducible GL (N) subspaces quickly. This results in
a comprehensive understanding of the internal structure of the tensor and its relationships
with the corresponding subspaces. Below we present formulas which produce the proper
Young decomposition of an arbitrary rank 4 tensor.

One issue that may arise however, is that these subspaces may not be linearly independent,
and this must be checked for before deciding that the subspaces are irreducible. We follow
the definition of Itin and Reches on independence (Itin & Reches, 2021) (See page 7):
Independence: The sub-tensors T(,,. , must be linearly independent, i.e., any equation
of the form ZZ:1 ap (T(p)a._,b) = 0 yields aj, = 0 for all p. For more on this phenomenon
see (Itin & Reches, 2021) (pages 25-26) for an excellent explanation of what occurs for the
piezoelectric tensor; we take that methodology and expand on it here.

First we present the Y1 decomposition of our an arbitrary rank 4 tensor Qup.q. We

symmetrize on the indices a, b, ¢, d and then we have \A.
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Aabcd = ﬂ (Qabcd + Qabdc + Qacbd + Qacdb + Qadbc + Qadcb)
1

+ ﬂ (Qbacd + Qbadc + chad + chda + deac + deca)
1

t 5 (Qcabd + Qeadp + Qcbad + Qcbda + Qedab + Qcdba)

1
+ ﬂ (Qdabc + Qdacb + deac + deca + Qdcab + Qdcba)

Next we have the Y2 decomposition which results in three tensors B, C, and D. For B we
symmetrize on a, b, ¢ first and then skew symmetrize on a,d. Next, for C we symmetrize on
a, b, d first and then skew symmetrize on a,c. Finally, for D we symmetrize on a, ¢, d first
and then skew symmetrize on a, b.

Here is the Y 2a piece:

23]

(+Qabcd + chad + Qcabd + Qacbd + chad + Qbacd)

(_deca - chda - chba - Qdcba - chda - deca)

Babcd

| —oo|

Here is the Y'2b piece:

2[4]

Cabcd = 3 (+Qabcd + Qadcb + Qbacd + deca + Qdacb + deca)

(_chad - chab - chad - deac - Qdcab - deac)

o —oo| =

Here is the Y 2c¢ piece:

1 3|4\

(+Qabcd + Qabdc + chad + chda + deac + deca)

(_Qbacd - Qbadc - Qcabd - Qcadb - Qdabc - Qdacb)

Dabcd

0| —o|
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There are two irreducible GL (N) subspaces for the Y3 tableaux. They are given by &, and
F. For € we first symmetrize on the pairs a,b and ¢, d, (not totally symmetrized though
as per the tableaux) then we skew symmetrize on the pairs a,c and b,d. Then for F we
first symmetrize on the pairs a,c and b, d, then we skew symmetrize on the pairs a,b and
c,d. As an aside the tensor F has the same symmetry as the Riemann tensor of GR: i.e.
Fabed = f[ab][cd] = Fedap- These sectors also have the additional simultaneous symmetric
index swap; the last equality in above for F, and for £ we would have Euped = Epade-

Here is the Y 3a piece:

1
gabcd = (+Qabcd + Qabdc + Qbacd + Qbadc)

12
1

+ ﬁ (_chad - chda - chad - chda)
1

t 5 (—Qadeb — Qadbe — Qdach — Qdabe)

1
+ E (+chab + chba + Qdcab + Qdcba)

Here is the Y 3b piece:

3
214
1
Fabed = 3 (+Qabed + Qadet + Qcbad + Qcdab)
1

+ ﬁ (_Qbacd - deca - Qcabd - chba)
1
E (_Qabdc - Qacdb - deac - Qdcab)

1
+ E (+Qbadc + chda + Qdabc + Qdcba)

The Y4 subspaces are the more skew symmetric ones and are presented by the tensors G, H,
and J; we skipped Z which, although is alphabetically before J, reminds us too much of

the identity. Moving forward, to get G we first symmetrize on a, b, then we skew symmetrize
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on a,c,d. To get ‘H we first symmetrize on a, ¢, then we skew symmetrize on a, b, d. Finally,

to get J we first symmetrize on a, d, then we skew symmetrize on a, b, c.

Here is the Y4a piece:

’)J;|oo —

1
Gabed = 3 (Qabed + Qebda + Qavac — Qabde — Qdbea — Qcbad)

1
+ g (Qbacd + chda + deac - Qbadc - deca - chad)

Here is the Y'4b piece:

3]

’.Jk|l\3 —

Habcd = (Qabcd + deca + Qdacb - Qadcb - deca - Qbacd)

0| —oo| —

(chad + Qcadb + chba - chda - chab - Qcabd)

Here is the Y4c piece:

1]4]
2
3
1
Jabcd = g (Qabcd + chad + Qcabd - Qacbd - chad - Qbacd)

1
+ g (deca + Qdcab + Qdabc - deac - Qdacb - Qdcba)
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Lastly we have the Y5 piece for which we totally skew symmetrize on the a, b, ¢, d indices.

1
’Cabcd = ﬂ (Qabcd - Qabdc - Qacbd + Qacdb + Qadbc - Qadcb)

1
+ ﬂ (_Qbacd + Qbadc + chad - chda - deac + deca)

1
ﬂ (Qcabd - Qcadb - chad + chda - chba + chab)

1
+ ﬂ (_Qdabc + Qdacb + deac - deca + Qdcba - Qdcab)

If we were to follow the wonderful notation of Itin and Reches (Itin & Reches, 2021) on page

9, then we would write a first reducible decomposition as:
Q=A3BasEsGaK (B.1)

Here in equation (B.1) A, and K are irreducible but B,E, and G are not irreducible.

However A, B, E, G, and K are orthogonal to each other, i.e.
Aabcdlcade = Babchade =---=0 (B2)

In equations (B.1), and (B.2) we have that B is given by the irreducible decomposition
B = B®CPHD. Likewise E and G are given irreducibly by: E = E®F,and G = GEHPT .
Similarly to equation (B.2) there are some orthogonality conditions on these tensors. The
first of which is that the sub decompositions are all orthogonal if the decomposition is

linearly independent. We would write this as:

gabcdHade =---=0
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Where the sub decompositions are given by the B, E, and G equals lines above. Furthermore,

these subspaces may not necessarily be orthogonal to the other subspaces:

GabedE ™ # Bapea " # Capea F4 # 0

All in all this results in the GL (N) irreducible, non-orthogonal decomposition @ being given
by:
Q=AeoBaCaeDoEsFagoHaTaK (B.3)

The decomposition in equation (B.3) can be shown to decompose further under SO (p, q).
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APPENDIX C
FORMULAS FOR THE SO (p,q) DECOMPOSITION OF AN ARBITRARY RANK 4
TENSOR

In this appendix we present all 25 SO (p, ¢) rank 4 irreducible tensors; given an arbitrary
tensor these can all be calculated out. However, just as in the Rank 3 tensor case, it
is also important for one to ensure linear independence of these tensors, otherwise the
decomposition will be dependent if the given tensor has any additional GL (V) type index
symmetries. This section will delve into the concept of SO (p,q) irreducible tensors by
examining the interplay between the structure of the tensors and the structure of the group,
this section provides a comprehensive list of rank 4 SO (p, q) irreducible tensors.

As a refresher, the concept of irreducibility is fundamental to the study of Lie groups
and Lie algebras. It refers to the property of a tensor that cannot be decomposed into
a direct sum of simpler tensors under a given transformation. In the context of SO (p,q)
irreducible tensors, this means that the tensor cannot be broken down into simpler tensors
that transform differently under the action of the special orthogonal group. This property
makes SO (p,q) irreducible tensors particularly useful for describing physical phenomena,
as it ensures that all the degrees of freedom of the tensor are captured by its irreducible
representation. The decomposition of a tensor into irreducible components provides a way
to understand the symmetry structure of the tensor, as well as its relationships with other
mathematical objects. Additionally, the analysis of irreducible tensors can reveal new
mathematical relationships and structures that are hidden in the tensor.

We will define each of these 25 irreducible tensors below, beginning with the Y'1 sector,
and ending with the Y5 sector.

For the Y1 sector, we begin with the tableaux:
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which determines the GL (V) irreducible tensor A. We call the subspace A the subspace
determined by the tensor A through an abuse of notation; context should make it apparent
which of the two we are using at any given moment. The subspace A decomposes under

SO (p,q) into the following three subspaces:
A=ac g oAU
The three pieces: a, &7, and 2( determined by the following equations:

Aabed = Aabed — Dabed — Labed

o

6
Habed = T P(av9ed)y,  Habed =

P a C

3
N (N +2)

€ ab c ° 1
Pty = 9 Acsarys P =099 Ataea,  Platy = Plav) = 37P9ab

For the Y2 sector, we begin with the Ferrers diagram:

[ ]

for which there are three Young tableaux:

2|3\ 12|4\ 13|4\

which correspond to 3 GL (N) irreducible tensors B, C, and D. The subspaces B, C, and

D decompose under SO (p, q) in the following way:

B = baobo1
C = collal

D = a7
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The nine pieces: b,¢,0, B, II, /I, 3, 1, and 7 are explicitly given below grouped by their
corresponding tableaux to make finding them easier while doing research.

For the Y2a sector we have:

2[3]

4

babcd = Babcd - Babcd - :abcd

1
Babed = N2 (2Paqi9ve — Piea)9vd — Pipa)9ed + Pioa9ac + Piedj9ab)

1
Tabed = N (=Preaygvd — Ppa)9ed + Proay9ac + Plea)9ab)
Pcd = gabBabcd

For the Y 2b sector we have:

2[4]

3

Cabed = Cabcd - IJ;abccl - Jabcd

1
Wopeq = N2 (—=2Piaq9d + Piva)9ed — Pivci9ad + Piaa)9ve — PlaqJab)
1
Jabea = N (=Piay9ed + Poe)ad — Plaa)gve + Plac)9ab)

Pcd = gabcabcd

For the Y 2¢ sector we have:

1 3|4\
2

Ogbed = Dabcd - ﬂabcd - -[abcd-

1
Hapea = ) (—2Ra195d + Rica)9bd — Rictj9ad + Riga)9ve — Riap)Jac)
1
-Iabcd = N (_R(ca)gbd + R(cb)gad - R(da)gbc + R(db)gac)

Ryq = 9*Daped
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For the Y3 sector, we begin with the Ferrers diagram:

for which there are two Young tableaux:

which correspond to 2 GL (N) irreducible tensors £, and F. The subspaces £, and F

decompose under SO (p, q) in the following way:

E = edbSDE

F = foFdF

The six pieces: e,f, &, .Z, € and § are explicitly given below grouped by their corresponding
tableaux to make finding them easier while doing research.

For the Y 3a sector we have:

3

Cabed = gabcd - gabcd - Qzabcd
1 o o o o
éaabcd = m (Pabgcd - Pcbgad - Padgcb + Pchab)

1
Cabed = mp (9abJed — Gadeb)

. 1
Pei = 9" €aped, P = 99" €atea:  Plav) = Plat) = 77 Pab

For the Y 3b sector we have:

2

fabcd = fabcd - tgaabcd - gabcd
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1 o o o o
Fabed = (N — 2) (Racgbd — RpcGad — RadJve + Rbdgac>
1
Sabed = mR (9acgbd — JadJbe)

5 1
Ria) = 9" Fabeds R = 9°°0"" Fapea, Riap) = Riap) —  [t9ab

For the Y4 sector, we begin with the Ferrers diagram:

for which there are three Young tableaux:

2]

)

’»l;|oo —

’»-lk|l\3 —

’w|w —

which correspond to 3 GL (N) irreducible tensors G, ‘H, and J. The subspaces G, H, and

J decompose under SO (p, q) in the following way:

g = ga¥
H = hox
J =i/

The nine pieces: g, b, j, ¥, 5, and ¢ are explicitly given below grouped by their

corresponding tableaux to make finding them easier while doing research.

2|

’;J;|oo —

Gabed = Gabed — Yabed
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1
Gabed = ) (P[cd]gab - P[ad]gbc + P[ac}gbd)

(N —2

Py = gabgabcd

For the Y4b sector we have:

’»-lk|l\:> =

babcd = Habcd - %bcd

1
(N -2)

(Rppd)9ac — Riadi9ve + Riab)9ed)
Rcd = gacHabcd

For the Y4c¢ sector we have:

4]

’w|w —

jabcd = jabcd - /abcd

1

Gabed = m (U[bc]gad - U[ac]gbd + U[ab]gcd)

Ucd = gadjabcd

The Y'5 sector does not compose further under SO (p, ¢). To keep with the notation however
we write:

K=¢

Cabed = Q[abcd]
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Like we did in the rank 4 GL (N) appendix, see appendix (B), we follow the notation of Itin

and Reches (Itin & Reches, 2021) on page 9. This results in the SO (p, q) decomposition:

Q = ad AP (C.1)
beobodacolleloda e e
eBEBERTRTF BT D
gl oY DiD 7D

€

which we have grouped in lines according to their Ferrers diagram. This is the irreducible
SO (p,q) decomposition for an arbitrary rank 4 tensor; again if the tensor @ has any
additional symmetries one must check that these spaces are independent in a similar manner

to how we checked in the GL (N) case.
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APPENDIX D
RANK 4 SO (p, g) DECOMPOSITION PROOFS

In this appendix we provide proofs for the SO (p, ¢) decomposition of a 4th rank tensor.

Recall that the GL (V) irreducible tensors are given by the following decomposition:

Qabed Aabed (D.1)
+  Babed + Cabed + Dabed

+  Eabed + Fabed

+  Gabed + Habed + Tabed

+ lCabcd

where each of the calligraphic letters represent the Young projectors. We follow Hammermesh

(Hammermesh, 1962/1989) and apply the decomposition:

Qabcd - fiabgcd + éacgbd + COfobdgbc + Bbcgad + Eobdgac + chgab <D2)

+ Hgawwged + J9acvd + K gaiagve + Wabca

to each of the GL (N) irreducible tensors to decompose them under SO (p,q). The tensor
Wapea is the totally trace free piece and /iab .. .ﬁ’ab are trace free second rank tensors with
no presumed symmetries. We will use equation (D.2) to decompose each of the 10 Young
sectors under SO (p,q). As in the 3rd Rank tensor case, we define tensors that relate our
above traces to just traces on a general fourth rank tensor Qup.q. Later we will think of
Qabed 38 Agped - - - Kaped as given by equation (D.1). It will be convenient to have the following

definitions:

9"°Qabed = Pea,  9°“Qabed = Roay, 9" Quabed = Upe (D.3)

gchabcd = Xad) gbanbcd = YaCa QCanbcd = Zab
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gabQCanbcd = P’ gacgbanbcd = R7 gadgbCQabcd =U

With all of this established, we can determine all 25 SO (p, q) irreducible tensors, and we
give proofs to show how we decomposed them. Hammermesh (Hammermesh, 1962/1989)
guarantees that taking traces in this fashion and applying Young tableaux methods will

produce the SO (p, q) irreducible elements.

D1 Y1-a 4,2

Below we give a proof for the Y1 sector SO (p, q) decomposition.

Let us first look at the totally symmetric piece: Y'1(Q),poq = Aabed- We would have the
symmetry Agped = A(aped)- Let us also define Y1 (W),,.g = dabea- Then, breaking up using

the idea of the general trace gives us the following formula:

1
Aabcd ﬂ (Qabcd + Qabdc + Qacbd + Qacdb + Qadbc + Qadcb)
+ ﬂ (Qbacd + Qbadc + chad + chda + deac + deca)

1
+ ﬂ (Qcabd + Qcadb + chad + chda + chab + chba)

1
+ ﬁ (Qdabc + Qdacb + deac + deca + Qdcab + Qdcba)

This then shows us that we can write Agpq as:
Aabed = G ap)Jed+GCae) 9ba+ G (at) Goe+G (b6 9ad+ G (va) Gac+ G (cay Jab+ L (JabGed + JacGbd + JadFve)+%abed
Next we will define 2 more tensors:

Aopea = G (ab)9ed + é(ac)gbd + é(ad)gbc + é(bc)gad + é(bd)gac +G (cd)Yab

Aaved = L (Gab9cd + JacIvd + GadTbe)
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Let us apply total symmetry to the equations we got from maple before. Doing this by hand

would have been a pain! We find: We can write:
9" Atapeay = Pleay

9*Aabed) = Bpa) = 9" A(acvd) = Flpa)
ad _ _ ad _

9" Aaved) = Upey = 9" A(adbe) = Ploe)

9" Alabedy = X(aa) = 9" Apead) = Plaa)

gbdA(abcd) = }Qac) = gbdA(bdac) = P(ac)
cd _ _ cd _

9 Aabed) = Zab) = 9 A(cdab) = Plav)
gabng-A(abcd) =P
gacgbdA(abcd) =R= gacgbdA(acbd) =P
gadgbCA(abcd) =U= gadgbcA(adbc) =P

Solving these equations for Goab, L gives us:

o _ 1 (N +2)
G(cd) = mp(cd) ngcd

1
L=——P
N (N +2)

Simplifying, we find:
o 1 o
Clet) = gy e

o 1
Pleay = Pled) = 7y ed
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This in turn lets us write & peq, and Ugpeq as:

1 . . . . . .
Habed = ) (P (ab)9ed + Plac)9bd + Plad)Gbe + Poe)9ad + Plod)Gac + P (cd)gab>
1
2[abcd -

mp (9ab9ed + GacGbd + GadJbe)

Thus, we can now write our Y1 decomposition as:

Aabed = Gabed + Daped + Labed

6 o
Aot = ———— P
abed (N T 4) (abYcd)
Aabed = 3 P
abed = N (N T 2) 9(abYcd)

Preay = 9" A(abeay
P = gabngA(abcd)

o 1
Plavy = Plav) — Npgab

D.2 Y2-b,¢0,317,B,II 1

Below we give proofs for the Y2 sector SO (p, q) decomposition.

D.3 Y2a-b,1B

Below we give a proof for the Y2a sector SO (p, q) decomposition.

2[3]

Let us first look at the Y 2a piece: Y2a (@) p.q = Babed- We would have the symmetryBgpeq =

Babeyd = Bjajpea)- Let us also define Y2a (W) ,,.q = babeq- Then, breaking up using the idea
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of the general trace gives us the following formula:

(+Qabcd + chad + Qcabd + Qacbd + chad + Qbacd)

(_deca - chda - chba - Qdcba - chda - deca)

Babcd

o —oo| -

If we use a degrees of freedom argument, we can find that the trace part: Bupeq is generated

by a second rank general trace free tensor aqq. This then tells us that we can write Bgpeq as:
Babcd = %abcd + babcd

f%)abcd =Y2a (&adgbc)

After applying the Young symmetrizer, we have:
Baved = 2 (Gad — Gda) Gbe — 20cagbd — 2abaged + 2abdGac + 24cagab
Let us absorb the factor of 2 into a4, and call it Y:
Babed = (?ad - ?da> e — Teaghd — Toaged + Toagac + T eagas

We will now go on to show that this is not the irreducible form of 5. We now decompose
B further. Recall from earlier that we defined the P, R,U, X,Y, Z tensors and the P, R, U

scalars. Their definitions on any 4th rank tensor B are below:
gabBabcd = P

9"“Babed = Rpa
ad _
g Babcd — ch

gbCBabcd = Xad
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9" Babea = Yac
9“Babea = Zab
9"°9“ Bapea = P
9°°g"" Bapea = R
99" Bapea = U

However, we know that in our case B has symmetries. This will in turn make some of these

definitions overlap. Let us begin by shoving our definition of B, Bgpeq = (z‘iab - ﬁba) Jed +

o

Cad9ve + Hgapged + Wapea into the above equations. Then we find:

Babed = (Yad - ila) Gbe — Ycagbd - Ybagcd + ’fbdgac + ’fcdgab + babed

9" Babed = Peg = 2T o + TegN
9" Babed = Ryq = 2T g + TpaN
9" Bapea = 0= —Tep — Tpe + T + Tep = 0
9" Babed = Xaa = 2T jaq) (N +2)
9" Buped = Yac = Q“f[ac} YN
9 Bavea = Zap = 2T (a) — ToaN
99 Bapea = 0
9°°g" Bapea = 0
9°*9" Bapea = 0

From here we will use the symmetries Boped = Ba(ve)d = Biajbejq) to cut down some definitions.

For example, we will find that Ryq = Ppq, etc. This very much simplifies the computation
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down to something manageable.

9" Babea = Pea
9*Babed = Roa = 9" Bacbd = Pod
9" Bapea = 0

9" Baved = Xaqy

9" Babed = Yac = —9""Bapea = —Pea

9“Babea = Zay = —9“'Bacba = —Poa
9*°9“ Bapea = P

9’9" Baea = R = g*°¢"'Bocpa = P
99" Bapea = 0

Now since we have simplified some equations, we shove them back into our starting 6.

Babed = (’fad - fda) Gbe — ?cagbd - Tbagcd + ?bdgac + lO”cdgab + babed

Peg = Peq = 2T pq + TeaN
Py = Rpq = QY[bd} + TpaN
0=0
Xioa) = 2T (aq (N +2)
—Puq = 2Ty — TeaN
—Pyq = 2Ty — TpaN

P=0
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There are many indices floating around now. To relate these equations, let us relabel these

only using the indices ab, and then get rid of repeated equations:

Babed = (’fad - fda) Gbe — ?cagbd - Tbagcd + ?bdgac + lO”cdgab + babed

Pab = 2i~[ab} + 'i\abN
Xiap) = 2T () (N +2)
P=0

Before that, we can find something out using the skew part of P:

1 5
Py = 5 (Pab = Fra) = Tiap) (N +2)
We find that:
1
Plat) = 5X]a

Therefore, we really only have 1 independent equation:

Babed = (Yad - fda) Gbe — Ycagbcl - Ybagccl + degac + chgab + babed

Pop = Qf[ab} + TN
Plag) = Tpar) (N +2)
P=0

Now we solve. The Second equation gives us:

Tia = gy Hlew
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Shoving the second into the first gives us:

1 2

Yoo ipy - 2

Play)
We are done. Now we have a way to calculate our equation.

Boabed = 2?[ad] gve — Teagba — Toaged + Toagac + Teagap

However, because T is only traceless we can again use the structure contained in GL (N)
to break off a symmetric and skew piece. We will call the Skew part of Yab the Cyrillic
Zhe: Ky = lo"[ab], and the resulting tensor generated by 2K,; will be called the Cyrillic Be:
Bapeq- Next, we will call the symmetric part of Yab the Cyrillic Yu: FOu, = f(ab), and the

resulting tensor generated by IO, will be called the Hebrew Beth: 3,;.4.This then gives us:
t@abcd = Babcd + :abcd

Babcd = 2>K[ad]gbc - >Kcagbd - >Kbagcd + >Kbdgac + >chgab
jtJLbcd = _I'Ocagbd - I()bagccl + I'Obdgac + I'Ocdgab

And we are left with what we should actually have as our trace decomposition of Y 2a:
Baped = Babed + :abcd + babed

babcd = Babcd - Babcd - :abcd

5 1 2
Yop=—Pp— ———PF
ab N ab N (N n 2) [ad]
Kap = ,i\[ab]

IO0u = Y(ab)
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Then we find:
1
>Kab = m [ad]
0w = —P
ab N (ab)

Which gives us:

1
Babed = 72 (2P[ad]gbc - P[ca}gbd - P[ba]gcd + P[bd]gac + P[cd]gab)

N +
1
Sabed = N (=Preaygvd — Ppa)9ed + Proay9ac + Plea)9ab)
The irreducible form of Bgpeq is given by:

Babcd = Babcd + :abcd + babcd

babcd = Babcd - Babcd - :abcd

1
Babea = N2 (2Puggbe — Prea)9vd — Ppay9ed + Ppagac + Pea9ab)
1
Tabed = N (=Preaygvd — Ppa)9ed + Proay9ac + Plea)Jab)

Pcd = gabBabcd

D.4 Y2b-JII

Below we give a proof for the Y2b sector SO (p, q) decomposition.

2[4]

Let us first look at the Y'2b piece: Y2b(Q) peq = Cabed- We would have the symmetryCqpeq =

Ca(ble|d) = Clajp|cja- Let us also define Y2b (W) .4 = Cabed- Then, breaking up using the idea
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of the general trace gives us the following formula:

Cabcd = 3 (+Qabcd + Qadcb + Qbacd + deca + Qdacb + deca)

(_chad - chab - chad - deac - Qdcab - deac)

| —oo|

If we use a degrees of freedom argument, we can find that the trace part: €peq is generated

by a second rank general trace free tensor Z;ac. This then tells us that we can write Cypeq as:

Cabcd = %abcd + Cabed

Cabed = Y20 <5acgbd)

After applying the Young symmetrizer, we have:

Cabed = 2 (lo)ac - lﬂ)ca) 9bd — 20baged + 2bbeGad — 2bdagbe + 2bdcgab
Let us absorb the factor of 2 into Io)ab and call it Y:

Cabed = (?ac - ?ca> 9bd — Traged + ToeGaa — Taagee + Taclab

We will now go on to show that this is NOT the simplest form of C as we previously thought.
The derivation comes next. Recall from earlier that we defined the P, R, U, X, Y, Z tensors

and the P, R, U scalars. Their definitions on any 4th rank tensor B are below:
gabcabcd = Pcd

9"“Capea = Reg
ad _
g Cabcd — ch

gbccabcd = Xad
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9"*Cabea = Yac
9“%Cabea = Zay
99 Capea = P
9°°g""Capea = R
979" Capea = U

From here we will use the symmetries Copcd = Ca(p|c|d) = Cla|p|cJa tO cut down some definitions.
For example, we will find that Rpy = Py, etc. This very much simplifies the computation
down to something manageable.

9*Cabea = Pea
9“Cabed =0
9*Cabed = Upe = 9**Cadct = Poe

9"Caved = Xad = —9"Cevad = — Pad
9""Cabea = Yiaq

9“%Cabea = Zap = —9“Cedar = —Pas
99 Capea = P
9°°g"*Capea = 0

99" Capea = U = g**g*Caacs, = P

However, we know that in our case C has symmetries. This will in turn make some of these
definitions overlap. Let us begin by shoving our definition of C into the above equations.

Then we find:

Cabed = (Tac - Tca) 9bd — Yvaged + YocGad — Yaagbe + TdcGab
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Peg = 2Y[dc] + TN
Yv[ac] =2 (N + 2) Y[ac}
P=0

There are many indices floating around now. To relate these equations, let us relabel

these only using the indices ab, and then get rid of repeated equations:

Cabed = (fac — ?ca> 9bd — Taged + ToeGad — Taagve + TacGap

Pcd = 2'Y‘[dc] + Tch
Vi = 2(N +2) Ty
P=0

Before that, we can find something out using the skew part of P:

Poy = 2?[1;@} + TN

1 5
Pray) = 5 (Pab = Poa) = =Tjar) (N +2)
o 1
Thoo) = =52y Hlew
We find that:
Yiap) = —2Pap)

Therefore, we really only have 1 independent equation:

Py = 2’i‘[ba} + ’fbaN
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Now solve for Yab. Let us use the skew equation.
Py = — o) (N +2)

Then we find that:

2 o
P, Py + ToaN
P (N4 2) T
5 1 2
T —P, P
ba N ab N(N+2) [ad]

1

T = =gy o

And, we are done! And now we have a way to calculate our equation!

Caved = 2T (a1 9d — Tvaed + TocGad — Taagve + Tacgab

However, because ’%ab is only traceless we can again use the structure contained in GL ()
to break off a symmetric and skew piece. We will call the Skew part of ”Ofab the Cyrillic
Zhe: XKy = Y[ab], and the resulting tensor generated by 2K,; will be called the Cyrillic Ce:
I ,p.q- Next, we will call the symmetric part of Ic“ab the Cyrillic Yu: IO, = ?(ab)) and the
resulting tensor generated by IO, will be called the Hebrew Gimel: J,p.q. This then gives

us:

Cgabcd = I—[abcd + :Iabcd
Hapea = 2>{<[ac]gbd — KpaGed + KocGad — Kaagve + Kacgap
Jabcd = *I'Obagcd + }Obcgad - I()dagbc + I'Odcgab

And we are left with what we should actually have as our trace decomposition of Y 2a:

Cabcd = Habcd + jabcd + Cabed

Cabed = Cabcd - L[abcd - Jabcd
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5 1 2
Yoo = —P, P,
b T NPT N (N +2) @
>Kab = _T[ab}
I'()ab = Y(ab)
We then find that:
1
ab _N T2 [ab]
1
I'()ab Np(ab)
1
Hopea = N2 (—2Paq9vd + Pipa)9ed — Pivci9ad + Piaa)9ve — Pl Jab)
1
Jabed = N (=Piay9ed + Poe)ad — Praa)gve + Plac)9ab)

The irreducible form of Cupeq is given by:
Cabcd = Habcd + :labcd + Cabed

Cabed = Cabcd - Habcd - Jabcd

1

I—I«abcd = m

(—2P,aq9d + Piva)9ed — Pipci9ad + Piaa)9ve — Piaq9ab)

1
Jabea = N (=Piay9ed + Poe)ad — Plaa)gve + Plac)9ab)

Pcd = gabcabcd
Notice that the indices on T are reversed from the definition in Y 2a

5 1 2
Tba = 7Pab

N _N(N+2)P[“b]
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D.5 Y2c-0 71,1

Below we give a proof for the Y2¢ sector SO (p, q) decomposition.

1 3|4\

Let us look at the Y2c piece: Y2¢(Q) g = DPabed- We would have the symmetry Dypeq =
Diayj(ca)- Let us also define Y2¢ (W) ;. = Oapea- Then, breaking up using the idea of the

general trace gives us the following formula:

(+Qabcd + Qabdc + chad + chda + deac + deca)

(_Qbacd - Qbadc - Qcabd - Qcadb - Qdabc - Qdacb)

Dabcd =

_l’_

| —oo| —

If we use a degrees of freedom argument, we can find that the trace part: € p.q is generated

by a second rank general trace free tensor ¢,.. This then tells us that we can write Dgpeq as:
Dabcd = -@abcd + Oabed

gabcd =Y2c (éabgcd>

After applying the Young symmetrizer, we have:

@abcd = 4é[ab]gbd - Qécagbd + 2écbgad - 2édagbc + 2&dbgac

Let us absorb the factor of 2 into ¢4, and call it Y:

Daved = 2 (ay19bd — Yeagbd + Lebgad — Laagve + TavGac

However, because T is only traceless we can again use the structure contained in GL (N)
to break off a symmetric and skew piece. We will call the Skew part of T, the Cyrillic Zhe:
Ky = Y[ab}, and the resulting tensor generated by 2K, will be called the Cyrillic De: 1,304

Next, we will call the symmetric part of T pthe Cyrillic Yu: FOgp = ’of(ab), and the resulting
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tensor generated by IO, will be called the Hebrew Daleth: T,5.q. The same methodology
we applied for the Y 2a, and Y 2b sectors works here, and we leave out the intermediate steps;
after establishing the proofs for Y2a, and Y 2b, we can see by examination the way the Y2c¢

sector decomposes. This then gives us:

-@abcd = rHabcd + _Iabcd-

>I<ab _T[ab}
I'Oab = Ioa(ab)
. 1 2
Thq NRab N (N n 2) R[ab]
1
Ky = _N T 2R[ab]
1
I'Oab NR(ab)

ﬂabcd = 2>K[ab]gbd — Keagpa + Kevgaa — Kaagve + Kapgac
—iabcd = _I'Ocagbd + }chgad - I'Odagbc + I'Odbgac

And we are left with what we should actually have as our trace decomposition of Y 2¢:

Dabcd = rHabcd + -Iabcd- + Oabed

We will now go on to show that this is NOT the simplest form of C as we previously thought.

The derivation comes next. The simplest form of Dgpeq is given by:

Dabcd - ﬂabcd + —Iabcd- + Oabed

Oabed = Dabcd - rﬂabcd - -Iabcd-

1

Habed = N2

(—2Ra198d + Rica)9bd — Rictj9ad + Riga)9ve — Riap)Jac)
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1
Tabed = N (—=R(ca)9d + R(ct)9ad — Riaa)9vc + R(ap)Yac)

Ryq = 9"Daped

D.6 Y3-¢f& 7,65

Below we give proofs for the Y3 sector SO (p, q) decomposition.

D.7 Y3a-¢&,¢

Below we give a proof for the Y'3a sector SO (p, ¢) decomposition.

Let us look at the Y3a piece: Y3a(Q),peq = Eabed- We would have the symmetryEqpeq =
Elappldd = Eapple|d) = Ebaca- Let us also define Y3a (W) g = ¢abea- Then, breaking up using

the idea of the general trace gives us the following formula:

1
E (+Qabcd + Qabdc + Qbacd + Qbadc)

1
+ E (_chad - chda - chad - chda)

5abcd

1
+ E (_Qadcb - Qadbc - Qdacb - Qdabc)

ﬁ (+chab + chba + Qdcab + Qdcba)

We can define the following orthogonal sectors:

4 o
gacziy Pa c)
bed = (3 Z 2 3a( bYcd
2P
eacziyv3 abdc
bed N(N_1) a (gabged)
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All we have to do now is apply symmetrizations:

éaabcd

eabcd

Recall that we had:

mpabgcd

o o

2
m (Pabgcd - Pchad)
1

m <ﬁ’abgcd - ]Scbgad - ﬁadgcb + ﬁchab)

2
—— P
N (N — 1) Y9ab9cd
1
P _
N (N _ 1) (gabgcd gcbgad)
1
mp (9abged — 9ebGad — Gad9eb + GedJab)
1
P _
N (N 1) (gabgcd gadgcb)

gabAabcd = Pcd
gacAade = Rbd
gadAabcd = ch
gbCAabcd = Xad
gbdAabcd = Yo
QCdAabcd = Zab
gabQCdAabcd =P
gacgbd-Aabcd =R

gadgbc-Aabcd =U
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Now before we sub in the £ equation, we can simplify the above relations due to the

symmetries: Eaped = Elafp|dd = Eap|cld] = Ebacd- We find:

Xab = Uab
Pop = Zap
Ryg =0
Yoe =0
Pop = —Xap
Where the last relation comes from P.; = g“bgabcd = —gabé’cbad = —g“bz‘:cabd = —X,.q. These
relations also imply that:
P=-U
R=0

Last there are some symmetry relations on these as well. We have:
Pap = Plap) = Z(ap) = —X(ab) = —Uap)
Applying these relations to our very first messy equations gives us:

leab = PabN3 + (_Pgab + 6Pab> N2
+ (=6Pgap + 8Pu) N

+ (—8Pgab)



240
Véab = _PabN3+(Pgab_Pab_4Pab_Pab)N2
+ (6P9ab — 3Py + Py — 3P, + Py — 4P(zb) N

+ <8Pgab)

V-bab = - abN3+(P9ab_Pab_4Pab_Pba)N2
+ (6Pgab+Pab_3Pba+Pab_3Pab_4Pab)N

+ (8Pgab)

vEy = PuyN® 4 (=Pguy + 2Pa + 4P,;) N?
+ (_6Pgab + 4Pab + 2Pab + 2Pab) N

+ (78Pgab *4Pab 74Pba +4Pab+4pab)

H=-P(N+2)

1
i
J=0
1
K=——P(N+2)
1
gabgabcd = Pcd = gecd t+ (H_ K) Ngcd

9%Eaped =0 = Agy — Cap — Dypg + Fap + (H — K) gap

And two traces from those equations:
abged g =P=N+ (H - K)N?
g g abed ( )

9%°g"Epeq =0 = (H — K) N
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9"Eabea = Pea = gea + (H — K) Ngeq
9°Eabed = Roa = 0= Agy — Cayy — Dy + Fap + (H — K) gay
9" abed = Upe = Ay — Cety = Do + Fopp + (H — K) gy
9" Eapea = Xad = (fiab — Cap — Dpa + ﬁab) 9ed + (H — K) gabGed
9" Eapea = Yoo = (fziab — Cab = Dpa + ﬁab) 9ed + (H — K) gabged
9 abea = Zay = (Aoab — Cap — Dpa + Fab) 9ed + (H — K) gavged
99 Eapea = P = (x‘iab — Cap — Dpa + ﬁab) Jed + (H — K) gavged
9°g" Eapea = R = (Aab — Cap — Dpa + ﬁab) ged + (H — K) gavged
99" Eapea = U = (fiab — Cap — Dpa + Fab) 9ed + (H — K) gabged

Or we can skip to the end with Maple:
4 o
Sabed = mp abYcd

eabcd = Pgabgcd

N(N-1)
gabgabcd = Pcd

o 1

Plaby = Plab) — Npgab

Therefore, when we make orthogonal sectors we define the following:
gabcd = Cgbed T éoabcd + Cabed
Cabed = gabcd - gabcd — Cubed

1 o o o o
éaabcd = m (Pabgcd - Pcbgad - Padgcb + Pcdgab)
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1
QSabcd = mp (gabgcd - gadgcb)
P.g= gabgabcd

P = gabnggabcd

o 1
Plab) = Plav) = 37 P9ab

D.8 Y3b-§ .75

Below we give a proof for the Y3b sector SO (p, q) decomposition.

Let us look at the Y3b piece: Y3b(Q),peq = Fabed- We would have the symmetryFopeq =

Flabljed] = Fedab- Let us also define Y3b (W) .y = fabea- Similarly to what we did in the

abc

Y 2¢ section, we apply the same rationale here to make the proof shorter. Then, breaking

up using the idea of the general trace gives us the following formula:

1
fabcd = ﬁ (+Qabcd + Qadcb + chad + chab)

1
+ ﬁ (_Qbacd - deca - Qcabd - chba)
1
ﬁ (_Qabdc - Qacdb - deac - Qdcab)

1
+ ﬁ (+Qbadc + chda + Qdabc + Qdcba)

We can define the following orthogonal sectors:

Fabed = (]\742)Y3b <Racgbd>

2R

Sabed = m

Y'3b (gacgbd)
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All we have to do now is apply symmetrizations:

4 .
Fabed — mRacgbd
2 . .
- m (Racgbd - Rchad)
1. 0 o 0
— m <Racgbd - Rbcgad — Radgbc + Rbdgac>
S — 2 R
abcd N (N — 1) YJacYbd
— 1 R ( )
N (N _ 1) JacGvbd — GbcYad
1
= mR (gacgbd — 9bcYad — YadGbe T gbdgac)
1
= 7R _
N(N-1) (YacGbd — Yad9be)

Therefore, when we make orthogonal sectors we define the following:

]:abcd = fabcd + <gfabcd + Sabcd

fabcd = —Fabcd - j\abcd - 3abcd

1

Fabed = )] (éacgbd — RicGad — Radgoe + ébdﬂac)

1

Sabed = mR (9acgbd — JadJbe)
Rpa) = 9 Fabed
R = gacgbd‘rabcd

o 1
R(ap) = Rap) — NRgab

D.9 Y4_gah7j7g7%>j

Below we give proofs for the Y4 sector SO (p, q) decomposition.
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D.10 Y4da- g,9

Below we give a proof for the Y4a sector SO (p, q) decomposition.

2|

’.Jk|o:> =

Let us look at the Y4a piece: Y4a (Q),peqg = Gabed- We would have the symmetryGgpeq =
Glajp|ea)- Let us also define Yda (W), = Babea- Then, breaking up using the idea of the

general trace gives us the following formula:

1
Gabed = 3 (Qabed + Qebda + Qdbac — Qabde — Qdbea — Qebad)

1
+ g (Qbacd + chda + deac - Qbadc - deca - chad)

Which implies that G is of the form:

o

gabcd = (écd - CO'dC) Gab — <é’ad - CQ'da) Gbe + (Cac - CD1caL> 9bd T Babed
Simplifying gives us:
Gabed = 2 (é[cd]gab - COv[ad]gbc + é[ac]de) + Gabed

gabcd = ?[cd}gab - i[ad}gbc + i\[ac]gbd + Babed
Egabcd = Fi\[cd]gab - Y[ad]gbc + Y[ac}gbd

Recall that we had:

gabgabcd - Pcd
9"“Gabed = Rpa

gadgabcd = ch
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gbcgabcd = Xad

gbdgabcd = Yac

cd _

g gabcd - Zab
gabnggabcd =P
gacgbdgabcd =R
gadgbcgabcd =U

Now before we sub in the G equation, we can simplify the above relations due to the

symmetries: Gabed = Gjajpleq)- We find:

gbcgabcd = Xad = —Llad
gbdgabcd = Yac = Pac

Shoving these all into our original equations we find that:

Gubed = Tiea9ab — Tiadbe + Tlaq 9bd
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o 1
T fat) =gl
This gives us:
1
Gabed = m (P ed)Yab — Pladj9be + P [ac]gbd)
We have:
Gabed = Gabed + Babed
Gabed = Gabed — Gabed
YGobed = ! P P P
abed = (N — 2) ( [ed]9ab — Lad])Ybe + [ac}gbd)

Pcd = gabgabcd

D.11 Y4b - b, 7

Below we give a proof for the Y4b sector SO (p, q) decomposition.

3]

’»-lk|l\:> —

Let us look at the Y'4b piece: Y4b(Q) poq = Habed- We would have the symmetryHqpeq =

Hiab|c|q- Let us also define Y'4b (W) wbed = Babea- Similarly to what we did in the Y 2¢ section,

abc
we apply the same rationale here to make the proof shorter. Then, breaking up using the

idea of the general trace gives us the following formula:

Habcd (Qabcd + deca + Qdacb - Qadcb - deca - Qbacd)

(chad + Qcadb + chba - chda - chab - Qcabd)

| —oo|
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Which implies that H is of the form:

Habed = i\[bd}gac - ?[ad]gbc + Y[ab]gcd + habcd

Simplifying gives us:

Haved = T i 9ac — Tjaa)ve + Lot ged

We have:

Haved = Haped + Dabed

Babed = Habed — Habed

1
(N —-2)

(Ribaq)9ac — Rjad)9be + Rjap)ged)

Rcd = gaC/Habcd

D.12 Y4c-j, ¢

Below we give a proof for the Y4c sector SO (p, q) decomposition.

4]

’w|w —

Let us look at the Y4c piece: Y4c(Q),peq = TJabed- We would have the symmetry Tppcq =
Jjabd)d- Let us also define Ydc (W) g = jabea- Similarly to what we did in the Y 2c¢ section,
we apply the same rationale here to make the proof shorter. Then, breaking up using the

idea of the general trace gives us the following formula:

1
Tabed = 3 (Qabed + Qbcad + Qcabd — Qacvd — Qcbad — Qbacd)

1
+ g (deca + Qdcab + Qdabc - deac - Qdacb - Qdcba)
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Which implies that 7 is of the form:

Tabed = YOR[bC]gad - Y[ac}gbd + ’Y[ab]gcd + Jabed

Simplifying gives us:

Faved = Yipey9ad — Tiaq9oa + Lot ged

We have:
jabcd = jabcd + jabcd
jabcd = jabcd - /abcd
Gobed = L U U U
whed = (37 gy (Un)9ad — Ulac9bd + Ulap) 9ed)
Ucd = gadjabcd
D.13 Y5-t¢

The Y5 sector does not decompose further under SO (p, q). We however repeat results

here on it from before.

Let us look at the Y5 piece: Y5(Q),pq- We would have the symmetry Y5(Q),peq =
Y2b (Q)[abcd]' Breaking up:

1
Eabcd = ﬁ (Qabcd - Qabdc - Qacbd + Qacdb + Qadbc - Qadcb)
1
+ ﬂ (_Qbacd + Qbadc + chad - chda - deac + deca)
1
+ ﬂ (Qcabd - Qcadb - chad + chda - chba + chab)
1

+ ﬂ (_Qdabc + Qdacb + deac - deca + Qdcba - Qdcab)
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We only have one piece, therefore:

Y5 (Q)abcd = ECLde

Cabed = Q[abcd]
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APPENDIX E
DEGREES OF FREEDOM OF IRREDUCIBLE RANK 4 TENSORS AND THEIR
RELATED SPINORS IN 4-DIMENSIONS

In the Rank 4 Tensors section, we began talking about degrees (notated “deg”) of
freedom and how they correspond regarding rank 4 tensors and spinors. Here we show how
the degrees of freedom match exactly between all the rank 4 SO (p, q) irreducible tensors, and
SL (2,C) irreducible spinors in 4D. We will go through each sector labeled by their Ferrers
diagrams, starting with Y1, and ending with Y'5. We also include the GL (N) irreducible
tensors like A and count their components. This is important in helping us calculate the
components of the SO (p, q) irreducible tensors. What we do to find those, is we can calculate
through Young tableaux methods the number of components of the GL (N) irreducible
tensors. Then we can calculate the curly tensors A... through the same methods applied
to trace free rank two tensors. The difference of these sectors gives the totally trace free
degrees of freedom for tensors like a.

Furthermore, to calculate the degrees of the freedom of the spinors, we can also use
Young tableaux tools because we can count the degrees of freedom of totally symmetric
tensors. Applying this method to both S and S and then multiplying the results together
because of the tensor product S ® S being the spinor space then gives us the degrees of
freedom of any of the spinors that we are interested in. Notice that for each of these, the
degrees of freedom of all the SO (p, q) irreducible tensors add up to the degrees of freedom
of the single GL (N) irreducible tensor. Now we move onto the presentation of the results.

For the Y1 sector, we have the following tensors and spinors: Agped; Gabed, Papeds Dapeds
S(ABCD)(A/B/C/D/), LAB)(A' By and v. The degrees of freedom of each of the tensors are

given below. The degrees of freedom of S, and a are equal in 4D; likewise the degrees of
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freedom of o7 and ¢ are equal in 4D; last the degrees of freedom of 2 and v are equal in 4D.

[T T[]

deg(A):i(N)(N+1)(N+2)(N+3)
deg (a) = 5 (N) (N + 1) (N — 1) (N +6)
deg () :%(N) (N+1)—1, deg(2) =1

For the Y2 sector, we have the following tensors and spinors: Baped; Cabed, Paped; Babed, Cabeds

Oabeds abed; Jabed: labeds Babeds Wabeds Mabed: Xapepya’s'y Basepya' By VABCD)(A'B'):
Q(AB)(A’B’)’ K(AB)(A'B')’ H(AB)(A’B’)v H(AB)s P(AB), and o(ap). The degrees of freedom of
all the totally trace free tensors are the same; likewise the same holds for all the Cyrillic
tensors, and the Hebrew tensors. Note that we multiply both the spinors a and g by 2
because they are arbitrary complex spinors with no reality condition of Penrose (Penrose
& Rindler, 1987a); in a similar vein the spinor € does not get multiplied by 2 because of
hermiticity /the same reality condition. The degrees of freedom of each of the tensors and
relevant spinors are given below. The degrees of freedom of the Hebrew tensors match those
of the hermitian spinors in 4D; likewise the totally trace free tensors’ degrees of freedom
match that of the 6th rank spinors in 4D; finally the degrees of freedom of the Cyrillic

tensors match that of the rank 2 spinors in 4D.

[ ]

deg(B) =< (N)(N+1)(N+2)(N—-1)

ool

deg (b) = = (N — 1) (N — 2) (N +4) (N + 1)

o =

deg (2) = %N(NJr 1) =1, deg(B) = %N(N— 1)

For the Y3 sector, we have the following tensors and spinors: Euped, Fabed; Cabeds Tabed, Cabeds
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Fabeds Cabeds Faveds 0(aBcD), Y(ABCD) T(AB)(A'B')’ (I)(AB)(A'B’)’ x and A. The degrees of
freedom of all the totally trace free tensors are the same; likewise the same holds for all the
curly tensors, and the scalars. Like before, we multiply the degrees of freedom of § and ¥
by two because they are generally complex; with the same idea the spinors @« and ® do not
get multiplied by two just like before. The degrees of freedom of each of the tensors and
relevant spinors are given below. The degrees of freedom of the curly tensors match those
of the hermitian (4th rank) spinors in 4D; likewise the totally trace free tensors’ degrees
of freedom match that of the 4th rank spinors in 4D; finally the degrees of freedom of the

trace-full tensors match that of the rank 0 spinors in 4D.

deg (€) = % (N?) (N +1) (N — 1)

deg(e):%(N)(N+1)(N+2)(N—3)
deg (E) :%(N) (N+1)—1, deg(€)=1

For the Y4 sector, we have the following tensors and spinors: the following tensors and
spinors: Gaped, Haved, Jabeds Gabed, Dabed; Jabedr Gabed; Haved, Fabeds Tapya' B’y S(AB)(A'B')
g(AB)(A’B’)’ V(AB), N(AB), and o(4p). Again, the degrees of freedom of all the totally trace
free tensors are the same; likewise the same holds for all the curly tensors. The degrees of
freedom of each of the tensors and relevant spinors are given below. The degrees of freedom
of the curly tensors match those of the rank 2 spinors in 4D; finally the totally trace free

tensors’ degrees of freedom match that of the antihermitian (4th rank) spinors in 4D.

(N)(N+1) (N =1) (N -2)

| =

deg (gabcd) =
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(N) (N =1) (N =3) (N +2),

| =

deg (gabcd) =

deg (Yaped) = z (N) (N — 1)

N | —

For the Y5 sector we have the following tensor and spinor: Kgped; taped, and X. The degrees
of freedom of the tensors and relevant spinors are given below. The degrees of freedom of

the totally trace free, skew-symmetric tensor matches that of a rank 0 spinor in 4D.

L (N)(V - 1) (N - 2) (N —3)

deg (Eabcd) = 24

deg (Eabcd)|N:4 = deg (N) =1

And with that we have all the relations on degrees of freedom for rank 4 spinors in relation
to real 4th rank tensors (in N-dimensions for the tensors, while the spinor degrees of freedom
we looked at matched in 4D which interests us because it is the dimension of spacetime in

ECSK theory).
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APPENDIX F
FORMULAS FOR ALL 25 SL (2,C) IRREDUCIBLE SPINORS IN TERMS OF THEIR
SO (3,1) IRREDUCIBLE RANK 4 TENSORS

Two component spinors are mathematical objects used to describe the spin of particles
in physics; they are made through the Pauli matrices and an identity matrix. They are
represented by two complex numbers on a vector space §. The degrees of freedom of a
two component spinor describe the number of real independent variables needed to specify
the state of the spinor. In the case of a two component spinor the two complex variables
correlate directly to the four coordinates of spacetime through the Pauli matrices.

We can describe the state of the spinor in terms of its orientation in a complex plane,
which is closely related to the properties of spacetime through the above correspondence.
It is also worth noting that the number of degrees of freedom of a two component spinor is
related to the number of independent components of the rank 2 spinor field that it represents.

Furthermore, these spinors are related to spacetime through the Infeld-Van Der Waerden

AA AA

symbols o,

; we can convert a vector v® to a spinor w with these symbols. Expressions

I ’ / /
such as €2 D BCBC B, 4 really represent:

’o ’
EADGBCGBCBI)

’or ’
acdgGADGBCEBCB

AA'BB'cc’' DD’

Where we have defined the Cyrillic spinor in terms of the Infeld-Van der Waerden symbols
by:
b d
Baaps e pp’ = Babeaoy 40 pp 0 oy
but we omit this to save space in our equations below. This is in the same fashion as Penrose
and Rindler in (Penrose & Rindler, 1987a).

For the purposes of computer algebra, we also give the calling commands to use in the

ECSK package below the subsequent equations in each section. Many of the commands just
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require a tensor and a soldering form. Any of the commands to generate a tensor from a
given spinor require the spinor and a soldering form; we write this as the inputs: 1.) a 4th
rank tensor, 2.) a solder form. The solder forms we use are the Infeld-Van Der Waerden
symbols. Furthermore, we do not say this every time, but it will be implied.

For the cases in which the formulas have a spinor bar, an optional argument is able to
be added in the third slot which is the bar spinor. For example in the Y2a equations later
on there is an a spinor and an & spinor in the equation to generate the tensor b. The inputs
are: 1.) a spinor, 2.) a solder form, 3.) {optional argument} a spinor conjugate to input 1.
To calculate b we would use the command “Rank4GenerateAlphaTensor” with the following
inputs: (e, O'aAA/, @). This also helps the computer to better handle complex conjugation.

The sections below begin with the Y1 sector and end with the Y5 sector.

F.1 The Y1 Spinors - S,¢,v
The Y1 spinors are S, ¢, and v. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

NN

S(ABCD)(A’B’C’D’) = Aabed (F.1)
L Iy =2 1 ef,gz% (F 2)
(AB)(A'B') — 89 efab .
Dabed = €ABEN B'YcD)(C'D') T EACEN 'Y BD)(B' D) (F.3)

+  €AD€y pYpoyB'c’) T EBCER ¢’ L(AD)(A' D)

T €BDER p'liacyA'c’) T ECDEC D' l(aB)(A'B)

1 h
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Uaped = v (€ABey greopecr py) (F.5)
+ U(GACEA'C'EBDGB’D')

+ v (EADEA’D'GBCGB'C')

Here we list the code used to calculate the left-hand side of each of the above equations;
first though the right-hand side of equation (F.1) can be calculated from a given S spinor
and soldering from by the command “Rank4GenerateSTensor”.

We have: “Rank4SSpinor” for equation (F.1), “Rank4lotaSpinor” for equation (F.2),
“Rank4GeneratelotaTensor” for equation (F.3), “Rank4UpsilonSpinor” for equation (F.4),

“Rank4GenerateUpsilonTensor” for equation (F.5)

F.2 The Y2 Spinors - «,3,7,Q,k,60, 1, p,0
The Y2 spinors are o, 3, v, , Kk, 0, u, p, and o. We split the spinors into the Y 2a,

Y'2b, and Y2c tableaux sectors to sort them further.

Ens

The Y 2a spinors are a, 2, and p. A list of equations relating them to their corresponding

F.3 The Y2a Spinors - o, i

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

~ L A'D'
QABCD)B'C') = ibabcde (F.6)
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Babed 2Gbe (6 A' D' MAD) + 6ADﬁ(A’D’))

9ab | €’ p' H(CD) + GCDﬁ(c’D’))
Jac | €5’ p' H(BD) —|—€BDﬂ(B/D/)) (Fg)

God \ €4’ ¢’ (AC) t €ACT (4 ¢! )>

+ o+ o+ o+

Ged

7~ N\ 7 N N N

€A’ H(AB) T GABH(A’B’)>

1
Zgab:abcd (FlO)

>~

Q(CD)(C’ D)

:abcd = gabQ(CD)(C’D’) + gacQ(BD)(B’D’) (Fll)

gbdQ(AC)(A'C’) - gch(AB)(A’B’)

Here we list the code used to calculate the left-hand side of each of the above equations. We
have: “Rank4AlphaSpinor” for equation (F.6), “Rank4OmegaSpinor” for equation (F.10),
“Rank4MuSpinor” for equation (F.8), “Rank4GenerateAlphaTensor” for equation (F.7),
“Rank4GenerateOmegaTensor” for equation (F.11), and “Rank4GenerateMuTensor” for

equation (F.9).

F.4 The Y2b Spinors - 5,k,p
The Y 2b spinors are 3, k, and p. A list of equations relating them to their corresponding
4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1 ’
BBepy ' D) = §Cabcd6A ¢ (F.12)

Cabed = B(ABCD)(B'D')EA'C’+B(A'B'C'D')(BD)6AC (F.13)

1 ’o
P(CD) = EGC b gab]—[abcd (F14)
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Wabea = —200a <€A'C'ﬂ(Ac) +each u /)) (F.15)

N—

+  Gab (EC p'P(CD) t €CDP(c’ p'y

— Yad \ €'’ P(BC) T €EBCP(p' ¢’y

T~ —

— 9be |\ €4’ p'P(AD) T €ADP (4 D)

— Ycd

/N
\-/\/v

€4'B' P(AB) T €ABP(A B)

1 a
Kpyc' D'y = 19 PJabed (F.16)

Jabea = Jabk(cp)(C' D) + Jad®(pcy(B'C) (F'17)

9bek(ADy(A' D'y ~ JedB(AB)(A' B

Here we list the code used to calculate the left-hand side of each of the above equations. We
have: “Rank4BetaSpinor” for equation (F.12), “Rank4KappaSpinor” for equation (F.16),
“Rank4RhoSpinor” for equation (F.14), “Rank4GenerateBetaTensor” for equation (F.13),
“Rank4GenerateKappaTensor” for equation (F.17), and “Rank4GenerateRhoTensor” for

equation (F.15).

F.5 The Y2c Spinors - v,6,0
The Y 2c¢ spinors are 7y, 8, and o. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

’ /

~ L A'B
Y(ABcD)(C'D') = 5°alycd6 (F.18)

Qabed = V(aBCD)(C'D'YEA'B' V(4B ¢’ D')(CD)EAB (F.19)

1 ’
oBp) = T5€” v 9" Dabed (F.20)
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Hapea = —29ed (ﬁA'B'O(AB) + GAB5(A’B’)> (F.21)
+  Gac <€B/D/O(BD) +€BD5(B/D/)>
+  Yad (63 '¢'0(BC) T €BCO(p/ )
—  Ybc

EA/D/O AD) +€ADO(AD )

— 9bd (6,4 "¢’ 0(AC) T €ACO 4/ )

~ 1

Oy Dy = 79" Tabed (F.22)

Tabed = gace(BD)(B'D’) + gadH(BC)(B'C") (F.23)

9vel apy(a' 0’y = 9ab acya’ )

Here we list the code used to calculate the left-hand side of each of the above equations. We
have: “Rank4GammaSpinor” for equation (F.18), “Rank4ThetaSpinor” for equation (F.22),
“Rank4OmicronSpinor” for equation (F.20), “Rank4GenerateGammaTensor” for equation
(F.19), “Rank4GenerateThetaTensor” for equation (F.23), and “Rank4GenerateOmicronTensor”

for equation (F.21).

F.6 The Y3 Spinors - 6, ¥, 7, ®, y, A
The Y3 spinors are 8, ¥, w, ®, x, and A. We split the spinors into the Y 3a, and Y 3b

tableaux sectors to sort them further.

F.7 The Y3a Spinors - §, 7,y
The Y 3a spinors are §, 7, and x. A list of equations relating them to their corresponding
4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1 o ot
d(aBCD) = ZeabcdﬁA CeBp (F.24)
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Cabed = 6(ABCD)€A/C/€B/D/ +S(A,BIC/D/)€AC€BD (F25)
_ g F.26
W(AB)(A’B') = 5 abed ( . )

Sabed = T(ApyA'BYECDEC' D'~ T(BOY(B' ') EADEA DY (F.27)
T M)’ D')EABEA' B T T(AD)(A' D')EBCER ¢!
~ 1 ab cd
X = 7599 Cated (F.28)
eabcd & X (EABECDEA/B/GC/D/ — GADGBCEA/DIEB/C/) (F29)

Here we list the code used to calculate the left-hand side of each of the above equations.
We have: “Rank4DeltaSpinor” for equation (F.24), “Rank4PiSpinor” for equation (F.26),
“Rank4ChiSpinor” for equation (F.28), “Rank4GenerateDeltaTensor” for equation (F.25),
“Rank4GeneratePiTensor” for equation (F.27), and “Rank4GenerateChiTensor” for equation

(F.29).

F.8 The Y3b Spinors - ¥, ®, A
The Y3b spinors are ¥, @, and A. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1 1 Y
Yapcp) = Zfabcde Beop (F.30)
fabcd = \II(ABCD)EA/BIGC/D/ —+ @(A/B,C/D,)GABECD (F31)
~ 1 bd
(E(AC)(A/C/) = 59 yabcd (F32)
ﬂabcd = (I)(AC)(A/C/)EBDEB,D/ — (I)(BC)(B,C’I)EADeAlD/ (F33)

+ q)(BD)(B/D,)eACEA/C, - (I)(AD)(A/D')GBCGB,C'
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1
A= Egacgbdgabcd (F34)
gabcd =A (EACEBDEA/C/ EB/D/ — €ADGBC€A/D/ EB/C/) (F35)

Here we list the code used to calculate the left-hand side of each of the above equations.
We have: “Rank4PsiSpinor” for equation (F.30), “Rank4PhiSpinor” for equation (F.32),
“Rank4LambdaSpinor” for equation (F.34), “Rank4GeneratePsiTensor” for equation (F.31),
“Rank4GeneratePhiTensor” for equation (F.33), and “Rank4GenerateLambdaTensor” for

equation (F.35).

F.9 The Y4 Spinors - 7,(,&,v,n,0
The Y4 spinors are 7, ¢, €, v, 1, and o. We split the spinors into the Y2a, Y2b, and

Y 2¢ tableaux sectors to sort them further.

F.10 The Y4a Spinors - 7,v
The Y4a spinors are 7, and v. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1 7
TAB)(C'D') = §gabcde‘4 B D (F.36)

gabcd = EA/ClgBDT(AC)(B/D/) — GB/D,€ACT(BD)(A/C,) (F37)
+ €N B ECDT(AB)(C'D') T €' D' CABT(CD)(A'B)

€A' D' €BCT(ADY(B'C’) T €B/' ¢’ €ADT(BC)(A' D)

1 o
VD) = ZGC b gab%bcd (F.38)
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Gobed = EABE 4 g <€C'D' V(CD) + ECDP(C'D')> (F.39)
— €BCEp ¢ <€A/D' V(ap) T EADP(A'D/)>

+ €BDEp (EA/C’ vac) + EACP(A’C’))

Here we list the code used to calculate the left-hand side of each of the above equations.
We have: “Rank4TauSpinor” for equation (F.36), “Rank4NuSpinor” for equation (F.38),

“Rank4GenerateTauTensor” for equation (F.37), and “Rank4GenerateNuTensor” for equation

(F.39).

F.11 The Y4b Spinors - (,7n
The Y4b spinors are ¢, and 1. A list of equations relating them to their corresponding
4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1 ’ 1
C(AB)(C/D/) = §habcd€A B ECD (F40)

babed = €4/’ €BDCacy(B' D'y ~ €B' D' €ACS(BDY(A'C") (F.41)
+ €y eonSapyc'p'y ~ €¢’ 0’ €ABS(Cp)(A' B
+ €4 p'€BCCapy(B'c’y T €B' ¢! €ADS(BOY(A' D)
~ 1 B'D ac
NBo) = g€~ 9" Habe (F.42)
Habed = EACEy o (€B'D'77(BD) + EBDﬁ(B’D’)) (F.43)

— €BCE€p/'’ <€A/D’77(AD) + GADﬁ(A’D/)>

+ €CDEc' p’ (EA/B/T](AB) + EABﬁ(A/B/))

Here we list the code used to calculate the left-hand side of each of the above equations.
We have: “Rank4ZetaSpinor” for equation (F.40), “Rank4EtaSpinor” for equation (F.42),

“Rank4GenerateZetaTensor” for equation (F.41), and “Rank4GenerateEtaTensor” for equation
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(F.43).

F.12 The Y4c Spinors - £,0
The Y4c spinors are &, and o. A list of equations relating them to their corresponding

4th rank SO (p, q) irreducible tensors in 4 dimensions is given below.

1. ’
§aB) ' D) = §Jabcde“‘ B eob (F.44)

jabcd =~ €A/C/€BD£(AC)(B/D/) — 6B/D/€AC£(BD)(A/C/) (F45)
— exgecnSapyc'p'y T €' o' €ABS(cpy (A’ B

+ EA/DleBoé(AD)(B'C/) — GB'C/GADS(BC)(A'D/)

1 r
J(BC) = ZEB ¢ gad/abcd (F46)
/abcd = GADEA/D/ <€B/C/0'(Bc) + GBCE(B/C/)) (F47)

_ GBDEB/D/ <6A/C/O'(Ac) + 6ACE(A’C’)>

+ €CDE (EA/B/O'(AB) + EABE(A/B/)>

Here we list the code used to calculate the left-hand side of each of the above equations.
We have: “Rank4XiSpinor” for equation (F.44), “Rank4SigmaSpinor” for equation (F.46),
“Rank4GenerateXiTensor” for equation (F.45), and “Rank4GenerateSigmaTensor” for equation

(F.A47).
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The Y5 spinor is R. Two equations relating this spinor to its corresponding 4th rank

SO (p, q) irreducible tensor in 4 dimensions are given below.

1 1 o
%EABGCDEACEBDE

N

I

abcd

Copea = N (EABEC’DEA’C’ €p'p’ — €ACEBDE ' B’ EC/D/)
+ N (GABGCDEA’D’EB’C’ — EADGBCEA’B/EC’D’)

+ N (EACEBDGA’D’GB’C’ — EADGBCGA/C/GB/D/)

(F.48)

(F.49)

Here we list the code used to calculate the left-hand side of each of the above equations.

We have: “Rank4AlephSpinor” for equation (F.48), and “Rank4GenerateAlephTensor” for

equation (F.49).
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APPENDIX G
THE BELINFANTE-ROSENFELD RELATION

We will follow Poplawski Pg. 68, but have modified it slightly to suit our definitions
and needs. Also see Wheeler (J. T. Wheeler, 2023) for clarification. The total variation of
the matter action with respect to geometrical variables is either equation (G.1) or equation
(G.2). Equation (G.2) is in a way more fundamental because we can interpret g? as a

function of €%, from the orthonormality relation g® = e“uebyn‘“’ .

58y = —% / Tap0g?dQ — % / M Le5T4,.dQ (G.1)
Q Q
5Syr = — / T Soe”,dQ — % / D §03,11,0d (G.2)
Q Q

Equivalently, we could write the torsion piece in terms of the contorsion. The motivation for
this comes from Hehl. Hehl (F. Hehl et al., 1976) examines parallelly transported tetrads in
an ECSK (he uses the term Uy) spacetime. Going further he says that the connection 1-forms
wq describe “the rotation of the parallelly transported tetrad relative to the given tetrad
system. This rotation consists of two pieces, the Ricci rotation @'y, due to the Riemannian
metric [...], and an independent "added twist" C®,, proportional to the contortion. The
tetrad vectors in a Uy thus have new degrees of freedom - independent rotations not specified
by the metric structure” (F. Hehl et al., 1976) (See section IL.F Pg 6). In this light Hehl
couples the spin angular momentum to the contorsion tensor, not the torsion tensor. This

equivalent variation is given by equation (G.3).

1 1
5Sh = — / Tardg™d2 = / (gbdeadC) 5C"dO (G.3)
Q Q

In each of these equations (1,2,3) we have only specified our independent variables: for
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equation (G.1) the independent variables are g and T % for equation (G.2) the independent
variables are e, and w'a, and for equation (G.3) that the independent variables are g
and C'9,..

Our goal here is to relate these two actions together, the metric/contorsion one, and the
vielbein/spin connection one. This relation is called the Belinfante-Rosenfeld relation which

we will derive shortly. See Belinfante (Belinfante, 1940), and Rosenfeld (Rosenfeld, 1940)

for the historical references. To begin with, this relation exists in the first place because

a

of the orthonormality relation generated by e 1

and because the spin connection’s Levi-
Civita generated piece @'y, depends on the vielbein. These ideas give us a way to relate
these two different action variations under the same principles. The relation is essential
in understanding a gravity theory coupled to Dirac spinors for example because the action
does not depend on the metric, only on the vielbein. A relation between equation (G.2) and
equation (G.3) is what we ultimately want.

To get down to it, we start by writing the metric variation g% in terms of the vielbein
variation de”,. If we use the orthonormality relation ga, = ed'e,’ N, and then vary it,

5% = 277“”5£aeb2,560w then we find that the metric variation piece in equation (G.1) can be

written as is in equation (G.4.)
1
5 / Tapdg?dQ = / Tave5e ,dS) (G.4)
Q Q

Although we want to get a relation between equations (G.2) and (G.3), it is beneficial
calculation wise to examine equation (G.1) because of a relation on the torsion tensor in
terms of the spin connection.

Similarly to what we did above, we can examine the torsion part. By making use of
the tetrad postulate, we can expand the torsion tensor in terms of the spin connection and
tetrad as in equation (G.6); see Poplawski (Poplawski, 2013) pg 45 (1.5.31).

Daebu = aaebu + Fbcaecu — wl’uaeby =0 (G.5)
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Recall that even in an anholonomic basis, we can use Lie’s third theorem, turning the lie
algebra basis into a coordinate one with coordinate coefficients, to write the torsion as
%e = —2F“[bc]. This combined with the tetrad postulate results in a way to write the

torsion tensor in terms of the spin connection and tetrad, see equation (G.6).
T%e = 2wy + 26“M8[bec]” (G.6)

The variation of equation (G.6) becomes equation (G.7). It has been simplified considerably
using an incredibly useful relation between the vielbein and inverse vielbein: 560’8 = —eaﬁ el (56‘1“,

and by an integration by parts to isolate an eventual boundary term.
0T = 205y + (2050pe] + 2000y ce ) del, — 20y, (e 950¢,)  (G.T)

Now substitute the torsion variation above into the torsion variation piece of equation (G.1).
We can simplify off some pieces first by isolating the boundary term .5 {e} and the spin
connection variation piece 05 {w}. We will then examine the tetrad variation piece 4.5 {e}
and simplify it. We begin by turning the abstract indices on dw into orthonormal ones: i.e.

dwh, =16 (ea“ec”w"yb). This results in equation (G.7) simplifying down to equation (G.8).
0%, = (G.8)

<2eaue[c”5[{]) &u“yf _ 28[6 (ec]a(g?gefa>

+ (Qeauef’/w“y[ceb]a — 25?&)0’/[061)}” + 25? [bec]a + 26[6061)] eauef/‘> (5er

Below we have substituted the torsion variation in terms of the vielbein and spin connection
and simplified. Furthermore, we have broken off each of the pieces corresponding to the
vielbein variation 0.5 {e}, the spin connection variation 4.5 {w}, and the vielbein boundary
piece 05 {0e}.
% / M, 6T, dY =
Q
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- /smabc (5 (e elwh,) + (5?61766” + ec"@be“uef“> 5er> dQ
0

- / M e, @;5;5&) dQ
Q

0S{e} +6S{w} + 05 {0e}

Here we have each of the pieces 65 {e}, 05 {w}, and 65 {0e} defined as follows in equations:
(G.9), (G.10), and (G.11). We have used Gcqp = —29My). in equation G.11, and we
have used Stokes’ theorem in equation (G.9) to convert the region 2 integral to a closed

hypersurface ¥ integral.

55 {e} = (zmabc(s (e e.”) Myb) dQ (G.9)

uce

((zm;’ca;abeg + 9N e T Dye, e f“) 5ef0) dQ

((abzmabce;fajz) 56{,) dQ

+

55 {de} = — / B, (mtabce;a;aefg> Q) = — 55 I foe .7 del,dy) (G.10)
Q b
1
6S{w}=— / M, Powh O = / (26b“”) Sw,pdS (G.11)
Q Q

We will now simplify the non-boundary tetrad piece and give a derivation.

35S {e} =
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= (Emabcé (eauec”) w“ub> dQ

N ((?J)tabcéj“cabeca i mabcecgabeaﬂefu> (5efa> ds)

+

D O D~

((abmtabce;fa;) 5ef[,) 40

(mfb05efaecuwayb + gﬁabceau (_efueca(sefa> wﬂyb> dQ
+ [ ((mledgone. + Moo et e ) del, ) a2

+ ((abmtabce;ajﬁ) (5er) )

D O O

(imfbcec”w”yb - E)ﬁabcea“ef”ecow“yb) el dQ
be sa o bec o a _ M f
+ M 050e.” + My e.” e e ) el dS

+

D O O~

(abanabce;(s;) se! dQ

(mfbcecuwayb _ mabceauefuecawltyb_’_) 56fadQ
+ (Qﬁab%}” (chber - wUAbec)‘> + mtabcecgﬁbeaﬂef“> 5efng

+ (abzmabce;a;) se!_dQ

D O O~
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(imabce;’ef“ (Dpe?, — w”ubeay)> el dQ
(fmabcagrdcbed” + absmabce;ajz) gel_dQ

(abmtabce;é;) se!_dQ

_|_
D O O~

(zm bcec"ef“ <—Fadbedu) + S)ﬁabcéfcl“dcbed“) el _dQ

(amf%;&;) se!_dQ

SRy

<—9ﬁabcec"ef“I‘adbedM + fmabC(S?I‘d[cb] ed"> el dQ

1
((Dbmtabc + I1dab9ﬁdbc o QFQ[bQ} mtllbc N § demabd> 6505?) 6€fadQ

O O —

(Dyn e+ 19, m ) € 7def,an

I
SR

In the derivation above, we needed to use the covariant derivative of a tensor density. This
is given by equation (G.12) because it does not come up very often. Upon the many steps

of simplification, equation (G.9) reduces to the compact form of equation (G.13).
D = Oy, — Ty + D07 4 Ty, — T4 o e (G.12)

55 {e} = / (Do e+ T, 90 €7 ) 6 2 (G.13)
Q

We can furthermore simplify 45 to write the torsion variation as the tetrad and contorsion
variation. Recall: Type = —2C, g, Mape = %(GGZ,C + Geba — Speq). These result in an

interesting formula which shows us how the contorsion tensor variation is related to the
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torsion tensor variation in equation (G.14). Recall also that &qp = —290 4.
1 be srha 1 adc b
B M, 0T.dY = §gbd6 0C",,dSY (G.14)
Q Q

To move forward, we make one assumption which will later be found out true in the
same vein as the arguments from Belinfante, Rosenfeld, and Poplawski ((Belinfante, 1940),

(Rosenfeld, 1940) (Poplawski, 2013) respectively). We assume that the equations of motion

a
In

C%, must always be the same; Wheeler assumes less (J. T. Wheeler, 2023), and thus his

for a variational theory starting from the same action with independent variables e?,,and
argument shows this procedure is even more general; to clarify, we can always vary whatever
we would like, this just means that if we vary with respect to a variable not e“,and C%,
that the resulting equations can always be written in terms of a variation of e, and C.
This assumption results in equation (G.15) where G = ea[u eby}G“bc. It will also result in

the Belinfante-Rosenfeld relation, equation (G.18).
G = v (G.15)

This turns out to be at the core of the argument that Belinfante and Rosenfeld used to
prove that the Belinfante-Rosenfeld tensor was the same as the Hilbert energy momentum
tensor. With this assumption, just by using equation (G.14) and that equations (G.10),
(G.11), and (G.13) together equal the left-hand side of equation (G.14), we find how a spin
connection variation decomposes into tetrad and contorsion pieces if we choose them as the
independent variables in our theory. This is one of the most useful relations that we will
show eventually relates our physics back to the Hilbert energy momentum tensor of general
relativity. Substituting this all in we get a relation for the spin connection variation of matter

in terms of the vielbein and contorsion variation plus a boundary term as in equation (G.16).

1
5 / D 500 d) = (G.16)
Q
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/ ((peomfe = 79,0 <) )7 ) be, a2

Q
1
+/ (29bd6adc> 5Cbcad9 + %nbﬂﬁfbcecaéefgdﬁl
Q by

To use everything we have so far, and to make the Belinfante-Rosenfeld relation all we need
to do it substitute equation (G.16) into our original variation, equation (G.2). This results
in equation (G.17), where now our independent variables are the vielbein and contorsion

| a
tensor C'%,

oSu = [ (=37 - (Demfe - /<) 7 ) bef a2 (G.17)

Q
- / ( gadede) 5C°, 1d) — 55 I e b€l %
Q

In GR, Belinfante (Belinfante, 1940) and Rosenfeld (Rosenfeld, 1940) showed that the
coefficient of 5efg in equation (G.17) is exactly the Hilbert energy momentum tensor; of
course in GR the torsion tensor is zero, and the relation is simplified. By an extension
of their logic we can say that the coeflicient of e’y above is exactly the Hilbert energy
momentum tensor in ECSK theory, making this the natural extension of Belinfante and
Rosenfeld’s logic when we include torsion. Furthermore, this resolves our assumption that
“ that the equations of motion for a variational theory starting from the same action with
independent variables e, and C%, must always be the same.” The assumption turns out
to be true always by Belinfante & Rosenfeld’s arguments. Thus, we wind up with a way
to interpret tetrad and spin connection energy momentum tensors in ECSK to metric and
contorsion energy momentum tensors in ECSK as well how to relate Palatini spin potential
tensors to spin angular momentum tensors. This Belinfante-Rosenfeld relation is shown

below in equation (G.18).

771]“ zf +D mf ebg ngcf)ﬁfbcebg (G].S)
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Hehl (Belinfante, 1940) on pg. 75 has a form version of the Belinfante-Rosenfeld Relation
also for an ECSK spacetime in terms of differential forms, however he drops the boundary
term as implied by his approximate equal sign in equations (5.2.19) on said page. Applying
the Belinfante-Rosenfeld relation to equation (G.2) is insightful into the structure we are
used to in general relativity. Once we use the Belinfante-Rosenfeld relation on equation

(G.17), we get equation (G.19).
5 = / (—Tape®) 5e,do — / <;gbd6“dc> 5CP. do — 55 M e 2oel ds (G.19)
Q Q

Upon comparing equation (G.19) to equation (G.3) with equation (G.4) applied, we find
that we have the same exact theory up to a boundary term. This furthermore goes along
with Belinfante and Rosenfeld’s work and is incredibly clarifying when we look physically
at what couples to gravity matter wise.

A slight nuance when examining the boundary term occurs, however. If one takes the
viewpoint that the spin connection depends on the tetrad and contorsion tensor; this is an
important philosophical and mathematical distinction. For instance if we are able to vary
with respect to the tetrad and contorsion at the beginning, and we are able to vary with
respect to the tetrad and spin connection, we must wind up with the same thing if we pick
the tetrad and contorsion as our independent variables.

This comes up in Dirac theory where it is easier to vary with respect to the spin
connection and tetrad, and use the Belinfante relation. The difficulty in varying with
respect to contorsion and the tetrad at the get go comes from the fact that the Levi-Civita
spin connection (w',,) appears when breaking off the contorsion tensor from the covariant
derivative, resulting in the same boundary term as we found above.

All in all, this relation relates many of the different theories of gravity together.
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