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ABSTRACT

Developing Firmware for Space Weather Probes 2 Using HDL Coder

by

Nicholas L. Wallace, Master of Science

Utah State University, 2023

Major Professor: Charles M. Swenson, Ph.D.
Department: Electrical and Computer Engineering

This thesis will describe the process of designing, implementing, and testing the firmware
for the Space Weather Probes 2 (SWP2). The Space Weather Probes (SWP) instrument
suite provides measurements of Earth’s ionospheric plasma, and was originally flown on
the Scintillation Prediction Observation Task (SPORT) mission, completed jointly between
the United States and Brazil. The firmware is developed using MATLAB/Simulink and
deployed directly to an FPGA using HDL Coder. This thesis discusses data collection,
CCSDS Space Packets creation, communication with the spacecraft computer, and the cre-
ation of Simulink blocks for reuse in other projects. This thesis also discusses problems that

needed to be overcome for HDL Coder to be used to develop a full FPGA system.

(76 pages)
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PUBLIC ABSTRACT

Developing Firmware for Space Weather Probes 2 Using HDL Coder
Nicholas L. Wallace

GPS and wireless communications are affected by interference from the ionosphere.
Space weather affects plasma in the ionosphere, causing communication disruptions and
reliability issues. To better understand how space weather affects the ionosphere, instru-
ments are flown in space to collect data about the electrical characteristics of plasma in the
ionosphere. Space systems require a lot of time and effort to develop and test. This thesis
explores how a high level tool can be used to simplify the process and some obstacles that
still exist with developing some space systems. To do this, the firmware architecture of a
new version of the Space Weather Probes (SWP) was developed and documented in this

thesis.
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CHAPTER 1
INTRODUCTION

Field Programmable Gate Arrays (FPGA) are used for time critical applications, such
as data acquisition and control systems. Application development for FPGAs requires test-
ing and verification, and is more time consuming than software development on a computer
due to not having descriptive error messages and needing to simulate all of the Real Time
Logic (RTL) on a computer to retrieve debug information. Development time may be re-
duced through testing and verifying the behavior of individual design components before
combining all of the components in a final design. Hardware Description Languages (HDL)
are used to design the behavior of the system in the FPGA. VHSIC Hardware Description
Languange (VHDL) and Verilog are two common HDLs which are used in research and
industry to develop systems.

Both VHDL and Verilog allow the user to define modules of logic which can be reused
throughout the design. Testbenches can verify behavior of these modules, either through
test driven verification or the designer creating testbenches to check individual behaviors.
High level tools may be used to facilitate rapid development by abstracting details away
from the designer. This results in less efficient resource utilization without affecting the
behavioral design. Using a high level tool also simplifies documentation, either through
automatic documentation generation or graphical interfaces. Because details are abstracted
away from the designer, some tasks require additional forethought for the designer to work
with (e.g., sensitivity to rising and falling clock edges).

One high level tool which supports exporting a system representation to HDL is Math-
works Simulink combined with the HDL Coder toolbox provided by Mathworks. HDL

Coder has been used to implement simple systems or specific functionality.



1.1 Research Objectives
The objective of this research thesis is to address the following questions during the

development of the Space Weather Probes version 2 (SWP2) firmware:

1. Can the entire Space Weather Probes instrument firmware be developed in the Math-

Works MATLAB/Simulink environment and deployed to an FPGA?

2. Does the developed FPGA system perform the same in physical hardware as in sim-

ulation?

3. What issues need to be overcome for using MATLAB/Simulink to develop a complex
system for a PolarFire FPGA?

1.1.1 Can the entire Space Weather Probes instrument firmware be developed
in the MathWorks MATLAB/Simulink environment and deployed to an
FPGA?

Simulink has built in simulation tools and verification libraries which were leveraged
to verify simulation behavior. These simulation tools also allowed wire values to be logged
for analysis with various MATLAB scripts. The developed system contains multiple com-

ponents, including:
e SPI drivers
e Signal processing blocks
e Command and data handling

e Spacecraft interface

1.1.2 Does the developed FPGA system perform the same in physical hard-
ware as in simulation?

After verifying behavior in simulation, the system was placed on a PolarFire FPGA

to verify behavior in hardware. The PolarFire FPGA was selected due to the flash-based

firmware to be more resilient to radiation effects.
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1.1.3 What issues need to be overcome for using MATLAB/Simulink to de-
velop a complex system for a PolarFire FPGA?

Some known issues with developing HDL in Simulink is the higher resource utilization
through abstraction. Methods for overcoming these limitations were explored. One limita-
tion is Simulink is only sensitive to the rising edge of a clock, so the maximum speed of the
SPI clock is half of the FPGA clock. Simulink also does not support bidirectional ports, but
no chips on the SWP2 board used bidirectonal ports, so this limitation was not necessary

to overcome.

1.2 SPORT Mission

The SPORT mission was a joint 6U CubeSat mission between the United States of
America (USA) and Brazil [2]. The science goals of this space weather mission were to
investigate the conditions that lead to the formation of plasma bubbles in the ionosphere.
Instrumentation payloads were developed by organizations in the USA: Utah State Univer-
sity (USU), University of Texas - Dallas (UTD), Marshall Space Flight Center (MSFC), and
Goddard Space Flight Center (GSFC). The Brazilian organizations, Instituto Tecnol6gico
de Aeronautica (ITA) and Instituto Nacional de Pesquisas Espaciais (INPE), provided the
spacecraft, flight computer and ground station. The SPORT program was selected by NASA
in December of 2016. USA partners received funding in the fall of 2017, and Brazil partners
received funding in early 2018. The required USA-Brazil Framework Agreement allowing
the two countries to work together was ratified in April 2018 and was signed in early 2019.
Delivery of the completed Space Weather Probes from USU was completed in August 2020.
Delivery of the spacecraft for launch occurred in July of 2022, with the launch occurring
November 26, 2022 on a resupply mission to the International Space Station (ISS) followed

by a release to orbit on December 29, 2022.

1.3 Space Weather Probes
The Space Weather Probes (SWP) were developed for the SPORT mission [2]. SWP

was the first version of a collection of in-situ ionospheric diagnostic instruments and mea-
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surement techniques developed by Utah State University (USU) for CubeSats. The instru-
ment electronics were miniaturized and combined to a single 9 x 9 cm printed circuit board
(PCB). The SWP was composed of the Sweeping Langmuir Probe (SLP) that produces
both direct current (DC) measurements in the electron saturation region and I-V curves
from a voltage sweep. The Floating Potential Probe (FPP), previously the Electric Field
Probe (EFP), provided a monitor of the floating potential of the CubeSat during the voltage
sweep of the Langmuir Probe and provided a measurement of the electric field using the
double probe technique. The Wave Spectrometer was an on-board computation of both the
high frequency electron density and electric field wave spectrum. The Sweeping Impedance
Probe (SIP) provided observations of fundamental plasma resonances that occur at RF
frequencies. The hardware architecture of SWP for the SPORT mission is shown in Figure

1.1 [2]. The hardware included the PCB, power regulation, and connectors to each probe.

Power from Spacecraft12-16.8V Power Control from Spacecraft 5V

I POWER REGULATION ]—bl MENIT;RIN J_

EREEEE
J 7 8 & g ¥ 7
2 & =
“ @ 3
3 3.3v
< (Digital)
Electric field Probe | SP! N Spl
(EFP)
POWER
REGULATION
. . SPlto
weeping Langmuir SPI SPI Spacecraft
Probe SMARTFUSION2 FPGA SOM 'Sg':i:,m e —PEE
(sLP) 33v 3.3V from
(Digital) Spacecraft

ETHERNET

CLOCK | |
12MHz MEMORY PHY
Sweeping Impedance | sp|
Probe
(SIP) I
Isolator
Chip

IJTAG and

UART A

DEBUG BUTTONS AND
LEDS

| FTDI PROGRAMMER

usB

Fig. 1.1: SPORT Architecture overview

This first version of the SWP was controlled by a SoM, which included a SmartFusion2
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FPGA and an integrated microcontroller. The FPGA interfaced with the physical probes
to collect data and perform digital signal processing (DSP) and the microcontroller handled
the creation and buffering of space packets before the packets were sent to the spacecraft
over SPI (Figure 1.2). The firmware was developed using a mix of handwritten VHDL
modules, open source VHDL modules, and code generated by Mathworks HDL Coder. The
microcontroller was programmed using C. The SWP firmware buffered packets in a round-
robin fashion until the spacecraft requested the next packet to be sent. Telecommands were
sent from the ground configured the SWP firmware to operate in different science modes

using each of the instruments.

LEGEND

RTC Timing PPS COMPONENT
SPI DRIVER GPS PPS, RTC, Sys CLK ps
Configuration Tables, . MEMORY
Packets Enabled C Manager

FPGA CORE

HK Status
SPI DRIVERS ¢ > PROCESSING

Status
SPACE PACKET

uCONTROL.
Telecommand Parser

ADC EFP
SPI DRIVERS PROCESSING

SPACE PACKET

EFP Wave
PROCESSING

EFP Wave Packet Router
SPACE PACKET

ADCIDAC SLP
SPIDRIVERS  |nEmmmme  PROCESSING SLP
SPACE PACKET | SPI Controller SPACECRAFT COMPUTER

HS ADCIDAC

sIiP
SPI DRIVERS ¢ > PROCESSING SLP
SPACE PACKET

Fig. 1.2: SWP Firmware Overview

1.4 Space Weather Probes 2

Space Weather Probes 2 (SWP2) was the next generation of the Space Weather Probes
instrument suite. This version was designed to be more modular to allow for better control
of each science instrument. Packets were restructured to reduce overlap between science
instruments and provide better time alignment during ground-based analysis. The con-

nection with the spacecraft was changed from SPI to UART. SWP2 dropped the SoM in
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favor of handling all of the SWP control within a single PolarFire FPGA to reduce interface
complexity within the SWP2 firmware (Figure 1.3). The firmware was developed entirely
within Simulink and HDL Coder to simplify simulation and documentation of the overall

system.

[CEGEND

RTC Timing
SPI DRIVER . > GPS PPS, RTC, Sys CLK

Configuration Tables,

Packets Enabled Configuration Manager

MEMORY

HK Status
Da——
SPI DRIVERS SPACE PACKET

FPGA CORE

Telecommand Parser

ADC
SPI DRIVERS SPACE PACKET

EFP Wave e
SPACE PACKET acket Router

ADCIDAC SLP
SPI DRIVERS < » SPACE PACKET
UART Controller SPACECRAFT COMPUTER
HS ADCIDAC SIP
SPI DRIVERS . > SPACE PACKET

Fig. 1.3: SWP2 Firmware Overview



CHAPTER 2
OVERVIEW

2.1 System Overview

The SWP2 firmware includes several main components: device drivers, data process-
ing, command and data handling, and configuration of each of these blocks. Each chip is
controlled using SPI (see Section 4.2) and communication with the spacecraft is achieved
using the Universal Asynchronous Receiver-Transmitter (UART) protocol.

To build the entire system, the researcher developed and tested generic framework
blocks to simplify the process. These blocks were first tested in simulation to ensure func-
tional correctness, then constraints from datasheets were added to the simulation, and
finally the blocks were tested on hardware. The SPI drivers and Command & Telemetry
Handling blocks were built first. Once these blocks were created and tested, data process-
ing blocks were created for each instrument. A full data processing chain was included in
Chapter 5 to illustrate how the full system would be built using these generic blocks.

The entire SWP2 firmware was developed in Simulink (Figure 2.1), exported to HDL
using HDL Coder, and then imported into the Libero IDE for synthesis and bitstream
generation. The firmware for each instrument involved collecting data from the SPI drivers
and performing data processing, then being serialized into a granule, and finally being
combined into a space packet to send to the ground. The Langmuir and impedance probes
controlled DACs as part of the data collection and processing for the respective instruments.
A status packet was created periodically to include housekeeping data about the state of

the SWP2 suite and allow for time alignment of data packets with GPS time.
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2.2 Methodology

To design the full SWP2 firmware, each individual part was built as a Referenced
Subsystem block. These blocks allowed for easy component reuse and version control.
Simulink could use Models instead of Referenced Subsystems to support design, but each
individual Model was generated as an additional VHDL library. The additional VHDL
library created from Model references made importing the generated HDL code into Libero
more time consuming and error prone, so the researcher opted to use Referenced Subsystems
instead.

Referenced Subsystems also allowed for easier simulation using Simulink’s logic ana-
lyzer. The logic analyzer only allowed probing of lines within a model, so probing data lines
between two different models to ensure functional correctness required multiple instances
of the logic analyzer to be opened instead of only a single instance. Using subsystems in
this way simplified integration testing during simulation.

Once each block worked in simulation, HDL Coder was used to export the full system
to VHDL. The generated VHDL was imported into Libero as a single VHDL top module,
with each subsystem building the hierarchy correctly. The constraints file was set in Libero,
and testing on the PolarFire FPGA began at this point.

A Raspberry Pi was connected to the SWP2 test board to simulate the spacecraft and
log the data sent over UART. This data was then processed and analyzed using MAT-
LAB scripts to verify functionality. After the functionality was verified in hardware, the
researcher continued working to develop the next blocks necessary for this project.

This process supported each research objective as the SWP2 firmware was entirely
developed in Simulink, the firmware was verified to work in hardware, and individual issues
with the workflow were discovered early in the development process instead of after full

system integration.

2.3 Version Control
The SWP2 firmware was version controlled using git. A modified version of semantic

versioning was used to track revisions for the data analysis scripts. The major number



10

was the Command and Telemetry Dictionary revision number, the minor number was a
firmware change which would affect analysis such as digital gain, and the patch number was
other firmware changes which would not affect the analysis or control scripts.

By matching the version number to be internally consistent with project documenta-
tion, the data analysis was simplified. Future work done on the project was also simplified
by forcing the researcher to make specific comments about why changes were made in the
commit messages.

The git repository was organized into several directories to manage different models
and setup scripts (Figure 2.2). Models were stored in the corresponding directory under
model library/, with the corresponding test benches stored under model_testing/. Setup
scripts were stored in scripts/. Simple analysis scripts were stored in the analysis/
directory, but more robust analysis scripts were stored in a separate repository to support

SWP data analysis along with SWP2 data analysis.
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“ root
“ root L{j .
scripts

—{ ] analysis L{j model _configuration
| 7 model_library — ] EFW

— EFW —{ FBP

— FBP — FLW

—L FPP —{ FPP

— IP — IP

— SLP —1 MAG

—{ ] devices_drivers —{ 1 RTC

— I misc — sLp

| packet | Telemetry

{1 uart I drivers
% project_setup.m L[] top_-modules

Fig. 2.2: Git directory structure

2.4 Literature Review

Various groups have used HDL Coder to develop firmware, but these groups have
mostly implemented singular components or subsystems instead of the full FPGA system.

These projects include the CCSDS telecommand space packet decoder for the Indone-
sian LAPAN satellites [3], a comparison of HDL Coder generated HDL and hand written
VHDL [4], and a comparison of digital filters generated by MATLAB/Simulink and Soft-
Core [5]. HDL Coder was shown to use about 5% more Look Up Table (LUT) resources on
the FPGA in most instances, but was more efficient in RAM block utilization.

A project by Hiiner, Goker and Yenigeri to develop a System on Chip (SoC) module
for an ADCS system using an FPGA and a real-time application in an onboard processor

was completed using HDL Coder [6]. The firmware generated by HDL Coder was shown to
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meet project and timing requirements for this specific real-time application.

2.5 Thesis Outline

Chapter 2 includes an overview of the full SWP2 firmware and how it was developed.
Chapter 3 discusses the Command and Data Handling (C&DH), including packet struc-
tures and overviews of the Simulink blocks. Chapter 4 discusses the physical interfaces and
firmware drivers for each interface. Chapter 5 discusses developing a specific data process-
ing chain and and testing on the FPGA. Chapter 6 discusses the results of the research

objectives. Chapter 7 includes information on further work related to this research.
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CHAPTER 3
COMMAND AND DATA HANDLING

A major component of the SWP2 firmware architecture is correctly handling and packe-
tizing data generated by the instruments and properly parsing and applying telecommands.
This chapter discusses the packet structures used, the theory of operation, and the models

built in Simulink to accomplish the Command and Data Handling (C&DH) for this research.

3.1 CCSDS Space Packet Structure

For this project, the CCSDS Space Packet Protocol standard CCSDS 133.0-B-2 was
used [1]. This standard defines a header and framing information for each packet. A packet
header consists of 6 octets, or 8-bit numbers, followed by a data field of up to 65536 octets
(Figure 3.1). The Packet Primary Header includes information about the version of the

space packet, its location in the data stream, and the data field structure and size (Figure

3.2).

PACKET PACKET DATA FIELD

PRIMARY

HEADER
PACKET USER DATAFIELD

SECONDARY
HEADER
ariable IPESSUU =1 7 3 1S OOR
PR LR Tol (=1 S = ¥ S 1 to 63536 octets -

Fig. 3.1: CCSDS Space Packet Structure [1]

Each packet type is assigned a mission-specific Application Process Identifier (APID) to
identify which packets correspond to each instrument. On missions with many instruments,

such as the ISS, where a limited amount of APIDs are available, a secondary header is



- e PACKET PRIMARY HEADER seroverssisssssmsmmas s ssassssssssssssasssassssas nass assssasen
PACKET
PACKET PACKET SEQUENCE PACKET
VERSION IDENTIFICATION CONTROL DATA
NUMBER LENGTH
PACKET| SEC. |APPLICATION| SEQUENCE PACKET
TYPE | HDR. | PROCESS FLAGS SEQUENCE
FLAG | IDENTIFIER COUNT OR
PACKET NAME
3 bits 1 bit 1 bit 11 bits 2 bits 14 bits

2 octets 2 octets 2 octets

Fig. 3.2: CCSDS Packet Primary Header [1]
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defined by the instrument. For smaller missions, like SPORT, each packet type is assigned

its own APID to simplify routing and data overhead.

3.2 Theory of Operation

Every SWP2 packet type has a unique APID and packet length (Table 3.1). Instead

of reusing the APID from the telemetry data packet and setting the Packet Type bit in the

header, telecommand packets each have their own APID. It was decided to simplify ground-

based analysis scripts to ensure the data structure is the same for all packets sharing an

APID, and is not dependent on whether the packet is a telemetry or telecommand packet.

APID

Packet Name

Granule Count

Packet Size (bytes)

0x020
0x021
0x022
0x024
0x025
0x026
0x027
0x028
0x029
0x02A
0x02B
0x02C
0x02D

FPP 12
FPP 34
EFP Wave
SLP Full Sweep
SLP Fast Sweep
FLP
FLP Wave
SIP Sweep
SIP Track
SIP Track Q
Magnetometer
Config Echo
Status

200
200
10
32
16
10
10
012
100
200
100
1

1

1015
1015
495
271
143
45
495
2575
315
3215
815
5367
o6

Table 3.1: List of Telemetry Packet APIDs and Sizes
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In the SWP2 firmware, telemetry packets are generated from data granules from each
science instrument (Figure 3.3). These packets are then streamed from the SWP2 instru-
ment to the spacecraft, which are then buffered by the spacecraft computer. The SWP2
firmware includes a Packet Router, which multiplexes parallel data streams of packets into
a serial stream of packets. This allows the packets to be sent to the spacecraft over UART,
but any serial protocol could be used from the output of this block. SWP2 can also buffer
data for several seconds to allow the spacecraft computer to handle other data streams as
necessary.

In addition to generating telemetry packets, the SWP2 firmware also processed telecom-
mand packets sent from the ground to modify operating parameters. Some of the telecom-
mand packets contained tables to adjust the voltage sweep of the SLP and SIP (Table 3.2).
To ensure proper operation of the SWP2 instrument suite, the telecommand parser ignored

incomplete or corrupted packets.

SWP2
Telecommand [
i Parser -
Raw Data Processing Granl_Jle Packgt Packet o UART
Creation Creation Router

Ground . Spacecraft
Station Computer

Fig. 3.3: Command and Data Handling Theory of Operation. Gray bozes: Telemetry data.
Black boxes: Configuration commands



APID

Packet Name

Packet Size (bytes)

0x030
0x031
0x032
0x033
0x034
0x035
0x036
0x037

FPP
EFP Wave
SLP
FLP
FLP Wave
SIP Sweep
SIP Track
SIP Track Q

12
72
2112
12
72
1032
12
16

Table 3.2: List of Telecommand Packet APIDs and Sizes

3.3 Generic Telemetry Packet Structure

16

For each science instrument in SWP2, the firmware collected and buffered individual

data granules until enough granules had been collected to form a packet. Each telemetry

packet followed the generic telemetry packet structure (Figure 3.4), where only the APID,

packet length, and packet sequence count fields change in the Space Packet Header. The

system clock and Real Time Clock (RTC) values are latched when the first granule is

completed. Immediately following the header and timing information, data granules are

added sequentially to the packet. The checksum for each packet is calculated using the

CRC-16 algorithm [7] for the entire packet, including the primary header, and is appended

at the end of packet.

7 6 5

4 3

Primary Header (6 bytes)

System Clock (ms) (31 downto 0)

Real Time Clock (23 downto 0)

Granule 1

Granule N

Checksum (15 downto 0)

Fig. 3.4: Generic Telemetry Packet

)

Timing
Information

(7 bytes)

Granules
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After packets were received on the ground, they were ordered by the RTC time. This is
due to the system clock, accurate to the millisecond, which rolls over approximately every
50 days. The RTC chip is not very accurate due to using the built-in RC oscillator instead of
an external crystal oscillator, but the RTC chip is used for keeping packets in order instead
of accurate timekeeping. Status packets are used to match the RTC and system clock to

the GPS time during ground-based analysis.

3.3.1 Telemetry Packet Creation

To handle telemetry packets, a generic Simulink block was created (Appendix A.1).
A simplified block diagram is included in this section (Figure 3.5). This block buffers all
incoming granules. The block mask allowed the designer to specify the APID of the packet,
granule size, and granule count of the packet (Figure 3.6). This block calculated the total
packet length using the granule information from the mask and the structure of the generic
telemetry packet to correctly generate the header and checksum. Once enough bytes were
received, a full packet was output to the custom Packet Bus, which is discussed more in
Section 3.4.

To reduce power draw in the FPGA, this packetizer block was held in reset when the
corresponding science instrument was disabled, to prevent any gates or downstream flip-
flops from changing states. This block was run at 2 MHz instead of the global 160 MHz

clock required for some data processing, further reducing power requirements.

System Clock
e
Header
L, Creation

A Byte
Header-Payload CRC Packet B
Latch Start Time eader-Fayloa Calculation acket Bus
Serializer
Granule In Granule
Buffer

Fig. 3.5: Telemetry Packetizer



Block Parameters: Packetizer

Set the parameters for this packet type. Follows the CCSDS
Space Packet Protocol.

Packet Structure follows "Generic Packet" structure in the
Command and Telemetry Dictionary.

Parameters
APID |0x021
Granule Length (Bytes) 5

Granule Count | 200

OK Cancel Help

Fig. 3.6: Telemetry Packetizer Mask

3.4 Packet Routing
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A generic packet router was created in Simulink (Appendix A.2) to handle buffering

of each packet type, with a simplified block diagram included in this section (Figure 3.7).

A buffer was created for each packet type to ensure each packet type could be handled

correctly before being multiplexed. A state machine checked if any packets were ready

to be buffered into RAM for transmission in a round robin fashion. If the transmission

buffer became too full, the oldest packet was dropped to ensure no partial packets were

transmitted or stored. No additional priority was given to which packet type was dropped

from the buffer.

Packet Bus
Vector

Round Robin
Deserializer

Check for next RAM Write

™| Ready Packet |No Indexer
Yes

Parse Header

RAM

Data Out

Data Valid

RAM Read
Indexer
— Copy Buffer {

Fig. 3.7: Packet Router

>



19

To handle all of the various packet types and simplify routing between blocks, a Packet
Bus was created. This bus included a data line, whether the data was a valid byte, whether
the packet was completed on this clock cycle, and whether the packet was enabled. If the
packet was not enabled, the state machine continued to check for whether any complete
packets needed to be buffered to RAM. If only an incomplete packet existed, the buffer for
that packet was flushed.

Utilizing a “For Each” Subsystem in Simulink, this generic packet router only required
a vector of Packet Buses as input. Based on the size of this input vector, enough individual
buffers were created. The state machine determined how many bytes to copy based on
the packet header. This simplified the design of the rest of the firmware as any number of
packet generators could be added to the vector and no changes needed to be made to this
block to handle all packets that were sent to the spacecraft.

The resource utilization of the packet router was found during testing on the PolarFire
FPGA (Table 3.3). Using this information, an estimate of resource utilization was created
for however many packets would be needed so this packet could be used for other projects.
The only change caused by increasing the number of packets was the replication of the For
Each block, leading to additional input lines for the state machine and a First-In First-
Out (FIFO) buffer for the incoming packet bytes. After several values were tested, a full
design with 9 different packet types was synthesized and compared to the estimated usage.
The interface resources used were higher than expected, but both the interface and fabric

utilization were close to the estimated values.

Packet Count || Fabric LUT | Fabric DFF | Interface LUT | Interface DFF
2 892 459 1764 1764
3 1031 530 2052 2052
4 1164 601 2340 2340
5 1311 672 2628 2628
7 1584 814 3204 3204
9 1886 803 2916 2916

Table 3.3: Resource Utilization for Packet Router
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3.5 Generic Telecommand Packet Structure

For the SWP2 instrument, various operating modes were required for each of the science
instruments. Each science instrument could be enabled or disabled or have its specific
configuration parameters changed while on orbit. To facilitate this, a generic telecommand
payload structure was defined (Figure 3.8). This structure was nearly identical to the
generic telemetry packet, but replaced the data granules with configuration parameters and
did not include the timing information. The CRC-16 of the packet was still calculated and

appended to the end of the packet.

Primary Header (6 bytes)

Parameter 1

Payload

Parameter N

Checksum (15 downto 0)

Fig. 3.8: Generic Telecommand Packet

These configuration parameters could not be modified while the corresponding science
instrument was operating. A status packet was generated whenever a science instrument was
turned on or off, changing the operating mode. The status packet included the configuration
parameters for each instrument to ensure the parameters were correctly documented for data

processing on the ground.

3.5.1 Telecommand Parser

The generic telecommand parser was created in Simulink using a large state machine
and several combinatorial sections to calculate the checksum and header validity (Figure
A.6). A simplified block diagram of the state machine was included in this section (Figure
3.9). This model had two inputs, data in and data valid, and a single output bus. All

incoming data was stored in a circular buffer. The data was stored in a circular buffer
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instead of a FIFO in case an invalid or incomplete packet was received to recover the
following valid and complete packets.

Once 6 bytes were buffered, a check was performed to determine whether the 6 bytes
formed a valid CCSDS Space Packet header. A header was defined as valid if all of the
following values matched an entry in the telecommand dictionary: packet version number,
packet type, sequence flags, APID, and packet length. If a valid header was found, the
parser waited for the rest of the payload to be buffered.

Once the full packet was buffered, the CRC at the end of the packet was checked for
correctness. If the CRC was correct, the payload bytes were sent out over the telecommand
bus with the corresponding APID for other blocks to process the configuration. If the CRC
was invalid, the parser searched forward through the buffer to find the next valid header.
This accounted for incomplete packets being sent. If a corrupted packet was received, the

packet was discarded and a resend request packet was sent to the ground.

Start

.

Parse and
. v | y
Vsl'd eader L "l valid CRC? | Apply
ceee Telecommand
No No
\/ o
Increment Increment
i Head Pointer
Head Pointer |«
by 1 by Packet
’ Length

Fig. 3.9: Telecommand Parser

In the event a packet was not completely sent, a watchdog marked the header as invalid
if no additional bytes were received within 5 seconds of waiting. This allowed the parser to

recover from hanging indefinitely if a large packet transmission was not completed.
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Analysis was completed to determine the minimum FPGA clock rate to handle the
worst-case scenario of invalid packets being received and the parser recovering the rest of
the data stream. The data stream could be recovered even using the maximum size packet
by the Space Packet standard. If the 65,636-byte buffer was completely filled, the parser
could still recover. If a valid header was found, the data would be processed before being
overwritten by the incoming bytes. If an invalid header was found, the head pointer would

update before a new byte could be read, preventing the buffer from overflowing.
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CHAPTER 4

Interfaces and Drivers

This chapter discusses how the SWP2 firmware interfaces with the spacecraft and the
science instruments. A high-level theory of operation is presented, then each interface and

device is discussed in greater detail.

4.1 Theory of Operation

To collect data from the science instruments, the SWP2 firmware used the SPI protocol.
All of the data brought in from the science instruments went through an ADC and was
controlled through a DAC. Supplementary information was provided by the RTC over SPI.
Once the raw data samples were collected and processed onboard, packets were sent over
UART to the spacecraft. The spacecraft could also control the SWP2 instrument suite over
UART by forwarding telecommand packets from the ground (see Section 3.5).

The spacecraft could control when data was streamed from SWP2 by controlling a
Ready to Receive (RTR) line from the spacecraft to SWP2 (Figure 4.1). The SWP2 firmware
was always ready to receive data from the spacecraft, so no RTR line existed from SWP2
to the spacecraft. The spacecraft could also request a packet to be resent from SWP2 if
the calculated CRC did not match the CRC at the end of the packet (Figure 4.2). If the
spacecraft did not signal to the SWP2 firmware that the packet needed to be resent, the

next packet was sent and operation continued normally.

X RX

SWP2 u Spacecraft

RTR
-

Fig. 4.1: Spacecraft UART interface
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The required throughput of data packets to the spacecraft was calculated using the

packet size and generation frequency. Table 4.1 shows the minimum required throughput.

Due to some packets being mutually exclusive, only the worst-case scenario of packets being

enabled is shown to determine the minimum data rate. Assuming no packets required a

resend, the minimum data rate required to get all packets to the spacecraft is 37,223 bits

per second or about 4.6 kB per second.

Packet Name bps
Status 9
FPP 12 4060
FPP 34 4060

EFP Wave 4830
SLP Full Sweep 18
FBP Wave 4830

SIP Track Q 12860

Magnetometer 6520

Config Echo 36

Table 4.1: Data rates by packet type

4.2 SPI

SWP2 communicated with all of the ADCs, DACs, magnetometers, and the RTC over

SPI. Because some chips used SPI Phase 0 and others used SPI Phase 1, two different SPI

drivers were written. Each of these SPI drivers could be configured to use either clock
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polarity, and were configured using a mask. Initially, an attempt was made to create a
generic SPI driver block that would work with all phase and polarity combinations, but this
caused problems with Simulink Charts.

When the first version of the SPI driver was created, two different charts were used.
One of these charts controlled the clock, and one controlled data handling. HDL Coder only
allowed the use of the rising or falling edge of the clock, so the SPI driver was unable to
read on one edge and write on the other as SPI expected. To account for this, the Simulink
chart was run at twice the SPI clock rate, allowing one state to assert the clock line and
the next to deassert it.

The second version combined both state machines into one to reduce the complexity of
the SPI driver and rais the fmax to 160 MHz (discussed more in Section 6.3.2). The final
version of the SPI drivers incorporated both clock polarities and 3 different models created.
The three model configurations used: a preset word sent for every transaction (such as
sampling an ADC), multiple words sent for various transactions (such as configuring the

RTC), and accepting a word input (such as a DAC word).

4.2.1 Analog to Digital Converter

Several ADCs were used in SWP2. Most of the instruments used an AD4003, which
was communicated with through SPI. This ADC did not need to receive data from SWP2,
and performed a conversion whenever CS was deasserted. For each instrument, the ADC
was oversampled and the raw data was then averaged to reduce the noise from individual
readings before being put into granules at the correct data rate expected by the packet
structure (Figure 4.3).

For the IP measurements, the high-speed LTC2258-14 ADC was used instead of the
AD4003 due to required sample rate of 80 MHz. This high speed ADC allowed for more

data throughput by using 8 data lines instead of a single data line.

4.2.2 Digital to Analog Converter

For the slower measurements of the SLP, the DAC8831 was used. This chip did not
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Fig. 4.3: ADC oversampling
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Fig. 4.4: DAC Operations

send any data back to the SWP2 firmware. The chip only needed a DAC word to control
what analog output was needed and a convert line to start the transaction. The DAC words
of the sweep were stored in a data table on the FPGA which was indexed through (Figure
4.4). Subsections of this table were used to achieve different sweep parameters, and the
table could be updated using telecommand packets.

For the faster IP measurements, the AD9705 high-speed DAC was used. This DAC

was driven by a separate table of DAC words for IP measurements.

4.2.3 Magnetometer

To provide orientation data, the SWP2 firmware included the ability to read from
multiple magnetometers and correlate the data on the ground to reduce the noise of mag-
netometer measurements. Each magnetometer used a shared SPI bus, except for multiple
MISO lines (Figure 4.5). This allowed the reuse of the CLK, CS, and MOSI lines for simpler

routing. Each magnetometer was polled at the same time using this method.
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-MosI >
—CS > Magnetometer
—CLK > A
la-MISO
SWP2
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—» Magnetometer
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Fig. 4.5: Magnetometer Interface

4.2.4 Real Time Clock

SWP2 used a Real-Time Clock (RTC) chip to keep track of time when the FPGA was
not powered. This RTC time was mainly used to ensure packets were ordered correctly
during ground-based analysis. The system clock reset during a power cycle of the FPGA,
so the RT'C time was included with every packet to ensure coarse alignment, with the actual
time stamping being performed using the system clock and GPS time from status packets.
The RTC also stored some data from the FPGA in RAM to preserve the data between
power down and power up events.

To achieve these goals, the AB0815 chip was selected [8]. This chip was controlled over
SPI and contains a low-power internal RC oscillator. The RT'C chip was polled every few
seconds to determine the number of minutes since an epoch, and this value was latched
inside the FPGA to reduce the power draw from polling the RTC continuously. The epoch
used was the “launch date” of the instrument, but could be modified using the MATLAB

configuration scripts.

4.3 UART

The decision to use UART to communicate with the spacecraft was due to the low num-
ber of wires and simple implementation. The UART communication between the spacecraft
and the SWP firmware runs at 115,200 baud with a single stop bit and no parity bits, but
the baud rate could be changed using the configuration scripts. This fulfilled the data rate

requirements mentioned in Section 4.1.1 and allowed for packets to be resent if needed.



28

UART modules were created in Simulink instead of using Libero IP cores to facilitate the
full SWP2 firmware being developed in Simulink. This led to some data type complications,
but UART modules were successfully created and tested.

Two different Simulink models were created: UART Transmit and UART Receive.
The UART Transmit model sent a single byte when signaled by a start line and asserted a
Data_Done line once the transaction was completed (Figure 4.6). This model did not buffer
additional incoming bytes, so the data source needed to buffer the bytes correctly. For
SWP2, this buffering was already completed using the resend functionality of the Packet

Router, so no additional buffering was needed for the UART Transmit model.

WordIn 1| atch Word Type Index of
Conversion Vector

-
Transmission Complete

Fig. 4.6: UART Transmit Model

The UART Receive model oversampled the incoming data to reduce bit errors (Figure
4.7). The oversampling rate was determined by the FPGA clock rate, and the bit was
determined to be asserted if more than half of the samples were asserted. A small settling
delay was added to the model to ensure the correct byte was received. The only input for
this model was the RX line; the outputs were the byte read in and the Data_Valid line was

asserted for one clock cycle once the byte was received.

ax , . Word O
Settling Oversample Bit Concat ord out
Delay

Data Valid

>

Fig. 4.7: UART Receive Model

Before adding the oversampling and settling time delay, byte errors occurred during

benchtop testing. Before these two methods were implemented, there was a 41.9% chance
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a 21-byte packet would be received incorrectly by the UART Receive module. Once the
settling delay and oversampling were added, no byte errors occurred during a test of 670,865

packets using the same physical setup.
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CHAPTER 5

Data Processing Chain

Several instruments are included as part of the SWP2 firmware. Each instrument has
a specific data processing chain to convert the raw ADC samples into useful data on the
ground. This chapter discusses the process of using the C&DH blocks and interface drivers
discussed in Chapters 3 and 4 to build the data processing chain for the FPP. This chapter

begins with Simulink and ends with data collected on the FPGA.

5.1 Theory of Operation

The FPP reads data from two probes through two separate ADCs. The ADCs are
oversampled and averaged to reduce the noise of the measurement. These processed mea-
surements are put into a granule, and these granules are combined into a telemetry packet.
This packet is then sent over UART to the spacecraft, and eventually sent to the ground
for processing.

MATLAB scripts were created to configure each Simulink block and verify parameter
validity. As part of these scripts, the AD4003 documentation was converted to a struct
so other scripts could reference these values (Listing B.2). Some errors were found in the
documentation during testing, and the affected parameters were corrected in this struct.
The operating conditions for the FPP SPI driver was configured from a MATLAB script
(Listing B.3). This script included assertions to ensure conversion times and clock rates did
not exceed the AD4003 specifications. Finally, a MATLAB script was created to configure

the FPP data processing (Listing B.4).

5.2 Packet Structure
The FPP Packet contained 200 granules of floating potential data to determine the

floating potential of the spacecraft. The data is sampled from the ADC at 10 kHz and is
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averaged down to 100 Hz. Each granule consisted of 2 20-bit numbers packed into 5 bytes
(Figure 5.1).

7 6 5 4 3 2 1 0

FPP VS1 (19 downto 12)
FPP VS1 (11 downto 4)
FPP VS2 (19 downto 12)
FPP VS2 (11 downto 4)
FPP VS1 (3 downto 0) FPP VS2 (3 downto 0)

Fig. 5.1: FPP Granule

5.3 Simulink Implementation

The full system for this data processing chain included the SPI drivers, the telecom-
mand parser, the FPP processer and packetizer, the packet router, and the UART Send
module (Figure 5.2). This system did not include a status packet. The SPI driver mask was
configured using variables generated by the MATLAB scripts (Figure 5.3a). The packetizer

block was also configured using variables from the MATLAB scripts (Figure 5.3b).

Fig. 5.2: FPP data processing chain
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Elock Parameters: FPP Driver 1 X
SPI Driver
3 Bleck Parameters: FPP_12 Packetizer x
Set parameters for the SPI Driver.
Eaeamieiens Set the parameters for this packet type. Follows the CCSDS Space
Packet Protocol.

Clack Polarity ‘FPP-SPI_CPOL Packet Structure follows "Generic Packet” structure in the Command

and Telemetry Dictionary.

SPI Phase: |FPP.SPI_CPHA

Parameters

APID [APID.FPP1 [E

SPI CLK Full Duration (s): |l!(2*FPP‘SPI_CLK_Rate)

Granule Length (Bytes) ‘FF‘F‘.GranuIe_Iength | i

Master Data: |FPP.I‘-‘IasterData

Granule Count |FPP.GranuIe_count | 8

|

|
Word length (bits): | FPP.SPI_word_len [E

|

|

|

Payload Length: | length(FPP.MasterData)

Cancel Help Apply Cancel Help Apply
(a) SPI Driver mask (b) Packetizer mask

Fig. 5.3: FPP mask configuration

5.3.1 FPP Processing

The FPP processing block summed a number of ADC samples together to downsample
the signal (Figure 5.4). In this case, 100 samples were summed together to downsample 10
kHz down to 100 Hz. Once 100 samples had been taken, a digital gain was applied. By
default, the FPP processing used the gain specified by the MATLAB script to shift the
most significant bit of the summed value to match the MSB of the 20 bit granule value.
The granule sliced out the top 20 bits, so the digital gain defaulted to 5 to ensure the sign

bit was not accidentally overwritten.

Enable

Out Valid
Valid_in

Data In

Sign Extension Reset Accumulate

Reset Accumulatel Data Out

Digital_Gain

1)

Fig. 5.4: FPP Processing
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The digital gain of the FPP could be configured using a telecommand. The configu-
ration block (Figure 5.5) was designed to allow for various parameters to be configured for

different processing chains and more examples are given in Appendix C.

Sl

Fig. 5.5: FPP Configuration Block

5.3.2 FPP Granule

Once a granule was created by the FPP Processor, the FPP granule block serialized
the 5 bytes (Figure 5.6). These bytes were fed into the packetizer. The granule block was
designed to allow for changing the deserialization of any processing chain to be completed
with minimal changes to the SWP2 architecture. To change the structure of a granule, the
researcher only needs to add more ports to the multiport switch and connect the correct
bytes to each byte from the granule. A state machine in the Command subsystem controls

the output of this Referenced Subsystem.

Data valid

Command

= EFP Granule Byte Selector

Latch EFP1
EFP Bus

Latch EFP3
EFP Bus Selector
EFP Sample Byte Arrangement

“a [

Fig. 5.6: FPP Granule Creation
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5.4 Simulation Results

This design was then simulated using the Logic Analyzer from the Simulink DSP Tool-
box. For this simulation, the granule count of a packet was changed from 200 to 2 to reduce
the simulation time from 2.005 seconds to 2.5 milliseconds. A SPI device was simulated
to write a constant value for the first granule and then a different constant value for the
second granule.

The expected data stream (Figure 5.7a) consists of 6 components: the packet header,
the system clock time, the RTC time, two 5-byte granules, and the 2-byte checksum. The
expected data stream was compared to the first line of the simulation output (Figure 5.7b).
The bytes transmitted over the simulated TX line matched what was expected for this

simulation.

0x00 0x21 OxcO 0x00 0x00 O0x12
0x00 0x00 0x00 0x09

0x00 0x00 0x00

0x00 0x02 0x00 0x00 0x0c

0x00 0x02 0x00 0x00 0x0d

0x8f Ox4e

(a) Expected data stream, from left to righ

(b) FPP Processing Chain simulation waveform

Fig. 5.7: FPP Processing Chain simulation

5.5 FPGA Synthesis
The design was then exported using HDL Coder and placed on the FPGA board. The

test board only had one physical ADC connected at the time of the test, so only that specific
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granule was considered for this test. The other ADC SPI lines were constrained to PMOD
pins in Libero, but no physical device was connected to the FPGA. This was done to prevent
the synthesis tools from optimizing away the extra SPI drivers and processing blocks so the
resource utilization of the design could be analyzed. Libero provides a resource monitor,
which was used to ensure the firmware was held in reset until power had stabilized and the
FPGA had finished booting.

Because multiple clock rates were present, multicycle constraints were set in Libero
(Appendix B.5). Additional information about multicycle constraints can be found in Sec-
tion 6.3.3. Timing analysis was performed in Libero and the worst negative slack was found
to be 0.143 ns.

Once the PolarFire had been programmed with the bitstream, data was collected by
connecting an external voltage source to the input of the FPP probe. The voltage was
initially set to 0.6 volts, then manually swept around within the 0.2 V to 1.9 V range by
the researcher to illustrate various voltages being read by the probe. The voltage settled at
1.55 V at the end of this test.

FPP packets were correctly sent over the UART to the Pi acting as a spacecraft em-
ulator. The Pi logged this data to a file so the packets could be unpacked and plotted on
a computer using analysis scripts (Figure 5.8). The voltage could be found from the ADC

count using Equation 5.1.

V =9.744 - 10"° ADC + 0.015385 (5.1)
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Fig. 5.8: FPP ADC counts from test

5.6 Resource Utilization

After synthesizing the design in Libero and verifying timing constraints were met, the
resource utilization of each component was found (Table 5.1). The utilization is only shown
for one instance of each module. For example, the utilization for the SPI driver is only for

one of the SPI drivers instead of all 4 FPP drivers.

Table 5.1: FPP Resource Utilization by component

Component 4LUT Used | 4LUT Percentage | DFF Used | DFF Percentage
SPI Driver 212 0.20% 98 0.09%
RTC Driver 1429 1.32% 733 0.67%
UART Receive 168 0.15% 86 0.08%
Telecommand Parser 3863 3.56% 2876 2.65%
FPP Configuration 18 0.02% 9 0.01%
FPP Processing 346 0.32% 69 0.06%
Granule Creation 118 0.11% 69 0.06%
Packetizer 413 0.38% 260 0.24%
Packet Router 2760 2.54% 2260 2.08%
UART Send 90 0.08% 55 0.05%

The full resource utilization of this design on the PolarFire FPGA is about 11% of the
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ALUT and 7% of the DFF (Table 5.2). From the resource utilization and previous chapters,
the framework components (SPI Drivers, UART, Telecommand Parser, and Packet Router)
take up approximately 8.3% of the PolarFire, leaving the rest of the fabric available for data

collection and processing of other packet types.

Type ‘ Used ‘ Total ‘ Percentage
4LUT | 11789 | 108900 10.86
DFF | 7430 | 108900 6.84

Table 5.2: FPP Total Resource Utilization
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CHAPTER 6

Results

This chapter discusses the results of building the SWP2 firmware in Simulink and how

well each research objective was met.

6.1 Firmware development

This section addresses research objective 1.1.1, “Can the entire Space Weather Probes
instrument firmware be developed in the MathWorks MATLAB/Simulink environment and
deployed to an FPGA?”

Each individual subsystem of the SWP2 firmware was successfully created in MAT-
LAB/Simulink and was able to be deployed to a PolarFire FPGA. This included the SPI
drivers, the data processing chains, the command and data handling, and the UART in-
terface. Multiple clock domains were also correctly created in Simulink and successfully
deployed to the FPGA.

A specific interfacing task was unable to be completed using only Simulink and HDL
Coder. Several op amps on the physical board had a shut-off pin to reduce power draw of
the circuit when the instrument was not actively taking measurements. The shut-off pin is
active low, and if not being driven to ground, the pin should be left floating for the internal
pull-up resistor. Simulink can only output active high or active low signals, not a high
impedance signal. To fix this, a small VHDL module was created to convert active low and

active high to active low and high impedance, respectively (Appendix B.1).

6.2 Physical Performance
This section addresses research objective 1.1.2, “Does the developed FPGA system

perform the same in physical hardware as in simulation?”
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The developed SWP2 firmware performed the same in physical hardware as in simula-
tion. Each clock domain interacted with the other clock domains correctly. Several different
clock rates were used in the SWP2 firmware (Figure 6.1). The minimum clock rate of the
FPGA was 160 MHz due to the impedance probe SPI driver. The FPP, EFW, and SLP
did not require this faster data rate and were run at 16 MHz or 2 MHz to relax timing
constraints. Some of the DSP for these probes was sufficiently complicated that the 160

MHz clock could not be used.
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Fig. 6.1: Clock Domain Overview
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HDL Coder used the same reference clock for each clock domain, and was unable to
generate a multicycle constraints file for Libero. HDL Coder is able to generate a multicycle
constraints file for Quartus, Vivado, and ISE. To ensure timing constraints were met in
Libero, the researcher manually created a multicycle constraints file, discussed more in

Section 6.3.3.

6.3 Issues with HDL Coder

This section addresses research objective 1.1.3, “What issues need to be overcome for
using MATLAB/Simulink to develop a complex system for a PolarFire FPGA?”

Simulink and HDL Coder abstracted many aspects away from the designer so the
researcher only needed to focus on functional correctness. Some of these abstractions lead
to unexpected HDL generation and made optimizations difficult, but the researcher was
able to overcome these issues. The following subsections discuss issues related to resource

utilization, multicycle constraints, and timing encountered by the researcher.

6.3.1 Resource usage

Specific Simulink blocks caused excessive resource utilization when converted to HDL.
One example of this is an early version of how data was downsampled for the IQ calculation
(Figure 6.2). This used the built in Deserializer block to parallelize 128 samples, add the
samples together, and then bit shift to remove the less significant bits. This solution worked
great in simulation, but did not generate efficient HDL code. The Deserializer caused timing
constraints to not be met, as shown by the blue clock domain, and caused two sets of 128
numbers to be added together instead of accumulating only two numbers in place (Figure
6.3).

In addition to a large number of bits being sent in parallel, 8 sequential additions
needed to be completed to add all 128 numbers together before performing the bit shift.
While the in place accumulation used more Simulink blocks, the resource utilization of
the IQ calculation on the FPGA is much more efficient (Table 6.1) and only requires one

addition to be completed before the bit shift at the end of the calculation. This model was
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stored as a Referenced Subsystem and reused in multiple places to avoid this unexpected
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Method 4 LUT DFF
Count FPGA Percentage ount FPGA Percentage
Deserializer || 21282 19.597 % 37058 34.123 %
In Place 292 0.2689 % 220 0.2026 %

Table 6.1: Filter Downsample resource utilization comparison

6.3.2 Clock domains

HDL Coder allowed the generated HDL model to be driven by a single clock or multiple
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clocks. By default, HDL Coder used a single clock and created a clock control block to
drive each of the clock domains within the generated HDL. Rate transition blocks were
used to easily transfer data between clock domains, as seen in the Deserializer example in
Section 6.3.1 to move the data back into the faster clock domain after the bitshift had been
completed. This allowed Simulink to perform clock rate pipeline balancing to correctly
adjust the model when certain DSP blocks took more than one clock cycle to complete.

HDL Coder was unable to perform clock rate pipeline balancing if the researcher wanted
to use multiple external clocks. For SWP2, atan2 was required for the phase angle com-
putation for the impedance probe (IP) calculation, and this block required multiple clock
cycles to compute the angle. Because of this, only a single input clock could be used for
the SWP2 firmware. This limitation could be overcome by moving the IP subsystem to an
external model, using a single clock, and interface the SIP model to the rest of the SWP2
model using multiple clocks. For this thesis, the researcher continued using a single model
to simplify HDL importing to Libero, but further work would allow for better clock domain
control in the generated HDL.

Because the slower clock domains were still driven by a faster clock, timing constraints
were not met initially. Most of the SWP2 firmware did not require the 160 MHz clock
the impedance probe required. The researcher added multicycle constraints to the Libero
project to allow the slower clock domains to meet timing, discussed more in the next section.
Once multicycle constraints were added to the Libero project, several sections were found
to still not meet timing constraints.

The SPI driver state machines made use of the after keyword to control transitions
between states based on FPGA clock cycles. For example, the after(3, ‘tick’) transition
would hold the state machine in the same state for 3 FPGA clock cycles before transitioning.
This transition caused the SPI driver blocks to have an fmax of 131 MHz. Even though the
SPI drivers would not be run at 160 MHz for the SWP2 firmware, the generic blocks would
be reused for other projects. The fmax of the SPI blocks was brought up to 180 MHz by

adjusting the clock domain of the state machine instead of using the after keywoard.
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6.3.3 Multicycle Constraints

Multicycle constraints were used to improve the performance of slower sections of the
SWP2 firmware by allowing critical paths to take multiple clock cycles to propagate from
the source register to the destination register. Synthesis tools were unable to detect this
on their own, so a constraints file needed to be created by the researcher. A multicycle
constraint consisted of 4 parts: the source register, the destination register, the hold delay,
and the setup delay. For the SWP2 firmware, the source register was the FPGA clock. A
wildcard match was used for the destination register to reduce the number of constraints
set. The setup delay was the integer multiple between the source clock and the destination
clock rate. The hold delay was one less than the setup delay. For the Telecommand Parser,
the destination register was */u_Telecommand Parser*, the setup delay was 10, and the
hold delay was 9.

Multicycle constraints were not set for every block. Multicycle constraints were only
used when the entire block used a single clock domain to simplify the wildcard matching.
This reduced resource utilization by relaxing timing constraints for the synthesis and place
and route tools. This also ensured the data processing blocks met timing constraints. For
example, the FF'T calculation in the EFW processing block had an fmax of 23 MHz, which
could not meet timing for the 160 MHz FPGA clock.

Two main complications occurred during the implementation of multicycle constraints
in Libero. The first was the researcher not recognizing the term multicycle constraint when
searching through Libero documentation. Once the term was known, the researcher was able
to find documentation and create the multicycle constraints file. The documentation for
Libero also varies between Libero versions, so the researcher had to follow several documents

to piece together how multicycle constraints worked in Libero 12 as opposed to Libero 11.
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CHAPTER 7

Conclusion

The firmware architecture for SWP2 was successfully created in Simulink and exported
using HDL Coder. This firmware was successfully tested to show the behavior on a PolarFire
FPGA was consistent with simulated behavior. As part of this testing, timing constraints
were met through the use of multicycle constraints. All of the signal processing was not
finalized at the time this thesis research was completed, but mirrors the DSP of the first
version of SWP. The generic blocks were created successfully for the SWP2 firmware archi-
tecture, and could be reused for other projects. Each instrument interface was successfully
created, packets were generated, and the SWP2 firmware was correctly controlled using

telecommand packets sent from a Raspberry Pi emulating a spacecraft.

7.1 Further Work

Further work for this project would include adding the ability to upload new firmware
images to the SWP2 instrument on orbit. This would allow future researchers to adapt the
signal processing on other missions in case the science instruments operate in an unexpected
plasma environment. Power consumption analysis of each instrument and the FPGA would
also be completed, as the analog board with all of the instruments was not completed during
this thesis research.

Updates from Simulink 2022a to 2023a would be utilized, including signal conversion.
Library blocks would be used instead of just using Reference Subsystem blocks once support

for custom library blocks is improved for HDL Coder.
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APPENDIX A
Simulink Models

This appendix contains Simulink models discussed in the thesis.
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APPENDIX B
VHDL Modules

Listing B.1: Simulink to high-impedance conversion

library IEEE;
use IEEE.std_logic_1164.all;

entity highz_convert is
port (
pin_in : IN std_logic;
pin_out : OUT std_logic
);
end highz_convert;
architecture architecture_highz_convert of highz_convert is
begin
pin_out <= ’0’ WHEN pin_in = ’0’ ELSE ’'Z’;

end architecture_highz_convert;




Listing B.2: AD4003 values from datasheet
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%%
% This file configures the AD4003 struct to wverify

% all values are wvalid with the datasheet and to

% configure wvarious parameters within the Simulink
% model for HDL generation.

%

% These parameters are for CS mode, 3—wire without
% busy indicator. Some errors in the datasheet

% were found during our testing of the physical

% chip and are corrected here.

%% AD 4003 parameters from data sheet (ADC)
AD4003.SPI_Wait_Time = 13e—9; % Minimum time required
% between SCK falling edge

% and transmission start

AD4003.SPI_CLK _low_time = 3e—9; % Minimum time for SCK to
% be low

AD4003.SPI_CLK_high_time = 3e—9; % Minimum time for SCK to
% be high

AD4003. time_between_conversions = 500e—9;
AD4003 . SCK _period = 12.3e¢—9; % Minimum period of SCK

AD4003. Conversion_time = 290e—9; % Time to complete conversion




Listing B.3: FPP SPI Configuration

99

%%

% This file configures the SPI wvariables for the

% FPP struct and verifies all values are valid

% with the datasheet for
%

% Sections are as follow
%  SPI Configuration

% Assertions to ensure

%% FPP SPI parameters
FPP.SPI_CLK_Rate = 16¢e6
FPP.SPI_Word_Size = 32;

FPP.SPI_Word_len = 18;
FPP.SPI_Samp = 10e3;

HDL generation.

S

correctness when synthesized

i % Hz : The SPI clock frequency
% bits : The size of the fi
% structure used to contain
% the SPI word (32—bits)
% bits : actual size of SPI word
% Hz : The rate of sending words

% across the system

FPP. clock_scale = FPGA.CLKRATE / FPP.SPI_CLK_Rate;

FPP.SPI_Transfer WDs =1; % : Consecutive words transferred
% SPI definitions

FPP.SPI.CPOL = false; % The Clock Polarity 0O=false, I=true
FPP.SPI.CPHA = true; % The Clock Phase O=false , I=true

% FPGA constants below here

FPP.SPI_trigger_ticks =

uint32 (floor (

FPGA _ CLK RATE«FPP. SPI_Transfer WDs /FPP.SPI_Samp ) );

FPP.SPI_delay = 1 + FPP.

SPI_Wait_ticks +
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(FPP.SPI_CLK_half_ticks % 2)*xFPP.SPI_Word_len;

FPP.MasterData = uint32 ([0,0]);

%% Asserts to make sure parameters are wvalid

% Check if wait after SS fall is long enough

assert (FPP. SPI_Wait_ticks % (1/FPGA.CLKRATE) > AD4003.SPI_Wait_Time,
[ 'FPP_.SPI_Wait._ticks._.lasts_.for.too.little .time!_Current.time_.is.’
num?2str (FPP. SPI_Wait_ticks x (1/FPGA.CLKRATE))])

% Check if SPI CLK is slow enough
assert (FPP. SPI_CLK_half_ticks*(1/FPGA.CLK RATE) > AD4003.SPI_CLK_low_time
[ 'FPP_SPI_low.period.lasts._.for._too.little .time!_Current.time_is.’

num?2str (FPP. SPI_CLK _half_ticks * (1/FPGA.CLKRATE))])

% Check that FPGA clock cycles required is less than FPGA speedl
clks_per_sample = FPP.SPI_Word_len*(FPP. SPI_CLK _half_ticks*2) +
FPP.SPI_Wait_ticks;
FPGA_clk_ticks_per_second = clks_per_sample *x FPP.SPI_Samp;
assert (FPGA _clk_ticks_per_second < FPGA_.CLK RATE,
[ ’FPP_Sample_rate_too_high! _Max.rate_is.’
num?2str (FPP. SPI_.CLK_Rate / clks_per_sample)])

% Check clock scale is a monzero integer
assert (FPP. clock_scale = floor (FPP. clock_scale),

”Clock scale is not an integer”);

% Check that time between SS raise and next transaction is long enough
conversion_ticks = double(FPP.SPI _trigger_ticks — clks_per_sample);
assert (conversion_ticks x(1/FPGA.CLKRATE) > AD4003. Conversion_time ,

[ 'FPP_needs._more.time._for._conversion’])




Listing B.4: FPP Processing Configuration
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%%

% This file configures the granule and packet
% variables for the FPP struct and verifies all
% values are wvalid for HDL generation.

%

% Sections are as follows:

% Granule/packet configuration

% Processing Parameters

%% — Granule Generator Setup ——

FPP. Granule_generation_freq = 100; % Hz
FPP. Granule_count = 200;

FPP. Granule_length = 5; % Bytes

%% — Packet Configuration
APID.FPPI = 0x21:
APID.FPP2 — 0x22:

%% — Processing Parameters —

FPP. Accumulate_Count = FPP.SPI_Samp / FPP. Granule_generation_freq;

FPP.Digital_Gain floor (log2 (FPP. Accumulate_Count ) );

FPP. Accumulate_Count = uint16 (FPP. Accumulate_Count );
FPP. Digital_Gain = uint8 (FPP. Digital_Gain );
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Listing B.5: FPP Processing Multicycle Constraints

set_multicycle_path —setup 40 —from [ get_clocks { PF_.OSC_C0.0/
PF_OSC_C0-0/I_.0SC_160/CLK } | —through | get_-nets { %/uRTC/x } ]

set_multicycle_path —hold 39 —from [ get_clocks { PF_.OSC_.C0.0/
PF_OSC_C0.0/I_.0SC_160/CLK } ] —through | get_nets { */uRTC/x } ]

set_multicycle_path —setup 40 —from [ get_clocks { PF_OSC_C0.0/
PF_OSC.C0.0/I_.OSC_160/CLK } | —through [ get_nets { x/
u_Telecommand_Parser/*x } |

set_multicycle_path —hold 39 —from [ get_clocks { PF_.OSC_.C0.0/
PF_OSC_C0.0/I_.0OSC_160/CLK } ] —through [ get_nets { =/
u_Telecommand_Parser/+ } |

set_multicycle_path —setup 40 —from [ get_clocks { PF.OSC_C0.0/
PF_OSC_C0-0/I_.0OSC_160/CLK } ] —through [ get_nets { =/
u_Packet_Router/x } |

set_multicycle_path —hold 39 —from [ get_clocks { PF.OSC_C0.0/
PF_OSC.C0-0/I-OSC_160/CLK } | —through [ get_nets { x/
u_Packet_Router/« } |

set_multicycle_path —setup 40 —from [ get_clocks { PF.OSC_C0.0/
PF_OSC_C0.0/1_.0SC_160/CLK } ] —through | get_nets { #/u_FPP_andx } ]

set_multicycle_path —hold 39 —from [ get_clocks { PF.OSC_C0.0/
PF_OSC_C0.0/1_.0SC_160/CLK } ] —through [ get_nets { */u_FPP_andx } ]

set_multicycle_path —setup 80 —from [ get_clocks { PF.OSC_C0.0/
PF_OSC_C0-0/I_.0OSC_160/CLK } | —through | get_-nets { */uUARTx } ]

set_multicycle_path —hold 79 —from [ get_clocks { PF_.OSC_C0.0/
PF_OSC_C0.0/I1_.0SC_160/CLK } ] —through | get_nets { */uUARTx } ]
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APPENDIX C

Data Processing Chains

C.1 Command and Telemetry Dictionary

Each instrument and packet type has the parameters defined in the Command and
Telemetry Dictionary, included with this thesis. The sheets within this document explain
the granule composition, how many granules are in the packet, and at what rate the packet
should be configured. This dictionary also explains what fields are configurable for each

instrument through telecommands and how the bytes should be packed.
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