Ultra-Compact LADAR Systems for Next Generation Space Missions

Bridger Photonics:
Nathan Greenfield
greenfield@bridgerphotonics.com
Brant Kaylor
kaylor@bridgerphotonics.com
(406) 585-2774

Montana State University:
Dr. Zeb Barber
barber@spectrum.montana.edu
Dr. Dave Klumpar
klump@physics.montana.edu

Presentation 8/11/10
About Bridger Photonics

• **Core technologies**
 – **Precision LADAR**
 • Frequency-controlled broadband lasers
 • Ultra-high resolution position detection & imaging
 – **Precision LIDAR**
 • Monolithic, compact, narrowband mJ pulsed lasers
 • Detection of meth labs, CO$_2$ and chem/bio
 – **Advanced Imaging**
 • Feature specific imaging
 • MEMS focus control

• **Team**
 – **Twelve Employees**
 • Two Ph.D.s, five Masters
 – **Board of Business Advisors**
 • Expertise in financing, product development, marketing, business development.

• **Performance**
 – **Rapid growth**
 • 3 years of operation, 2 → 12 employees, >$1M annual revenues
Motivation

- **Short Range**
 - Autonomous docking
 - Spacecraft inspection
 - Proximity detection and warning
- **Medium Range**
 - Precision formation flying
 - Scanned 3D imaging of other spacecraft and debris
- **Long Range**
 - Orbit determination
 - Target identification using advanced imaging techniques
 - High res. terrestrial imaging

Bridger Photonics has developed an advanced LADAR system that provides extremely precise and absolute distance measurements.
Technology Comparison

<table>
<thead>
<tr>
<th></th>
<th>Traditional Pulsed LADAR</th>
<th>Ultra-Compact FMCW LADAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range Resolution (Optical Bandwidth)</td>
<td>~1 cm (15 GHz bandwidth)</td>
<td><50 micron (>3 THz)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Detector Limited</td>
<td><100 attowatts (10^{-18}) return power</td>
</tr>
<tr>
<td>Receiver Bandwidth Requirements</td>
<td>15 GHz</td>
<td>15 MHz</td>
</tr>
<tr>
<td>Electrical Efficiency</td>
<td>3% - Solid State Lasers</td>
<td>30% - Diode Lasers</td>
</tr>
<tr>
<td>Operational Flexibility</td>
<td>Low resolution imaging and ranging</td>
<td>High resolution and coherent imaging and ranging</td>
</tr>
<tr>
<td>Other</td>
<td>High peak power limits SWAP and increases potential for damage</td>
<td>Robust package based on COTS telecom components</td>
</tr>
<tr>
<td></td>
<td>Not sensitive to optical phase</td>
<td>Phase sensitive (SAL, vibrometry, velocity)</td>
</tr>
</tbody>
</table>
Laser sweep non-linearities degrade the performance of typical FMCW LADAR systems.
Bridger’s innovation enables a sweep linearity of 2 parts in 10^8 over 5 THz.
Some LADAR Definitions

• Range resolution depends only on optical bandwidth providing a fair way to compare ranging systems.

• Range precision is dependent upon signal-to-noise ratio (i.e. depends upon Tx powers, receiver size, receiver bandwidth, etc.)

Range Resolution

\[\Delta R = \frac{c \tau_p}{2} = \frac{c}{2B} \]

15 GHz \(\rightarrow \) 1 cm

Range Precision

\[\sigma_R \approx \frac{\Delta R}{\sqrt{SNR}} \]
Precision LADAR

- Precise measurement of absolute distances to objects
 - Range resolution < 50 μm, range precision < 100 nm
 - Range window up to 100 m, standoff distance up to 14 km
 - Measurement speed from 10 Hz to 30 kHz depending on bandwidth

- Can break the fringe ambiguity of an interferometer
 - Could be paired with interferometric techniques for astounding absolute dimensional metrology
3D Imaging and Thickness Characterization

- Enables *in situ* inspection of parts, components or optical surfaces

Sapphire Wafer Thickness Profile

- Mean Thickness = 633.0764 µm
- STD = 12.9159 nm

- Estimated Relative Range
 - Front Mean Position = 0.17128 m
 - STD = 73.868 nm
 - Back Mean Position = 0.17192 m
 - STD = 73.1432 nm
 - Mean Thickness = 633.0764 µm
 - STD = 12.9159 nm

- Front + 1 µm
- Back + 2 µm

© Bridger Photonics 2010
Long-Range Capabilities

- Enables formation flying and space situational awareness

2" Monostatic Tx / Rx

2.5" Retroreflector

100 mm

250 mm

~900 m Range

110 micron peak width

Relative Power (dB)

Relative Range (mm)

Range: ~900 m

Also ranged out to 14km with 3 mW
Synthetic Aperture LADAR

- Synthesize larger aperture by translating a small aperture
 - Conventional imaging: 18 m aperture for 5 cm resolution at 500 km
- Must maintain coherence over the synthetic aperture
- Ideal for small satellites: improved resolution in a compact form factor
- Current results: Beating “diffraction limit” by factor of 1000

\(D_{\text{spot}} \approx 3 \text{ m} \)

\(D_T \approx 0.25 \text{ m} \)

\(D_{\text{SA}} \approx 100 \text{ m} \)

\(N = 800 \)

\(\Delta X = 3 \text{ mm} \)

\(R = 500 \text{ km} \)

\(D = 500 \text{ km} \)

\(V = 1 \times 10^3 \text{ m/s} \)

\(\text{Return Powers} \approx 10^{583} \text{ pW} \) (0.1 scatterer & no atm. loss)
Non-Mechanical 3D Imaging

- Being developed for sand penetration and ground imaging in degraded visual environments
- System performs 3D imaging without a mechanical scanner
- Tested demonstrator at Yuma Proving Grounds
- Observed sub-mm diameter wire above sandy background

* Image taken from defenseindustrydaily.com
Compressive Sensing

- Reduced data rate:
 - System captures data in compressed format, eliminates need for data compression and post processing before downlink

- Reduced hardware:
 - Less detectors / ADCs; systems can be single-pixel

- Could be paired with FMCW ladar or other ladar techniques to perform 3D imaging
Bridger Photonics has developed an advanced LADAR system that provides extremely precise and absolute distance measurements.