Early Results from the Multi-Application Survivable Tether (MAST) Experiment

Nestor Voronka, Robert Hoyt, Tyrel Newton, Ian Barnes, Jack Shepherd, Scott Frank, Jeff Slostad **TETHERS UNLIMITED, INC.**

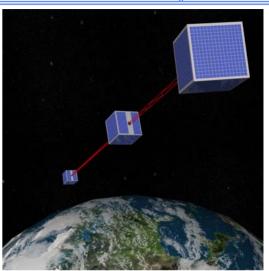
11711 N. Creek Pkwy S., Suite D113, Bothell WA 98011 425-486-0100 voronka@tethers.com www.tethers.com

Belgacem Jaroux, Robert Twiggs

STANFORD UNIVERSITY

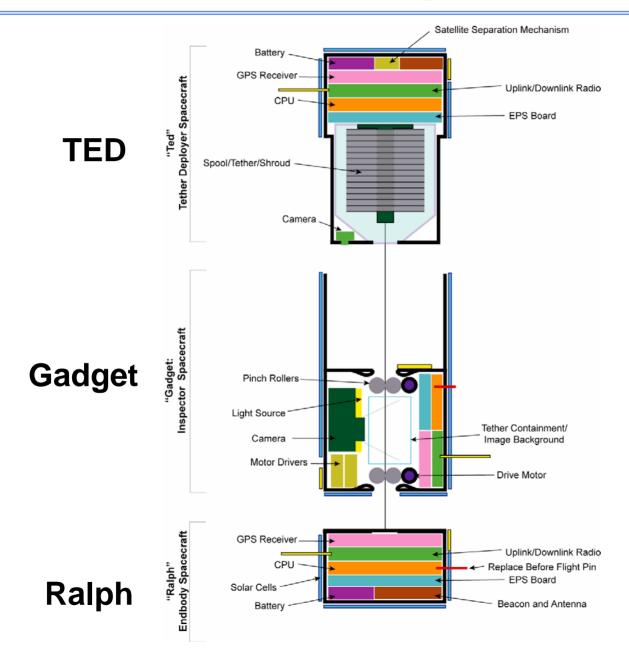
MAST Mission Objectives & Approach

- MAST Multi-Application Survivable Tether Experiment
- Mission Objectives:
 - Deploy a multi-line 'space-survivable' tether structure on orbit
 - Inspect tether over a period of several months for micrometeorite & orbital debris impact damage and degradation due to atomic oxygen
 - Collect data on tethered satellite dynamics for validation of tether dynamics models
 - Measure relative position of tether endpoints, and attitude dynamics of tethered spacecraft

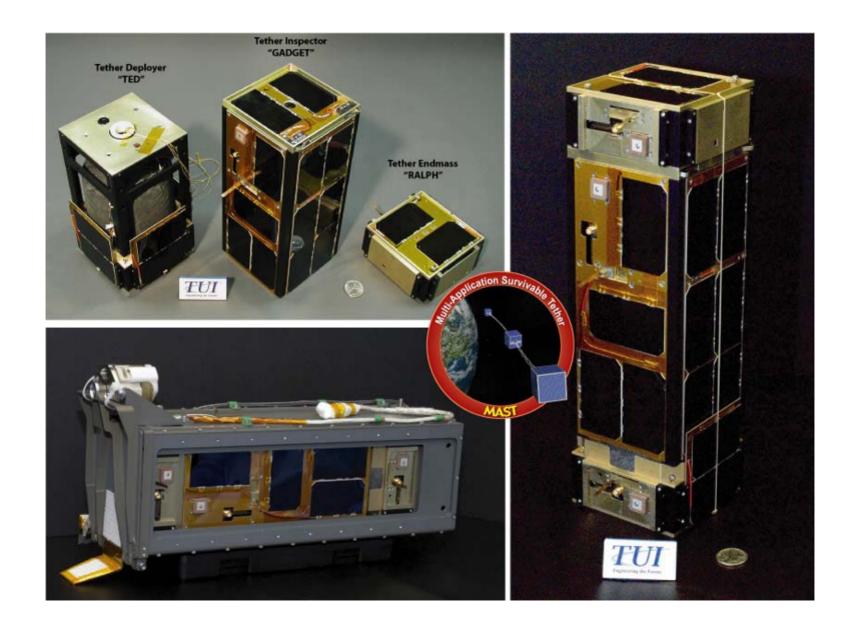

Approach

- Use CubeSat platform to conduct low-cost demonstration space flight
 - Use 3 picosats Deployer (Ted), Inspector (Gadget), Endmass (Ralph)
- Deploy 1-kilometer multi-strand tether between the end picosats (*Ted* and *Ralph*)
- Gadget will continually traverse the tether and image it to observe effects of the space environment on the tether, nominally for 6 months
- Collect data on dynamics of tethered spacecraft
 - · GPS on picosats
 - Magnetometer & solar cell data for attitude estimations

System Architecture


- Three independent Spacecraft
 - -Tether Deployment Cube (TED)
 - -Inspector Cube (GADGET)
 - –Instrumented End-mass Cube (RALPH)

- Design Requirements and Philosophy
 - -Class D mission single-string failures permitted
 - "Medium or significant risk of not achieving mission success permitted."
 - "Minimum assurance standards are permitted."
 - ONE EXCEPTION mechanism to initiate tether deployment may be self-initiated with a watchdog timer (CSM/nano Release Mechanism)
 - -COTS components used in system
 - Reasonable to use in space environment and applications as determined through test, heritage, or analysis
 - Maximal reuse of components and modules throughout MAST

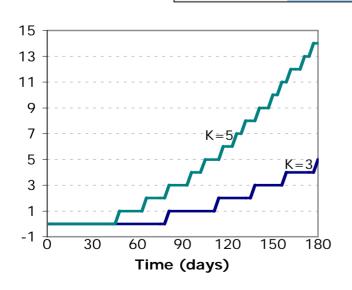

MAST Block Diagram

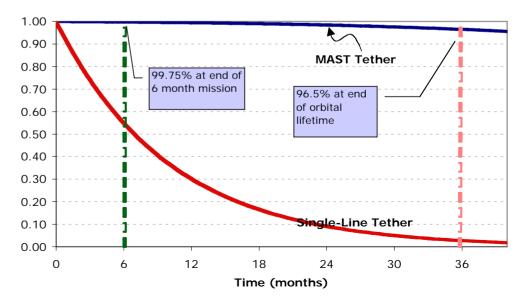
MAST Flight Hardware



MAST Tether Design

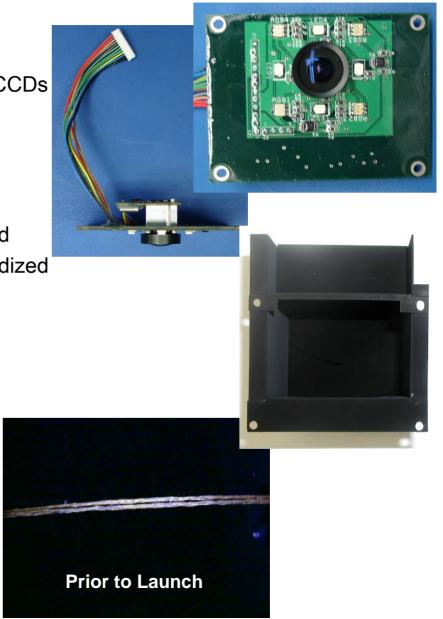
- Minimum mass and volume Hoytether™
 - -250 g/km
- Non-conductive tether
- MAST Tether has 2 primaries, 1 secondary
 - -Nominal Primary Line separation distance 25mm
 - Primary/Secondary tie point separation distance 250mm
 - Secondary has additional length to permit slack
- MAST Hoytether[™] constructed of 250 denier 2% TOR coated Zylon[®] (PBO)
 - Primary & Secondary Line Diameter ≈ 0.5 mm
- MAST Tether Survivability
 - Expect to see 3.3 to 9.3 cuts/month
 - Probability of survival > 99.7% for 6 months




MAST Cut Rate & Survivability

- Prior experiments and analyses indicate a tether can be cut by a M/OD object
 3-5 times tether's diameter
 - MAST experiment will measure 'lethality coefficient' K
- To obtain data on cut rates, Gadget will slowly crawl along tether and record images of each section of tether
- Nominally 14 days to traverse 1 km of tether

Lethality Coeff.:		3			5		
	Dia.	Impactor	OD Flux	#	Impactor	OD Flux	#
	(mm)	Dia. (mm)	(#/m² yr)	Cuts/month	Dia. (mm)	(#/m² yr)	Cuts/month
Primaries	0.5	0.17	19.9	3.3	0.1	55.6	9.3
Secondaries	1	0.33	4.2	0.7	0.2	14.0	2.3



Inspector Flight Imager

- VGA (640x480) Color CMOS Imager with integrated JPEG compression
 - CMOS Imagers more radiation tolerant than CCDs
 - Image Transfer Modes
 - Still 640x480/320x240/160x128/80x64
 - Video 160x128 @ 0.75-6 fps
- Affordable COTS Optics
 - 3.66 mm f/2.0 1/3" CCD Lens, M12x0.5 thread
 - Lens consists 4 Glass Elements in Black Anodized Barrel
- Background for image is 'Laser Black'
 - Semi-fragile copper oxide of micro-dendritic structures on the optical surface
- Active illumination
 - Intensity controlled White & RGB LEDs
- Nominal Imaging Operations
 - 160x128/320x240 color image ≈ 2K bytes
 - 640x480 image taken of region of interest

Zero-G Testing

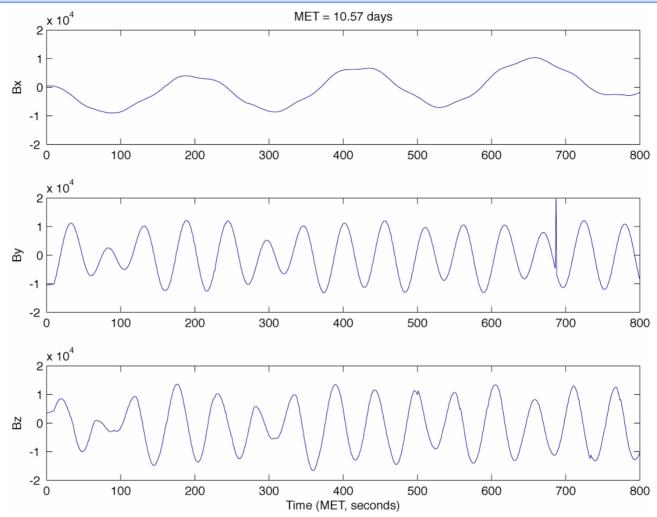
MAST Tether Deployment

 Separation of Ted from Gadget+Ralph, and tether deployment initiated by flight-like Nanosat Release Mechanism

 Off-nominal tether deployment tests with fast and slow tumbling deployers performed – all successful

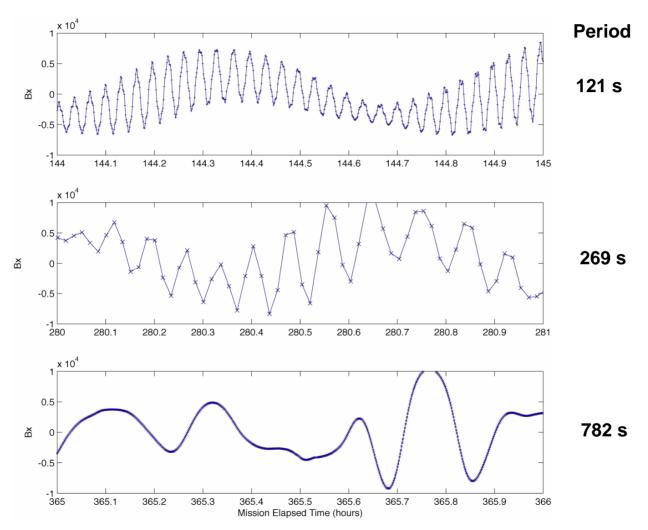
MAST Flight Timeline

- MAST experiment was delivered into LEO on 17 April 2007 aboard a Dnepr rocket launched out of Baikonur Cosmodrome, Kazakhstan
 - Initial Orbit: 782 x 647km, inclined at 98.1°
- First contact opportunity, late 19 April 2007
 - Contact immediately established with Gadget
- Deployment Switch opens 30 minutes into flight
- Last contact with Gadget made on 14 May 2007
- Last attempted contact: 21 May 2007



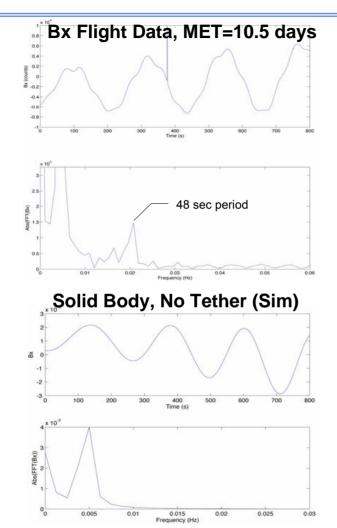
- Magnetometer & Solar Panel data analysis to estimate Gadget's attitude behavior over time
- Postponed planned Gadget crawling operations to let dynamics settle down
- Just before contact was lost plans included:
 - Test crawling mechanism
 - Short crawl (~15 cm) to image exposed tether
- Back-up tether deployment option:
 - Crawl Gadget towards Ted to pull more tether off of spool
 - Plan was not do this due to risks involved until later in the mission

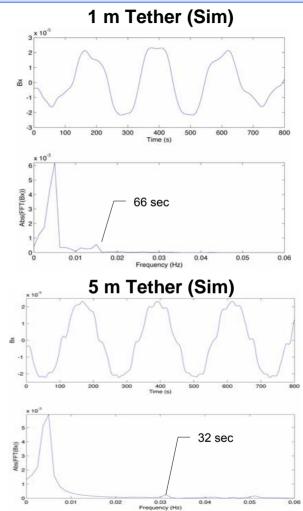
Gadget Magnetometer Data


Gadget's Long Axis

- Magnetometer data shows evidence of:
 - -Spin around long axis with period = 50 seconds
 - Rotation around short axis with period = 224 seconds

Evolution of B_x Over Time





- Marked rotation rate decrease over time
 - Transition from out-of-plane rotation to in-plane libration?

Rotation Analysis

- B_x signal at MET=10.5 days shows evidence of precession of spin due to short tether
 - Deployed tether length at MET=10.5 days is only on the order of a few meters
- Corroborated by data from Space Command

GPS & Communications Performance

• GPS:

Almanac acquired, tracked up to 7 satellites

Radio: Microhard MHX-2400

- Frequency: 2.4 GHz ISM

Modulation: frequency hopping spread spectrum

Spacecraft Antenna: 1/4 wave monopole

Altitude: 720 km

Transmit Power: 1 Watt

Receiving Antenna: SRI 18 m parabolic mesh dish

SRI and Santa Clara University provided support for dish operations

Estimated Performance:

Theoretical Bandwidth: 80-115 kbpsLaboratory Throughput Tests: 30 kbps

Predicted Link Margin: < 10 dB

Limitations:

- Synchronization time and Doppler shift vs. frequency hopping period
- Elevated 2.4 GHz noise floor in Silicon Valley

Actual Performance:

- Peak bandwidth ~ 15 kbps
- Optimization of download packet size and ground software increased data download from 10kB to 250kB per pass
- Total data downloaded in 3 weeks > 2 MB

Summary

- Restraint/release mechanism did not function properly resulting in low separation velocity
- Due to insufficient energy, only a short segment of tether was deployed
 - -Unlikely that any tether survivability can be collected
- Highlights the risks of single-string, low-cost class-D missions
- Experiment did collect data on dynamics of tethered spacecraft
- Successful operations of Gadget do demonstrate that science and technology missions can be achieved on a picosatellite scale