

Single Event Effects (SEE) Mitigation of Reconfigurable FPGAs

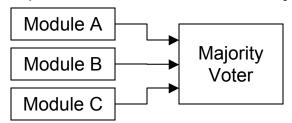
David R. Czajkowski, Manish P. Pagey, Murat Goksel, David J. Bozek

> Space Micro Inc. 10401 Roselle Street STE 400 San Diego, CA 92121 858-332-0700

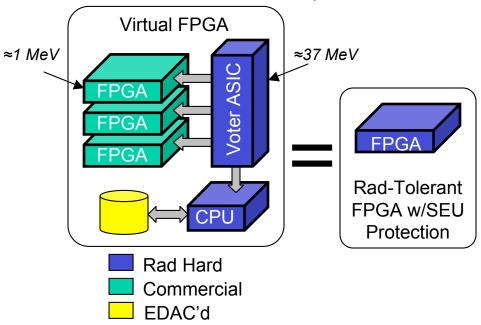
Research supported in part by NASA Goddard Space Flight Center

Reconfigurable FPGAs in SmallSats

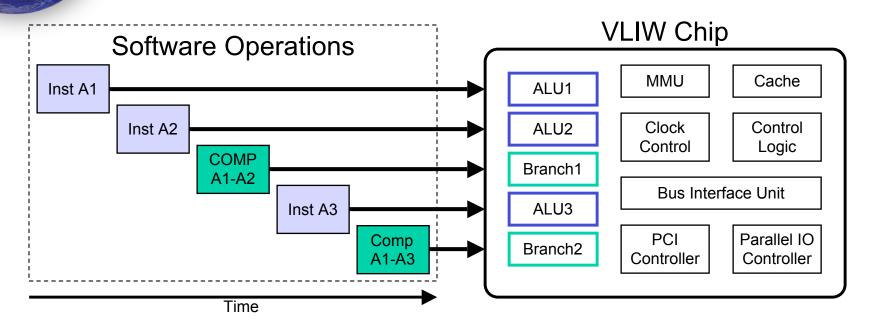
- Development Advantages
 - Ability to reconfigure (reprogram) aids in rapid development and testing
- On-Mission Reconfiguration
 - Changes in flight hardware needed
 - Updates or fixes required
 - Example: Change encryption algorithms/methods
- Xilinx Virtex II, IV Reconfigurable FPGAs
 - High capacity gate count
 - High clock speed
 - TID & SEL are non-issues
 - Single Event Effects are the challenge


Xilinx Single Event Effects Problems

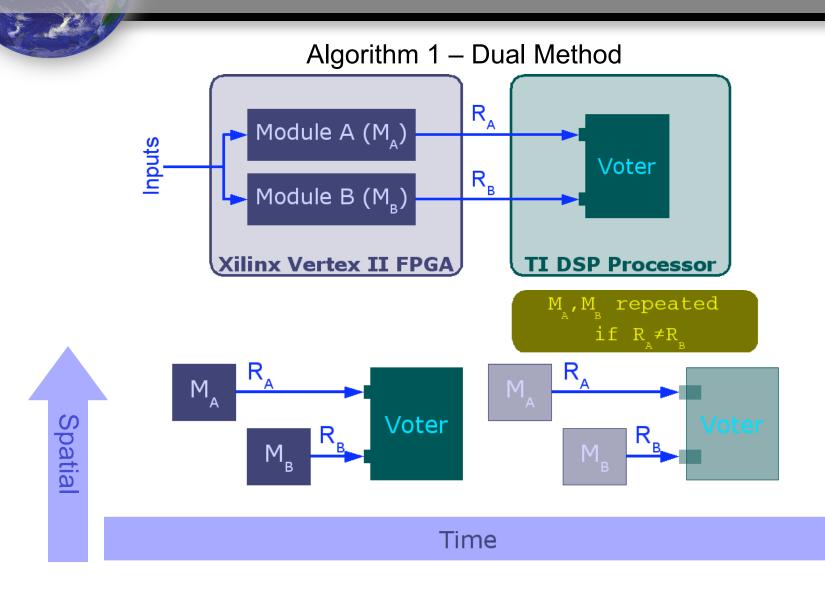
- Xilinx based FPGAs (ex. Virtex-II, -II Pro, and 4) suffer from the following SEE types:
 - Data SEUs
 Corrupts the data being passed through the FPGA
 - Reconfiguration SEUs
 Causing part or all of the chip to change function
 - SEFIs or "Hangs"
 Reconfiguration of the FPGA to a point that the FPGA locks up, including POR (reset)


Current SEE Solutions for Xilinx FPGAs

- SEU Solutions
 - Triple Modular Redundancy
 - Need RH ASIC, CPU, EDAC for storage, etc.
 - Works in Actel
 Can be TMR'd at gate level
- SEFI Solutions
 - Partial or full reconfiguration
- Reconfiguration Solutions
 - Partial reconfiguration
 - Bitstream "scrubbing"


Triple Modular Redundancy

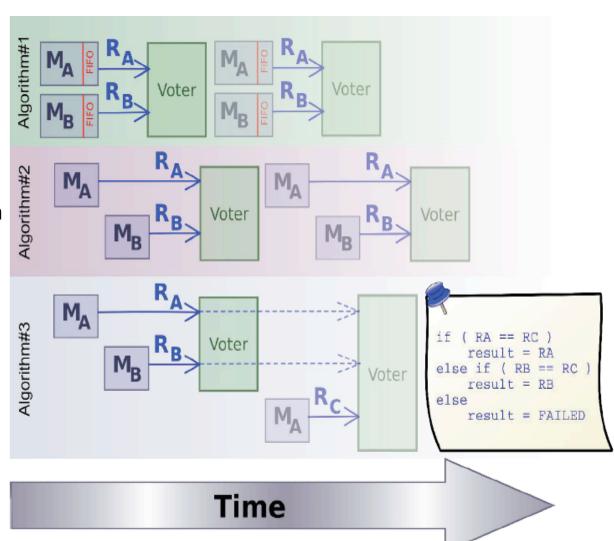
Xilinx Virtex TMR Implementation


SEU Detection and Correction using Time-Triple Modular RedundancyTM

- TTMR™ Combines Time & Spatial redundancy
- Takes advantage of VLIW parallel opportunities
- SEU error rate equal to TMR rates
- SEFI is NOT fixed with TTMR.
- Proton radiation tested at 51 MeV
- Detects & corrects SEUs

** Patent Pending **

TTMR for Reconfigurable FPGAs

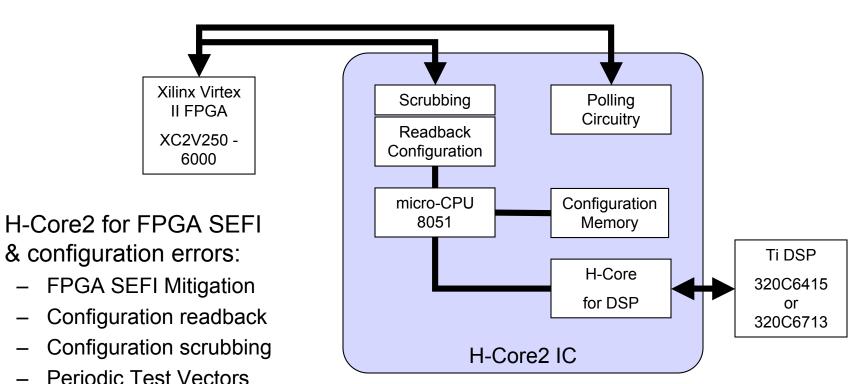


Multiple TTMR Algorithms

Algorithm 1 – Dual Method with Checksum

Algorithm 2 – Dual Method on *Per Instruction*

Algorithm 3 – Triple Method

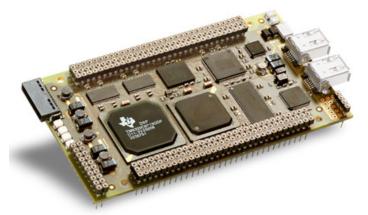

- Hardware
 - Rad Hard external watchdog, sends interrupts and reset as required
- Software
 - CPU
 Generate health/status signals, run
 interrupt routines
 - H-Core IC
 Monitor signals, initiate post-SEFI recovery
 using Interrupts, and full reset as required
- Tested at UC Davis with 51 MeV Protons
 - Pentium III, BSP-15 and 320C6713 CPUs
- Summary Results:
 - >50 SEFIs induced
 - Many SEFIs return from IRQ & NMI
 - Reset brought back the rest
 - 100 % Recovery of SEFIs
- RESULT: SEFI Watchdog Proven with Protons

Timer code when NO SEFI Read H-Core Status Flags Flush cache & registers Recovery routines Rollback software routines CPU **Status Signals** Hardened Bus Memory Controller Core COMM COMM ADC Port 1 Port 2 Port 1 Rollback data stored in Memory Store critical variables periodically Store instruction pointer locations

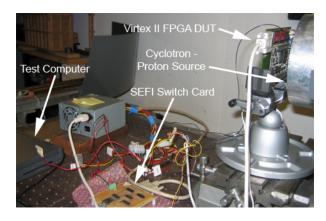
** Patent Pending **

H-Core2 SEFI Method for Reconfigurable FPGAs

Use Industry Standard Techniques to Fix SEFI & Reconfiguration



H-Core2 Integrated Circuit for DSP and FPGAs


Signature Analysis

Radiation Test of Virtex II FPGAs

- Xilinx Virtex II FPGA
 - XC2V250
- TI DSP used as Voter
 - 320C6713
- UC Davis Crocker Lab
- 63 MeV Proton source
- Virtex FPGA irradiated
- Short radiation test (4 hours) was run

Traquair C6713 Test Board

Test Setup at UC Davis

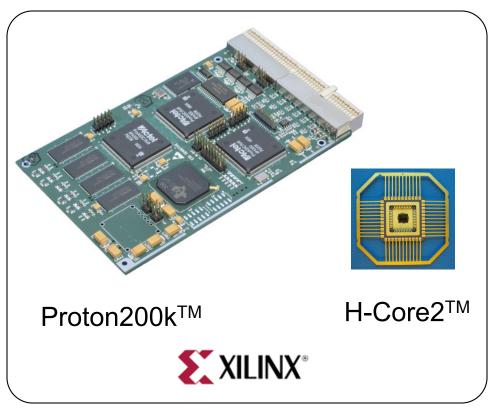
TTMR & H-Core2 Rad Test Data

- 32 different test sequences were performed
- Detection of SEUs was 100%
- 3 TTMR algorithms used
 - Dual redundant TTMR with a FIFO
 - 7 of 7 sequences were successful
 - 2 sequences had too many SEUs, overflowing SEU counter
 - Dual redundant TTMR (no FIFO)
 - 13 of 13 sequences detected SEUs
 - All sequences overflowed SEU counter
 - Triple redundant TTMR
 - 12 of 12 sequences detected SEUs
 - 12 of 12 sequences corrected SEUs
- Limited H-Core2 testing, but some SEFI mitigation was successful
- Initial Proton radiation test results were successful

TTMR and H-Core2 Benefits

- Can use a single FPGA for fault tolerance (3 FPGAs are not reg'd)
- A Reconfigurable Voter (DSP) is of great value
 - Reconfiguration is much more difficult with a fixed, rad hard ASIC
 - DSP is only 1.7 W at full speed, can provide additional processing (4,000 MIPs or 900 MFLOPS) power
- Checksum solutions provide much higher performance
 - Example: Run 1 million encryption cycles at full speed, calculate checksum with logic and send checksum to DSP
 - Speed Overhead: 10 DSP cycles every 1 million clock cycles (0.001%)
 - Logic Overhead: Dual TTMR = 2.1 times; Triple TTMR = 3.1 times
- TTMR Algorithm types provide multiple algorithms for fixing SEU problems in reconfigurable FPGAs
 - Apply best algorithm to problem
 - Minimize gate count (Dual) or impact to system performance (Triple)
- Implements the good work done by others (JPL, LANL, Xilinx ...) for SEFI and reconfiguration into a rad hard H-Core2 ASIC

Implementing Reconfigurable FPGAs


- Proton200k[™]
 - 32-bit DSP
 - 4,000 MIPS
 - SEU rate of < 1E-4 /day</p>
 - >100 krad (Si) TID
 - No unrecoverable SEFIs
 - SEL Immunity >70 LET
 - Power: 5-7 watts

Implementing Reconfigurable FPGAs

Proton300k[™]

- 6 to 24 M reconfigurable
 FPGA gates available for user programming
- 32-bit DSP
- 4,000 MIPS
- SEU rate of < 1E-4 /day</p>
- >100 krad (Si) TID
- No unrecoverable SEFIs
- SEL Immunity >70 LET
- Power: 5-7 watts

Proton300k™

Summary

- TTMR can correct SEUs in reconfigurable FPGAs
- H-Core2 can correct SEFIs and reconfiguration problems in reconfigurable FPGAs
- Space Micro radiation tested TTMR & H-Core2 with protons at UC Davis
 - Results showed detection and correction of SEUs in Virtex II FPGAs
 - SEFIs corrected with H-Core2
- DSP provides a reconfigurable voter & additional processing
- Enables high reliability Xilinx Virtex FPGA platform
- More work is needed to finalize these methods