Qualification and flight of a cutting edge Sunsensor for constellation applications

The team

Johan Leijtens CEO/ Systems engineer

Johan
Uittenhout
Production/
QA Manager

Marijke van Santen Sales and logistics

Stefan Schmidt Systems Engineer

Dick Broekmans Project Manager

Martijn
Tenge
Manufacturing
& Test engineer

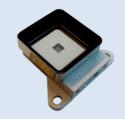
Cutting edge Sunsensors for constellation applications

- Right performance
 - 3 to 5 degrees is enough for LEOP and Safe mode operation
- Right reliability
 - 5 to 7 years in (higher) LEO
 - >36.000 thermal cycles
 - Radiation hardened
- Lowest possible total cost of ownership
 - Low recurring price (at high volume)
 - Easy mounting
 - Guaranteed performance without calibration
 - No delta qualifications required

BiSon64-ET(-B)

64° field of view (in diagonal) analogue fine Sunsensor with or without baffle

- Accurate (3.5° without and 0.5° with calibration)
- Envelope qualification fit for all known missions
 - -125°C..+125°C temperature range
 - 40g sine, 41.6g random, 3.000g shock
- Radiation hardened
 - 4.10¹⁴ 1MeV electrons tested (equivalent to 9.2Mrad and 12.56E9 MeV.cm²/g)
- 100% EAR/ITAR free
- ESA qualified
- Batch manufacturing including standard TVAC and random vibration acceptance test.



Sunsensors timeline

2012

Vesta

ELSA-D

LISA-B

Earth-I

OTB-2

OTB-3

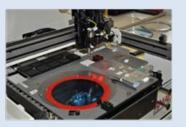
Falcon Q3/2020

ESA Proba-3 Q3/2021

Phobos rover

Triton-X

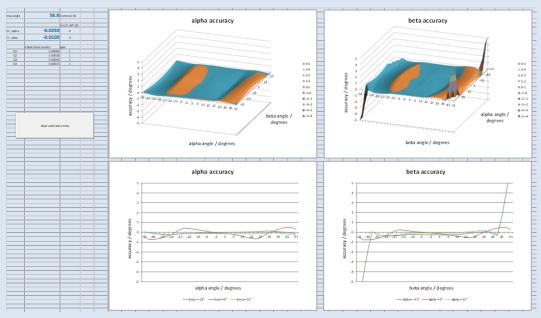
Micro


Mini

Lens R&D high volume sunsensors

Production optimised for volume manufacturing

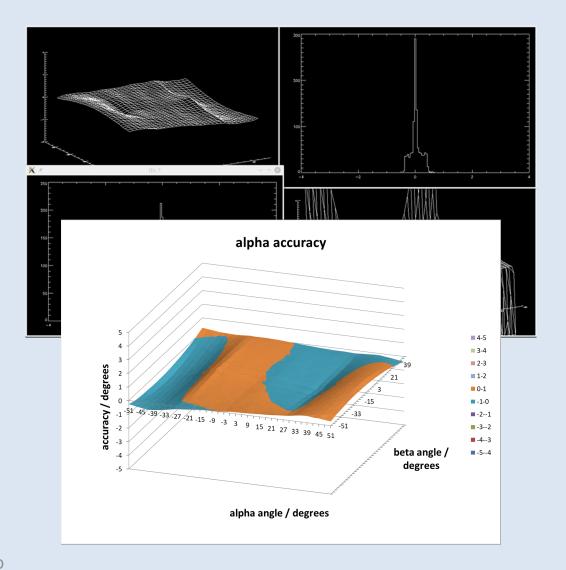
Wire-bondable integrated connector


Vision based Pick and place assembly

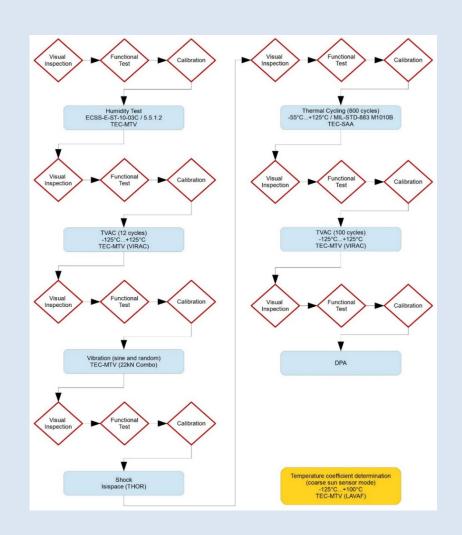
Automated Wire-bonding

Wafer-scale Membrane Production

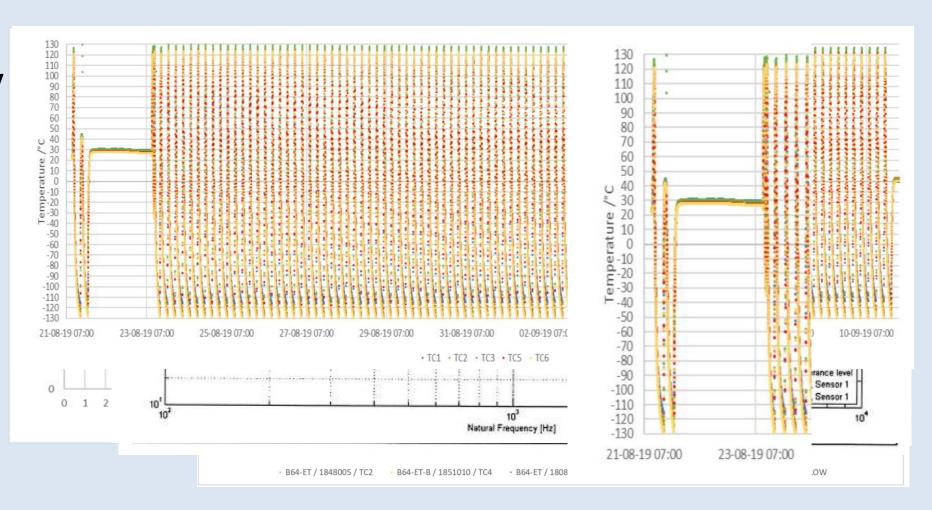
Automated final assembly



Guaranteed accuracy through automated membrane assembly


Reproduceable performance

- Simple optical configuration
 - photodiode
 - Single sapphire membrane
- Straight forward model
- Very good match with real measurement data
- High repeatability through MAMA tool and process control


Full ESA qualification

- Humidity
- 12 TVAC cycles -125°C..+125°C
- 40g Sinus vibration
- 41.6g Random vibration
- 10.000g Pyro shock
- 800 Thermal shock cycles -55°C.+125°C
- 100 TVAC cycles -125°C..+125°C

Full ESA qualification

- Humidity
- TVAC
- Sinus
- Random
- Shock
- TC
- TVAC

Lowest total cost of ownership

- Select and fly
 - no delta qualifications required due to envelope qualification
- Plug and fly
 - no alignment at spacecraft level
 - No uploading of calibration data required
 - No fixed pigtail but a real high reliability connector
- Lowest overhead
 - basic formula only
 - No temperature or radiation degradation compensation
 - No memory or processing required for calibration correction

Conclusions

- Cutting edge Sunsensors for constellation applications should:
 - Be good enough
 - Have a verified reliability
 - Provide the lowest total cost of ownership

• The BiSon Sunsensors fit those descriptions as the most affordable Sunsensors in their reliability class.

LENS R&D

Cutting edge Sunsensors For constellation applications

When quality counts and budgets matter

www.lens-rnd.com

info@lens-rnd.com

