SSC21-P2-17

Autonomous Fault-Tolerant Avionics for Small COTS Satellites: to Reality and Prototype

Dr. Christian M. Fuchs
The Fault Tolerant Satellite Computer Organization
Weigunystrasse 4, 4040 Linz, Austria
christian.fuchs @dependable.space

Dr. Nadia M. Murillo
RIKEN Cluster for Pioneering Research
Wako, Saitama 351-0198, Japan
nmurillo@starformation.space

ABSTRACT

In this contribution we present practical experiences from realizing a prototype of the first truly fault-tolerant and
autonomously operating avionics suite for miniaturized satellite down to the size of a 2U CubeSat. Our initial
demonstrator setup consists of a mix of COTS parts and FPGA development boards, which we gradually expanded
in scope and capabilities. After four iterations of PCB development and manufacturing, we have condensed this
design to a fully integrated custom PCB-based prototype. Our fourth architecture iteration is stackable and is
designed to fit on an 80x80mm PCB footprint. It is furthermore capable of operating as generic satellite subsystem
node, functioning in a distributed, fault-tolerant, interconnected manner together with other subsystems. Each node
is fully replaceable by two or more neighboring subsystem-nodes. In consequence, we achieve a satellite bus setup
which is in spirit similar to integrated modular avionics and modern fault-tolerant avionics network architectures
used in other fields. We realize this setup through a high-speed chip-to-chip network in a compact CubeSat form

factor.

INTRODUCTION

Until today, fault-tolerant avionics for satellites are
costly, less flexible, consume considerably more power,
and have a worse performance-per-watt ratio than con-
ventional COTS components. Without exception, they
are all dependent on proprietary RHBD and RHBM
components, custom designed for space-use. These take
decades to develop and also lag generations behind their
conventional COTS counterparts.

This applies to all satellite classes. However, in con-
trast to smaller modern miniaturized satellites, multi-
ton spacecraft, as well as SmallSats above 50 kg, can
afford to fly high-power consumption avionics. For
smaller, miniaturized satellites such as microsatellite and
nanosatellites, this is not the case. Such small spacecraft
can not afford to fly traditional fault-tolerant RHBD
and RHBM components anymore due to practical and
operational constraints. For most smaller spacecraft that
enable the innovative mission concepts that have enabled
the emergence of our new-space sector, the bottom line
is simply that fault-tolerant avionics are just not yet
possible with currently available technology.

Most smaller satellite form factors are thus constrained
to space missions with a brief duration, of months to
maybe a few years. This is due to the unpredictable

survivability of commodity-electronics based hardware
in the space environment, as well as the lack of a
reliability-safety net, which larger spacecraft are specif-
ically designed to include. Instead of a system of fault
and failure mitigation techniques, a failure aboard most
small satellites can very well be fatal. This must change.

Therefore, we developed novel fault-tolerance con-
cepts. Today, these enable us to finally overcome this
limitation. It is now possible to achieve strong fault-
tolerance for missions with an extended duration, using
the very same conventional COTS technology that is
being used today aboard very small satellites. Combined,
these concepts form an avionics architecture which was
presented SmallSat 2019 and the proof-of-concept im-
plementation of which we described in-depth in [1].

By design, satellite subsystems following this archi-
tecture are capable of autonomous failure handling, dy-
namic mid-mission reconfiguration, and adaptive, grace-
ful aging under the consideration of permanent and
persistent faults. By 2019, we produced proof-of-concept
implementations for each part of this architecture. We
had conducted fault-injection and system simulation at
different levels to test the effectiveness of this archi-
tecture, and confirmed its practical feasibility under
considerations of cost, power consumption, long-term

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

survivability, and mass. We tested each part of this
concept extensively and systematically, and analyzed
the architecture’s performance overhead. Since then, we
have advanced the maturity of this technology from
proof-of-concept to the prototype stage.

In this paper, we share experiences and lessons learned
in developing prototype hardware for this new technol-
ogy, and we provide a status update on our development
efforts. We optimized and streamlined the individual
elements and fault-mitigation stages of the protective
architecture we described in [1], stripping out features
that we considered mainly academically viable, and
achieved real time capabilities. We present our prac-
tical experiences from building the first autonomously
operating avionics suite implementing this technology
in the real world in hardware. Specifically, we outline
our experience building several demonstrator setups, and
eventually developing a first fully-custom and functional
prototype system. This prototype is intended for use as
development platform, as well as target for radiation test-
ing and characterization, and can be shrunk to fit aboard
SmallSats, Microsatellites, and even 2U+ CubeSats.

BACKGROUND AND RELATED WORK

In contrast to the initial generation of educational
CubeSats, today fewer satellites fail due to practical
design problems caused by inexperience [2]. Instead,
Langer et al. in [3] showed that the a majority of
these failures can be attributed to electronics heavy
subsystems. Even traditional space industry actors with
years of experience in large satellite design, who attempt
to develop CubeSats satellites “by the traditional book”
with quasi-infinite budgets today struggle to reach just
30% mission success [4].

The main source of failure there are environmental
effects encountered in the space environment: radiation,
thermal stress, and corruption of critical software com-
ponents that can not be recovered from the ground,
and failures caused by power electronics. Considering
again Langer et al., [3], with increasing age mission
duration, a broad majority of documented failures aboard
CubeSats originate from OBCs, transceivers, and the
electrical power subsystem. While functionally disjunct,
these subsystems all have in common that they are heav-
ily computerized and architecturally rather similar, built
around one or multiple microcontrollers and memories.

A satellite must cope with challenging design con-
straints, and the effects of the space environment on
electronics. The main source for faults within electronics
in the space environment are highly charged particles
from a variety of sources [5]. Particles interact with a
spacecraft’s electronics, and can induce different effects
in a semiconductor depending on the type of particle and
its charge. Among others, charged particles can corrupt

logical operations or induce bit-flips within semiconduc-
tor logic and memory (single event effects - SEE), and
may cause displacement damage (DD) at the molecular
level, induce a latch-ups or cause functional interrupts —
SEFIs. The cumulative effect of charge trapping in the
oxide of electronic devices (total ionizing dose — TID)
further impacts the lifetime satellite electronics.

All these effects can result in spontaneous or dras-
tically accelerated aging compared to ground applica-
tions, which must be handled efficiently throughout an
entire space mission. To do so, traditional space-grade
hardware makes heavy use of over-provisioning and
tries to include idle spare resources (processor cores,
components, memory, ...) where necessary. Traditional
OBCs for large satellites realize fault tolerance using
circuit-, RTL- [7], IP-block- [8], [9], and OBC-level
TMR [10] through costly, space-proprietary IP. Circuit-
, RTL-, and core-level measures are effective for small
microcontroller-SoCs [11], [12], if they are manufactured
in large feature-size technology nodes. More and more
error correction and voting circuitry is needed to com-
pensate for the increased severity of radiation effects
with modern technology nodes [11]. This in turn in-
flates the fault-potential, requiring even more protective
circuitry, making this approach ineffective for modern
semiconductors.

Approximately 10 years ago, nanosatellites began to
heavily utilize redundancy at the component level to
achieve some form of fail-over, to provide at least some
protection from failure. Unfortunately, several CubeSat
bus manufacturers have in recent years decided to follow
this approach, and began to add redundancy to every-
thing. However, practical flight results show that such
designs are complex and fragile, as compared to entirely
unprotected ones [2], [13]. Entirely unprotected OBC
designs are of course also no solution to the reliability
of a vast majority of CubeSats, as they, in turn, may
fail at any given point in time. However, today satellite
designers are usually forced to simply accept this risk,
leaving the hope that a satellite will by chance not expe-
rience critical faults before its mission is concluded. Risk
acceptance is viable only for educational, and uncritical,
low-priority missions with a very brief duration.

FROM PROOF-OF-CONCEPT BACK TO THE
DRAWING BOARD

In this section, we will provide a brief summary of the
base concept that we have now developed into a fully
fledged hardware prototype. This section is meant only to
provide a brief introduction to the concept, considerably
more in-depth documentation, as well as testing and
validation results can be found in [1] and [14].

Our objective is to provide practically viable and
economical means of assuring fault-tolerance aboard

Fuchs

35™ Annual AIAA/USU
Conference on Small Satellites

Virtual
Machine 1

Hypervisor
& Host

Virtual
Machine 2

Virtual
Machine 3

Virtual
Machine 2

Virtual
Machine 3

Virtual
Machine 1

Core 3

For each VM and Cycle:
Vote on Results
Schedule Lockstepping

In case of disagreement:
Resynchronize VMs

Hypervisor
& Host

Figure 1: The early evolution the fault-tolerance concept
we started out with. Initially, we built worked with
a COTS quad-core MPSoC running KVM virtual ma-
chines and I/O voting. This concept later evolved into an
FPGA-based MPSoC architecture consisting of multiple
fault-tolerance measures.

small satellites, especially micro and nanosatellites down
to the size of 2U CubeSats. We have developed this
architecture from the ground up. We formulated an initial
concept out of immediate need, when the first CubeSat
we co-developed had failed after two months on-orbit
[15]. The original concept is depicted in Figure 1. Since
its infancy, we have continued to mature this technology.
We began by establishing a sound scientific, theoretical
foundation for its functionality, then started designing
proof-of-concept implementations, and eventually devel-
oped these into breadboard proof-of-concept setups. We
tested and validated this technology at each stage of
technological maturity, and presented our results to the
community, e.g., in [1]. At the time of writing, we
have just finished a clean-slate iteration, and completely
re-developed this concept from the ground up. In this
process, we streamlined the resulting architecture and
fault-tolerance mechanics considerably, and developed
first a demonstrator setup, and most recently a custom-
PCB based prototype.

Instead of utilizing classical radiation hardened semi-
conductors or custom TMRed processors, we combine
software functionality with architectural and topological
design features within a system-on-chip to achieve fault-
tolerance to the effects of the space environment. This
system-on-chip design then forms the core of a satellite
computer, which can be freely adapted to a broad variety
of use cases. It can be utilized either as command & data
handling subsystem, or fulfill any other subsystem role
within a satellite.

A concept flowchart of the approach we utilize to
achieve fault detection, isolation, recovery, and report-
ing is depicted in Figure 2. Among others, our archi-
tecture combines software-enforced lockstep concepts,

MPSoC Supervisor & ConfigControler
Stage 3
Bootup Mixed Criticality
recovered
functionality failure

Stage 2

Reconfiguration

A
Replace

I : Update
A]E%grgéﬁétlité)%n j : Compartment Compartment
A © <limit T\ /T > limit
: Check

Fault Counter

| Read Majority
i Decision

Checkpoint

Figure 2: The same concept, now implemented in soft-
ware through lockstep within an MPSoC on an FPGA.

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

Redundant Memory Set A

[
! !
I
Redwave | DDR4 MRAM Flash/PCM | | CcoM
I'| Main Memory (0S) (Payload Data) | |
I
:______I____________I“_T'_—I____________! ¢
» ADCS
Diagnosis > OCs
: an
Supervisor SPI Control CAN >
(MSP430FR) On-Board
JTAG %?g{ﬁ%? Ethernet > Network > Payload
GPIO (Satellite Bus)
etc... >
~ - Payload
QSPI CFG Mem 77| Transceiver
> EPS

4 I R e IR

Redundant Memory Set B

I
I
FPGA ! DDR4 MRAM Flash/PCM
Configuration | | Main Memory (0S)
Memory :
I

[
|
(Payload Data) I
|
|

Figure 3: A component-level diagram of a proof-of-concept implementation of our OBC architecture.

distributed decentralized voting, FPGA reconfiguration,
component-level self testing, as well as adaptive ap-
plication scheduling using mixed criticality aspects.
The combination of several of these mechanisms acts
mutually amplifying, thereby increasing the protective
strengths of the system far beyond of what usually
would be achievable if these measures were applied
independently. This fault tolerant system architecture can
be implemented purely using commodity hardware and
COTS components that are being flown today aboard
miniaturized satellites. It requires only standard library
IP to achieve fault-tolerance for virtually any firmware,
operating system, and software without enforcing a ven-
dor lock-in.

A subsystem utilizing this architecture can be dy-
namically reconfigured during a mission and trade com-
pute performance for reduced energy consumption or
increased robustness at run time. It enables a satellite
computer, or any other kind of subsystem utilizing
this architecture to best meet performance requirements
during different mission phases and different tasks. The
architecture allows a satellite to age gracefully under the
effects of the space environment, instead of failing spon-
taneously. Note that it provides actual fault tolerance,
it does not simply suppress faults until all redundancy
has been expended. It does not prevent damage but
allows a system to adapt to chip level degradation
and accumulating permanent faults, even during space
missions with a very long duration.

To test our implementation, we conducted fault injec-
tion at different levels, which we documented in [16]
and [14]. Next, we developed a multi-core model of our
MPSoC also in ArchC/SystemC to conduct further fault-
injection close-to-hardware, which is further described
in [17]. A more detailed description of these validation
steps is described in detail in [14]. To achieve worst-
case performance estimations, we measured the worst-
case performance cost of this approach, which are also
described further in [18]. These benchmark results were
generated based on code derived off a CCD readout
program used for astronomical instrumentation.

At the time of our last smallsat contribution [1], we
had constructed a proof-of-concept OBC setup based
on an FPGA development board in conjunction with an
MSP430FR development board. Following this publica-
tion, the first author earned his PhD 2 weeks before the
COVID pandemic, in late December 2019. In early 2020,
we began the next stage in developing this technology,
with a clean slate approach. At his point in time, we had
developed a specific architectural flavor for several years
in an academic environment.

Hence, we began by taking a step back from the results
we had developed and started fresh. We evaluated every
aspect of the concepts, software, hardware, and HDL
implementations we had developed over the past years.
Subsequently, we re-developed a new fault-tolerance
concept based on functionality that we liked in our
original concepts, but not in direct continuation of the

Fuchs

35" Annual AIAA/USU
Conference on Small Satellites

results obtained. We did this to avoid locking ourselves
into design decisions we ourselves had considered proper
from an academic point of view, not for an industrial
perspective. This was necessary to achieve not just a
functional prototype, but also an implementation that in
reality works efficiently aboard a CubeSat.

After several weeks of study, we ended up with a
fresh take at the concept we had originally developed
for protecting the MOVE-II CubeSat. We omitted several
aspects of the architecture we described in [1], especially
those that made sense for academic research, but not for
immediate practical use aboard a satellite. To clarify, we
had expected that this would be necessary already several
years earlier when starting the project which funded our
research between 2016 and 2019.

FIRST STEPS: A FUNCTIONAL DEMONSTRATOR

In the second half of 2020, we had constructed a
first fully functional development-board based demon-
strator following the reworked architecture we had just
developed. This breadboard-prototype for the first time
allows us to run a full Supervisor-MPSoC setup within
an Ethernet-based satellite bus testbed, instead of indi-

vidual proof-of-concept setups for different parts of the
architecture. This setup is depicted in Figure 4.

The test setup consisted of a fault-tolerant quad-
core MPSoC with an on-chip ICAP Microblaze-MCS
controller, which carried out platform management, tem-
perature sensor readout, and partial reconfiguration tasks.
This ICAP controller enabled us to perform rapid par-
tial reconfiguration while remaining within the limited
IO-capabilities of our MSP430FR development board
supervisor, and not forcing us to design custom PCBs
at this stage. We constructed a first breadboard-based
shields to interface our MSP430FR development board
with MPSoC carrier.

Each compartment was outfitted with an Ethernet-
controller, a UART interface, I12C, as well as two SPI
interfaces (one master, one slave). One of these SPI
interfaces was multiplexed and then made accessible
to the off-chip supervisor. All other interfaces were
exposed on the second FMC port available within the
system, which we simply looped back to the system
as depicted in Figure 4. Ethernet was realized through
the Xilinx AXI-Ethernet Core in RGMII mode coupled
with a trial-TEMAC core. Each compartment’s ethernet
interface was fully independent and attached to one of

Figure 4: Our first functional all-in-one breadboard setup the off-chip lockstep supervisor implemented within the
red MSP430FR board shown on the left, one Ethernet interface for each processor compartment realized through
a quad-port ethernet FMC card, and other compartment IO in loopback on the left FMC port.

Fuchs

35™ Annual AIAA/USU
Conference on Small Satellites

