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ABSTRACT 

In this paper, we propose a ground-based automated novelty detection system for a small satellite attitude dynamics 

control system using a one-sided learning algorithm: One-Class Support Vector Machine (OC-SVM) method. This 

fault-detection system was designed to only learn from nominal behavior of the satellite during the commissioning 

phase and to identify and detect anomalies when there was a subtle behavioral failure in the attitude control system. 

The detection system was trained by only observing the nominal attitude dynamics behavior of a small satellite for a 

period of time. Training data was obtained from reaction wheel outputs in a healthy attitude control system, and 

reaction wheel currents and angular velocities were selected as training features. A one-class classifier was built from 

a hyperplane decision function during training. An adaptive Sequential Minimal Optimization (SMO) method was 

utilized to solve the quadratic problem in the application of OC-SVM algorithm to provide an optimal solution for the 

hyperplane decision function. Two tests were performed on the system to validate its feasibility and detection 

accuracy. Untrained reaction wheel bearing failures were added into the attitude control system validation tests to 

examine whether the fault-detection system was capable of detecting and diagnosing the reaction wheel failures. 

Training and testing performance for the fault-detection system are presented with discussion.  

INTRODUCTION  

As the size and prevalence of small satellite 

constellations grow, so does the interest in Prognostic 

and Health Management (PHM). In keeping with the 

small-satellite philosophy to maintain low design, 

manufacturing and operating costs, the small-satellite 

community is interested in efficient ground operations 

and fault management that does not require excessive 

labor from trained space systems experts [1]. The 

expanding scale of small-satellite constellations has 

posed a significant challenge for ground operations: how 

to find a sustainable way to monitor and manage a large 

amount of satellites efficiently with minimal cost?  

While many researchers have relied upon machine 

learning to detect faults ([2-8]), this approach suffered 

from the limitation that it could only detect failures that 

have been previously trained or modelled. In many cases, 

the most subtle and dangerous failures were the ones 

without consideration prior to the mission. Being able to 

autonomously detect unmodeled faults is critical to the 

health of a constellation of small satellites, given that 

many spacecraft operators cannot afford to dedicate 

specialized staff to monitor all telemetry on an on-going 

basis to look for faults.  

To overcome this challenge, this paper introduces an 

autonomous, ground-based fault-detection system that 

was trained using only nominal data, without requiring 

any prior expert knowledge of the spacecraft systems. A 

One-Class Support Vector Machine (OC-SVM) with the 

combination of Sequential Minimal Optimization 

(SMO) method was implemented to achieve the 

automated fault-detection system. By observing nominal 

data during the commissioning phase of the satellite, the 

fault-detection algorithm learned how to differentiate 

normal data from abnormal data without a labelled set of 

abnormal data. Training and testing results are presented 

to show how this one-sided learning method of fault-

detection could detect un-trained failures related to 

reaction wheel performance. Specifically, this paper 

demonstrates the utility of one-sided learning methods 

by autonomously detecting faults in reaction wheel 

bearing friction and wheel speed measurement, without 

any prior exposure to the failures. 
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RESEARCH BACKGROUND  

A ground station provides a communication interface 

between the launched satellite and the satellite’s 

operation team [2]. The satellite’s operation team at the 

ground station monitors and tracks the performance of 

the satellites through downlinked data. With the 

expanding scale of small-satellite constellations, 

numerous satellites need to be periodically monitored 

and examined by operation teams. Additionally, the 

limited capacity of the ground station (e.g., labor, costs, 

etc.) makes efficient commands and operations difficult 

to accomplish ([9], [10], [11]). 

Automated fault-detection systems that use machine 

learning and data mining algorithms have been 

developed for various satellites to detect anomalies in 

real-time spacecraft telemetry ([2-7]). A similar fault-

detection system can be developed for ground station 

operations to provide efficient satellite management.  

Ibrahim et al. [7] proposed a fault diagnosis method 

based on an unsupervised machine learning algorithm to 

identify failures and anomalies of satellite subsystems 

for the Egyptsat-1, including the satellite’s 

communication subsystem, on-board computer 

subsystem and power subsystem. Ibrahim et al. applied 

a general Support Vector Machine for Regression 

(SVM-R) method to learn and predict the bus voltage of 

the satellite from received time-series telemetry 

parameters. They used Logical Analysis of Data (LAD) 

to classify the binary categories of the satellite’s 

behavior (“normal” and “abnormal”) and generate the 

positive satellite behavior patterns. From the behavior 

patterns, a Fault Tree Analysis was used to determine the 

root cause and failure occurrence possibility for each 

subsystem.  

Omran et al. [8] developed a fault-detection and 

identification system for reaction wheels in an attitude 

control system. The fault-detection system was created 

based on a Feed-Forward Neural Network (FFNN) with 

a back-propagation algorithm to detect if there was an 

anomaly in the reaction wheel voltage, current, and 

temperature. Firstly, the system used FFNN to predict 

the desired torque for a reaction wheel under a 

commanded bus voltage. Then, the normal operational 

torque curve was used as a comparable reference for 

anomaly detection. Failures could be detected as over-

voltage, under-voltage, current gain or current loss using 

the residual signals between the predicted and real torque 

from the satellite’s telemetry data.  

Other approaches for fault detection were to identify and 

label data that deviated from acceptable ranges ([5], [6]). 

Specific features were selected from the flight 

measurements of the spacecraft and collected over a 

designated time. Filters were added before the training 

process to remove the abnormal data beyond the pre-

defined lower and upper limits of satellite performance. 

The system was trained using the filtered data contained 

within most of the normal data. The detection system 

then would predict a theoretical model from the trained 

data to detect anomalies in real-time operations of the 

satellite.  

From above, conventionally, most of the fault-detection 

systems were trained by using datapoints containing both 

normal behavioral data and abnormal behavioral data of 

the satellite (i.e, both positive data and negative data 

were given). Then, the system learned the “knowledge” 

from the two-sided training data and developed a binary 

classifier once the learning stage completed. Finally, the 

output binary classifier was used to predict failures and 

differentiate normal data and abnormal data during 

testing. 

In this research, a one-sided learning algorithm was 

adopted to develop an automated fault-detection system 

for a ground station where only normal behavioral 

attitude control system data was involved in the training 

process. The algorithm employed to achieve one-sided 

learning was OC-SVM, originally proposed by 

Schölkopf et al. [12] in 1999 and has been used in a 

variety of one-class classification problems ([13-18]). 

From this approach, the system was trained by using only 

the dataset collected from a healthy attitude control 

system without any failure for a satellite during 

commissioning phase. With the learned knowledge from 

the nominal data, the fault-detection system was 

expected to identify and diagnose failure during real-

time operation.  

METHODOLOGY 

This research aimed to develop an automated fault-

detection system used from a ground station to identify 

and diagnose anomalies of a satellite’s attitude control 

system. The development of the automated fault-

detection system started from model simulation of an 

attitude control system for a small satellite. Following 

the training process, a normal dataset was generated and 

collected from the simulated attitude control system. 

With the collected dataset, the OC-SVM method was 

implemented for training. Details of the model 

simulation and algorithm application are presented 

below.  

Model simulation 

An attitude control system for a small satellite was 

created from a closed-loop feedback system using 

MATLAB / Simulink. The attitude control system plays 

a significant role in the pointing direction and orientation 
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of a spacecraft ([19], [20]). Figure 1 shows a design 

concept of a closed-loop attitude dynamics control 

system. 

 

Figure 1: Attitude Dynamics Control System for a 

Spacecraft [2] 

As presented in [2], the desired slew rates of the satellite 

were fed as inputs to the pointing control system. 

Reactions wheels were selected as actuators in the 

system to achieve the desired state of the angular 

velocity in three directions (x, y, and z-axis). A similar 

closed-loop feedback system was designed for reaction 

wheels where the commanded torque from the satellite 

was the input signal to the reaction wheel system (in 

Figure 2). The outputs from the reaction wheel dynamics 

system were reaction wheel momentum, torque, current, 

and angular velocity.  

 

Figure 2: Reaction Wheel Dynamics [2] 

Through Euler’s equation (shown in Eq. (1)), the actual 

body rates of the satellite could be attained using the 

provided torque from the reaction wheel dynamic system 

[19]: 

𝑻(𝒕)  =  𝒉̇(𝒕)                                             (1) 

Where 𝒕  represents a time variable,  𝑻(𝒕)  is a torque 

vector provided by the reaction wheels with the satellite 

in time series, and 𝒉(𝒕) is a vector presenting the angular 

momentum for the satellite in time series. The real body 

rates can be presented as a relationship between the 

provided torque by reaction wheels and the angular 

momentum:  

𝒉(𝒕) = 𝑰𝝎(𝒕)                  (2) 

𝑻(𝒕) = 𝑰𝝎̇(𝒕)                                                              (3) 

Where 𝑰 is the moment of inertia of the satellite, 𝝎(𝑡) is 

the output angular velocity vector, and 𝝎̇(𝒕) is the output 

angular acceleration vector.   

As detecting a bearing degradation failure was the main 

purpose of this research, the torque provided by the 

reaction wheels to the satellite in Eq. (1) and (3) was 

computed after deducting the total friction from the 

reaction wheel system [2]. The total friction was: 

𝒇𝑡𝑜𝑡𝑎𝑙 =  𝒇𝑐𝑜𝑢𝑙𝑜𝑚𝑏 + 𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠               (4) 

𝑻(𝒕) = 𝑻(𝒕) − 𝒇𝑡𝑜𝑡𝑎𝑙                (5) 

Where 𝒇𝑡𝑜𝑡𝑎𝑙  is the total friction in the reaction wheel 

system, 𝒇𝑐𝑜𝑢𝑙𝑜𝑚𝑏  is the Coulomb friction, and 𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠 is 

the viscous friction.  

Neglecting the Coulomb friction in this research, the 

total friction in the reaction wheels was denoted as:  

𝒇𝑡𝑜𝑡𝑎𝑙 = 𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =   𝑚𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠_𝑛𝑜𝑚𝑖𝑛𝑎𝑙                       (6) 

Where 𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠_𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal viscous friction 

calculated from real reaction angular velocity and 

viscous friction coefficient  to compute all normal slews, 

and 𝑚 is a scaled factor which will be identified as a 

failure indicator through training process (if 𝑚  =1, 

𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠  = 𝒇𝑣𝑖𝑠𝑐𝑜𝑢𝑠_𝑛𝑜𝑚𝑖𝑛𝑎𝑙) [2].  

Figure 3 shows an example of a 100-second nominal 

slew of a small satellite from the simulated closed-loop 

pointing control system at the commissioning phase [2]. 

 

a) 
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b) 

Figure 3: Simulated Closed-Loop Attitude Control 

System in 100 Seconds: a) Desired Slew Rates of a 

Spacecraft, b) Actual Body Rates of the Spacecraft 

[2] 

The training dataset was prepared from the simulated 

closed-loop attitude control system; 40 random healthy 

slews were created in a 4000-second nominal simulation.  

Refer to [2], the reaction wheel current was simulated 

from: 

𝑻𝒎(𝒕) = 𝐾𝑡𝒊(𝒕)                       (7) 

Where 𝑻𝒎 represents a torque vector provided by motor 

in reaction wheel dynamics (Figure 2), 𝐾𝑡 represents the 

torque coefficient of the motor, and 𝒊  is a vector 

presenting the reaction wheel current in time series. 

Then, the reaction wheel current and angular velocity 

were selected as the training features over the other 

outputs from the reaction wheel dynamics due to their 

mutual independence. The outputs of the desired slew 

rates with reaction wheel current and angular velocity in 

4000 seconds are shown in Figure 4.  

 

a) 

 

b) 

  

c) 

Figure 4: Normal Slews in 4000 Seconds: a) Desired 

Slew Rates, b) Corresponding Reaction Wheel 

Currents, c) Corresponding Reaction Wheel Angular 

Velocities 

One-Class Support Vector Machine 

In this section, the OC-SVM methodology and equations 

are from [12]. The principle of using this method is that 

labels or data responses are not required for training. 

Therefore, the training process only included normal 

behavioral attitude control system data. As reaction 

wheel current and angular velocity were selected as the 

training features, 10 consecutive data points were 

collected for reaction wheel current and angular velocity 

at each time point, to enable the algorithm to deduce 

relevant time-series features. Hence, there were 4000 

data points collected for training with a data rate of 

10Hz, and each training data contained 10 consecutive 

data points of reaction wheel currents and angular 

velocities. The training data then was given as: 

𝑿 =  {(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝑵)}                                 (8) 
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𝒙 =  {(𝒊, 𝝎)}                                                        (9) 

Where 𝑿 is the whole training data set of nominal data 

in 4000 seconds, 𝑁 is the total number of training data 

sets, 𝒙 is a subset of training data, 𝒊 is a vector represents 

10 consecutive nominal reaction wheel currents at one 

timepoint and 𝝎  is a vector that represents 10 

consecutive nominal reaction wheel angular velocities. 

All nominal data were used to train the detection system 

using OC-SVM to differentiate the behavioral labels. 

The OC-SVM algorithm trained the system to learn the 

decision hyperplane with maximum margin to separate 

normal behavioral data points with untrained abnormal 

behavioral data points from the origin in its feature 

space. Before training the system, the input training data 

was first mapped by a Kernel function into the feature 

space [21]:  

𝐾(𝑿, 𝑿′)  = Φ(𝑿) Φ(𝑿′)                                            (10) 

Where, 𝐾 is the Kernel function (e.g., Gaussian, linear, 

sigmoid, polynomial Kernel functions), and Φ  is a 

mapping function.  

General kernel functions that can be used for OC-SVM 

are listed in Table 1. 𝜎, 𝑎, 𝑐 , and 𝑑  shown in the 

functions below are the tuning parameters in the process 

of training.  

Table 1: General Kernel Functions for OC-SVM 

([14], [22], [23]) 

Name  Kernel Functions  

Gaussian 
𝑘(𝑥𝑖, 𝑥𝑗)  =  𝑒𝑥𝑝(−

‖𝑥𝑖 − 𝑥𝑗‖
2

2𝜎2
) 

Linear  𝑘(𝑥𝑖 , 𝑥𝑗)  =  𝛼𝑥𝑖
𝑇𝑥𝑗 + 𝑐 

Sigmoid 𝑘(𝑥𝑖 , 𝑥𝑗)  =  𝑡𝑎𝑛ℎ(𝛼𝑥𝑖
𝑇𝑥𝑗 + 𝑐) 

Polynomial  𝑘(𝑥𝑖 , 𝑥𝑗)  =  (𝛼𝑥𝑖
𝑇𝑥𝑗 + 𝑐)𝑑 

In this research, the sigmoid Kernel function was used to 

map the training features. To obtain the decision function 

of the separable hyperplane between normal and 

untrained-abnormal attitude behavioral data of the 

satellite, a quadratic function was defined as: 

min
wϵF,ξϵRN,ρϵR

      
1

2
‖𝑤‖2 +

1

𝜈𝑁
∑  𝜉𝑖

𝑁
𝑖=1 − 𝜌                      (11) 

Subject to (𝑤 ∙ Φ(𝑥𝑖)) ≥  𝜌 −  𝜉𝑖     

 𝜉
𝑖

≥ 0, ∀𝑖 = 1, … , 𝑁  

Where 𝑤  and 𝜌  are the parameters of the hyperplane 

decision function and are computed after iterations in 

training, 𝑤 is the coefficient of the decision function and 

𝜌  is the offset of the decision function.    
1

2
‖𝑤‖2  is a 

regularizer term of the function [24]. 𝜈  is a trade-off 

regularization parameter with a range of (0,1) [18]. 𝜉 is 

the slack variable in the training data.   

To solve the quadratic problem above, a Lagrange 

function was then proposed to solve:  

𝐿(𝑤, 𝝃, 𝜌, 𝛼, 𝛽) =     
1

2
‖𝑤‖2 +

1

𝜈𝑁
∑  𝜉𝑖

𝑁

𝑖=1

− 𝜌 

−  ∑ 𝛼𝑖 ((𝑤 ∙ Φ(𝑥𝑖)) −  𝜌 +  𝜉𝑖) − ∑  𝛽𝑖  𝜉𝑖
𝑁
𝑖=1

𝑁
𝑖=1     (12) 

Where, 𝛼𝑖 and 𝛽𝑖 are the positive multiplier parameters 

in the Lagrange function [25].  

After taking partial derivatives of the Lagrange function 

with regard to  𝑤, 𝜌 and 𝜉, both 𝑤 and 𝛼𝑖 then could be 

solved by setting the derivative functions to zero (shown 

in Eq. (13) and (14)):  

𝑤 =   ∑ 𝛼𝑖Φ(𝑥𝑖)
𝑁
𝑖=1                                                    (13) 

𝛼𝑖 =  
1

𝜈𝑁
−  𝛽

𝑖
 ≤

1

𝜈𝑁
 , ∑  𝛼𝑖

𝑁
𝑖=1 = 1                           (14) 

By substituting Eq. (11) and (12) into Eq. (10), the dual 

problem becomes: 

min
 𝛼

 
1

2
∑ 𝛼𝑖𝛼𝑗

𝑁
𝑖=1,𝑗=1 𝐾(𝒙𝒊, 𝒙𝒋)                                      (15) 

Subject to 0 < 𝛼𝑖 ≤
1

𝜈𝑁
, ∑  𝛼𝑖

𝑁
𝑖=1 = 1           

∀𝑖 = 1, … , 𝑁, ∀𝑗 = 1, … , 𝑁 

with 𝛼𝑖𝜖 (0,
1

𝜈𝑁
] and 𝛽𝑖 ≠ 0 , the last parameter required 

for the decision function of the hyperplane, 𝜌, can be 

computed by combining Eq. (9) and (13) as: 

𝜌 = (𝑤 ∙ Φ(𝑥𝑖)) =   ∑ 𝛼𝑗𝐾(𝑁
𝑗=1 𝒙𝒋, 𝒙𝒊)                    (16) 

Therefore, the general function of the separable 

hyperplane to determine the behavioral labels of the 

satellite with Kernel mapping functions was: 

𝑓(𝒙) = (𝑤 ∙ Φ(𝑥𝑖)) ≥ 𝜌  

 𝑓(𝒙) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑁
𝑖=1 − 𝜌)                          (17) 

Where 𝑥𝑖  in 𝑁  number of training data is treated as a 

positive datapoint which is responsible for computing 

the decision function of the hyperplane for satellite 

attitude behavior classification.  
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After learning the hyperplane decision function from all 

4000-second nominal training data, the detection system 

should be able to identify failures. Test data is fed into 

Eq. (17) with tuned parameters: 𝛼𝑖 , 𝑤  and 𝜌 . Then, 

labels are assigned to each test datapoint. Label 0 is 

assigned to all normal data during testing (decision 

function indicates positive), and label 1 is assigned to all 

abnormal data (decision function indicates negative). 

𝑓(𝒙𝒕𝒆𝒔𝒕) =  𝑠𝑔𝑛(∑ 𝛼𝑖𝐾(𝒙𝒊, 𝒙𝒕𝒆𝒔𝒕)𝑁
𝑖=1 − 𝜌)               (18) 

𝑦 = {
0, 𝑓(𝑥𝑡𝑒𝑠𝑡) ≥ 0 

1, 𝑓(𝑥𝑡𝑒𝑠𝑡) < 0 
                                               (19) 

Where,  𝒙𝒕𝒆𝒔𝒕  is test dataset. When   𝑓(𝑥𝑡𝑒𝑠𝑡) ≥ 0 , it 

represents that the test datapoint falls inside of the 

defined decision hyperplane. When 𝑓(𝑥𝑡𝑒𝑠𝑡) < 0  it 

represents that the test datapoint falls outside of the 

defined decision hyperplane. Therefore, if 𝑓(𝑥𝑡𝑒𝑠𝑡) 

shows a positive non-zero value, the predicted label for 

the test datapoint will be 0, otherwise the datapoint will 

be labelled as 1. 

Sequential Minimal Optimization 

The Sequential Minimal Optimization (SMO) method 

was used to define the decision function of the 

hyperplane better. The origin of the SMO method was 

proposed by Platt [26] to solve the quadratic problem in 

the general Support Vector Machine (SVM) method and 

to provide a faster and more efficient solution. An 

adaptive SMO algorithm was applied in this research to 

provide an efficient approach to solve the quadratic 

problem in the OC-SVM method. The adaptive SMO 

algorithm was modified by Schölkopf et al. and the 

following methodology and equations are referenced to 

[12], [26].  

As mentioned in the previous section, 𝛼𝑖, 𝑤 and 𝜌 were 

the tuned parameters through the training process where 

𝑤  and 𝜌  were dependent on 𝛼𝑖 . Thus, the principal 

optimization problem for the OC-SVM method is to 

optimize 𝛼𝑖. By applying the SMO method, a pair of 𝛼(s) 

will be selected and optimized for each iteration. For 

example, the optimizing function for 𝛼1  and 𝛼2  are as 

follows: 

min
𝛼1,𝛼2 

1

2
 ∑ 𝛼𝑖𝛼𝑗𝐾𝑖𝑗 +2

𝑖=1,𝑗=1 ∑ 𝛼𝑖𝐶𝑖 + 𝐶2
𝑖=1                    (20) 

𝐶𝑖 =  ∑ 𝛼𝑗𝐾𝑖𝑗
𝑁
𝑗=3 , 𝐶 =  ∑ 𝛼𝑖𝛼𝑗𝐾𝑖𝑗

𝑁
𝑖=3,𝑗=3                              

Subject to 0 ≤ 𝛼1 ≤
1

𝜈𝑁
, 0 ≤ 𝛼2 ≤

1

𝜈𝑁
                   

Where, 𝛼1  and 𝛼2   are the selected pair from 𝛼𝑖  for 

optimization. From linear equality constraint of 𝛼1 and 

𝛼2 , the summation of 𝛼1 and 𝛼2 is the same before and 

after optimization ([26], [27], [28]). Therefore,  

𝛼1 +  𝛼2 = 𝑠                                                            (21) 

Where 𝑠  represents the sum of the selected 𝛼1  and 𝛼2 

before optimization. Then, the optimized 𝛼2  could be 

updated as:  

𝛼2_𝑛𝑒𝑤 =
𝑠(𝐾11−𝐾12)+𝐶1−𝐶2

𝐾11+𝐾22−2𝐾12
                                         (22) 

From Eq. (21), the optimized α1 could be attained:   

𝛼1_𝑛𝑒𝑤 = 𝑠 −  𝛼2_𝑛𝑒𝑤                                                 (23) 

For every step of optimization, the offset parameter of 

the decision function would require re-calculated and 

updated using Eq. (24).  

𝜌 =   ∑ 𝛼𝑗𝑘(𝑁
𝑗=1 𝒙𝒋, 𝒙𝒊)                                               (24) 

The stopping criteria for SMO were the filter conditions 

for 𝛼  optimization following the Karush-Kuhn-Tucker 

(KKT) conditions [29]. The first 𝛼  selected for 

optimization was from the whole training dataset where 

any 𝛼 that violated one of the KKT conditions would be 

chosen for SMO (shown in Eq. (25) and (26)) 

(𝑓(𝒙𝒊) − 𝜌) ∙ 𝛼𝑖 > 0, or                                            (25) 

(𝜌 − 𝑓(𝒙𝒊)) ∙ ( 
1

𝜈𝑁
− 𝛼𝑖) > 0                                    (26)  

Where 𝑓(𝒙𝒊) is derived from Eq. (17).  

𝑓(𝒙𝒊) = 𝐾1𝑖  𝛼1 + 𝐾2𝑖𝛼2 + 𝐶𝑖                                   (27) 

Where 𝐶𝑖 is denoted as 𝐶𝑖 =  ∑ 𝛼𝑗𝐾𝑖𝑗
𝑁
𝑗=3 .  

The second 𝛼, 𝛼𝑗, can be selected using the argument in 

Eq. (28): 

𝑗 = 𝑎𝑟𝑔 max
𝑛𝜖𝑁

| 𝑓(𝒙𝒊) − 𝑓(𝒙𝒏)|                                  (28) 

Once every 𝛼 has satisfied the KKT conditions (listed in 

Eq. (25) and (26)), the learning process is terminated. 

With the optimized output  𝛼(s), tuning parameters, 𝑤 

and 𝜌, were then could be computed by Eq. (13) and 

(16).  

A Library for Support Vector Machines (LIBSVM) was 

used to implement the learning algorithm of OC-SVM 

with SMO method ([12], [23], [24], [30]). Two tests 

were performed on the trained system using LIBSVM to 

validate the feasibility of the method.   
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TESTS AND RESULTS 

Two 1000-second tests were performed for the trained 

detection system. Huang et. al [2] provided an outline for 

the tests.  Each test contained ten random slews with 

simulated bearing degradation failures. The bearing 

degradation failures were created based on Eq. (6). 

Adjusting the value of the viscous friction, 𝑚 , would 

affect the performance of the attitude control system. 

Figure 5 shows an example of the effect of friction on the 

performance of the reaction wheel. The friction failures 

were added for every 10 seconds.   

 

a) 

 

b) 

 

c) 

 

d) 

Figure 5: Slews with Mimic Bearing Failures in 1000 

Seconds: a) Desired Slew Rates with Failures, b) 

Viscous Frictions with Failures in 1000 Seconds, c) 

Corresponding Reaction Wheel Currents, d) 

Corresponding Reaction Wheel Angular Velocity [2] 

In the first test, friction failures were added at the 500th 

second of the simulation. At the 500th second, the friction 

failure occurred and began to increase gradually with 

time. For the second test, friction failures were added in 

two different phases of the simulation following 

trapezoidal-like viscous friction profiles. The magnitude 

of friction failure from each phase was increased with 

time, then remained at a constant level for a short time 

(20-30s). Finally, the friction failure decreased back to 

the nominal value of the friction. The purpose of 

performing these two tests was to examine the detection 

capability of the trained system on long-term failures and 

intermittent failures in the attitude control system. Figure 

6 and Figure 7 show the plots for the two test datasets 

(the same test data was used in [2], but for a different 

fault detection methodology). The corresponding 
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reaction currents and angular velocities are also 

presented. 

 

a) 

 

b) 

 

c) 

Figure 6: Test 1 Dataset: a). Desired Slew Rates – 

Test 1, b) Corresponding Reaction Wheel Current -

Test 1, c) Corresponding Reaction Wheel Angular 

Velocity – Test 1 [2] 

       

a)        

 

 

b)                                                                                           

 
c) 

Figure 7: Test 2 Dataset: a). Desired Slew Rates – 

Test 2, b) Corresponding Reaction Wheel Current -

Test 2, c) Corresponding Reaction Wheel Angular 

Velocity – Test 2 [2] 
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The tests were then performed using LIBSVM ([12], 

[30]). The behavioral labels for the two tests were 

predicted by applying Eq. (18) and Eq. (19). The 

predicted results are presented in Figure 8. Comparing 

the results from the two tests, the proposed one-sided 

learning-based detection system showed good 

performance on test 1, where the detection accuracy 

reached approximately 90%. However, the system 

showed a lower detection accuracy on test 2 where the 

detection accuracy was around 60%. From the results, it 

is observed that the detection system showed a better 

performance on identifying and diagnosing normal data 

points through slews. 

 

a) 

 

b) 

Figure 8: Prediction Results for Tests: a). Viscous 

Friction Vs. Predicted Behavioral Labels for Test 1, 

b). Viscous Friction Vs. Predicted Behavioral Labels 

for Test 2.  

CONCLUSION 

A ground-based automated fault-detection system for a 

small satellite has been developed in this research, 

utilizing the OC-SVM algorithm, to achieve a one-sided 

learning algorithm that detects reaction wheel bearing 

failures in an attitude control system. The fault-detection 

system was trained using data only from normal attitude 

control behaviors of the satellite over a designated time. 

A one-class classifier was created and trained via 

LIBSVM, and underwent two separate tests to examine 

its detection capability for various forms of failures. The 

results showed that the detection system demonstrated a 

good performance on detecting long-term failures and 

performed relatively poorly when detecting intermittent 

failures. This one-sided learning-based detection system 

also performed better when detecting normal data as 

compared to detecting anomalies. Future research will 

put effort into developing different fault-detection 

systems by implementing other suitable one-sided 

learning algorithms.  
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