2012

Understanding Precision Nitrogen Stress to Optimize the Growth and Lipid Content Tradeoff in Green Algae

Curtis Adams

Bruce Bugbee
Utah State University, bruce.bugbee@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/cpl_algaeandbiofuel

Part of the Plant Sciences Commons

Recommended Citation
Adams, Curtis and Bugbee, Bruce, "Understanding Precision Nitrogen Stress to Optimize the Growth and Lipid Content Tradeoff in Green Algae" (2012). Algae and Biofuel. Paper 1.
https://digitalcommons.usu.edu/cpl_algaeandbiofuel/1

This Presentation is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Algae and Biofuel by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in green algae

Presented at the 2012 Algae Biomass Organization (ABO) Summit in Denver Colorado
I appreciate the financial support of:

The BioEnergy Center at Utah State University

US Department of Energy

Lachat Instruments (The Hach Company)

Special thanks to:

Lance Seefeldt, Brad Wahlen and Valerie Godfrey, Biochemists
Is nitrogen deprivation a viable method for production of lipid feedstock algae?

- It’s well-established that stress—especially N deficiency—promotes lipid formation in some green algae
 - But N deficiency limits growth and thus lipid productivity

- Viability depends on proper tradeoff—not extremes
 - High growth increases yield per unit culture volume
 - High lipid content decreases processing costs per unit biomass
 - Precision stress is needed
An example of precision stress in agriculture

• The tradeoff between vegetative and reproductive growth is managed by precision N stress in tomatoes
 - Too much N = big plants, few fruit
 - Too little N = loss of yield

• Tomato production is a big, profitable industry that has faced a similar challenge

A perspective on nitrogen deprivation for algae lipid production

- The Aquatic Species Program suggested mutual exclusivity of nutrition favoring growth and lipids (Sheehan et al., 1998):
 - Increased lipid content in N stress led to cessation of cell division
 - As a result, despite increased oil content, lipid productivity was equal or lower with N deficiency
- This conclusion was generally based on extreme nutritional conditions
- The perspective in the field has changed little since 1998
Where is research needed?

• We have a poor quantitative understanding of the effects of N deprivation on lipid production in algal cultures
 • Growth and lipid content tradeoffs
 • In particular with intermediate levels of stress

• Timing of lipid accumulation

• Magnitude of stress required

• Species differences
 • What characteristics make one species better than another as a lipid feedstock?
Methods

- In 12-day, axenic batch cultures (1% CO₂), we took daily measurements of:
 - Growth – Spectral measurements and filtration
 - Biomass lipid content – Lipids extracted and converted to FAME (biodiesel), quantified by GC
 - Tissue N – Perkin-Elmer CHN Analyzer (Model 2400)
 - Solution N – Lachat QuikChem 8500 Automated Ion Analyzer

- Two N stress treatments:
 - Low N stress (11 mM N) – Not nutrient replete
 - High N stress (4 mM N) – Not severely limiting

- Six species of oleaginous green algae
 - Chlorella sorokiniana, Chlorella vulgaris, Chlorococcum oleofaciens, Neochloris oleoabundans, Scenedesmus dimorphus, Scenedesmus naegelii
Tremendous differences observed in response to N supply

- Three categories of response (with increased stress):
 1. Increase in lipid content exceeded decrease in growth
 2. Decrease in growth exceeded increase in lipid content
 3. 1:1 tradeoff

- The data highlights need for species-specific nutrition
 - Lower level stress for some, higher level for others
The timing of lipid accumulation

- Some algae grow first, then accumulate lipids; others do both at the same time.
- Concurrent growth and lipid accumulation always resulted in higher lipid productivity.
The magnitude of nitrogen stress
The timing of lipid accumulation reflects stress responses

- Wide variation in stress response among species
- A larger range in tissue N indicated better lipid productivity
 - This can be used to identify the best lipid producers
- The most promising species will combine concurrent growth and lipid accumulation with high lipid content
- Cultures can be managed by mass balance
 - Tissue N can be estimated with measurements of solution N and growth
Conclusions

• Precision N stress can be used to optimize growth and lipid content tradeoffs
 • Optimization requires low-level stress for some, high-level for others

• Species selection should be broadened to include:
 • Concurrent growth and lipid accumulation
 • Response to minimal N stress

• N deprivation is a viable method for increasing lipid productivity
 • There is great promise among the natural species