Development of a Cubesat Pico-Satellite

Phillip Anderson
Utah State University

Jan Sojka
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gas_post

Part of the [Physics Commons](https://digitalcommons.usu.edu/gas_post)

Recommended Citation

DEVELOPMENT OF A CUBESAT PICO-SATELLITE

Phillip Anderson, Undergraduate Researcher
Mechanical and Aerospace Engineering

Jan Sojka, Faculty Mentor
Department of Physics

Introduction:
The CubeSat Project was developed by California Polytechnic State University (CalPoly) at Stanford University in order to provide launch opportunities to universities previously unable to afford access to space. Today, it provides low-cost launch opportunities to students, government, and businesses. The CubeSat program is able to provide these low-cost launch opportunities by defining a common form factor and design guidelines. All satellites conforming to the regulations are able to be deployed from a standard, flight-proven deployment system called a PPOD. By adhering to the prescribed form factor and safety requirements, necessary documents and export licenses are more easily obtained. CalPoly coordinates launch opportunities and facilitates the export and licensing of completed satellites.

Project Goals:
- Create a platform for future scientific missions.
- Develop a general, adaptable satellite bus.
- Perform a scientific experiment on orbit.
- Minimize costs involved in satellite production.
- Establish radio communication and transmit data.
- Minimize mass, maximize stiffness.
- Control of the satellite.
- Provide team members with experience and learning opportunities.

Design Specifications:
- Satellite must have a mass of less than 1 kg.
- Cube shall have a nominal side length of 100 mm.
- Center of mass must be within 2 cm of geometric center.
- Must fit within PPOD deployment device.
- Must fit within PPOD deployment device.
- Non-rail side areas may protrude from cube by only 6.5mm.
- No electronics may be active until after deployment from PPOD.
- Items may not be deployed from the spacecraft for 15 minutes after leaving the PPOD.

Results:
This project was broken up into several subsystems in order to facilitate design. They are: Structural, Deployment, Power, Communications, and Software. Students in charge of the Structural and Deployment subsystems were faced with the task of designing and producing a satellite bus that would maximize the internal volume of the craft, but still provide adequate space on the exterior of the cube to place solar arrays and provide for the deployment of antennas. The structure must also be strong and rigid to withstand launch loads and the associated vibrations.

Methodology:
In order to give team members a greater variety of career-related experiences and reduce production costs, members use the "do-it-yourself" approach to CubeSat building. A large part of the learning process is accomplished by actually designing and assembling the parts used on the satellite. Most major design improvements stem from experiences team members have acquired from experimentation and testing.

Conclusion:
It has been determined that the production of a small satellite able to carry out scientific experiments on orbit at a low cost is feasible. By designing and testing their own components and systems, students are able to not only gain valuable experience in their career fields, but produce CubeSats for dramatically less than traditional pico-satellites.

Further Work:
To this point, the team has made promising progress in creating a general, low-cost CubeSat bus. The next step will be integrating a scientific payload with the bus. One potential project is making electric field measurements of the earth by deploying several long (more than two meter) booms.

Acknowledgements:
Utah State University's Get Away Special Team
Rocky Mountain NASA Space Grant Consortium
Utah State University's Department of Physics
California Polytechnic State University

<table>
<thead>
<tr>
<th>Components</th>
<th>IpPD</th>
<th>Ipp</th>
<th>Daily Cycle</th>
<th>Long</th>
<th>Power (5V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main/Radi</td>
<td>50 mA</td>
<td>100 mA</td>
<td>20%</td>
<td>20%</td>
<td>850 mA</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>1 mA</td>
<td>5 mA</td>
<td>5%</td>
<td>5%</td>
<td>25 mA</td>
</tr>
<tr>
<td>Payload</td>
<td>150 mA</td>
<td>150 mA</td>
<td>100%</td>
<td>100%</td>
<td>150 mA</td>
</tr>
<tr>
<td>Total</td>
<td>205 mA</td>
<td>205 mA</td>
<td>205 mA</td>
<td>205 mA</td>
<td>ISO 100</td>
</tr>
</tbody>
</table>

CubeSat power budget and charging circuit.