Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

United States Department of Agriculture, Forest Service

Follow this and additional works at: https://digitalcommons.usu.edu/utah_rangeplans

Part of the Other Earth Sciences Commons

Recommended Citation

https://digitalcommons.usu.edu/utah_rangeplans/1
Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

Fred J. Wagstaff
C. Arden Pope III

RESEARCH SUMMARY
To complete economic analysis of range improvements completed on the Oak Creek Management area of central Utah, we needed an estimate of the value of forage. A review of the literature revealed several methods of estimating forage values. These methods yielded eight estimates of public rangeland forage ranging from $1.23 to $30 per animal unit month (AUM). Six of the estimates were based on actual market transactions and current administered prices and were the most reflective of actual economic processes. The best estimates of value were those for leasing similar rangeland in the immediate area.

THE AUTHORS
FRED J. WAGSTAFF is a range economist with the Intermountain Research Station, Shrub Sciences Laboratory, Forest Service, U.S. Department of Agriculture, Provo, UT. He received his Ph.D. degree in range and wildlife science at Brigham Young University in 1983. He has served in the Forest Service in various planning and administrative capacities for approximately 20 years. He has conducted research primarily relating to range and resource economics.

C. ARDEN POPE III is an associate professor of agricultural and resource economics at Brigham Young University, Provo, UT. He received his Ph.D. degree in agricultural economics from Iowa State University in 1981. Previously, he worked as a research associate and staff economist for the Center for Agricultural and Rural Development, and as an assistant professor of agricultural economics at Texas A&M University. He has conducted and published research findings dealing with a broad range of issues and topics relating to production and natural resource economics.
Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

Fred J. Wagstaff
C. Arden Pope III

INTRODUCTION

The concern about finding the value of range forage on public lands has been with us for many years. The Federal Government has long been concerned with determination of grazing fees based on fair market values (Sutton 1988; Andrus and Berglund 1977). The search for the appropriate value for public land grazing has led to many studies throughout the years using different approaches and resulting in a multitude of recommendations (Clauson 1966; 1944; Roberts 1963, 1967; Nielsen 1972; Bartlett 1983). The results of these evaluation studies have been tempered by the political process involved in pricing forage determination and have resulted in an administrative fee based largely on political compromises that generally understate the value of public land grazing benefits.

Using an appropriate level of forage value or benefit is crucial in economic analysis because use of unsupported and unrealistic values casts doubt on the validity of the conclusions. Currently, there is considerable variation in the values used for planning and analysis purposes even within a single agency (USDA 1982). Brown (1984) points out there are numerous assumptions in any method of determining values, and "the value" probably does not exist. Viewing forage from a static value concept differs from a standard economic theory where values are continuously fluctuating around a dynamic equilibrium due to supply and demand forces (Watson and Holman 1977).

Economic analysis of range improvement practices and comparison of alternative uses for rangeland require reasonable and appropriate estimates of the value of livestock grazing benefits. These estimates, however, differ greatly depending upon the type and quality of data used and the critical assumptions made. This paper will briefly discuss the most common approaches to valuing livestock grazing on public lands. The variability in results is highly questionable and underestimates the value of livestock grazing benefits. These estimates, however, differ greatly depending upon the type and quality of data used and the critical assumptions made.

BARTLETT USES THE METHOD TRUE VALUE OF FORAGE

EVALUATION METHODS

Currently, the forage value that is used to establish the grazing fees charged by the Bureau of Land Management (BLM) and Forest Service is based on a predetermination formula. This formula consists of a base value of $1.25 per animal unit month (AUM) and is adjusted annually based upon changes in private grazing leases, value of beef cattle, and the cost of production. The base value of $1.23 is based on leases of forage from 1964 to 1968. In 1985, grazing fees were set at $1.35, and based on this formula, grazing fees in 1986 would be about $1.31. A recent executive order by President Reagan maintains the current fee formulas but sets a floor of $1.35 per month. Each grazing fee has not been set at a level reflecting full market value in the past, nor does it appear this will happen in the near future. The process of underpricing has caused the grazing permits to take on value through capitalization of the surplus.

Budgeting Procedures

Several methods of ranch firm or enterprise budgeting can be used to estimate the value of forage. These methods range from hand-done computations of firm expenses and income to highly computerized linear programming models. Recent publications by the Economic Research Service show the results of applying linear programming in Western States (Gee 1981, 1983). Values obtained from linear programming studies where producer estimates of values are grouped together, and are significantly higher, than the results of other methods. This probably reflects the results of using small samples of producers and the fact that other methods underestimate the full value of forage in the production process. The budgeting approach to estimating value has appeal because of the straightforward procedure, but it rests on several assumptions that need to be understood. The budget approach depends upon the correct allocation of income and expenses to many variables used in a livestock firm, and without large amounts of expense and accounting data it is questionable (Bartlett 1983). During times of rapid prices, such results may be accelerated because of rapid changes in prices, and wool prices may be very difficult to estimate.

Major criticism and questioning of the validity of this method has come from many authors. They basically argue it is highly questionable to allocate residual income to a single factor such as grazing forage (Gee 1983). Indeed, to arbitrarily price management and unpaid family labor at some prescribed level and then allocate remaining value to another factor seems highly questionable.

In practice, budgets can be used to give some rapid first approximations. Values used as a check on other methods. Because budgets require considerable data, many analysts rely on secondary sources for many items and supplement this with primary data. This tends to decrease accuracy of results.

Substitute Feed Method

Economic theory holds that if two factors are perfect substitutes for each other in a production process and the value of one is known, the value of the other in the process is set at the same level (Watson and Holman 1977). There have been attempts to value range forage by this approach (Roberts 1967; Bartlett 1983). In these studies, relatively high values were derived due to the strict assumptions of the model.

The substitute feed approach rests upon determining a price for the substitute, which is commonly hay because market prices are recorded. This price then must be adjusted for quality differences, location, and other costs incurred in using the substitute, and considerable judgment is required as well as some assumptions concerning the hypothetical and feasibility of such a practice (Wagstaff 1983).

Market Comparisons

Several studies conclude that there is an established market for public range forage and that the value of forage can be determined through market analysis (Gardner 1962; Bartlett and others 1981; Bartlett 1983). Estimates of value are made by comparing the item in question to the value of price for which items have been exchanged. The larger the number of market transactions and the more homogenous the item, the more reliable the estimate will be. Range forage is location specific; livestock must be moved to where the forage is. Also, certain ranges have climate attributes that allow use only during a specific season.

If a range forage market does exist and public land forage transactions are not influenced by Nielsone and Westergren (1970), Bartlett (1983), Gardner (1962), and Roberts (1967), then exchange price could be used to estimate value. This is true that adjustments must be made and care exercised to compare transactions that are as similar as possible to the subject area.

The literature details two approaches to market comparisons. One approach uses sales of forage itself through rentals or leases with required adjustments. The other approach uses the capitalized value of Federal grazing permit transfers between individuals.

Estimate 1 is the grazing fee for 1985 established by the current fee formula. Because these indices upon which this fee is determined have not proven highly reliable, and political considerations have held the fee at levels different from those shown by the indexing, the fee as an estimate of full forage value for livestock production. This estimate is used as an average value and would be as low an estimate of additional forage value.

Estimate 2 comes from budget/linear programming. The figure is from an Economic Research Service (ERS) study using linear programming to estimate grazing value (Gee 1983). The AUM value of $9.46 is basically the estimated residual income to the forage as determined by this approach. This value reflects the higher full values because a panel of producers generated the coefficient for the budget, and they probably reflect a higher than average efficiency in livestock production.

Estimates 3 and 4 are based upon the substitute feed approach. This approach is highly questionable and results
in crude estimates. These estimates exaggerate the value of forage due to the shortage of substitute feed in the form of hay and often result in strong demand from the California dairy industry and export to Japan. Hay prices in 1960 and 1964 were $75 and $72 per ton, but the use of hay to produce calves in California is clearly not reasonable because this would be roughly $30 per AUM, and other factors differ greatly from public range land.

Irrigated pasture is limited and rents for about $15 per AUM. Also, comparability is a problem in using either hay or irrigated pasture to value range forage because animal performance, services included, and other factors differ greatly from public range land.

Estimates 5 through 8 are based on the value of land based on the 1965 Grazing Fee Review and Evaluation (USDA 6 and 1965). The 6 is adjusted for additional costs associated with grazing on public land and a programmatic estimate.

Estimates 7 and 8 are based on data more specific to the Oak Creek Project Area. To obtain estimate 7, information was obtained on an average of grazing permits on the Fillmore Range that occurred from 1978 through June 1980. These were transfers of permits on National Forest lands within or directly surrounding the project area. In this period, 38 transfers occurred. During 1985, 183 were permits that were cancelled and replaced with a new permit. On nine of the transfers the price paid for the permits of the old permit and not the price paid for the permits that could be verified. As all 24 transactions involved only the permit and cattle. On nine of the transfers the price of the permit could not be verified because the whole ranch was sold with no reliable breakdown of price of permits and the buyer or the seller didn't know the breakdown between cows and permits, or the transaction occurred between family members at a "less than arm's length" transaction. Five of the buyers could not be contacted. All of the ranchers contacted willingly verified the transactions and provided the price paid for permits.

The price paid for permits on an AUM basis ranged from $29.70 to $45.65 with an average of $57.29. The average price paid for permits on an AUM basis was $57.29 for 1978 through 1985 are given in table 2. These compare closely with 1960 public permit values as observed in the 1965 Grazing Fee Review and Evaluation (USDA 6 and 1965). The value was annualized assuming a per-permit interest rate and added to the annual grazing fee.

To obtain estimate 6, prices for grazing on State of Utah Division of Wildlife Resources lands were obtained. State lands similar to those in the project area that are included in an open bidding process, are used to calculate average bids per year. A large tract of land managed by the State of Utah lies adjacent to the southeast of the development area. It is similar in topography and vegetation, is used during the same season, and

Table 2—Summary of permit transfers, Fillmore Ranger District, Fishlake National Forest, 1978 to 1985

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of</th>
<th>Average</th>
<th>Change from</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transfers</td>
<td>AUM's</td>
<td>previous year</td>
</tr>
<tr>
<td>1985</td>
<td>8</td>
<td>28</td>
<td>1984</td>
</tr>
<tr>
<td>1982</td>
<td>30</td>
<td>110</td>
<td>1981</td>
</tr>
<tr>
<td>1978</td>
<td>32</td>
<td>77</td>
<td>1977</td>
</tr>
<tr>
<td>1981</td>
<td>15</td>
<td>52</td>
<td>1980</td>
</tr>
<tr>
<td>1984</td>
<td>17</td>
<td>40</td>
<td>1983</td>
</tr>
<tr>
<td>1980</td>
<td>40</td>
<td>12</td>
<td>1979</td>
</tr>
<tr>
<td>1978</td>
<td>16</td>
<td>1.85</td>
<td>1977</td>
</tr>
<tr>
<td>1978</td>
<td>48</td>
<td>152</td>
<td>1979</td>
</tr>
<tr>
<td>1979</td>
<td>49</td>
<td>155</td>
<td>1980</td>
</tr>
<tr>
<td>1980</td>
<td>24</td>
<td>65</td>
<td>1981</td>
</tr>
<tr>
<td>1980</td>
<td>50</td>
<td>183</td>
<td>1982</td>
</tr>
<tr>
<td>1984</td>
<td>17</td>
<td>57</td>
<td>1983</td>
</tr>
<tr>
<td>1981</td>
<td>37</td>
<td>305</td>
<td>1982</td>
</tr>
<tr>
<td>1984</td>
<td>26</td>
<td>192</td>
<td>1981</td>
</tr>
<tr>
<td>1982</td>
<td>40</td>
<td>192</td>
<td>1980</td>
</tr>
<tr>
<td>1983</td>
<td>34</td>
<td>184</td>
<td>1981</td>
</tr>
<tr>
<td>1984</td>
<td>32</td>
<td>300</td>
<td>1982</td>
</tr>
<tr>
<td>1985</td>
<td>28</td>
<td>192</td>
<td>1983</td>
</tr>
<tr>
<td>1986</td>
<td>34</td>
<td>194</td>
<td>1984</td>
</tr>
</tbody>
</table>

Table 3—Grazing fee information for lands administered by Utah Division of Wildlife Resources, 1978 to 1985

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>Change from</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dollars</td>
<td>previous year</td>
</tr>
<tr>
<td>1978</td>
<td>3.84</td>
<td>1977</td>
</tr>
<tr>
<td>1979</td>
<td>3.48</td>
<td>1978</td>
</tr>
<tr>
<td>1980</td>
<td>4.37</td>
<td>1979</td>
</tr>
<tr>
<td>1981</td>
<td>3.02</td>
<td>1980</td>
</tr>
<tr>
<td>1982</td>
<td>3.48</td>
<td>1981</td>
</tr>
<tr>
<td>1983</td>
<td>3.84</td>
<td>1982</td>
</tr>
<tr>
<td>1984</td>
<td>4.01</td>
<td>1983</td>
</tr>
<tr>
<td>1985</td>
<td>7.33</td>
<td>1984</td>
</tr>
</tbody>
</table>

Average, 1983 to 1985: 6.23

CONCLUSION

Evidently, estimates of forage value differ significantly depending upon the methodology and assumptions used. However, the consistent value seems to be determined through market comparisons of the most likely substitute forage. Such an estimate is based on what producers pay, not what they hypothetically could or should pay.

This study suggests that a reasonable estimate of the market value of public range forage in the Oak Creek area falls within the $4.50 to $6.50 range. Economics analysis of range improvements should consider the sensitivity of the analysis results to charges in forage values.

The feasibility analysis of public range improvements will be most accurate if forage values derived from market transactions are used or they are most reflective of actual conditions. Range estimates or other methods could be used for a quick estimate, and then a sensitivity analysis can be used to show how much effort is justified in getting a more accurate estimate of the value of the fee and the linear programing studies could be used as high and low price bounds for first estimates of forage value.

In the case of a forage value, with the exception of the value of hay as a substitute feed, economic analysis of range improvements. The project costs per additional AUM of forage produced were quite high (see Pope and Wagstaff 1987).

REFERENCES

Barlett, E. T. Valuing range forage on public rangelands.

Eight methods for estimating the value of an animal unit month of public rangeland grazing generated estimates applicable to the Oak Creek area of central Utah. Of the eight estimates, six bracketed the range of acceptable estimates. The price paid for leasing similar rangeland was considered the most accurate estimate.

KEYWORDS: forage value, AUM value, public grazing value

INTERMOUNTAIN RESEARCH STATION

The Intermountain Research Station provides scientific knowledge and technology to improve management, protection, and use of the forests and rangelands of the Intermountain West. Research is designed to meet the needs of National Forest managers, Federal and State agencies, industry, academic institutions, public and private organizations, and individuals. Results of research are made available through publications, symposia, workshops, training sessions, and personal contacts.

The Intermountain Research Station territory includes Montana, Idaho, Utah, Nevada, and western Wyoming. Eighty-five percent of the lands in the Station area, about 231 million acres, are classified as forest or rangeland. They include grasslands, deserts, shrublands, alpine areas, and forests. They provide fiber for forest industries, minerals and fossil fuels for energy and industrial development, water for domestic and industrial consumption, forage for livestock and wildlife, and recreation opportunities for millions of visitors.

Several Station units conduct research in additional western States, or have missions that are national or international in scope. Station laboratories are located in:

Boise, Idaho
Bozeman, Montana (in cooperation with Montana State University)
Logan, Utah (in cooperation with Utah State University)
Missoula, Montana (in cooperation with the University of Montana)
Moscow, Idaho (in cooperation with the University of Idaho)
Ogden, Utah
Provo, Utah (in cooperation with Brigham Young University)
Reno, Nevada (in cooperation with the University of Nevada)

USDA policy prohibits discrimination because of race, color, national origin, sex, age, religion, or handicapping condition. Any person who believes he or she has been discriminated against in any USDA-related activity should immediately contact the Secretary of Agriculture, Washington, DC 20250.