Characterization of Pollen Particles Using LIDAR

Leda Sox
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/graduate_posters

Part of the Atmospheric Sciences Commons, and the Optics Commons

Recommended Citation
https://digitalcommons.usu.edu/graduate_posters/3

This Presentation is brought to you for free and open access by the Browse all Graduate Research at DigitalCommons@USU. It has been accepted for inclusion in Graduate Student Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Characterization of Pollen Particles Using LIDAR

Leda Sox, Agnes Scott College, Decatur, GA
Advisor Dr. Amy Sullivan, Agnes Scott College, Decatur, GA

We have observed pollen in the local troposphere using the depolarization capabilities of a LIDAR (Light Detection and Ranging) system. The polarization characteristics of the received LIDAR signal, along with supplemental pollen forecast data, allowed me to characterize the shape of the pollen particles. Supported by NSF.

Data Processing

- All data is processed using Matlab
- Range Corrected Backscatter plot shows the relative amount of light returned to the system
- Depolarization Ratio plot shows the ratio of “Cross-polarization” to “Co-polarization”

Pollen

Special Thanks to Allison Mercer and Dr. Gary Gimmestad of the Georgia Tech Research Institute and Dr. Arthur Bowling at Agnes Scott College. This project was supported by NSF Grant #0836997 and #6026975