Spruce Ecosystem Recovery Project Final Environmental Impact Statement

United States Forest Service

Follow this and additional works at: https://digitalcommons.usu.edu/utah_finalimpact

Part of the Environmental Sciences Commons

Recommended Citation
https://digitalcommons.usu.edu/utah_finalimpact/4

This Report is brought to you for free and open access by the Utah at DigitalCommons@USU. It has been accepted for inclusion in Final environmental Impact Statements (UT) by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
This Final Environmental Impact Statement documents the analysis of the Proposed Action, two action alternatives, and the No Action alternative, developed for the Spruce Ecosystem Recovery Project (SERP) area. The Proposed Action and action alternatives considered in detail are consistent with current management direction. Each alternative responds differently to the issues associated with the Proposed Action.

The Proposed Action would: (1) salvage harvest dead and dying Engelmann spruce, and remove selected green spruce and alpine fir trees using sanitation and improvement treatments, on 2,872 acres with ground-broad-tractor, yarding systems. These treatments are designed to recover economic value, reduce fuel loadings, and more rapidly reforest areas affected by spruce beetle mortality. The treatments could also reduce the present and future risk of further loss to spruce beetle caused mortality in some portions of the SERP area; (2) regenerate 1934 acres of mature to old aspen stands with larkwood or sasquatch harvesting, or prescribed burning. These treatments are designed to increase the representation of younger age classes of aspen forests in the SERP area which would improve the biodiversity of the vegetation resource. Improving biodiversity in the area would reduce the risk of future catastrophic events such as insect and disease epidemics and wildfire. Increasing the representation of aspen would also provide benefits to the recreation resources by maintaining the species that provides the fall coloration that visitors find attractive; (3) establish 41 acres of defensible fire suppression zones by reducing ladder fuels and fuel loadings along private land subsidiums with hand tilling and plowing of undesirable trees and woody material. These treatments are designed to provide fire suppression personnel a place to stop or slow a wildfire in order to minimize the risk of catastrophic fire; and (4) reintroduce fire into the ecosystem by implementing management ignited prescribed fire in two separate areas totaling 3,008 acres. This treatment would reduce fuel loads to historic levels reducing wildfire risk. High fuel loads increase fire intensity which can damage soil structure and reduce productivity. Use of prescribed fire would also encourage species diversity in the SERP area. Alternative A would harvest 2,552 acres; acres of aspen would be regenerated, 2,792 acres would be burned. Alternative B would harvest the same acres as the Proposed Action as well as a 5-year regeneration. Only 1,165 acres would be burned. Defensible fire suppression zone treatments would be the same for all Action Alternatives. A Proposed Forest Plan Amendment is also included.

To save on printing costs, this Final Environmental Impact Statement (FEIS) was reprinted without Appendices 3 (Forest Plan Standards and Guidelines) and 5 (Soil and Water Conservation Practices). Please refer to the DEIS for copies of these Appendices. In addition, only the pages where changes were made were reprinted and included in the FEIS. On the pages where changes were not made to the DEIS, the subtitle at the bottom of the pages still reads "DEIS."
TABLE OF CONTENTS

TITLE

PAGE

CHAPTER ONE - Purpose of and Need for Action

PROJECT AREA ... 1-1

PROPOSED ACTIONS ... 1-1

ACTIVITIES PROPOSED .. 1-2

PURPOSE AND NEED FOR THIS PROJECT 1-4

INCORPORATION BY REFERENCE 1-6

FOREST PLAN DIRECTION 1-6

MA 1 - General Forest Direction 1-7

MA 2A - Semi-Primitive Recreation 1-7

MA 2B - Rural & Roaded Recreation Opportunities 1-7

MA 6A - Livestock Grazing 1-7

MA 7A - Wood Production and Utilization 1-7

MA 9A - Riparian Management 1-8

PROPOSED FOREST PLAN AMENDMENT 1-8

DECISIONS TO BE MADE 1-8

CHAPTER TWO - Alternatives, Including the Proposed Action

ISSUES ... 2-1

ALTERNATIVE DEVELOPMENT 2-2

Alternatives Considered, But not Studied in Detail 2-2

Alternatives Considered in Detail 2-3

Features Common to All Action Alternatives 2-4

Related to Soil and Water 2-4

Related to Vegetation .. 2-5

Related to Wildlife .. 2-5

Related to Recreation and Visitation 2-7

Related to Public Management 2-8

Related to Other Resources 2-9

Enhancement and Improvement Measures 2-11

Description of Alternative 2-11

The Proposed Action .. 2-12

No Action (Current Management) 2-16

Alternative A - The proposed Action with no Treatment of the Chicken Head and Spruces Focus Areas and Sites 3 and 4 in Section 110 in the Lower State Focus Area ... 2-17

Alternative B - The Proposed Action With no Treatment of the Roadless Area Focus Area ... 2-17

COMPARISON OF ALTERNATIVES 2-17

CHAPTER THREE - Affected Environment

INTRODUCTION .. 3-1

FOREST LAND SUITABILITY 3-2

VEGETATION RESOURCE 3-2

Vegetative Structure .. 3-2

Near Class Distribution and Canopy Cover 3-2

Openings With Less Than 30 Percent Canopy Closure 3-5

Snags, Downed Logs, and Woody Debris 3-6

Old Growth ... 3-6

Vegetative Composition 3-6

Non Vegetated Areas (429 acres) 3-6

Non Forested Areas (11,299 acres) 3-7

Nuisance Weeds ... 3-7

Vegetative Processes (Insects and Diseases) 3-7

Spruce Beetle .. 3-7

Western Balsam Bark Beetle 3-7

Antosoma Root Disease 3-7

Recent Impacts of Insects and Diseases in Aspen 3-8

Vegetative Patterns .. 3-9

Fragmentation ... 3-9

Threatened, Endangered, and Sensitive Plant Species 3-10

Cumulative Effects Area 3-11

RECREATION RESOURCE 3-12

1 tab State highways 143, 148 and 14 3-12

Camping ... 3-14

Fishing ... 3-14

Fishing ... 3-14

Mountain Biking .. 3-14

ATV and Motorcycle Use 3-15

Brian Head Ski Resort 3-15

Winter Recreation Use 3-15

Brian Head Town ... 3-15

Secondary Residences 3-16

Brian Head Peak .. 3-16

Hunting and Fishing ... 3-16

Recreation Opportunity Spectrum Classification and Forest Plan Direction .. 3-16

Cumulative Effects .. 3-16
SCENIC RESOURCES .. 3-17
National Forest Scenic Management System 3-17
Landscape Character .. 3-17
Southern Markagunt-Parasang Plateaus Subsections 3-18
Northern Markagunt Plateau ... 3-18
Landscape Character Elements Common to Both Subsections 3-19
The Landscape Character and Scenic Integrity Levels 3-19
Hancock Peak Focus Area ... 3-19
Lower Western Focus Area ... 3-20
Spencer Focus Area ... 3-20
Steam Engine Focus Area ... 3-21
Bunker Creek Focus Area ... 3-21
Deer Creek Focus Area .. 3-21
Chicken Head Focus Area .. 3-21
Roadless Area Focus Area ... 3-22
Cumulative Effects Area .. 3-22

SOILS .. 3-22
Erosion Processes ... 3-22
Upper Axis Subwatershed ... 3-23
Upper Mammoth Subwatershed 3-23
Panguitch Lake Subwatershed 3-24
Parowan Watershed .. 3-24
Summit Subwatershed ... 3-24
Coal Creek Watershed .. 3-24
North Fork Virgin Watershed 3-25
Summar ... 3-25
Cumulative Effects Area .. 3-25

HYDROLOGY .. 3-25
Geology and Geomorphology 3-26
Channel Morphology and Riparian Conditions 3-26
Water Quality .. 3-26
Critical Watershed Areas .. 3-27
Cumulative Effects Area .. 3-27

FISHERIES RESOURCE .. 3-28
Fish Populations ... 3-28
Fish Habitat ... 3-28
Cumulative Effects Area .. 3-28

WILDLIFE RESOURCE .. 3-30
Endangered and Threatened Species 3-31
Peregrine Falcon ... 3-31
Southwestern Willow Flycatcher 3-31
Bald Eagle ... 3-32
Mexican Spotted Owl ... 3-32
Sensitive Species ... 3-33
Three-Toed Woodpecker .. 3-33
Northern Goshawk ... 3-33
Spotted Owl .. 3-35
Porcupine ... 3-35
Western Big-Eared Bat .. 3-35
Flammulated Owl ... 3-35
Management Indicator Species 3-36

Rocky Mountain Elk and Mule Deer 3-37
Wild Muley (Odocoileus hemionus) 3-37
Northern Flicker ... 3-37
Riparian Habitat Conditions 3-37
Other Species of Concern ... 3-38
Blue Grouse .. 3-38
Northern Flying Squirrel .. 3-39
Bats .. 3-39
Cumulative Effects Area .. 3-40

BIODIVERSITY ... 3-40

HERITAGE RESOURCES (CULTURAL RESOURCES) 3-41
Cumulative Effects Area .. 3-41

SOCIAL-ECONOMIC ... 3-41
Analysis I: Mills ... 3-41
Iron County Analysis Unit ... 3-42
Garfield County Analysis Unit 3-43
Kane County Analysis Unit ... 3-43
Cumulative Effects Area .. 3-44

SPECIAL USES ... 3-44
Fixed Improvements .. 3-44
Events .. 3-45
Recreational Activities .. 3-45
Cumulative Effects Area .. 3-49

FIRE AND FIRE RESOURCES ... 3-49
Fire Susceptibility of Fire-Related Resources Within the Project Area 3-49
Stand Structure .. 3-49
Decay and Decomposition ... 3-50
Fuel moisture ... 3-50
Wildland Urban Interface .. 3-50
Fire History .. 3-51

AIR QUALITY ... 3-51
Cumulative Effects Area .. 3-53

RANGE RESOURCE .. 3-53
Agriculture .. 3-53
Cumulative Effects Area .. 3-54

TRANSPORTATION .. 3-55
Alteration Roads ... 3-55
Utah State Highway 14 .. 3-55
Utah State Highway 143 ... 3-55
Utah State Highway 108 .. 3-55
Collector Roads ... 3-55
Forest Road 9004B ... 3-55
Local Roads ... 3-55
Cumulative Effects Area .. 3-56
CHAPTER 6 - Literature Citations

CHAPTER 7 - Glossary

CHAPTER 8 - Proposed Forest Plan Amendment

CHAPTER 9 - Responses to Comments to the Draft Environmental Impact Statement

LIST OF TABLES AND FIGURES

TABLES

TABLE NO. TABLE TITLE PAGE

1-1 Focus area acreage by treatment. 2-7
1-2 Raptor management areas. 2-4
3-1 Forest Land Suitability classification for the SERP area. 3-2
3-2 Existing conditions within the SERP area based on 1996 exam data. 3-4
3-3 Existing VSS and canopy cover compared to desired conditions for spruce-fir forests, 1996 data. 3-5
3-4 Existing VSS and canopy cover compared to desired condition for aspen forests, 1996 data. 3-5
3-5 Spruce mortality by year in the SERP area. 3-8
3-6 Habitat suitability of sensitive plants in the SERP area. 3-10
3-7 Populations of Arizona willows; size, condition and concerns. 3-11
3-8 UDOT Traffic Counter - Highway 14. 3-13
3-9 Cedar Breaks National Monument Monthly Use Totals - 1996. 3-13
3-10 Summer Lift Use - 1994. 3-15
3-11 Comparison of Visual Management and Scenery Management Systems Objectives. 3-18
3-12 Biological Condition Index of Streams Sampled in 1996. 3-27
3-13 Cumulative Effects Watersheds. 3-28
3-14 Habitat suitability for listed species. 3-31
3-15 Percent acreage of the SERP area existing in each VSS for aspen cover type. 3-34
3-16 Acres with tree size classes (in inches dbh) by cover type. 3-35
3-17 Elk cover provided by each cover type, tree size and portion of tree by acres. 3-37
3-18 Cedar City Ranger District Outfitter and Guide Permits. 3-46
3-19 Special Use Permits within the Spruce Ecosystem Recovery Project Area (Recreation). 3-47
3-20 Special Use Permits within the Spruce Ecosystem Recovery Project Area (non-recreation). 3-49
4-1 Effects of Alternatives on Aspen Forest Structure (% of Forest Acres). 4-3
4-2 Summary of conditions within the Cumulative Effects Watersheds. 4-34
4-3 Past Treatments in the Mammoth Creek CFW. 4-37
4-4 Past Treatments in the Midway Creek CFW. 4-38
4-5 Past Treatments in the Mammoth Creek CFW. 4-40
4-6 Past Treatments in the Midway Creek CFW. 4-41
4-7 Past Treatments in the Mammoth Creek CFW. 4-43
4-8 Comparison of Alternatives. 4-44
4-9 Summary of Effects to Nesting and Foraging Habitat for the Proposed Action. 4-45
4-10 Percent of the SERP Area in Each VSS of Aspen Cover Type with the Proposed Action. 4-53
4-11 Estimated Acres of Tree Size Classes by Cover Type with the Proposed Action. 4-52
4-12 Cover Provided with Existing Condition and Proposed Action. 4-54
4-13 Watershed Assessment Risk of Adverse Effects to Wildlife Species by Watershed. 4-56
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Figure No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-15</td>
<td>Percent of Surveyed Acres with Tree Diameter Sizes by Alternative.</td>
<td>4-42</td>
<td>Projects</td>
</tr>
<tr>
<td>4-16</td>
<td>Comparison of Conifer VSN estimates from only vegetation treatments (not beetle mortality), by Alternative.</td>
<td>4-62</td>
<td>Project</td>
</tr>
<tr>
<td>4-17</td>
<td>Comparison of Aspen VSN by Alternative.</td>
<td>4-62</td>
<td>Project</td>
</tr>
<tr>
<td>4-18</td>
<td>Comparison of Elk Cover and Road Density by Alternative.</td>
<td>4-63</td>
<td>Project</td>
</tr>
<tr>
<td>4-19</td>
<td>Economic Effects (market resources), Measured by Present Net Value (PNV).</td>
<td>4-69</td>
<td>Project</td>
</tr>
<tr>
<td>4-20</td>
<td>Economic Effects, Measured by Jobs Created and Induced Income.</td>
<td>4-69</td>
<td>Project</td>
</tr>
<tr>
<td>4-21</td>
<td>Haul Route Use Facts.</td>
<td>4-74</td>
<td>Project</td>
</tr>
<tr>
<td>4-22</td>
<td>Miles and cost of road construction, reconditioning and temporary roads for the Proposed Action and Alternative A.</td>
<td>4-80</td>
<td>Project</td>
</tr>
<tr>
<td>4-23</td>
<td>Miles and cost of road construction, reconditioning and temporary roads for Alternative A.</td>
<td>4-81</td>
<td>Project</td>
</tr>
<tr>
<td>S-1</td>
<td>Proposed changes to Standards and Guidelines</td>
<td>8-2</td>
<td>Project</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>FIGURE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spruce Ecosystem Recovery Project</td>
</tr>
<tr>
<td>2</td>
<td>Proposed Action Treatment Summary</td>
</tr>
<tr>
<td>3</td>
<td>Alternative A Treatment Summary</td>
</tr>
<tr>
<td>4</td>
<td>Alternative B Treatment Summary</td>
</tr>
</tbody>
</table>
CHAPTER ONE

PURPOSE OF AND NEED FOR ACTION

This chapter outlines the Purpose and Need, and the Purpose and Need that drove its development. It also discusses the relationship of this document to the Dixie National Forest Land Resource Management Plan (Forest Plan, 1986) along with other laws and regulations.

PROJECT AREA

The Scape Ecosystem Recovery Project (SERP) area is located within the Dixie National Forest, Cedar City Ranger District. It is approximately 20 air miles east of Cedar City, Utah, and is immediately adjacent to Cedar Breaks National Monument, Utah.

The 52,991 acre project area is located in the upper drainages of the Parowan, Mammoth, Panguitch, Arcut, and Calf Creek watersheds. Elevations range from 7900 feet at the north end of the project area to 11,307 feet at Brian Head Peak. The forest types are primarily Engelmann spruce/subalpine fir, with a strong component of aspen. The forested areas are interspersed with meadows, basalt flows, and cinder cones. There are 37,577 acres of forest and 15,414 acres of non-forested land, and 22,951 acres of suitable forest land. There are 4,621 acres of unsuitable land based on adequate resource values that cannot be adequately assured and irreversible resource damage to soil or watershed conditions, and 372 acres unclassified. Suitable lands are areas where management practices are appropriate. Refer to the Forest Land Suitability Map in Appendix A for locations and display of usable areas.

State Highways 14, 143 and 148 traverse the project area. Brian Head Town is adjacent to the project area on the north boundary. Legal description for the project area include all or part of sections 28,33 of Township T: 15 South (S), Range (R): 8 West (W): 3, 17, 20, 24, 26, 35 of TMS, RSW: 5-10, 15, 21, 30-32 of T37S, R31W: 1, 2, 11-14, 25-26, 35 and 36 of T37S, R34 W/2R, 3, 6, 8, 14, 24, 25 and 36 T36S, R32W: 10, 16, 22-27, 35 and 36 T36S, R33W, Salt Lake City (SLC) Meridian, Iron County, Utah and sections 1 and 2 T35S, R31W: 5 and 6 T35S, R32W, SLC Meridian, Kane Co., UT.

PROPOSED ACTIONS

Several activities are proposed within the project area to progress toward desired conditions. These activities include commercial timber harvest, aspen regeneration, defensible fire suppression areas, and management prescribed fire. The activities are proposed to occur within a total of nine Focus Areas located in the northern portion of the SERP area. Five are associated with commercial timber harvest and aspen regeneration, one with only aspen regeneration, two with management prescribed fire, and one with defensible fire suppression areas. A detailed description of the proposed activities is contained in Chapter Two.

In addition to implementing proposed management activities, one amendment to the Forest Plan is proposed that reflects needed Forest Plan direction changes for future projects. The amendment is described in detail later in this Chapter.

Activities proposed within the project area contribute to meeting the goals and objectives, management direction, and standards and guidelines found in the Forest Plan. The proposed activities are specifically designed to move existing conditions toward the desired future condition. This would occur for each resource area identified during preliminary analysis.

A watershed assessment was completed to describe existing conditions and determine the desired condition of the resource within the project area. The assessment area consisted of approximately 472,000 acres of National Forest

System watersheds encompassing private, state, National Forest and other federal ownerships. The assessment helped to determine the cumulative effects of the existing condition that showed a decline in forest health. Management activities proposed within the project area were then developed to address this condition. The assessment is included in the Project File (EIS/36) for the SERP analysis and is available upon request for review. In the analysis, although all desired resource conditions were identified and used to develop proposed activities, the following were key:

1. Maintain forest conditions which include: number of trees on a site (stockage), structural size and age class distribution, species composition and diversity, and patterns (size, shape, location) to meet a variety of resource needs identified within the proposed project area. Meeting the desired forest conditions will reduce the risk associated with catastrophic losses due to insect, disease or wildfire.

2. Maintain sufficient numbers of standing snags and downed logs of various size class and species. This will provide important habitat for a diverse plant and animal community within the project area. Maintenance of this forest structure will also ensure a sufficient quantity of organic matter for the soil resource.

3. Maintain a strong representation of intact forest soils, emphasizing organic surface layers important to maintaining overall site productivity.

4. Maintain road conditions and locations to assure resource protection of soil and water resources. Minimize motorized open road densities to meet resource objectives; this should be less than two miles of road per square mile.

5. Establish areas where fire suppression forces would have an added opportunity to suppress wildfire. These areas would contain less than ten tons of fuel per acre and have noncontinuous ladder fuels. These would be established in strategic locations, where fire suppression personnel would have the best probability of controlling wildfire.

6. Where safety and resource objectives allow, reintroduce fire in sites where fuel characteristics are not within desired conditions. Through the use of prescribed fire, manipulate fire severity by introducing fire at specific times of the year. Fuels would be reduced to desired levels.

Detailed documentation of all resource considerations from the watershed assessment is located in the Project File (EIS/36).

ACTIVITIES PROPOSED

1. Treatments in conifer forests, including commercial tree harvest, forest regeneration activities, fuelwood removal or burning and road construction/reconstruction required to support commercial harvest treatments.

BACKGROUND

The spruce-fir forest on the Northern Markagunt Plateau (SERP) area is typically replaced every 250-400 years by an insect epidemic, wildfire or a combination of the two. These replacement events generally occurred once the forest reached maturity. The 40 years growth characteristics of the spruce-fir forest are closely tied to catastrophic changes in the landscape, as a result of insect or fire disturbance regimes. However, small fires in primarily aspen areas and pocket losses of trees to bark beetles occasionally contributed to some size class differences and species mosaic across the forested landscape. Breaking up the continuity of mature forests can reduce large scale landscape changes as a result of fire and/or insect events. Small disturbances break up the continuity of heavy fuels and alter stand conditions which are attractive to bark beetles. Lack of a mosaic in the spruce-fir forest structure of the project area has led to outbreak populations of spruce beetle. Large scale, overstory losses of the spruce component have occurred within portions of the project area since the early 1990's. This event, although not desired from a fire resource perspective (fuels, visibility), is a natural, cyclic occurrence in the project area.

Healthy, vigorous spruce trees are capable of resisting attack by a limited number of beetles associated with endemic populations. Endemic populations of bark beetles cause mortality of individual hosts or small isolated groups of trees.
Populations at this level are generally controlled by host resistance to attack, parasites and predators. Pocket mortality contributes to starved and species diversity which reduces insect and fire susceptibility caused by a single event.

Currently, spruce beetles are at epidemic levels and have killed thousands of spruce trees, over approximately 7,400 acres on the Cedar City Ranger District. In some sites where spruce was the dominant overstory, few live trees remain. Because of expanding spruce beetle populations since the early 1990’s, an additional 15,000 acres of spruce forest are at risk to beetle infestation. Table 1-1 shows the Focus Areas and acreage proposed for treatment.

Table 1-1: Focus Area Acreage by Treatment

<table>
<thead>
<tr>
<th>FOCUS AREAS</th>
<th>ACRES CONFIR TREATMENT</th>
<th>ACRES ASPEN TREATMENT</th>
<th>ACRES DFS ZONES</th>
<th>TOTAL ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hancock Peak</td>
<td>1661 harvest</td>
<td>46</td>
<td>1757</td>
<td></td>
</tr>
<tr>
<td>Lower/Mtn</td>
<td>898 harvest</td>
<td>240</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>Spruces</td>
<td>321 harvest</td>
<td>143</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>Steam Engine</td>
<td>258 harvest</td>
<td></td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Bunker</td>
<td>257 harvest</td>
<td></td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Deer Creek</td>
<td>512</td>
<td></td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>Roadless Area</td>
<td>2235</td>
<td>557</td>
<td>2792</td>
<td></td>
</tr>
<tr>
<td>Chicken Head</td>
<td>739 harv/ung</td>
<td>364</td>
<td>1103</td>
<td></td>
</tr>
<tr>
<td>DNF Int/Foreman</td>
<td></td>
<td>41</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5646</td>
<td>1954</td>
<td>41</td>
<td>7821</td>
</tr>
</tbody>
</table>

2. Aspen forest treatments -aspen forest regeneration as a result of commercial tree harvest, fuelwood removal, and prescribed fire.

BACKGROUND

Aspen forests add to structural and species diversity within the SERP area. This diversity increases wildlife value because it provides a cover type much different than conifers. Aspen also provides recreation and scenic values as a result of fall coloration. In the proposed project area, more aspen is currently being lost than replaced by aspen regeneration. The spruce/subalpine for forest type is replacing the aspen.

Aspen forests are fire or disturbance dependent. They require frequent disturbances, like fire, to ensure the more competitive, and less fire adapted conifers do not replace aspen clumps. Conifer invasion in aspen sites slows aspen regeneration, thus eventually replacing the aspen component. The increase in conifers also creates higher fuel loads and ladder fuels which can cause homes fires. An increase in ladder fuels also causes fire spread more rapidly as it carries fire from one crown to another. These changes in fuel structure increase the risk of additional resource damage. Aspen regeneration treatments are proposed to occur in six Focus Areas as shown on Table 1-1.

3. Establish defensible fire suppression (DFS) zones on national forest system lands along travel corridors and in sites adjacent to other land ownerships (private land, national monuments, etc.). These sites generally have higher resource values in addition to a higher incidence of human caused fire risk. Travel corridors are identified as existing DFS zones. With minimal costs for improvement, these corridors can provide suitable fire breaks for suppression of wildfire.

BACKGROUND

Fuel loads have increased within the aspen/subalpine component to a level of risk where resource and property loss would be significant if wildfire occurred. Creating DFS zones adjacent to high value urban interface areas and along primary travel corridors would reduce potential catastrophic loss of property or resources.

PURPOSE AND NEED FOR THIS PROJECT

THE PURPOSE OF THE PROPOSED ACTIONS

1. The purpose of actions within the forested areas of the project area to improve forest health and ecosystem function by improving species diversity and forest structure and pattern characteristics. The proposed treatments will recover valuable wood products, reduce fuel loads to desired conditions, and allow for a more rapid rate of reforestation.

2. The purpose of proposed actions in the aspen component is to:

 A. Increase species diversity across the landscape to reduce catastrophic losses associated with forest fires. Currently, the abundance of spruce in a structural stage susceptible to spruce beetle has resulted in a large loss of the overstory component in infested areas. The spruce beetle primary host is spruce and has little effect on non-host species such as aspen or fir. Increasing the non-host component and varying structural size classes will reduce large landscape impacts in the long term. Maintaining a diverse forest structure and increasing diversity will reduce forest susceptibility to catastrophic events (Schmidt and Frye 1978).

 B. Improve the visual form, color and textural diversity in the landscape viewed by forest users. Aspen fall coloration is the primary factor that contributes to the term "color country" used to describe this area. The loss of aspen across the landscape would reduce the visual impact and recreational enjoyment associated with this species.

 C. Improve structural vegetative diversity associated with wildlife habitat. Aspen forests are important habitat for many species of birds and mammals, especially in the interior west where it is the only upland hardwood species. Aspen ecosystems provide forage production for wildlife in numerous dominated environments. In grassland settings, aspen is used as hiding and thermal cover.

 D. Some high value resource areas on the Cedar City Ranger District have high fuel loads in or adjacent to them. The purpose of the establishment of Defensible Fire Suppression zones is to improve wildfire suppression capabilities in these areas. Fire suppression zones provide fire fighters with an area to stop or slow the spread of wildfire.

 E. Previous fire suppression tactics have created changes in vegetation and forest structure. Reinforcing fire in the landscape will accomplish three objectives.

3. Some high value resource areas on the Cedar City Ranger District have high fuel loads in or adjacent to them. The purpose of the establishment of Defensible Fire Suppression zones is to improve wildfire suppression capabilities in these areas. Fire suppression zones provide fire fighters with an area to stop or slow the spread of wildfire.

4. Reintroduce fire in areas where fire's influence has been reduced from its historical role. Through prescribed burns, fuels can be safely reduced to historical levels. Severity of burn will be reduced by reintroducing fire at specific times of year.

BACKGROUND

Ecosystem health could be significantly altered with the exclusion of fire. Allowing wildfire to ignite and burn naturally where fuel levels are high and difficult to control, could result in the loss of valuable resources, property or even human lives. Introducing prescribed fire by trained fire behavior specialists allows management of a valuable resource tool.

In addition to the aspen regeneration treatments previously described where fire could be used in conjunction with commercial or fuelwood removal, this activity is proposed in the Chicken Head (1103 acres) and Roadless Area Focus Areas (2792 acres). Species composition in these Focus Areas include aspen, conifer and areas labeled non-forested vegetation.
Cedar City Ranger District
Dixie National Forest

Purpose and Need for Action

A. It will reduce fuel loads to historic levels, reducing wildfire risk.
B. High fuel loads increase fire intensity. High fire intensities can damage soil structure, remove valuable soil macro and micro invertebrates and could significantly effect natural regeneration.
C. Encourage diversity across the vegetation landscape.

Prescribed fire is an important management tool when used under controlled conditions. Implemented correctly, it can result in landscapes that meet resource objectives and prevent uncontrollable wildfire conditions from developing.

BASED ON DESCRIBED PURPOSE AND DESIRED FUTURE CONDITION, THE FOLLOWING NEEDS HAVE BEEN IDENTIFIED

TIMBER HARVEST

- Salvage dead and infected forest trees. Commercial harvest of spruce beetle caused tree mortality will allow for the recovery of wood fiber. Removing dead spruce will also reduce forest fuels as standing trees eventually fall to the forest floor. Reducing fuel loads will create conditions favorable for establishing natural and artificial regeneration.
- Remove additional trees to alter forest stocking, species mix and structural attributes. This treatment will be done to reduce residual spruce susceptibility to spruce beetle attack. Reducing inherent risk to spruce beetle is an attempt to maintain some of the large spruce component. These large overstory trees are important for many resource objectives including: wildlife, recreation, visual and natural regeneration.

ASPIN TREATMENTS

- Create a mosaic pattern of aspen throughout the project area to increase younger age class representation. Treatments will involve new stands of aspen are developing to replace older stand structures as they die. This will enhance the opportunity to sustain aspen for, across the long term in a properly functioning condition.

DEFENSIBLE FIRE SUPPRESSION ZONES

- High fuel loads in and adjacent to valuable resources require the development of Defensible Fire Suppression zones on the Cedar City Ranger District. These DFS zones provide the best opportunity to suppress a wildfire that may occur and threaten existing resources.

PRESCRIBED FIRE

- Long-term fire suppression tactics have created change in pattern and distribution of vegetation. Implementing prescribed fire creates diversity in vegetation pattern, composition and structure. The creation of fuel breaks reduces the threat of catastrophic wildfire events.

PUBLIC INVOLVEMENT

Forest health issues have increased as a result of current bark beetle activity on the Cedar City Ranger District. Large scale changes on forest structure may prevent resource management goals from being attained or meeting public use objectives. Resource goals, which involve social values, associated with desired future condition may be adversely affected as a result of these changes.

Since 1992, the Dixie National Forest has provided information and responded to questions from thousands of people regarding bark beetle biology and the effect epidemic populations have on forest resources. This information was applied through letters, newspaper articles, public service messages, telephone calls, public meetings and field trips. The public has been invited to comment and participate in project planning efforts designed to address the beetle mortality and infestation risk to green trees. This public involvement effort is continuing with the SERP and is detailed in the public involvement record in the Project File (Exhibit 9).

IN CORPORATION BY REFERENCE

To decrease the bulk and redundancy of analysis for this final environmental impact statement (FEIS), this document will incorporate by reference (40 CFR 1502.21), a watershed assessment and individual resource white papers. The watershed assessment was completed in March of 1997 encompassing National Forest System Waterbodies in and adjacent to the SERP area. This assessment included 427,600 acres of private, state, National Forest System and other federal ownerships. The completed document describes existing conditions and determines the desired condition of the resources in the project area. This assessment will allow a cumulative effects analysis of forest health and proposed management activities.

The white papers were also completed by the Interdisciplinary Team (IDT) involved with the watershed assessment. The papers describe the effects of timber harvest and burning on individual resources. Whenever portions or sections of the Service's Ecosystem Recovery Project (SERP) incorporate by reference one of the previously cited environmental analysis or documents, the specific analysis and information incorporated shall be identified. The analysis, implementation, and monitoring of Watershed Management Plans, and all appropriate literature citations, used in previous analyses and assessments, will become part of the SERP FEIS. A copy of the incorporated documents may be requested from the Dixie National Forest at the Cedar City Ranger District, 52 North 100 East Street, P.O. Box 627, Cedar City, UT 84721-0627. Phone number (801) 865-3508.

FOREST PLAN DIRECTION

The 1996 Forest Plan places 44 percent (123,029 acres) of the Spruce Ecosystem Recovery Project area within the General Forest Management Area (GB). Three percent (113,475 acres) in the Winter Sports Sites Management Area (WS). 19 percent (89,309) in the Semi-Primitive Recreation Area (SPA), 10 percent (5,486) in the Rural and Roaded Recreation (R&R) Management Area (RRM), three percent (11,173) in the Lynchock Grazing Management Area (MG), 12 percent (6,332) in the Timber Management Area (TMA), one percent (403) in the Riparian Management Area (RMA), less than one percent (129) in Developed Recreation (RA), Fish and Aquatic Habitat (F AH), Wildlife Habitat (WH), Municipal Water Supply, Waterbodies (WS), Management Areas, and nine percent (4,747) within private lands. The Forest Plan Direction section of this chapter describes the goals and desired future condition for the primary management areas.

This analysis incorporates direction provided in the Forest Plan (1996). The Forest Plan, based on considerations addressed in the Final Environmental Impact Statement (FEIS), guides natural resource management activities using established standards and guidelines for management of the Dixie National Forest.

The Forest wide wide standards and guidelines (S&G's) are descriptive measures to be applied to all lands on the Dixie National Forest unless superseded by specific management area S&G's. Implementation of the Forest wide and specific management area S&G's would move the project area towards the "Desired Future Condition" (1984) described in the Forest Plan.
MA 1 - GENERAL FOREST DIRECTION
This plan direction is comprised of major areas across the Forest not covered by other MA's. Resource values across this high alpine area vary depending on adjacent resource uses.

DESIRED FUTURE CONDITION
The area emphasis is recreation. Depending on the ROS classification, certain DFC values would be emphasized. For a detailed discussion of this refer to Chapters Three and Four. Recreation and Scenery Management sections.

MA 23 - SEMI-PRIMITIVE RECREATION
This management area occurs in the central portion of the project area and contains the roadless inventoried area. It covers approximately 9,309 acres of which 8,524 are in the Hancock Peak Roadless Area (Forest Plan, pp IV-63 to IV-67).

DESIRED FUTURE CONDITION
This area will provide the user with a moderate to high probability of experiencing a feeling of isolation, tranquility and self-reliance in an environment offering challenges and risk. This DFC will offer the outdoor recreationalist a high degree of interaction in a natural environment.

MA 2B - RURAL & ROADED RECREATION OPPORTUNITIES
This management area consists of travel corridors along major traveled routes, some of which lead to various recreational areas on the Forest. Principle state highway corridors include: SR 14, SR 148, and SR 143. (Forest Plan, pp IV-68 to IV-72).

DESIRED FUTURE CONDITION
This area is characterized by a modified natural environment. Resource modification and utilization practices are generally in harmony with the natural rural environment. Some of the more modified areas within this area, utilization practices enhance recreation activities, maintain vegetative cover, and soil production. The opportunity to have a high degree of interaction with the natural environment and to face challenges associated with more primitive forms of recreation would not be important. Both motorized and non-motorized forms of recreation are possible on this area. The natural features of the landscape would dominate.

MA 6A - LIVESTOCK GRAZING
This management area consists of mountain meadows and parks with sage grass or grass forb vegetation (Forest Plan, pp IV-109 to IV-113).

DESIRED FUTURE CONDITION
Acreage of areas receiving this emphasis will remain essentially the same. Production and range condition will be improved. Areas where vegetation manipulation practices have been accomplished will be maintained for optimum forage production. Numbers of livestock improvements water developments, fences will increase.

MA 7A - WOOD PRODUCTION AND UTILIZATION
This management area consists of the major forested areas on the Forest. At lower elevations ponderosa pine is dominant. Mixed conifer species occupy mid elevation while the spruce for type is dominant at the highest elevation. (Forest Plan, pp IV-114 to IV-120).

DESIRED FUTURE CONDITION
This management area contains most of the commercial timber on the Forest and is the most highly productive for growing timber. The basic long-range objectives of timber management for this area are:

1. Create and maintain nearly equal areas in seedlings and saplings, pole timber, immature sawtimber and mature sawtimber.
2. Create and maintain stand conditions that will minimize growth loss and mortality from insect and disease
3. Convert slow growing stands of mature sawtimber (beyond culmination of mean annual increment for the product size objectives) to young, thriving stands of desirable species.

MA 9A RIPARIAN MANAGEMENT
This management area is located adjacent to perennial streams and across the Forest. Components of the area include the aquatic ecosystem, the riparian ecosystem (characterized by distinct vegetation), and adjacent ecosystems that are within approximately 100 feet measured horizontally from both edges of perennial streams and from the shores of lakes and other still water bodies. All of the components are managed together as a land unit comprising an integrated riparian area, and not as separate components (Forest Plan, pp IV-135 to IV-143).

DESIRED FUTURE CONDITION
Riparian area acreage remains essentially the same as currently exists. Riparian ecosystem remains healthy and productive. Sufficient habitat remains to support at least minimum viable populations of riparian dependent wildlife species. Water quality is not impaired below existing levels and is improved in some areas. Stream channel stability is maintained or areas where it is severely degraded, is improved, is improved to at least minimally acceptable standards. Area provides multiple resource outputs while providing protection to riparian dependent values.

PROPOSED FOREST PLAN AMENDMENT
A Forest Plan Amendment is also proposed. This amendment is designed for the purpose of clarifying "Opening Size" public review, and Regional Forester approval when responding to catastrophic events such as windstorm, fire, disease and insect epidemics. In catastrophic events, such as those previously mentioned, No opening size limitations will apply. However, the effects of this change in management direction and in the Forest Plan Standards and Guides will be detailed each time these new standards are applied.

A detailed description of the need for change to the Forest Plan is located in Chapter Eight. Proposed Forest Plan Amendment

DECISIONS TO BE MADE
This document will provide the Forest Supervisor of the Divide National Forest with the basis on which to make an informed decision. Following a review of this document, the Forest Supervisor will decide to do one of the following:

1. Approve the recovery activities within the Spruce Ecosystem Recovery project area as presented in the Proposed Actions, or one of the action alternatives to the Proposed Actions, or a combination of alternatives in this document. This also includes approved mitigation measures designed to reduce resource impacts associated with implementing an activity. Multiple decisions may result from this analysis.
2. Lift the No Action alternative, indefinitely unless another analysis is completed.
3. Approve or not approve the Forest Plan Amendment.
Figure: 1

Dixie National Forest
Cedar City Ranger District
Spruce Ecosystem Recovery Project

Legend
- Spruce Ecosystem Recovery Project
- Private Land
CHAPTER TWO

ALTERNATIVES, INCLUDING THE PROPOSED ACTION

This chapter describes the Proposed Action and alternatives to the Proposed Action which were designed to respond to key issues while still addressing the Purpose and Need identified in Chapter One. As required by law, a "No Action Alternative" remaining with existing conditions and action is considered. A summary of the comparison of each alternative is included at the end of this Chapter.

ISSUES

During the initial phase of planning for the Spruce Ecosstem Recovery Project (SERP), the Interdisciplinary Team (IDT) developed a preliminary list of issues. These issues were directly related to the proposed actions, including timber harvest and associated road construction closures, aspen regeneration, prescribed fire, and defensive fire suppression zones, and the effect of these activities on the natural resources and local economy of the area.

Information and concerns from the public involvement process, from resource specialists in the USDA Forest Service, and from other public agencies were used to finalize significant issues. The Interdisciplinary Team evaluated the initial public agency information and confirmed the three significant issues that would drive the development and evaluation of alternatives. The issue analysis is contained in the Project File (Exhibit 94) and is available upon request.

SIGNIFICANT ISSUES THAT DRIVE ALTERNATIVE DEVELOPMENT

ISSUE ONE

Proposed road construction and closures. Two opposing access management concerns are included in this issue. First, there is concern that increased access will adversely affect recreational values, ecological integrity, wildlife, and increase erosion. The second is a concern that closing roads will restrict public access and reduce semi-primitive motorized recreation opportunities.

DISCUSSION

Up to five miles of new roads are proposed for construction that will be closed upon completion of project activities. About three miles of existing current open roads are proposed for closure in the Bunker Creek drainage and five miles in the Hancock Peak area. The roads in Hancock Peak will be closed as directed under the Hancock Peak F 4 x 1987. The road closure plan specifies that the roads will be closed to all mechanical and motorized travel by installing natural barriers (i.e., rocks, earth berms). Closure of some of the roads in Hancock Peak were scheduled to occur in 1997, but will now be delayed until the completion of the proposed activities.

The effects of construction upgrading and closing roads will be analyzed by all affected resources in Chapter Four. All existing roads proposed for use to transport logs in the forest areas are designed to accommodate travel by most vehicular traffic. The "No Action" alternative will discuss the effects of not constructing or closing roads.

COMPARISON CRITERIA FOR ISSUE ONE:

1) Miles of open roads per square mile per: 1. Miles of constructed roads, where road prism remains intact (where roads are not obliterated); 2. Miles of temporary road and time period prior to obliteration.

ISSUE TWO

Proposed activities and recreation resource related economic effects to thearian Head Town. There is concern that the activities will reduce scenic quality, air quality, public safety, and recreational quality. This potentially reduces visitation and associated income to recreation and tourism dependent businesses. This includes loss of opportunity for semi-primitive recreation in areas with undeveloped character. Concerns have
Cedar City Ranger District
 Dixie National Forest

been expressed that reducing semi-primitive non-motorized opportunities will have a negative impact on
trian Head Farm's economy.

DISCUSSION The effects of the proposed activities on the social, economic and recreation resources are discussed in
Chapter Four. Alternatives have been developed to address this issue. The NO ACTION alternative will discuss the
effects of not implementing the Proposed Action.

COMPARISON CRITERIA FOR ISSUE TWO

1. Number of acres that are being proposed for prescribed burning.
2. Anticipated changes to the scenic quality of the forest.

ISSUE THREE

Proposed activities and the effects on undeveloped character of Inventoried Roadless Areas. There is a
concern that prescribed fire and timber harvest will alter the undeveloped character of the Roadless
Inventory Areas within the SERP Project Area.

DISCUSSION Spruce Roadless Area: Approximately 4 miles of road is proposed to be constructed in this
area. The expected loss of 30% acres of spruce / fir forests is 134 acres of spruce / fir forests. This is in
addition to the 413 acres of spruce / fir forests in Chapter Four. The effects of the proposed activities on the
resources in and adjacent to this roadless area will be discussed in Chapter Four. An alternative has been developed to address this issue.

Hancock Peak Roadless Area: No road construction or timber harvest is proposed to occur in the Hancock Peak
Roadless Area. Fire will not be ignited in spruce / fir forests of the Roadless Inventories Area until they become
infested by beetle parasites. The effects of the proposed activities on the resources in and adjacent to the
Roadless Area will be discussed in Chapter Four. An alternative has been developed to address the impacts of a fire altered

COMPARISON CRITERIA FOR ISSUE THREE

1. Number of acres altered by treatment type (prescribed fire, timber harvest) within the inventoried roadless area.
2. Miles of roads to be constructed into an inventoried roadless area.

ALTERNATIVE DEVELOPMENT

Alternatives to the Proposed Action were developed to:

1. Meet the purpose and need for the project.
2. Consider a reasonable range of solutions for the issues.

The SERP ID Team developed a set of timber harvest strategies to address each issue. Field trips to the planning
area were made by the team to jointly determine on-the-ground conditions and less initial strategies should be
adjusted. Complimentary strategies for resolving the issues were combined to form single alternatives.

In order to consider a reasonable range of solutions to the issues, the ID Team developed eight potential alternatives.
Five of these alternatives were "considered, but not studied in detail". These alternatives are listed first, including
the reasons why they were not carried forward for "detailed consideration". Following this discussion is the
description of the three alternatives two action and one no action that are "considered in detail", in addition to the
Proposed Action.

ALTERNATIVES CONSIDERED, BUT NOT STUDIED IN DETAIL

This section will identify alternatives that were not studied in detail, and the reasons for eliminating these alternatives.

Spruce Ecosystem Recovery Project FEIS

Cedar City Ranger District
Dixie National Forest

1. MAXIMUM ECONOMIC RECOVERY TO SALVAGE SPRUCE BEETLE MORTALITY

An estimated 7,400 acres of spruce forests on National Forest System lands have been infested by spruce beetle or
are currently infested. In the Brian Head, Sidney Valley, and Rainbow Meadows areas approximately 3,200 acres of
beetle infested trees are currently being harvested and the Proposed Action contains 2,472 acres. The remaining
1,300 acres were reviewed for inclusion into the Proposed Action for timber harvest. They were not included in the
Proposed Action due to: 1) Many of the areas were infested up to 5 years ago so the commercial value of trees has
decreased. The costs associated with removing the trees would be more than the projected value received to the
Forest Service. 2) Many of the areas are inaccessible and would require expensive road building or helicopter
yarding. These areas were dropped also because the costs exceeded the projected revenues. 3) The cumulative
effects of harvesting these areas. These areas were dropped because the effects to resources (i.e. soils, wildlife,
recreation) could have been detrimental when cumulatively assessed with the Proposed Action. For these reasons,
this alternative will not be considered for further analysis.

2. LEAVING UNTREATED ZONES IN ALL AREAS ADJACENT TO TRAILS, LIVE STREAMS, AND
OTHER RESOURCE AREAS OF INTEREST TO REDUCE IMPACTS TO THE RECREATION
RESOURCES

The resource effects associated with retaining continuous pockets of untreated beetle killed trees, was fully
evaluated in the No Action Alternative. In addition, retaining dead trees in these areas over the long term would not
meet recreation objectives. Chapter Four refers to effects on early life stages. The impacts to recreation activities
(bike trails, hiking trails, etc.) would be unacceptable. However, on a limited scale this will be completed as described in the Timber Harvest Design section on page 2-4. In these cases, the implementation of no
treatment zones was deemed desirable in terms of visual and recreation. Focus areas were chosen through the
planning process that would reduce impacts trails, live streams, and other recreation resources so that this alternative
was not considered for further analysis.

3. RESTRING OPENING SIZE

Minimizing the size of created openings to less than 60 acres, by leaving patches or strings of dead and infested
trees, was considered. The retention of bark beetle killed trees over the acres necessary to achieve this objective
would not allow for desired reductions in fuel loadings, adequately prepare the sites for natural or artificial
regeneration, or optimize economic recovery. Also, a large number of dead trees left in these areas would blow
down in a relatively short time frame (1-20 years), resulting in the visual appearance of large openings, especially in
areas that are primarily spruce. Leaving bark beetle killed trees in these areas may result in additional beetle mortality
immediately adjacent to these units, resulting in potentially larger openings than would occur under the Proposed
Action where nearly all dead trees are removed.

4. SALVAGE ONLY HARVEST

Given the scale of the bark beetle epidemic and the need to recover economic value from the affected areas within
two years, this alternative was considered. This alternative would not meet the purpose and need to improve overall
forest health and ecosystem functions by not including the treatment of green forests such as in Hancock Peak.
The treatment of an area of a proposed action as a demonstration area would test silvicultural treatments against spruce beetle risk. Salvage only harvest also will not allow for sanitizing high risk
trees from the Focus Areas which may reduce risk to adjacent areas.

5. NO ROAD CLOSURES

Not proposing to close the roads in Bunker Creek was considered as an alternative. The two roads in Bunker Creek
were constructed for timber harvest in the mid-1980's are not necessary for timber management activities upon
completion of the proposed activities. Both roads dead end and provide no other resource uses except improved
access for hunting and driving for pleasure. The intent of the original timber sale was to close the roads upon the
completion of project activities but was not accomplished. Closing of these roads would reduce the road density in
the watershed toward the desired condition of less than two miles of road per square mile. This objective is
primarily for wildlife habitat, non-motorized recreation, and watershed protection.

ALTERNATIVES CONSIDERED IN DETAIL

This final environmental impact statement (EIS) describes four alternatives in detail. They are: (1) The Proposed
Action - Sanitation/Salvage Harvest, (2) No Action (current management), (3) Alternative A - The Proposed Action with No Treatment of the Chicken Head and Spruces Focus

Spruce Ecosystem Recovery Project FEIS

2-2

2-3
FEATURES COMMON TO ALL ACTION ALTERNATIVES

The action alternatives evaluated in this FEIS conform to direction provided by the Forest Plan. All applicable standards and guidelines described in the Forest Plan are implemented as part of this project. Forest Plan standards and guidelines (SGC's) for Management Area 1, 2A, 2B, 6A, 7A and 8A, identified in Appendix 3, will become part of all action alternatives. The applicable portions of the Forest Plan SGC's are highlighted below in addition to other design criteria and mitigation measures incorporated by the IDT to avoid undesirable resource effects.

DESIGN CRITERIA AND MITIGATION MEASURES COMMON TO ALL ACTION ALTERNATIVES:

Related to Soil and Water:

1. Site-specific soil and water conservation practices (SWCPS) for this project are described in the Project File (Exhibit 151: Soils and Hydrology Reports. SWCPS 11.5.14, 13.1.13 and 14.3.22 apply to vegetation plantations and timber harvest activities.

2. To reduce soil compaction, displacement and puddling by logging equipment. Contact C provisions would be enforced which require end-tonging to designated skid trails. The desired future condition is to protect long term soil productivity and soil hydrologic function on at least 85% of the activity area (Soil and Hydrology reports: Project File (Exhibit 151: App. ends 5. FSH 2598.22).

3. To meet long term soil productivity objectives, a maximum of 10-15 tons per acre of down woody material greater than 5 in. in diameter, at the small end, would be retained (Harvey et al. 1989, 1994. Soils Report: Project File, exhibit 141. Retain 5-10 tons per acre in the DFS zones. Refer to Fuels Mitigation Measure number 29 for process objectives.

4. Minimize use of prescribed fire on sensitive soils (swamp map until 239).

5. Riparian areas will be given special management consideration to protect water quality, channel morphology, terrestrial wildlife habitat, and aquatic habitat. During the implementation phase of the project an IS Team will provide site-specific prescriptions designed to protect the above attributes. Where field reviews and site-specific prescriptions are not completed, the following guidelines will be implemented:
 a. Perennial, fish-bearing streams: No harvest, ground disturbance, or burning within 200 feet from the edge of riparian vegetation.
 b. Perennial, non-fish-bearing streams: No harvest, ground disturbance, or burning within 100 feet from the edge of riparian vegetation.
 c. Intermittent and ephemeral channels: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or channel.
 d. Ponds, lakes, seeps, and wetlands: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or seasonally saturated soil. These guidelines are designed to provide optimum protection of water quality, channel morphology, and riparian and aquatic habitat in the absence of field reviews.

Related to Vegetation:

6. Residual tree damage in dense stands of live spruce would be minimized by including contract B and C provisions requiring:
 a. valued trees designated as leave trees or reserve trees during sale preparation, be protected during harvest;
 b. damage to any residual trees (undesignated) be minimized during any harvest activity (felling, skidding, etc.);
 c. use of designated skid trails and ending to these trails;
 d. use of designated and or constructed landinging;
 e. piece length restrictions during skidding.

7. To reduce risk of spruce burl spread and re-infestation in the Hancock Peak Focus Area:
 a. All live green Engelmann spruce trees or pieces >14 inches in diameter and or 18 inches in length, felled or pushed over would be removed to designated landings disposal sites. This would be done prior to moving any skidding equipment out of the area, and before seasonal closure. All spruce, deposited at landings, would be removed or burned prior to the next flight period. Applicable contact C provisions would be used to meet this mitigation. (Alexander 1987, Schmidt 1977).

8. To protect aspen regeneration or investments in areas that are artificially planted from live/suck damage, more intensive hending practices would be required. Shear grazing will be deferred for 3.5 years. In some areas, it may be necessary to defer grazing for a season prior to burning to allow fuels to increase. If burning does not meet objectives, then plant seeding would be put in place for up to 10 years following the planting or regeneration treatments (Brown and Zimmerman 1996). Areis to be planted, at least in part, are all plantable conifer areas that are designated as a created opening with less than 25% crown closure on the maps included in Appendix 7 for action alternatives.

Related to Wildlife:

9. Report and record any sightings of threatened, endangered, and sensitive species and implement appropriate protection measures as stated in recovery plans. Forest Plan SGC’s or other approval plans where appropriate. Contact C provisions would be included in commercial contracts to assure enforcement.

10. Project area must be surveyed for goshawks next sites following accepted current protocol. Contact C provisions would be included to assure appropriate actions can be taken during the commercial operations where necessary as determined by the zone wildlife biologist.

11. Where possible, hiding cover should be retained where it exists on 50% or more of the perimeter of all natural and created openings, along at least 75% of the edge of arterial and collector roads and at least 50% along streams and rivers (Forest Plan: IV-35).

12. Woody debris will be left on site at 10-15 tons per acre except in DFS zones and in the immediate foreground for scenic resources. The woody debris will include a minimum of five pieces of large woody debris, to maintain small mammal populations for goshawks and other raptor prey and soil nutrient cycling, where available. Pieces would be a minimum of 12 inches at large end and ten feet long (Forest Plan SGC’s A00-4-B, Harvey et al. 1987, McCaughey et al. 1991, Alexander 1987, Reynolds et al. 1992).

13. Assume that a minimum average of three snags (greater than 18” DBH and 30 feet tall) will remain singly or in clumps relatively evenly distributed over the landscape after all activities have been completed and maintained in the short term. Leaving more than the average three per acre will help ensure that the desired amount is reached at the completion of the project. Six per acre is recommended. Leaving clumps of snags as “no cut” areas in locations away from potential wood cutters is recommended so as to prolong snag longevity.

Spruce Ecosystem Recovery Project FEIS 2-4

Spruce Ecosystem Recovery Project FEIS 2-5
A rule of thumb or guideline for leaving clumps of snags is to leave a one-acre no cut area for every 20 acres of cut area. This amount has been used in salvage lodgepole pine areas in the Pacific Northwest Region.

Priority for selection of clumps should be: Around squirrel middens. Where no more than 50 percent of each tree species exists. Where there is no currently infested trees.

14. Where possible, no harvest corridors at least 300 feet wide are recommended in order to provide connectivity between forest blocks (Payne et al. 1994). Leaving corridors of no harvest or very light harvest along perennial streams is also important for forest breeding birds as well as travel corridors for Mexican spotted owl, deer, elk, amphibians and other wildlife species (Darveau et al. 1996; DIAT 1995). Although these recommendations were designed with a green forest situation, dead trees would provide connectivity in the short term until the dead trees fall. Therefore, leaving the connectivity corridors in the same locations in riparian areas would provide both habitat for wildlife species and protect riparian values. Locations and widths of these corridors will be determined by an ITD and approved by the deciding officer.

15. To provide habitat to support northern goshawks, the best scientific information available, including Management Recommendations for the Northern Goshawk in the Southwestern United States (Reynolds et al. 1992) has been used to design treatments in Nest Areas and timing of treatments in goshawk Nest Areas and PFA’s. The goals of treatments are to maintain or enhance existing Nest Areas, and to avoid potential disturbance in Nest Areas and PFA’s so as to maintain or enhance goshawk populations. Treatments in the PFA’s and Foraging Areas have not been designed to maintain optimum structure for goshawk habitat because of the sparse mortality conditions.

To avoid potential disturbance to nesting goshawks, activities will be evaluated on a case by case basis using a process that considers such items as: the number management activities proposed during the breeding season, the nature of the activity, the distance of the activity from the Nest Area, and the topography between the nest area and the activity or activities. See Project File for more information.

16. Harvest treatments in goshawk nest stands comprised of live trees will only be from below to maintain or enhance larger diameter trees. The nest shall not be harvested. Harvest in dead Nest Areas will not be allowed unless activities would enhance Nest Area attributes, as determined by a Journey Level Wildlife Biologist and Silviculturist.

17. To minimize or eliminate impacts of timber harvests upstream from Arizona walnut populations, establish a minimum of a 100 foot buffer on each side of the riparian area (Arizona Walnut Interagency Technical Team 1999)

18. Establish management zones surrounding each documented nesting raptor species with acreage shown on Table 2-1. A summary of management zone specific prescriptions to maintain or improve habitat will be established, and timing restrictions for timber sale layout, road construction or reconstruction, timber harvest and associated activities and prescribed fire will be employed to avoid disturbance to nesting. Species included on this table will be evaluated on a case-by-case situation. Northern goshawks are addressed separately above.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>MANAGEMENT ZONE</th>
<th>NEST AREAS (acres)</th>
<th>NESTING SEASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooper’s Hawk</td>
<td>2500</td>
<td>15</td>
<td>May 1 - Aug. 15</td>
</tr>
<tr>
<td>Sharp-shinned Hawk</td>
<td>1263</td>
<td>10</td>
<td>June 20 - Aug. 15</td>
</tr>
<tr>
<td>Flammulated Owl</td>
<td>69</td>
<td>25-40</td>
<td>May 15 - Sept. 30</td>
</tr>
</tbody>
</table>

19. Where identified by a journey level wildlife biologist, no activities that would potentially disturb calving areas will be allowed during May 1 through July 1 in the Deer Creek and Bunker Focus Areas.

20. Maintain turkey and blue grouse roosting areas, and deer and elk bedding areas, ranging from 1.2 to 10 acres, by retaining one or more groups of 15 to 20 trees within the roosting bedding area. These trees should be a minimum of 16 inches dbh. Ninety percent of the perimeter around bedding areas would be retained to hide 90% of a deer or elk at a viewing distance of 200 feet.

Related to Recreation and Visuals

21. To meet Visual Quality Objectives (VQOs) of Retention within the immediate foreground areas up to 300 feet of either side of the road or trail adjacent to Highway 143, the dark Hollow, Spruces, and the Hancock Peak Trails; and the Sidney Valley (5048), Long Flat (5377), and Red Desert (6256) Roads; and Mead Lagoon Subdivision, slash treatments applied to approximately the 16 acres would be as follows:

a. Stumps would be cut to a 6 inch height throughout the foreground area on the uphill side. Where stump diameter prohibits cutting within 6 inches, height will be as close to ground as possible, not to exceed 12". Within the immediate foreground area (up to 300 ft) of trails, the face cut of stumps would be directed away from the trail, where possible.

b. Approximately 50% or more of the activity-generated slash smaller than three inches in diameter within the immediate foreground would be hand-piled and burned, to meet visual quality objectives. Machine piling may be used if determined visually acceptable by the Zone landscape architects and Forest soil scientists. Piles would be placed in areas that provide natural screening in the immediate foreground such as behind rocks, dense vegetation and other topographic features.

c. Slash piling within the immediate foreground would occur during operations or by the end of the second operating season following the completion of harvest operations. The exception to this would be if harvest operations are completed during the winter period; in this situation slash cleanup would occur by July 1 of the following year, weather permitting, and piles burned during the first available burning window the same year (typically September and October).

d. Piles created in the immediate foreground would be burned to achieve 95% or more consumption. Following burning, concentrations of unburned slash will be scattered and the ground will be seeded with the approved seed mixture for this area. The burning of piles created within the immediate foreground between June and September of any year may be burned in September-November of that same year unless fuel or weather conditions are not conducive for attaining the 95% consumption objective. If this occurs, slash piles would be burned the following spring as soon as weather conditions permit. Slash piles created during a winter harvest operation should be burned by the following September-November period.

e. The majority of material larger than three inches in diameter (small end) within the immediate foreground would be scattered over the site to meet long-term soil productivity and provide for site prep for stand regeneration.

f. Slash piling and burning for areas other than what is described above, would be the same as under standard fuel reduction mitigation described below.
22. Slash disposal requirements along the portion of the constructed road to the Spruces Focus Area, where the existing trail (1.5 miles) will be rerouted will include burying the stumps and scattering of the slash. Slash disposal requirements on the remaining portion of the Spruces road will include placing the stumps along the use of fill slope and scattering of the remaining slash.

23. Interpretive signs and other information media would be developed to inform visitors of the implications of the spruce beetle epidemic and the proposed management activities.

24. A no treatment area adjacent to the Dark Hollow Trail in the Steam Engine Focus Area will be designated prior to implementation on US 300 feet, depending on windthrow risk and scenic management objectives.

Related to Public Safety

25. To provide reasonable assurances for public safety during harvest operations recreation trails would be closed during harvesting, sawing, haulage, and burning activities. Progression of treatments would occur in a manner to assure there are always facilities open to accommodate desired uses; the primary concern here is to maintain recreation trails (hiking, mountain biking, etc). Following is a list of trails and their approximate finishing time frames in days; these closures could occur anytime during the normal operating period (June 15 through November 30). These closure periods may or may not be consecutive days. All trails in the SFRP area located adjacent to stands of dead trees will be signed to inform the public of possible hazard.

- Dark Hollow Trail: 4-8 days for Proposed Action and Alternatives B.
- Hancock Peak Trail: 15 for Proposed Action and Alternative A, five for Alternative B.
- Spruces Trail: 15-30 days for Proposed Action and Alternatives B.

Related to Ecosystem Management

26. In the timber harvest Focus Areas, slash cleanup would be completed to levels necessary to reduce impacts to scenic quality, risk of wildfire, and impairment to reforestation efforts. This would include loss and scatter of on-site slash, jackpot burning, cutting of cull logs to disposal sites, and pile burning of slash at common disposal sites. It is desirable to retain a minimum of 10 to 15 tons per acre of slash greater than three inches in diameter (inclusive of existing down woody material) uniformly distributed over the area to serve as fuelbed, trachial microbial activity, and microsites for reforestation. Piling and burning of slash would be permitted and burning may be completed up to 15 tons per acre.

27. Natural fuel breaks- forested meadows, rock faces, etc., ski rans, skid trails and roads would be used to break up fuel continuity into 40 acre blocks, or less within the timber harvest Focus Areas (Forest Plan &G.p. 414-514).

28. When prescribed burning is conducted in the Focus Areas, including pile burning, will follow FFS 5140 direction for prescribed fire. In addition, the following were identified as important within the scope of the SFRP project area.

- Local recreation activities will be monitored to minimize any adverse effects burning may cause.
- Avoid major holiday weekends (Memorial Day, July 4th, 24th, and Labor Day).
- Notify: Public Affairs at least two working days prior to any planned ignitions so that trails can be closed and closure orders prepared for Trails and Roads.
- All burning would be completed under excellent or good smoke dispersal conditions to minimize impacts to the town of Brian Head Private subdivisions, and Cedar Breaks National Monument.
- Burning would only occur when the Clearing Index is greater than 500.

- Reevaluation of areas would be accomplished by resurveying a certified, weed-free, native seed mixture to reduce the potential for introduction of noxious weeds. Seedling would be completed by the end of the first operating season following disturbance.

Related to Transportation

31. Site specific soil and water conservation practices (SWCP's) for this project are described in Appendix 5. SWCP's 11.5-6 and 15.2-25 apply to road activity.

32. The newly constructed road system would be for administrative use and timber sale activities only. Closure of all newly constructed and temporary roads would be completed within 5 years of commercial operations. All temporary roads would be obliterated, recontoured, and revegetated. All newly constructed systems roads (Spruces) would be temporarily closed. By signing and gating during project implementation, and permanently closed by narrowing the first 300 feet to a width that restricts vehicles that are wider than 36 inches. Two gates would be installed as part of the salvage road road project. Approved or KV funding would be used for the closure work and scheduled for the year closure is desired.

33. Road standards and surface of the main collectors is consistent over all alternatives referred to the Road Design Package in the Project File, exhibit 16).

34. All stumps removed during road construction would be disposed of by either cutting or burling. Clearing slash would be piled and burned at designated disposal sites or by harvested and scattered.

35. Reevaluation of disturbed areas would be accomplished by resurveying with a certified, weed-free, native seed mixture to reduce the potential for introduction of noxious weeds. Seedling would be completed by the end of the first operating season following disturbance.

Spruce Ecosystem Recovery Project FEIS

Cedar City Ranger District
Divine National Forest

Alternatives, Including the Proposed Action

- Prior to broadcast burning, those areas where IL toxic Properties exist with potential for secondary impacts will need to be evaluated. Mitigation measures could include laying foam or retardant on the site or immediate revegetation. Revegetation work will need to be done by hand broadcasting or by using light rubber road vehicles such as "four wheelers."

Related to Other Resources

29. Cultural resource sites known within this project area would be protected. If a site is located during operations, operations would cease until the site is evaluated by the Forest Archaeologist (or trained designates). Appropriate mitigation would be applied to assure site protection needs. This measure would be enforced through contract C provisions during commercial harvest activities.

30. Special Use permit structures and developments (waterlines, powerlines, water tanks, spring developments, etc.) within the project area would be protected by inclusion of appropriate contract C clauses needed for protection, as well as their location shown on contract maps designate for protection.

Spruce Ecosystem Recovery Project FEIS

Cedar City Ranger District
Divine National Forest

Alternatives, Including the Proposed Action

- Prior to broadcast burning, those areas where IL toxic Properties exist with potential for secondary impacts will need to be evaluated. Mitigation measures could include laying foam or retardant on the site or immediate revegetation. Revegetation work will need to be done by hand broadcasting or by using light rubber road vehicles such as "four wheelers."

Related to Other Resources

29. Cultural resource sites known within this project area would be protected. If a site is located during operations, operations would cease until the site is evaluated by the Forest Archaeologist (or trained designates). Appropriate mitigation would be applied to assure site protection needs. This measure would be enforced through contract C provisions during commercial harvest activities.

30. Special Use permit structures and developments (waterlines, powerlines, water tanks, spring developments, etc.) within the project area would be protected by inclusion of appropriate contract C clauses needed for protection, as well as their location shown on contract maps designated for protection.

Related to Transportation

31. Site specific soil and water conservation practices (SWCP's) for this project are described in Appendix 5. SWCP's 11.5-6 and 15.2-25 apply to road activity.

32. The newly constructed road system would be for administrative use and timber sale activities only. Closure of all newly constructed and temporary roads would be completed within 5 years of commercial operations. All temporary roads would be obliterated, recontoured, and revegetated. All newly constructed systems roads (Spruces) would be temporarily closed. By signing and gating during project implementation, and permanently closed by narrowing the first 300 feet to a width that restricts vehicles that are wider than 36 inches. Two gates would be installed as part of the salvage road road project. Approved or KV funding would be used for the closure work and scheduled for the year closure is desired.

33. Road standards and surface of the main collectors is consistent over all alternatives referred to the Road Design Package in the Project File, exhibit 16).

34. All stumps removed during road construction would be disposed of by either scattering or burling. Clearing slash would be piled and burned at designated disposal sites or by harvested and scattered.

35. Reevaluation of disturbed areas would be accomplished by resurveying with a certified, weed-free, native seed mixture to reduce the potential for introduction of noxious weeds. Seedling would be completed by the end of the first operating season following disturbance.

Related to Hard Roads

The following mitigation measures are necessary to provide for the safety of Forest users within the project area.

36. Precautionary log truck traffic signing ("Caution Log Truck", "Truck Entering Highway", etc.) shall be posted by the timber purchaser as designated by the Forest Service. Signs used shall meet Manual of Uniform Traffic Control Devices (MUTCD) standards.

37. No timber hauling is permitted on national holidays, or the opening day of rifle deer season, unless approved in writing by the Forest Service.

38. The State of Utah may restrict hauling on UT-143 during spring break-up when the highway road base has thawed but is too wet to support heavy loads (April 2 through May 30).
39. The Forest Service shall create interpretive signs to describe the need for timber harvesting at locations mutually agreed upon with the Town of Brian Head. Other interpretative services, such as field tours, video displays, pamphlets and formal presentations, may be coordinated with the Town of Brian Head.

There are two haul routes (east and west) possible on Utah State Highway 143 from the junction. The haul route to the east on Utah State Highway 143 to the junction of Utah State Highway 143 is designated as the haul route for appraisal purposes. The haul route to the west on Utah State Highway 143, through the town of Brian Head, to Parowan, is I-15. Which direction is used will be determined by who is the successful bidder on the timber sale contract. The Forest Service has no jurisdiction over the use of Utah State Highway 143. However, the successful bidder will be encouraged to use the appraisal route to minimize conflict with use in the Brian Head Town area.

The following are requirements and or restrictions which the Forest Service, the Town of Brian Head, the National Park Service and or the State of Utah will apply to the use of Highway 143, under their respective jurisdictions.

Related to Haul Routes to the East

This route would transport material south from the project area via the Highway 143 to the junction of U-148. Trucks would then continue on U-143, heading east to the junction with Highway 99, at Paragon, Utah. From this point, some trucks may deposit logs at Paragon, or continue to transport logs to other mill sites.

If a contractor requires railhead to reach mill destinations, the east route could be used to access railheads in Milford, Utah, though less direct that the route to the west out of the project area discussed below. If a contractor used this route to reach railheads in Milford they would transport logs north on Highway 89 out of Paragon, Utah to the junction with Highway 20, head east on Highway 20 to the junction with I-15, and turn north on I-15, exiting at the Beaver-Milford, Utah exit.

Route to the East

- Log truck traffic is relatively common on this route. Standard mitigation measures previously stated will provide necessary assurances for public safety; in addition:
 - The National Park Service prohibits all log truck traffic (loaded or empty) on Cedar Breaks National Monument Road #148 from the junction of U-143 to U-14.

Related to Haul Route to the West

If the contractor elected to use rail transportation to transport logs to market, it is anticipated that they would need to haul logs to the Milford railhead for shipping to a processing mill. An alternative route to which Milford, more directly than going the eastern route, is at the junction of 148 trucks would proceed through the towns of Brian Head and Paragon, Utah on Interstate 15 to Exit 109 at Beaver. Trucks would then travel west off of this exit ramp at Beaver and travel 22 miles west to the railhead at Milford, Utah. At the railhead, trucks would deposit logs for future transport to a processing mill. If the successful bidder’s processing mill was located in Cedar City, UT, logging trucks would proceed south on Interstate 15 instead of north.

Due to the high recreation user traffic that originates out of Brian Head, Utah, mitigation measures are needed to maintain public safety during log hauling that are in addition to the standard mitigation previously mentioned. The Forest Service does not have jurisdiction over log hauling on U-143 through the Town of Brian Head and Parowan, Utah. However, contacts with the Town of Brian Head and Parowan have indicated the need for the following mitigation, as set by the Town Council:

- The timber purchaser shall be prohibited from hauling through the Town of Brian Head and the Town of Parowan during the Brian Head Bash, the Brian Head and the Iron County Fair by restricting use of Forest System roads accessing Highway 143 from landing locations within the project area.
- Some restrictions shall apply for log truck traffic within the town limits. Engine brakes (jake brakes) are prohibited from use at all times in these areas.

Spruce Ecosystem Recovery Project FEIS

Spruce Ecosystem Recovery Project FEIS
treated area has been non-commercially thinned which included some treatment of the aspen component. In 1996, spruce beetles infested untreated stands. Portions of the treated area have higher tree densities favorable to spruce beetle. A few attacked trees were observed in these clumpy pockets of spruce. This site and the proposed action area are not free of spruce beetle. Approximately three existing spruce stands per acre will remain after all activities have been completed. In some areas, up to six per acre may be required. These stands are of such a nature that they present a safety hazard to the area, as defined in Johnson 1982 would not be left to meet this requirement. In addition to signing steps for protection, five interpretive signs would be placed in key locations along open roads and trails within the project area explaining the value of maintaining these valuable resources for wildlife and long-term soil productivity. Monitoring effectiveness of this signing and number of spruce stands will also be included. This is a required action alternative mitigation, under any alternative, and therefore is priority two for this alternative. If KV funding is not available, based on appraisal, appropriated funding would be scheduled for the year of sale completion. Following full funding of this activity area, any remaining funding would be allocated to priority 4, discussed below (5 detailed cost analysis is in the project files).

Priority 4

Intensive signs and information would be developed explaining KV project implementation work and why it is important to meeting overall resource objectives in the project area. This is not a mitigation but a desired action that would be funding of this activity area, any remaining funding would be allocated to projects identified at a later date (5 detailed cost analysis is in the project files).

DESCRIPTION OF ALTERNATIVES

There are four alternatives described in detail in this FEIS. They are (1) The Proposed Action - Sanitation Salvage Harvesting - coring to cull legging systems, (2) No Action (treatment management), (3) Alternative A - The Proposed Action with no treatment of the Chicken Head and Hoods Focus Areas and sites 3 and 4 in location 110 near the Rainier Middle School Subdivision, and (4) Alternative B - The Proposed Action with no treatment of the Roadless Area Focus Area.

THE PROPOSED ACTION

Several activities are proposed to move the project area toward the desired condition and meet the purpose and need of the project. These include: (1) Timber Harvest, (2) Aspen Rejuvenation, (3) Establish Defensible Fire Suppression Zones, and (4) In situ Management Ignored Prescribed Fire (See Figure 1).

Activities Proposed

1. Treatments in conifer forests, including commercial tree harvest, forest regeneration activities, fuelwood removal or burning and road construction/reconstruction required to support commercial harvest treatments.

From 1998 to 2000, about 1,210 acres of current or recently infested spruce stands are proposed for commercial salvage harvest to remove dead and dying trees. An additional 1,661 acres of spruce forest adjacent to these sites has been rated from 2 to 3 in high risk. These sites have been proposed for commercial sanitation and improvement cuttings. Altering stand conditions is intended to result in vegetative characteristics less favorable to a spruce beetle infestation (Schmid and Frye 1976). These treatments will reduce overall tree densities, lower the average site class and result in a change in species diversity. The proposed treatments would include the use of only ground based yarning (tractor) systems during the winter, fall and summer seasons. Commercial salvage, sanitation and improvement cuttings are scheduled to occur in 1998 through 2000.

Commercial treatments are proposed for the northern portion of the SRP area, where the spruce beetle epidemic is occurring. The area has been subdivided into five Focus Areas which are listed by priority: a) Hancock Peak, b) Lower State, c) Spruces, d) Steam Engine, and e) Bunker.

a. Hancock Peak

The Hancock Peak Focus Area contains 3197 acres of which 2799 acres are in Management Area 1 (general districts). 239 acres are in 2B roadless natural reconstructions, and 58 acres in 9A improvement management. Hancock Peak was previously harvested in 1998-92 with an even-aged, shelterwood treatment. Most of the
Cedar City Ranger District
 Dixie National Forest

remote the trail so that it remains on the Forest. A no treatment buffer (up to 300 feet) on adjacent forested areas will be left along the remoted section in the Focus Area.

- Bunker

The Bunker Focus Area contains 381 acres all in Management Area 1. Treatment proposed for Bunker consist of salvage operations on 235 acres of a previously harvested site. Only the Left Fork of Bunker will be treated in this proposal. The Right Fork of Bunker will remain untreated. No new roads will be constructed. The existing roads will be closed to motorized travel upon completion of the project (approximately 1.8 miles). The Left Fork of Bunker Trail will be rerouted to avoid trail use over the existing road. The new route will parallel the existing road until it merges with the single track route.

Commercial Post-Harvest Treatment Work

The initial commercial salvage and sanitation operations are anticipated to start in 1998 through 2000. The potential for follow-up commercial salvage operations for five years following initial commercial operations is possible in the Hancock Peak Focus Area. All sanitation and improvement treatments would be completed in the initial operation.

Non-Commercial, Pre- and Post-Harvest Treatment Work

Fuels reduction work: Activity fuels would be hand piled along all primary bike hiking trails, Stacv highway U-143, and all system roads that would remain open, typically up to 100 feet either side of trail road, though could go up to 200 feet for areas of extreme lack of ability of safety to road. Refer to mitigation measures for details on size and acreage of material that would be treated. This visibility distance would be primarily dependent on the degree of bark beetle mortality in the immediate foreground and damage to residual trees during the harvest operations.

Activity fuels, less than 3 inches in diameter, along fuel breaks would be machine and or hand piled in tractor units only. Fuel breaks established to meet the Forest Plan standards and guidelines would use natural terrain features as much as possible. Approximately 214 acres of machine piling will occur.

Slash from roads reconstruction temporary road construction would be piled and burned, buried or scattered.

Slash in areas outside of those areas described above which would require piling would be lopped and scattered to a maximum depth of 24 inches. Where this depth can not be achieved; jackpot burning or piling and burning chipping of concentrated slash areas would occur.

All landing areas would be machine piled and burned. It is anticipated that up to 214 acres of machine hand piling, and associated burning and chipping would occur as a result of fuels treatments discussed above (Steam Engine - 64 acres, Spruces - 90, Lowered State - 50, Bunker - 20). Also, due to the lack of good log roads, and the nearness of logging roads, the logging roads are anticipated to occur on all 2,873 acres to be treated.

Post-harvest reforestation work: Following salvage operations, approximately 1,200 acres are not expected to be fully stocked at levels necessary to achieve the desired future condition. To resolve the area toward the desired future conditions for tree size class diversity and species diversity, these understocked areas would be replanted with Engelmann spruce to supplement expected natural regeneration of subalpine fir and aspen. On these acres, aspen and subalpine fir are adopted for the majority of the site, 100 percent of the sites mix. The mix of supplemental plantings would be as follows: 30% Engelmann spruce, 20% a certified seed mixture on a site by site basis, dependent primarily on needs versus funding availability (KVS versus appropriated funding). Approximately 966 acres is estimated to be artificially reforested (Steam Engine - 175 acres, Spruces - 321, Lowered State - 150, Bunker - 120, Hancock - 200).

Post-treatment timber stand improvement work: Precommercial thinning would not occur; however, damaged tree clearing would be completed as necessary over the 1,661 acre Hancock Peak Focus Area. Damaged trees are expected to result from the commercial harvest entries and the majority completed by the contract purchaser through B and C provision requirements.

Transportation System Work: To salvage dead spruce, additional roads would be needed. Approximately five miles of temporary and specified road construction will occur. Also, approximately 18.5 miles of existing roads would require maintenance which includes drainage and clearing. Refer to Appendix B for existing and proposed transportation systems within the project area. New roads will be closed to road use after project activities are

Cedar City Ranger District
 Dixie National Forest

Alternatives, Including the Proposed Action

concluded so that no increase in road density occurs. Techniques that effectively close the roads will be used, including restoring road approaches to their original shape. All temporary roads will be obliterated, returned to or rescheduled. In addition, approximately eight miles of existing roads in Focus Areas are proposed for closure upon completion of project activities. These roads are currently open and will be used for Focus Area access. The five mile transportation system in the Hancock Peak Focus Area will be closed. This is already documented in the Hancock Peak Environmental Assessment (1987). All landing sites, roads, and major skid trails will be revegetated using a seed mix native to the area.

Administrative road closures will occur on new constructed temporary roads and roads in the Spruce Focus Area. Traffic will be limited to recovery project personnel until project activity is completed. When the project is completed all permanent road closures (previously described) will be installed.

2. Aspen forest treatments - Aspen forest regeneration as a result of commercial tree salvage, fuelwood removal, and prescribed fire.

Proposed aspen regeneration treatments would occur over five years on up to 21 percent (1,934 acres) of the estimated 9,181 acres of aspen type identified in the project area. The aspen regeneration would occur within the timber harvest focus Areas previously identified, the prescribed fire focus Areas, and the Deer Creek Focus Area which contains only aspen regeneration treatment sites. The Deer Creek Focus Area contains 772 acres of which up to 534 acres are proposed for prescribed fire. Refer to mitigation measures for details on size and acreage of material that would be treated. This visibility distance would be primarily dependent on the degree of bark beetle mortality in the immediate foreground and damage to residual trees during the harvest operations.

Activity fuels, less than 3 inches in diameter, along fuel breaks would be machine and or hand piled in tractor units only. Fuel breaks established to meet the Forest Plan standards and guidelines would use natural terrain features as much as possible. Approximately 214 acres of machine piling will occur.

Slash from roads reconstruction temporary road construction would be piled and burned, buried or scattered.

Slash in areas outside of those areas described above which would require piling would be lopped and scattered to a maximum depth of 24 inches. Where this depth can not be achieved; jackpot burning or piling and burning chipping of concentrated slash areas would occur.

All landing areas would be machine piled and burned. It is anticipated that up to 214 acres of machine hand piling, and associated burning and chipping would occur as a result of fuels treatments discussed above (Steam Engine - 64 acres, Spruces - 90, Lowered State - 50, Bunker - 20). Also, due to the lack of good log roads, and the nearness of logging roads, the logging roads are anticipated to occur on all 2,873 acres to be treated.

Post-harvest reforestation work: Following salvage operations, approximately 1,200 acres are not expected to be fully stocked at levels necessary to achieve the desired future condition. To resolve the area toward the desired future conditions for tree size class diversity and species diversity, these understocked areas would be replanted with Engelmann spruce to supplement expected natural regeneration of subalpine fir and aspen. On these acres, aspen and subalpine fir are adopted for the majority of the site, 100 percent of the sites mix. The mix of supplemental plantings would be as follows: 30% Engelmann spruce, 20% a certified seed mixture on a site by site basis, dependent primarily on needs versus funding availability (KVS versus appropriated funding). Approximately 966 acres is estimated to be artificially reforested (Steam Engine - 175 acres, Spruces - 321, Lowered State - 150, Bunker - 120, Hancock - 200).

Post-treatment timber stand improvement work: Precommercial thinning would not occur; however, damaged tree clearing would be completed as necessary over the 1,661 acre Hancock Peak Focus Area. Damaged trees are expected to result from the commercial harvest entries and the majority completed by the contract purchaser through B and C provision requirements.

Transportation System Work: To salvage dead spruce, additional roads would be needed. Approximately five miles of temporary and specified road construction will occur. Also, approximately 18.5 miles of existing roads would require maintenance which includes drainage and clearing. Refer to Appendix B for existing and proposed transportation systems within the project area. New roads will be closed to road use after project activities are

Spruce Ecosystem Recovery Project FENS

2-14

Spruce Ecosystem Recovery Project FENS

2-15
created slash would be accomplished using mechanical and prescribed fire treatments. Hand and tractor piling, piling and burning, or chopping are methods used to reduce fuel loads. Approximately 41 acres adjacent to the Meadow Lakes Subdivision are proposed for DFS zone establishment. These zones would be up to 300 feet wide (approximately 150' wide on each side of the roads and actual widths would be determined by the District FMU and Zone Landscape Architect.

4. Reintroduce fire in areas where fire's influence has been reduced from it's historical role. Through prescribed burns, fuels can be safely reduced to historical levels. The size, pattern, and severity of the burns and associated smoke will be controlled by reintroducing fire under specific conditions and at specific times of year.

In addition to using prescribed burns for aspen regeneration, this technique will be used to reduce fuel loads and to improve the structural and species diversity of the vegetation in the Roadless Area and Chicken Head Focus Areas. These Focus Areas contain 2,782 and 1,100 acres respectively. The Roadless Area Focus Area is nearly all in MA 2A. Chicken Head has about 700 acres in MA 1, 420 acres in 6A, and 30 in 9A. Current fuel loadings indicate that a stand replacement fire event could occur in the fire groups present in these Focus Areas. By controlling the time of year and point-of-ignition of a fire, resource managers can influence a fire's behavior and have more control of the fire effects.

The role of fire is to create a heterogeneous pattern of species mix and structure classes (increased diversity). A mixed severity fire regime produces vegetation mosaic due to patchy nature of the fire, preventing development of large continuous blocks of homogeneous ages and species (Armstead et al. 1996).

A variety of other components are analyzed prior to lighting a management ignited fire. Some of these are ensuring a burn pattern is in a mini mosaic, to better mimic natural patterns; maintain 50 percent of live vegetation in a closed canopy condition, prioritize burning areas affected by spruce beetle to maintain the representation of live, green forests, and avoid burning areas designated as old growth as defined by Hamilton et al. 1993.

Refer to Project File [Exhibit] 17 for the location/site list of treatment areas identified and burn plans for further evaluation criteria (See Figure 2: Proposed Action Treatment Summary Maps).

NO ACTION (CURRENT MANAGEMENT)

An analysis of the "No Action" alternative is required by regulation and is therefore a part of this FEIS.

The No Action alternative would not commencesce remove beetle killed or infested trees, regenerate aspen, initiate management ignited fire, or establish defensible fire suppression zones in the SERP area. The transportation systems (FS trails and roads) would remain the same. No new roads would be built or reconstructed. Existing road systems would remain in place.

There would be no management activity to reduce fuel loading.

Current management would continue, including harvesting along existing roads for fuelwood, post and poles.

There would be no restriction to recreation activities from that which is currently happening.

No receipts would be collected from timber harvest to be used for reforestation of openings caused by insect killed trees, or other rehabilitation efforts. All reforestation would be through natural processes.

ALTERNATIVE A - THE PROPOSED ACTION WITH NO TREATMENT OF THE CHICKEN HEAD AND SPRUCES FOCUS AREAS AND SITES 3 AND 4 IN LOCATION 101 IN THE LOWERSTATE FOCUS AREA

Alternative A has been designed to address Issue #2 in part, i.e., the effects of the proposed actions on the recreation related economy to Brian Head Town and Issue #3, the effects of proposed activities to the undeveloped character of
Chapter Three

Affected Environment

Table 2-2. Comparison of Alternatives

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>Proposed Act</th>
<th>No Action</th>
<th>Alt. A</th>
<th>Alt. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Acres Treated (roadless)</td>
<td>7,821</td>
<td>0</td>
<td>6,081</td>
<td>5,029</td>
</tr>
<tr>
<td>Timber Harvest</td>
<td>2,872 (644)</td>
<td>0</td>
<td>2,552</td>
<td>2,872 (644)</td>
</tr>
<tr>
<td>Aspen Regeneration</td>
<td>1,013</td>
<td>0</td>
<td>697</td>
<td>1,013</td>
</tr>
<tr>
<td>Prescribed Fire</td>
<td>3,895 (2,792)</td>
<td>0</td>
<td>2,792 (2,792)</td>
<td>1,103</td>
</tr>
<tr>
<td>DFS Zones</td>
<td>41</td>
<td>0</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Road Development/Improvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Constructed (roadless)</td>
<td>4.0</td>
<td>0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Total Prelim Maint</td>
<td>18.5</td>
<td>0</td>
<td>18.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Total Const. Temp</td>
<td>1.0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Road Closure/Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles Closed (new)</td>
<td>4.0</td>
<td>0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Miles Closed (exist)</td>
<td>8.0</td>
<td>0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Miles Obstructed (temp)</td>
<td>1.9</td>
<td>0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Total Miles of Open Road</td>
<td>193</td>
<td>201</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>Miles Road Square Mile</td>
<td>2.33</td>
<td>2.43</td>
<td>2.33</td>
<td>2.33</td>
</tr>
<tr>
<td>Miles Rd. Sq. Mi. During</td>
<td>2.49</td>
<td>2.43</td>
<td>2.44</td>
<td>2.49</td>
</tr>
<tr>
<td>Number of Anticipated Days of Closure by Area (for Safety)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Hollow Trail</td>
<td>5.10</td>
<td>30</td>
<td>0</td>
<td>5.10</td>
</tr>
<tr>
<td>Hammock Peak</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Snake Trail</td>
<td>20.40</td>
<td>0</td>
<td>20.40</td>
<td>0</td>
</tr>
<tr>
<td>Acres of Unstocked Openings</td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Reestablishment Acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Plant</td>
<td>966</td>
<td>0</td>
<td>645</td>
<td>966</td>
</tr>
<tr>
<td>Fuel Treatment Acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lop and Scatter</td>
<td>2,872</td>
<td>0</td>
<td>2,552</td>
<td>2,872</td>
</tr>
<tr>
<td>Pile and Burn</td>
<td>214</td>
<td>0</td>
<td>134</td>
<td>214</td>
</tr>
<tr>
<td>Acres Meeting Old Growth before Action</td>
<td>6,642</td>
<td>6,642</td>
<td>6,642</td>
<td>6,642</td>
</tr>
<tr>
<td>after Action</td>
<td>6,642</td>
<td>6,642</td>
<td>6,642</td>
<td>6,642</td>
</tr>
<tr>
<td>Economic Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNV (4%)</td>
<td>$303,956 (916,555)</td>
<td>$292,765</td>
<td>$361,327</td>
<td></td>
</tr>
<tr>
<td>Jobs generated**</td>
<td>155</td>
<td>0</td>
<td>116</td>
<td>155</td>
</tr>
<tr>
<td>Income generated***</td>
<td>$7,049,900</td>
<td>$5,278,000</td>
<td>$7,049,900</td>
<td></td>
</tr>
<tr>
<td>Volume Removed (MBF/CEC)</td>
<td>18,700 (3,800)</td>
<td>0</td>
<td>14,000 (27,556)</td>
<td>18,700 (3,800)</td>
</tr>
</tbody>
</table>

Projected Service Integrity along Concern Level 1 & 2 Trails:

2002****	Low-Very Low	Moderate-Low	Moderate-Low	Low-Very Low
2012****	Low-Very Low	Moderate-Low	Moderate-Low	Low-Very Low
2032****	High-Moderate	Moderate-Low	High-Moderate	High-Moderate

Maximum Acres proposed for Prescribed Burning:

| Proposed Act | 4908 | 0 | 3489 | 2116 |

* An effect from timber harvest, no effects from fire since fire will not be initiated until space has been cut in the roadless areas.

*** Income generated based on 33/5 $/MBF (Robinson and Battani, 1991).

**** 2002 is anticipated end of Initial Project, 2012 is ten years following completion, 2032 is fifty years following completion.

***** This is the maximum area that could be burned under this proposal, areas treated may be harvested for fuelwood, etc. instead of prescribed burning.
CHAPTER THREE

AFFFECTED ENVIRONMENT

INTRODUCTION

This chapter will describe the existing and past conditions by resource. In order for us to "manage for biodiversity and provide for viable populations" (36 CFR 219.39) we must first review the existing project area and understand the elements, including human, which have and will continue to interact throughout the landscape.

Chapter Three describes the portions of the physical environment that may be affected by implementation of the Proposed Action, and alternatives to the Proposed Action. Descriptions focus on resource conditions in the area potentially affected by the alternatives. The description of existing conditions provides the basis for assessing the environmental effects of each alternative discussed in Chapter Four (Environmental Consequences) and assessing how the alternatives respond to the issues identified in Chapter Two.

A description of the existing and past resource conditions is contained in the watershed assessment (Project File exhibit 36). This assessment will be referenced in this Chapter to reduce bulk and redundancy.

FOREST LAND SUITABILITY

Suitability has been determined for each stand in the project area as required in the Dixie National Forest Land and Resource Management Plan (Forest Plan IV 37 and IV 77). In making the site specific determination of suitability, the following factors were considered: (36 CFR 219.14(a)(1-4):

- Is the land forested?
- Is technology available to ensure timber production from the land without irreversible resource damage to soil productivity or watershed condition?
- Is there reasonable assurance that such lands can be adequately restocked as provided by law?
- Is timber production on the land consistent with multiple use objectives established in the Forest Plan?
- Is timber production on the land feasible considering other land use objectives, constraints, and mitigation needs?
- Is timber production cost efficient on these lands over the planning horizon?
- Has the land been withdrawn from timber production by an Act of Congress, the Secretary of Agriculture or the Chief of the Forest Service?

Table 3-1 shows the project area acreage by suitability class. The Forest Land Suitability Map (Appendix 1) displays the location of suitable and unsuitable areas within the project area.

Table 3-1. Forest Land Suitability Classification for the SERP Area.

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>CATEGORY</th>
<th>CFR</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable</td>
<td>Forested Land</td>
<td>36 CFR 219.3</td>
<td>22,951</td>
</tr>
<tr>
<td>Unsuitable</td>
<td>Regeneration not assured</td>
<td>36 CFR 219.6(a)(3)</td>
<td>4,621</td>
</tr>
<tr>
<td></td>
<td>irreversible resource damage</td>
<td>36 CFR 219.14(a)2</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>Developed for non-fc est use 1/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-forest lands</td>
<td>36 CFR 219.14(a)1</td>
<td>18,137</td>
</tr>
<tr>
<td></td>
<td>Economically or technologically</td>
<td>36 CFR 219.27(b)(7)</td>
<td>6,910</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
<td></td>
<td>372</td>
</tr>
<tr>
<td>TOTAL ACRES</td>
<td></td>
<td></td>
<td>52,991</td>
</tr>
</tbody>
</table>

1/ Acres included in suitable and unsuitable categories

Suitability determinations for the SERP area was made based primarily on soil capability, and administrative use constraints. No activities are proposed to occur on lands classified as unsuitable therefore, discussion of suitability will not be carried forward into Chapter Four.

VEGETATION RESOURCE

This section discusses the vegetation in the SERP area and includes the nine Focus Areas where activities are proposed to occur. The descriptions are organized under the four criteria determined to be a part of a properly functioning ecosystem (Amundson et al. 1998). An ecosystem that is properly functioning is thought to be resilient to perturbations in structure, composition, and biological or physical processes. Systems at risk are those that may be degraded beyond the range of resiliency and sustainability. The four ecosystem characteristics discussed are structure, composition, disturbance regime or processes (insect and disease, fires), and patterns.

Also discussed in this section are threatened, endangered, proposed, and sensitive plant species and the occurrence of noxious weeds in the project area.

The vegetation discussion is based on the Ranger District's stand examination data base. This data base contains information which is systematically collected following Regional guidelines and can be queried to provide vegetation attributes used in analysis such as the SERP. A description of the reliability of the data base is contained in the Project File (Exhibit 17).

Moisture/humidity relationships, air and soil temperature, sunlight penetration, and wind patterns interact to produce the prevalent microclimate that influences vegetative patterns and growth on the landscape. How microclimate factors interact and influence vegetation is identical to that described in other environmental documents prepared for projects in this forest type (Sydney Valley Recovery Project. EA. 1994 pp 3-1, 2)

VEGETATIVE STRUCTURE

Structure is a means to express the balance of age and size classes of each vegetation type. In a forested environment, vegetation structure also includes stages, down logs and woody debris, old growth, and canopy closure.

SIZE CLASS DISTRIBUTION AND CANOPY COVER

Stand characteristics derived from recent stand examination data were compared to the forest structural characteristics described in the Management Recommendations for the Northern Goshawk in the Southeastern United States (Reynolds et al. 1992) which recommends a distribution of tree sizes to maintain over a landscape that would maintain forest cover for most wildlife species. At this time, for assessing vegetative structure, the Dixie National Forest is drawing on the intent of these management recommendations, realizing that not all situations described in...
In addition to describing a desired condition for the vegetation structure over a landscape, Reynolds (1992) also prescribes percent canopy closure for Mid-Old, Mature, and Old Forests. This is intended primarily to maintain moist conditions for fungi growth which is a major food source for goshawk prey. In lower ages in spruce-fir forests, the desired condition for Mid-Old stages is one third should have 60% (C) canopy cover and the remaining two thirds, greater than 40% (B) canopy cover.

Table 3.2: Existing conditions within the SERP area based on 1996 exam data.

<table>
<thead>
<tr>
<th>National Forest</th>
<th>% of NF Forested Acres</th>
<th>Private Land (Acres)</th>
<th>% of Private Land Forested Acres</th>
<th>% of Total Forested Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREST TYPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conifer forest</td>
<td>26,750</td>
<td>77</td>
<td>1,646</td>
<td>62</td>
</tr>
<tr>
<td>Aspen forest</td>
<td>8,176</td>
<td>23</td>
<td>1,005</td>
<td>38</td>
</tr>
<tr>
<td>SNAGS/COND</td>
<td>34,493</td>
<td>98</td>
<td>1,523</td>
<td>57</td>
</tr>
<tr>
<td>Acres meeting down woody debris</td>
<td>22,078</td>
<td>63</td>
<td>1,861</td>
<td>70</td>
</tr>
<tr>
<td>OLD GROWTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>young</td>
<td>101</td>
<td><1</td>
<td>35</td>
<td><1</td>
</tr>
<tr>
<td>mid</td>
<td>647</td>
<td>17</td>
<td>29</td>
<td><1</td>
</tr>
<tr>
<td>SIZE CLASS DISTRIBUTION FOR CONIFERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 m DBH</td>
<td>642</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.5-2 m DBH</td>
<td>1,414</td>
<td>7</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>5-12 m DBH</td>
<td>4,502</td>
<td>17</td>
<td>682</td>
<td>41</td>
</tr>
<tr>
<td>12-18 m DBH</td>
<td>12,106</td>
<td>45</td>
<td>900</td>
<td>54</td>
</tr>
<tr>
<td>18-24 m DBH</td>
<td>1,821</td>
<td>7</td>
<td>74</td>
<td>4</td>
</tr>
<tr>
<td>24+ m DBH</td>
<td>6,261</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIZE CLASS DISTRIBUTION FOR ASPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 m DBH</td>
<td>21</td>
<td><1</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>1.5-2 m DBH</td>
<td>24</td>
<td>3</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>3-12 m F-BH</td>
<td>2,904</td>
<td>36</td>
<td>167</td>
<td>17</td>
</tr>
<tr>
<td>12-18 m F-BH</td>
<td>4,742</td>
<td>58</td>
<td>834</td>
<td>83</td>
</tr>
<tr>
<td>18-24 m F-BH</td>
<td>126</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24+ m F-BH</td>
<td>140</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conifer forest</td>
<td>26,750</td>
<td>55</td>
<td>1,646</td>
<td>35</td>
</tr>
<tr>
<td>Aspen forest</td>
<td>8,176</td>
<td>17</td>
<td>1,005</td>
<td>22</td>
</tr>
<tr>
<td>Grass cover type</td>
<td>8,057</td>
<td>17%</td>
<td>1,756</td>
<td>38%</td>
</tr>
<tr>
<td>Rock</td>
<td>1,920</td>
<td>8%</td>
<td>15</td>
<td><1%</td>
</tr>
<tr>
<td>Shrub cover type</td>
<td>416</td>
<td><1%</td>
<td>52</td>
<td>5%</td>
</tr>
<tr>
<td>Urban/developed areas</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>4%</td>
</tr>
</tbody>
</table>

(1) Percent of total acres of National Forest Lands in the SERP area
(2) Percent of total acres of private land in the SERP area
(3) Percent of total SERP area
For Mature and Old Forests, the desired condition is 60% (C) canopy cover. However, data collected indicates that development of a canopy cover 60% or greater in the larger sized trees is not common except in clumps. In addition, stands averaging 40-60% canopy cover (B) have elements meeting the intent of the greater canopy cover. Therefore, in the following discussions B and C cover classes are lumped for the Mature and Old Forest stages and the goal is to maintain as many acres as possible in these stages in greater than 40% canopy cover as a stand average. In the conifer forests within the SERP area, data indicates that about 16 percent of the Mid-aged Forests have a canopy closure of 40-60 percent while the remaining (74%) have a canopy closure of greater than 60 percent which meets the desired condition. About 83 percent of the Mature and Old Forests have a canopy closure of greater than 40 percent. The non-spruce-fir conifer forests have similar desired canopy cover conditions so they were lumped with spruce-fir in calculating canopy cover. Less than seven percent of the conifer forest is comprised of species other than spruce-fir.

OPENINGS WITH LESS THAN 30 PERCENT CANOPY CLOSURE

According to the Forest Plan (AGK 01-65-67 E105/06, & 07/54A), a cut over area is considered an opening until minimum stocking levels (150 trees/acre for spruce-fir, 300 trees/acre for aspen) and a canopy closure of 30 percent are achieved over most of the area (60% for spruce-fir and 75% for aspen). Due to bark beetle activity, this condition occurs as is expected to occur in the spruce-fir stands in the timber harvest Focus Areas without management activity. In the Hancock Peak Focus Area the current canopy closure is primarily more than 40 percent. In the aspen sites proposed for regeneration by fuelwood cutting or commercial harvesting, created openings could occur. Since it is not known specifically what aspen sites will be regenerated with these treatments, all the aspen treatment areas exclusive of the prescribed fire Focus Areas will be discussed in Chapter Four as being created openings.

Table 3-3. Existing VSS and canopy cover compared to desired conditions for spruce-fir forests, 1996 data. (There is no desired condition stated for Mid-Aged, Mature, and Old Forest A cover class, so these stages are shown without a "desired condition"). A = <40%, B = 40-60%, C = >60% canopy closure.

<table>
<thead>
<tr>
<th>VSS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4A</th>
<th>4B</th>
<th>5.6A</th>
<th>B&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired % Of Forested Acress</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>7</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Existing % Of Forested Acress</td>
<td>2</td>
<td>5</td>
<td>18</td>
<td>7</td>
<td>9</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

As shown in Table 3-3, the majority of the conifer forest in the project area is in the Young Forest and Mid-aged Forest structural stages (Refer to Project File, exhibit 17 for stand classifications) based on the most dominant diameter class. However, stands in the project area are generally multi-storied and contain a variety of diameter classes and changes in one or more classes could change the dominant VSS. Using the most dominant structural class is a useful method for tracking desired versus existing conditions.

Based on the desired condition described by Reynolds (1992), Table 3-3 shows a deficit in the Grass/Forb/Shrub, Seedling/Sapling, and the Mature/Old Forest stages with excesses in the Mid-aged stage (based on the most dominant VSS present in 1996) for the conifer forests in the SERP area. Based on field review of the Focus Areas the percentages shown in the VSS's 4 and above are high as those areas are being converted to VSS's 1, 2, 3, and by the spruce beetle. Table 3-4 shows the desired versus existing condition of the aspen forest area. (There is no indication of desired canopy cover for the younger VSS's).

Table 3-4. Existing VSS and canopy cover compared to desired condition for aspen forests, 1996 data. (There is no desired condition stated for canopy closure for aspen).

<table>
<thead>
<tr>
<th>VSS</th>
<th>1.2</th>
<th>3.45</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired % Of Forested Acress</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Existing % Of Forested Acress</td>
<td>3</td>
<td>95</td>
<td>2</td>
</tr>
</tbody>
</table>

SNAGS, DOWN LOGS, AND WOODY DEBRIS

As indicated in Table 3-2, the SERP area generally contains the desired number of larger snags but is lacking in the amount of large down woody material necessary to maintain soil productivity and meet structural diversity needs. Bark beetle activity in the project area has increased the number of snags per acre, so it is expected that as the snags begin to fall the fuel loading will move toward the desired condition. There is no information available on the amount of down woody material present in each stand. Estimates were based on the dominant tree species. If a stand is dominated by spruce, it was assumed to have 15 tons per acre; if a stand is a mix of species, it was assumed to have 10 tons per acre. If a stand was more than 50 percent aspen, it was assumed to have five tons per acre. For a detailed stand by stand summary refer to the Project File (Exhibit 17).

OLD GROWTH

Forests in, or approaching, the later stage of ecological succession are termed "old growth". These forests play an important role in maintaining biodiversity. Old growth forests have a unique structure and composition that provides important habitat for a wide range of associated plant and animal species, as well as a variety of other biota. Old growth forests also have other intrinsic social and recreational values.

Stands in the project area were rated to determine if they met structural requirements to be classified as old growth based on Characteristics of Old Growth Forests in the Intermountain Region (Hamilton 1993). Hamilton discusses two ecological conditions, based on site productivity, which influence the structural attributes of old growth spruce-fir stands. After review of the forested stands in the SERP area, stands with a strong south to west exposures were classified as belonging to a "Cold/firry environment", the remaining stands were classified more productive and were classified as "Warm/moss". Structural features necessary for an old-growth include:

- Presence of large, mature trees;
- Variations in tree sizes;
- Accumulations of large dead and fallen trees;
- Decadence in the form of broken or deformed tops, and diseases;
- Multiple canopy layers.

Based on the above structural characteristics defined for each ecological classification (cold/firry versus warm/moss), a total of 6,642 acres (18% of the forested acres) were classified as old growth using 1996 data. The stands rating as old growth are generally scattered stands, not continuous tracts which may be more desirable to some wildlife species. Refer to Project File (Exhibit 17) for Old Growth Map. The old growth classification system also includes an age requirement. Many of the stands included in the old growth acres do not appear to meet the minimum age, but they do meet the other structural requirements listed above.

VEGETATIVE COMPOSITION

Vegetative composition refers to the dominant species present and their relative abundance. It includes the recruitment and sustainability of early seral species while still providing the diversity of all successional species (flora and fauna).

NON VEGETATED AREAS (4,205 ACRES)

Non vegetated areas include rock (3,935 acres), water (60), and developed areas (210).

NON FORESTED AREAS (11,209 ACRES)

Non-forest areas are generally described by current species composition or vegetative community. Non forested areas include grassland (9,849 acres), shrubland (468), and wet meadows (901). These are areas greater than five acres in size; non-forested stands that are less than this are considered to be an integral part of the forested stands.

There are several small riparian areas in the project area. These are generally associated with creeks, springs or seeps. They range in size from about 1/4 acre to 1 acre. Refer to the "Critical Watershed/Soils Areas" map in Appendix 4 for locations.

Spruce Ecosystem Recovery Project DEIS

Spruce Ecosystem Recovery Project DEIS
FORESTED AREAS (37,577 ACRES)
Forested areas include aspen (9,181 acres), alpine fir (285), blue spruce (188), Douglas-fir (1,013), Engelmann spruce (3,844), limber pine (23), white fir (444), and spruce-fir (22,599).

In forested environments, habitat types can be used to describe the potential plant communities. Habitat types integrate environmental factors that affect vegetation (i.e., soils, aspect, topography, climate). Forested lands are divided into habitat types based on potential climax vegetation described in Coniferous Forest Habitat Types of Central and Southern Utah (Youngblood and Mauk 1985). The habitat type classification system integrates all environmental factors which affect vegetative communities, but does not reflect current vegetative composition since it is based upon the potential vegetation community that would develop without a disturbance event affecting the successional processes. Most stands in the project area fit best into the Abies lasiocarpa/Ribes montigenum (ABLA/RIMO) and Picea engelmannii/Ribes montigenum (PIEN/RIMO) habitat types. The major differences between the two types is the lack of large numbers of subalpine fir and aspen in the PIEN/RIMO type; the presence of these species is accidental in a mature stand. Both have generally sparse understory vegetation except in open or disturbed areas, or near wet, seep areas.

A description of the spruce-fir and aspen forests can be found in the Effects of Fire and Timber Harvesting on Vegetation (Eisenhauer and McGinn 1997).

NOXIOUS WEEDS
There are no known populations of noxious weeds in or around the project area. Common sources of noxious weeds include heavy equipment that has been operating in agricultural areas that have noxious weeds and hay or straw used for livestock feed, or for mulch. Due to the proximity of private lands and Highway 143, which bisects the area, there is a possibility for noxious weed seeds to be introduced into the area. However, the potential for population establishment is considered low due to the high elevation of the project area (R. Houston, pers. comm.). Due to the low probability of noxious weed infestation, this will NOT be carried into Chapter Four.

VEGETATIVE PROCESSES (INSECTS AND DISEASES)

Insect activity, primarily bark beetle populations, have been building on the Cedar City District for the past several years. Spruce beetle has caused the most significant change across the spruce-fir landscape. When populations reach outbreak or epidemic levels, they can effect major changes on stand composition, structure, and pattern over widespread areas.

SPRUCE BEETLE (Dendroctonus rufipennis)
The most important beetle within the project area is spruce beetle due to its ability to affect large areas of susceptible spruce forests. Initially adult beetles are attracted to downed spruce caused by various disturbance regimes, generally windthrow. As beetles emerge from the downed material they attack the larger, more mature standing spruce if additional downed trees are not available. If conditions are favorable, abundant host type coupled with periods of drought can cause populations to build rapidly. As the larger host material is killed, subsequent attacks are directed at smaller diameter hosts. Adult beetles generally fly short distances to reach suitable host material, however as they deplete the host food source, dispersal distances will increase. This flight behavior results in host mortality far in advance of the infested area. This type of scenario is presently occurring within the SERP area on the Cedar City Ranger District (Forest Health Protection (FHP) Aerial Survey Maps, 1991-1996: Project File, exhibit 18).

Aerially observed tree mortality was first detected by the FHP aerial survey in 1991. Five scattered small pockets consisting of 10-20 dead trees and a 100 tree pocket of mortality was initially mapped on private and Forest Service land during the 1991 survey. Spruce mortality was estimated at approximately 215 trees. By 1993, pockets of mortality had increased to 11, with the initial 100 tree pocket of dead expanding to 300 trees in the Navajo Lake area. Another large pocket of spruce mortality was observed northeast of Brian Head Peak consisting of 100 dead spruce. The infestation had spread throughout the northern portion of the analysis area which included Rainbow Meadows, Sidney Valley and south of Highway 143 into Hancock Peak. Spruce mortality within the SERP area over all ownerships, encompasses 45,000 trees over approximately 7,400 acres. The mortality estimate only includes trees aerially mapped through 1995. Trees attacked by spruce beetle in 1996 are not included in this estimate since visual symptoms detected during an aerial survey would not appear until the summer of 1997. Although the 1997 FHP aerial survey has been completed, the data has not been summarized or field checked by
FHP staff. Unless natural forces cause a collapse of the spruce beetle population, it is expected to increase in intensity until most of the susceptible food source is depleted on the Cedar City Ranger District. The current outbreak could easily extend into the next century.

Table 3-5 summarizes annual spruce mortality within the SERP area from its initial detection in 1991 through 1996. The threefold increase in tree mortality from 1991-1995 was due primarily to an increase in spruce beetle populations within Sidney Valley and the Brown Head area (Ambold 1994). The decrease in spruce mortality in 1994 is due to the beetles' two-year life cycle and the absence of aerial visual symptoms during the year of initial attack. By 1996, spruce mortality had increased to 23,419 trees extending south of Highway 143 into the Hancock area.

Table 3-5. Spruce mortality by year in the SERP area. (Estimated from aerial survey maps.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KILLED</td>
<td>1,600</td>
<td>1,964</td>
<td>6,200</td>
<td>3,900</td>
<td>6,900</td>
<td>23,900</td>
<td>44,400</td>
</tr>
</tbody>
</table>

Endemic spruce beetle populations are generally kept low by natural predators (woodpeckers, insects, etc.). They are less likely to control populations that approach outbreak levels (Meadows 1980). The loss of susceptible hosts and/or exposure to extreme temperatures can lead to population collapse. Laboratory studies indicate temperatures of -15 degrees F under the bark will kill adult beetles and temperatures exceeding 30 degrees F will kill all life stages of the spruce beetle. Records summarized from Brown Head and Brown Head (7 miles south of the project area) weather stations since 1994, indicates that temperatures do occasionally reach -15 degrees F. However, snow depths occasionally exceed 50 inches, which provides thermal protection for overwintering life stages (Project File). Established stands that have lost a certain percentage of adult beetles will move to the base of the tree to overwinter. This type of behavior restricts overwintering adults from lethal winter temperature and predators.

A number of factors are responsible for the current outbreak of spruce beetles. These factors include: stand disturbance in the late 80's and early 90's (primarily windthrow), high tree densities, an abundant food source and succession mechanisms. Following the drought years of the late 80's and early 90's, the higher than normal prospect of 1993 also allowed for higher overwintering survival rates of spruce beetle.

Western Balsam Bark Beetle (Dendroctonus frontalis)

This beetle is attacking subalpine fir throughout the project area as small groups and scattered individual trees. It is not as aggressive as the spruce beetle and is generally associated with drought periods or trees infested with root disease (Johann 1992). Unlike the spruce beetle, tree mortality associated with this beetle tends to fluctuate with drought or other types of stress (i.e. budworm outbreaks). It can cause wide-spread mortality, but with uneven moisture, populations of this beetle should return to endemic levels, posing little threat to stands in the project area for this time. Therefore, discussion of this bark beetle will not be carried forward into Chapter Four.

ASSYNOUS ROOT DISEASE (Heterobasidion annosum)

From a forest management perspective, this is the most important disease affecting conifers in the project area. It is found primarily in subalpine fir for 90% of diseased stands in the project area and is killing subalpine fir in pockets of less than 10% of the area. The fungi, though in isolated instances, pockets dot 50 ft. size can be found. The risk of spread of this disease is how to moderate due to the 1 mile aggressive strain of the disease that appears to be in the area. Mortality caused by this disease is minor at this time. Therefore, discussion of this disease will not be carried forward into Chapter Four.

PRESENT IMPACTS OF INSECTS AND DISEASES IN ASPEN

Two insects have been observed attacking aspen, though in very limited areas:

1. Tent caterpillars (Malacosoma spp.)
2. Poplar borers (Saperda calcarata)

Diseases affecting aspen in the area include:

1. False Tinder Fungus (Phellinus tremulae [Bond.] Bond. & Botros.
3. Black Canker (Cytospora fimbriata Ell. & Halst.
4. Cytospora canker (Cytospora chrysosperma [pers.] F.

At the present time, these insects and diseases are at endemic levels, not a high risk level, and are not causing negative effects. Implementation of any of the alternatives discussed in this document would not be expected to alter this situation. Therefore, discussion of insects and diseases affecting aspen will not be carried into Chapter Four.

Bark beetle risk: Previous studies conducted by Schmid and Frye, 1976 indicate particular species characteristics are susceptible to spruce beetle attack. Stands considered high risk have the following attributes: 1) located in well-drained crevices, bottoms or drainages, 2) the average spruce diameter is 16 inches or greater, 3) high tree densities (exceeding 150 square feet of basal area), and 4) spruce composition within the stand exceeds 65 percent. Stands with attributes less than those described above would receive a lower risk rating. Based on data collected in the infested sites stands with these attributes have been infested. All infested stands with a VSS 3 classification or greater have been attacked by spruce beetle. If this trend continues, an additional 19,000 acres of spruce within the project area is susceptible to spruce beetle infestation.

VEGETATIVE PATTERNS

Patterns are an indication of how ecosystems function among and between themselves. Vegetative attributes of patterns include size, shape, age class, distribution, fragmentation and connectivity.

The SERP area was occupied by a fairly contiguous mature to old spruce-fir forest before the current spruce beetle epidemic. This forest appears to have been replaced about 300 years ago as a result of large-scale replanting, insect epidemics, or a combination of the two. It has since grown through the successional stages of a maturing spruce-fir forest and in 1996 was approximately 70 percent Mid-aged to Old Forest (VSS 4-6, diameter greater than 12 inches). 38 percent of the 7,400 acres of the center core component in the project area are turned over every 250 years throughout the project area. This forest is intermixed with large meadows and rock areas. Large areas where aspen dominates the forest environment are also represented throughout the project area. These forests are over 90 percent Yung to Mid-aged Forests (VSS 3-4, diameters 5-18 inches). Many spruce-fir stands contain a significant component of mature aspen that is being replaced by the more shade-tolerant conifer species. Aspen typically dominates sites adjacent to meadows and westerly aspects which have a more frequent and less severe fire regime than sites dominated by spruce-fir. The recent fire suppression efforts have probably affected the historical fire regime in the aspen areas which resulted in a structural condition that is outside of the range of a properly functioning condition (Aamundset et al. 1996).

Because of recent fire suppression tactics and lack of evidence of recent large scale disturbance like fire and beetles, the areas dominated by mature forests is probably near the maximum level as indicated by the recent beetle epidemic. This beetle caused mortality is changing large areas (about 7,400 acres) from VSS 4-6 to VSS 1-2, 2 or 3, depending by representation none hosts species like alpine fir and aspen. This is changing areas with a very consistent, late successional pattern of vegetation to areas dominated by an early successional, more open and variable pattern.

FRAGMENTATION

Many plant and animal species are adapted to living in the interior of forest stands and others utilize open environments or habitat boundaries such as forest margins (edges). Each species has evolved over thousands of years and populations are adapted to particular environments. When habitat conditions change as a result of plant succession, climatic changes, or various influences brought about directly or indirectly by humans, the survival populations or the species may change. A species may either increase or decrease depending on the type or amount of change. When changes favor a species, the population may spread into favorable habitats and increase. When
altered habitat conditions result in increased mortality or lowered reproductive rate, the population will decline unless it can be supported by immigration from nearby areas (Robbins 1979).

Especially important to interior forest habitat species are large blocks of mature forests which are connected to other large blocks of forests. A trend in many forested areas is for forest blocks to be broken up (fragmented) and becoming isolated, as connections (corridors) between forests are fragmented into smaller pieces by human induced or natural events. Minimum block size has not been agreed upon, but the general rule is larger blocks are better in order to maintain forested areas that are not affected by edge. Also to minimize edge effects, the blocks cannot be long and narrow. Blocks approaching circular would minimize the proportion of edge to forest interior.

Forests in the SERP area are somewhat naturally fragmented due to large meadows and rock areas. Additional fragmentation has occurred due to roads, ski area development on the forest and private lands, and additional development on adjacent private lands. The most continuous forested area in the project area is the central area in the Hancock Peak Focus Area and the adjacent Roadless Area. This area comprises over 10,000 acres.

THREATENED, ENDANGERED AND SENSITIVE PLANT SPECIES

There is no suitable habitat for any federally listed threatened, endangered, proposed or candidate species in the SERP area. Table 3-6 shows the sensitive plants that could occur or have habitat with the SERP boundary and a brief summary of information leading to this conclusion regarding suitable. Among these is the only sensitive plant with no suitable habitat. There are documented occurrences of Arizona willow, Cedar Breaks Biscutent, Maguire campion, Navajo Lake milkvetch and Reveal paintbrush.

<table>
<thead>
<tr>
<th>SPECIES Scientific Name</th>
<th>SUITABLE HABITAT SUITABILITY BASED ON:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Breaks Biscutent</td>
<td>Usual limestone present.</td>
</tr>
<tr>
<td>Cuphea occidentalis</td>
<td>No sandstone cliffs, slickrock slopes or hanging gardens.</td>
</tr>
<tr>
<td>Zon: lamioeca</td>
<td>Open calcareous and igneous gravels present in project area.</td>
</tr>
<tr>
<td>Maguire campion</td>
<td>Present in the project area.</td>
</tr>
<tr>
<td>Solenec palmeri</td>
<td>X High elevation Washatch limestone formation present.</td>
</tr>
<tr>
<td>Arizona Willow</td>
<td>X Wet meadow areas at suitable elevations.</td>
</tr>
<tr>
<td>Salix arctica</td>
<td>X Alpine areas on igneous gravels present.</td>
</tr>
<tr>
<td>Navajo Lake milkvetch</td>
<td>X Usual limestone present in project area.</td>
</tr>
<tr>
<td>Astragalus tenuinervi</td>
<td>X Usual limestone present in project area.</td>
</tr>
<tr>
<td>Paurospermum</td>
<td>X Alpine areas on igneous gravels present.</td>
</tr>
<tr>
<td>Boreophragmites</td>
<td>X Usual limestone present in project area.</td>
</tr>
<tr>
<td>Tashiri Pontbush</td>
<td>X Usual limestone present in project area.</td>
</tr>
<tr>
<td>Castilleja parvulal parvula</td>
<td>X Usual limestone present in project area.</td>
</tr>
<tr>
<td>Reveal paintbrush</td>
<td>X Usual limestone present in project area.</td>
</tr>
</tbody>
</table>

A Conservation Strategy and Agreement has been signed for Arizona willow (Arizona Willow Interagency Technical Team 1995). Each population is described in the strategy with conservation measures outlined. There are fifteen populations within the SERP area, one is on private land and one in Cedar Breaks National Monument. These populations total approximately 961 acres. 441 acres are on federal lands. Table 3-7 shows the names of each population, size, condition, and potential threats.

Conservation efforts identified in the strategy include site monitoring, implementing a 100 foot buffer (if harvest, construction of protective research excludes recreational plans for OROB off-road vehicles use, implementation of

CUMULATIVE EFFECTS AREA (CEA)

The CEA for the vegetation resource discussion is based upon the project area boundary for SERP which is essentially the boundary of the spruce-fir forest on the Northern Markagunt Plateau. The cumulative effects analysis will discuss how the vegetation landscape may be affected by action or no action in the SERP area, considering other past, present, and foreseeable future actions. The CEA is within the upper portions of five National Forest System watersheds: Asay, Panguitch, Coal, Mammoth, and Parowan Creeks. Refer to Appendix 10 for a list of past, present, and future actions within the CEA that will be considered in the analysis in Chapter Four.
RECREATION RESOURCE

Recreation is a primary use of the lands within the spruce zone of the Markagunt Plateau. Brian Head Town and Ski Resort, Cedar Breaks National Monument, the Ashdown Gorge Wilderness, the Yankee Meadows Reservoir area, the Navajo Lake area, Duck Creek area, and Panputch Lake area, attract many recreation visitors. Utah State Highways 143, 148 and 14 are frequently chosen as scenic travel routes by visitors touring southern Utah, including the Bryce Zone, and Capitol Reef National Parks, and the Escalante Grand Staircase National Monument. The National Parks and Monuments attract national and international visitors to the Cedar City Ranger District.

Recreation activities include: viewing scenery, watching wildlife, motorcycle and ATV riding, mountain biking, horseback riding, camping, hunting, snowmobiling across country and down hill skiing, hiking, and boating. Recreation use on the Cedar City Ranger District has steadily increased, especially from residents of Las Vegas, Nevada, St. George, Utah, Phoenix, Arizona, and southern California. Fifty percent of Clark County Nevada/Las Vegas area residents surveyed in a 1994 random telephone survey indicated that they had visited the Dixie National Forest in the last two years (A & A 1994). Clark County is currently the fastest growing metropolitan area in the country. There are many international visitors to Cedar Breaks National Monument, which is located in the spruce zone of the Markagunt Plateau.

RECREATION ACCESS ROADS WITHIN THE SERP ANALYSIS AREAS

UTAH STATE HIGHWAYS 143, 148 AND 14

Primary travel routes within the Spruce Ecosystem Recovery Project include Utah State Highways 14, 143 and 148. All three highways have been designated Utah State Scenic Byways and National Forest Scenic Byways.

Highway 143 is a primary access route for Cedar Breaks National Monument. Brian Head Peak, Brian Head Town and Ski Resort, and Panputch Lake. In 1993, Utah Department of Transportation (UDOT) estimates that 567,500 vehicles traveled the section of Highway 143 which crosses through the project area. This is an 8% increase over the 1991 estimate of 523,000 vehicles. UDOT records available in the Project File, exhibit 205. Traffic counts at the north boundary of Cedar Breaks National Monument on Highway 143 recorded 237,943 vehicles between June and October. No data was available for November - May because the Park Service removes these counters during the winter months. A 1994 survey conducted by the National Park Service, found that there are an average of 2.35 persons per vehicle visiting Cedar Breaks. Applying this multiplier factor to UDOT’s estimates in 1993, there are approximately 1,300,000 people annually traveling along Highway 143 through the analysis area.

Utah State Highway 14 passes through the southern analysis area, and approximately 10 miles is included in the project analysis area. Highway 14 provides access to Navajo Lake, Cedar Breaks National Monument, Duck Creek Campground and Visitor Center, and Duck Creek Village. Data from a permanent traffic recorder on Highway 14 east of Cedar City recorded 998,729 vehicles traveling Highway 14 in 1995. This is an 11% increase over the #29147 recorded in 1993. Approximately 1,644,000 people traveled along Highway 14 through the analysis area, using the Cedar Breaks factor of 2.35 persons per vehicle. The primary use is during June through October as illustrated in the table below. (Based on Boundary Traffic Counters on Highways 143 and 148)

Seasonal travel patterns are reflected by Cedar Breaks National Monument entrance vehicle counter trails, and data from a permanent traffic recorder on Highway 14 east of Cedar City. The Highway 14 counter patterns also do not represent the impacts of Brian Head Ski Resort, because Highway 148 is closed during the winter months. As a result, the winter traffic represents a higher percentage of the total traffic volume on Highway 14 than it does on Highway 14.

The Dry Lakes Road (#265) has been designated a Utah State Scenic Backway. Th Bob Lake Road (Forest Road 265) is the western boundary of the project area. This road is maintained by Iron County as an all weather gravel - natural surface road, and is plowed by Iron County during winter months. Activities along this road include driving for pleasure, access for summer home areas on private land, access for hunting, mountain biking, snowmobiling, and cross-country skiing. This area is designated open to off road vehicle travel in the forest travel plan.

Other primary travel routes include Sidney Valley and the Center Creek Roads (#041), the Bowery Creek road to Yankee Meadows Reservoir (#040), Bear Flat Road (#040), Brian Head Peak Road (#047). Secondary travel routes include Radar Ridge (#277) Sage Valley Road (#103), and the Red Desert Road (#051). The roads from the former Deer Valley Timber Sale are frequently used as ATV and motorcycle routes in the summer, and snowmobile routes in the winter (See Appendices 91). These roads are all native or gravel surfaced roads.

Table 3-8. UDOT Traffic Counter - Highway 14

<table>
<thead>
<tr>
<th>MONTH</th>
<th>1993</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>16,182</td>
<td>22,072</td>
</tr>
<tr>
<td>February</td>
<td>26,068</td>
<td>24,696</td>
</tr>
<tr>
<td>March</td>
<td>22,475</td>
<td>26,381</td>
</tr>
<tr>
<td>April</td>
<td>27,450</td>
<td>31,608</td>
</tr>
<tr>
<td>May</td>
<td>40,903</td>
<td>56,761</td>
</tr>
<tr>
<td>June</td>
<td>73,650</td>
<td>73,170</td>
</tr>
<tr>
<td>July</td>
<td>114,896</td>
<td>120,683</td>
</tr>
<tr>
<td>August</td>
<td>102,610</td>
<td>112,716</td>
</tr>
<tr>
<td>September</td>
<td>81,930</td>
<td>92,550</td>
</tr>
<tr>
<td>October</td>
<td>61,845</td>
<td>78,988</td>
</tr>
<tr>
<td>November</td>
<td>30,720</td>
<td>33,030</td>
</tr>
<tr>
<td>December</td>
<td>24,428</td>
<td>27,001</td>
</tr>
<tr>
<td>Total</td>
<td>620,147</td>
<td>699,728</td>
</tr>
</tbody>
</table>

Table 3-9. Cedar Breaks National Monument Monthly Use Totals - 1996

<table>
<thead>
<tr>
<th>MONTH</th>
<th>VEHICLE TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>93,909</td>
</tr>
<tr>
<td>July</td>
<td>108,326</td>
</tr>
<tr>
<td>August</td>
<td>114,326</td>
</tr>
<tr>
<td>September</td>
<td>125,670</td>
</tr>
<tr>
<td>October</td>
<td>69,935</td>
</tr>
</tbody>
</table>

Spruce Ecosystem Recovery Project DEIS

3-12

Spruce Ecosystem Recovery Project DEIS

3-13
There is a network of roads within the Brian Head Ski Resort permit boundary for servicing the lifts and snowmaking ponds and to provide access to runs for grooming. These roads are closed by the Dixie National Forest Travel Management Plan except as necessary for resort administration. These roads are used as trails by bikers and mountain bikers during summer and fall months. This use is promoted by Brian Head Town and Brian Head Ski Resort and this road system is considered part of the area trail network.

CAMPING

Camping is a popular recreation activity within the project. There are no developed campgrounds within the SERP analysis area. There is one developed picnic and campground within Cedar Breaks National Monument, which is located within the up-slope zone of the Markagunt Plateau. The more popular dispersed camping sites include Upper Bear Flat, Yankee Meadows Reservoir (adjacent to SERP analysis boundary), Long Valley, Deer Valley, Sidney Valley, Red Desert and Sage Valley. Dispersed camping is permitted adjacent to most roads within the analysis area. There is moderate to heavy dispersed camping use throughout the summer. The Deer Valley, Red Desert and Sage Valley areas are especially popular for dispersed camping during the fall hunting season.

TRAIL USE

The SERP analysis area trails receive heavy to moderate use throughout the summer and fall season by bikers, mountain bikers, ATV and motorcycle riders, and horseback riders. Trail counters on the Virgin River Rim trail, on the southern edge of the project area recorded 2,310 users in August 1995. Sydney Peaks trail counters recorded 5,745 users from July through October 1995 and 16,483 users for the same period during 1996. This trail is frequently used to travel to the Bunker Creek Trail, which is included in a Focus Area. Primary use trails in the analysis area include: Brian Head Town and Resort trails, Sidney Peaks and Lowder Ponds trails, Left and Right Forks of Bunker Creek trail, Virgin River Rim trail, and the Dark Hollow trails. These trails are among the highest use trails on the Cedar City Ranger District. The Sydney Peaks, Bunker Creek and Dark Hollow trails have received regional and national attention in mountain biking and travel magazines. The primary trails for the Aspendough Grove Wilderness, begin in the analysis area. Blow Hard, Rattlesnake, High Mountain and Twisted Forest trails. There is a trail system in the Cedar Breaks National Monument, which is located within the up-slope zone of the Markagunt Plateau. Secondary trails include the Hancock Peak, Hendrickson Lake, Navajo Point and Spruce Creek. See September 1995. The Spruces and Hancock Peak trails currently have low use but trails currently in other area trails and offer users a semi-primitive non motorized experience, including opportunities for solitude and a sense of remoteness from others. The last mile 1/2 mile of the Hancock Peak trail passes the Mormon Lakes Subdivision and the old Hancock Peak Timber Sale. In this area the sense of solitude and remoteness from the sites and sounds of humans is greatly reduced. Only hiking and horseback riding is permitted in the Ashdown Grove Wilderness.

MOUNTAIN BIKING

Mountain biking has been steadily increasing within the project and adjacent areas. The Brian Head community and resort have been actively marketing to this user group by developing mountain bike trails at the resort permit area, and developing a trail network within the town. Two mountain bike festivals, July in June and September, and two mountain bike competitions in August and September, are mountain bike events that are operated under a special use permit with the Dixie National Forest. These festivals all cross the analysis area. The Utah Summer Games also sponsor races within the analysis area during June. Thirty one percent of the 4,420 summer lift riders are mountain bike users. There are two businesses in Brian Head that operate shuttle services for mountain bikers. Brian Head Resort provides 7 ports shuttling 900 bikers during 1994. Georgie Bike Shop shuttled 908 people during 1994. The Bunker Creek/Sydney Peaks trails received the most use, with 582 people being shuttled from the middle of July to the end of August 1994, and being returned to Brian Head from the terminus near Parowan Lake. The Dark Hollow trail received the most use, with 503 people shuttled from Brian Head Town, to the top of Brian Head Peak, and returned from the terminus in Parowan. Five businesses in Brian Head rent and sell mountain bike equipment. Brian Head Cross Country reports a 400% increase in mountain bike rentals, from 260 in 1991 to 1062 in 1994.

AVT AND MOTORCYCLE USE

AVT's and off road motorcycles are used on many of the primary and secondary native and gravel surface roads. Within the project area, this includes the Siddur Valley and the Center Creek Roads, (Red Desert Creek road to Yankee Meadows Reservoir (409), Bear Flat Road (403), Brian Head Peak Road (407), Sage Valley Road (420), and the Red Desert Road (405)). The roads constructed for the former Deer Valley, Blowhead, Sage Valley, Hancock and Lower State timber sales are frequently used for AVT and motorcycle travel. Off road motorized vehicle travel is prohibited throughout the analysis area.

BRIAN HEAD SKI RESORT

A portion of the Brian Head Ski Resort is under special use permit with the Dixie National Forest. All of the 405 acres within the permitted area are within the project area. The resort operates 7 lifts and 53 runs. During the 1998-99 ski season 14,800 skier days were recorded. Use has been relatively stable since 1996, averaging 150,000 skiers per season. The Brian Head Resort has proposed an expansion which includes the construction of three new lifts and associated runs on US Forest Service System Lands. This expansion is proposed to support up to 250,000 skier days per season (USDA 1997). A decision was made in August, 1997 to implement the proposal. The resort has extended their lift operation into the summer and fall seasons to accommodate mountain bikers and hikers by operating Giant Steps Chair Lift #2. In 1994 there were 1453 tickets sold acrossBrian city users, and 3167 sightseers and bikers used the lifts. This is a 38% increase over the use in 1993 the first year the lifts were operated during the summer.

Table 3.10. Summer Lift Use - 1994.

<table>
<thead>
<tr>
<th></th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>MountainBikes</td>
<td>33</td>
<td>670</td>
<td>397</td>
<td>344</td>
</tr>
<tr>
<td>Sightseers</td>
<td>156</td>
<td>1549</td>
<td>722</td>
<td>740</td>
</tr>
<tr>
<td>TOTAL</td>
<td>199</td>
<td>2220</td>
<td>1119</td>
<td>1084</td>
</tr>
</tbody>
</table>

There is lodging available as part of the resort development in Brian Head Town. The Cedar Breaks Lodge receives the highest use during the ski season (December to March) and the summer season (July and August). The bus tour account for a significant portion of the summer use.

WINTER RECREATION USE

Snowmobiling is another prominent winter recreation activity within the project area. A snowmobile trail has been proposed that will be groomed by Utah State Parks and Recreation. Linking the Brian Head area with the Parachute Lake and Duck Creek systems. Utah State Park #4 and Recreation grooms trails along the Red Desert (405) and Sage Valley (420) roads. Mountain Valley (the highway 14-133 junction is a major snowmobile trailhead. There is also a major snowmobile trailhead at the Navajo Lake junction south-east of the analysis area. There is also cross-country skiing, with designated trails located in the Brian Head area. Highway 148, which is closed during the winter, is a popular snowmobile and cross-country skiing travel route.

BRIAN HEAD TOWN

There are 130 permanent residents living within the city limits of the Brian Head. There are 70 developed lots within the city limits. However, there are many vacation homes built within Brian Head Town and nearby subdivisions and private land lots. According to Iron County property ownership records, there are 600 private land owners in or near the Brian Head Town. Many of these lots have not yet been developed.

The primary industry for Brian Head Town is tourist related service industries. In addition to the services provided by the resort there are 7 lodging accommodations consisting of hotels and condo/rental units. There are also 4 restaurants and 5 sporting good shops that rent and sell skiing and snowboarding equipment.

Spruce Ecosystem Recovery Project DEIS: 3.14

<table>
<thead>
<tr>
<th></th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>MountainBikes</td>
<td>33</td>
<td>670</td>
<td>397</td>
<td>344</td>
</tr>
<tr>
<td>Sightseers</td>
<td>156</td>
<td>1549</td>
<td>722</td>
<td>740</td>
</tr>
<tr>
<td>TOTAL</td>
<td>199</td>
<td>2220</td>
<td>1119</td>
<td>1084</td>
</tr>
</tbody>
</table>
Vistation has been increasing during the summer and fall months. The quarterly resort and sales tax collection reported by Brian Head Town for June-November has increased by 56% between 1998 and 1999. The community has been actively promoting summer visitation through sponsorship of recreational events and festivals.

SECONDARY RESIDENCES

There are secondary recreation residences on private lands in the Rainbow Meadows Ranches, Inland Estates, and Meadow Lake Subdivisions, and areas adjacent to Brian Head Town. A few of the homes in these areas are used as primary residences.

BRAN HEAD PEAK

Brian Head Peak is the second highest point on the Dixie National Forest at 11,307 feet. A gravel road provides access to an overlook at the top, providing scenic vistas hundreds of miles in every direction. A rock lookout structure was constructed during the 1930's by the Civilian Conservation Corps (CCC). There is heavy visitation during the summer months. Use is moderate to light during the fall and winter, with the only winter access being on snowmobiles or skis. The Brian Head Ski Resort operates a snowcat during the winter to transport advanced skiers to Brian Head Peak, for skiing the chutes on the north face of the peak. A chair lift is being proposed by Brian Head Ski Resort that would provide additional winter and possibly summer access to the top of the peak.

HUNTING AND FISHING

Hunting and fishing are popular recreation activities throughout the project area. Popular fishing sites include: Yankee Meadows Reservoir and Navajo Lake, both of which are outside of the SERP boundary, but adjacent to it. There is also fishing in Loafer Creek and Ponds, Mammoth Creek, Bunker Creek, and Castle Creek.

The area receives concentrated use during the general season deer and elk hunts. Blue grousse are hunted along the rim areas.

RECREATION OPPORTUNITY SPECTRUM CLASSIFICATION AND FOREST PLAN DIRECTION

The analysis area is managed to provide for rural, roaded natural, semi-primitive non-motorized, and semi-primitive motorized, based on the Recreation Opportunity Spectrum classifications, as described in USDA Forest Service R35 Block 1996b. See complete discussion in “Effects of Spruce Beetle Epizootics and Subalpine Treatments on Scenery and Recreation Resources”.

CUMULATIVE EFFECTS AREA

The recreation CEA of recreational features is tied to Highway 143, 148, and 14 including Cedar Breaks National Monument, Panagut and Navajo Lakes, Ashdown Fore Wilderness and Duck Creek Campground and Village. It extends south to the Cedar City Ranger District Boundary, north to Parowan, east to Paunquich, and west to Cedar City. See maps Appendix 1.

Yankee Meadows Reservoir is located adjacent to the northern boundary of the analysis area. This reservoir is popular for boating, fishing and desert hiking. Navajo Lake, located less than a mile south of the analysis area boundary is also popular for boating and fishing. There are three developed campgrounds in the Navajo Lake basin, Spruces, Er Ash, and Navajo Lake, and a special use permit recreation facilities, include lodging and boat landings. Duck Creek Village and the Forest Service's Duck Creek Campground are located east of the analysis area on Highway 143. Parunquich Lake is included, due to mountain biking and hiking trails that originate at the Brian Head area and pass through or terminate in the Parunquich lake vicinity. There are also people who pass through the analysis area while travelling on Highway 143 to Paunquich Lake. Cedar Breaks National Monument is a popular scenic area. Tourists often visit the area while on route between Zion and Bryce Canyon National Parks, and the Escalante Grand Staircase National Monument.

SCENIC RESOURCES

NATIONAL FOREST SCENERY MANAGEMENT SYSTEM

The National Forest Scenery Management System is the process used for planning and design of the visual elements of multiple use land management. Scenery management is based on the criteria and guidelines in the Landscape Aesthetics Handbook for Scenery Management, USDA Handbook Number 701. This system was implemented in 1996, superseding the Visual Management System and replacing National Forest Landscape Management, Vol. 2, USDA Handbook Number 462.

The eleven fundamental principles to the Scenery Management System are:

- Biological, physical and social factors create and influence scenery and interact to determine landscape character.
- Landscape character varies greatly with the interaction of environmental factors.
- People have the ability to perceive landscape character and develop expected images.
- Through various activities, people have the ability to modify landscape character and scenic conditions and have often done so.
- Such changes in landscape character and scenic condition often modify, suppress, or replace the original landscape character.
- People place highly the more scenic landscapes.
- Generally, natural appearing landscapes are the most valued.
- Resource managers can design their activities to reduce adverse impacts on landscape character and scenic integrity.
- People have the ability to establish goals to maintain and create desired landscape character.
- People have the ability to apply ecological, technical, and design knowledge to meet scenery management goals and objectives.
- In some situations, resource managers perpetuate or create desirable scenic environments to provide an improved quality of life (USDA 1995)

The Scenery Management System (SMS) began with the basic premises established in the Visual Management System, but has been expanded to better accommodate ecosystem management and the time frames of natural systems. This system also places greater confidence in establishing scenic elements, forest components, on land, and identifying ways to maintain or improve those qualities.

The terminology introduced in the SMS will be used in this analysis. The Forest Plan specified Visual Quality Objectives (VQO) from the Visual Management System associated with the Management Areas. SMS uses Scenic Integrity Objectives to establish the desired condition for management of an area instead of VQO's. A crosswalk is described in the “Landscape Aesthetics: A Handbook for Scenery Management (USDA 1995)”. An inventory is currently taking place to review the VMS -SMS transition on the Dixie National Forest. Until that inventory and review process is complete, the crosswalk is being used to apply the SMS system with Scenic Integrity Objectives to Visual Quality Objectives specified in the Forest Plan.

Scenic Integrity is defined as "a measure of the degree to which a landscape is visually perceived to be complete. The highest scenic integrity ratings are given to those landscapes that have little or no deviation from the character..."
valued by constituents for its aesthetic appeal (USDA 1995). Scenic Integrity Levels describe the current condition of the scenic resource. Scenic Integrity Objectives describe the objectives for management, or the desired future conditions.

Table 3-11. Comparison of Visual Scenic and Scenery Management System Objectives

<table>
<thead>
<tr>
<th>VISUAL QUALITY</th>
<th>SCENIC INTEGRITY</th>
<th>OBJECTIVE</th>
<th>OBJECTIVE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation</td>
<td>Very High</td>
<td>Underlined: Landscape character "is" intact with only minute if any deviations. The existing landscape character and sense of place is expressed at the highest possible level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>High</td>
<td>Appears unchanged: Landscapes where the valued landscape character "appears" intact. Deviations may be present but must repeat the forms, line, color, texture, and pattern common to the landscape character so completely and at such a scale that they are not evident.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Retention</td>
<td>Moderate</td>
<td>Appears Slightly Altered: Noticeable deviations remaining visually subordinate to the landscape character viewed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Modification</td>
<td>Very Low</td>
<td>Appears Heavily Altered: Deviations may strongly dominate the valued landscape character.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LANDSCAPE CHARACTER

The three forests in the Cedar City Ranger District are found within the Southern Markagunt-Paunsaugunt Plateaus and Northern Markagunt Plateau Subsections (Nelson 1994). The Southern Plateau Slopes Subsection can be seen from many vista points within the spruce-fir forest. These designations are part of the National Hierarchical Framework of Ecological Units. Ecological units are used for ecosystem planning and management. These units are delineated by the spatial distribution of natural associations of dominant ecological factors that affect the structural and functional attributes of ecosystems.

SOUTHERN MARKAGUNT-PAUNSAUGUNT PLATEAU SUBSECTIONS

The landscape of the Southern Markagunt-Paunsaugunt Plateaus is made up of limestone tablelands and cliffs at the southern end of the two large plateaus (Nelson 1994). The plateaus are relatively flat surfaces bordered by sheer walls, cliffs, and buttes and of large dimensions, benches at various levels, and sculptural small-scale erosional forms. These cliffs are a broad plateau surface with broad, shallow drainage ways. The pink, white, and orange hue cliffs of Carboniferous limestone form the southern margin, such as found at Cedar Breaks National Monument and Bryce National Park. Gregory (1950) describes the cliffs as "the Pink Cliffs are characteristically colored high walls, marvelously decorated with carving, the glory of all rock art."

NORTHERN MARKAGUNT PLATEAU

The landform of the Northern Markagunt Plateau is rolling hills that are of volcanic origin on a northerly sloping plateau surface (Nelson 1994). Brian Head Peak is the most prominent point in this subsection, with volcanic ridges rising to rounded volcanic cones and glacial moraines expressed as undulating forms in the drainage ways. To the south the plateau is bounded by the pink cliffs of the Clarion formation. To the north the Black Ridge (which forms the Sydney Peaks) bounds the northwestern edge of the plateau.

Landscape Character Elements Common to Both Subsections

The Markagunt plateau surface is "characterized by gentle slopes, slow running streams, and the absence of conspicuous cliffs and canyons" (Gregory 1950). The plateau surface is accentuated by volcanic cones and dark, rugged boulder fields of lava streams. The ridges are covered with spruce-fir, aspen, and mixed conifer to the west, and ponderosa pine on the lower elevation eastern slopes. Meadows of wheatgrass-bluegrass wind along drainage ways across the plateau surface. Most of the spruce is in mature to old age, characterized by young regeneration and softwood seedling sapling age classes. Strong color contrasts exist between the dark green stands of fir and spruce, the seasonal variation in aspen stands from light green of summer, the brilliant gold of fall, and the grey of winter. Patches of open park-like meadows also add to the contrasts, with golden grasses through most of the summer and fall. The spruce fir forests are relatively open. Mature trees grow in clumps, with a cathedral type canopy, allowing shafts of light to reach the forest floor. Aspen are more evenly distributed, with lacy canopies, and a grass covered forest floor.

The viewer perceives a predominantly natural appearing landscape with some evidence of human modification and disturbance. Before the current beetle infestations natural disturbances had a moderate influence on the vegetation patterns. These disturbances include fire, storm, insect and disease events and recovery processes from these events. The last major disturbance from insect and disease in the spruce-fir forest, and may have resulted in the loss of most of the older age class of trees. Fire disturbance plays a minor role in the vegetation patterns in the spruce-fir forest. In the aspen forests in the project area, little fire disturbance is evident that occurred in the last 100 years. Since it is a disturbance dependent species, this is resulting in a reduction of the representation of aspen (Ensmuher and McGinn 1997).

The Markagunt Plateau has been used by people for thousands of years, as evidenced by Native American artifacts that have been found across the plateau. The character of land use changed on the Markagunt prior to the 1850s when Cedar City and Parowan were first settled by Mormon pioneers. The vegetation patterns of the plateau have been altered by timber harvest and sheep and cattle grazing. Recreation use and vacation homes have become important uses of the landscape during this century. Roads and trails built to accommodate timber harvest, grazing, and recreation use, are evident across the landscape. Other developments include vacation home developments on private lands located within the National Forest boundary, and recreation developments at Snavel Lake, Duck Creek, and Cedar Breaks National Monument. The landscape surrounding Brian Head Town, Brian Head Ski Resort and Duck Creek Village has a rural character, where road corridors, ski runs and structures are apparent. The landscape of the spruce-fir forest is highly valued for its scenic quality. This is expressed in the high recreation use, the establishment of the Brian Head Ski Resort and Town, Ashdown Grove Wilderness, and Cedar Breaks National Monument.

THE LANDSCAPE CHARACTER AND SCENIC INTEGRITY LEVELS OF THE SERP FOCUS AREAS

The landscape of the SERP area is highly valued for its scenic quality as expressed in the high recreation use, the establishment of the Brian Head Ski Resort and Town, Ashdown Grove Wilderness, and Cedar Breaks National Monument. Utah State Highways 143, 144 and 14 have been designated Utah State and National Forest Scenic Byways. These highways are promoted as scenic routes to Bryce, Zion and Capitol Reef National Parks, and the Grand Staircase of the Escalante National Monument. The Dry Lakes Road (# 258) is a designated Scenic Backway. Most of the visitors to this area have a high expectation for quality scenery.

HANCOCK PEAK FOCUS AREA

Within this Focus Area, the landscape is dominated by spruce-fir and aspen cover, with a few patchy small meadows. While spruce mortality is present, the evident beetle killed spruce are sparsely in small patches, and individual trees. This Focus Area is predominantly natural appearing. Evidence of past logging activities such as roads, clear cut, and determined slash is evident in the forest. Aspen and spruce are able to colonize the sites quickly. This Focus Area the views are Class B, or common within this subsection. The roads within the Focus Area were constructed for past logging activities and it is expected that few visitors travel these roads for their scenic quality. Therefore, these roads are Concern Level 3 roads.

This Focus Area is viewed from Highway 143, a Concern Level 1 travel way, and Rainbow Meadows and Meadow Lakes Subdivisions, Concern Level 1 areas. Hancock Peak, a prominent forested center cone can be seen as foreground to middleground from many points along Highways 143, 144 and 14. The Focus Area is located on the
north facing slopes of Hancock Peak and viewed from Highway 143. The views of the Hancock Peak looking from Highway 143 along the Bunker Creek and Mammoth Creek are Class A (distinctive) within this subsection, because of the prominence of Hancock Peak on the plateau surface. The view of the Hancock Peak Focus Area is natural through clearcutting at the base of Highway 143. This Focus Area contains 2789 acres in Management Area 1 (general direction), 219 acres in Management Area 2B (tread natural recreation), and 88 acres in 9A (riparian management). The focus views are those from Highway 143. The current Scenic Integrity Level is High. Scenic Integrity Objective is High within the foreground of Highway 143, and Moderate in middle ground views from Highway 143 based on Retention and Partial Retention VQ5 specified in the forest plan.

LOWER STATE FOCUS AREA

Within this Focus Area, the landscape is dominated by spruce/ fir and aspen cover, with views of long grassy meadows within and adjacent to this Focus Area. Beetle mortality is present, currently the evident beetle killed spruce are visible in small patches and individual trees. Beetle killed spruce do not yet dominate the view. The spruce/ fir forest in this area tends to be younger appearing, lacking the 'cathedral' like quality because of past logging activities that removed the more mature overstory. Views from the Focus Area overlook stands where spruce mortality is more dominant. Lower and Castle Creek both views are from the spruce dominated forest. These streams are relatively rare on the plateau surface, they become distinctive scenic elements in the landscape. The Focus Area is predominantly natural appearing, with evidence of past logging activity in the immediate foreground in some areas. Evidence of past logging activities includes roads, stumps and ditches.

Within this Focus Area the views are Class B, or common within this subsection. Sidney Valley Road #488 crosses through this Focus Area. This road is a Concern Level 1 road, as many visitors have a high concern for quality scenery that travel this road. The Scenic Integrity Level for foreground views of this focus area from the Sidney Valley Road is High. The other roads within the Focus Area were constructed for past logging activities and it is expected that few visitors travel these roads for their scenic quality. Therefore, these roads are Concern Level 3 roads.

This Focus Area can be viewed from Highway 143, a Concern Level 1 travel way. The most prominent are the spruce/ fir and open spruce/ fir and open aspen cover in location 110. These two units are within the foreground of Highway 143 and Rainbow Meadows Subdivision. They form the edge of the meadow, and are natural in appearance. These views are scarred in the fall, when the aspen change color. The Scenic Integrity Level for foreground views from Highway 143 is High.

This Focus Area contains 662 acres in Management Area 1 (general direction), 219 acres in Management Area 2A (views pristine recreation) and 124 acres in Management Area 2B (tread natural recreation). The aspen regeneration prescribed burns, units 1 and 2 are the only parts of this Focus Area in theManagement Area 2B. The most prominent views are those from Highway 143 and the Sidney Valley Road. Scenic Integrity Level is High within the foreground of Highway 143 and the Sidney Valley Road.

SPRUS Focus Area

The landscape of this Focus Area is dominated by dense ancient spruce that provide a cathedral like canopy, and aspen with a mature and distinctive quality. Much of the upland is infested with spruce-land black, but evidence of the mortality does not yet dominate the view. The landscape within the Focus Area is Natural Evolving. The landscape within this Focus Area is typical of this subsection. The current Scenic Integrity Level is High to very high, since there is no evidence of human development or management activities within this Focus Area. This Focus Area and the beetle killed spruce that have not yet began to dominate the view. However, within one year the spruce killed by beetle may begin to fade, and the spruce killed by beetle may begin to fade, reducing the Scenic Integrity Level. The only travel view through this Focus Area is the Spruce Trail, a Concern Level 2 trail. This is a Concern Level 2 trail because while the views to this trail have a high concern for scenic quality, there is relatively low use compared with other trails, such as the Bunker Creek or Dark Hollow trails. This trail offers intermittent views to the spruce forest, and is a Concern Level 2 trail in this subsection. This Focus Area is located in the Vermilion Castle and Dark Hollow areas, and overlook Yankee Meadows Reservoir. This 303 acre Focus Area is all in Management Area 1.

STEAM ENGINE FOCUS AREA

The landscape of this Focus Area is dominated by a mature spruce forest that provide a cathedral like canopy interspersed with grass-Forbs covered meadows. Beetle killed spruce are evident within this Focus Area and becoming dominant. This Focus Area is located at the base of Highway 208. This Focus Area contains 2940 acres in Management Area 1 (general direction), 219 acres in Management Area 2B (tread natural recreation), and 88 acres in 9A (riparian management). The most critical views are those from Highway 143. The current Scenic Integrity Level is High. Scenic Integrity Objective is High within the foreground of Highway 143, and Moderate in middle ground views from Highway 143 based on Retention and Partial Retention VQ5 specified in the forest plan.

BUNKER CREEK FOCUS AREA

Within this Focus Area, the landscape is dominated by spruce/ fir, with views of the ribbon of meadows and willows along the Bunker Creek riparian area that is adjacent to this Focus Area. Beetle killed spruce are beginning to dominate the view in some areas within this Focus Area and adjacent to it. The spruce/ fir forest in this Focus Area is young appearing, due to the presence of these streams are relatively rare on the plateau surface. They become distinctive scenic elements in the landscape. The Focus Area is predominantly natural appearing, with evidence of past logging activity in the immediate foreground in some areas. Evidence of past logging activities includes roads, stumps and dented slash. Views within this Focus Area are Class B or common for this subsection. Views of the Bunker Creek riparian area are Class A (distinctive) for this subsection.

The roads that are within this Focus Area were constructed for past logging activities. These roads receive low use, and are Concern Level 3 roads. The Left-hand Fork of Bunker Creek trail passes near the boundary of this Focus Area. This trail is a Concern Level 1 travelway because of the high use and visitors have a high expectation for quality scenery. This trail has received regional and national attention is magazine articles and trail guides. The 381 acres of this Focus Area are all included in Management Area 1.

DEER CREEK FOCUS AREA

Within this Focus Area, the landscape is dominated by spruce/ fir and aspen cover, with views of grassy meadows along the Deer Creek riparian areas within and adjacent to this Focus Area. Spruce mortality is present but the evident beetle killed spruce are still visible as small patches and individual trees. This is a Common Level 2 area, with a high lacry canopy and a grassy forest floor. Other stands have an encroaching spruce/ fir understory. Because streams are relatively rare on the plateau surface, Deer Creek is a distinctive scenic element in the landscape. This Focus Area is predominantly natural appearing. Views within this Focus Area are Class B or common for this subsection. The current Scenic Integrity Level is High.

No primary travelways occur within this Focus Area. Several primitive four wheel drive roads are in this Focus Area. They are Concern Level 3 because of relatively low use. Small portions of the northern most part of this Focus Area may be visible within the foreground of the Bunker Creek trail. This is a Concern Level 1 travel way. The 772 acres of this Focus Area are all included in Management Area 1.

CHICKEN HEAD FOCUS AREA

This Focus Area is dominated by mature spruce/ fir at higher elevations and aspen with some spruce/ fir encroachment. The spruce/ fir forest in this Focus Area is predominantly natural appearing. Views within this Focus Area are Class B or common for this subsection. The current Scenic Integrity Level is High to moderate. Within one year, the spruce killed by beetle may begin to fade, reducing the Scenic Integrity Level. No primary travelways cross through this Focus Area. The Dark Hollow Trail follows along the boundary for this Focus Area. The Dark Hollow trail is a Concern Level 1 trail because of the high use and high expectation of quality scenery by the users. Forest road #488 follows the eastern boundary of this Focus Area. Forest road #488 links the South and Dark Hollow trail systems. This Focus Area is located east of the Black cliff rock cliff and is Class A (distinctive) in this subsection. Concern Level 2 road because it receives moderate use, because of the primitive condition of the road. This Focus Area is viewed as forest road #488 and the Dark Hollow and Hendrickson Lake Trails. This Focus Area, or portions of it can be viewed as middle ground within the adjacent Bunker Creek Peak, Yankee Meadows and Brun Head Reservoir. This Focus Area is seen from the Sidney Peaks trail and Brun Head Peak as part of a viewed
that is Class A biotopes. The slopes of spruce and aspen are an important visual element lending to the contrast with the red cliffs of the Vermillion Castle area, and Yankee Meadows reservoir. This Focus Area contains about 700 acres in Management Area 1 and 400 acres in Management Area 6A (livestock grazing).

ROADLESS AREA FOCUS AREA

The landscape of this Focus Area is characterized by a relatively flat bench covered by spruce/ﬁr and aspen stands, with tongues of larch beds tucking throughout. The aspen has a spruce/ﬁr understory in many areas. The dark, rugged larch sites are a distinctive visual feature, providing most of the topographic relief of this Focus Area. This is a natural evolving landscape. This Focus Area is Class B or common for this subsection. The Scenic Integrity Level for this area is High.

Because of the flat character of the terrain in this area, this Focus Area is not viewed from any primary travel ways. Views of this Focus Area may be seen from the Radar Ridge road (#277) a Concern Level 2 road. This Focus Area may also be viewed from the Red Desert Road (#240), a Concern Level 2 road, but they are limited because of the screening from extensive larch sites in the area. The only travelway through this area is the Hancock Peak Trail. This trail is a Concern Level 2 trail because of the relatively low use where visitors have a high expectation of quality scenery, and proximity to the Meadow Lake subdivision. The 2,792 acres of this Focus Area are primarily in Management Area 2A.

CUMULATIVE EFFECTS MATRIX

The scenic resource CEA is tied to the Spruce Ecosystem Recovery area analysis boundary. This includes Highways 14, 143, and 148 where they pass through the SERP analysis area. Yankee Meadows Reservoir area is also within the CEA because of its adjacency the SERP boundary and views of the Chicken Head Focus Area. (See the Section Resource CEA Map Appendix 14G).

Yankee Meadows Reservoir is popular for boating, fishing and dispersed camping. Cedar Breaks National Monument is a popular scenic area. Tourists will often visit the area while en route between Zoon and Bryce Canyon National Parks, and the Escalante Grand Staircase National Monument.

SOILS

EROSION PROCESSES

The Forest Plan objective for the watersheds associated with the SERP area is to maintain or improve long term soil productivity and soil hydrologic function. As previously described in step 1 of the watershed assessment (Project File, Exhibit 14), soil quality standards have been established which set thresholds for the parameters which affect long term soil productivity and soil hydrologic function.

A soil resource inventory is currently underway for the Dixie National Forest. Field mapping has been completed for the entire forest. The inventory identiﬁes the physical and chemical properties of the soils that occur on the forest. Interpretations are being developed that identify variables and limitations of these soils for a variety of management uses.

The watersheds/subwatersheds associated with the SERP area include Upper Asay, Upper Mammont, Center, Parowan, Panguitch Lake, Summit Creek, North Fork Virgin and Coal Creek. The following discussion concerning current conditions of the soil resource relative to long term soil productivity and soil hydrologic function pertains just to the portions of the subwatersheds that occur within the SERP area. This is because long term soil productivity and soil hydrologic function are site specific characteristics. It is not affected by what occurs on adjacent areas, nor does it impact adjacent areas. The effects of sediment on water quality and fisheries habitat are discussed in other sections of this document.

The dominant uses/land allocations on these watersheds that impact the soil resource are livestock grazing and timber harvest.

Spruce Ecosystem Recovery Project DEIS

3-22

Cedar City Ranger District

Dixie National Forest

Affected Environment

The kinds of adverse impacts to the soil resource associated with livestock grazing on rangeland portions of the watersheds include reduced ground cover, soil displacement, compaction and puddling. Allotment Management Plans (AMPs) have been established for all allotments within the watersheds which limit livestock numbers and season of use and establish proper use guidelines. When implemented correctly, the AMP and proper use guidelines result in maintenance of long term soil productivity.

Monitoring is used to determine when proper use has been reached and when livestock need to be moved to the next pasture or removed from the allotment. This monitoring is used to continually assess whether livestock numbers or season of use needs to be adjusted.

Riparian areas receive the same types of grazing impacts (reduced ground cover, compaction, displacement, puddling) as do the uplands, but due to the abundance of preferred forage species and the presence of water, livestock use and their impacts are concentrated. Proper use guidelines are exceeded more often in the riparian areas than on the uplands.

Adverse impacts to the soil resource associated with timber harvesting (including road construction) include compaction, displacement, puddling, reduced ground cover, canopy cover, reduced amounts of coarse woody debris, and severe burning (associated with fuels management).

Best Management Practices (BMPs) are recommended and implemented for all timber sales to ensure that the adverse impacts associated with timber harvest are within soil quality guidelines.

Monitoring is done to ensure that the BMPs are implemented and to assess whether they are effective. Monitoring over the last 20 years has identified problem areas which resulted in implementing additional kinds of BMP’s to protect the soil and water resources. The current suite of BMPs used on Dixie NF timber sales appear to be resulting in maintenance of long term soil productivity. Monitoring will continue and when a problem is identified additional BMP’s will be formulated to ensure that soil quality guidelines will be met.

Other land uses that occur within the SERP area include highways, roads and trails; special use areas such as electronic sites; power line corridors, ski areas; gravel pits, etc. which take part of the National Forest land base out of production. Most of these land uses are an irremovable resource commitment - the productivity is lost while the land is allocated to another use, however the land could be returned to production.

Other land uses do not take NF lands out of production nor do they have a signiﬁcant impact on the soil resource. These include such uses as dispersed recreation; hunting; hiking; cross country skiing, etc.

The previous discussion applies to each of the nr watersheds that the SERP Area occurs in. The following discussion describes current conditions that are speciﬁc to each of the watersheds.

UPPER ASAY SUBWATERSHED

This watersheds occurs on the southwest portion of the Markagunt Plateau. Geology is dominated by Wasatch limestone on the southern portion of the subwatershed and by Tertiary volcanic rocks and Quaternary basalt on the remainder of the area. Due primarily to the gentle slopes of this watershed, soil erosion rates are relatively low.

Recent monitoring has shown that there are upland rangeland areas adjacent to Cedar Breaks National Monument that were previously tall forb habitat types. The overgrazing that occurred in the late 1800’s appears to be severe that the productivity of these sites was compromised to the point that they never returned to loss of long term soil productivity. Proposals have been suggested to test whether or not these tall forb sites can be restored.

UPPER MAMMONT SUBWATERSHED

This watershed occurs on the western rim of the Markagunt Plateau and includes the limestone units of Cedar Breaks National Monument. Other prominent landforms of this watersheds are Brian Head Peak, Sidney Peaks, Hancock Peak, Sydney Valley and Red Desert. The dominant geology of the watershed is Tertiary volcanic rocks, but there are extensive areas of Quaternary basalt flows in the southern part.

This watershed also has areas with degraded tall forb sites discussed above in the Upper Asay subwatershed. These sites occur east of Cedar Breaks and north to the slopes of Brian Head Peak.

Spruce Ecosystem Recovery Project DEIS

3-23

Cedar City Ranger District

Dixie National Forest

Affected Environment
SUMMARY

The dominant erosion processes prevalent in the SERP area are sheet and rill erosion on the uplands and stream bank erosion along drainages.

The soil resource inventory identifies all the soil map units that occur within the SERP Project Area. Each soil component is given an inherent soil erosion rating based on physical, soil characteristics and slope. Most of the SERP area occurs on relatively gentle slopes of the Markagunt Plateau and erosion hazard is low. Soils derived from limestone are generally more erosive than soils derived from volcanic rocks; however, some volcanic derived soils such as soil map unit 239 are very erosive.

Mass wasting was a dominant factor in the formation of the landscape in the Parowan watershed on the slopes between Brian Head Ski Resort and Yankee Meadow Reservoir. The general landscape is now relatively stable. The only type of mass wasting currently occurring is rock fall associated with the cliff escarpment.

The trend of erosion processes on the SERP area is rated as stable. There are a few areas that have been identified, particularly in riparian areas, where it appears some type of rehabilitation needs to be implemented soon to avoid loss of site productivity. The tall forbs that have been identified as degraded appear to be stable but at lower level of productivity than they were before degradation.

To ensure that long term soil productivity and soil hydrologic function are maintained, management options within the SERP area must consider soils rated as unsuitable forest land due to irreversible resource damage and steep slopes. Mitigation measures identified in white papers analyzing the effects of grazing and timber harvest on the soil resource must be identified and implemented on a project basis.

CUMULATIVE EFFECTS AREA

The CEA for long term soil productivity and on-site soil erosion is the project area itself. The intent is to ensure that the proposed management does not result in reduced long term soil productivity. The cumulative effects analysis evaluates past as well as current management activities, the proposed activity, and foreseeable future management activities.

HYDROLOGY

This section of the report describes the affected environment in terms of hydrology, geology and geomorphology, channel morphology and riparian conditions, water quality, and critical watershed areas. The Cumulative Effects Watersheds (CEWS) are also described.

The Project Area lies on the western side of the Markagunt Plateau, and is in the headwaters of the following watersheds: Center Creek, Clear Creek, Blue Springs Creek, Mammoth Creek, Tommy Creek, and Midway Creek.

Precipitation on the Markagunt Plateau occurs mainly in the form of snow between October and April. Summer rains occur in late spring and summer with heavy rain in July and August (Gregory 1950). Average annual precipitation on the plateau ranges between 30 and 40 inches with the higher values on the west side of the plateau. Because precipitation occurs mainly as snow, the annual peak flows are generally the result of spring, snowmelt, which occurs in April or May.

There are many areas within and adjacent to the project area that contain recent (Quaternary) basalt flows. These basalt flows are generally void of vegetation, and are important groundwater recharge zones. Shallow aquifers lie beneath and adjacent to these basalt flows. Sub-surface water flow moves rapidly in some areas through underground cavities formed by the basalt flows. An example is the rapid movement of water from Navajo Lake to Duck Creek, Cascade, and Ayas Springs. Shallow aquifers within the project area may also be important sources of water for these springs and others (Wilson and Thomas 1964).

SUMMARY

The dominant erosion processes prevalent in the SERP area are sheet and rill erosion on the uplands and stream bank erosion along drainages.

The soil resource inventory identifies all the soil map units that occur within the SERP Project Area. Each soil component is given an inherent soil erosion rating based on physical, soil characteristics and slope. Most of the SERP area occurs on relatively gentle slopes of the Markagunt Plateau and erosion hazard is low. Soils derived from limestone are generally more erosive than soils derived from volcanic rocks; however, some volcanic derived soils such as soil map unit 239 are very erosive.

Mass wasting was a dominant factor in the formation of the landscape in the Parowan watershed on the slopes between Brian Head Ski Resort and Yankee Meadow Reservoir. The general landscape is now relatively stable. The only type of mass wasting currently occurring is rock fall associated with the cliff escarpment.

The trend of erosion processes on the SERP area is rated as stable. There are a few areas that have been identified, particularly in riparian areas, where it appears some type of rehabilitation needs to be implemented soon to avoid loss of site productivity. The tall forbs that have been identified as degraded appear to be stable but at lower level of productivity than they were before degradation.

To ensure that long term soil productivity and soil hydrologic function are maintained, management options within the SERP area must consider soils rated as unsuitable forest land due to irreversible resource damage and steep slopes. Mitigation measures identified in white papers analyzing the effects of grazing and timber harvest on the soil resource must be identified and implemented on a project basis.

CUMULATIVE EFFECTS AREA

The CEA for long term soil productivity and on-site soil erosion is the project area itself. The intent is to ensure that the proposed management does not result in reduced long term soil productivity. The cumulative effects analysis evaluates past as well as current management activities, the proposed activity, and foreseeable future management activities.

HYDROLOGY

This section of the report describes the affected environment in terms of hydrology, geology and geomorphology, channel morphology and riparian conditions, water quality, and critical watershed areas. The Cumulative Effects Watersheds (CEWS) are also described.

The Project Area lies on the western side of the Markagunt Plateau, and is in the headwaters of the following watersheds: Center Creek, Clear Creek, Blue Springs Creek, Mammoth Creek, Tommy Creek, and Midway Creek.

Precipitation on the Markagunt Plateau occurs mainly in the form of snow between October and April. Summer rains occur in late spring and summer with heavy rain in July and August (Gregory 1950). Average annual precipitation on the plateau ranges between 30 and 40 inches with the higher values on the west side of the plateau. Because precipitation occurs mainly as snow, the annual peak flows are generally the result of spring, snowmelt, which occurs in April or May.

There are many areas within and adjacent to the project area that contain recent (Quaternary) basalt flows. These basalt flows are generally void of vegetation, and are important groundwater recharge zones. Shallow aquifers lie beneath and adjacent to these basalt flows. Sub-surface water flow moves rapidly in some areas through underground cavities formed by the basalt flows. An example is the rapid movement of water from Navajo Lake to Duck Creek, Cascade, and Ayas Springs. Shallow aquifers within the project area may also be important sources of water for these springs and others (Wilson and Thomas 1964).
GEOLGY AND GEOMORPHOLOGY

The surficial geology types within the project area consist of tertiary rhyolite and quaternary basals, both of which are extrusive, volcanic rock types. On the north end of the project area, there are several areas where bentonite clay is exposed. The Wasatch Formation (Tertiary) lies beneath the volcanic rocks, and is exposed where the volcanic rocks are not present. The Wasatch Formation is pink sedimentary rock which is made up of limestones, sandstones, and conglomerates (Gregory 1950). Detailed descriptions of the soils and parent material within the Project Area are contained in the Soil section of this document.

The project area lies east of the escarpment of the Markagunt Plateau and does not contain areas of active headward erosion. The Plateau dips to the east approximately 1.5 degrees (Wilson and Thomas 1964). Mass wasting and hillopde failures are rare within the project area because of the relatively gentle topography and stable parent material. However, there are some areas of mass failure associated with road construction. Many of these areas contain bentonite clay. The dominant erosion processes within the project area consist of sheetwash, rill and gully erosion, and stream erosion. Rill and gully erosion is common in some of the meadows within the Project Area.

CHANNEL MORPHOLOGY AND RIPARIAN CONDITIONS

Channel morphology and riparian ecosystem data have been collected on the major streams that drain the Project Area (Castle Creek, Banker Creek, Deer Creek, Mammoth Creek, and Tommy Creek). This data is summarized in the Mammoth Creek and Panguitch Lake Watershed Analysis Reports. The raw data is available in the Level II riparian inventories, and the RI/R4 fish habitat inventories. All of these reports and documents are available in the Supervisor’s Office watershed files.

WATER QUALITY

The Utah State Division of Water Quality assigns beneficial uses to all waters within the State to protect them from controllable pollution (Utah Dept. of Environmental Quality 1994). The beneficial uses for waters within and downstream of the project area are listed below.

1C Protected for domestic uses with prior treatment by treatment processes as required by the Utah Department of Health.
2B Protected for secondary contact recreation such as boating, wading, or similar uses.
3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
4 Protected for agricultural uses including irrigation of crops and stock watering.

Aquatic macro-organisms sampled in Castle Creek, Center Creek, Mammoth Creek, and Tommy Creek during the summer of 1999. These samples were sent to the National Aquatic Ecosystem Monitoring Center for analysis. The results of the analyses are summarized in Table 3-12. Water quality can be assessed by the presence of or proportion of pollution-tolerant taxa within a sample. The Biological Condition Index (BCI) is an index that describes the relative health of stream ecosystems, and describes the condition of the stream ecosystem relative to its potential. The BCI is expressed as a score between 0 and 100, and is an indicator of water quality. The lower BCI values for Mammoth Creek and Tommy Creek are most likely the result of sedimentation from the Mammoth Creek subbasin.

<table>
<thead>
<tr>
<th>STREAM</th>
<th>MEAN BCI</th>
<th>GENERAL SAMPLE LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castle Creek</td>
<td>91 (Excellent)</td>
<td>upstream of FS Road 048</td>
</tr>
<tr>
<td>Center Creek</td>
<td>90 (Excellent)</td>
<td>adjacent to FS Road 044 W. of Yankee Meadows Res.</td>
</tr>
<tr>
<td>Mammoth Creek</td>
<td>84 (Good)</td>
<td>upstream of Tommy Cr. confluence</td>
</tr>
<tr>
<td>Tommy Creek</td>
<td>71 (Poor)</td>
<td>upstream of Mammoth Cr. confluence</td>
</tr>
</tbody>
</table>

CRITICAL WATERSHED AREAS

The shallow aquifers described in the above hydrology section are susceptible to pollution through percolation of synthetic chemicals such as petroleum products. These shallow aquifers are shown on the critical watershed map. Two snow survey sites, administered by the Natural Resources Conservation Service (NRCS), are within the project area. The Midway Valley site is located on the NE corner of section 26, Navajo Lake Quadrangle. The Castle Valley site is located on the SW corner of section 22, Panguitch Lake Quadrangle. There is also a site located near Yankee Meadows Reservoir that is adjacent to the Project Area. These snow survey sites are identified on the critical watershed map. None of the sites are located within or near the Focus Areas.

Streams, lakes, ponds, wetlands, and other wet areas (i.e. seeps, small ponds, springs, and wet meadows) have been identified using aerial photos and topographic maps. These areas are shown on the critical watershed map.

There are no 303(d) waters within the Project Area. However, Panguitch Lake and Yankee Meadows Reservoir are on the 303(d) list. Panguitch Lake has exceeded State Water Quality Standards for total phosphorus and dissolved oxygen. Yankee Meadows Reservoir has exceeded State Water Quality Standards for dissolved oxygen, temperature, and pH. Detailed descriptions of these lakes and their associated water quality are available in “Utah’s lakes and reservoirs” (Utah Dept. of Environmetal Quality 1997).

There are no municipal watersheds within the Project Area. The subdivisions within the Project Area obtain water from wells except the Rainbow Meadows Ranchos subdivision which obtains water from a spring.

CUMULATIVE EFFECTS AREA

Cumulative Effects Watersheds (CEWs) were delineated to analyze the downstream and cumulative effects of water quantity, water quality, channel morphology of each alternative. A description of these CEWS is contained in Table 3-13. A map of the CEWS is contained in Appendix B. A very small portion of the Spruces Focus Area lies within the headwaters of the Bowery Creek Watershed. This watershed will not be analyzed in terms of cumulative effects because the Focus Area covers less than 100 per of the watershed and cumulative effects are expected to be negligible.
Table 3-13. Cumulative Effects Watersheds.

<table>
<thead>
<tr>
<th>WATERSHED</th>
<th>LOCATION AND EXTENT</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Creek</td>
<td>from the Center Cr./Parowan Cr. confluence to headwaters</td>
<td>8,965</td>
</tr>
<tr>
<td>Clear Creek</td>
<td>from Paraghan Lake to headwaters</td>
<td>8,557</td>
</tr>
<tr>
<td>Blue Springs Creek</td>
<td>from Paraghan Lake to headwaters</td>
<td>10,294</td>
</tr>
<tr>
<td>Mammoth Creek</td>
<td>from Mammoth Cr./Tommy Cr. confluence to headwaters</td>
<td>24,369</td>
</tr>
<tr>
<td>Tommy Creek</td>
<td>from Mammoth Cr./Tommy Cr. confluence to headwaters</td>
<td>17,040</td>
</tr>
<tr>
<td>Midway Creek</td>
<td>from Midway Cr./Deer Hollow Cr. confluence to headwaters</td>
<td>10,265</td>
</tr>
</tbody>
</table>

FISHERIES RESOURCES

This report describes the affected environment for the fisheries and aquatic macroinvertebrate resources within the project and cumulative effects analyses area. Parameters that will be discussed for those streams where the data is available include fish population attributes, physical habitat conditions, and macroinvertebrate communities.

The National Forest Management Act (1976) required the National Forests to select a group of aquatic species whose populations could be monitored relatively easily. Response of these species to management activities is used as an indicator of effects on other species which require similar habitat. See Forest Plan (II 14-17) for a discussion of the species selected. Trout and aquatic macroinvertebrates are indicator species which occur in the analysis areas and which will be used for this purpose.

FISH POPULATIONS

Fish-bearing streams within the project area include Mammoth Creek, Lower Creek, Castle Creek, and Bunker Creek. Fish-population surveys have not been conducted in that portion of Deer Creek within the project area but no fish have been visually observed. All of the streams listed above are classified as Class 3 trout streams by the Utah Division of Wildlife Resources. Class 3 trout streams are considered important since they comprise about half of the total stream-fishery habitat in Utah and support a significant amount of angling pressure.

Mammoth Creek and Castle Creeks are both designated as 9A management areas in the Forest Plan. Management goals for these areas are to provide for healthy riparian ecosystems that support viable populations of fish and wildlife and meet water quality standards (see page IV 135, Forest Plan). Management activities within these areas are implemented to achieve multi-resource objectives that emphasize riparian values.

All of these streams are in the upper end of watersheds and are fairly small in size. As a result, fish production is somewhat limited. The predominant fish species is brook trout (Salvelinus fontinalis) and some Yellowstone cutthroat trout (Oncorhynchus clarki) present in the upper end of Mammoth Creek. There are no endangered, threatened or sensitive fish species in the project area.

FISH HABITAT

Level II riparian inventories were completed on Mammoth, Deer and Bunker Creeks during the summer of 1994. Canopy surveys and personal observations were made on Castle and Lower Creeks. The types of data collected include information about plant communities, succession stage, stream channel morphology and channel bed composition.

Mammoth Creek within the project area is generally in good condition. Approximately 33 percent of the stream is pool habitat formed by small to moderate sized boulders. Large woody debris, important for pool formation, habitat complexity and cover, is lacking as much of the stream flows through willow and grass/forb dominated riparian complexes. Sedimentation is generally slight (< 10 percent) and the streambanks are fairly stable with some undercut banks present.

Surveys of Bunker Creek showed that habitat conditions for trout within the project area were fair to poor. This is primarily due to the lack of pools (30 percent) in the stream. Low to moderate amounts of large woody debris were present in the upper reaches. The stream is fairly low gradient and dominated by a cobble substrate. Sedimentation is slight (< 10 percent) and spawning habitat appears to be good. The upper Bunker Creek riparian structure appears to be in a general decline. Specific impacts from grazing were observed in the upper reaches as well as washed out beaver dams. These appear to be the dominant factors affecting fish habitat.

Fish habitat in Deer Creek is poor as a result of severe downcutting and bank instability caused from the diversion of water from Castle Creek to Deer Creek. As a result of the diversion, thousands of yards of rock and soil have been removed and deposited downstream. The down-cutting is continuing and eroding headward. Large woody debris is present in the stream where the downcutting has occurred. Sedimentation is slight to heavy and pools are generally lacking in the project area.

Only a short section of Lower Creek is within the project area. Habitat conditions appear to be good although the stream is relatively small in size. The stream channel is stable and dominated by cobbles and rock. Castle Creek is also in good condition prior to its diversion into Deer Creek. Large woody debris and pool habitat is abundant. Spawning habitat appears to be good and sedimentation low.

CUMULATIVE EFFECTS AREA

The CEA is shown in Appendix A. There are no endangered, threatened or sensitive fish species within the cumulative effects area.

Mammoth Creek below its confluence with Tommy Creek is classified as a Class 2 wild trout stream by UDWR with brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) being the predominant trout species. The lowermost section of Tommy Creek also contains a small trout fishery. A more detailed description of these small streams are contained in the Sydney Valley Recovery Project EA (pg 3-18), the Blue Springs/Reeds Valley Recovery Project EA (pg 3-20 and 3-21), and Tippets Valley Timber Harvest EIS (pg 3-26).

Clear and Blue Springs Creeks are classified as Class 3 trout streams by UDWR. The lower reaches of Clear, Blue Springs and Bunker Creeks were chemically treated with rotenone in 1991 by UDWR as part of the larger Paraghan Lake fish eradication project. The purpose of the treatment was to eradicate Utah chub which were competing with the trout populations in the lake. The streams have self-sustaining populations of brook trout and were restocked with rainbow trout as well. Habitat conditions are fair to good for trout with adequate pool and spawning habitat.

No formal habitat or population surveys have been conducted on Center Creek and it is not known whether the stream contains a trout fishery. However, personal observations have noted that streamflow is highly variable and that a great deal of sediment is transported during periods of high flow. No trout have been observed and it is doubtful that the stream could support a viable trout fishery.

Duck Lake is in the Midway Creek watershed and provides a high use recreational fishery. The lake is almost exclusively a 'put and take' brook and rainbow trout fishery. Midway Creek does not support a fishery.

Aquatic Macroinvertebrates

Aquatic macroinvertebrates are described in the Water Quality section of Chapter Three. Additional discussions are included in the Blue Springs/Reeds Valley Recovery Project EA (pg 3-20 and 3-21), and Tippets Valley Timber Harvest EIS (pg 3-26).
TABLE 3-14 identifies the species addressed under the Affected Environment and describes their status. These are: 1) Threatened, endangered, or proposed for Federal listing; 2) species listed on the Utah Sensitive Species List (UDWR 1997); 3) Species listed on the Regional Forester’s Sensitive Species for Region 4, the Intermountain Region (called “sensitive species” in this document); 4) management indicator species (MIS), and 5) other species of concern. Species that were brought to our attention during scoping and not already listed on Table 3-14 are blue grouse, flying squirrels, and bats. The project falls within substantial yearlong blue grouse habitat. Because Ulte Ladies’ dresses and Utah prairie dog have no habitat and have not been documented in the project area, they will not be discussed further in this document. Aquatic and amphibian species will be discussed under the Fisheries discussion.

Status definitions used on Table 3-14:

Federal Status Code:
- T Threatened - Taxa formally listed as threatened.
- E Endangered - Taxa formally listed as endangered.
- F Proposed for T - Taxa proposed to be formally listed as endangered or threatened.
- C Candidate - Taxa previously in Category 1, substantial biological information on file to support proposing to list as endangered or threatened.

State Status Code:
- T Threatened - low or declining numbers, special management needed.
- E Endangered - likely to become endangered, special management needed.
- S Special concern - due to substantial decrease in population, distribution or habitat at vulnerability.
- D Special concern - due to limited distribution or specialized habitat.
- SD Special concern - both SP and SD above.

Other Codes:
- S Sensitive Species on the Intermountain Region, Regional Forester’s Sensitive Species List.
- MIS Management indicator species identified in the Forest Plan.

The general species and habitat accounts and the legal requirements for these species can be found in “Life History of Endangered, threatened, and Sensitive Species of Dixie National Forest” revised March 1997 (Rodriguez 1997), and the Biological Assessment for Threatened, Endangered and Proposed Species for the Spruce Bark Beetle Sage Grouse Wildlife Program within the spruce-fir cover type on the Cedar City Ranger District (Rodriguez 1993). These documents are incorporated here by reference. The amount and condition of old growth in the project area is discussed in the Vegetation Sections. Species generally associated with old growth habitat analyzed in this document are discussed under the heading of that species (Mexican spotted owl and northern goshawk). Habitat characteristics more specific than the accepted old growth definitions have been established for these species and are considered more appropriate for habitat analysis.

Table 3-14. Habitat suitability for listed species.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>STATUS</th>
<th>SUITABLE</th>
<th>HABITAT SUITABILITY BASED ON:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peregrine Falcon</td>
<td>Federal E</td>
<td>X</td>
<td>Documented uplands, known foraging area, Meadow, parkland habitat and cliff habitats present.</td>
</tr>
<tr>
<td>Falco peregrinusananum</td>
<td>State E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>southwestern Willow Flycatcher</td>
<td>Federal E</td>
<td>X</td>
<td>Riparian vegetation with willows potentially large enough for Willow Flycatchers present in the project area. No documented occurrences.</td>
</tr>
<tr>
<td>Empidonax Traillii recomp</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Federal T</td>
<td>X</td>
<td>Water bodies present where eagles may forage in fall, or early winter.</td>
</tr>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah Prairie Dog</td>
<td>Federal T</td>
<td>X</td>
<td>No suitable openings with deep soil and low vegetation. Nearest known colonies at Panpahack Lake and Bear Valley.</td>
</tr>
<tr>
<td>Cynomys Nuttlensi</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexican Spotted Owl</td>
<td>Federal T</td>
<td>X</td>
<td>No suitable cottonwoods, however, documented occurrences near the project area, winter and summer.</td>
</tr>
<tr>
<td>Otis leucocephalus</td>
<td>State T</td>
<td></td>
<td>There is no known habitat with suitable elevation in the project area.</td>
</tr>
<tr>
<td>Utah Ladies’ Dressess</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprague’s Phoebes</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sooty Gull</td>
<td>State SP</td>
<td>X</td>
<td>Cliff and caves present for suitable nesting. Confirmed favor with sage present. No documented occurrences.</td>
</tr>
<tr>
<td>Western Screech Owl</td>
<td>State SAND</td>
<td>X</td>
<td>Cliff and caves present for suitable nesting. Confirmed with sage present. No documented occurrences.</td>
</tr>
<tr>
<td>Swainson’s Hawk</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaminulated Owl</td>
<td>State T</td>
<td>X</td>
<td>Probable pine is present in the planning area. Flaminulated owls have been documented on the east edge of the project area.</td>
</tr>
<tr>
<td>Otus flaviluus</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three toed Woodpecker</td>
<td>State T</td>
<td>X</td>
<td>Spruce fir comprises a major portion of the project area. Three toed woodpeckers have been documented during surveys.</td>
</tr>
<tr>
<td>Picoides tridactylus</td>
<td>State T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Goshawk</td>
<td>State SP</td>
<td>X</td>
<td>Confirmed and aspen forests present. Documented nesting and foraging.</td>
</tr>
<tr>
<td>Accipiter gentilis</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocky Mountain Elk</td>
<td>State SP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cervus elaphus</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mule Deer</td>
<td>State SP</td>
<td>X</td>
<td>Winter high priority summer range.</td>
</tr>
<tr>
<td>Odocoileus hemionus</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild Turkeys</td>
<td>State SP</td>
<td>X</td>
<td>Turkey use area in southern portion of project area.</td>
</tr>
<tr>
<td>Mammals sp.</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>State SP</td>
<td>X</td>
<td>Confirmed and aspen forest and meadows. Old parkland present. Documented use.</td>
</tr>
<tr>
<td>Columba autumnalis</td>
<td>State SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Habitat</td>
<td>State SP</td>
<td>X</td>
<td>Riparian habitats present along perennial streams in project area.</td>
</tr>
</tbody>
</table>

ENDANGERED AND THREATENED SPECIES

Peregrine Falcon

Suitable nesting habitat exists for peregrine falcon (Falco peregrinusananum). A nest is suspected in the north half of the project area. Four known, and two suspected peregrine falcon eyries (nests) are within ten miles of the project boundary. A ten mile radius around the nest is an average hunting area, with 80 percent of foraging occurring within a mile of the nest (Spahr et al. 1991). The entire project area falls peregrine falcon foraging areas for more than one nesting pair and up to three pairs in some areas.

Peregrines generally forage along riparian areas or in open meadows which are abundant in the mountain valleys surrounding their nest areas. Peregrines are strong, fast fliers, capturing birds on the wing. This hunting technique requires larger open areas, and several studies describe areas greater than 25 acres in size (Burton on the Prayer 1973). There are 8,057 acres of grassland, 870 acres of wetland and 416 acres of shrubland that provides foraging habitat.
on Forest land. On private land there is an additional 1.783 acres of grassland, 31 acres of wetland and 52 acres of shrubland. The primary focus of the meadow parkland. The SERP area is larger than any other meadow areas greater than 25 acres. Some of these are connected. Some of these meadows have eroded and have headcuts within them. (For more information regarding the condition of these habitats see the Hydrology Report.) Meadows with lower elevations receive less water than desired habitat conditions to support perennial grasses.

For a more detailed account of riparian habitat conditions, see the "Riparian Habitat Conditions," discussion under Management Indicator Species, below, and the Hydrology section.

SOUTHWESTERN WILLOW FLYCATCHER
Much of the riparian areas within the SERP are high elevation where willows are present, but most are either low growing or less than one acre in patch size. Lower Creek has the greatest potential for willow flycatchers (Empidonax radiatus exists) with willows six to ten feet tall and greater than one acre. The elevation is approximately 10,500 feet, which may be too high for willow flycatchers. No southwestern willow flycatchers have been seen in the project area. Bunker Creek, which is upscree from the project area, has willows spread than ten feet tall, however, the patch sizes are less than one acre, the willows are too isolated, and the elevation of these willows are between 8,000 to 9,000 feet. Surveys for willow flycatchers were conducted summer 1998 on Lower Creek with negative results (Summers 1997).

BALD EAGLE
Bald eagles (Haliaeetus leucocephalus) occur in the Dixie National Forest during winter months in low numbers, but studies indicate they use open water systems. Ken McDonald (1996) The Northern States Bald Eagle Recovery Plan (UND 1983) defines essential wintering habitat as locations which are used annually for two weeks or longer by birds known to be from a nearby breeding area. 21 are used annually by 1:15 or more eagles for 2 weeks or longer, and 31 are used during periods of extreme harsh weather, when succu feeding areas and night roost sites are limited. Neither critical or essential habitat has been delineated on the FS. During winter of 1996-1997 surveys conducted in the Panguitch Lake area ap-approximately four miles east of the project area documented use that may meet the definition of essential wintering habitat (RME, 1995).

The project area is high elevation (14,000 feet) with a few small bodies of water. As a result of lower temperatures and poor food availability, winter bald eagle use is limited to non-existent in the project area. The nearest known winter roost to the west is approximately five miles west. The eagles using the west side of the project area forage in Lake Valley and nearby creeks east to the Wanship Lake Area. The water bodies are riparian, therefore, could be used exclusively by these eagles.

MEXICAN SPOTTED OWL
More than 20,000 acres of 'spice for on the Cedar City Ranger District has been surveyed for Mexican spotted owl (Strix occidentalis; since 1992 to 1995. No Mexican spotted owls have been detected in the spice for zone (Wright et al., 1995).

Historically, and currently throughout southern Utah, spotted owls have been found nesting only on ledges or small caves in steep walled sandstone canions (Rinkevich 1991, Willey 1993). There are no suitable breeding sites in the project area. No owls have been detected in the project area, however, monitoring studies are restricted to canyon areas having steep slopes (greater than 40°) with canyon alcoves and mixed cover strategies below 8000' (Howe et al., 1994, Willey 1993).

During the winter of 1992, a radio-collared adult male and a radio-collared juvenile owl from Juniper Park were located in the Snowdon George Wilderness Area west of the project area (Willey 1992). These owls may have used the spice for zone for foraging. The same adult bird was radioed again in 1994, but has remained near her breeding territory. The project area may be considered for foraging (for sumer and winter), wintering area, a year-round resident of the area as of December 24, 1994 (pers. cont. D.Willey 1994). In June 1996, a response was detected from a radio-collared adult female Mexican spotted owl. A follow-up visit on July yielded the bird depicted.

Thus, the project area could be considered for foraging (for summer and winter), significant wintering area for Mexican spotted owl. Warming habitat is also considered for the California spotted owl on the Dixie National Forest.

The Dixie National Forest is within the Colorado Plateau Recovery Unit for the Mexican spotted owl (USDI 1995). Three different management areas are described in the Mexican Spotted Owl Recovery Plan: (1) Protected Activity Center (PAC) areas (caves) around known or historical nest and/or roost sites; (2) Critical Habitat (CH) areas based on the proportion of the landscape that should be in or approaching conditions suitable for nesting and roosting; and (3) other forest and woodland types where no specific guidelines are recommended, but general recommendations are given to manage these areas for landscape diversity within natural ranges of variation (USDI 1995). A PAC has not been officially delineated for the potential pair of spotted owls near Brian Head because the site has not been confirmed and the nest area has not been identified. The SERP area consists of spice for and aspen primarily, and the "other forest and woodland types" are the guidelines that would apply.

SENSITIVE SPECIES
THREE-TOED WOODPECKER
Three-toed woodpeckers (Picoides tridactylus) inhabit primarily 9,000 feet of the Dixie National Forest. Although they have been recorded in mixed conifer plant community types as well. The project area has 26,443 acres of spruce and fir forest cover type in the SERP planning area. 56 percent of this is private and the remaining is on national forest.

Aspen stands in the project area equal approximately 9,181 acres. Aspen stands are an important element in stands for cavity dependent species, including the three-toed woodpecker. With the current beetle infestation it is estimated that over 30 percent or more stands per acre are considerably higher than the stated exam data shows. In addition, stand exam data may not portray an accurate measure of snag densities because of the limited acreage and assumption that even dead wood, which the site are, however, they are the best data available. It is assumed that in the roostless area, since no harvest has occurred, that snag densities would meet or exceed standing dead and guidelines. The roadless area is 8,128 acres, about half of which is comprised of lava rock and the other half spice for with a heavy aspen component in some places.

Three-toed woodpeckers have been observed foraging in the project area. Surveys conducted in 1996 resulted in responses to playback tapes, indicating territoriality, but no nests were found. High concentrations of three-toed woodpeckers were documented in the Bunker Creek drainage with an average of 1.87 birds per station (Summers 1997). For comparison, Sidney Valley had an average of 0.7 birds per station along the road (long term monitoring transects) and 0.7 per station within the safe area. Insected trees throughout the project area are attractive foraging sites for these woodpeckers. Currently areas interested is insected at 7,400 acres. Three salvage timber has taken place in the last five years (Sidney Valley, Rainbow Meadows and Brian Hakers to remove dead and infes-

NORTHERN GOHSKAW
To date (5/1/97) there are four documented northern goshawk (Accipiter gentilis) nesting territories within the project area. Foraging occurs within the project area from at least two other nesting territories. Over half of the project area has been surveyed at least 2 years in a row, but not all the same years. Intensive surveys were conducted on 13,904 acres, and photo interpretation and ‘walk throughs’ on 70,687 acres of forested land. Table 3-15 shows the distribution of vegetation structural stages (VSS) (Reynolds et al., 1995). On a per acre basis the preferred cover type the existing condition is below desired amounts in VSS 2 and 6, and above desired percent in VSS 3, 4, and 5.

In the cover type the VSS is more difficult to estimate because of the continued mortality from the beetle infestation. Data from the surveys discussed above completed in 1996 are out of date due to these changing conditions. VSS is determined by trees, The 1996 data indicate that nesting habitat (VSS 4, 5, and 6) was above desired conditions. The 1996 data indicated below desired amounts for sustainability in the conifer and the aspen forests. Because of the beetle infestation we know that VSS 1 is now above 1996 estimates and VSS 4, 5 and 6 are below desired amounts.

It should be noted that there are more stands in the project area with dead trees which will be classified as VSS 1 based on live trees but still below desirable amounts, even though not necessarily desirable for goshawks. Even though dead stands harvested do not meet nest stand characteristics they still have value and
may be used by goshawks and other wildlife. In other words, goshawks have nested in dead trees and dead Nest areas, but do not nest in areas that have been salvaged or sanitation treatments that reduce tree diameters and open stands with little canopy cover.

Table 3.15. Percent coverage of the SERP area existing in each VSS for aspen.

<table>
<thead>
<tr>
<th>Cover Type</th>
<th>VSS 1.2 (desired)</th>
<th>VSS 3, 4.5 (desired)</th>
<th>VSS 6 (desired)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen</td>
<td>3% (40%)</td>
<td>95% (80%)</td>
<td>2% (30%)</td>
</tr>
</tbody>
</table>

The desired percentages are obtained from the Northern goshawk recommendations (Reynolds 1992) which were developed in terms of sustainability over time for each cover type. In spruce and spruce-fir habitats, the desired percentage may have been met historically over large geographic regions, but because of the role of insect epidemics and possible stand replacing fire the percentages may not be within the desired shown above. This is considered to be within a natural range of variability on the landscape level.

Table 3.16 shows the forested acres with the predominant tree stocking in the indicated size classes. A majority of the forested acres is within the large category with nearly equal acreage in the medium and very large category. These data indicate that large diameter trees needed for nesting habitat, mean dbh of 20 inches or larger (Reynolds 1992, page 144) are limited in the project area. This will be continuing as the spruce beetle causes more mortality.

Data from intensive surveys on national forest land (no private) yielded 17,559 acres in the SERP area on national forest with at least three snags per acre with a dbh of 18" or greater (12") used for aspens. This is 47% of the forested acres in the SERP area. Spruce-fir habitat types comprise 95% of these acres. Intensive surveys also yielded 25,986 acres with at least three snags per acre with a dbh between 12.0" and 17.9", which is 69% of the forested acreage in the SERP area. Ninety-one percent of these acres are in spruce-fir habitat types.

Table 3.16. Acres with tree size classes (inches dbh) by cover type.

<table>
<thead>
<tr>
<th>Cover Type</th>
<th>SMALL 1-4.9"</th>
<th>MEDIUM 5.0-8.9"</th>
<th>LARGE 9.0-15.9"</th>
<th>VERY LARGE 16.0" or greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen</td>
<td>329</td>
<td>2,500</td>
<td>6,282</td>
<td>70</td>
</tr>
<tr>
<td>Alpen fir</td>
<td>149</td>
<td>83</td>
<td>53</td>
<td><1</td>
</tr>
<tr>
<td>Blue spruce</td>
<td><1</td>
<td><1</td>
<td>126</td>
<td>62</td>
</tr>
<tr>
<td>Douglas fir</td>
<td><1</td>
<td><1</td>
<td>571</td>
<td>349</td>
</tr>
<tr>
<td>Engelmann spruce</td>
<td>571</td>
<td>1,095</td>
<td>1,370</td>
<td>808</td>
</tr>
<tr>
<td>Larch pine</td>
<td>23</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Spruce-fir</td>
<td>766</td>
<td>2,108</td>
<td>14,735</td>
<td>4,990</td>
</tr>
<tr>
<td>White fir</td>
<td><1</td>
<td><1</td>
<td>444</td>
<td><1</td>
</tr>
</tbody>
</table>

TOTAL 1,088 5,079 23,081 6,279

Percent 50% 15% 62% 18%

Walk through and photo interpretation data show 4,734 acres on national forest and 1,128 acres on private with less than three snags per acre of 18" dbh or greater (12" for aspens). This is 16% of the forested acres in the SERP area. In the same size category, the same survey type resulted in 16,574 acres on national forest and 1,128 acres on private with at least three snags per acre. This comprises 46% of the forested areas in the SERP area.

Therefore, according to these data 96% of the forested acres in the SERP area meet three snags or more per acre of 18" or greater and 69% of the forested acres have three snags per acre between 12" and 17.9" dbh. This can be attributed to the spruce beetle infestation, creating snags. The spruce bark beetle infestation has undoubtedly had influence on the numbers of snags present in the project area.

SPOTTED BAT

Spotted bats (Euderma mastuIJlum) have been detected in formal surveys on riparian areas near rock outcrops on the south-eastern part of the Cedar City Ranger District area during the summer of 1994 (Lengas 1994). These were audible captured in gnares at two locations within the project area at the following locations: (1) Center Creek, Second Left Hand Canyon, B1W, 7355b, Section 18, SW 1/4, NE 1/4, and (2) a pond, Castle Creek Drainage, B1W, 7355b, Section 18, SW 1/4, NE 1/4, area 100 acres. Two locations were just outside the project boundary along Mammoth Creek. Although species of bats were detected at one of the Mammoth Creek locations, no spotted bats were detected. The Castle Creek and Center Creek locations were considered at Yankee Meadow, in the project area. No bats were netted, but bats were seen and heard via echolocation (Foster, 1996).

Although the Programmatic Spruce-fir Biological Evaluation (Rodriguez 1993), and Sidney Valley EA (USDA Forest Service 1994), Chapter 3, p. 20 state that no suitable roosting habitat (rocky cliffs, caves, and rock outcrops) for the spotted bat exists within the project area. Zerboff and Collett (1988) state that they may inhabit coniferous forests. Spotted bats are strong fliers and have been observed to move up to 6.2 miles (USDA 1995) from rock or crevice sites, and potential roost habitat exists within the project area and immediately adjacent. In addition, audible vocalizations were detected in coniferous habitats at the south end of the district. Spotted bats may inhabit or forage within the Spruce Ecosystem Recovery Project area.

WESTERN BIG-EARED BAT

Western big eared bats (Corynorhinus townsendii) have not been detected on the Cedar City Ranger District. Western big-eared bats forage primarily in flight on small lepidoptera along forested edges (Kuntz and Martin 1982). Suitable habitat for western big eared bats is present within the project area (Programmatic Spruce-fir Biological Evaluation (Rodriguez 1993), and Sidney Valley EA (USDA Forest Service 1994), Chapter 3, p. 20).

The factors most critical for bat foraging populations are the presence of a variety of roost sites isolated from human disturbance, and the availability of free standing water (Lengas 1994). Potential roost sites and free standing water is available in the project area, and immediately adjacent (potential roosting habitat in the cliff areas in and north of Cedar Breaks National Monument and Ashdown Gorge Wilderness Areas). The project area may be used for foraging by western big-eared bats.

FLAMMULATED OWL

Flammulated owls (Otus flammulatus) are primarily found within mature ponderosa pine and mixed conifer forest cover types. Although flammulated owls are generally associated with mature ponderosa pine, the owl has been recorded in other cover types such as second growth pine, pinyon pine, and aspen (Reynolds and Linkhart 1994). Flammulated owls have been detected in seven locations within or immediately adjacent the west side of the project area. These detections were during the breeding season and are assumed to be reproductive pairs. Despite the lack of evidence of consistent use of the spruce-fir ecotype, this discussion assumes that mature (old growth) spruce forest is best provides potential habitat for foraging flammulated owls. This assumption is based on documented preferences of flammulated owls, nesting and foraging in mature pine and mixed conifer (Reynolds and Linkhart 1984). Blocks of old growth 68 acres in size encompass the largest known territories. In general, territories in habitats of lesser quality are larger.

The bark beetle infestation presently in the spruce and spruce-fir stands could be a time limited and opportunistic numerical response by Flammulated owls, since they are not known to nest in the spruce-fir habitat and they migrate by October.

Spruce Ecosystem Recovery Project DEIS 3.34

Spruce Ecosystem Recovery Project DEIS 3.35
Large diameter trees are important for providing future snags for flammulated owl nesting. Table 3.17 shows the accrual by cover type and tree size. These size are defined using the majority of tree stocking. These data indicate that most of the diameter sizes are in the large category, and most of this is in the spruce-fir cover type.

MANAGEMENT INDICATOR SPECIES

The northern goshawk, which is both an MIS and a Sensitive Species, is discussed under the Sensitive Species heading.

ROCKY MOUNTAIN ELK AND MULE DEER

Because the basic habitats required for elk (Cervus canadensis) and deer (Odocoileus hemionus) are very similar (Thomas et al. 1979) they are grouped here for discussion. Site specific needs for one species or the other will be identified when appropriate.

The SERP area is part of the Panguitch Lake (93% of the SERP area) and Zion (7%) mule deer herds. There are approximately 100 acres of high priority deer winter range. The SERP area contains areas designated as high priority summer range for both elk and deer (pers. comm. B. Bonebrake 1990). High priority use designation is based on numbers of elk and deer that use the area, not physical characteristics of the area. High priority elk summer range is 48.365 acres of the SERP area, whereas low priority summer range comprises 4068 acres.

Deer and Elk habitat quality is directly related to forage/cover ratio and road density in the area (Thomas et al. 1979). Aspen areas provide valuable forage in early seral stages and cover in the older seral stages. Elk calving takes place in the Deer and Bunker Creek areas, which are lower elevation than the rest of the project area. These areas are important breeding grounds for elk and deer as well.

The highest elevation of most of the project area limits deer and elk use to summer and early fall. The major importance of the forest stands for both species is hiding and thermal cover when using the adjacent open areas for feeding. Trees near meadows generally have well developed crowns which extend toward the ground for excellent hiding cover. The high density of trees within many stands also contributes to the available hiding cover. These structural attributes of the forest areas also ameliorate temperature extremes for both mule and elk. The grassy/squawbrush layer is generally scarce underneath the forest canopy due to lack of light at ground level and the heavy dust layer. The forested part of the project area has limited usable elk and deer foraging habitat.

A forage/cover ratio of 60/40 is considered optimum (Thomas et al. 1979). Stand exam data “elk cover” computer runs indicate that cover is 67% of the forest area. The cover stands 74% of the project area (minus areas that cannot provide either cover or forage; rock, water, urban developments). The amount of cover provided by each cover type (plant community) use of tree and portion of the tree providing cover is shown on Table 3.17.

According to Christensen et al. (1993) roads are undoubtedly the most significant consideration on elk summer range. Habitat effectiveness for elk decreases below 50% of its potential at road densities above 2 miles/square mile. The open road density in the project area is above the Forest Plan standards and guidelines of 2.0 miles/square mile on one-watershed in the project area. Road density in the project area is estimated at 2.45 miles per square mile. The reason for this high road density is previous timber harvests in the area. A majority of these roads are in the Deer Valley area.

WILD (MERRIAM’S) TURKEY

Wild turkeys (Meleagris gallopavo merriami) have been observed in the Spruce Ecosystem Recovery Project area (Coles pers. comm. USDA 1995). The high elevation of the area restricts the potential season of use to mid summer and early fall which precludes nesting (nesting dates are April 15 to May 30, UWD). There is, however, potential suitable summer range and broad rearing habitats.

Turkeys presently use the Deer Valley area and around the Yankee Meadows area (USDA 1995). The openings in the Deer Valley area are just beginning to provide habitat for turkeys after the previous harvest activities.

Turkey populations are presently doing well, but this trend is highly dependent upon weather conditions (Grandy, pers. commun.).

NORTHERN FLICKER

Because the northern flicker (Colaptes auratus) is somewhat of a habitat generalist, there is suitable habitat throughout the project area except where habitats consist of non-vegetative material (i.e. rock, talus, cliffs). Snags are necessary for reproduction and, therefore, the limiting factor for flickers. Aspen is an important habitat component for nesting flickers (Reynolds et al. 1992).

Snap data is discussed above, under three-seed woodpecker. According to these data, 98% of the forested acres in the SERP area meet three snags or more per acre of 18” or greater and 69% of the forested acres have three snags per acre between 12” and 18” dbh. This can be attributed to the scarce bark beetle infestation, creating snags. The spruce bark beetle infestation has undoubtedly had influence on the numbers of snags present in the project area.

There are 9,181 acres of aspen suitable for nesting in the project area, including on private land. Eleven percent of this aspen is located on private land.

RIPARIAN HABITAT CONDITIONS

Level II Integrated Riparian Evaluations were conducted on Mammoth, Tommy, Bunker, Deer, Duck, and the West Fork of Asay Creeks. Stream channel conditions are listed in the Hydrology section.
Complexes were assessed as being in "proper functioning", at risk, or "non-functioning" condition (USDI 1995). This assessment uses stream bank conditions, and vegetation along the edge of the stream (greenline) on which to base these assessments. The quality of the vegetation for wildlife was not assessed. Therefore, there may be some smoothing in the data for "proper functioning" that do not provide suitable habitat for some riparian dependent species, particularly those that require vertical structure and patch size.

Deer Creek has willows on six complexes. Six of the eight complexes measured were assessed as having early or very early seral status vegetation. Deer Creek was estimated as "at risk" and "non-functional" in four of the eight complexes measured. One of the "non-functional" complexes has willows present. The other complexes were assessed as in proper functioning condition. Past beaver activity was documented in two of the reaches, one in a "non-functional" and one at "risk" conditions. This stream, therefore, does not have suitable conditions to support a variety of wildlife species dependent upon riparian.

Banker Creek was assessed as having a predominance of mid to late seral status and all complexes were assessed as within proper functioning conditions. Willows were present in five of the seven complexes. Although willows are present, many of their shapes reflect livestock grazing (mushroom shaped). No beaver activity was documented in Banker Creek for providing suitable habitat for wildlife species, but willow shape and patch size would create habitat for more species, particularly birds. It rated as "non-functional". It would certainly characterize poor conditions for riparian dependent wildlife.

Duck Creek complexes are in the mid to late seral status. Willows are present on all complexes and are in good condition. Much willow shape and patch size. Beaver sign was documented on the complex. The creek was assessed as proper functioning. Recreation use especially fishing is heavy along Duck Creek in the spring, summer, and fall months. A lot of disturbance is evident on this stream. However, the disturbance factor is high with all the people and recreation.

West Fork Asay Creek was assessed as proper functioning on one complex and either non-functioning or at risk on the other three complexes. All complexes were in the very early status. Willows are present on three of the complexes and of the willow, either non-functioning or at risk. No beaver activity was documented. West Fork Asay Creek does not provide desired suitable habitat for riparian dependent wildlife.

Mammoth Creek was rated at risk on six complex and proper functioning on the other six complexes. All complexes have willows present. The complex at risk has beaver present documented.

Tommy Creek has no willows present and no beaver activity. The functional level was assessed at risk on four complexes and proper functioning on the other three. The seral status ranges from early to late. The at risk ratings indicate that habitat to support riparian wildlife is lacking or at least not meeting potential in these areas.

OTHER SPECIES OF CONCERN

BLUE GROUSE
Blue grouse (Dendragapus obscurus) inhabit montane coniferous and coniferous-deciduous forests. They are a hardy species within the Cedar City Ranger District. The project area is designated as substantial year long blue grouse habitat based on numbers of grouse using the area, not on physical characteristics. Blue grouse numbers are good (USDI 1995). Blue grouse numbers observed in 1995 increased from 1994 by 60%, indicating that forest grouse populations continue to rebound from the devastating winter of 1993-1994 (USDI 1995). Areas in stands located above steep forested slopes along the southern project boundary provide important winter roost habitat for blue grouse. In these areas, the steep forested slopes result in the best coniferous (cm) habitat available for blue grouse on the project area (USDA 1995).

The blue grouse nest is often hidden under branches of a fallen tree, under a shrub, or beside a log (Erlich et al 1988). The nest is a shallow depression lined with vegetation, usually a few feathers (Erlich et al 1988). The female can recognize each other by their distinctive territorial calling (Erlich et al. 1988). First year males rarely establish breeding territories, and therefore do not breed. Males inflate their neck sacs to amplify their hooping, which they do voluntarily, not on leks as do other grouse species.

The diet of the blue grouse consists mostly of leaves, especially conifer needles, also flowers, fruit, and insects, particularly grasshoppers (Erlich et al. 1988). The young feed heavily on insects. During winter, coniferous needles provide the main food.

NORTHERN FLYING SQUIRREL
The northern flying squirrel (Glaucomys sabrinus) actually glides, using stiffened skin that extends from the wrists to the ankles to support them (Zevoff and Collett 1988). They can turn and even change the angle of their descent by adjusting the unfolded skin, called a patagium. Just before stopping, they drop the tail and raise their forequarters, which slackens the flight membranes so that they serve as air brakes. This allows them a gentle landing on a tree trunk. Tapping a tree containing a woodpecker hole can sometimes prompt them to look out.

The northern squirrel inhabits the northern part of the continent in mature conifer forests, but also occurs in mixed conifer-deciduous and even purely deciduous forests (Zevoff and Collett 1988). In southwestern Utah, they have been found in Englemann spruce forests from 7,900 to 10,300 feet and along stream bottoms surrounded by cottonwood and white fir (Zevoff and Collett 1988). Live trap small mammal surveys were performed in the Cedar City Ranger District in 1995 and 1996. Five species and 86 individuals were captured in 1995 with no flying squirrels (McDonald and Grandison 1995). In 1996, six different species and 101 individual mammals were captured, including three flying squirrels (McDonald et al. 1996).

Stags are an important component for nesting and wintering flying squirrels. In winter, most seek refuge in a tree cavity, including those abandoned by woodpeckers and red squirrels. Inside they line their nests with insulating materials, such as fine shredded bark, leaves, needles, feathers, and soft, hardwood seeds, flowers, insects, and baby birds. They do not store food in the winter. Fungi may also be an important food source as northern flying squirrels chew away bark between sapucker holes, which increases the flow of tree sap on which they forage.

They are preyed upon by owls, hawks, martens, foxes, and house cats. A pair of spotted owls can consume about 500 flying squirrels annually. They are active two separate times during the night, right after dark and just before daylight. They do not apparently enter torpor or hibernate during the winter.

In late May or June the young arrive at the young arrives at a 37 to 42 gestation period (Zevoff and Collett 1988). The average litter size is two to four and second litters are not uncommon. The patagium is present upon birth, but they are extremely dependent upon the parents. Weaning occurs as two months, but the young remain with the mother for much of the year. Mothers raise the young without any direct assistance from the males.

BATS
A detailed account of the bats that could occur or habitat within the project area is located in the "Effects of Livestock Grazing at Proper Use on the Dixie National Forest" and is incorporated here by reference (Grider et al. 1995, pages 101-106). A summary of habitat requirements is shown below.

California myotis (Myotis californicus)

Desert and semi-desert, grasslands, ponderosa pine, narrow crevices on rocky hillocks, mine tunnels, manmade structures, hollow stumps, under loose slabs of bark. Roosts on small desert shrubs, rock crevices and on the ground. Habitat... tree canopy, over water and above ground. Probably does not occur within the SERP area.

Western small-footed bat (Myotis ciliolabrum)

Variety of habitats, including desert, semidesert, forested stands along watercourses. Moderate elevations. Roosts in rocky outcrops, deep crevices, loose bark, buildings. Hunts low among trees and brush. Three individuals were documented on the Cedar City Ranger District in the Mammoth Creek stream in 1994 (Engels 1994).

Long-eared myotis (Myotis evotis)

Mostly forested areas, variety of habitats where roosts are available. Short-grass prairie, semiarid shrublands, chaparral, agricultural areas, open meadows, water courses, reservoirs, deciduous forest edges, dry coniferous forests and subalpine forest. Roosts in buildings, hollow trees, loose bark, caves, mines, fissures of rocks, sinkholes and limestone. This species was documented on the Cedar City Ranger District in 1994 (Engels 1994)). (21 in the Mammoth Creek area).
affected environment

fringed myrtus (myrtus fruticosa)

Elevations between 4,000 and 7,000 feet in desert, grass, woodland habitats, therefore, probably does not occur in the SERP area and will not be addressed further.

Long-leaved Myrtus (myrtus califlora)

Montane coniferous forests (pinyon juniper, ponderosa pine, subalpine forests, riparian areas and rarely in meadows. "roosts" in abandoned buildings, cracks in the ground, crevices in cliff faces and beneath loose bark of trees. Night roosts are in caves, mines, that are also used as hibernacula. Has been documented in the Mammoth Creek area on the Cedar City Ranger District (Leng 1994).

Yuma Myrtus (Myrtus yumanensis)

Attracted to wet areas, most found in and around oaks, deserts and grasslands. "roosts" in caves, mine tunnels and buildings. This species most likely does not occur in the SERP area and therefore will not be discussed.

Men's big-eared bat (chiroptera phylloleuca)

Forced areas, pine, oak, riparian woodlands of oaks, cottonwood, willow and walnut. Elevation range is 2,800 and 9,000 feet, but most found between 3,700 and 7,000 feet. Resting in rocky areas, cliffs, outcroppings, boulder piles, lava flows. This species may be found in Swans Creek outside the SERP area (Leng 1994). Hunted in closed forest environment. Adaptable between, within and below canopy.

Young born in mine tunnels and rock piles.

Bristlecone pine (brachytera brachytera)

Varieties of habitat, mainly lowlands. "roosts" in caves, mines, buildings, culverts, bridges, hollow trees, sink holes. These bats migrate. May fly 50 miles or more to forage. Groups can cover up to 250 square miles. Hunts at a variety of heights, speeds, but most is between 20-30 feet. Was documented in Swans Creek outside the SERP area (Leng 1994).

Cumulative effects area

Cumulative effects is the impact on the environment which results from the incremental impact of the actions when added to other past, present and reasonably foreseeable future actions regardless of ownership. A watershed analysis was used during the National Forest Management Act (NFMA) process to analyze the existing conditions in order to propose activities to meet desired conditions. This assessed past and present activities by each watershed regardless of ownership. The wildlife species discussed in this document all or parts of these watersheds, some more, some less and between them. Therefore, these watershed assessment areas will be used for the cumulative effects analysis for this project. See Appendix D.

Biodiversity

Biodiversity is the variety of life and its processes, and includes the variety of living organisms, the genetic differences among them and the communities and ecosystems in which they occur (Keystone 1991, page 6).

Biodiversity is important for integrity and resilience of ecological systems, and to maintain systems capable to provide food, fiber and other commodities and amenities to humankind.

To maintain biodiversity, the composition, structure and functions of ecosystems must be maintained over a landscape. Ecosystems are best understood by defining the composition, structure, and function which they contain. The spruce ecosystem on the Northern Cascade Plateau is an ecosystem undergoing major change due to the late successional stages of the vegetation and the effects associated with spruce beetle caused mortality.

A description of the biodiversity of this ecosystem is the combination of all the resources described in this chapter including the human dimension.

The effects of action and no action on biodiversity is the summation of the effects on the total array of resources carried forward into Chapter Four. Therefore, biodiversity will not be carried into Chapter Four under a separate subject area. The indicators of biodiversity discussed in Chapter Four under the different resource headings include:

- The structure, composition, patterns, and disturbance regimes of the vegetation resource. This includes vegetation attributes such as old growth, coarse woody debris, snags, fragmentation, corridors, and successional status and trend.
- Threatened, endangered, and sensitive plant and animal species
- Wildlife Management Indicator Species
- The Soils, Hydrology, and Fisheries Resources
- The Human Dimension including recreation, visuals, and social/economic needs.

Heritage Resources (Cultural Resources)

The areas surrounding and within the total project analysis area (52,991 ac) have been identified as being used by human beings for at least 8000 years. A total of 8,283 acres within and immediately adjacent to the total analysis area have been intensively surveyed for cultural resources. A total of 63 sites have been found, and of these 55 have been identified as being Historic Properties and are eligible for inclusion in the National Register of Historic Places. Types of sites identified include, but are not limited to, campsites, stone quarries, tall manufacturing areas, kill sites, and long term seasonal encampments. Historic wooden structures such as cabins, fences, water troughs, and cemeteries have been identified within the area.

Within the boundaries of the individual Focus Areas a total of 332 acres have been intensively surveyed for cultural resources and a total of 50 sites have been recorded. Of these 29 are eligible for or are currently listed on the National Register of Historic Places.

The project area was surveyed by the Forest Archaeologist and assisted by seasonal archaeological technicians.

Cumulative Effects Area

The cumulative effects area for Heritage Resources is the project area.

Social/Economic Resource

The Dixie National Forest Primary Zone of Influence (ZOI) for social and economic environments are described in the Environmental Impact Statement for the Forest Plan 1996. The ZOI is comprised of a six counties area including the following counties: Garfield, Iron, Kane, Pute, Washington, and Wayne. The boundaries of the Dixie National Forest lie within these counties and the economies of these counties are directly affected by Forest actions (Forest Plan EMS, III.1).

The discussion of the affected environment will constitute the cumulative effects area for this project. The current condition of the affected environments for the social economies have been described in a watershed assessment completed for the Spruce Ecosystem Recovery Project Watershed Analysis area. The product was a cumulative effects baseline assessment following the guidelines of "Ecosystem Analysis at the Watershed Scale: Federal Guide for Watershed Analysis" (Version 2.2, August 1995).

Analysis Units

Because of variation between communities economic bases, the ZOI is further broken down into analysis units by county. Iron, Garfield, and Kane Counties are analysis units comprising the affected environment for the project area and representing the cumulative effects analysis.
Cedar City Ranger District
Dixie National Forest

IRON COUNTY ANALYSIS UNIT

Parowan, Cedar City, and Brian Head Town are located in Iron County, Parowan is the County seat. A table indicating the employment and income in the Zone of influence is included in the Watershed Assessment. The "Trade (All Government), 23.9%) and "All Government", 22.3%) industrial sectors are large employers of household income. "All Government" provides an almost equal percentage of income at 27.5%. However, the "Services" sector, while contributing 19% of the total county employment, is a larger source of total income than the "Trade" sector. "Trade" contributes only 17.9% of the total income, compared to 22% for "Services". This is attributed to the growing tourism and recreation industry in Iron County.

Employers in Iron County include Southern Utah University, various levels of government, local schools, light industry and manufacturing, and service sector businesses, many related to tourism. There is a small sawmill located in the southern part of Cedar City. The economy of the iron County analysis unit is substantially more diversified than other rural southwestern Utah counties, and is not substantially dependent upon timber resources from the Dixie National Forest. Iron County has a low unemployment rate, but a high level of poverty. The current social and economic conditions are further described in the Social and Economic portion of the Watershed Assessment.

The population of Iron County was estimated to be 32,100 in 1996, according to Cedar City/Iron County Economic Development. This is up from the State projections for that year in 1994. Iron County is a 20-25% range of urbanization, indicating that most of the population lives in urban centers larger than 2,500 people (Watered Area Assessment). The population in Portland City is approximately 20,000 according to Cedar City/Iron County Economic Development.

Recreation and tourism related to local activities, such as the Utah Shakespeare Festival, are primary contributors to local income and employment, mainly through services provided to area visitors. The area's proximity to the Dixie National Forest and several national parks, its location on a primary north-south interstate corridor between major western population centers, and a growing resident and transient population, are some of the contributing amenities and attributes, causing swelling trends in visitation. Localized tourism in the Dixie National Forest has grown at an average annual rate since 1996, paralleling state-wide trends for this period. The increasing population in Clark County, Nevada is the predominant contributor to escalating visitation, as discussed in the Watershed Assessment. The increase in visitation and population has been documented in USDA Forest Service and USDA National Park Service visitation records. Utah Department of Transportation traffic counts, and census records and projections for Iron County, Utah and Clark County, Nevada.

Visitors to the Dixie National Forest are difficult to separate, and more specifically to the Spruce Ecosystem Recovery Project. DHSS data are not associated with surrounding St. George and St. George areas, and there are no data on the amount of tourism and recreation and contribute to the economies of local communities, such as Parachute Lake, through the purchase of goods and services. SA contribution to the local tax base is made through the payment of property taxes. The primary assumption used in this comparison is that all activities on the Dixie National Forest are equally distributed to the contributing to this increase.

The town of Brian Head is located in this analysis unit and the northern end of the project area. Brian Head depends upon the nearby Forest land and recreation opportunities as a major part of the economic base. Differing from other communities in the Iron County analysis unit, Brian Head has unique social and economic trends depending upon non-forest Product Forest products (e.g. timber manufacturing and livestock grazing). Although a shift is taking place Iron County from a natural resource based economy, other communities in the analysis unit are still tied to some degree to traditional industries which have altered the natural character of their communities' environment to that which is heavily dominated by human activity. Brian Head has developed a social and economic environment based on recreation (a recreational, tourism, and sports) which depends not only upon the maintenance of a non-forest environment. Brian Head has invested substantial financial and human resources to develop recreation and tourism opportunities to the water recreation economy. The tourism base has been partly from the growing recreation use, particularly mountain biking. Mountain biking has been increasing rapidly since 1991. Sales tax revenues in Brian Head Town increased 58% over the decade between 1986 and 1996. For more information refer to the Recreation discussion in chapters Three and Four.

Portions of the Spruce Ecosystem Recovery Project are within the foreground view of three Scenic Byways, Utah "Highways 14, 18, and 146. The project area is also visible from the Brian Head Peak vista area, one of the heaviest used vista points on the Cedar City Ranger District.

Since 1986, there has been an increase in summer and winter hotel building within the boundaries of the Cedar City Ranger District, including temporary and year-round residents. These homeowners play a role in the economy through the purchase of goods and services, the building of a "local" tax base, specifically in the community of Brian Head. Subdivisions in the Spruce Ecosystem Recovery Project area, with the exception of the subdivisions in and around the Brian Head area, include Rainbow Ranches, Ireland Estates, Rainbow Meadows, and Meadow Lake Estates. Subdivisions use the project area for recreation.

Livestock permits residing in Iron County graze 150 cattle and 5,475 sheep within the project area in the following permitted allotments: Bowery, Warren/Bunker, Haycock Mountain/Brian Head, Navajo Ridge, Six Lakes, Dandelion Knoll, Sage Valley/Howe, and Deer Valley. A table of cattle and sheep grazing by allotment, grazing period, and Animal Unit Monthly Availability is located in the Social and Economic portion of the Watershed Assessment completed for the Spruce Ecosystem Recovery Project.

GARFIELD COUNTY ANALYSIS UNIT

Parachute, Escalante, and the community of Parachute Lake are located in the Garfield County analysis unit. Parachute is the county seat. As shown in the Watershed Assessment, the major source of income and employment in Garfield County is the "Services" sector, providing 33.4% of employment and 33.8% of the income. The "All Government", the next largest, contributing 23.6% of employment and 21.2% of the income, is the "Agriculture" sector provides 13.6% of the employment, but only 6.4% of the income for the county. "Trade (Wholesale and Retail)" and "Non-Farm Proprietors" contribute to an additional 17.0% of the total employment and an undisclosed percentage of the total income. "Manufacturing" currently plays a much smaller role in the local economy than in the past due to the recent closure of the Kaibab Industries timber manufacturing operation in Parachute. Major employers in Garfield County include the Western Farmers Exchange Services, Utah Forest Products, Garfield County School District and other various levels of government, and Garfield Memorial Hospital. Garfield County currently struggles with high unemployment and poverty rates (Watershed Assessment 1997).

Garfield County's population is estimated to be 4,413, according to the projections from the Utah Governor's Office of Planning and Budget. The entire county is considered rural under the designation of a community of 2,500 or more indicating an urban center (Watershed Assessment 1997). As mentioned in the discussion of the Iron County Analysis Unit, there has been an increase in homeowners building summer and winter recreational homes on the project area. DHSS data are not associated with surrounding St. George and St. George areas, and there are no data on the amount of tourism and recreation and contribute to the economies of local communities, such as Parachute Lake, through the purchase of goods and services. A substantial contribution to the local tax base is made through the payment of property taxes. The primary assumption used in this comparison is that all activities on the Garfield County analysis unit are equally distributed to the contributing to this increase.

One major timber manufacturing facility, Utah Forest Products, operates in Escalante. The operation currently employs 73 people in the mill, bag plant, planer, office, and security. The logging and hauling operations are contracted out. The annual mill capacity is estimated to be 17 million board feet (MMBF). The mill processes green timber, or raw timber, and salvage timber, or house logs, from the Dixie National Forest, and 28.0% purchased timber from the Cedar City Ranger District. Several local commercial woodworkers and smaller mill operations depend upon fuelwood and green timber on the Cedar City Ranger District.

Livestock permits residing in Garfield County graze 105 cattle and 1,028 sheep within the project area in the Dry Lake/Bunker and the Hatch Mountain/Castle Valley allotments. A table of cattle and sheep grazing by allotment, grazing period, and Animal Unit Monthly Availability is located in the Watershed Assessment.

KANE COUNTY ANALYSIS UNIT

Canaroy is the county seat of Kane County. The major sources of employment and income in the Kane County analysis unit are "Trade" and "All Government", and the contributions to the Water recreation economy. The tourism base has been partly from the growing recreation use, particularly mountain biking. Mountain biking has been increasing rapidly since 1991. Sales tax revenues in Pine Valley Town increased 58% over the decade between 1986 and 1996. For more information refer to the Recreation discussion in chapters Three and Four.

Spruce Ecosystem Recovery Project DEIS

Spruce Ecosystem Recovery Project DEIS

Sp}ace
levels of government and construction employment opportunities contribute to the total employment. Kane County currently struggles with high unemployment and poverty rates (Watershed Assessment 1997).

The population of Kane County was estimated by the Kane County Travel Council to be over 5,000 in 1998, down 700 people from the 1995 estimate of 5,700. The majority of the population of Kane County live in Kane (over 4,000 estimated populations, placing it in a range of 40-70% urban overall (Watershed Assessment 1997). As mentioned in the discussions of the Iron County and Garfield County Analysis Units, there has been an increase in how these regions building summer and winter recreational homes on the private land within the boundaries of the Cedar City Ranger District. Both temporary and permanent residents use the nearby forest land for recreation and contribute to the local economies of communities. Duck Creek Village, located in Kane County, is a community based upon recreation and tourism. Visitors and residents use the surrounding forested lands, including the Spruce Ecosystem Recovery Project area, for sight-seeing, recreational driving, hiking, and other recreational pursuits.

The needs and interests of homeowners in the Iron County, Garfield County, and Kane County analysis units adjacent to or within the DNR National Forest boundaries differ from those of the temporary forest visitor or tourist. The passing tourist who wants to avoid areas where epidemic beetle infestation or timber harvest has occurred can move on to a different location during a Forest visit. The local resident has more at risk because the surrounding National Forest constitutes a major component of the "value-added" enhancement to the physical private residence. In addition to the private property investments, local enterprises have evolved to provide goods and services to the growing local community of homeowners.

Recreation and tourism is quickly becoming the major industry in Iron County, Garfield County, and Kane County. New recreation opportunities are found along the links of the DNR National Forest. National Parks and Recreation Areas such as Zion, Capitol Reef, Lake Powell, and the newly created Grand Staircase-Escalante National Monument, as well as the numerous other Federal, private, and State land recreation destinations are the primary destinations for millions of visitors who may also spend some time on the Duce, or may simply pass through due to the scenic quality of the route across the Duce. For additional discussion on the Watershed Assessment for the SEPR area, 1997 (Project File).

CUMULATIVE EFFECTS AREA

The cumulative effects area for Social/Economic is the "Zone Of Influence" as described in the EIS for the Duce National Forest Land and Resource Management Plan (1988), with primary effects to the Iron County, Kane County, and Garfield County analysis units.

SPECIAL USES

The following uses within the Spruce Ecosystem Recovery Project area have been issued special use permits. The Utah Forest Service is a special use program is intended to support uses on National Forest lands that can not be equitably provided by the government and where as these uses enhance the visitor experience, or ensure their health and welfare. Additionally, the special use program assists state and local government in achieving common interest.

Currently, there are forty active special use permits within the boundaries of the Spruce Ecosystem Recovery Project. The permitted uses include both fixed improvements, easements, and recreational activities. The following documents of Special Uses will be introduced in the Affected Environment. Only certain discussions of Environmental Consequences for Special Uses will be introduced in chapter 4 as Special Use discussion. Individual Special Use Permits will be discussed within specific resource discussions. The location of discussions of Environmental Consequences for Special Uses will be identified in the Affected Environment discussion.

FIXED IMPROVEMENTS

Of the forty active special use permits within the Spruce Ecosystem Recovery Project Area, twenty-six are fixed improvements. Eleven of the fixed improvements are located at the Blowhard Electrical Site. The fixed improvements include a weather station, two warehouse and storage yards, two power lines, one amateur radio transmitter, two microwave common carriers, two microwave industrial sites, one broadcast translator/power tower TV & FM

Spruce Ecosystem Recovery Project DEIS 3-44

Cedar City Ranger District Dixie National Forest

transmitter, one commercial mobile radio service, three telephone and telegraph lines, one navigational equipment station, one irrigation water transmission pipeline, less than 12 inches in diameter, four water transmission pipelines, less than 12 inches in diameter, and one dam/reservoir. The special use permits authorizing these improvements represent long-term commitments of National Forest lands. Permits may vary in duration, from five, ten, to twenty years. The fixed improvements represent uses that will not be impacted by either - the Proposed Action, or Action Alternatives. Therefore, they will not be discussed in Chapter 4, Environmental Effects, as there are all outside the Focus Areas.

EASEMENTS

Within the project area there are five large Federal Land Policy Management Act (FLPMA) permits. These permits grant the holder legal access across National Forest lands. Three of the FLPMA permits ensure access to area subdivisions, and two permits are issued to the State of Utah for highways crossing through the project area. The FLPMA easements represent uses that will not be impacted by either the Proposed Action, or Action Alternatives. Therefore, they will not be discussed in Chapter 4. Environmental Effects, as they are all outside the Focus Areas.

RECREATIONAL ACTIVITIES

The recreational activities occurring within the project area include a winter sports site, ten recreational events, eight outfitter and guide permits, and one vendor permit. The winter sports site, special use permit operates three ski lifts encompassing 420 acres of National Forest land. Environmental Consequences related to improvements within the winter sports site, special use permit boundary will be discussed in Special Use sections of Environmental Consequences in Chapter 4. Environmental Consequences related to recreation, visual and social/economic discussions will be discussed in the Recreation, Visual and Social/Economic sections of Environmental Consequences in Chapter 4.

Ten recreation events are permitted within the project area. Recreational participation and spectators are more than 5,000 people. Exact location and routes of the recreation events can be found in the individual special use permit folder. Discussion of Environmental Consequences for these special use permits can be found in the Recreation section in Chapter 4. The events include:

• Utah Mountain Men Rendezvous - Second weekend in June:
 • Winter Games:
 • Equestrian Endurance Race - Second & third week of June:
 • Mountain Bike Race - Second & third week of June:
 • Utah Head Mountain Bike Events:
 • Fat Tire Festival - July in Left Fork of Bitter Creek (Sat.) and Dark Hollow to Second Left Hand Canyon (Sun.)
 • Race - July, various trailheads in and around Brian Head Town
 • Race - August, various trailheads in and around Brian Head Town
 • Fall Colors Festival - September Left Fork of Bitter Creek (Sat. and Dark Hollow to Second Left Hand Canyon (Sun.)
 • ATS Queso Archery Club:
 • Midway Golf Shoot - June
 • Deer Valley Shoot - July
 • Mitchell Sawmill Tournament - August:

Eight outfitters and guides are permitted to operate within the project area. These uses include guided fly fishing, big game hunting, road biking, and multi-day horse trips. Of the eight outfitter and guide permits, the fly fishing and big game hunting are district wide permits. This authorizes the holder to take clients on all waters and lands in the pursuit of fish and game.

One road taking permit is issued and administered out of the Powell Ranger District, Panguitch, Utah. The tour crosses the Cedar City Ranger District using State Highway 14 from Todd’s junction to Cedar City, Utah. Camping is not authorized under this permit.

Spruce Ecosystem Recovery Project DEIS 3-45
The mountain biking outfitter and guide use in concentrated to the Forest Service trail system around Brian Head Peak. Three outfitters are permitted to operate tours on these trails. The durations of the tours range from one to five days in length. Discussion of Environmental Consequences for these special use permits can be found in the Recreation section in Chapter 4. The Table 3-18 shows the breakdown of outfitter and guide permits.

Table 3-18. Cedar City Ranger District Outfitter and Guide Permits

<table>
<thead>
<tr>
<th>PERMIT NUMBER</th>
<th>TYPE OF USE PERMITTED</th>
<th>TIME OF USE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5295</td>
<td>Big Game Hunting</td>
<td>State Hunting Seasons</td>
<td>District Wide</td>
</tr>
<tr>
<td>5426</td>
<td>Big Game Hunting</td>
<td>State Hunting Seasons</td>
<td>District Wide</td>
</tr>
<tr>
<td>9037</td>
<td>Big C-1 Hunt</td>
<td>State Hunting Seasons</td>
<td>District Wide</td>
</tr>
<tr>
<td>5596</td>
<td>Fly Fishing</td>
<td>12 Months/Year</td>
<td>District Wide</td>
</tr>
<tr>
<td>5416</td>
<td>Mountain Biking</td>
<td>August 25-29, 1997</td>
<td>Brian Head Trail System</td>
</tr>
<tr>
<td>5462</td>
<td>Mountain Biking</td>
<td>June 16-19, 1997 and July 14-17, 1997</td>
<td>Brian Head Peak Road, Sidney Peaks Trail, Dark Hollow Trail, Highway 143, Second Left Hand Canyon, & Sidney Valley Road.</td>
</tr>
<tr>
<td>5469</td>
<td>Mountain Biking</td>
<td>Summer</td>
<td>District Wide</td>
</tr>
<tr>
<td>5479</td>
<td>Road Biking</td>
<td>Summer</td>
<td>Highway 14</td>
</tr>
</tbody>
</table>

One vendor/peddler permit operates in the Midway parking lot during the summer months, and two weekends during the winter. The vendor/peddler permit represents a use that will not be impacted by either the Proposed Action or Action Alternatives. Therefore, it will not be discussed in Chapter 4, Environmental Effects, as it is outside the Focus Areas.

Table 3-19 and 3-20 show forty recreation and non-recreation special use permits, the permit numbers, and the type of permits that occur within the boundaries of the Spruce Fen Ecosystem Recovery Project.
Table 3.2: Special Use Permits Within the Spruce Ecosystem Recovery Project (Non-Recreation)

<table>
<thead>
<tr>
<th>PERMIT NUMBER</th>
<th>TYPE OF USE PERMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2085</td>
<td>Power Line</td>
</tr>
<tr>
<td>2104</td>
<td>Power Line</td>
</tr>
<tr>
<td>2132</td>
<td>Power Line</td>
</tr>
<tr>
<td>0547</td>
<td>EPMA Permit</td>
</tr>
<tr>
<td>1541</td>
<td>EPMA Permit</td>
</tr>
<tr>
<td>2430</td>
<td>EPMA Permit</td>
</tr>
<tr>
<td>2541</td>
<td>EPMA Permit</td>
</tr>
<tr>
<td>2546</td>
<td>EPMA Permit</td>
</tr>
<tr>
<td>5215</td>
<td>Amateur Radio</td>
</tr>
<tr>
<td>2008</td>
<td>Microwave Common Carrier</td>
</tr>
<tr>
<td>2108</td>
<td>Microwave Common Carrier</td>
</tr>
<tr>
<td>4008</td>
<td>Microwave Industrial</td>
</tr>
<tr>
<td>2123</td>
<td>Microwave Industrial</td>
</tr>
<tr>
<td>1031</td>
<td>Broadcast Translator/Low Power TV & FM</td>
</tr>
<tr>
<td>8100</td>
<td>Commercial Mobile Radio Service</td>
</tr>
<tr>
<td>2171</td>
<td>Telephone and Telegraph Lines</td>
</tr>
<tr>
<td>2174</td>
<td>Telephone and Telegraph Lines</td>
</tr>
<tr>
<td>4340</td>
<td>Telephone and Telegraph Lines</td>
</tr>
<tr>
<td>4078</td>
<td>Navigational Equipment</td>
</tr>
<tr>
<td>8130</td>
<td>Irrigation Water Transportation Pipe, Less 12 Diameter</td>
</tr>
<tr>
<td>1564</td>
<td>Water Transportation Pipe, Less 12 Diameter</td>
</tr>
<tr>
<td>1571</td>
<td>Water Transportation Pipe, Less 12 Diameter</td>
</tr>
<tr>
<td>4651</td>
<td>Water Transportation Pipe, Less 12 Diameter</td>
</tr>
<tr>
<td>0516</td>
<td>Weather Station</td>
</tr>
<tr>
<td>1011</td>
<td>Warehouse and Storage Yard</td>
</tr>
<tr>
<td>1512</td>
<td>Warehouse and Storage Yard</td>
</tr>
</tbody>
</table>

Maps for the special use permits listed above are contained in the individual special use permit folder located in the Cedar City Ranger District Office.

CUMULATIVE EFFECTS AREA

The Cumulative Effects area for Special Uses will be the SERP area.

FIRE/FUELS RESOURCE

Based on the most recent publication concerning the fire ecology of forests in Utah (Bradley et al., 1992) the primary fire groups represented within the SERP area are Groups 10 and 12. Fire Group 10 is the "Dry, Lower Subalpine Habitats". The majority of the project area is within this type. Fire Group 12 is the "Colder, Upper Subalpine Habitats". High elevation forested stands north of Brian Head Peak appear to belong to this group. Refer to the Project File (Exhibit 30) for a thorough discussion of these fire groups by Bradley et al., 1992.

Fire activity in the spruce-fir forest type in the past has usually resulted in small fires which do not carry due to most of discontinuous fuels and burn only relatively small patches (10 acre or less). Fire has its greatest impact when occasional large, severity fires invade from lower elevation forests during severe fire conditions. Periods of high wind and low fuel moistures present the greatest possibility for stand replacement fires. There is no indication that ground fires have burned through this area for several decades. No substantial (>100 acre) fires have occurred in this area in the last 75-100 years.

Four basic factors contribute to a stand's susceptibility to wildfire and the amount of change that a fire may produce in the stand or across the landscape. These factors are fire susceptibility of the different species within the project area, stand structure, existing fuel loading, and fuel moisture.

FIRE SUSCEPTIBILITY OF TREE SPECIES WITHIN THE PROJECT AREA

Bradley et al. (1992) provides a thorough discussion of how fire affects tree species found within the project area (refer to Project File, exhibit 30). In general, the relative resistance of the primary tree species found within this project area to fire, from highest resistance to least resistance, is as follows:

Stands in the SERP area are dominated by the higher susceptible fire species such as aspen, spruce, and subalpine fir. Substantial mortality could be expected with even low to moderate intensity fires.

Aspen stands throughout the project area have been affected by fire suppression. Because fire suppression has been especially effective in aspen type, the ability for aspen to be stimulated by suckering from the effects of fire has been eliminated.

STAND STRUCTURE

Stands in the SERP area are generally multi-layered with Engelmann spruce dominating the upper canopy layer. A multi-layered canopy provides ladder fuels for ground fires to climb into the canopy, if fire conditions are favorable (dry fuels in drought years and strong winds). In stands north of Brian Head Peak, and high elevations (10,000 feet) and northerly aspects likely create conditions too cold for aspen, except in limited microsites) placing these stands in Fire Group 12, under the mature forest category (Bradley et al., 1992). Fire in these stands would revert them to a grass/forb stage. Engelmann spruce and subalpine fir would re-invade the area, though the process would be slow depending on the severity and size of the burn and the availability of seed from the surrounding forest.

The remainder of the area falls into Fire Group 10, with aspen ranging from occasional to more than 50 percent, in some stands. Fire in these stands would revert them to a grass/forb stage with recovery to a forested stand occurring relatively rapidly due to aspen regeneration. Invasion of conifers would be slower depending on the severity and size of the burn.
DEAD AND DOWN FUEL LOADS

There is little data available on the amount of down woody material present in the SERP project area. However, many stands in Radiata Pine (south of Cedar Breaks National Monument) are similar in composition and age; down woody material in these stands averages 13.0 tonnes/ha. The majority of the material is large in diameter (4 to 22 inches) and would result in a relatively low rate of spread for ground fires, but an overall high fire intensity rating, on some stands greater than 400 BTU/square foot (0.8, 0.8) as predicted by BEHAVE software for fire predictions.

Due to the recent beetle and other insect and disease activity, the number of standing dead trees has been increasing. Stand exam data indicates that the number of standing dead per acre ranges from 0 to 200 with the average being about 40 per acre. Stands with the greatest concentrations of fuels are: 10/812, 32, 23, 34 and 11/330, 47, 47, 57, 47.

FUEL MOISTURE

Fuel moisture in the spruce/pine type is typically higher than other forest types due to the high elevation and amount of precipitation. Most of the stands in the SERP area are multilayered and have a relatively high canopy closure. These factors help to maintain a high fuel moisture content, lowering the risk of fire starts in most years. However, in dry years when fuel moisture is low, fire starts can occur, though less frequently than in mixed conifer or pine types.

WILD LAND URBAN INTERFACE

Since the end of World War II, the United States has been undergoing rapid socio-economic changes: populations have been increasing, leisure time has been on the increase, per capita income has been rising, and social pressures are becoming intense among urban centers. These factors have led to an increase in the demand for recreational and permanent home sites in the wildland areas of Utah. In an effort to keep the atmosphere surrounding their homes in harmony with the outdoor setting, owners have not cleared brush and vegetation away from their properties. This failure to provide for adequate defensible space for fire around homes has increased the susceptibility of the homes to loss by fire. Defensible spaces are defined as fuel breaks around structures. The size of these fuel breaks are defined in the State of Utah Department of Lands and Forestry publication: "Wildfire Hazards and Residential Development." The State of Utah recommends a minimum clearance of thirty feet and a maximum of seventy five feet of native vegetation around structures. Most of the structures in the recovery project area do not meet these standards (Pers. Comm. 12/14/94).

Brian Head Town currently has approximately 90 cabin type structures and 50 multi-family (Condominiums) type structures. The reported population is approximately 100 but can be over 5000 during times of special events. The resort community continues to grow with an average of two to three cabins per year being built. Brian Head has maintained a good fire hydrant system with a hydrant within 1000 feet of most structures. Water supply is also in good shape with a reservoir of approximately 2 million gallons. Unfortunately some of the access roads to structures are not suitable for all fire suppression equipment. The roads do not have turn at dead areas and are too narrow for fire suppression equipment. The lack of adequate roads would contribute to an increased response time (Pers. Comm. - D. Harris, Brian Head Town Fire Marshal 12/14/94). The adjacency of many summer homes and cabins in and adjacent to the recovery project area to insect infested vegetation is an area of concern.

A similar situation exists in the Rainbow Meadow Ranchos, Ireland Estates, and Meadow Lake Subdivisions. Approximately 60 summer homes/cabins are present in these two areas. Fire suppression response time is essentially the Forest Service with possible assistance from Brian Head Town. The lake in the Meadow Lakes Subdivision is available for suppression activities. Spruce mortality or is presently affecting areas within and adjacent to these subdivisions.

The suppression of wildfires at areas with this type of fuel loading (Dead fuels greater than 13 tons per acre) is very difficult and the possibility of larger, catastrophic wildfires is greater. Forest Service Manual (FSM 5133.1) provides direction for structural fire protection from advancing wildfire within the National Forest Boundary. Structural Fires: Structural fire fighting is the responsibility of local fire service agencies. Structural fire protection is achieved advancing wildfire within the National Forest Boundary is the responsibility of local fire service agencies and the Forest Service. Keeping this in mind, although the Forest Service does not have responsibility for structure fire fighting, we are directed to suppress advancing wildfire that is a threat to structures. Having a high concentration of fuels on forest lands near structures would lead to a more difficult suppression effort.

FIRE HISTORY

There is no specific fire history data collected for the project area. Using the available publications (Fire Ecology of Forests and woodlands in Utah, Bradley, et al. 1992) and determining fire frequency we can estimate fire return intervals. In fire group twelve (Cold upper subalpine habitat types) the interval is between 50 and 300 years fire free (Arno 1988, 1990, Hoogerwerf 1981). In fire group 10 (Dey, lower subalpine habitat types) the interval is estimated to be 50 to 130 years (Arno 1990). Looking at fires that were detected and suppressed between 1964 and 1993, our records indicate that in Township 36 S., Range 9 W., (Within five mile radius, mainly SW0, on Forest Service Land, from Brian Head Town) nine fires were suppressed. Five of these were human caused while four were lightning. The largest of these fires was one half acre in size.

AIR QUALITY

The project area and the entire Dixie National Forest is designated as a Class II airshed. This means that air quality exceeds the National Ambient Air Quality Standards. Class II airsheds may incur moderate increases in new pollution.

Class I areas are geographic areas designated for the most stringent degree of protection from future degradation of air quality. The broad National goal for these areas is to present any future improvement of visibility. This goal however, is broad enough to include regulation on use of prescribed fire and resultant smoke. The smoke from outside Class I airsheds, must be minimized and managed using the concept of Best Available Control Technology, and comply with interagency smoke management guidelines.

There are no Class I airsheds within 5 miles of the project area. The closest Class I airsheds are Zuni Natural Park which is approximately 20 air miles from the southern edge of the project area and Bryce Canyon National Park which is approximately 30 air miles from the eastern edge of the project area.

Other Class II airsheds within Southern Utah include:

- Arches National Park - Approximately 188 air miles
- Canyonlands National Parks - Approximately 166 air miles
- Capitol Reef National Monument - Approximately 97 air miles

There are several subdivisions, Brian Head Ski Resort, and one Wilderness Area within 5 miles of the project area. Those areas are listed below and will constitute smoke sensitive avoidance targets within the project area.

These are five parameters important to the determination of air quality, and its potential effects. These include amount of airborne particulates, gaseous pollutants, visibility, Prevention of Significant Deterioration (PSD) Designation, and proximity to residential private subdivisions and Class II airsheds.

Long term visibility impairment from human activities will not impart long term baseline visual range more than five percent of the 90th percentile 10 day days in Class II airsheds. Not more than 10 percent in Class II airshed

Short-term (14 days) visual range impairment from human activities outside the airshed such as prescribed fire smoke may result in a pre-activities visual range more than 10 percent of the 90th percentile in Class I airsheds or 20 percent in Class II airsheds. This allows for the natural role of fire and smoke from prescribed natural ignitions to maintain the ecosystem (Desk Guide Bridge to Revision, USDA Forest Service, Intermountain Region, 1993).
No visibility measurements have been made in the project area. Information received on baseline visibility for areas within the Colorado Plateau indicate that the average visibility, for clear days, is 145 kilometers or approximately 92 miles (Personal conversation with Cliff Benoit, Regional Air Quality Specialist, 3/1/95, based on Interagency Visibility Monitoring Data, and the IMPROVE computer model).

For each criteria pollutant, EPA (Environmental Protection Agency) is required to designate a concentration level above which the pollutant would endanger public health or welfare. To date, NAAQS (national ambient air quality standards) have been established for six criteria pollutants: sulfur dioxide, particulate matter PM-10, carbon monoxide, ozone, nitrogen oxides, and lead. The concentrations of total suspended particulates (TSP) and particulate matter smaller than 10 micrometers (PM-10), are not monitored within the project area. Primary emission sources that would contribute to particulate levels would be automobile exhaust, and emissions from wood burning stoves from Bean Head Ski Resort and adjoining subdivisions. Prescribed burning by the Forest Service or private property has not been a common practice within or adjacent to the project area.

An emission factor for particulate matter (EFp) is defined as the mass of particulate matter produced per unit mass of fuel consumed. Emission factors reported in literature for forest fuels range from four to 100 Ib/ton, depending on fuel type and arrangements and the manner of combustion. For piloted or windrowed slash an Emission Factor of 50 Ib/ton is used.

Emission rate is defined as the amount of smoke produced per unit of time (lb/minute or grams/sec). Down wind concentrations of particulate matter in smoke are related directly to the emission rate at the fire source. The emission rate in turn is affected by the amount of fuel being burned, the rate at which it burns, and the emission factor of the fuel Smoke Management Guidelines for Prescribed Fires, Matte-Neal National Forest, 3/92.

No measurement of other criteria pollutants, such as carbon monoxide, sulfur dioxide, ozone, nitrogen oxides, or hydrocarbons, were made in the project area.

There are no Class I areas within 5 miles of the project area. The closest Class I areas are Zion National Park which is approximately 20 miles from the southern edge of the project area and Bryce Canyon National Park which is approximately 30 miles from the eastern edge of the project area.

Other Class I areas within Southern Utah include:
- Arches National Park: Approximately 100 miles
- Canyonlands National Park: Approximately 160 miles
- Capitol Reef National Monument: Approximately 90 miles

There are several subdivisions: Bean Head Ski Resort, and one Wilderness Area within 5 miles of the project area. Those areas are listed below and will constitute smoke sensitive avoidance targets within the project area.

- Cedar Breaks National Monument
- Rainbow Meadows Subdivision
- Ashdown Gorge Wilderness
- Bean Head Town
- Skyview Estates
- Green Meadow Acres
- Cedar Breaks Mountain Subdivision
- Timbercrest Subdivision
- Summit Mountain Subdivision
- Ski Haven's Chairs
- Meadow Lake Subdivision
- Castle Valley Private Land
- Blue Springs Subdivision
- Navajo Lake Campground and cabins

CUMULATIVE EFFECTS AREA

The Cumulative Effects Area for air quality will consider the area extending west to Sugar Loaf Mountain, north to Horse Valley Peak, east to the Mammoth Creek subdivision, and south to Navajo Lake. Effects to the closest Class I areas, Zion National Park and Bryce Canyon National Park will also be considered. All other Class I areas identified above would not be measurably affected by the actions proposed in this project and therefore will not be carried into Chapter Four. See Appendix 10.

RANGE RESOURCE

ALLOWMENTS

There are two main trailing corridors through the project area. The Dandless Knoll, Six Lakes-Navajo Ridge and Warren-Bunker herds trail from Dry Lakes over Navajo Ridge, Mammoth Summit and on to their respective allotments. The herds use this trail to and from the higher summer pastures.

The Havoc Mountain-B branding and Sage Valley-Horse Valley sheep bands are trailed to Hancock Mine and Clear Creek in the early summer. In mid-July the Sage Valley-Horse Valley band trails from Clear Creek to Blowdown. In mid-August the Havoc Mountain-Brian Head band trails from Havoc Mountain by way of Clear Creek to the Brian Head Peak area. Finally, in late September the Sage Valley band make the return trip over the trail to Horse Valley.

On the cattle allotments, improvements consist of allotment boundary fences, a few reservoirs to improve livestock distribution, and interior fences to control the cattle. Fences that are located within the project area are the Red Desert/Warren-Bunker boundary fence, the John L. Flat pasture boundary, Deer Creek/Bunker Creek pasture boundary, Dry Lake-Bunker Creek Warren-Bunker allotment boundary fence, Bowery/Warren-Bunker boundary fence, and Bowery allotment boundary fence.

The Bowery cattle allotment encompasses the north portion of the project area. There are 14.818 acres in the allotment. It includes Center Creek and Bowery Creek drainage. There are 100 cattle permitted on the allotment for a three month grazing season. The season ranges from June 21 to September 20. There are nine permits who graze cattle on the allotment. They are part of the Bowery Cattlemen’s Association in Parowan, Utah. The allotment is managed under a modified deferred rotation grazing system. There are three pastures on the Bowery allotment. The Dark Hollow pasture is located in the project area.

The Warren-Bunker sheep allotment consists of 7,425 acres of which 4,240 is classified as suitable. It is managed under a deferred rotation grazing system. The sheep graze from Hancock Peak to Clear Creek one year and then on the opposite the next. There are 900 sheep permitted on the allotment for a 7/6 to 9/20 grazing season. The permits have his base operation in Parowan, Utah.

The Dry Lake-Bunker cattle allotment involves 13.674 acres. Approximately 6,897 are suitable for livestock grazing. There are 105 cattle permitted on the allotment. The season of use is from June 16 to September 30. There are two permits who graze cattle on the Dry Lake-Banker allotment and their base operation is in Parachute, Utah. The allotment is grazed under a modified deferred rotation grazing system. The cattle enter the allotment in the Dry Lake pasture which is outside the project area. The cattle leave Dry Lake and go into Deer Creek and

2a
The Dixie National Forest, located in southwestern Utah, is home to a variety of ecosystems and habitats. This includes the Dixie National Forest, which spans over 2 million acres and is managed by the U.S. Forest Service. The forest is known for its diverse wildlife and plant life, as well as its many recreational opportunities for visitors.

The Dixie National Forest is bordered by Cedar City to the north, St. George to the south, and the Colorado River to the west. The forest covers a large portion of the state's southern and eastern regions, with elevations ranging from sea level to over 10,000 feet.

The forest is divided into several management areas, including the Dixie National Forest, the Dixie National Forest, and the Dixie National Forest. Each area is managed independently to protect and preserve the natural resources of the area.

The forest is home to a variety of wildlife, including deer, elk, and moose, as well as many species of birds and other animals. The forest also contains a variety of plant life, including many species of trees and other vegetation.

Recreational opportunities in the Dixie National Forest include hiking, mountain biking, and camping. The forest is also home to several ski resorts, including Brian Head, Dixie National Forest, and Mount Charleston.

The Dixie National Forest is managed to ensure the sustainability of the resources and to protect the environment. The forest is home to a variety of ecosystems and habitats, including the Dixie National Forest, the Dixie National Forest, and the Dixie National Forest. Each area is managed independently to protect and preserve the natural resources of the area.

The forest is home to a variety of wildlife, including deer, elk, and moose, as well as many species of birds and other animals. The forest also contains a variety of plant life, including many species of trees and other vegetation.

Recreational opportunities in the Dixie National Forest include hiking, mountain biking, and camping. The forest is also home to several ski resorts, including Brian Head, Dixie National Forest, and Mount Charleston.

The Dixie National Forest is managed to ensure the sustainability of the resources and to protect the environment. The forest is home to a variety of ecosystems and habitats, including the Dixie National Forest, the Dixie National Forest, and the Dixie National Forest. Each area is managed independently to protect and preserve the natural resources of the area.
At present, none of the roads in the analysis area have been identified as qualifying for RS 2477 designation.

CUMULATIVE EFFECTS AREA

See Appendix 9 for a map displaying the CEA for the transportation resource.

CHAPTER FOUR

ENVIRONMENTAL CONSEQUENCES
CHAPTER FOUR
ENVIRONMENTAL CONSEQUENCES

INTRODUCTION

The affected environment is that area, in and around the project area, that could experience physical, biological, social and/or economic consequences resulting from the implementation of the Proposed Action, or the alternatives to the Proposed Action. In most cases, the environmental effects of the alternatives could extend beyond the actual areas where activities occur. The affected environment is different for each resource, and the area affected and analyzed is called the analysis, project and cumulative effects area. The analyses contained in this Chapter is based upon the implementation of design criteria and mitigation measures cited in Chapter Two.

In Chapter Three the existing conditions for the project area, as resource, were described. In this Chapter the consequences of the Proposed Action and alternatives to the Proposed Action, including the No Alternative Action, will be compared and discussed. Where it was considered helpful to the understanding of the discussions, the Dixie National Forest Land and Resource Management Plan (Forest Plan) direction is listed as a basis for the site specific standards.

VEGETATION RESOURCE

The discussion of how each alternative causes the vegetation resource to cover the same subsections as discussed under the Vegetation Section in Chapter Three. The effects of fire and timber harvesting on the vegetation characteristics can be found in the white paper in the Project File, exhibit 17 (Eisenhauer andMcConn 1997). The following discussion includes more detailed site specific information not contained in the white paper.

In the analysis of the proposed activities in the Brian Head EIS, 1995, modeling using the Forest Vegetation Simulation (FVS) system was used to simulate the conditions that would exist in the future using 1993 stand and actual age can be analyzed using the Forest Health Protection (FHP) other spruce beetle outbreak areas on the Dixie National Forest and documented records of past spruce beetle outbreaks in Utah, Colorado, and other locations (Schmidt andHinds 1973). Simulation results were generally believed to be "worst case" assuming no other natural factors intervene as small localities and the effects projected are stand averages. Simulation results are located in the Project File (exhibit 17). This "worst case" scenario has largely taken place within the northern portion of the SRRP area. Field observations and stand exams in 1996 confirmed that spruce beetle populations have continued to infest spruce trees in the project area. This has caused a major shift in vegetation attributes to early successional stages in the affected area. This trend is expected to continue throughout the SRRP area until the softwood species is replaced by the spruce beetle populations are expected to remain in the outbreak phase until the spruce food source is depleted. Unless natural factors (weather and/or fire) cause the spruce beetle populations to collapse. At the present rate of infestation, it could be an additional 10-15 years before the spruce beetle populations collapse on the Dixie Canyon Ranger District (Project File, exhibit 18).

VEGETATIVE STRUCTURE

Stand structure and canopy closure are described below as based on Reynolds, 1992 and Amsden, 1996 which provides recommendations for distribution of vegetation for structural stages (VSS) and methods to manage them to create a landscape. The VSS system was initially developed by Reynolds as part of the management strategy to conserve the northern goshawk and was used by Amsden to help describe the properly functioning condition (PFC) of the vegetation resource. The VSS system classifies the successional stages into Young forest, Mid age forest, etc. of the individual sites within a forested ecosystem based on the dominant size diameter class of the LIVE trees. The Dixie National Forest is discussing on the intent of the VSS portion of the goshawk recommendations to analyze the changes in structure caused by both the spruce beetle and the proposed activities. However, as discussed in Chapter Three, achieving the recommended VSS distribution and canopy closure greater than 60% in Mature and Old growth spruce-fir forests does not appear to occur often on this District on a stand average. (See Project File, exhibit 17 for additional information). In order cover class in the Mature and Old Forest considers both B and C classes greater than 40% canopy cover, for resources described in Chapter Three. In addition, basing the classification of successional stages upon tree size rather than actual age can lead to erroneous stand comparisons. Due to the trees in densely stocked sites are slow growing because of the increased competition for available moisture. Trees in lightly stocked or managed stands where density is controlled grow faster because of the reduced competition for available moisture. This difference in stocking densities can result in sites that are the same age having different VSS's because of the difference in dominant diameter class. A densely stocked old forest (200+ yrs) with a dominant tree size of 5-12 inches in diameter can therefore be classified as a Young Forest (VSS 3). This characteristic of the mature spruce-fir forests in the SRRP area appears to explain why they are generally classified as Young and Mid-aged forests when tree cores indicate ages in excess of 200 years.

Conifer and aspen dominated stands are discussed separately in this section because of the proposed activities on the conifer forests are generally related to the amount of dead material removed. Changes in forest structure are described below by alternative. The magnitude of the effects by the spruce beetle are proportional to the amount of spruce in a stand, those dominated by spruce have been or would be expected to be changed the most. A discussion of the effects of fire and timber harvesting or vegetative structure is found in the Project File, exhibit 17 (Eisenhauer andMcConn 1997).

SPECIAL VSS DISTRIBUTION

PROPOSED ACTION

17H01 T INDIVIDUAL TS. 1ach of the Hancock Peak Focus Area, the expected changes in the VSS's from the control forests are expected to be minimal. Since the VSS classification is based upon the dominant size of the live trees within a stand with a minimum stocking level, the effect of the spruce beetle has already changed 20% of the timber harvested focus areas with VSS's of 46 to primarily 1:3. Timber harvesting will remove only small amounts of live trees within these focus areas so the action alternatives have little impact on the VSS's on the VSS's of the timber harvested focus areas. Approximately 966 acres are planned for artificial reforestation within the timber harvested focus areas which should accelerate the establishment of the next forest by 10-20 years and the subsequent growth into older VSS's (Steeley et al. 1991).

The removal of the spruce beetle killed trees will effect the structure of the treatment areas if described in terms other than the VSS classification. Dead trees provide structure and contributes to beneficial effects to some wildlife species and visual quality. See Chapter Four, Wildlife and Recreation Sections for more information.

If the Hancock Peak Focus Area remains relatively free from infestation prior to implementation, harvesting will decrease the VSS's because tree removal will focus on the larger diameter classes. The minimum stocking level will be maintained throughout the site.

The effects of the proposed management ignored prescribed fires on forest structure can be found in Wrenn et al. 1987. If implemented within defined parameters identified in Chapter Two, the effects of the fires will be to move the structure of the vegetation toward the desired or properly functioning condition.

13H18 3 E E 00 F C H McUU A T E C A 1 0 A (Refer to Appendix 10A). Each of these treatments were intermediate harvests that removed 2-4 acres proposed for treatment in the timber harvest Focus Areas have been harvested previously. The total amount of timber harvest treatments and past activities is approximately 17,010 acres (54% of the EIA of which 3,005 acres prescribed burning areas (10%) total. Stand basal area is generally at 120 sq. ft. or below, except in areas with large amounts of slope. In these areas, total basal is higher since aspen was not harvested in great amounts and conifer based is 120 sq. ft. or less (i.e. Hancock Peak. Blossom) Silvicultural treatments in the earlier harvests concentrated on removing larger spruce and subalpine fir. In treated areas, stand diameter generally averaged 12-16 inches across aged forests. Refer to Appendix 10B for additional information on specific treatments and the Project File (exhibit 17) for detailed information.

Based on 1996 data, it is estimated that 663 acres were in the Grass Forb shrub regeneration stage within the forested vegetation type. Most of the are located in the Panguitch, Mammoth, and Asay Creek watersheds.
This primarily reflects the heavy bark beetle mortality that occurred in the early 1990’s in Sidney Valley and Rainbow Meadows, plus regeneration treatments in Deer Valley, Tippets Valley, and Lowder Creek.

The majority of the Mature and Old Forest acres in the CEA are located in the Coal Creek, Parowan, and Panguitch watersheds (Project File, exhibit 17). A relatively large block is located in the Radar Ridge project area (proposed), other areas are the area northwest of Sidney Peaks, near Brian Head project area, and east of Sidney Valley, near Bunker Creek.

Most of the Mature and Old Forest stages, where they exist, do appear to have canopy cover greater than 40% (B/C). The desired canopy cover for a Mid-Aged (12-18 inches diameter) Forest stage depends on the presence of a goshawk nest. If a nest is present in the vicinity, more C (> 60%) canopy cover is desired. Based on available data, most of the existing Mid-Aged Forest falls into an A or B (< 60%) cover class, based on stand averages.

Removal of beetle infested trees and reduction of basal area where it exceeds 100 sq. ft. in the Hancock Peak Focus Area, could result in the retention of more live trees per acre and the maintenance of the existing VSS. Within 50 years, the project area would begin developing acres dominated by the presently deficit older stages, moving toward desired structural and canopy cover conditions. Table 4-1 shows the existing aspen forest structural condition within the project area and the changes anticipated by the alternatives. The VSS’s in the aspen forest will be moved toward the desired or properly functioning condition by reducing the representation of the older VSS’s and increasing the younger VSS’s in all action alternatives.

Table 4-1. Effects of Alternatives on Aspen Forest Structure (% of Forest Acres)

<table>
<thead>
<tr>
<th>VSS</th>
<th>1-2</th>
<th>3-4.5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Existing</td>
<td>3</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>25</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>Alternative A</td>
<td>17</td>
<td>82</td>
<td>1</td>
</tr>
<tr>
<td>Alternative B</td>
<td>19</td>
<td>80</td>
<td>1</td>
</tr>
</tbody>
</table>

NO ACTION ALTERNATIVE

DIRECT/INDIRECT EFFECTS: Continued spruce mortality will result in a decline in average spruce diameter in the SERP area, since many of the larger trees will likely be killed. Average diameters would be expected to continue to decline until spruce beetle populations subside. Average diameter of all trees would continue to decrease, reflecting the increase in seedlings and saplings as natural regeneration begins filling in openings. The No Action Alternative could most affect the Hancock Peak Focus Area by not reducing densities to test against spruce beetle risk. The stands in this Focus Area could become infested more extensively and reduce the VSS’s in those sites. Not implementing treatments in Hancock Peak could result in the lost opportunity to apply proven silvicultural treatments in other green, un-infested areas and the subsequent further loss of the older VSS’s in the SERP area.

This alternative would result in the continued successional trend of the aspen forests toward the late seral stages, which is away from the desired or properly functioning condition.

Under No Action, by 2000, it is expected that the B/C cover class would be generally lost at a stand level (clumps of trees would remain though they may consist primarily of subalpine fir instead spruce), except in some aspen and subalpine fir dominated stands. Larger sized trees would become more scattered, decreasing overall canopy cover into primarily the A cover class. This trend would be expected to continue until spruce beetle populations declined. Development of the B-C cover class (in other than aspen and subalpine fir dominated stands) over time would tend to be slow, since the majority of the larger spruce would be expected to be killed under this alternative.

ALTERNATIVE A

DIRECT/INDIRECT EFFECTS: The effects on structure under Alternative A would be very similar to those described for the Proposed Action because the treatment sites in the Spruces Focus Area are currently or expected to be extensively infested by spruce beetles. About 321 acres would not be artificially reforested and 143 acres of
aspen would not be regerntated. The primary difference is the 1.1312 acre Chicken Head Focus Area where the one, this will remain in the current condition with the trend toward late successful or older VSSs which is away from the properly functioning condition. Up to 362 acres of aspen and 739 acres of spruce-fir would not be regenrated.

CUMULATIVE EFFECTS: Refer to Proposed Action for information on existing conditions in the CEA.

The cumulative effects of Alternative A would be very similar to the Proposed Action. The rate of reforestation in the Spruces Focus Area would be delayed at least 10 years which would result in a correspondingly delay in the reestablishment of older VSSs. Similarly, the aspen forests would continue the sequential trend toward late to late/early or older VSSs. To attain the desired structure distribution in the aspen forests, it would require treatment of a similar nature and size in other locations within the SERP area.

ALTERNATIVE B

DIRECT INDIRECT EFFECTS: Exclusion of the Roadless Area Focus Area implementation of Alternative B would have the same effects on structure as the Proposed Action. The difference is within the 2,792 acres in the Roadless Area the structure would remain in the projected condition which will be dead spruce fir and older aspen forests. This would result in a delay in the rate of regeneration and the subsequent reestablishment of older VSSs in the spruce-fir forest.

CUMULATIVE EFFECTS: Refer to Proposed Action for information on existing conditions in the CEA.

The cumulative effects of Alternative B would be very similar to the Proposed Action. The 557 acres of aspen and 2,235 acres of spruce fir within the Roadless Area Focus Area would not be burned and a delay in the establishment of older VSSs would result.

OLD GROWTH

The Forest Plan SAG COG through 06(54)-A states that 7.10% of the forested areas within a drainage should be managed to meet old-growth characteristics and structure. In 1990, the Forest implemented the policy to maintain a minimum of 50% of each project area classified as old growth as defined by Characteristics of Old Growth Forests in the Interim Management Report (Brumley 1993), until old growth stands can be identified on a watershed basis.

Stands in the SERP Area were analyzed to determine the met old-growth characteristics, based on the land use data collected throughout 1990 and field observations. The estimates of old growth existing in the SERP area includes the effects of the spruce beetle through 1995. It is estimated that up to 6,095 acres (19%) of forested areas meet the old-growth characteristics. The loss of largest-sized trees in stands due to bark beetle activity in the primary near mature stands do not meet the structural characteristics of old growth.

PROPOSED ACTION ALTERNATIVES A AND B

DIRECT INDIRECT EFFECTS: Under the Action Alternatives, exclusive of the Hancock Peak Focus Area, no treatment is proposed in any stands meeting old-growth characteristics. Several stands within the Hancock Peak Area were determined to meet old-growth characteristics in 1990, however, based upon field observations conducted in 1997, it is determined that 92% of the spruce-fir forest in this area has effectively changed the stand characteristics so that they no longer meet the requirements of old growth. However, if a green component can be maintained in this area the stands may return to old-growth status within the short term. Without treatment, these stands are at a higher risk to spruce-fir beetle infestation and old-growth status may be lost in the long term.

CUMULATIVE EFFECTS: Due to incomplete stand exam data over the CEA it is unknown exactly how many acres of old-growth characteristics are present. In order to evaluate changes in the structure the following assumptions were made based on apparent vegetative structural stage. Aspect was used to determine whether a stand should be rated as old-growth or warmrot (Refer to the Project File, exhibit 17 for additional information).

Based on these assumptions it was determined that overall about 17.7% of the CEA can be rated as old-growth. Of the 30% of the down wood material in the Forest area it is unknown whether future treatments in the future watersheds have the most spruce-fir acres rated as old-growth and the Aspen Creek and Mammoth Creek watersheds, the least.

It is expected that in the next five years, the loss of the old growth spruce-fir forests will continue because of the spruce beetle mortality. Silvicultural treatments in green, unfailed stands may maintain old growth in the project area or create conditions where old growth will establish in the short term. The treatments in the Hancock Peak Area will provide information in this determination.

NO ACTION ALTERNATIVE:

DIRECT INDIRECT EFFECTS: Under No Action, it is estimated that the loss of stands meeting minimum old growth characteristics will continue for at least five years. Projections are difficult but if the current trend continues the amount of old growth in the SERP area may be less than one percent of the forested areas within five years. Development of old growth characteristics in other stands would be slow due to the expected low the expected low of the large space over much of the project area. Overall, space is the species that has the capability of growing to the desired and lives long enough to develop the structure associated with old forest stands.

CUMULATIVE EFFECTS: With No Action the amount of old growth in the project area may be reduced to less than one percent within five years, which is less than the desired 3-10 percent old growth on a watershed basis. Recovery to the desired level would be slow due to the loss of more large spruce fir per acre. This alternative would not allow for implementation of treatments designed to maintain old growth status or create conditions where old growth will establish in the short term.

SNAGS, DOWN LOGS, AND WOODY DEBRIS

Stands, down logs, and other woody debris are important for maintaining forest structural diversity and soil productivity. Retention of snags and woody debris was addressed in the Forest Plan (1983-25-1004/8; 1985/44). The Forest Plan does not specifically address retention of woody debris for site productivity, but Harvey et al. (1997) recommend managing for a minimum of 10-15 tons acre of large (greater than 1 inches diameter) as a general minimum for most habitat types. Leaving 10-15 tons acre equates to 10-12 logs 18 inches diameter and 10 feet long acute. Additional research is being done on different habitat types to refine the previous recommendations. Monitoring in timber sales in previously affected spruce-fir areas where leadings in excess of 20 tons per acre may be more desirable from a hydrologic perspective but does not meet the desired condition for regeneration, fire, and visually. Based on other study and observations, leaving fewer tons acre in aspen types is realistic (Farish et al. 1994).

Based on the number of snags being created by bark beetle mortality, there should be sufficient dead trees to meet or exceed the desired three snags per acre on nearly all conifer dominated stands in the project area. Acres dominated by aspen also meet or exceed the desired conditions of 5-10 acre greater than 12 inches diameter.

The amount of down logs and woody debris was estimated to be deficient on about 12-13% of the forested area. Due to the lack of conifer dominated stands in the project area, the amount of down material was not included in this analysis.

Due to bark beetle activity, stands are projected to have from to 100+ dead trees per acre, depending on the amount of mortality occurring in the stand (IF's runs, Project File, exhibit 17). These dead trees would provide "potential downwood woody material" to meet the desired 15 tons per acre of down material desired in spruce-fir dominated stands where it is lacking. However, all material would be on the ground immediately. Based on an average stage downslope rate of 1.5% per year, it may take 5-10 years for enough snags to fall down to meet desired conditions.

PROPOSED ACTION

DIRECT INDIRECT EFFECTS: In all treated stands, sufficient snags would be left to meet desired conditions, where they occur. In areas deficient in down logs, additional snags would be left old site. Areas deficient in down wood material would likely meet desired conditions within 5-10 years, as dead trees begin to fall.

Under this alternative, the desired conditions would be achieved on all treated stands.

CUMULATIVE EFFECTS: Data does not exist on the number of snags per acre, number of down wood logs, and tons of down wood material in the project area. The number of snags per acre in the Spruce Creek and Mammoth Creek watersheds have the most spruce-fir acres. In the EIA, the Project File, exhibit 17.
Fast harvest activities did not require the retention of down logs or large down woody material. Overall, in post-treatment areas before 1990, large down woody material is lacking. It is generally present to some degree, but is smaller in diameter than desired. Overall, it is assumed that stands generally meet the desired 5 t/m² and must contain at least 10 t/m². An exception to this is the clearcuts in the Deer Valley sale and the forested strips in the Brian Head ski area, where only about 5 t/m² are assumed to exist.

Implementation of the Proposed Action would move toward meeting desired conditions in the CEA by leaving the desired number of snags, down logs, and down woody material over most of the treated areas. Exceptions would occur where this material is not left in order to meet other objectives (i.e. safety).

NO ACTION ALTERNATIVE
DIRECT/INDIRECT EFFECTS. Under No Action it is expected that most stands would have a sufficient number of dead trees to meet or exceed desired conditions for three large snags, 5+ large logs per acre, and five or 15 tons of down woody material within 5-10 years. At some point, it is likely that most areas would have an excess of down material caused by the eventual blowdown of snags. This would result in damage to remaining trees, reduced natural regeneration, and increased wildlife hazard.

CUMULATIVE EFFECTS. Refer to the discussion under the Proposed Action for information on existing conditions over the CEA. No Action would contribute to an increase in the number of large snags and eventually 10-15 tons in number of down logs and tons of down woody debris. The concern under this alternative would be the excessive buildup of woody material, which would exceed the desired 10.5 t/m², inhibiting regeneration and damaging remaining trees.

ALTERNATIVE A AND B
DIRECT/INDIRECT EFFECTS. Implementation of Alternative A and B would have similar effects on number of snags, number of large down logs, and tons of down woody material as described under the Proposed Action, since the same mitigation measures would be used to meet objectives.

CUMULATIVE EFFECTS. Implementation of Alternative A and B would have similar effects as described under the Proposed Action, since the same mitigation measures would be used to meet objectives.

VEGETATIVE COMPOSITION
NON-FOREST TYPE (1,109 ACRES)

As described in Chapter Three, non-forest areas include grassland, shrubland, and wet meadows greater than five acres in size. Also included are wet areas in forested stands though they may be less than five acres in size. In all action alternatives, non-forest areas would be established around these wet areas for protection.

ALL ALTERNATIVES:
DIRECT AND INDIRECT EFFECTS. There would be no effects on the non-forest stands under these alternatives; in all the vegetative attributes, and so will not be discussed in subsequent vegetative characteristics.

Small riparian areas located within forested stands could be affected if tree mortality has or will occur in the vicinity of these areas. The decrease in canopy closure would result in increased light and moisture, allowing the understorey vegetation to increase.

CUMULATIVE EFFECTS. Many meadows and rock stands are found throughout the CEA. Dry meadows are associated with dry lakeshore, wet lakeshore, and wet meadows. The edge between meadows and forest cover is not easily defined, so the trees can be used for shade and cover. The impacts on vegetation are grazing and trampling from livestock and wildlife and trampling or vehicle use from recreational users.

As in the rest of the CEA, the major uses of non-forested stands in the project area are livestock, wildlife, and recreational users. Livestock and wildlife use has been relatively constant, but recreational use in the project area is increasing. Refer to Chapter Four, Recreation and Livestock Grazing for additional information on use patterns.

FORESTED AREAS (37,572 ACRES)

Habitat type classification would remain the same under all alternatives, since it is based on potential climax vegetation, not necessarily species that are present at different points in time. Changes in overstory canopy closure and tree density would be responsive to the removal of understory trees, shrubs, grasses, and forbs. The effects of the different alternatives on the two primary habitat types in the project area will be discussed. It was assumed that when a stand fell below 20% canopy closure there would be sufficient light and moisture reaching the ground to allow understory vegetation to measurably respond in open areas. Other stands that retained more than 20% canopy closure would have increases of understory vegetation, primarily in open pockets, resulting from spruce beetle mortality. Table 7 (Chapter 3, Habitat Types section of the Brian Head EIS) lists the understory species common in each habitat type which would increase in response to a decrease in canopy closure.

PROPOSED ACTION AND ACTION ALTERNATIVES
DIRECT AND INDIRECT EFFECTS. Under the Action Alternatives, exclusive of the Hancock Peak Focus Area, harvest treatments would occur in areas with spruce mortality in excess of 70 percent. Subsequent year's beetle flights are expected to kill most of the remaining hosts so the proposed timber harvest will not appreciably affect the green canopy. The timber harvest will essentially reduce the number of standing stems and subsequent increase in fuel loading. Small areas that contain non-host species (aspen/lim) will retain a greater than 20 percent canopy closure, and timber harvest will have little effect on their composition. The effects of the spruce beetle mortality is expected to reduce the canopy closure to below 20 percent which will result in an increase in understory vegetation. The effects of timber harvest will reduce the canopy closure of the dead trees which will result in a small increase in sprouting of shrubs, forbs and grasses over no treatment. Recovery to pre-breakout canopy closure levels would be 80-100 years.

Aspen would also begin to regrow in greater amounts in these areas due to additional light and the subsequent disturbance caused by harvest operations. Planting of spruce seedlings would also occur in some open areas in the action alternatives, which would maintain spruce in the stands through time and accelerate the rate of reforestation by at least 10 years (McCaugh et al. 1991). It is also anticipated that a greater proportion of larger spruce would survive in the Hancock Peak Focus Area due to saturation treatments, compared to No Action.

The effects of fire on composition is a function of fire severity. The objective of the burns is to encourage a mixed severity fire regime which will produce vegetation mosaics. The areas that are or have been infested with spruce beetles will probably burn more severely than green conifer and aspen areas. This should accelerate the rate of reforestation in the spruce beetle affected areas, compared with No Action because of the increased exposure to mineral soil (Pett 1991). In areas where a green forest exists, the fire severity will generally be lower or a mosaic pattern of lightly burned vegetation will be created.

CUMULATIVE EFFECTS. The vegetation CEA contains 37,572 forested acres. Based on the SERP data base, most of the CEA would fall into a sublittoral phase (synusia phase). The most common phases would likely be

- Bemis synusia (A/B/A/B) on steeper, drier ridges and Ribes montanum (A/B/A/RM) on more moist sites. PIER/RMO is the only Englemann spruce habitat type identified in this area. It is found on the highest elevation sites in the CEA. This habitat type is known to occur in Brian Head, Strawberry Valley, Rainbow Meadows, and Bunker Creek. These stands are the most affected by the spruce beetle because of the lack of non-host species. Spruce beetle activity has been detected in all of these areas (FMP aerial survey maps 1991, 1996. Project File exhibit 18). Stands in the A/B/A habitat type are also affected; the degree of change depending on the amount and size of spruce in the stand.

Overall spruce beetle activity, along with some harvest prescriptions, has reduced the proportion of spruce over the landscape. Intermediate harvests usually tend to favor subalpine fir, since it can germinate and grow in shadier conditions than spruce or aspen. Recent harvests of planned harvests have also reduced the percent spruce in order to reduce risk to bark beetle outbreaks. Spruce has been or will be planted in some areas to maintain the species in the stands (e.g. Deer Valley, Lower Creek, Rainbow Meadows, Strawberry Valley, Brian Head).

NO ACTION ALTERNATIVE
DIRECT/INDIRECT EFFECTS. Under No Action, PIER/RMO habitat type will require the longest time to return to pre-epidemic conditions. Excluding other prescribed non-spruce species found in these stands. The level of spruce beetle mortality has caused the canopy closure to fall below 20 percent. Loss of most of the overstory would result in sprouting of additional shrubs and forbs. Re-establishment of a mature stands with similar characteristics identity, tree size, canopy closure, etc. is prior to the spruce beetle
outbreak would likely take 80-100 years depending on the size and number of trees remaining after bark beetle populations subside. (Exhibit 17.)

Most stands classified as ABLE/RMRO have also been reduced below 20 percent canopy closure by the spruce beetle. This will result in increases in shrubs, forbs and grases. Aspen would also begin to regrow in greater amounts. Shrubs, forbs and grases would increase until the tree canopy begins closing, decreasing the amount of water and light available to understory vegetation. The small areas within the Focus Areas with a mix of spruce, subalpine fir, and aspen would generally meet or exceed pre-outbreak canopy closure levels within 30-50 years.

Non-infected stands in management-syntied fire Focus Areas would continue the successional trend toward late seral conditions. Cooper representation will continue to increase at the expense of mostly aspen. Insect and disease activities will continue to increase which will reduce forest health, growth and increase the probability of stand replacing wildfires.

CUMULATIVE EFFECTS: No Action will result in the slowest rate of reforestation in the harvested Focus Areas. This method reflects the forest's ability to self-regenerate and grow back healthy stands over time. In this scenario, the project would require 90 years to return the forest to a pre-outbreak condition. In the ABLE/RMRO approach, the project would require 30-50 years to return to a pre-outbreak condition.

VEGETATIVE PROCESSES

INSECTS AND DISEASES

As discussed in Chapter Three, spruce beetles will be the only insect and disease identified in project area discussed below. The Forest Plan direction for managing insect and disease populations is:

Present or suppress epidemic insect and disease populations that threaten forest stands with an integrated pest management approach consistent with resource management objectives (Forest Plan IV-55 [FPS 5];). This is a Forest Wise Standard & Guideline and since no others supersede it for MA's 1B, 2B, or 10B, it also applies to these areas.

Insects and diseases are at outbreak levels in the project area (Musson 1997). The effects of this insect are a major concern of the District since continued spruce beetle activity could have major changes on vegetative characteristics. To minimize duplication, projected changes in vegetative attributes will be discussed in other sections. This section will focus on the effects of each alternative on spruce beetle populations.

PROPOSED ACTION AND ACTION ALTERNATIVES

DIRECT/DIRECT EFFECTS: Implementation of the Proposed Action and Alternative B would use sanitation, salvage and improve harvests to reduce spruce beetle populations on about 2,872 acres in the project area with primary emphasis in the Hancock Peak Focus Area (1,061 acres). Alternative A would harvest 2,551 acres.

Removing infected hosts will reduce local spruce beetle populations where treatment occurs. Sanitation cuts designed to remove susceptible hosts and reduce stand densities may reduce the risk of further loss of the residual spruce component.

CUMULATIVE EFFECTS: The largest mortality is occurring in the northern part of the CEA including the northern portion of Cedar Breaks National Monument. Heavy mortality has also been observed in the Hancock Peak area.

Recent timber sales within the project area total 3,800 acres. Implementing the Proposed Action would encompass removing bark beetle infested trees and reducing stand risk to meet site objectives on up to 2,872 acres. This
CUSUMATIVE EFFECTS: The cumulative effects of the action alternatives will be to reduce the risk of catastrophic forest fires within the project area by reducing the amounts of CWD. The previous harvesting and ski area activities have provided for fuel breaks in those areas as shown on Appendix 10a.

VEGETATIVE PATTERNS

As described in Chapter Three, forested areas are somewhat naturally fragmented in the project area due to large meadows and rock areas. Additional human caused fragmentation is also occurring (e.g. ski runs, roads, trails). Further fragmentation would occur under all alternatives due to bark beetle activity and/or harvest activities. Fragmentation due to the loss of tree cover caused by bark beetle activity and/or harvest activities except permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

PROPOSED ACTION

DIRECT INDIRECT EFFECTS: An estimated 3.790 acres have fallen below 20 percent canopy closure due to spruce beetle action. The implementation of the Proposed Action would result in tree opening, effects on fragmentation in the timber harvest Focus Areas since harvests would occur primarily in dead stands. A large spruce beetle infestation is estimated at the time of this analysis (July, 1987) which indicates widespread discharges with permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

CUSUMATIVE EFFECTS: The cumulative effects of the action alternatives will be to reduce the risk of catastrophic forest fires within the project area by reducing the amounts of CWD. The previous harvesting and ski area activities have provided for fuel breaks in those areas as shown on Appendix 10a.

VEGETATIVE PATTERNS

As described in Chapter Three, forested areas are somewhat naturally fragmented in the project area due to large meadows and rock areas. Additional human caused fragmentation is also occurring (e.g. ski runs, roads, trails). Further fragmentation would occur under all alternatives due to bark beetle activity and/or harvest activities. Fragmentation due to the loss of tree cover caused by bark beetle activity and/or harvest activities except permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

PROPOSED ACTION

DIRECT INDIRECT EFFECTS: An estimated 3.790 acres have fallen below 20 percent canopy closure due to spruce beetle action. The implementation of the Proposed Action would result in tree opening, effects on fragmentation in the timber harvest Focus Areas since harvests would occur primarily in dead stands. A large spruce beetle infestation is estimated at the time of this analysis (July, 1987) which indicates widespread discharges with permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

CUSUMATIVE EFFECTS: The cumulative effects of the action alternatives will be to reduce the risk of catastrophic forest fires within the project area by reducing the amounts of CWD. The previous harvesting and ski area activities have provided for fuel breaks in those areas as shown on Appendix 10a.

VEGETATIVE PATTERNS

As described in Chapter Three, forested areas are somewhat naturally fragmented in the project area due to large meadows and rock areas. Additional human caused fragmentation is also occurring (e.g. ski runs, roads, trails). Further fragmentation would occur under all alternatives due to bark beetle activity and/or harvest activities. Fragmentation due to the loss of tree cover caused by bark beetle activity and/or harvest activities except permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

PROPOSED ACTION

DIRECT INDIRECT EFFECTS: An estimated 3.790 acres have fallen below 20 percent canopy closure due to spruce beetle action. The implementation of the Proposed Action would result in tree opening, effects on fragmentation in the timber harvest Focus Areas since harvests would occur primarily in dead stands. A large spruce beetle infestation is estimated at the time of this analysis (July, 1987) which indicates widespread discharges with permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

CUSUMATIVE EFFECTS: The cumulative effects of the action alternatives will be to reduce the risk of catastrophic forest fires within the project area by reducing the amounts of CWD. The previous harvesting and ski area activities have provided for fuel breaks in those areas as shown on Appendix 10a.

VEGETATIVE PATTERNS

As described in Chapter Three, forested areas are somewhat naturally fragmented in the project area due to large meadows and rock areas. Additional human caused fragmentation is also occurring (e.g. ski runs, roads, trails). Further fragmentation would occur under all alternatives due to bark beetle activity and/or harvest activities. Fragmentation due to the loss of tree cover caused by bark beetle activity and/or harvest activities except permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

PROPOSED ACTION

DIRECT INDIRECT EFFECTS: An estimated 3.790 acres have fallen below 20 percent canopy closure due to spruce beetle action. The implementation of the Proposed Action would result in tree opening, effects on fragmentation in the timber harvest Focus Areas since harvests would occur primarily in dead stands. A large spruce beetle infestation is estimated at the time of this analysis (July, 1987) which indicates widespread discharges with permanent roads assumed to be temporary, effects would decrease over time as the percent canopy cover increased. Roads or other corridors into forested stands can have effects on interior forest species. Refer to the Wildlife section for additional information. There would be no known effects on vegetation beyond those already described in other subsections (e.g. Habitat Type and Microclimate, chapter 4 to 14, Sidney Valley EA).

CUSUMATIVE EFFECTS: The cumulative effects of the action alternatives will be to reduce the risk of catastrophic forest fires within the project area by reducing the amounts of CWD. The previous harvesting and ski area activities have provided for fuel breaks in those areas as shown on Appendix 10a.
and being addressed by implementing the strategy. The activities with this alternative when combined with the past, present and future actions would not cause cumulative effects to the willow.

Because of the harvests and spruce mortality, it is increasingly important that a buffer be maintained along riparian corridors to decrease overland flow and reduce the potential for sedimentation in the streams. The harvests and spruce mortality may affect water table, which could affect the Arizona willow. With the Proposed Action, more area would be disturbed with harvests, but the water-table may recover faster than without the harvest.

NO ACTION ALTERNATIVE

DIRECT/INDIRECT EFFECTS: Because no timber harvest would occur in the riparian areas where sensitive species occur, including Arizona willow, there would be no direct effect. There would be no need to maintain at least a 199 feet "buffer" adjacent to and upstream from Arizona willow populations to minimize potential sediment loads in streams (Arizona Willow Technical Interagency Technical Team 1995, page 85).

CUMULATIVE EFFECTS: There would be no cumulative effects to Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch or Revel palmbrush from the No Action Alternative.

Other past, present and future foreseeable actions, include recreation use, grazing and timber sales, would be cumulative with the No Action Alternative, because there would be no effect. The Arizona willow populations, as a whole, are healthy. Past actions that have caused problems with Arizona willow have been and are being addressed by implementing the strategy. The activities with this alternative when combined with the past, present and future actions would not cause cumulative effects to the willow.

ALTERNATIVE A

DIRECT/INDIRECT EFFECTS: Zorn jamaica is the only sensitive plant with no suitable habitat. There are documented occurrences of Arizona willow, Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch and Revel palmbrush. There would be no cumulative effects to Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch or Revel palmbrush from Alternative A. This is because there are no treatment areas in or near documented populations or suitable habitat for these plants.

The effects of Alternative A are the same as described for the Proposed Action except there would be less acreage treated in the Lower/State area adjacent to Arizona willow populations. No treatments in the Chicken Head and Spruces Focus Areas would be no different to the willow because there are no Arizona willow populations near downstream from these Focus Areas.

CUMULATIVE EFFECTS: Because of the harvests and spruce mortality, it is increasingly important that a buffer be maintained along riparian corridors to decrease overland flow and reduce the potential for sedimentation in the streams. The harvests and spruce mortality may affect water table, which could affect the Arizona willow.

Other past, present and future foreseeable actions include recreation use, grazing and timber sales. The Arizona willow populations, as a whole, are healthy. Past actions that have caused problems with Arizona willow have been and are being addressed by implementing the strategy. The activities with this alternative when combined with the past, present and future actions would not cause cumulative effects to the willow.

ALTERNATIVE B

DIRECT/INDIRECT EFFECTS: There would be no cumulative effects to Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch or Revel palmbrush from Alternative B because there are no treatment areas in or near documented populations or suitable habitat for these plants.

With Alternative B, the effects to Arizona willow would be the same as described in the Proposed Action except there would be no burning in the Roadless area. This area is adjacent to and upstream from an Arizona willow population.

Zorn jamaica is the only sensitive plant with no suitable habitat. There are documented occurrences of Arizona willow, Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch and Revel palmbrush.

Because no timber harvest would occur in the riparian areas where Arizona willow occurs, there would be no direct effect. Maintaining at least a 199 foot "buffer" adjacent to and upstream from Arizona willow populations would minimize potential activities that contribute to sediment loads in streams (timber harvest and associated activities such as road building and log skidding) (Arizona Willow Technical Interagency Technical Team 1995, page 85). With the timber harvest in this alternative, grasses, forbs and shrubs are anticipated to increase. This would provide more forage for elk and deer. Elk were identified as a concern for Arizona willow, particularly in Arizona. In Utah, elk populations are substantially lower, and therefore are not as great a concern (Arizona Willow Technical Interagency Technical Team 1995, page 85). Because of this, the increase in forage for elk would not be expected to influence herbivory on Arizona willow with undeterred consequences.

CUMULATIVE EFFECTS: There would be no cumulative effects to Cedar Breaks biscutchair, Magrae campion, Navajo Lake milkvetch or Revel palmbrush from Alternative A. This is because there are no treatment areas in or near documented populations or suitable habitat for these plants.

Other past, present and future foreseeable actions include recreation use, grazing and timber sales. The Arizona willow populations, as a whole, are healthy. Past actions that have caused problems with Arizona willow have been and are being addressed by implementing the strategy. The activities with this alternative when combined with the past, present and future actions would not cause cumulative effects to the willow.

Because of the harvests and spruce mortality, it is increasingly important that a buffer be maintained along riparian corridors to decrease overland flow and reduce the potential for sedimentation in the streams. The harvests and spruce mortality may affect water table, which could affect the Arizona willow. With the Proposed Action, more area would be disturbed with harvests, but the water-table may recover faster than without the harvest.

RECREATION RESOURCES

The following issues were among those identified by the I.D. Team that drove the alternative development. This section describes the effects to these issues.

Issue One: Proposed activities will reduce the existing motorized recreation opportunities, or conversely to reduce existing non-motorized recreation opportunities that offer solitude, free from interaction with motorized vehicles.

Issue Two: Proposed activities will reduce scenic quality, recreation quality and opportunities, air quality, public safety, and recreational quality, and may reduce visitation and associated income to recreation service businesses.

Issue Three: Concern that proposed activities will alter the undeveloped character of the Hancock Peak and Spruces Roadless Inventory areas, including impacting opportunities for semi-primitive non-motorized recreation experiences.

The spruce beetle epidemic is changing the scenic environment of the analysis area. As the tall spruce that are integral to the current landscape character of the analysis area continue to die, it changes the scenic resources. At present, most of the mature spruce on the northern part of the analysis area are dying or at extreme risk of attack by the bark beetles. As the epidemic continues, dead spruce trees will begin to dominate the view in many areas. A complete discussion on the range of potential alterations to scenic quality is included in the "Effects of Spruce Beetle Epidemics and Silvicultural Treatments on Scenic and Recreation Resources" in available for review (Project File, exhibit 20). Visititation to the analysis area has decreased since 1991, as measured through traffic counters and campground receipts (see Project File, exhibit 20 for complete records). To date, the beetle epidemics and associated management activities have not appeared to cause a decline in recreation visitation to the area.

In other areas impacted by widespread bark beetle epidemics there was a reduction in recreation use observed (see discussion in "Effects of Spruce Beetle Epidemics and Silvicultural Treatments on Scenic and Recreation Resources" on pages 24-25).

Recreation can be affected by factors associated with both the Proposed Action and No Action Alternative. Scenic quality is a critical element for attracting current recreation use for all activities. Alteration of scenic quality may result in reduction of the quality of recreation visits and may lead to the displacement of recreation visitors away from the area. Activities associated with the Proposed Action could also have direct or indirect effects on short term
Cedar City Range District
Dixie National Forest

Environmental Consequences

PROPOSED ACTION
DIRECT/INDIRECT EFFECTS. The Proposed Action was designed to avoid or limit interference with high use recreation areas while allowing salvage of beetle killed spruce and prescribed burning of beetle killed areas and aspen clones in need of reforestation. However, there is some recreation use in the Proposed Action Focus Areas, and the Focus Areas are sometimes visible as foreground and middleground, Highways 143 and 148 and area trails. Therefore there is likely to be a reduction in recreation use and the quality of visitors' experience in project Focus Areas, which may be long term following treatment activities where spruce vegetation dominate an area and mortality and subsequent removal has been high. Smoke from prescribed fire treatments may impact use and recreation experiences, depending on the atmospheric conditions at the time of the prescribed fire treatments. It is expected that interpretation, explanation of the actions taken, that impacts to recreation use can be reduced.

Highway 143
Minor direct effects are expected from Proposed Action regarding use of Highway 143 for purposes of driving for pleasure and viewing scenery. It is not anticipated that there will be any road closures, or delays in traffic, but increased traffic flow associated with logging vehicles and equipment is anticipated. Smoke can cause respiratory problems during prescribed burning of aspen treatment areas, which are on the north eastern side of the Hancock Peak Focus Area, and the south western side of the Lower/State Focus Area.

There will be immediate foreground views of the Hancock Peak Focus Area from Highway 143. Other stands in the Hancock Peak and Lower/State Focus Areas are visible from Highway 143 and 148 as foreground and middleground. The immediate foreground views of the harvest and prescribed fire activities may result in a reduction in the numbers of visitors. The proposed fire aspen regeneration proposal for sites 3 and 4 in location 120 in the Lower/State Focus Area are most likely to alter the scenic quality of Highway 143, if the Hancock Peak demonstration area is successful. These two areas are within 1/2 mile of the highway and stands that are important to the scenic character of Highway 143. These stands are located approximately 1 mile of the foreground of Highway 143. This is not expected to result in decreased use of the area, but may alter the character of Rainbow Meadows Area as a result of the treated stands that were within the immediate foreground views of Highway 143. The traffic counter operated by the Park Service at the east boundary of the National Monument showed an increase in use each of the past five summers. Any impacts available in the Project File, exhibit 20. It is expected that this counter, located on the western boundary of the Rainbow Meadows project, would have recorded a reduction in use during the salvage sale of harvest activities had been a major impact.

The Hancock Peak Focus Area is a demonstration area, to test a variety of treatment alternatives for their effectiveness in controlling beetle attack. If the treatments are successful, a results based on the treatment will be maintained in this area. This slope is visually dominant in the Rainbow Meadows area. Maintaining a live aspen forest will help preserve the existing scenic quality, increasing the quality of the experience traveling Highway 143.

Additional Roads Within The Project Area
The roads used for prescribed fire treatments were roads constructed for the former Hancock Peak, Lower/State Deer Creek and Bunker Creek Timber Sales. These roads will function as collector roads for the harvest activities, there would be expected encounters with logging equipment, trucks, skidders and loading equipment. There would be expected delays to monitoring traffic on these roads. These areas may also be closed to vehicles not associated with harvest or prescribed fire when these activities are occurring. The Sidney Valley Road would be used to transport logs from the Spruces, Bunker Creek, and Lower State Focus area. Lesions from Stand Impact 148 would be removed through a route being constructed across private land owned by Brian Head Ski Resort, and transporated via Highway 143.

Roads associated with the Hancock Peak Focus Area are scheduled to be closed following this action as described in the Hancock Peak EA. This will reduce some of the current motorized recreation opportunities in this area.

Red Desert Road (75S) is groomed as snowmobile trail for snowmobiles in the winter (see map in the Project File, exhibit 20). A proposed snowmobile route crosses through the Lower/State Focus Area. Winter harvest activities may disrupt snowmobile use. This action would include reconstructing and improving several area roads. The road that is proposed for construction into the Spruces Focus Area would be gated upon completion of the harvest activities, and non-motorized use (hiking, mountain biking, and horsetack riding) would be permitted following the road closure.

Focus Areas are visible as immediate foreground and foreground views from area roads. While harvest activities are occurring, visitors who are sensitive to these activities may have a reduced quality experience and may be displaced to other areas.

Camping
There is dispersed camping that takes place adjacent to some of these roads. Some displacement of dispersed camping activities may be expected in the Lower/State Focus Area. The proposal to establish Chicken Head Focus Areas as a result of temporary closures while harvest and prescribed fire activities are occurring. There may be long term (greater than five years) displacement following treatment activities where spruce dominate an area and mortality and subsequent removal has been high. Smoke from prescribed fire treatments may impact use and recreation experiences, depending on the atmospheric conditions at the time of the prescribed fire treatments. It is expected that interpretation, explanation of the actions taken, that impacts to recreation use can be reduced.

Hunting And Fishing
Direct effects include temporary closure of areas while harvest and prescribed fire activities are occurring. Indirect effects of the salvage harvest and prescribed fire of the Proposed Action on hunting may occur if harvest activities result in a disruption of wildlife populations. These effects are both expected to be short term, limited to the period of active harvest activities. Where spruce dominate an area and there is high spruce mortality and subsequent removal, security/hunting cover for deer and elk would decrease. Browse may increase as grasses and forbs are reestablished where spruce once dominated. Big game hunting would likely continue at existing levels although hunting patterns may change as changes to cover occur and browse occur. Where aspen treatments are proposed, big game fencing and hunting cover are expected to increase.

Changes in vegetation structure from harvest and spruce beetle mortality may change hunter use patterns. This may be due in part to changes in cover for hunters, as well as changes in big game use patterns (see Wildlife Section).

Temporal closures may impact fishing Mammoth Creek where it crosses through the Hancock Peak Focus Area, and Lower/State Focus Area. Spruce trees crossing Rainbow Meadows Area would be removed and treated stands that were within the immediate foreground views of Highway 143. The traffic counter operated by the Park Service at the east boundary of the National Monument showed an increase in use each of the past five summers. Any impacts available in the Project File, exhibit 20. It is expected that this counter, located on the western boundary of the Rainbow Meadows project, would have recorded a reduction in use during the salvage sale of harvest activities had been a major impact.

The Hancock Peak Focus Area is a demonstration area, to test a variety of treatment alternatives for their effectiveness in controlling beetle attack. If the treatments are successful, a results based on the treatment will be maintained in this area. This slope is visually dominant in the Rainbow Meadows area. Maintaining a live aspen forest will help preserve the existing scenic quality, increasing the quality of the experience traveling Highway 143.

Additional Roads Within The Project Area
The roads used for prescribed fire treatments were roads constructed for the former Hancock Peak, Lower/State Deer Creek and Bunker Creek Timber Sales. These roads will function as collector roads for the harvest activities, there would be expected encounters with logging equipment, trucks, skidders and loading equipment. There would be expected delays to monitoring traffic on these roads. These areas may also be closed to vehicles not associated with harvest or prescribed fire when these activities are occurring. The Sidney Valley Road would be used to transport logs from the Spruces, Bunker Creek, and Lower State Focus area. Lesions from Stand Impact 148 would be removed through a route being constructed across private land owned by Brian Head Ski Resort, and transporated via Highway 143.

Roads associated with the Hancock Peak Focus Area are scheduled to be closed following this action as described in the Hancock Peak EA. This will reduce some of the current motorized recreation opportunities in this area.

Red Desert Road (75S) is groomed as snowmobile trail for snowmobiles in the winter (see map in the Project File, exhibit 20). A proposed snowmobile route crosses through the Lower/State Focus Area. Winter harvest activities may disrupt snowmobile use. This action would include reconstructing and improving several area roads. The road that is proposed for construction into the Spruces Focus Area would be gated upon completion of the harvest activities, and non-motorized use (hiking, mountain biking, and horsetack riding) would be permitted following the road closure.

Focus Areas are visible as immediate foreground and foreground views from area roads. While harvest activities are occurring, visitors who are sensitive to these activities may have a reduced quality experience and may be displaced to other areas.

Camping
There is dispersed camping that takes place adjacent to some of these roads. Some displacement of dispersed camping activities may be expected in the Lower/State Focus Area. The proposal to establish Chicken Head Focus Areas as a result of temporary closures while harvest and prescribed fire activities are occurring. There may be long term (greater than five years) displacement following treatment activities where spruce dominate an area and mortality and subsequent removal has been high. Smoke from prescribed fire treatments may impact use and recreation experiences, depending on the atmospheric conditions at the time of the prescribed fire treatments. It is expected that interpretation, explanation of the actions taken, that impacts to recreation use can be reduced.

Hunting And Fishing
Direct effects include temporary closure of areas while harvest and prescribed fire activities are occurring. Indirect effects of the salvage harvest and prescribed fire of the Proposed Action on hunting may occur if harvest activities result in a disruption of wildlife populations. These effects are both expected to be short term, limited to the period of active harvest activities. Where spruce dominate an area and there is high spruce mortality and subsequent removal, security/hunting cover for deer and elk would decrease. Browse may increase as grasses and forbs are reestablished where spruce once dominated. Big game hunting would likely continue at existing levels although hunting patterns may change as changes to cover occur and browse occur. Where aspen treatments are proposed, big game fencing and hunting cover are expected to increase.

Changes in vegetation structure from harvest and spruce beetle mortality may change hunter use patterns. This may be due in part to changes in cover for hunters, as well as changes in big game use patterns (see Wildlife Section).

Temporal closures may impact fishing Mammoth Creek where it crosses through the Hancock Peak Focus Area, and Lower/State Focus Area. Spruce trees crossing Rainbow Meadows Area would be removed and treated stands that were within the immediate foreground views of Highway 143. The traffic counter operated by the Park Service at the east boundary of the National Monument showed an increase in use each of the past five summers. Any impacts available in the Project File, exhibit 20. It is expected that this counter, located on the western boundary of the Rainbow Meadows project, would have recorded a reduction in use during the salvage sale of harvest activities had been a major impact.

The Hancock Peak Focus Area is a demonstration area, to test a variety of treatment alternatives for their effectiveness in controlling beetle attack. If the treatments are successful, a results based on the treatment will be maintained in this area. This slope is visually dominant in the Rainbow Meadows area. Maintaining a live aspen forest will help preserve the existing scenic quality, increasing the quality of the experience traveling Highway 143.
spend less time in the analysis area. This may alter or reduce the experience of the area for some community members and homeowners.

There may be smoke present in Brian Head Town and the surrounding area during prescribed fire treatments. Communication between the community and Forest Service representatives will be critical when these treatments are occurring to reduce concern among residents and visitors.

Tract Use

The tract most impacted by the Proposed Action is the Spruces Tract that crosses through the Spruces Focus Area. This tract would be closed during spruce salvage and prescribed fire activities. Following completion of the harvest and prescribed fire activities, the proposed access road would be incorporated into the Spruces tract system. There has been heavy mortality observed in the spruce stands that approximately two miles of this trail passes through. Upon completion of the proposed salvage and prescribed fire, the area will be changed from a dense forest cover to a much more open area with 1/2 to two acre clumps of mostly dead tree cover remaining. For those visitors who are sensitive to harvest and prescribed fire activities or the changes that occur to views as a result of these activities, temporary or permanent displacement may occur.

The Hancock Peak trail would be impacted by both the Roadless Focus Area and Hancock Peak Focus Area proposed treatments. Temporary closures are anticipated during the prescribed fire treatments proposed for the Roadless Focus Area 14-1 128 area. This closed area will be 500 yards wide along the entire length of the trail crosses through the Hancock Peak Focus Area. In part of this area, high spruce mortality has been observed, and salvage created openings are expected to occur along both sides of the trail. Approximately three miles of the trail would be closed by the prescribed fire treatments being proposed for the Roadless Focus Area 14-1 128 area. Evidence of fire may dominate the views through this area. For those visitors who are sensitive to harvest and prescribed fire activities or the changes that occur to views as a result of these activities, temporary or permanent displacement may occur.

The Dark Hollow trail will also be impacted by the Proposed Action. Approximately 1/2 mile of the Dark Hollow trail crosses private lands that is owned by Brian Head Ski Resort. The Resort has reported plans to harvest the beetle killed spruce on this property, and requested that the trail be rerouted to Forest Service system lands. This would result in a non-impact area.

A non treated area of minimum three hundred feet will be left adjacent to the rerouted Dark Hollow trail, so that a temporary closure will not be necessary as a result of the salvage treatment. At designated points, some skidding may occur across the trail to allow access to areas above the trail. This could cause temporary disruption of trail use. The Dark Hollow trail may have to be temporarily closed for a few days during prescribed fire treatments in the Chicken Head Focus Area. This closure will not impact the Hinkson Lake Trail. As a result of leaving a non treatment area adjacent to the trail, there is expected to be some risk of losing a route.

The first 1/2 mile of the Left Hand Fork of Bunker Creek will be rerouted to avoid conflict with logging trucks and equipment on the access road to the Bunker Creek Focus Area. The Right Hand Fork of Bunker Creek is not associated with any Focus Areas. There are no closures anticipated for either fork. All salvage harvest activities are located above the Left Hand Fork of Bunker Creek trail.

It is anticipated that approximately 16% of beetle killed spruce would blow down during the next 20 years based on research by Schmid and Hinds, 1974. Hinds, Hankowski and Davidson, 1985 and Mielke, 1950. After 20 years the blowdown is expected to accelerate rapidly and the trails may need to be relocated or closed where they cross through stands with high spruce mortality.

Other trails within the analysis area would not be directly impacted by the Proposed Action. For any trails in the spruce zone, those visitors who are sensitive to harvest and prescribed fire activities, or the changes that occur to views as a result of these activities, temporary or permanent displacement may occur. Also visitors who are sensitive to the presence of the appearance of a dead and dying forest may also be temporarily or permanently displaced.

Brian Head Peak

There will be evidence of harvest activities from the overlook on Brian Head Peak (see Chapter Four - Scenic Recreation Management) and the overlook will not directly impact use of the peak as an overlook. There may be a reduction in the quality of the experience for visitors who are sensitive to harvest activities. This is not expected to reduce the use of the Peak as an overlook.

Hancock Peak Focus Area

This Focus Area contains approximately 2789 acres in Management Area 1 (general direction). 219 acres in Management Area 28 (towed natural recreation) and 39 acres in 9IA (entertainment purposes). The 28B Management Area currently occurs as the western boundary of the Focus Area. As a result of the roads constructed for the logging in this area, the current management of the 28B area is consistent with semi-primitive motorized recreation. The current management of the 28B area is consistent with semi-primitive motorized recreation.

Lowder/State Focus Area

This Focus Area contains approximately 662 acres in Management Area 2 (semi-primitive non-motorized recreation) and 142 acres in Management Area 28 (towed natural recreation) and 8 acres in 9IA (entertainment purposes). The 28B Management Area occurs adjacent to Highway 143, and the primary management direction is a recreation emphasis. Management Area 1 portion of the Focus Area is currently being managed in a manner consistent with semi-primitive motorized recreation.

Spruces Focus Area

This Focus Area contains approximately 804 acres in Management Area 1. The current management is consistent with semi-primitive non-motorized recreation. The road that is proposed for this area will not be open to motorized recreation during or after harvest activities, and therefore would not change the current management. However, as a result of the high spruce mortality and the anticipated level of salvage, the evidence of human intervention in the landscape will be greatly increased. This change would make this area inconsistent with the semi-primitive non-motorized recreation character. As a Management Area 1, this would still be in compliance with the Forest Plan.

Steam Engine Focus Area

The 356 acres of this Focus Area are all included in Management Area 1. The current management is consistent with semi-primitive motorized recreation. This is a result of the roads constructed for the former timber sale. As a result of the high spruce mortality and the anticipated level of salvage, the evidence of human intervention in the landscape will be greatly increased in this Focus Area. As this was a former timber sale area, this change in landscape character is evident at a reduced level.

Chicken Head Focus Area

This Focus Area contains approximately 700 acres in Management Area 1 and 400 acres in Management Area 6A (livestock grazing). The management emphasis for 6A is to manage for livestock grazing and promote qualities that enhance this use. This current recreation management in both MA 1 and 6A are consistent with semi-primitive non-motorized recreation throughout most of the Focus Area. Where there are roads, the use is consistent with semi-primitive non-motorized recreation, along the eastern edge of the Focus Area. The Proposed Action would not change current management, however following the prescribed burns there may be more access for motorized vehicles, where openings are created in vegetative structure.
direct Creek Focus area The Bunker Creek Focus Area contains 772 acres of which up to 534 acres are proposed for aspen regeneration prescribed fire and is entirely within Management Area 1. Several primitive four wheel drive roads are in this Focus Area. The current use is consistent with semi-primitive motorized recreation. The proposed Action would not change the character from semi-primitive motorized recreation. Openings created by the proposed treatments may decrease the sense of solitude for some visitors by increasing the potential for encounters with others. This is due to the longer site distances once prescribed fire has taken place. This may reduce the quality of the experience for some visitors, particularly trail users. Prescribed fire is often interpreted as a natural change in the landscape by the uninformed viewer (Taylor and Daniel 1983).

Bunket Creek Focus area The Bunker Creek Focus Area contains several access roads along the Bunker Creek trail system. This area is characterized by a forest of beetle-killed lodgepole pine. Dead trees, open ground, and thick growth of shrubs and young trees are all evident. This area is likely to be dominated by the effects of the 1988-1990 beetle kill. The quality of the fire hazard in the area is low due to the presence of beetle-killed dead trees. The risk of catastrophic fire increases and this could potentially affect recreation users and facilities.

CUMULATIVE EFFECTS: Implementation of this alternative would not increase the numbers of encounters with harvest activities by area visitors. If mortality levels reach projected levels, there could be displacement of trail users and campers or other visitors to areas less impacted by beetles.

ALTERNATIVE A

DIRECT EFFECTS: Alternative A is designed to reduce impacts to recreation use within the analysis area, responding to issue #2 regarding the effects of the Proposed Action on recreation use. To address the issue, the Chicken Mountain and Spruces Focus Areas were removed. Also, aspen regeneration prescribed burn units 3 and 4 in an location 110 were removed from the LowerState Focus Area. For a complete description of this alternative, see the Recreation Resources Specialist Project in the Report File, exhibit 20 (this report is available upon request).

Removing the Chicken Head Focus Area reduces the impact of smoke to Brian Head Town and Resort area. Also this reduces the potential impacts to scenic quality from Brian Head Town and Yankee Meadows to the appearance of fire altered landscapes. However, the changes created by spruce mortality continued. (See "Effects of Prescribed Fire on Scenic and Recreation Resources").

Removing the Spruces Focus Area to preserve the unmanaged character of this area, and would eliminate the need for short term desorption to use of the Spruces Trail. Where the trail crosses through spruce stands with high spruce mortality, blow down will be an increased maintenance problem. It is estimated that approximately 10% of the beetle killed spruce will blow down in this area over the next twenty years, barring a major wind event. After twenty years 60% of the beetle killed spruce will accumulate (Smih and Hinds, 1974; Haworth and Davidson, 1985 and Mielke, 1950). This may lead to the eventual closure or relocation of this trail.

Removing aspen regeneration prescribed burn units 3 and 4 from the LowerState Focus Area would reduce scenic impacts to the foreground of Highway 143 and the Rainbow and Meadow Lake subdivisions. These units are approximately 200 acres in size, and form the northern edge of Rainbow Meadows. These stands are an important element in defining the current scenic character of Rainbow Meadows.

There would be a likely to be reduction in recreation use and the quality of visitors’ experience in Alternative A Focus Areas during harvest and prescribed fire activities and the following clean-up period. It is difficult to predict how much this would occur, because the uncertainty of the fire level of visitors to harvest activities. Using visual preference as an indicator, displacement occurring because of visual quality would be short term (less than five years). Preference ratings in studies by Benson (1988) and Schmidt (1974) show a strong negative impact to visitors to the landscape. It will alter the perception of visitors to the landscape (including the use of forest floor ground cover (McCool and Benson, 1989). It is estimated that visitors could encounter these visual conditions for at least five years, including anticipated follow-up treatment. Local and regional use would be the most likely to be displaced during this period, because of more frequent visits and exposure to local publicity.

Environmental Consequences

Cedar City Ranger District Dixie National Forest

Roadless Area Focus area: The 2,792 acres of this Focus Area are primarily located in Management Area 2A. The proposed vegetation treatments under the unmanaged character of this Focus Area are prescribed fire and insect treatments. However it was decided not to implement prescribed fire at this time to maintain the undeveloped character. As a result of the plans for salvage harvest activities on private land adjacent to the Roadless Focus Area, there is likely to be evidence of stumps and slash near the Dark Hollow trail even with the No Action Alternative.

The most affected Focus Areas from a high use travel corridor under the Proposed Action alternative is the Hancock Peak Focus Area. This is also the only spray treatment where there is still the possibility of using silvicultural treatments dear bark beetle attacks. Under the No Action Alternative, given the current level of the epidemic, the spruce component on the slopes of Hancock Peak are expected to be killed by bark beetles. This may reduce the quality of the experience for travelers on Highway 143, and private owners in Meadow and Rainbow Meadows subdivisions.

Predicting change in recreation use patterns in the analysis area is difficult. Little measurable change is anticipated in activities such as hunting and fishing. However, as the severity of the beetle kill continues to increase, there may be some measurable reduction in use where participants are immersed in the environment, such as hiking, mountain biking, or camping (Brown et al. 1992). The removal of beetle-killed dead trees, the risk of catastrophic wild fire increases and this could potentially affect recreation users and facilities.

CUMULATIVE EFFECTS: Implementation of this alternative would not increase the numbers of encounters with harvest activities by area visitors. If mortality levels reach projected levels, there could be displacement of trail users and campers or other visitors to areas less impacted by beetles.
Cedar City Ranger District
 Dixie National Forest

Environmental Consequences

Visitors from outside the region will be less likely to be displaced because of harvest and prescribed fire activities. Most visit the area infrequently, and probably would not change plans as a result of proposed treatments. There may be long-term displacement following treatment activities where space visually dominates an area and mortality and subsequent removal has been high. Smoke from prescribed fire treatments may impact use and recreation experiences, depending on wind and atmospheric conditions at the time of the prescribed fire treatments. It is expected that with interpretation, explaining the actions taken, that impacts to recreation use can be reduced.

Highway 143

Minor direct effects are expected from Alternative B regarding use of Highway 143 for purposes of driving for pleasure and viewing scenery. It is not anticipated that there will be any road closures, or delays in traffic, but increased traffic flow associated with logging vehicles and equipment is anticipated. There may be some reduced visibility during the burning of the aspen treatment areas which are on the north eastern edge of the Hancock Peak Focus Area.

There will be immediate foreground views of the Hancock Peak Focus Area from Highway 143. Other stands in the Hancock Peak and Lower/State Focus Areas are visible from Highways 14 and 143 as foreground and middleground elements. Immediate foreground views of the effects of harvest and prescribed fire activities may result in a reduced quality of views for some visitors, but is not expected to result in a measurable reduction in use of Highway 143.

Brian Head Town And Vacation Site

The character of Brian Head is dependent on recreation visitors. Most of the businesses provide services to recreation visitors. There are no expected direct impacts to winter recreation visitation. There may be impacts to summer recreation visitation, but it is difficult to predict. As detailed in the Highway 143 discussion, it is not expected that there will be a reduction in numbers of visitors during the peak seasons or time seeing. There may be some reduction in visitation by those planning to hike or mountain bike within or near the Focus Areas for the duration of harvest activities and clean-up.

Alternative A will reduce the impacts to recreation usage compared to the Proposed Action. The Spruces Trail, which is promoted as a mountain bike route by Brian Head Town, would not be impacted by the Proposed Action. With Alternative B, downhill is eventually within 20 years expected to become an impact, use and maintenance, of the trail. Visitation to Brian Head Trail can be impacted by changes to the landscape within the CTA over Recreation Cumulative Effects Map Appendix 19.

Trail Use

The Dark Hollow trail will also be impacted by the Alternative A. Currently approximately 1/2 mile of the Dark Hollow trail crosses private land that is owned by Brian Head Ski Resort. The Resort has reported plans to harvest the slopes of this property, and requested that the trail be re-routed to Forest Service lands. This route is part of the Alternative A. A non treated area of a minimum of three hundred feet will be left adjacent to the retained Dark Hollow trail, so that a temporary closure will not be necessary as a result of treatment.

As a result of leaving a non treated area adjacent to the trail, there is expected to be some risk of blow down from beetle killed trees. It is anticipated that approximately 16 percent of these trees would blow down during the next 20 years of treatment. Forest Service and Hinds, 1974, Hinds, Hankworth and Davidsson, 1985 and Mulley and McDermott, 1983.

After 20 years the blow down is expected to accelerate rapidly and the trail may need to be relocated or closed where it crosses through stands with high spruce mortality. Alternative A would not impact the Dark Hollow Trail to the north of the proposed rehabilitation Focus Area.

Recreation Opportunity Spectrum

The Forest Plan specifies that Management areas 1A, 1B, 2A, and 2B should be managed primarily for recreation, and the qualities that enhance this use. Management areas 1A recreation sites and 1B (winter sports sites) occur within a few miles of the town. Management area 2A is located within a few miles of the town and Management area 2B is a more remote area with the Hancock Peak Focus Area.

In Hancock Peak Focus Area, 2A, and 2B, there are not areas of the Focus Area within any of the Focus Areas. Management area 2A has 2B as a proposed natural recreation area within Hancock Peak, and Lower/State Focus Areas. The Forest Plan also does not give specific recreation direction to Management area 1. These areas can be managed across the ROS range.

Lower/State Focus Area

This Focus Area contains 662 acres in Management Area 1 (general direction) 219 acres in Management Area 2A (two primitive recreation and 128 acres in Management Area 2B (toward natural recreation). The aspen regeneration prescribed burns units 1 and 1A are the only parts of this Focus Area located in the 2B Management

Spruce Ecosystem Recovery Project

Cedar City Ranger District
 Dixie National Forest

Area, and are excluded from this alternative. As a result of the roads constructed for the logging in this area, the current management of the 2A area is consistent with semi-primitive motorized recreation. The current management of the MA 1 is also consistent with semi-primitive motorized recreation.

CUMULATIVE EFFECTS:
There are several sanitation/salvage harvests that are taking place or being considered within the cumulative effects areas for recreation. Brian Head, Rainbow Meadows, Sidney Valley, Panquitch Lake, Blue Spruce/Reeds Valley and Midway face projects are all within the viewsheds of Highways 143, 14 or 148. It is expected that the Alternative A will not cause a measurable decrease in travel along Highways 143, 14 or 148 or visits to developed recreation sites. There may be a reduction in the quality of the experience for recreation visitors. There may be displacement of visitors sensitive to harvest activities, the appearance of vegetation management, or the appearance of beetle killed spruce, but there is not expected to result in a measurable decrease in use.

Trails with frequent mountain bike use cross through several past, current and proposed timber harvest areas. Other proposed projects affecting trails include Blue Spruce/Reeds Valley. It is likely that mountain bikers will have multiple encounters with harvesting and post harvest activities while in the Cumulative Effects Areas. For visitors who are sensitive to harvest activities there may be a reduction in the quality of the experience. For these individuals there may be temporary or permanent displacement. It is difficult to predict what effect this will have on the total number of mountain bike trail users.

ALTERNATIVE B

DIRECT/INDIRECT EFFECTS: The Alternative B removes the Roadless Focus Area from the Proposed Action. This change creates a unique and unmatched riparian environment within the Hancock Peak Focus Area. Alternative B does not change the opportunity for solitude and a sense of remoteness from the sights and sounds of other humans. This alternative would also reduce the impacts of smoke to Cedar Breaks National Monument and Brian Head Town.

For a complete description of this alternative, see the Recreation Resources Specialists Report in the Project File, exhibit 20.

With the exception of the Roadless Focus area, this alternative is identical to the Proposed Action. There will likely be a reduction in recreation use and the quality of visitors' experience in project Focus Areas during harvest and prescribed fire activities and the following clean-up period. It is difficult to predict how much reduction may occur, because there are many variables that are not known. It is not known the sensitivity level of visitors to harvest activities. Local and regional use would be the most likely to be displaced during this period. Because of more limited visits and exposure to local publicity. Visitors from outside the region may be displaced by the harvest and prescribed fire activities. Most visit the area infrequently, and probably would not change plans as a result of proposed treatments. There may be long term displacement following treatment activities where space visually dominate an area and mortality and subsequent removal has been high. Smoke from prescribed fire treatments may impact use and recreation experiences, dependent on wind and atmospheric conditions at the time of the prescribed fire treatments. It is expected that with interpretation, explaining the actions taken, that impacts to recreation use can be reduced.

Trail Use

The trail most impacted by the Alternative B is the Spruces Trail that crosses through the Spruces Focus Area. This trail would be exposed to salvage and prescribed fire activities. Following completion of the harvest and prescribed fire activities, the proposed access road would be incorporated into the Spruces trail system. There has been heavy mortality observed in the spruce stands that approximately two miles of this trail passes through. Upon completion of the prescribed salvage and prescribed fire, the area will be changed from forest to a more open area with 1/2 to two acre clumps of tree cover remaining. Much of the mature spruce remaining in the clumps expected to die. For those visitors who are sensitive to harvest and prescribed fire activities or the changes that occur to views as a result of these activities, temporary or permanent displacement may occur.

The Hancock Peak trail will be impacted by the Hancock Peak Focus Area proposed treatments, but the impacts associated with the Proposed Action in the Hancock Peak Roadless area would not occur under this alternative. Temporary and permanent closures are anticipated during the salvage harvest activities. There are approximately 3 1/4 - 1 mile of the trail crosses through the Hancock Peak Focus Area. In part of this area, high spruce mortality has been observed, and salvaged created openings are expected to occur along both sides of the trail. For those visitors who are sensitive to harvest activities the changes that occur to views as a result of these activities, temporary or permanent displacement may occur.

107
CUMULATIVE EFFECTS. There are several salvage/salvage harvests that are taking place or being considered within the cumulative effects areas for recreation. Bunkert Head, Rainbow Meadows, South Valley, Panung Lake, Blue Springs/Reeds Valley and Midway Phase projects are all within the viewsheds of Highways 143, 14 or 148. Visitors will likely have multiple encounters with harvesting and post harvest activities while visiting the area. There was no reduction in use recorded at campgrounds around Panung Lake during salvage harvests in that area (Information available in the project record). There was also no noticeable reduction in vehicles passing over the east center at the boundary of Cedar Breaks National Monument during salvage/salvage harvests east of that counter, within immediate foreground views of Highway 143. It is expected that the Alternative B will not cause a measurable decrease in travel along Highways 143, 14 or 148 or visit to developed recreation sites. There may be a reduction in the quality of experience for recreation visitors. There may be displacement of visitors sensitive to harvest activities, the appearance of vegetation management, and the appearance of beetle killed trees but there is not expected to result in a measurable decrease in use.

*trials with frequent mountain bike use cross through several past, current and proposed timber harvest areas. Using data from shuttle destination records, Bunkert Creek trail receives the most use from mountain bikers. The trail passes through the Southern Valley project area, where salvage harvest of beetle killed spruce is ongoing. The trail passes through the Rainbow Meadows project area, which ended in 1994. The proposed Yankin Meadows/Walker project area includes sections of this trail. The Dark Hollow trail is the second most requested destination for shuttles. As with Bunkert Creek, the shuttles originate within the Bunkert Head project area. The recently constructed contract trail, Hancock Peewee, connects Bunkert Head Project Area, Hancock Peak and Delong Flat sales, completed in 1987 and 1990. Non-contract trails that will effect trails include Blue Sprouts/Reeds Valley. It is likely that Bunkert Creek trail users will have multiple encounters with harvesting and post harvest activities while in the Cumulative Effects Area. For visitors who are sensitive to harvest activities, there may be a reduction in the quality of the experience. For these individuals, the trail experience will have a measurable decrease in use. It is difficult to predict what effect this will have on the total number of mountain bike trail users.

SCENIC RESOURCES

The following issues were among those identified by the 1D Team that drove the alternative development. This section describes the effects to these issues.

Issue Two: Proposed activities will reduce scenic quality, air quality, public safety, and recreational quality, and thereby reduce visitation and associated income to recreation service businesses.

Issue Three: Concern that proposed activities will alter the undeveloped character of the Spruces and Hancock Peak Roadless areas.

The visual quality of the Spruce Ecosystem Recovery Project analysis area is important to the many people who live in this area and visit this area for its unique scenic qualities. Highways 14, 148 and 143 are popular routes for visitors traveling to Hancock Peak and the National Parks. Because of the high concentration of visitors to the project area, the visual resources of this area are critical to the experience and perceptions of visitors.

A detailed literature review is contained in the "Effects of Spruce Beetle Epidemics and Silvicultural Treatments on Scenic and Recreation Resources" (Brunkow 1997a), and "Effects of Fire on Scenic and Recreation Resources" (Brunkow 1997b). Analysis from the Cedar City Ranger District, Dixie National Forest, and the impacts of associated treatments, including timber harvest and prescribed fire. This paper also contains literature on comparing survey responses to different harvest techniques, volume of removal and viewing distances. Information from this literature review has been used to project visitor responses to proposed activities in the SERP Focus Areas. Projections on anticipated changes in use are included in Chapter Four - Recreation Resources section.
The Scenic Integrity Objective for this area is High in the foreground of Highway 143. If high volume salvage takes place, it will take 40-40.50 or more years to achieve Scenic Integrity in this viewed area. At 40 years, seedlings will have reached 4.6 feet in height. After 80 years, mature forest will be established with the ground cover being 40% grassland, 40% shrubland and 20% forest. The Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas, approximately five years.

Aspen regeneration treatments are proposed in small, isolated aspen clones in the north eastern Focus Area. These would be visible from Highway 143, but would not be visible from area subdivisions. They are not expected to dominate the view or change the Scenic Integrity Level of the area. The aspen clone would have a "shrubby" appearance for approximately 20 years. They would still provide fall color, and potential wildlife watching opportunities.

Lost/State Focus Area.

Spruce mortality is high in this Focus Area. Many spruce stands within the Focus Area will be salvage harvested to below 55 square feet live basal area. Openings will be visible from the Sidney Valley Road (0040), and may be visible from Highway 143 in foreground and middleground views. Views are restricted because of topography and vegetation along the Sidney Valley Road through this Focus Area. Salvage will likely lengthen views where spruce is the dominant species. Stumps, slash and ground disturbance may dominate the view in the immediate foreground of the Concern Level 3 roads within the Focus Area. The Lower Ponds trail passes near this Focus Area. Openings may be visible from this trail. To meet wildlife and watershed needs, and to reduce a forest type structure, clumps of standing dead 10/8 to several acres in size, will be left unharvested. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure until seedlings are established. Most views will preserve a diminished scenic quality in this Focus Area.

The Scenic Integrity Level will be reduced, depending on live tree cover remaining across the viewed. If substantial tree cover remains from aspen or remaining spruce, the Scenic Integrity Level will be moderate. If openings begin to dominate the view, the Scenic Integrity Level will be reduced to Low or Very Low.

Lower/State Focus Area.

Spruce mortality is high in this Focus Area. Many spruce stands within the Focus Area will be salvage harvested to below 55 square feet live basal area. Openings will be visible from the Sidney Valley Road (0040), and may be visible from Highway 143 in foreground and middleground views. Views are restricted because of topography and vegetation along the Sidney Valley Road through this Focus Area. Salvage will likely lengthen views where spruce is the dominant species. Stumps, slash and ground disturbance may dominate the view in the immediate foreground of the Concern Level 3 roads within the Focus Area. The Lower Ponds trail passes near this Focus Area. Openings may be visible from this trail. To meet wildlife and watershed needs, and to reduce a forest type structure, clumps of standing dead 10/8 to several acres in size, will be left unharvested. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure until seedlings are established. Most views will preserve a diminished scenic quality in this Focus Area.

The Scenic Integrity Level will be reduced, depending on live tree cover remaining across the viewed. If substantial tree cover remains from aspen or remaining spruce, the Scenic Integrity Level will be moderate. If openings begin to dominate the view, the Scenic Integrity Level will be reduced to Low or Very Low.

The demonstration harvest is not successful in reducing spruce mortality, the stands within the Focus Area will be salvage harvested to below 55 square feet live basal area. If this occurs, openings will be visible from Highway 143 and area subdivisions. Stumps, slash and ground disturbance may dominate the view in the immediate foreground of the Focus Peak Trail. To meet wildlife and watershed needs, and maintain a forest like structure, clumps of standing dead will be left unharvested, clumps of standing dead 10/8 to several acres in size. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure from the present to future trail in immediate foreground and ground views. The sense of enclosure will be reduced when traveling along this trail. Stumps, slash and ground disturbance may dominate the view in the immediate foreground. To meet wildlife and watershed needs, and maintain a forest type structure, clumps of standing dead 10/8 to several acres in size, will be left unharvested. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure until seedlings are established. Most views will preserve a diminished scenic quality in this area in this scenario.

The demonstration harvest is not successful in reducing spruce mortality, the stands within the Focus Area will be salvage harvested to below 55 square feet live basal area. If this occurs, openings will be visible from Highway 143 and area subdivisions. Stumps, slash and ground disturbance may dominate the view in the immediate foreground of the Focus Peak Trail. To meet wildlife and watershed needs, and maintain a forest like structure, clumps of standing dead will be left unharvested, clumps of standing dead 10/8 to several acres in size. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure from the present to future trail in immediate foreground and ground views. The sense of enclosure will be reduced when traveling along this trail. Stumps, slash and ground disturbance may dominate the view in the immediate foreground. To meet wildlife and watershed needs, and maintain a forest type structure, clumps of standing dead 10/8 to several acres in size, will be left unharvested. This will help to reduce the visual dominance of the openings, and provide a remnant forest structure until seedlings are established. Most views will preserve a diminished scenic quality in this area in this scenario.
will help to reduce the visual dominance of the openings, and provide a remnant forest structure until seedlings are established. Most viewers will perceive a diminished scenic quality in this Focus Area.

This area currently has the appearance natural evolving landscape. Within the foreground of the trail there is no evidence of roads or past management activities. This Proposed Action will change the undeveloped character of this Focus Area. The proposed road will be evident following completion of the harvest. A decrease in the sense of solitude and wilderness, and a loss of scenic quality will likely occur while traveling the Spruce trail area. The Scenic Integrity Level will be reduced to Low. Sustainable tree cover remains from aspen or remaining spruce. The Scenic Integrity Level will be high to moderate. If openings begin to dominate the view, the Scenic Integrity Level will be reduced to Low or Very Low. The Scenic Integrity Objective for this area is High in the foreground of the Spruces Trail. If high volume salvage takes place, it will take 40 or more years to achieve High Scenic Integrity in this viewpoint. At 40 years, seedlings will have reached 4-6 feet in height. Moderate Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas and evidence of slash has been reduced, approximately five years.

Aspen regeneration treatments are proposed in this Focus Area. These units would be visible from the trail. These aspen treatments must be considered cumulatively with other treatments in the area. Aspen units will increase disturbance visible from the Spruces Trail. The aspen clone would have a "shrubby" appearance for at least 20 years. It will provide fall color, and potential wildlife watching opportunities. Regeneration activities in these units will contribute to reducing the Scenic Integrity Level to low or very low for 10 to twenty years, when accounting for impacts from nearby slope removal and mortality.

The Scenic Integrity Level will be reduced. The level of reduction will be dependent on tree cover remaining in a viewshed. If substantial tree cover remains from aspen or remaining spruce, the Scenic Integrity Level will be high to moderate. If openings begin to dominate the view, the Scenic Integrity Level will be reduced to Low. The Scenic Integrity Objective for this area is High in the foreground of the Spruces Trail. If high volume salvage takes place, it will take 40 or more years to achieve High Scenic Integrity in this viewpoint. At 40 years, seedlings will have reached 4-6 feet in height. Moderate Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas and evidence of slash has been reduced, approximately five years.

The Scenic Integrity Level is anticipated to be reduced. The level will be dependent of tree cover remaining in a viewshed. If substantial tree cover remains from aspen or remaining spruce, the Scenic Integrity Level will be high to moderate. If openings begin to dominate the view, the Scenic Integrity Level will be reduced to Low. The Scenic Integrity Objective for this area is High in the foreground of the Spruces Trail. If high volume salvage takes place, it will take 40 or more years to achieve High Scenic Integrity in this viewpoint. At 40 years, seedlings will have reached 4-6 feet in height. Moderate Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas and evidence of slash has been reduced, approximately five years.

Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas and evidence of slash has been reduced, approximately five years.

Aspen regeneration treatments are proposed in the Spruce Trail Focus Area. These units would be visible from the immediate foreground and foreground of the Dark Hollow Trail and Forest Road #408 where they bound the Focus Area. Impacts to scenic quality include charred bark of standing trees and down logs, and a blackened appearance to the ground plane and burned understory plants. The visual impacts will be reduced within two ground cover plants and the deposition of forest litter over the burned sites. Charred bark, limbs and other features may be visible for many years.

Aspen regeneration treatments and prescribed fire in a beetle killed spruce are proposed in this Focus Area. Treated areas will be visible in the immediate foreground and foreground of the Dark Hollow Trail and Forest Road #408 where they bound the Focus Area. Impacts to scenic quality include charred bark of standing trees and down logs, and a blackened appearance to the ground plane and burned understory plants. The visual impacts will be reduced within two ground cover plants and the deposition of forest litter over the burned sites. Charred bark, limbs and other features may be visible for many years.

Aspen clones would have a "shrubby" appearance for at least 20 years. They would still provide fall color, and potential wildlife watching opportunities. In spruce-dominated areas it will take 40 or more years to achieve forest cover. At 40 years, seedings will have reached 4-6 feet in height.

Studies have shown that visitors tend to accept burned areas as natural events (Brunswik 1997). Factoring this into the analysis, Moderate Scenic Integrity could be achieved once ground cover has been reestablished in the burned areas and aspen sprouts, spruce and fir seedlings are evident, approximately five years. The Scenic Integrity Objective of High could be achieved within 20 years.

The aspen clones would have a "shrubby" appearance for at least 20 years. They would still provide fall color, and potential wildlife watching opportunities. In spruce-dominated areas it will take 40 or more years to achieve forest cover. At 40 years, seedlings will have reached 4-6 feet in height.

Studies have shown that visitors tend to accept burned areas as natural events (Brunswik 1997). Factoring this into the analysis, Moderate Scenic Integrity could be achieved once ground cover has been reestablished in the burned areas and aspen sprouts, spruce and fir seedlings are evident, approximately five years. The Scenic Integrity Objective of High could be met within 20 years. Evidence of fire would not change the undeveloped character of this area, but does change the scenic quality by introducing a fire altered landscape.

CUMULATIVE EFFECTS: It is likely that visitors to the cumulative effects area will have multiple encounters with spruce beetle killed trees that sometimes dominate the view, harvest activities and evidence of fire events. Scenic Integrity could be achieved once ground cover has been reestablished in the salvage areas and evidence of slash has been reduced, approximately five years.
No Action compared with the Salvage Component of the Proposed Action. All Focus Areas, except Hancock Peak, have already experienced high spruce mortality. Spruce are present in the Hancock Peak Focus Areas, and it is anticipated that high mortality will occur within one year. In these stands the needles of the dead trees will begin to fade to a reddish brown and lose their needles over the next three years. Changes will occur in scenic quality for these stands within five years. In the immediate foreground, through dense understands, will appear more light, with less sense of closure from the loss of canopy cover. In the foreground, the texture of these stands would change as the main stems of the dead trees become a more dominant visual element. Midground views would also be altered as the stems of dead trees become more dominant.

Within three years following lethal beetle attack spruce needles will begin to change to a red brown color. In these stands the landscape would recreate the view when many trees in an area were attacked during the same fire period. During the following winter, snow will strip most of the needles off, changing the texture of the view to a more coarse appearance, this is due to the remaining branches. Over the next five years the dead needles, branches and bark will begin to fall away due to snow fall and weather. The remaining stems (trunks) will begin to prey and appear as strong vertical accents against remaining living vegetation. The stands would become the dominant feature in the focus area, and 14 miles from the Highway the Spruce would be out of character with the existing, mature conifer forest canopy. It is projected that this process of change would continue, however it would begin to stabilize and regeneration would begin to occur.

Beyond 2010, the dead stands would gradually begin to fall. This would decrease the impact of snags in foreground and background views, but increase the impact to immediate foreground views. Regeneration would begin to occur giving the appearance of a younger forest, which is more finely textured. In areas with a larger existing aspen component, aspen would be one of the first species to regenerate in expected sites.

The stands highlighted in this discussion are those stands where projected mortality is likely to cause a reduced density change, less than 50% of the stands, and have no impact to scenic quality than harvest activities during the first 20 to 40 years. After 40 years, the harvested areas will achieve Moderate to High scenic integrity more quickly than the No Action alternative. This is the result of the continued dominance of the dead boles, both standing and down while harvest has not occurred in these Focus Area.

No Action compared with the Prescribed Fire Component of the Proposed Action.

Throughout the short term, no action will result in little perceived change in aspen units. If no disturbance events occur over the next 50 to 100 years, the aspen will become a less dominant element in the landscape. Many aspen clones will remain. Erosion will be enhanced by spruce-fir gradually taking and sometimes destroying the clone. Other aspen clones have reached maturity and may begin to die without a disturbance event. Aspen are an important part of the Marklamp Plateau, contributing to the nickname "Clover Country" given by travel bureau. Loss of aspen would change the type of vegetation in the character of the region.

Over time, no action where prescribed fire has been proposed to reintroduce fire to beetle killed spruce would be similar to no action in proposed salvage units. The progression is the same as described above, with needles fading, falling away, and leaving the tree bole or stem. Blowdown will eventually occur, reducing impacts to foreground views. Blowdown impacts to immediate foreground views until decay of the tree boles is complete.

Cumulative Effects: The presence of large numbers of dead and dying trees in this area would detract from the scenic quality of the landscape in the Spruce Ecosystem Recovery Project area. Many visitors to Cedar Breaks National Monument, Ashdown Grove Wilderness Area, Dark Hollow and Bunker Creek Trails, and Panquitch

Environmental Consequences

Lake, pass through the Analysis Area. The impact of many dead trees, coupled with the cumulative effects of other beetle management treated areas and untreated areas may not meet the exception criteria for the viewshed or the scenic quality

No Action compared with the Salvage Component of the Proposed Action. All Focus Areas, except Hancock Peak, have already experienced high spruce mortality. Spruce are present in the Hancock Peak Focus Areas, and it is anticipated that high mortality will occur within one year. In these stands the needles of the dead trees will begin to fade to a reddish brown and lose their needles over the next three years. Changes will occur in scenic quality for these stands within five years. In the immediate foreground, through dense understands, will appear more light, with less sense of closure from the loss of canopy cover. In the foreground, the texture of these stands would change as the main stems of the dead trees become a more dominant visual element. Midground views would also be altered as the stems of dead trees become more dominant.

Within three years following lethal beetle attack spruce needles will begin to change to a red brown color. In these stands the landscape would recreate the view when many trees in an area were attacked during the same fire period. During the following winter, snow will strip most of the needles off, changing the texture of the view to a more coarse appearance, this is due to the remaining branches. Over the next five years the dead needles, branches and bark will begin to fall away due to snow fall and weather. The remaining stems (trunks) will begin to prey and appear as strong vertical accents against remaining living vegetation. The stands would become the dominant feature in the focus area, and 14 miles from the Highway the Spruce would be out of character with the existing, mature conifer forest canopy. It is projected that this process of change would continue, however it would begin to stabilize and regeneration would begin to occur.

Beyond 2010, the dead stands would gradually begin to fall. This would decrease the impact of snags in foreground and background views, but increase the impact to immediate foreground views. Regeneration would begin to occur giving the appearance of a younger forest, which is more finely textured. In areas with a larger existing aspen component, aspen would be one of the first species to regenerate in expected sites.

The stands highlighted in this discussion are those stands where projected mortality is likely to cause a reduced density change, less than 50% of the stands, and have no impact to scenic quality than harvest activities during the first 20 to 40 years. After 40 years, the harvested areas will achieve Moderate to High scenic integrity more quickly than the No Action alternative. This is the result of the continued dominance of the dead boles, both standing and down while harvest has not occurred in these Focus Area.

No Action compared with the Prescribed Fire Component of the Proposed Action.

Throughout the short term, no action will result in little perceived change in aspen units. If no disturbance events occur over the next 50 to 100 years, the aspen will become a less dominant element in the landscape. Many aspen clones will remain. Erosion will be enhanced by spruce-fir gradually taking and sometimes destroying the clone. Other aspen clones have reached maturity and may begin to die without a disturbance event. Aspen are an important part of the Marklamp Plateau, contributing to the nickname "Clover Country" given by travel bureau. Loss of aspen would change the type of vegetation in the character of the region.

Over time, no action where prescribed fire has been proposed to reintroduce fire to beetle killed spruce would be similar to no action in proposed salvage units. The progression is the same as described above, with needles fading, falling away, and leaving the tree bole or stem. Blowdown will eventually occur, reducing impacts to foreground views. Blowdown impacts to immediate foreground views until decay of the tree boles is complete.

Cumulative Effects: The presence of large numbers of dead and dying trees in this area would detract from the scenic quality of the landscape in the Spruce Ecosystem Recovery Project area. Many visitors to Cedar Breaks National Monument, Ashdown Grove Wilderness Area, Dark Hollow and Bunker Creek Trails, and Panquitch

Environmental Consequences

Lake, pass through the Analysis Area. The impact of many dead trees, coupled with the cumulative effects of other beetle management treated areas and untreated areas may not meet the exception criteria for the viewshed or the scenic quality
Cedar City Ranger District
 Dixie National Forest

Environmental Consequences

ALTERNATIVE B

DIRECT/INDIRECT EFFECTS. The Alternative B removes the Roadless Focus Area from the Proposed Action. This change preserves the unmanaged, natural-ecosystem landscape in the Hancock Peak Roadless Area, and does not alter the opportunity for solitude and a sense of remoteness from the sights and sounds of other humans. This alternative will reduce the impacts of smoke to Cedar Breaks National Monument and the Town of Head Town. Visitors traveling Highway 148, 14 and the Red Desert Road (#241) would not be impacted by brief views of altered landscapes, but would have increased exposure to beetle-killed spruce. With the exception of the Roadless Area Focus Area, this alternative is identical to the Proposed Alternative.

CUMULATIVE EFFECTS. It is likely that visitors to the CEA will have multiple encounters with spruce beetle killed trees that sometimes dominate the view, harvest activities and evidence of fire (see Scenic Resources Cumulative Effects Map, Appendix 10d and Timber Harvest Cumulative Effects Map, Appendix 10g). This will likely be appreciated as diminished scenic quality for many visitors. Visitor exposure to fire altered landscapes would be reduced by eliminating prescribed fire in the Roadless Focus Area under this alternative.

SOIL RESOURCE

PROPOSED ACTION

Under the Proposed Action, there will be up to 7,821 total acres treated. There will be 2,872 acres of timber harvest, 1,013 acres of aspen regeneration, 3,995 acres of prescribed fire (921 aspen and 2,974 conifer) and 41 acres of DFS zones. There will be four miles of new road construction and one mile of temporary road construction.

DIRECT/INDIRECT EFFECTS: The adverse impacts to the soil resource due to logging, road construction and burning have been discussed in detail in a white paper titled "Effects Of Timber Harvest On The Soil Resource On The Dixie National Forest". Project File, exhibit 141, hereafter referred to as the Effects Summary.

The Effects Summary further identifies what constitutes detrimental soil disturbance and describes what the Dixie NF does to ensure that timber harvest activities do not exceed Soil Quality Standard thresholds, so that long term soil productivity is maintained.

The Proposed Action proposes to harvest timber and/or burn on soil map units 211, 221, 221A, 233, 237, 238, 238A, 239, 264A, 265, 270, 505 and 638. The Effects Summary lists a number of past timber sales and map units that have had a detailed soil erosion analysis. The Effects Summary identifies the soil map units where erosion modeling showed that soil erosion from logging and road construction was within soil loss tolerance thresholds and lists the mitigation that research, experience and monitoring on the Dixie NF has shown to be effective in staying within soil quality guidelines for maintaining long term soil productivity. For the SERP project area, this includes soil map units 211, 221, 233, 237, 238, 238A, and 264A.

The Effects Summary also lists soil map units for which soil erosion modeling showed that on site soil erosion from logging and road construction would exceed soil loss tolerance thresholds, regression success would be questionable, or other special site conditions existed. These map units are either deleted from consideration for logging or special mitigations are recommended to ensure soil quality standards are met. For the SERP project area, soil map unit 239 fits this situation. Soil map unit 239 typically has shallow erosive soils that can only be logged utilizing methods such as helicopter or water logging which results in very little ground disturbance. The particular portion of unit 239 that is proposed for logging is a small island of timber with deeper soils than is typical of 239, but was included in the 239 map unit because it was too small to delineate. This stand would actually a small area of soil map unit 238 that is suitable for tractor logging however, tractors should not be allowed to operate on the remainder of the 239 unit to gain access to this stand.

Four other soil map units (221A, 265, 270 and 638) occur in the SERP project area that have not been analyzed in the Effects Summary. The soils of these map units were analyzed for this project. The analysis showed that with the standard recommended soil and water mitigation, tractor logging these soils will not exceed soil quality guidelines.

A white paper "Effects Of Fire On The Soil Resource, 1997" describes the impacts of wildfire and prescribed fire can have on the soil. In general, properly planned prescribed fire with appropriate soil and water mitigation, will have little adverse impacts on the soil resource and may have an overall beneficial impact.

Cedar City Ranger District
 Dixie National Forest

CUMULATIVE EFFECTS: The cumulative effects area for long term soil productivity and on-site soil erosion in the project area itself. The intent is to ensure that the proposed management does not result in reduced long term soil productivity. The cumulative effects analysis evaluates past as well as current management activities, the proposed alternative, and foreseeable future management activities.

The Hancock Peak timber sale (1990-92) is a past management activity within the project area. Accelerated soil erosion associated with logging and road construction from that sale has stabilized and erosion rates should be very near pre-harvest rates. Logging associated with the Proposed Action within the old sale area will utilize skid trails and landings that were used for the Hancock Peak sale as much as possible, thereby minimizing the extent of new ground subjected to detrimental soil compaction and displacement.

Current management activities that are occurring within the project area include livestock grazing and dispersed recreation use. Livestock use on most forested areas is minimal. Impacts to the soil resource from livestock grazing has been analyzed in "Effects Of Livestock Grazing At Proper Use On The Dixie National Forest, 1995".

The cumulative impacts of on-site soil erosion from previous and current management activities combined with the projected erosion associated with the Proposed Action is within soil loss tolerance thresholds for maintaining long term soil productivity. The mitigation associated with the Proposed Action will ensure that detrimental soil disturbance, particularly compaction, will not cumulatively exceed thresholds established by soil quality standards for maintenance of long term soil productivity and hydrologic function.

NO ACTION ALTERNATIVE

DIRECT/INDIRECT EFFECTS: Under the No Action alternative, erosion rates would continue at current rates. There would be no additional adverse impacts to the soil resource than currently exist.

CUMULATIVE EFFECTS: The cumulative effects area for long term soil productivity and on-site soil erosion is the project area itself. The intent is to ensure that the proposed management does not result in reduced long term soil productivity. The cumulative effects analysis evaluates past as well as current management activities, the proposed alternative, and foreseeable future management activities.

The Hancock Peak timber sale (1990-92) is a past management activity within the project area. Accelerated soil erosion associated with logging and road construction from that sale has stabilized and erosion rates should be very near pre-harvest rates. Logging associated with the Proposed Action within the old sale area will utilize skid trails and landings that were used for the Hancock Peak sale as much as possible, thereby minimizing the extent of new ground subjected to detrimental soil compaction and displacement.

Current management activities that are occurring within the project area include livestock grazing and dispersed recreation use. Livestock use on most forested areas is minimal. Impacts to the soil resource from livestock grazing has been analyzed in "Effects Of Livestock Grazing At Proper Use On The Dixie National Forest, 1995".

There would be no additional cumulative impacts to the soil resource from the No Action alternative.

ALTERNATIVE A

Under this alternative there will be 6,081 total acres treated. There will be 2,352 acres of timber harvest, 697 acres of aspen regeneration, 2,792 acres of prescribed fire, and 41 acres of DFS zones. There will be one mile of temporary road construction.

DIRECT/INDIRECT EFFECTS: Alternative A treats the same soil map units as described under the Proposed Action. See Proposed Action for description of direct/indirect effects.

CUMULATIVE EFFECTS: See Proposed Action for a description of cumulative effects.

ALTERNATIVE B

Under this alternative there will be 5,029 total acres treated. There will be 2,873 acres of timber harvest, 1,013 acres of aspen regeneration, 1,103 acres of prescribed fire and 41 acres of DFS zones. There will be 3 miles of new road construction and 1 mile of temporary road construction.

Sapelle Ecosystem Recovery Project

4-10

Sapelle Ecosystem Recovery Project

4-31
Cedar City Ranger District
Dixie National Forest

DIRECT INDIRECT EFFECTS: Alternative B treats the same soil map units as described under the Proposed Action. See Proposed Action for a description of direct indirect effects.

CUMULATIVE EFFECTS: See Proposed Action for a description of cumulative effects.

COMPARISON OF ALTERNATIVES: The greatest difference between alternatives is the amount of land treated. The No Action alternative has no proposed treatment and therefore has little or no adverse impact on the soil resource. The Proposed Action and Alternatives A and B treat between 5,529 acres and 7,823 acres. They all have similar amounts of timber harvest (2,252 to 2,873 acres). Obviously, the alternatives that treat more acres will have more associated soil disturbance.

Based on the recommended soil and water mitigation measures, the amount of detrimental soil disturbance associated with any of the action alternatives will be within acceptable limits (Soil Quality Guidelines) for maintenance of long-term soil productivity.

HYDROLOGY

PROPOSED ACTION

DIRECT INDIRECT EFFECTS

Hydrology: Snowmelt of dead and dying trees will not increase soil moisture or water yield. Once the dead trees are removed, herbaceous plants, shrubs, and trees will establish, which will decrease local soil moisture and water yield. Snowmelt will likely increase in harvested areas due to more exposure to solar radiation. Removing dead and dying trees will also result in decreased interception of snow and rain. However, the change in interception is expected to be small.

Because of the large scale tree mortality, there is more water available for soil moisture, surface runoff, and subsurface flow. There is an increased potential for surface runoff on roads and skid trails associated with logging. This is expected to be short-term risk, and will be minimized through proper layout of skid trails and implementation of SWC Ps. The hydrologic effects of tractor skidding are discussed in Effects of timber harvest on watershed hydrology and water quality (Kendall 1997).

Aspen regeneration will require either clearcutting or burning of aspen clones. This will result in increased soil moisture and on-site water yield. If regeneration is successful, the hydrologic effects are expected to be short term (5 years). Burning of aspen clones will result in a loss of ground cover, and on-site surface runoff may increase in harvested areas.

The general effects of burning vegetation are discussed in Effects of fire on watershed hydrology and water quality (Kendall 1997). Clearcutting of aspen would require tractor skidding to remove the trees. The hydrologic effects of tractor skidding are discussed in Effects of timber harvest on watershed hydrology and water quality (Kendall 1997).

Road construction is proposed in the Spruces Focus Area (48.4 mi) and in the Steam Engine Focus Area (up to 10 mi.). The Steam Engine road will be obliterated and closed following project completion. Approximately 1.7 miles of the Spruces road would be closed and seeded, and 1.3 miles would be converted to the Spruces staff. The proposed road construction is described in more detail by an attached SWC P. The hydrologic effects of road construction are discussed in the Cumulative Effects section. The hydrologic effects of road construction and maintenance will be minimized through implementation of Soil and Water Conservation Practices (SWC Ps). The general effects of roads and road construction on hydrologic processes are discussed in Effects of timber harvest on watershed hydrology and water quality (Kendall 1997).

DFB zones are proposed adjacent to major travel corridors and other land ownerships. Fuel loads would be reduced to less than 10 tons/acre, which would result in less cover over the soil. The effects of fuel reduction on hydrologic processes such as infiltration and surface runoff are expected to be negligible. If mechanical means (tractor piling) are used, there will be an increase in surface runoff on compacted areas and skid trails. This effect can be minimized through implementation of SWC Ps. The establishment of DFB zones will reduce the risk of catastrophic fires, which in turn may reduce the risk of cumulative watershed effects. DFB zones will not be included in the cumulative effects section because cumulative effects associated with DFB zones are expected to be negligible at the watershed scale.

Prescribed burning is proposed in the Roadless and Chicken Head Focus Areas. The effects of burning on hydrologic processes are discussed in Effects of fire on watershed hydrology and water quality (Kendall 1997).

Water Quality: The general effects of logging, tractor skidding, and road construction on water quality are described in Effects of timber harvest on watershed hydrology and water quality (Kendall 1997). In general, the effects of logging, tractor skidding, road construction, and burning on water quality is highly dependent upon the extent to which hydrologic processes (i.e., infiltration, surface runoff, etc.) are impaired or altered.

Water quality will be protected by implementing SWC Ps, and through site specific prescriptions within and adjacent to riparian ecosystems. Therefore, it is assumed that long term water quality will be protected. The basis for site specific prescriptions within and adjacent to riparian ecosystems is described in the following section.

In 1993, the Utah Department of Environmental Quality and the Utah National Forests agreed, through a Memorandum of Understanding, to use Forest Plan Standard & Guidelines and the Forest Service Handbook (FSH) 2509.22 SWCs to meet the water quality protection elements of the Utah Nonpoint Source Management Plan.

Channel Morphology And Riparian Ecosystems: Riparian ecosystems and land adjacent to them, will be given special management consideration to protect riparian values, channel morphology, and water quality. During the implementation phase of the project, an interdisciplinary team will provide site specific prescriptions designed to protect or enhance riparian conditions and water quality. In general, harvest and/or ground disturbance would not likely occur within 50 feet any stream channel, ephemeral, intermittent, or perennial, spring, seep, or wetland. Where field reviews and site specific prescriptions are not completed, the following guidelines will be implemented:

- Perennial, fish-bearing streams: No harvest, ground disturbance, or burning within 200 feet from the edge of riparian vegetation.
- Perennial, non-fish-bearing streams: No harvest, ground disturbance, or burning within 100 feet from the edge of riparian vegetation.
- Intermittent and ephemeral channels: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or channel.
- Ponds, lakes, seeps, and wetlands: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or seasonally saturated soil.

CUMULATIVE EFFECTS: Baseline cumulative effects analyses have been completed on all of the Cumulative Effects Watersheds (CEWs) using the Watershed Risk Rating (USDA 1993), and the Modified Equivalent Roadless Area (ERA) procedure described by McGurk and Fong (1995). The Watershed Risk Rating describes the relative risk (low, moderate, or high) of cumulative effects (e.g., sedimentation, channel and aquatic habitat degradation, etc.) resulting from increased water yields, peak flows, and/or excessive erosion. The Watershed Risk Rating is based on road density and past vegetative disturbances (i.e., timber harvest, mortality, and fires). The Modified ERA is an index of the relative amount of disturbance within a Streamside Impact Zone (SID) and is expressed as a percentage of the total SIZ area. McGurk and Fong (1995) identified a threshold of 5% ERA, above which macroinvertebrate diversity declined with increasing ERA values. In this analysis, 5% ERA within the SIZ will be considered a threshold of concern. The Watershed Risk Model will be used to address cumulative watershed effects in terms of hydrology (i.e. peak flows, increased water yields, etc.) and erosion. The Modified ERA model will also be used to address cumulative effects in terms of water quality.
Table 4-2. Summary of conditions within the Cumulative Effects Watersheds.

<table>
<thead>
<tr>
<th>CEW</th>
<th>Road Density (ft/min)²</th>
<th>Spruce Mortality (at %/% of Watershed</th>
<th>Relative Risk of CWEs</th>
<th>Modified ERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Creek</td>
<td>0.83</td>
<td>1601/20.0</td>
<td>Moderate</td>
<td>1.0</td>
</tr>
<tr>
<td>Clear Creek</td>
<td>0.52</td>
<td>2952/27.3</td>
<td>Low</td>
<td>1.9</td>
</tr>
<tr>
<td>Blue Springs Creek</td>
<td>1.44</td>
<td>1743/16.9</td>
<td>Low</td>
<td>3.0</td>
</tr>
<tr>
<td>Mammoth Creek</td>
<td>2.29</td>
<td>3670/15.0</td>
<td>Low</td>
<td>5.6</td>
</tr>
<tr>
<td>Tompky Creek</td>
<td>0.21</td>
<td>271/0.0</td>
<td>Low</td>
<td>2.0</td>
</tr>
<tr>
<td>Malheur Creek</td>
<td>3.18</td>
<td>295/2.9</td>
<td>Moderate</td>
<td>2.5</td>
</tr>
</tbody>
</table>

1 Cumulative Watershed Effects
2 Modified Equivalent Roaded Area

In watersheds where salvage timber harvest is proposed, the main activity that would affect water quantity and water quality is tractor skidding and road construction. Because the spruce stands that would be harvested are already dead and dying; the effects of harvesting on water yield would be negligible and unstable. Through monitoring of past timber sales harvested by tractor, it has been determined that approximately 10% of harvest units consist of skid trails (Bauer 1997). Any surface runoff and erosion would be expected to occur on skid trails or roads. Therefore, approximately 1% of the harvest acreage is considered to be impacted by harvest activities. Some of the aspen treatments may require tractor skidding for removal as well.

The long term effects of aspen treatments on water quantity and quality are expected to be negligible, assuming SWCP's, and other mitigations are implemented properly. Harvesting or burning of aspen will increase on-site soil moisture and water yields, but increased water yields would not likely be measurable at the watershed scale. Burning of aspen stands will result in less ground cover, and surface runoff and erosion would likely be accelerated until hydrologic recovery occurs (approximately 5 years), and ground cover is reestablished.

The Modified ERA increases associated with proposed activities are calculated without considering no-treatment reference stream channels, and assuming aspen treatments will require tractor skidding for removal. Therefore, the predicted increase in ERAs associated with each Proposed Action is over-estimated, and represents the worst case scenario. Actual increases in the Modified ERAs will likely be 30-50% lower than predicted.

All proposed activities will require implementation of applicable SWCP's (Appendix 5) to protect water quality and associated Beneficial Uses. SWCP's are designed to minimize or prevent long term erosion on disturbed sites. Water quality impacts from timber harvesting is most commonly associated with sedimentation resulting from road construction and tractor skidding. Implementation of SWCP's prevent or minimize soil loss and associated water quality degradation. Monitoring of past timber sales on the Cedar City Ranger District during the past several years has shown that SWCP's are effective in preventing and/or minimizing erosion and sedimentation. If erosion on disturbed sites is controlled or prevented, it is assumed that water quality degradation associated with sedimentation will be prevented.

Reprurian ecosystems and lands adjacent to them, will be given special management consideration to protect riparian values, channel morphology, and water quality. During the implementation phase of the project, an interdisciplinary team including a Hydrologist will provide site specific prescriptions designed to protect or enhance riparian conditions. In general, if harvest or ground disturbance will not likely occur within 50 feet of any stream channel (riparian, intermittent, or perennial), spring, seep, or wetland. Where field reviews and site specific prescriptions are not completed, the following guidelines will be implemented:

- **Perennial, fish-bearing streams**: No harvest, ground disturbance, or burning within 200 feet from the edge of riparian vegetation.
- **Perennial, non-fish-bearing streams**: No harvest, ground disturbance, or burning within 100 feet from the edge of riparian vegetation.

Through site specific prescriptions and/or implementation of the above guidelines, there will be no long term impacts to channel morphology, water quality, or riparian/aquatic habitat resulting from the Proposed Actions.

Center Creek Watershed

Land uses within the Center Creek watershed include livestock grazing, dispersed recreation, and roads. Approximately 1980 acres (20% of the watershed) was impacted through sparse mortality. Eight acres were harvested in 1996 as part of the Sidney Valley Recovery Project.

The Center Creek CEW is at moderate risk of cumulative watershed effects mainly because of the large scale spruce mortality. However, the Modified ERA is relatively low (1.0%), and water quality is excellent in the upper reaches according to aquatic macroinvertebrate data. There is no information on stream channel or riparian conditions within the watershed.

The Proposed Actions within the Center Creek watershed include up to 0.5 miles of road construction, 251 acres or salmonid habitat shaping, and 1102 acres of prescribed burning. Long term impacts to hydrologic processes and water quality associated with the road because the road is not in the vicinity of any stream courses, and would be obliterated and closed following completion project.

Salmonid habitat shaping would occur within the Stream Engine Focus Area, located in the upper watershed, and contains 2 small ephemeral/intermittent channels. No ground disturbance would be allowed within at least 50 feet of these channels to minimize sedimentation from skid trails. Salmonid habitat shaping of this area will accelerate the regeneration process by approximately 10 years. The long term effects of this action may slightly reduce the risk of cumulative watershed effects (ERAs) over a shorter period of time due to the accelerated regeneration of forest cover. Proper implementation of SWCP's will ensure protection of water quality from sedimentation. The Modified ERA would increase by no more than 0.3% as a result of salmonid habitat shaping. Therefore, the proposed logging is not expected to adversely affect long term water quality.

Prescribed burning is proposed on 1101 acres within the Chicken Head Focus Area, which contains 2 small ephemeral/intermittent channels. The effects of fire on hydrologic processes and water quality are discussed in Effects of Fire on Watershed Hydrology and Water Quality (Kendall 1997a). The Chicken Head area is at high risk of catastrophic fire, due to high fuel loads (Fay 1997). Prescribed fire is proposed to reduce the risk of catastrophic wildfire, by decreasing fuel loads under controlled conditions. Burning of live forest stands may increase the risk of CWEs (peak flows, channel degradation, sedimentation, and associated water quality degradation) until hydrologic recovery occurs (approximately 3.5 years for aspen and 30 years for spruce). However, burning would reduce fuel loads, which in turn, would reduce the risk of catastrophic wildfire. Overall, the long term risk associated with wildfire, because prescribed fire can be controlled and made sensitive to soil and water resources. Field reviews will be conducted prior to any prescribed fires by an Interdisciplinary Team, including a Hydrologist. Prescribed fires will be designed to provide optimum protection of watershed function and water quality.

Clear Creek Watershed

Land uses within the watershed include roads, timber harvest, and livestock grazing. The lower portions of the watershed are primarily owned, but not used. Approximately 1609 acres of this watershed was harvested (salvage/sanitation) in 1994 as part of the Rangeland Lake Recovery Project. The Clear Creek watershed is at low risk of CWEs, and has a Modified ERA of 1.9%. There is no information on current conditions of stream channels and associated riparian areas within the watershed.

The Sprucers Focus Area lies in the headwaters of the Clear Creek watershed. Proposed Actions within this CEW include approximately 1.2 miles of new road construction, 232 acres of salmonid habitat shaping, and 143 acres of aspen treatments. The proposed road lies in the headwaters of the watershed close to the drainage divide, and would cross a small draw. The road would be closed and seeded following project completion. It is unlikely that any sediment
from the road will reach any stream courses, except where the road crosses a small draw. Implementation of SWCPs will minimize or prevent any sediment from reaching perennial waters. Following project completion, the road will remain to be a source of surface runoff and sediment until vegetative cover is established and the cut and fill slopes stabilize. Sediment production is expected to decrease over time.

Salvage logging of dead trees will accelerate regeneration of forest cover and reduce the risk of CWEs over a shorter period of time. Salvage logging, combined with proposed aspen treatments would increase the Modified ERA no more than 0.2%. Therefore, long-term adverse impacts to water quality are not expected.

Blue Springs Creek Watershed

The dominant land uses within the Blue Springs Creek watershed include livestock grazing, dispersed recreation, roads, and timber harvest. Approximately 1,745 acres has been impacted by spruce beetle, and 1,997 acres were harvested as part of the Panterlake Recovery Project in 1994.

The Blue Springs Creek CEW is at low risk of CWE, and has a Modified ERA value of 3.0%. Deer Creek, a tributary to Blue Springs Creek is severely degraded due to increased stream flows from the Castle Creek diversion. The stream banks and hill-slopes are actively eroding. The risk level and Modified ERA are not sensitive to the type of proposed Blue Springs Creek CEW. Detailed descriptions of Deer Creek are available in the Panterlake Recovery Project Waterhed Analysis Report, and the Deer Creek Level II Riparian Inventory. These documents are available in the SERP project file.

The Focus Areas that lie within the Blue Springs Creek CEW include Spruces, Banker, and Deer Creek. Proposed actions include 1.8 miles new road construction located in the headwaters near the drainage divide, 235 acres of salvage logging, and 534 acres of aspen treatments. The first 1.3 miles of the road will be converted to the Spruces trail following project completion, and the old section of the Spruces trail would be rehabilitated, seeded, and closed. The remaining 0.5 miles of the road will be closed and seeded.

The proposed road lies in the headwaters of the Banker Creek drainage, and would cross 2 ephemeral/intermittent channel and one small draw. Applicable SWCPs will be implemented at the channel crossings to minimize or prevent any sediment from entering the channels. Construction of this road will increase the Modified ERA by approximately 0.014% per cent. Following project completion, 0.5 miles of the road will be closed and seeded. The road will continue to be a source of surface runoff and sediment until vegetative cover is established and the cut and fill slopes stabilize. Sediment production is expected to decrease, as vegetation becomes re-established. No long-term impacts to water quality are expected to result from the proposed road construction, assuming SWCPs are implemented and the road is effectively revegetated and closed. The section of road that will be converted to the Spruces trail would be open to hiking and mountain biking. The trail will continue to be a source of runoff and sediment; however, these effects can be minimized by seeding the cut and fill slopes, and providing proper drainage. The effects of the proposed road to hydrologic processes and water quality are expected to be negligible at the watershed scale.

Salvage logging may lower the risk of CWEs over a shorter period of time by accelerating regeneration of forest cover. The Modified ERA would increase no more than 0.6% as a result of salvage logging and aspen treatments combined. Therefore, no long-term adverse impacts to hydrologic processes and water quality are expected.

Mammoth Creek Watershed

The Mammoth Creek watershed is at low risk and contains a Modified ERA value of 5.6%. The Modified ERA value is relatively high, and above the threshold of concern in this watershed. This is due mainly to private land development in the Mammoth Creek subdivision, which is downstream of the project area. Aquatic macroinvertebrates data taken from the Mammoth Creek/Tommy Creek confluence indicates water quality is good. Land uses within the Mammoth Creek CEW include roads, livestock grazing, timber harvest, dispersed recreation, and private land development. Past timber harvest within the Mammoth Creek CEW are listed in Table 4.3. The Mammoth Creek Recovery Project is currently being implemented at various locations within the Mammoth Creek CEW.
The Proposed Action includes prescribed fire on approximately 1187 acres within the Rlexible Focus Area. The long-term effects of this action on water quality is expected to be negligible at the watershed scale. Water quality will be protected through implementation of site-specific prescriptions and SWCPs adjacent to stream channels. Duck Creek begins to flow at Duck Springs (Duck Lake). Any sediment that is transported down Duck Creek is deposited in Duck Lake, therefore, water quality in Duck Creek would not likely be affected by the Proposed Action of other management activities within the CEW. The Modified ERA would not be applicable to burning, therefore, it is not used to describe the potential effects in this watershed.

NO ACTION ALTERNATIVE

DIRECT/INDIRECT EFFECTS

No treatment of dead and down stream stands will delay regeneration by approximately 10 years, hence soil moisture and on-site water yield increases would persist for a slightly longer period of time. Implementation of this alternative would have no long term adverse impacts to hydrologic processes or water quality.

CUMULATIVE EFFECTS

Implementation of this alternative would not have any adverse effects to hydrologic processes or water quality in any of the cumulative effects watersheds.

ALTERNATIVE A

DIRECT/INDIRECT EFFECTS

Hydrology

The direct and indirect effects of salvage logging, aspen regeneration, and establishment of DFS zones are discussed under the Proposed Action.

New road construction is proposed in the Steam Engine Focus Area (up to 0.5 mi). This road will be abandoned and closed upon completion of the project. The hydrologic effects of road construction and maintenance will be minimized through implementation of SWCPs. The general effects of roads and road construction on hydrologic processes are discussed in Effects of timber harvest on watershed hydrology and water quality (Kendall, 1997). Long term effects of the proposed road on hydrologic processes is expected to be negligible.

Prescribed burning is proposed in the Rlexible Focus Areas. The effects of burning on hydrologic processes are discussed in Effects of fire on watershed hydrology and water quality (Kendall, 1997a).

Water Quality

The general effects of logging, trackage skidding, and road construction on water quality are described in Effects of timber harvest on watershed hydrology and water quality (Kendall, 1997). The effects of burning on water quality are described in Effects of fire on watershed hydrology and water quality (Kendall, 1997a). In general, the effects of logging, trackage skidding, road construction, and burning on water quality is highly dependent upon the extent to which hydrologic processes (e.g. infiltration, surface runoff, etc.) are impeded or altered.

Water quality will be protected by implementing SWCPs and through site specific prescriptions within and adjacent to riparian ecosystems. Therefore, it is assumed that long term water quality will be protected.

Blue Springs Creek Watershed

The dominant land uses within the Blue Springs Creek CEW include livestock grazing, dispersed recreation, roads, and timber harvest. Approximately 1743 acres has been impacted by urban growth, and 1997 acres were harvested as part of the Panpach Lake Recovery Project in 1994.

The Blue Springs Creek CEW is at low risk of cumulative watershed effects, and has a Modified ERA value of 30%. Deer Creek, a tributary to Blue Springs Creek is severely degraded due to increased stream flows from the Castle Creek drainage. The stream banks and hillslopes are actively eroding. The risk level and Modified ERA are not sensitive to the type of impacts associated with Deer Creek. Detailed descriptions of Deer Creek are available in the Panpach Lake Watershed Analysis Report and the Deer Creek Level II Riparian Inventories. These documents are available in the SRF project file.

The Focus Area that lies within the Blue Springs Creek CEW include Bunker and Deer Creek. Proposed Actions within this watershed include approximately 210 acres of salvage logging, and 504 acres of aspen treatments.

Salvage logging may lower the risk of CWEs in a shorter time period by accelerating regeneration of forest cover. Aspen treatments are not expected to affect long term water quantity and quality. The Modified ERA will increase no more than 0% as a result of salvage logging and aspen treatments combined. Therefore, no long term adverse impacts to hydrologic processes and water quality are expected.

Mammoth Creek Watershed

The Mammoth Creek CEW is at low risk and contains a Modified ERA value of 56%. The Modified ERA value is relatively high, and above the threshold of concern in this watershed. This is due mainly to private land development in the Mammoth Creek subdivision which is downstream of the project area.

Table 4.4 - Past Treatments in the Middleway Creek CEW.

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Year</th>
<th>Treatment Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midway Face</td>
<td>1996</td>
<td>416</td>
</tr>
<tr>
<td>Blowhard #2</td>
<td>1989</td>
<td>1729</td>
</tr>
<tr>
<td>Sage Valley</td>
<td>1984</td>
<td>889</td>
</tr>
<tr>
<td>Deer Salvage</td>
<td>1976</td>
<td>382</td>
</tr>
<tr>
<td>Deer Valley</td>
<td>1969</td>
<td>328</td>
</tr>
</tbody>
</table>
microcarbonate data taken from the Mammoth Creek/Tommy Creek confluence indicates water quality is good.
Land use within the Mammoth Creek CEW include roads, livestock grazing, dispersed recreation, and private land development. Past timber harvests within the Mammoth Creek CEW are listed in Table 4-5. The Mammoth-Duck Creek Recovery Project is currently being implemented at various locations within the Mammoth Creek CEW.

Table 4-5. Past Treatments in the Mammoth Creek CEW.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>YEAR</th>
<th>TREATMENT ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulles Valley</td>
<td>1996</td>
<td>1862</td>
</tr>
<tr>
<td>Rainbow Meadows</td>
<td>1996</td>
<td>414</td>
</tr>
<tr>
<td>Hancock Peak</td>
<td>1991</td>
<td>2199</td>
</tr>
<tr>
<td>Lower Creek</td>
<td>1979</td>
<td>259</td>
</tr>
</tbody>
</table>

The Bunker, Lower, State, and Hancock Peak Focus Areas are within the Mammoth Creek CEW. Very small portions of 100 acres of the Bunker and Roadless Focus Areas are also within the CEW. Proposes, Actions include 26.3 acres of salvage/monitor harvest, 96 acres of prescribed fire, and 335 acres of阿森 treatments. Approximately 355 acres of salvage/monitor treatments are proposed on the lower end of the CEW under the Mammoth-Duck Creek Recovery Project.

The long term effects of the proposed logging may result in a lower risk of CWE's due to accelerated regeneration of forest cover. The Modified ERA will increase no more than 0.5% as a result of salvage logging and阿森 treatments. Because the Modified ERA is presently above the threshold of concern, site specific prescriptions within and adjacent to riparian ecosystems will be designed to minimize any increases in the Modified ERA.

Tomato Creek Watershed

The Tomato Creek CEW is at low risk of cumulative effects, and has a Modified ERA value of 2.0%. Approximately 129 acres of this watershed was harvested in 1995 under the Tipples Valley Recovery Project, and approximately 94 acres was harvested in 1994 under the Sage Valley Project.

Water quality in lower Tomato Creek is poor based on aquatic microcarbonate data collected in 1996. The water quality degradation is believed to be caused by runoff and erosion from the Tomato Creek subdivision. Lands use within the watershed include livestock grazing, roads, dispersed recreation, timber harvest, and private land development.

The Roadless Focus Areas lie within the Tomato Creek CEW. Prescribed fire is proposed on 1519 acres within the Focus Area. Approximately 944 acres of阿森 treatments are proposed in the lower Tommy Creek CEW under the Mammoth-Duck Creek Recovery Project. The Roadless Focus Area lie in the upper portion of the Tommy Creek CEW. This portion of the watershed contains expansive lava beds, and there are no stream channels. The effects of prescribed burning on long term water yield is expected to be negligible because much of the burning will occur on arsen stands which recover rapidly, and the acreage will be burned over a course of years, as opposed to all at once. There will be no adverse effects to water quality because there are no stream channels in the immediate vicinity of the Focus Area.

Midway Creek Watershed

The Midway Creek CEW is at moderate risk of cumulative watershed effects mainly because of high road density (1.5 miles / sq mile). The Modified ERA in this watershed is 2.5%. All of the streams in the CEW are intermittent and ephemeral. The streams drain from Duck Lake during snowmelt and high intensity thunderstorms. Land uses within the watershed include dispersed recreation, roads, livestock grazing, and timber harvest. Past timber harvests that have been implemented in the Midway CEW are summarized in Table 4-6.
CUMULATIVE EFFECTS. A general discussion of Cumulative Watershed Effects is located under the Proposed Action. Cumulative Watershed Effects, specific to each watershed in the Project Area, are discussed below.

Center Creek Watershed

Land uses within the Center Creek watershed include livestock grazing, dispersed recreation, and roads. Approximately 1800 acres (29%) of the watershed has been impacted by spruce mortality. Eight acres were harvested in 1996 as part of the Sandy Valley Recovery Project.

The Center Creek CEW is at moderate risk of cumulative watershed effects mainly because of the large scale spruce mortality. However, the Modified ERA is relatively low (1.9%), and water quality is excellent in the upper reaches according to aquatic macroinvertebrate data. There is no information on stream channel or riparian conditions within the watershed.

The Proposed Actions within the Center Creek watershed include: up to 0.5 miles of road construction, 251 acres of salvage logging, and 1102 acres of prescribed burning. Long term impacts to hydrologic processes and water quality associated with the road construction would be negligible because the road is not in the vicinity of any stream courses, and would be obliterated and closed following project completion.

Salvage logging would occur within the Stream Engage Focus Area, located in the upper watershed, and contains 2 small ephemeral channels. No ground disturbance would be allowed within at least 50 feet of these channels to minimize sedimentation from small tributaries. Salvage logging of this area would accelerate the regeneration process by approximately 10 years. The long term effects of this action may slightly reduce the risk of CWS over a shorter period of time.

Soil and water monitoring will ensure protection of water quality from sedimentation. The Modified ERA would increase no more than 0.3% as a result of salvage logging. Therefore, the proposed logging is not expected to adversely affect long term water quality.

Prescribed burning is proposed on 1101 acres within the Chicken Head Focus Area, which contains 2 small ephemeral/intermittent channels. The effects of fire on hydrologic processes and water quality are discussed in "Erosion Control to Reduce Watershed Sedimentation" (Kendall 1972a). The Chicken Head area is at high risk of catastrophic fire, due to high fuel loads ("C" area). Prescribed fire is designed to reduce the risk of catastrophic wildfire, by decreasing fuel loads under controlled conditions.

Burning of live forest stands may increase the risk of CWS (peak flows, channel degradation, sedimentation, and associated water quality degradation) until upland hydrologic recovery occurs approximately 3.5 years after burning. Burning would reduce fuel loads, which in turn, would reduce the risk of catastrophic wildfire. Overall, the long term risk associated with prescribed fire will be lower than that associated with wildfire, because prescribed fire can be controlled and made sensitive to soil and water resources. Field reviews will be conducted prior to any prescribed fires by an Interdisciplinary Team, including a Hydrologist. Prescribed fires will be designed to provide optimum protection of watershed function and water quality.

Clear Creek Watershed

Land uses within the Clear Creek include roads, timber harvest, and livestock grazing. The lower portions of the watershed are privately owned but undeveloped. Approximately 1609 acres of this watershed was harvested (slash retention) in 1994 as part of the Panguitch Lake Recovery Project.

The Clear Creek CEW is at low risk of cumulative watershed effects, and has a Modified ERA of 1.9%. There is no information of current conditions of stream channels and associated riparian areas within the watershed.

The Spruces Focus Area lies in the headwaters of the Clear Creek watershed. Proposed Actions within this CEW include construction and the realignment of new road construction. 232 acres of salvage logging, and 1020 acres of prescribed burning. The proposed road lies in the headwaters of the watershed close to the drainage divide and would cross a small draw. The road would be closed and seeded following project completion. It is unlikely that any sediment from the road would reach any stream courses, except where the road crosses a small stream. Implementation of SWCPs will minimize or prevent any sediment from reaching perennial waters. Following project completion, the road will be used. Construction of a source of surface runoff and sediment until vegetative cover is established and the cut and fill slopes stabilize. Sediment production is expected to decrease over time.
Table 6-7: Past Treatments in the Mammoth Creek CEW.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>YEAR</th>
<th>TREATMENT NAME</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidney Valley</td>
<td>1996</td>
<td>1862</td>
<td></td>
</tr>
<tr>
<td>Rainbow Meadows</td>
<td>1990</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>Hancock Peak</td>
<td>1991</td>
<td>2199</td>
<td></td>
</tr>
<tr>
<td>Lower Creek</td>
<td>1979</td>
<td>219</td>
<td></td>
</tr>
</tbody>
</table>

The Bunker, Lower Creek, and Hancock Peak Focus Areas lie within the Mammoth Creek CEW. A very small portion (≤100 acres) of the Bunker Focus Area is also within the CEW. Proposed Actions include 2083 acres of salvage/salvage harvest, and 335 acres of aspen treatments. Approximately 358 acres of salvage/salvage treatments are proposed on the lower end of the CEW under the Mammoth-Duck Creek Recovery Project.

Table 6-8: Comparison of Alternatives.

<table>
<thead>
<tr>
<th>WATERSHED</th>
<th>CUMULATIVE EFFECTS</th>
<th>ACRES DISTURBED</th>
<th>PERCENTAGE OF CEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop. Action</td>
<td>No Action</td>
<td>Alternative A</td>
<td>Alternative B</td>
</tr>
<tr>
<td>Center Creek</td>
<td>1128 / 112.6</td>
<td>0 / 0</td>
<td>26 / 0.3</td>
</tr>
<tr>
<td>Clear Creek</td>
<td>41 / 0.5</td>
<td>0 / 0</td>
<td>0 / 0.0</td>
</tr>
<tr>
<td>Blue Springs Creek</td>
<td>84 / 0.8</td>
<td>0 / 0</td>
<td>71 / 0.7</td>
</tr>
<tr>
<td>Mammoth Creek</td>
<td>243 / 1.0</td>
<td>0 / 0</td>
<td>242 / 1.0</td>
</tr>
<tr>
<td>Tommy Creek</td>
<td>1519 / 8.9</td>
<td>0 / 0</td>
<td>1519 / 8.9</td>
</tr>
<tr>
<td>Middle Creek</td>
<td>1187 / 11.6</td>
<td>0 / 0</td>
<td>1187 / 11.6</td>
</tr>
</tbody>
</table>

For the primary potential for directly or indirectly impacting fish, aquatic macroinvertebrates, or aquatic habitats would be from the introduction of fine sediment to the streams. These impacts are well documented in the literature (Kosi 1996, Meehan and Swanson 1977, Everett et al. 1987a). Fine sediment can change the species composition, diversity, and abundance of macroinvertebrates as well as suffocating trout eggs and fry. These disturbances have potential to increase sediment to the streams are activities associated with timber harvest, including roads and skid trails, and prescribed fire. These effects are dependent, however, on their location and extent of treatment.

In order to minimize the impacts to the aquatic environment, Soil and Water Conservation Practices (SWCPs) will be implemented during road construction, timber harvest, and prescribed fire activities. These are discussed further in Chapter 4 - Hydrology. In addition, Riparian ecosystems will be given special management consideration to protect riparian values, channel morphology, and water quality. During project implementation, an interdisciplinary
team will provide site specific prescriptions designed to protect and/or enhance riparian conditions and aquatic habitat. Where field reviews and site specific prescriptions are not completed, the following guidelines should be implemented:

Perennial, fish-bearing streams: No harvest, ground disturbance, or burning within 200 feet from the edge of riparian vegetation.

Perennial non-fish-bearing streams: No harvest, ground disturbance, or burning within 100 feet from the edge of riparian vegetation.

Intermittent and ephemeral channels: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or channel.

Ponds, lakes, swamps, and wetlands: No harvest, ground disturbance, or burning within 50 feet from the edge of riparian vegetation or seasonally saturated soil.

The proposed vegetation and fuel treatments, along with implementing SWCP’s and riparian prescriptions, would have minimal effects to Mammoth, Lower, Castle, and Bunker Creeks and their associated habitat and biota. The road closures and rehabilitations would result in less potential sediment reaching the streams once the roads stabilize and vegetation becomes established. The potential for sediment being transported to the streams would also be minimized by implementing the required SWCP’s and riparian prescriptions. Impacts to fisheries, fish habitat, recreational fishing opportunities, and aquatic macroinvertebrate communities would be minimal under Alternative A and would not substantially change from current conditions.

CUMULATIVE EFFECTS: Past and present activities which have occurred in the CEA include timber harvest, livestock grazing, dispersed recreation, and road construction. Implementing SWCP’s on past, present, and future timber sales and road construction activities, recovery of watershed restoration projects, and following proper use criteria/streambank disturbance criteria for the range allotments in the CEA, are designed to minimize or reduce the amount of sediment that is being transported to streams. Any effects from these activities to fish habitat or populations, aquatic macroinvertebrate communities or recreational fishing opportunities are expected to be minimal and short-term provided that required mitigation (SWCP’s, riparian prescriptions, proper livestock use) are adhered to.

NO ACTION

DIRECT/INDIRECT EFFECTS: The environmental effects of No Action for the Spruce Ecosystem Recovery Project are similar to those described in the environmental analysis/documents listed previously. Although more trees would be expected to die, total cover in the watersheds should be similar to pre-treatment conditions as a result of needle cast, down logs and limbs, etc. If more trees die adjacent to stream channels as a result of No Action there will be an increase in the amount of large woody debris in the streams over time. This would increase stream productivity as well as increase habitat complexity for trout and other aquatic organisms. Fishing access along the stream may decrease depending on the amount of woody material that falls into or adjacent to the streams. Sediment levels in streams would be similar to what is existing at present.

CUMULATIVE EFFECTS: Livestock grazing, recreational use, roads, and private land use are the primary activities influencing aquatic communities in the CEA. Implementing proper use and streambank disturbance criteria for the range allotments in the CEA as well as implementing riparian protection and stabilization to minimize the potential for sediment to enter the streams and affect downstream aquatic habitat.

ALTERNATIVE A

DIRECT/INDIRECT EFFECTS: The effects of Alternative A for the SERP is similar to and within the scope of previous environmental analyses and implemenetd projects which have comparable affected environments. The environmental effects are similar to those described in the Tippets Valley Timber Harvest EA, Sidney Valley Recovery Project EA, Rainbow Meadow Recovery Project EA, Panpang Lake Recovery Project EA, Blue Springs/Reeds Valley Recovery Project EA, Effects of Timber Harvest and Related Activities 1996/97, Effects of Fire on Fish and Aquatic Macroinvertebrates (Robertson 1997), and Effects of Fire on Fish and Aquatic Macroinvertebrates (Robertson 1997). Alternative A is similar to the Proposed Action with the exception that there would be no prescribed fire in the Center Creek watershed, no treatments in the Clear Creek watershed, and 321 acres less salvage harvest and 316 acres less aspen treatment.

The direct and indirect effects of timber harvest, prescribed fire, and associated activities are similar to those described for the Proposed Action alternative with the exception that there would be no prescribed fire in the Tommy Creek or Cedar Creek watersheds.

The proposed vegetation and fuel treatments, along with implementing the SWCP’s and riparian prescriptions, would have minimal effects to Mammoth, Lower, Castle, and Bunker Creeks and their associated habitat and biota. The road closures and rehabilitations would result in less potential sediment reaching the streams once the roads stabilize and vegetation becomes established. The potential for sediment being transported to the streams would also be minimized by implementing the required SWCP’s and riparian prescriptions. Impacts to fisheries, fish habitat, recreational fishing opportunities, and aquatic macroinvertebrate communities would be minimal under Alternative A and would not substantially change from current conditions.

CUMULATIVE EFFECTS: Past and present activities which have occurred in the CEA include timber harvest, livestock grazing, dispersed recreation, and road construction. Implementing SWCP’s on past, present, and future timber sales and road construction activities, recovery of watershed restoration projects, and following proper use criteria/streambank disturbance criteria for the range allotments in the CEA, are designed to minimize or reduce the amount of sediment that is being transported to streams. Any effects from these activities to fish habitat or populations, aquatic macroinvertebrate communities or recreational fishing opportunities are expected to be minimal and short-term provided that required mitigation (SWCP’s, riparian prescriptions, proper livestock use) are adhered to.

ALTERNATIVE B

DIRECT/INDIRECT EFFECTS: The effects of Alternative B for the Spruce Ecosystem Recovery Project is similar to and within the scope of previous environmental analyses and implemented projects which have comparable affected environments. The environmental effects are similar to those described in the Tippets Valley Timber Harvest EA, Sidney Valley Recovery Project EA, Rainbow Meadow Recovery Project EA, Panpang Lake Recovery Project EA, Blue Springs/Reeds Valley Recovery Project EA, Effects of Timber Harvest and Related Activities 1996/97, Effects of Fire on Fish and Aquatic Macroinvertebrates (Robertson 1997), Alternative B is similar to the Proposed Action with the exception that there would be no prescribed fire in the Tommy Creek or Center Creek watersheds.

The direct and indirect effects of timber harvest, prescribed fire, and associated activities are similar to those described for the Proposed Action alternative with the exception that there would be no prescribed fire in the Tommy Creek or Center Creek watersheds.

The proposed vegetation and fuel treatments, along with implementing the SWCP’s and riparian prescriptions, would have minimal effects to Mammoth, Lower, Castle, and Bunker Creeks and their associated habitat and biota. The road closures and rehabilitations would result in less potential sediment reaching the streams once the roads stabilize and vegetation becomes established. The potential for sediment being transported to the streams would also be minimized by implementing the required SWCP’s and riparian prescriptions. Impacts to fisheries, fish habitat, recreational fishing opportunities, and aquatic macroinvertebrate communities would be minimal under Alternative B and would not substantially change from current conditions.

CUMULATIVE EFFECTS: Past and present activities which have occurred in the CEA include timber harvest, livestock grazing, dispersed recreation, and road construction. Implementing SWCP’s on past, present, and future timber sales and road construction activities, recovery of watershed restoration projects, and following proper use criteria/streambank disturbance criteria for the range allotments in the CEA, are designed to minimize or reduce the amount of sediment that is being transported to streams. Any effects from these activities to fish habitat or populations, aquatic macroinvertebrate communities or recreational fishing opportunities are expected to be minimal and short-term provided that required mitigation (SWCP’s, riparian prescriptions, proper livestock use) are adhered to.
WILDLIFE RESOURCES

EFFECTS COMMON TO ALL ACTION ALTERNATIVES

The effects of timber harvest and prescribed burning are described in detail in Effects of timber harvest on selected wildlife species (Shummers 1977a) and Effects of prescribed fire on selected wildlife species (Shummers 1977b) and are incorporated here by reference. The following discussion describes the effects as they relate to the site specific actions of each alternative on the wildlife species described in this document. It is the intent of these discussions to describe changes to the habitat components that provide habitat to support other wildlife species as well.

The activities in the action alternatives would likely displace wildlife and may cause disturbance to nesting or reproductive success, depending upon the time of year, plant and length of time the activity would take place. Where the mitigation measures to avoid disturbance to nesting birds is used (goshawks or other raptors) much of this potential disturbance would be avoided. Trees used by flickers for nesting may inadvertently be removed if they happen to be nesting in a tree cut down and therefore some flicker nests would be destroyed. Also some birds may lose their territories during the nesting season for goshawk in their nesting areas. These potential nesting losses are not expected to adversely affect the viability of the northern flicker because it is a habitat generalist.

The effects of action on wildlife is greatly influenced by the condition of the vegetation. In this section brief references are made to how vegetation conditions and changes would affect wildlife. For a more detailed discussion of the vegetation refer to the Vegetation discussion.

Harvesting trees can break apart, or fragment, forested landscapes. For some species, such as mule deer, this provides a good mixture of habitats and structure. For other species, fragmented habitat reduces "core" area where cover is available from the rest of the fragmented or more suitable area. It also reduce the size of forest patches below which is not expected to support specific species, rendering them unsuitable.

Another potential effect of fragmentation is access to new forested areas and/or more areas, by brown headed cowbirds. In areas grazed by cattle, this is especially prevalent. Female cowbirds lay their eggs (which can total up to 38 in some species) in other bird's nests, sometimes pushing out the host bird's eggs. The young cowbirds are more aggressive and larger than the host baby, and either pushes the host young out of the nest or obtains all the food. Many species of small bird, (such as brown headed cowbirds) have been documented parasitized by brown headed cowbirds (Ehrlich et al. 1988). This has proven to be a contributing cause of declines for several bird species, many of them Neotropical migratory birds (Ehrlich et al. 1988).

Each of the action alternatives breaks up forested habitat. Large areas would remain comprised of aspen-soothed areas containing spaces for wildlife. Although not always the case, the alternatives harvesting the largest acreage of the SERP area alternatives habitat the most.

The DES Zones would reduce understory vegetation and reduce down wood material below desired levels, for wildlife on 41 acres. These areas would not provide cover for elk, deer or turkey. Since down wood would be at lower levels there would be no food or cover for small mammals, birds, and insects requiring down wood. This would affect prey species for goshawks, flickers, cats, Mexican spotted owls and other wildlife species. An edge between open DES Zones and the adjacent forest would be created, subjecting the adjacent forest to conditions created from edge. Some wildlife species would benefit from the edge such as songfaring birds, and big game, and others would not, such as forest birds unsuited to this habitat (Ehrlich et al. 1988).

The DES Zones would open up the forested canopy in linear strips, which would fragment the forest.

The mitigation measure to retain at least three stages per acre of 1/4-1/8th or larger is intended to provide snag habitat for mule deer and other forest birds. Harvesting around individual snags may make them more vulnerable to windthrow and expose them to woodpeckers. Leaving snag habitat in clumps may alleviate this problem. Snag monitoring after timber sales has shown that after harvest the three stages per acre requirement is not being met in some portions of the harvest. Therefore the mitigation strategy of layout marking and harvest leaving more (such as 5-6 stages per acre) may be needed in order to ensure the minimum three stages per acre after all activities in the area have been completed. In harvest units it is expected that snags would not last as long as in harbored areas due to potential windthrow and

the gap between this insect infestation and the time when new snags are created in the future would be longer on the treatment acres.

Windthrow would be expected at an average rate between 1.5 and 1.3 percent per year (USDA 1974 page 121). On Boulder Top of the Dixie National Forest windthrow in a pure sand was 16 percent after about 30 years after the beetle infestation (Miekle 1950 in USDA 1974).

McClelland (1980) suggested that simply leaving snags may not be sufficient for serious management of cavity nesting birds. He states that this approach concentrates on habitat components that result from ecological processes rather than the processes themselves and that the logical management objective is the perpetuation of a diversity of forest habitats, a mosaic pattern which includes old growth in each plant community type present for a particular area. Ideally, old forests of 20 to 50 ha (50-100 acres) should be connected with forests corridors at least 91 meters (300 feet) wide (McClelland 1980). The size of old forest leave areas should correspond to the largest home range of species that inhabit the area (McClelland 1980). A similar approach is presented in Forest Ecosystem Management: An Ecological, Economic, and Social Assessment” (FEMAT 1993). called "late-successional reserves" (pages IV-186-188). Therefore, blocks of unharvested areas would better meet the needs of cavity excavators. Diversity would also be best maintained with a variety of sizes of treatment and non-treatment blocks rather than large treatment areas and non-treatment areas or the size of such areas would reduce this potential in those areas. The potential nesting losses are not expected to adversely affect the viability of the northern flicker because it is a habitat generalist.

Because a possible pair of Mexican spotted owls may exist near the SERP area, consideration to maintaining suitable foraging habitat is necessary. There is only one stand with slopes greater than 400, mixed conifer and has not been harvested within the last 20 years that may apply to "outside Protected Activity Centers" in the Recovery Plan (USD 1995). This does not allow this area to be considered as a suitable area for Mexicanotted spoted owl habitat in Utah because a determination has been made that potentially suitable nesting spotted owl habitat in Utah consists of steep-walled canyon complexes only (Rodriguez 1997).

The guidelines developed for protected and restricted areas for Mexican spotted owl habitat need to have explicit applications to wintering and dispersed habitats, and in space for- and aspen community types (USD 1995). These include managing for landscape diversity, mimicking natural disturbance patterns, incorporating natural variation in stand conditions, retaining special features such as snags and large trees (18 inches in DIA) and using fires to appropriate (USD 1995). Projective fuels management may also be important where appropriate. The burns planned in the Headland area would be designed to mimic natural disturbance patterns. Therefore, the actions would be consistent with the recovery plan guidelines.

The guidelines in the recovery plan for all the management areas were put forth with the assumption that the habitat would consist of five trees. Because the SERP area consists of predominantly dead trees in the proposed treatment areas of snags for fire, a different approach is needed. This approach maintains corridors, even if they are dead trees, throughout the large areas. The action alternatives were designed that connectivity would be retained.

Activities control during the goshawk breeding season (March 1 through September 30) within a Nest Area or Pile Flocking Family Area (PFA) can disturb nesting goshawks and cause nest failure, and possibly long term Nest abandonment. These activities include tree marking, road construction, logging. slash disposal and tree planting. With the mitigation measure to prevent disturbance to nesting goshawks implemented failure or abandonment would be avoided.

The treatments would also affect prey habitat for raptors and other carnivores. Ground disturbance activities would destroy small mammal nests and reduce cover for small mammals and birds. This may be expected to predation for a short time, until they move out of the area and seek cover in new

The composition of prey species would also change with the treatments. Larger openings (greater than four acres) would benefit small prey species such as band-tailed pigeon, mourning dove, and northern flicker (Reynolds et al. 1992, pg 17). Larger openings would reduce habitat for prey species needing openings smaller than 4 acres such as blue grouse, chickhearms, and mantled squirrels (Reynolds et al. pg 17).

Treatments in the Deer Creek area would increase forage for elk and deer but would reduce cover. This is an important consideration for the specific area, as the treatment cover would be adverse for elk calving and deer fauning. Because deer tend to be more bonded to sites for fauning, the effect would be greater to deer. The increased forage would be beneficial for lasturing elk and deer where cover is adjacent to it.

Space Ecosystem Recovery Project

Space Ecosystem Recovery Project
Treatments in the Hancock Peak Focus Area are planned to reduce tree density to prevent bark beetle infestation. If the area is not harvested, the harvest treatment would be the same as the other harvest Focus Areas (salvage). This would result in less cover for big game and other wildlife and further reduce the suitability of the area to support nesting raptors.

The aspen stands planned for regeneration likely would be smaller or larger than those depicted on the maps presented in this document because some would be treated rather than stands. The acreage used in these analyses is the largest presented and mapped. Therefore, the reduction in aspen habitat would be somewhat less than presented here.

PROPOSED ACTION

DIRECT/INDIRECT EFFECTS: The following effects are described for wildlife species discussed under Chapter Three. Some species are grouped together because similar harvest patterns and requirements. For more information regarding the effects of timber harvest and prescribed burning on these species, refer to Effects of Timber Harvest on Selected Wildlife Species (August 1977) and Effects of Prescribed Burning on Selected Wildlife Species (Summers 1977b).

Threatened and Endangered Species

Peregrine Falcon

No activities would take place within one mile of the known nesting cliffs in or near the SERP area; therefore, this General Protective Measure (USDI 1994) would be followed.

The principal areas where peregrines forage would not be directly affected with the Proposed Action, but areas immediately adjacent to these areas could cause some displacement due to noise, dust, and presence of people and machinery.

Vegetation changes from the Proposed Action within ten miles of the nesting cliffs would affect forested habitats and not meadows, parklands, wetlands/riparian habitats or shrublands where peregrines forage. Forested edges would change due to timber harvest activities and burning. The meadows, parklands and riparian areas would be expected to continue to provide prey. In the long-term forested areas would regrow, naturally occurring mortality would occur, and prey would be expected to be maintained.

In summary, peregrine falcons would be affected by actions of this alternative (forestation displacement) but there would be no effects to peregrine viability.

Southwestern Willow Flycatcher

The activities in the Proposed Action would not affect southwestern willow flycatchers or willow habitat directly. The new forage created by harvest and burning may provide additional forage for livestock away from riparian areas, particularly for cattle. This may allow willows to grow with greater structure in a few areas. This is not expected to be consequential or measurable because the nature of cattle is to prefer riparian areas for foraging, watering and nesting. The vegetative changes from harvest in the spruce would increase sediment (see Hydrology), which would increase risk of adverse effects in streams in poor condition. For further information, see the Riparian Habitat Conditions section below and the Hydrology discussion.

Mexican Spotted Owl

The Chicken Head prescribed burn and Steam Pump harvest activities are the activities that would take place closest to the documented occurrences. The Chicken Head burn would take place in the fall, which would be outside the nesting season for Mexican spotted owls. Because of concerns with smoke and the Town of Brian Head, Chicken Head would be burned when winds would blow the smoke to the north or northeast. This would blow smoke away from the Mexican spotted owl locations as well, however, would blow smoke towards a known goshawk nest on a spring day during the summer months. Smoke from the burn. It is far enough away that a nest disturbance would not be likely, should there be a nesting pair of owls.

The Proposed Action was designed in order to maintain corridors for Mexican spotted owls to move from different cover types. Because of the bark beetle infestation and spruce mortality, some of these corridors are dead trees. However, there are also areas of aspen that have not been affected that also provide cover and connectivity between areas.

Environmental Consequences

Because of the spruce mortality in the SERP project area, some of the recovery plan guidelines cannot be met. Large diameter trees are first hit and killed by spruce bark beetle, and are subsequently being removed to reduce risk of further infestation. Therefore, large diameter trees will become increasingly scarce. The prescribed burn would reduce five large trees in these areas. These areas would not be salvaged after the burn, therefore would provide abundant stumps and down wood for prey should they remain standing. The fires are intended to be stand replacing, therefore would be intense.

Sensitive Species

Three-toed Woodpecker

The effects of the Proposed Action on nesting and foraging habitat is summarized on Table 4-9. With the Proposed Action treatments would occur on 2,872 acres of conifer (primarily spruce) and 1,013 acres of aspen. The prescribed burn would occur on 2,974 acres of spruce and 921 acres of aspen. An additional 41 acres would be treated in DFS control. This comprises approximately 25% of the spruce-fir habitat in the project area and 24% of the aspen on National Forest System land.

Table 4-9: Summary of Effects on Nesting and Foraging Habitat for the Proposed Action

<table>
<thead>
<tr>
<th>TREATMENT TYPE</th>
<th>COVER TYPE</th>
<th>ACRES</th>
<th>NESTING HABITAT</th>
<th>FORAGING HABITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvage</td>
<td>Spruce-fir</td>
<td>1,211</td>
<td>Reduce</td>
<td>Reduce</td>
</tr>
<tr>
<td>Sanitation</td>
<td>Spruce-fir</td>
<td>1,661</td>
<td>Reduce</td>
<td>Reduce</td>
</tr>
<tr>
<td>Prescribed burn</td>
<td>Spruce-fir</td>
<td>2,974</td>
<td>Reduce</td>
<td>Short term improve</td>
</tr>
<tr>
<td>Prescribed burn</td>
<td>Aspen</td>
<td>921</td>
<td>Reduce</td>
<td>Short term improve</td>
</tr>
<tr>
<td>Clone treatment</td>
<td>Aspen</td>
<td>1,013</td>
<td>Reduce</td>
<td>Reduce</td>
</tr>
<tr>
<td>DFS zones</td>
<td>Spruce-fir</td>
<td>41</td>
<td>Reduce</td>
<td>Reduce</td>
</tr>
</tbody>
</table>

The burned spruce areas would have abundant stumps for 10 to 20 years or more until they fall or are blown down. Some stumps would probably remain longer in wind-protected areas. It is assumed that the salvage would be in locations with abundant dead trees, except in the Hancock area where the attempt would be to reduce density to prevent spruce mortality (unless mortality results from infestation regardless of treatment). Therefore, snag densities would be reduced in these areas.

The areas to be salvaged have a high percentage of dead trees. The Hancock Peak Focus Area would be such that canopy would be less than desired for suitable nesting habitat. The burned areas would also not be expected to provide nesting habitat (but would provide good foraging habitat in the short term). Therefore, nesting habitat would be reduced by 1,354 acres in the aspen and 5,846 in the spruce habitat types. These open stands would not provide suitable nesting habitat for three-toed woodpecker. Foraging could still occur in these stands if not far from suitable nesting habitat (aspen, for example).

With the Proposed Action there would remain nine areas between 148 and 505 acres of spruce-fir habitat. Many of these areas are adjacent to aspen stands which would increase their size for maintaining three-toed woodpecker habitat. Cedar Ridge is the only patch where there is no adjacent aspen.

In the Readless Focus area four forested blocks ranging from 148 to 334 acres of spruce-fir would remain after the burn. Cedar Ridge would maintain three areas of 255, 366 and 318 acres each of spruce-fir. The Hancock Peak, Burnt and Steam Pump areas would become fragmented and not provide any areas over 100 acres of spruce-fir. One area of 202 acres would remain in the Lower State area. Blowhard would maintain 505 acres of spruce-fir. In Cedar Breaks National Monument a stronger patch of about 1,360 acres would remain. With this alternative, one area would remain that meets the recommended 525 acres of untraded areas for three-toed woodpeckers (Goggs et al. 1987) but all nine areas would meet the territory size determined for three-toed woodpeckers for Colorado (Baldwin 1960, Kopilis 1967). This alternative would fragment the habitat most of all the alternatives and would provide the least amount of large unharvested blocks.
The treatment areas are within five goshawk territory Foraging Areas. Activities in the Proposed Action would displace foraging goshawks in the short term. This displacement would be temporary, during 1997 through 1999, and would vary depending upon what Focus Area is treated during different periods of time. It would be possible that all Focus Areas would have activity in them at the same time with either cutting, burning, slash disposal, planting or site preparation. The greater number of activities operating at the same time or during the same nesting season, the greater the risk of affecting goshawks adversely.

Depending upon the availability of prey near nests and other activities going on in the area, displacement may cause more energy expenditure to obtain prey for young. During a year with low prey abundance, this could affect nest productivity. In years with abundant prey, there may be no effect on productivity.

The mitigation measure regarding timing restrictions in goshawk Nest Areas and PFA's in Chapter 2 (Number 18) prescribes a process to determine if a timing restriction would be implemented. If a timing restriction is not implemented, there may be a high risk of nest failure and territory abandonment. The more goshawk Nest Areas and PFA's where disturbances are allowed in the nesting season, and the greater the acreages where PFA's and Foraging Areas become less suitable, or unsuitable with harvest or beetle infestation, the higher the risk of adverse effects to population viability on the District.

Table 4-10 shows the estimated changes of VSS in the aspen cover type, reflecting the amount of area changed from VSS 4.5 and 6 to VSS 1. These data are based on the assumption that the clone treatments would occur in the VSS 4.5, 5, and 6 treatment areas would become VSS 1. In the aspen cover type, the Proposed Action would increase area in VSS 1 and 2, which is desirable for proper functioning and providing long term habitat. In the short term, however, existing nesting habitat would be reduced.

Table 4-10. Percent of the SERP Area in Each VSS of Aspen Cover Type with the Proposed Action.

<table>
<thead>
<tr>
<th>COVER TYPE</th>
<th>VSS 1, 2 (desired)</th>
<th>VSS 3, 4, 5 (desired)</th>
<th>VSS 6 (desired)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen</td>
<td>26%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Existing condition</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
</tbody>
</table>

In the cover type types, the spruce beetle infestation and mortality, is causing increased area to be classes as VSS 1, even though vertical structure of dead trees still exists. Because the amount of dead trees are so rapidly changing, it is difficult to estimate accurately. VSS 4.5 and 6, based on live tree data, are decreasing below desired amounts for goshawk habitat, both nesting and foraging because of the spruce mortality. VSS 1 is increasing above desired amounts. It is estimated that VSS 1 would increase to at least 43% from the vegetation management treatments, but would be higher with changes from the spruce mortality. Considering only the vegetation management treatments, VSS 4.5, and 6 would decrease to approximately 36%. With the spruce mortality this would drop further.

It is important to note that there are many stands in the project area with dead trees which are classed as VSS 1 by live tree data that may still be re-usable, even though not necessarily desired as next trees and Nest Areas. Dead stand harvests do not meet next stand characteristics. In other words, goshawks may nest in dead trees and dead 'nest Areas,' but would not likely nest in areas that have been salvaged or sanitation treatments that reduce tree diameters and open stands with little canopy cover. An additional method to estimate acreage with suitable diameter trees to provide nesting habitat by using stand data on trees on size classes by cover type shown on Table 4-11. These data also indicate that next sites are a limiting factor in the project area. The goshawk habitat in this future the large size trees provide, they do not succumb to the bark beetle.

Guidelines for goshawk management (Reynolds 1982) include maximum opening sizes as well as VSS. For spruce-fir habitats the maximum size recommended is one acre in both the Post-Logging Family Area (PFA) and Foraging Area. Salvage operations would create openings larger than one acre because there is much mortality in the spruce and spruce-fir habitats. Therefore, PFA's and foraging areas would become less suitable and perhaps unsuitable with salvage. Of the five Foraging areas, two would be affected the most, one with the Chicken Head burn and the other with the Lower/State and Bunker harvest and aspen clone treatments. PFA's of these same stands would also be affected with Chicken Head burn and the Lower/State activities.

Without harvest, the dead trees would provide more suitable foraging and PFA habitat than harvest for about 20 to 40 years. Trees would gradually (or many at time with a large wind) fall down creating openings larger than one acre, also creating less suitable or eventually unsuitable habitat also. With harvest, regeneration would occur in about 20 years ahead of areas without harvest. Therefore, in the short term, salvage would not maintain PFA's or Foraging Area as well as no harvest, and in the long term, salvage would move stands toward replacement habitat faster than no harvest by about 20 years.

Spotted And Western Big-Eared Bat

The limiting factor for these bats is habitat for roosting, hibernation and reproduction. Caves and mines would not be affected with the Proposed Action, however, stages in large diameter trees (used for roosting) would be reduced.

Bats may use the project area for foraging, but they are nocturnal and project activities will take place during the day. Therefore, there would be no direct effects from this alternative (including metal and follow-up harvest or cutting, road construction, re-construction or closing, planting, and other associated activities).

There would be an increase in forested edge areas used for foraging by bats as a result of created openings. There would be a decrease in total numbers of flying insects (bats particularly) because of loss of mature, bug infested trees in the project area. The high reproductive rate of insects would ensure that this change would only be temporary.

These would be a decrease in flying insects associated with late successional forests, and an increase in insects associated with early successional forests. Neither of these effects would change populations of bats since this is one of many foraging areas within a two mile radius of the potential roost sites. Thus, no long term effects are anticipated with the Proposed Action.

Flammulated Owl

Potential nesting habitat would decrease in the spruce-fir and aspen cover types with the Proposed Action due to the decrease of the number of acres with large diameter trees, or VSS 5 and 6. This effect in the aspen-fir is not expected to be consequence to flammulated owls since their primary habitat is ponderosa pine and the project area has none of this habitat type. They have been documented nesting on other cover types, such as aspen, but not in spruce-fir (Reynolds in 1984). A

Amenagement would reduce potential nest sites in the short term, but would maintain this habitat in the long term. If the aspen stands are not treated, they risk becoming further encroached by conifers and losing the close irreversibly.
increased foraging habitat. In the long term, seedlings and saplings would become larger trees, shading out the grasses and forbs providing food for the project area.

Down wood would provide perches for look-out sites and scattered groups of large trees would provide leading sites throughout the project area. The result should be sufficient suitable foraging habitat to maintain potential turkey needs and use in the project area.

Removal of large diameter trees would reduce roosting sites for turkeys in the treated areas.

Treatment in the aspen stands would also increase grasses and forbs for foraging turkeys. Increased insects would be expected with this change in vegetation, which would provide foraging habitat for pouls.

Northern Flicker

In the short term and long term aspen stands would be used by flickers for nesting and foraging as well as the spruce-fir stands within the project area. Non-forested areas would also be used for foraging. Thus, there would be sufficient habitat retained to maintain flicker populations in the project area in the long term.

The 1934 acres of aspen treated with this alternative would reduce nesting habitat for flickers in those areas until such time as new snags are created. This is estimated to be approximately 100 years.

With the mitigation measure to leave three snags per acre greater than 18" in diameter and down woody material would be provided for nests and insects for foraging. Ground disturbance by tractor logging and skid trails and temporary roads would destroy ant colonies, however, ant numbers are not likely limiting in the project area and designated skid trails would minimize the disturbed areas. There would be an increase in number of openings for foraging, with a concomitant increase in shrub and forb and grass insects. Thus, this action would reduce nesting habitat but maintain foraging habitat. Compared to the other alternatives the Proposed Action would reduce nesting habitat the most.

Other Species Of Concern

Blue Grouse

Timber harvest and other associated activities (road construction and reconstruction, planting and road closures) that take place during the summer and fall would not affect blue grouse use as much as with activities taking place during winter (November through March). Tractor units could be logged during the winter when blue grouse would be present. If blue grouse were to use these areas they could be displaced while activities are occurring. Large diameter trees used for roosting and down logs used for protection of nests would be decreased with this alternative (see Table 4.12). Areas where this would have the greatest effect to blue grouse would be along ridges.

Northern Flying Squirrel

Timber harvest or burning trees that contain flying squirrels would be inadvertently disturbed, winter or summer. If young are present in the tree they would likely perish. In winter, extra energy would be expended to find a new roost site. During this period they would be vulnerable to predation.

Timber harvest and burning would reduce habitat for flying squirrels. The primary effect would be the loss of snags and large diameter trees that would provide future snags. This would occur in both aspen and spruce-fir plant communities. The Proposed Action would have the greatest potential effect on this component due to the larger acreage treated.

Bats

Timber harvest activities would reduce numbers of bats, which would reduce availability of roost sites associated with trees (hollow trees and loose or exfoliating bark). Reduction of hollow trees would reduce roosts for the California myotis, long-eared myotis, and Brazilian tree-sailed bat. Reduced numbers of trees with loose bark would reduce roosts for California myotis, western small-footed bat, long-eared myotis, and long legged myotis.

Changes in forested canopy would affect foraging habitats for Allen's big-eared bats. Quantities of insects as food for bats is not anticipated to change, however, competition may change with additions of grass, forbs and shrubs. Increases in grasses, forbs and shrubs would be expected to increase mohfs, on which some bats feed. Increased low brush would increase foraging habitat for western small-footed myotis.

Merganser's Turkey

The closest treatment to where turkeys are most found are the Chicken Head prescribed burn and Spruce's Focus Area. The burn would provide increased做梦 for turkeys and grasses and forbs as well. Cover would be lacking in these areas, but abundant mixed conifer and aspen would provide shelter.

In the short term, the removal of trees would increase understory forbs and shrub growth increasing insect numbers and herbaceous material for foraging turkeys. The amount of small created openings would increase providing
CUMULATIVE EFFECTS: Harvest has already occurred on 8,150 acres or 23% of the forested area in the planning area within the last 20-30 years (see Appendix [16]). When combined with 80,000 acres of the harvest, DFS zone, and burning with this alternative, 30% of the SERP area and 46% of the forested acreage in the CEA would be treated on National Forest land.

Future foreseeable timber harvest activities in the CEA, with potential affects to wildlife, would be additional harvests in the SERP area, the Ponderosa Pine Recovery Project (PFRP) and the Mixed Conifer Recovery Project (MCRP). These will have separate analyses. It should be noted that larger treatments in the spruce-fir forests in the same watersheds may likely reduce the impacts for treatments of the same nature in the additional SERP harvests. PFRP and MCRP areas because of the increased difficulty meeting wildlife requirements, standards and guidelines that come with timber harvest and burning treatments.

During the watershed assessment process, risk of potential adverse effects were estimated based on the existing condition of habitat components needed by all the species analyzed (some except blue grouse and northern flying squirrel).

The results of these assessments are shown on Table 3.1 by each watershed. For further reference, refer to the watershed assessment for each watershed in the Project File (Exhibit 36).

The risk rating assessed for cumulative effects to peregrine falcon would not likely change with the Proposed Action. The risk rating for Parowan and Upper Asar watersheds was based on existing potential disturbances within one mile of an occupied cliff. The Proposed Action would not affect within one mile of an occupied cliff. Foraging habitat would not be directly affected with the proposed treatments, but the adjacent forested edges would be understory being changed which could cause peregrines to change foraging habits for the time period during activities (1997 through 1999). Although this acreage, when combined with other acreage being treated in the SERP area is notable, it is not likely to adversely affect peregrines because the activities would not likely occur all at once.

Cumulative effects of the Proposed Action on southwestern willow flycatcher are not likely. The proposed treatments are on summer or winter habitat. The possile effect of livestock grazing more in newly created forage areas from the treatments within and outside the SERP area is not anticipated to be consequential.

Mexican spotted owl habitat was rated moderate in Parowan watershed because of the extensive habitat modification with urbanization, ski resort facilities, spruce mortality and logging. The Chicken Head protected buza and Steamboat, which would add to this effect. Large diameter trees would be decreased further and could also be reduced. The Steam engine salvage was designed to maintain a connected cover of trees (even though dead) for Mexican spotted owl and other wildlife. This strip connects to those left in the South Valley Timber Sale area.

Therefore, there would be cumulative effects to spotted owl habitat, but these are not expected to affect spotted owl viability.

Informational Notes

Results of 1997 wildlife field surveys are incorporated in the biological assessment for threatened, endangered and proposed species and in the biological evaluation for sensitive species. These data do not substantially change the environmental conditions described in this chapter for wildlife species and habitats.

The Draft did not include discussion regarding consequences of the alternatives to bald eagle. That discussion can be found in the biological assessment and is briefly described here.

Bald Eagle

Since no bald eagle nests occur within the Dixie National Forest, there would be no effects of any of the action alternatives to nesting. Since no bald eagle nests are known within the SERP area, the harvest activities would not disturb nesting. Images would be maintained in the project area on locations where no harvest is planned, or at least within the treatment areas in the action alternatives, and therefore, would be available for potential nesting. No effects are anticipated to potential prey with any of the action alternatives or the No Action Alternative. Also, neither body would not be affected and perches would be maintained.

Table 4-14. Watershed Assessment Risk of Adverse Effects to Wildlife Species by Watershed.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>PANQUICH LAKE</th>
<th>PAROWAN</th>
<th>UPPER ASSAY</th>
<th>UPPER MAMMOTH</th>
<th>COAL CREEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peregrine Falcon</td>
<td>Low</td>
<td>Moderate</td>
<td>Low to Moderate</td>
<td>Low</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Southwestern Willow Flycatcher</td>
<td>Moderate to Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low to Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Mexican Spotted Owl</td>
<td>Low</td>
<td>Moderate to High</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Utah Prairie Dog</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Spotted & Western big-eared bats</td>
<td>Low to Moderate</td>
<td>Moderate to Low</td>
<td>High</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Northern Goshawk</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Flammulated Owl</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Three-toed Woodpecker</td>
<td>Low to Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Elk and Deer</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>Low to Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Wild Turkey</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Bald eagle, Utah prairie dog, and wild turkey are assessed as low in all watersheds in the CEA because of limited use of the area. There would be no cumulative effects to bald eagles with the Proposed Action because their habitat would not be affected by the activities and the risk rating is already low. The Proposed Action would affect turkeys. In the treatment areas are not considered prime turkey habitat, therefore, cumulative effects would be unlikely.

The risk of cumulative effects to northern goshawk is moderate to high, particularly in the Panquich Lake and Upper Mammoth watersheds due to reduced nest sites, snags and down logs. Lack of large diameter trees and snags were also reasons for moderate and high ratings for spotted and western big-eared bats, flammulated owls and northern flickers. The ponderosa pine habitats in the watersheds have been previously harvested and consist mainly of young forest conditions. Very few large diameter trees are present. Therefore, the cumulative effects of removing large trees in the watershed with the Proposed Action creates a high risk of adverse effects to species dependent on these large trees (goshawks in particular). Presence of cases that are being visited by recreationalists contributed to high ratings for bats. Blue grouse and northern flying squirrels also need large diameter trees and snags.

The Proposed Action would reduce large diameter trees and snags, and create larger openings, increasing the risk of cumulative effects more than the other action alternatives in the short term. In the long term, this alternative would regenerate more future potential large diameter tree habitat faster (by about 20 years) than the other alternatives.

Lack of large diameter trees not only affects "recruitment" of future snags (which are now green trees at various ages, but also reduces nestling habitat for northern goshawks. Ponderosa pine habitats have been seriously depleted of large diameter trees. Mixed conifer habitat might be providing nesting areas for goshawks until larger diameter trees can grow into suitable nest sites. Future Proposed Actions in the mixed conifer and ponderosa pine cover types will need to seriously consider these relationships.
Activities in the Lower State and Bunker focus areas, combined with other past and present activities, would cause a high level of disturbance of one of the five goshawk territories. This territory has been one of the most productive of those territories in the CEA. It is possible that territory abandonment would occur in the future due to spruce mortality even without harvest. The Proposed Action would cause this risk of abandonment to be incurred sooner and more certainly, than if no activities were planned.

Lack of stumps also contributed to three-toed woodpecker’s moderate rating. Reduced options for providing large tracts of unharvested areas for three-toed woodpecker also contributed to this rating. Although there would be large tracts left for these woodpeckers, each harvest reduces options for providing this habitat. After the spruce beetle infestation subsides, three-toed woodpecker populations would be expected to decline. Three-toed woodpeckers are opportunistic feeders and have been observed in mixed conifer and ponderosa pine stands. These areas may be important in providing habitat during the period of time needed to grow a new spruce forest. Future harvest treatments in ponderosa pine and mixed conifer habitats should consider this potential interaction since reducing these options further could lead to adverse cumulative effects.

Retaining snags in the SERP area, therefore, is very important. Leaving more than the average three per acre equal to or greater than 18” dbh will likely be necessary to maintain three per acre after all activities have been completed because of hazard tree removal during logging and illegal woodcutting. Clumps of snags, which may remainstanding longer than individual trees, placed away from easy access from woodcutters would stand a greater chance of longevity.

Habitat conditions for elk and deer in the cumulative effects area is low for cumulative effects except Parowan. Parowan has high urbanization, road density, and the ski resort area.

NO ACTION ALTERNATIVE

DIRECT/INDIRECT EFFECTS. With the No Action Alternative, the dead spruce stands would remain; no harvest would occur. No aspen would be regenerated and no attempt to test a harvest regime against spruce bark beetle would occur. The large amounts of snags and down logs would increase habitat for small mammals and associated species. Based on studies conducted in other spruce forests incurring bark beetle infestation and mortality, the majority of the snags would remain standing for 20 to 40 years before falling down (USDA 1974A).

Windthrow would be expected at an average rate between 1.5 and 1.3 percent per year (USDA 1974 page 12). On Bunker Ranger District, Dixie National Forest, windthrown in a pure spruce stand was 10 percent after about 30 years after the beetle infestation (Mielke 1950 in USDA 1974).

After that time, large amounts of dead wood would provide increased habitat for small mammals and insects but may make capture of small mammals by predators more difficult because of the abundant wood for cover. Movement through this dead wood by larger animals may be more difficult in some areas as the snags fall and pile up (USDA 1974). Elk and deer would likely travel in locations that avoid these areas. Fallen trees that touch the ground would decay in about five years on the part touching the ground and longer for parts of the tree not touching the ground (USDA 1974 page 12).

Abundant snags and down logs in the spruce stands would increase the risk of fire. Although beetle-killed spruce are potential lightning rods and the massive number of dead trees would create a large fuel buildup, the fire hazard would not be substantial because summer lightning is usually accompanied by rain (USDA 1974). The importance of fire hazard in spruce for is less in other timber types (USDA 1974 page 13).

Fragmentation of dead stands would be minimized with the No Action Alternative. More variety of block size would be retained in the short term (20-40 years).

Initially, summer forage for deer and elk would improve in dead stands, due to more light reaching the forest floor. This improvement would continue until the site is fully occupied and forage would not decrease in quantity until new trees begin competing with this new vegetation and are seeded out (USDA 1974). The aspen stands would continue to become encroached by conifers until the clone is no longer able to regenerate and die out. Species that depend on this habitat would be losing this habitat irreversibly in those site specific locations.
ALTERNATIVE A AND B COMPARED TO THE PROPOSED ACTION
DIRECT INDIRECT EFFECTS.

Alternative A is much like the Proposed Action except for the Spruces Focus Area would not be harvested. The Chicken Head burn would not take place and the Lower/Lower State aspen treatment would only be 67 acres rather than 240 acres. In general this would leave more areas undisturbed with dead spruce, would regenerate less aspen, and would leave more area with potential for stand replacing fire (on the Chicken Head Focus Area).

Alternative B is much like the Proposed Action except for the Roadless Focus Area would not be burned. In general this would leave more areas undisturbed with spruce, would regenerate less aspen, and would leave more area with potential for stand replacing fire (on the Roadless Focus Area). The Roadless area would not be burned unless infected by bark beetle and subsequent mortality ensures.

The Proposed Action would treat the largest total acreage with 1934 acres of aspen and 5846 acres of spruce. Alternative A would treat the least amount of aspen and Alternative B would treat the least amount of spruce. With the Proposed Action the smallest blocks of unharvested areas would remain, while Alternative B would leave the most acreage in blocks (fragmentation). More acreage harvested would benefit species such as deer and elk due to more forage created, whereas, would reduce important habitat components for species such as goshawks and three-toed woodpeckers.

There would be no measurable difference between the effects described in the Proposed Action and Alternative A or B for southwestern willow flycatcher because no potentially suitable habitat would be affected.

Trees equal to or greater than 20\(^2\) dbh, need for northern goshawk nesting habitat, turkey, rough trees and future large diameter trees for flying squirrels, are below desired amounts in the SERP area and are continuing to decrease due to the spruce mortality from the beetle infestation and subsequent timber harvests. A comparison of the present area with tree size classes is shown on Table 4.15. A large proportion of the forested area consists of trees 90 inches to 15 inches. Providing these do not succumb to the beetle infestation, they will become larger trees in another 20 to 50 years. If the beetle infestation progresses as it has in the last five years, most of these trees will die and the shortage of large diameter trees would be extended for 100 to 200 years. The Proposed Action would reduce acreage with large diameter trees the most because of the larger amount of area proposed for harvest. Alternative A harvests less, therefore, would maintain more area with large diameter trees in the short term. Alternative B would provide the largest acreage even if the Roadless does not need to be burned.

Table 4.15. Percent of Surveyed Acres with Tree Diameter Sizes by Alternative.

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>SMALL (1" - 4")</th>
<th>MEDIUM (5.0" - 8")</th>
<th>LARGE (9.0" - 15.0")</th>
<th>VERY LARGE (16" plus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>95%</td>
<td>15%</td>
<td>62%</td>
<td>18%</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>22%</td>
<td>19%</td>
<td>50%</td>
<td><1%</td>
</tr>
<tr>
<td>Alternative A</td>
<td>16%</td>
<td>19%</td>
<td>59%</td>
<td>4%</td>
</tr>
<tr>
<td>Alternative B</td>
<td>15%</td>
<td>19%</td>
<td>59%</td>
<td>7%</td>
</tr>
</tbody>
</table>

A summary of a comparison of VSS by alternative is shown in Tables 4.16 and 4.17. Table 16 is an estimate of the change in VSS in the conifer cover type from vegetation management activities only, and does not consider spruce changes occurring presently from spruce mortality. Therefore, the actual percent in VSS 1 would be higher and VSS 4.5 and 6 would be lower than shown, but the structure from dead trees would still remain in stands undisturbed, but considered VSS 1 by live tree data. The Proposed Action would leave fewer VSS 1 areas where vertical structure from dead trees is still present. In the long term the Proposed Action would regenerate the most acreage faster than the other alternatives, and Alternative B would regenerate the least.

The increase in VSS 1 through harvest, close treatment and burns would have a beneficial effect for elk and deer, as shown by Table 4.18. Whereas this would reduce nesting habitat and create larger openings than desired for the northern goshawk, flattened owl and flying squirrel. Trees with diameters suitable for nesting would be reduced by all action alternatives, with the Proposed Action reducing this habitat the most in the short term. Alternative B retains the most acreage in the short term with very large trees while allowing treatments.

Table 4.16. Comparison of Conifer VSS estimates from only vegetation treatments (not beetle mortality), by Alternative.

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>VSS 1</th>
<th>VSS 2</th>
<th>VSS 3</th>
<th>VSS 4, 5, 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>32%</td>
<td>4%</td>
<td>11%</td>
<td>53%</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>43%</td>
<td>4%</td>
<td>15%</td>
<td>38%</td>
</tr>
<tr>
<td>Alternative A</td>
<td>40%</td>
<td>4%</td>
<td>15%</td>
<td>41%</td>
</tr>
<tr>
<td>Alternative B</td>
<td>37%</td>
<td>4%</td>
<td>15%</td>
<td>44%</td>
</tr>
<tr>
<td>Desired</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Table 4.17. Comparison of Aspen VSS by Alternative.

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>VSS 1, 2</th>
<th>VSS 4, 5</th>
<th>VSS 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>24%</td>
<td>74%</td>
<td>1%</td>
</tr>
<tr>
<td>Alternative A</td>
<td>10%</td>
<td>82%</td>
<td>1%</td>
</tr>
<tr>
<td>Alternative B</td>
<td>14%</td>
<td>89%</td>
<td>1%</td>
</tr>
<tr>
<td>Desired</td>
<td>40%</td>
<td>39%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Increasing acres in VSS 1 increases grass, forbs and shrubs. This would benefit northern flickers, elk, deer, turkeys, blue grouse northern flying squirrel, fumigated owls and bats, depending upon the sizes of the openings. Larger openings would benefit northern flickers, elk and deer, whereas the rest of the species above would benefit from smaller openings (four acres or less). All of the action alternatives would create openings larger than four acres; the Proposed Action would create the most large openings. Bats, who forage along edges, may not be affected by opening size, and may benefit from increased insects supported by the increased grasses, forbs and shrubs. However, snag reduction from harvest would reduce potential but roosting habitat.

VSS 2, seedlings and saplings, is low in the SERP area. This would not change in the short term from any of the alternatives. The action alternatives would create more VSS 1 in aspen which would become VSS 2 in the long term. Because of the spruce mortality, it is expected that acreage in the VSS 1 will continue to increase until the infestation dies down. In the long term this would create more VSS 2, 3en 3 etc.

Results of the watershed analysis showed that most of the conifer cover types had amounts of VSS 4, 5 and 6 below desired amounts. This was especially apparent in the ponderosa pine in the Parowan Lake Mammoth and Upper Asay watershed and in the spruce fir in the Parowan, Paragon Lake, and Upper Mammoth watersheds. The mixed conifer areas provided the greatest amount of VSS 4.5 and 6, particularly in the Paragon Lake and Upper Asay watersheds.

The importance of discussing the percent of VSS 1, 5 and 6 in the watersheds is apparent when discussing the limiting factor for the northern goshawk, fumigated owl, Mexican spotted owl, bats, and other species needing large diameter trees (and future large diameter snags). The spruce mortality and harvest trade off is that the reducing the large tree component used by these species. Fast harvest treatments, particularly in the ponderosa pine, have reduced this component also such that over the landscape it is a considerable limiting factor. Because standing dead trees have more value to the species needing large diameter trees than few trees (as with harvest), it is important to maintain blocks of unharvested areas to help carry these species through until the landscape has a greater amount of these VSS's.
This same principle is true for three-toed woodpeckers. The recommended size of leaf areas for three-toed woodpeckers is 126 acres (Goergen et al. 1987, Goergen 1997 pers. comm.). Alternative B leaves the largest unharvested block, with no fragmentation, to help provide this habitat. The Proposed Action leaves the least amount of unharvested blocks, in both size and number.

Percent cover retained for elk and deer would still be within desired amounts with all action alternatives. The watershed's mowed Pleistocene cover would be within desired amounts. The action alternatives would result in these amounts still being within the desired condition. Road density would remain above Forest Plan standards and guidelines with all alternatives. The only watershed with road access above standards and guidelines is the Upper Assay watershed. The action alternatives connect and close roads in the other watersheds. Thus, all the alternatives would not change the existing condition of 2.4 miles per square mile in the Upper Assay watershed.

Table 4-1B. Comparison of Elk Cover and Road Density by Alternative.

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>PERCENT COVER</th>
<th>ROAD DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>24%</td>
<td>2.43 mi sq mi</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>98%</td>
<td>2.49 then 2.33</td>
</tr>
<tr>
<td>Alternative A</td>
<td>62%</td>
<td>2.44 then 2.33</td>
</tr>
<tr>
<td>Alternative B</td>
<td>64%</td>
<td>2.49 then 2.33</td>
</tr>
<tr>
<td>Desired</td>
<td>30% to 40%</td>
<td>2.0 or less</td>
</tr>
</tbody>
</table>

Gifts, rock, and talus habitats would not be affected differently by any of the alternatives. Therefore, peregrine falcon nesting habitat, for example, would not change with any of the alternatives. The nesting habitat for peregrine falcons would change with all of the alternatives. This change in vegetation would be expected to provide prey species although the composition may change from species inhabiting later seral classes to those inhabiting earlier seral stages.

The disturbance factor content and the current projects going on in the SERP area at once may have a greater effect on species such as peregrine falcons, deer, and elk than the changes in vegetation. The disturbance factor thus is relative to the northern goshawk. Therefore, the Proposed Action would have the greatest potential for high risk of effects of disturbance. Of the action alternatives, Alternative B has the least amount of disturbance. Alternative D and Alternative B would be intermediate between the Proposed Action and Alternative A.

Regenerating aspen would reduce habitat for species such as three-toed woodpeckers and northern flickers in the short term. However, if not treated, aspen clones would die out and be lost irreversibly in the long term. The Proposed Action treats the most aspen, and Alternative A treats the least amount. Alternative B treats an intermediate amount of aspen when compared to the other action alternatives.

The acreage with desired amounts of stags and down logs needed to support species such as the Mexican spotted owl, three-toed woodpecker, northern goshawk, bats, flammulated owls, turkeys, flickers, blue grouse and northern flying squirrels would be reduced the most with the Proposed Action. This action alternative has the most acres, and the treatments would likely require stage numbers. The prescribed burns may create some stags, but overall, the amount left standing is expected to be less than with no treatments.

Increasing acreage in VSS 1 increases grass, forbs, and shrubs. This would benefit northern flickers, elk, deer, turkeys, blue grouse, northern flying squirrels, flammulated owls, and bats, depending upon the ages of the openings. If larger openings would benefit northern flickers, elk, and deer, whereas the rest of the species above would benefit from smaller openings 4 acres or less. All of the action alternatives would create openings larger than four acres. The Proposed Action would create the most large openings. Bar, who forage along edges, may not be affected by opening size, and may benefit from increased insects supported by the increased grasses, forbs, and shrubs.

The amount of area that would be treated with the Proposed Action combined with past and present activities would be 46% of the forested areas on Forest System land. Alternative A would treat 41% of the forested areas. Alternative B would treat 41%, Alternative C would treat 30%, and the No Action Alternative would remain at 23%. The larger the acreage treated, the higher the risk of disturbance to wildlife both in habitat changes and in disturbance to human activities. Of the action alternatives the Proposed Action has the highest risk of disturbance and Alternative B has the lowest, based on acreage proposed for treatment.

CUMULATIVE EFFECTS: Harvery has been predicted on 8,150 acres or 23% of the forested area in the planning area over the last 20 years (see Appendix H). When combined with the harvest, DES zone, and burning with Alternative A, 27% of the SERP area and 41% of the forested acreage in the CEA would be treated on National Forest land. With Alternative B, 25% of the SERP area and 30% of the forested acres in the CEA would be treated on National Forest land. The Proposed Action would be 30% and 41% respectively. However, this applies to the watershed and analysis and risk of adverse effects to wildlife is discussed below.

Future recreational timber harvest activities in the CEA, with potential affects to wildlife, would be the same as described in the Proposed Action.

The risk rating assessed for cumulative effects to peregrine falcons would be the highest with the Proposed Action and the lowest with Alternative A. This is based on the amount of acreage harvested and the opening size that would have activities associated with it. This could cause peregrines to change their foraging habitats for the time period during activities (1997 through 1999). Although this acreage, when combined with other action being treated in the SERP area is notable, it is not likely to adversely affect peregrines.

There would not likely be cumulative effects of the Alternative A or B on southwestern willow flycatcher. The proposed treatments are not within riparian or willow habitat. The possible effect of livestock grazing move in newly created forage areas from the treatments within and outside the SERP area is not anticipated to be consequential.

Mexican spotted owl habitat was rated moderate in Parowan watershed because of the extensive habitat modification with urbanization, sign and facilities, source mortality and logging. The Chicken Head prescribed burn and Steam Engine salvage with Alternative B (and the Proposed Action) would add to this effect. Large diameter trees would be decreased further and cover would also be reduced. The Steam Engine salvage in Alternative A and B as well as the Proposed Action was designed to maintain connected cover of trees even though the Mexican spotted owl and other wildlife. This strip connects to those left in the Sidney Valley Timber Sale area. Therefore, there would be cumulative effects to spotted owl habitat, but these are not expected to affect spotted owl viability.

Bald eagle, Utah prairie dog, and wild turkey are assessed as low in all watersheds, in the CEA because of limited use of the area. The bald eagle is a high risk with no proposed activity that would not be affected by the activities and the risk rating is already low. Alternative A and B would affect turkeys, but the treatment areas are not considered prime turkey habitat, therefore, cumulative effects would be unlikely.

The risk of cumulative effects to northern goshawk is moderate to high, particularly in the Parowan Lake and Upper Mammoth areas due to large diameter trees, stags and down logs. Large diameter tree openings were reason for moderate and high ratings for roosted and western birded-eared bats, flammulated owls and northern flickers. Presence of cavities that are being visited by reproductations contributed to high ratings for bats. Blue grouse and northern flying squirrels also need large deer etal trees and stags. Alternative A and B, as well as the Proposed Action, would reduce large diameter trees and stags, increasing the risk of cumulative effects more than the other action alternatives in the short term. In the long term, the Proposed Action would generate future potential nesting habitat faster by 80% to 20 years than any of the alternatives A. Average C would come in with the same estimation.

Lack of stages also contributed to three-toed woodpecker's moderate rating. Reduced options for providing large tracts of unforest areas for three-toed woodpeckers also contributed to this rating. Alternative B leaves the largest-sized blocks, and the Proposed Action leaves the least amount of large blocks. Diversity in the size of the blocks is least with the Proposed Action and greatest with Alternative B. Alternative A leaves blocks with the least distribution across the landscape.

After the spruce beetle infestation subsides, three-toed woodpecker populations would be expected to decline. Three-toed woodpecker are opportunistic feeders and have been observed in mixed conifer and ponderosa pine stands. These areas may be important in providing habitat during the period of time needed to grow a new spruce
Cedar City Ranger District
Dixie National Forest

Environmental Consequences

forest. Future harvest treatments in ponderosa pine and mixed conifer habitats should consider this potential interaction, since reducing these options further could lead to adverse cumulative effects.

Retention snags in the SERP area, therefore, is extremely important. Leaving more than the average three per acre could result in larger trees which will likely be necessary to maintain three per acre after all cut activities have been completed because of hazard tree removal during logging and incidental woodland cutting. Clumps of snags, which may remain standing longer than individual trees, placed away from easy access from woodcutters would stand a greater chance of longevity.

Lack of large diameter trees not only affects "recruitment" of future snags, but also reduces nesting habitat for northern goshawks. Ponderosa pine habitats have been seriously depleted of large diameter trees. Mixed conifer habitats have the following nesting areas for goshawks until larger diameter trees can grow into suitable habitat. Future Proposed Actions in the mixed conifer and ponderosa pine cover types will need to seriously consider these relationships.

Habitat conditions for elk and deer in the CEA as low for cumulative effects except Paroza. Paroza has high urbanization, road density, and the ski resort area.

RANGE RESOURCE

PROPOSED ACTION

DIRECTINDIRECT EFFECTS: Sanitation and salvage within timber stands would increase livestock forage within the project area. Sheep have the potential to damage both planted conifer stands and natural stands. Future Proposed Actions in the mixed conifer and ponderosa pine cover types will need to seriously consider these relationships.

In the prescribed line treatment areas, livestock grazing may be deferred on selected areas one year prior to burning to increase fuel loading. After burning, grazing may be restricted for up to five years to allow for regeneration.

CUMULATIVE EFFECTS: Grazing within the CEA would not increase with this alternative. Forage would increase prior to the project area. Permitted numbers of sheep and cattle would not increase with the forage. Reasonable foreseeable future actions within the SERP area may contribute to additional effects over the next ten years. Restrictions on grazing for protection of regeneration may coincide with these future projects, such as tall lodgepole pine restoration and watershed rehabilitation. When grazing restrictions are enacted, these projects are expected to affect livestock grazing. Fencing the project area may change historic grazing patterns and force sheep herds to follow or cross the proposed trail. Grazing use may be limited or restricted as rehabilitation of the disturbed areas occurs. In combination with possible regeneration effects, this project may reduce historic grazing and bedding areas in the short term, until regeneration efforts are complete.

ACTION

DIRECTINDIRECT EFFECTS: There would be no change in livestock grazing under this alternative. Grazing of livestock on all the sheep and cattle allotments is confined mainly to the grass openings in the conifer, as well as grasses in the large meadows and brush patch. The conifer edges in some locations and snags are burned and the bedding of the area. Areas with higher moisture due to spring burn beetle would increase forage production in the understory. As dead trees blow down, impediments to travel may occur where down logs block travel corridors.

CUMULATIVE EFFECTS: As stated under the direct and indirect effects, livestock grazing would not change under this alternative. Increases in forage production within the CEA would be proportional to the increase in forage production within the project area.

ALTERNATIVE A

DIRECT AND INDIRECT EFFECTS: The Proposed Action with no treatment of the Chicken Head and Spruces Focus Areas and sites 3 and 4 near the Rainbow Meadows Subdivision. Removal of dead timber only would reduce the amount volume removed and remove the amount of forage produced. There is a very slight difference in acres removed between the Proposed Action and Alternative A. There would be less road constructed by this alternative which would reduce the possibility of grazing sheep dispersing to areas which historically have not been grazed. The effects of this alternative would therefore be similar to the Proposed Action with the exception of a decrease in roads constructed within the sheep allotment boundaries (Refer to the discussion of Direct and Indirect Effects for the Proposed Action in the Livestock Grazing section).

With treatment of the Chicken Head, grazing in the treated area was expected to be suspended one year prior to burning and two years after, however, after that period there was expected to be a substantial increase in grazing capacity for livestock. No treatment of Chicken Head would result in the status quo similar to the no action alternative.

CUMULATIVE EFFECTS: As stated in the direct and indirect effects, the only measurable difference between Alternative A and the Proposed Action is a slight reduction in volume removal and forage produced. The cumulative effects of this alternative would therefore be similar to the Proposed Action, with the exception of a decrease in roads constructed within the sheep allotment. (Refer to the discussion of Cumulative Effects for the Proposed Action in the Livestock Grazing section).

ALTERNATIVE B

DIRECT AND INDIRECT EFFECTS: Removal of timber using a sanitation and salvage harvest would be the same as described in the Proposed Action. Forage available for grazing would be the same as described in the Proposed Action. There is no difference between Alternative B and the Proposed Action would be Alternative B excludes the roadless area. The effects of this alternative would be the same as the Proposed Action with the exception of a slight decrease in forage production. (Refer to the discussion of Direct and Indirect Effects for the Proposed Action in the Livestock Grazing section).

CUMULATIVE EFFECTS: As stated in the direct and indirect effects, the only measurable difference between Alternative B and the Proposed Action is a reduction in roads constructed within the sheep allotment. The cumulative effects of this alternative would therefore be similar to the Proposed Action, with the exception of a decrease in roads constructed within the sheep allotment. (Refer to the discussion of Cumulative Effects for the Proposed Action in the Livestock Grazing section).

HERITAGE RESOURCES (CULTURAL RESOURCES)

ALL ACTION ALTERNATIVES

DIRECTINDIRECT EFFECTS: Within the project analysis area fifteen archaeological surveys have been conducted. Archaeological surveys have been conducted within or immediately adjacent to all the proposed Focus Areas. In those areas not covered by intensive surveys, enough data exists from surveys in similar adjacent areas to make determinations regarding the potential for sites. The potential sites in those Focus Areas not covered intensively is medium to very low due to steep slopes, rocky soils, and heavy cliff. All areas within the proposed Focus Areas considered to have a high potential have been examined.

Historic properties (sites eligible for the National Register of Historic Places) have been located in several of the Focus Areas. Of these, the one in northern Utah that is currently listed on the National Register of Historic Places is located within and adjacent to the Lower/State Focus Area. All project activities associated with the proposed timber harvesting will avoid these historic properties. These properties found within the proposed burn areas are located in low fuel areas and will not be affected by the initial burning. The potential for secondary impacts caused by fire does exist but is low in these Focus Areas. These secondary impacts are caused by the removal of the ground cover and the soil washing away during rainstorms or spring runoff causing the site to become exposed and erosion to occur.

Space Ecosystem Recovery Project
especially true in areas where sites are found on slopes greater than five percent and on ridge tops with steep slopes.

Prior to burning, those areas were Historic Properties; cost the potential for secondary impacts will need to be

evaluated. Mitigation measures, determined on a case-by-case basis, could include laying foam or retardant on the

site or immediate revegetation of the area. Revegetation work will need to be done by hand broadcasting or by

using light rubber tipped vehicles such as "four-wheelers". No eligible historic wooden structures have been located

within the Focus Areas where burning is proposed.

The Devils National Forest has adhered to all federal and state laws concerning the protection of Heritage Resources

within the boundaries of the Spruce Ecosystem Recovery Project.

NO ACTION ALTERNATIVE

DIRECT INDIRECT EFFECTS: With the No Action Alternative, sites will continue to erode, be vandalized, and
deteriorate as now occurs.

SOCIAL/ECONOMIC RESOURCES

The effects of implementing the Proposed action or alternatives to the Proposed Action on the timber commodity

sector associated with the social economic setting was determined through an economic efficiency analysis.

The purpose of the analysis was to determine how well financial project outputs would be used to achieve financial

outcomes. Economic efficiency is measured by "Present Net Benefits", where all monetary flows occurring in
different time periods are adjusted to reflect the effects of time on their value. The analysis was based strictly on the

costs and benefits of timber outputs and the cost of the analysis. Analysis of benefits and cost ratios for other

resources were not calculated with this analysis. Benefits and costs for non-commodity resources (i.e. recreation) are
difficult to quantify (Robinson 1989). The associated effects to the social economic value related to these non-

commodity uses will be discussed primarily in qualitative terms below.

The full efficiency analyses is located in the Project 1 (Subtract 23). The economic benefits of the Proposed Action

and alternatives to the Proposed Action are displayed using various analyses criteria in Table 4-19 and 4-20.

Table 4-19. Economic Effects (market resources), Measured by Present Net Value (PNV).

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>INTEREST RATE = 6%</th>
<th>INTEREST RATE = 7%</th>
<th>INTEREST RATE = 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Action</td>
<td>$303,956</td>
<td>$359,180</td>
<td>$398,236</td>
</tr>
<tr>
<td>No Action</td>
<td>($916,355)</td>
<td>($914,591)</td>
<td>($912,925)</td>
</tr>
<tr>
<td>Alternative A</td>
<td>$292,765</td>
<td>$327,840</td>
<td>$351,811</td>
</tr>
<tr>
<td>Alternative B</td>
<td>$361,327</td>
<td>$409,940</td>
<td>$441,576</td>
</tr>
</tbody>
</table>

*Numbers in parenthesis are negative values.

The negative Present Net Value (PNV) for the No Action Alternative indicates the cost of the environmental

analysis. to arrive at the decision of No Action. This cost as " sunk cost" is common to the Proposed Action and all

of the alternatives to the Proposed Action under this approach.

Alternative B had the highest PNV ($361,327) at the 8% Forest Service long term interest rate. The lowest PNV

resulted from the No Action alternative ($916,355).

As discussed in the whitepaper "Effects of Vegetation Management on Social Economics," the economic benefits of

timber harvest to the Zone of Influence (Z0I) vary according to the nature of the timber to be harvested. All

alternatives, with the exception of the No Action alternative, include salvage and sanitation treatments. Thus, green

december and salvage timber will be harvested, potentially benefiting the timber manufacturing facilities and

logging operations of ZOL, as well as possibly supporting similar operations based on ZOL.

Social conditions are highly variable. Visual perception and attitudes toward timber harvest vary depending on

individual perceptions and attitude toward timber harvest. The following discussions in Direct and Indirect Effects

and Cumulative Effects are closely related to the Visuals and Recreation discussions of Environmental Consequences.

Proposed Action

DIRECT INDIRECT EFFECTS: As shown above in Table 4-19, the Proposed Action has a Present Net Value of

$303,956. Table 4-20 illustrates that approximately 155 jobs and $7,049,900 in induced income would be

generated by this alternative (economic values per area MB)$201 taken from Robinson and Hudson 1990). Road closures

and reconstruction, management ignored prescribed fire, establishment of 41 acres of defensible fire suppression

zones in the urban-wildland interface, and 966 acres of planting for reforestation, and slash cleanup and disposal to

meet with safety, visual and aesthetic objectives contributed to the costs of this alternative.

Table 4-20. Economic Effects, Measured by Jobs Created and Induced Income.

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>JOBS CREATED</th>
<th>INCOME PRODUCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Action</td>
<td>155</td>
<td>$7,049,900</td>
</tr>
<tr>
<td>No Action</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Alternative A</td>
<td>116</td>
<td>$5,279,000</td>
</tr>
<tr>
<td>Alternative B</td>
<td>155</td>
<td>$7,049,900</td>
</tr>
</tbody>
</table>

Iron County Analysis Unit

The benefits to the Iron County Analysis Unit from the Proposed Action would be limited by the small contribution

to the timber industry makes to the diversified local economy. The recreation and tourism industry plays an

increasingly important role in the economy of the Iron County Analysis Unit. However, this industry is highly

fragmented, creating difficulty in measuring changes due to the effects of the Proposed Action. The economy of the

Iron County Analysis Unit is too diversified than other Analysis Units, and local changes in the economy well.

Small communities within this Analysis Unit may be impacted economically, however.

A short term loss of income to businesses and communities dependent upon recreation and tourism may occur as a

result of the Proposed Action. The displacement of visitors due to temporary trail closures or a reduced scenic or

recreational quality to the Forest could cause visitors to choose alternate locations to recreate, although they may

remain in the general area. Scenic quality is expected to be affected up to five years following timber harvest

(Brunswick, 1997). Recreation limits the long term effects of scenic quality and mitigation will lessen the degree to

which scenic qualities would be immediately affected by timber harvest activities. Brian Head Town is located in this

Analysis Unit, being dependent upon recreation and tourism opportunities of the surrounding forest land as a

strong part of the economic base. Visitors to the area fire the services and accommodations available at Brian

Head, while recreating on nearby National Park, National Forest, Bureau of Land Management, and private

lands. The effects of the Proposed Action to Brian Head Town would take place predominately during the summer tourist

season. Short term trail closures and effects to the scenic and recreational quality following timber harvest activities are

expected. The temporary closure of the Dark Hollow, Hancock Peak, and Spruces Trails would occur. Trail

closures are necessary to protect recreation users from the hazards of tree felling and felling. In the short term,

management ignites fire in the timber harvest Focus Areas. The Deer Trail Focus Area, the Roadless Area, and the

Chainsaw Area are temporarily displaced by visitors to the area through the effects of smoke on air quality or the

visibility of a fire-scared landscape. Smoke emissions from the management ignited prescribed fire could affect

visitors and residents through reduced air quality, aggravated respiratory ailments, and a reduced recreational

experience. Temporary and permanent residents, property owners, and nearby communities other than Brian Head

may also be adversely affected by smoke emissions from a management ignited fire. Long-term effects of

management ignited fire could benefit the resources of the area through the renewal of decadent vegetation.

Management ignited prescribed fire would reduce the risk of catastrophic wildfire and ease fears of the same

Chamber of Commerce.
Defensible Fire Suppression zones would be created next to subdivisions, reducing the risk of wildfire destruction properties.

The displacement of recreationists from the Proposed Action will occur, but the amount of lost tourism associated with the Proposed Action is unknown. If displacement of recreationists occurs due to salvage activities, this could potentially affect some of the Brown Head Town businesses.

The Brown Head fire management area lies within a cattle allotment (see the Livestock Resource discussion in Chapter 4 for additional information). Continued forest succession from aspen to mixed conifer stands may currently be reducing cattle grazing capacity. Under the Proposed Action, protection of aspen regeneration areas may have the effect of increased costs resulting from increased herding. These costs would be short-term and should be offset by long-term benefits from maintaining capacities associated with foraging and browse vegetation and averting an adjustment in cattle numbers. The Proposed Action has the potential of removing natural forest-burned areas, currently provided by thick timber stands. At the present time, there is no fence between the Dark Hollow allotment and the Brown Head community and ski resort. The creation of these "openings" in timbered stands may provide avenues for livestock to move onto private lands. The construction of a fence between the Dark Hollow Allotment and private lands is the responsibility of private land owners.

Garfield County Analysis Unit

The Galley Ranch Unit may be affected by the Proposed Action if the Escalante sawmill purchases and manufactures the timber. As mentioned previously, the Proposed Action would generate 122 jobs, many of which would strengthen a declining timber industry in this traditionally timber dependent county (see analysis under Displacement of recreationists for an opportunity to revive industry. Income production from unemployment would almost be spent locally, with some being spent in adjacent analysis units or outside the ZOI. The Garfield County Analysis Unit is located on raw materials produced on National Forest land.

The Garfield County Analysis Unit is becoming increasingly dependent upon the tourism and recreation industry which is evident in the growth of the "service" and "trade" sector of the economy. The Analysis Unit is both a primary destination as well as a place of transition to other recreational destinations on Federal, State, or private lands.

Visitors purchase goods and services from the Analysis Unit, providing a source of income to the local businesses and taxes to the local government. The Proposed Action may displace some tourism with these goods and services. The community of Panguitch Lake is a pick-up location for mountain bikers riding from the Brown Head and passing through the project area. The temporary closure of trails in the project area may displace these recreation users. The Proposed Action may have an effect on the income generated to Panguitch Lake businesses through reorganization of goods and services. Other recreationists may be displaced and relocation of workforce income to businesses in the Analysis Unit. Due to the fragmentation of the recreation and tourism industry, it is difficult to measure the effects to local businesses and economies. Smoke emissions from management ignited prescribed fire may be affected by the Proposed Action which will change the non-timber aspects of the community.

The Temporary clearing of trails in the project area may displace these recreation users. The Proposed Action may have an effect on the income generated to Panguitch Lake businesses through reorganization of goods and services. Other recreationists may be displaced and relocation of workforce income to businesses in the Analysis Unit. Due to the fragmentation of the recreation and tourism industry, it is difficult to measure the effects to local businesses and economies. Smoke emissions from management ignited prescribed fire may be affected by the Proposed Action which will change the non-timber aspects of the community.

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences

Long-term effects of management ignited fire could benefit the recreationist of the area through the removal of a catastrophic wildfire danger. Harvest activities on smoke

Cedar City Ranger District

Environmental Consequences
There would be no measurable benefits from No Action to the Iron County Analysis Unit. The No Action alternative would not address the public safety risk of dead and dying trees blowing down over trails, placing recreation users in danger. The risk of catastrophic wildfire would not be decreased through the use of management timber harvests. The creation of the 41 acres of defensible fire suppression zones in the urban wildland interface and 966 acres of land planted for reforestation, and slash cleanup and disposal to meet with visual and fuels objectives contributed to the costs of this alternative.

CUMULATIVE EFFECTS: Refer to the Proposed Action for the discussion of cumulative effects for Alternative B.

EFFECTS OF ALL ALTERNATIVES ON Haul ROUTES

DIRECT INDIRECT EFFECTS: The greatest effect to the Social and Economic environment is expected within the social environment, concerning the recreation/leisure interface on public highways. The route heading east on Highway 143 to Panguitch, Utah would be less impacted than the route west through the Town of Brian Head. The route east is less congested and has gentler grades and curves. Residents along this route are accustomed to logging traffic due to past milling operations in Panguitch; the current stockpiling of logs in Panguitch for shipment outside the ZTO, and the mill in Escalante. Log trucks are frequently seen traveling this route.

The haul route to the west is of greatest concern due to the high recreation traffic in the Town of Brian Head. Mountain bike traffic from June to November is expected to require an increased public safety awareness program. Refer to Table 6.21 for additional haul route information.

An additional social impact related to the western haul route is that townspeople are unaccustomed to seeing log trucks traveling this route. There may be some short-term effects by heavy log truck traffic traveling this route on the types and amounts of recreation users frequenting this area, especially mountain bike users. The public awareness programs that would be established to help with public safety would also provide interpretive services describing the needs and reasons for this short term increase in truck traffic to recreation users. With proper implementation of interpretive programs, and coordination and cooperation with those affected, impacts to the Town of Brian Head would be minimized.

Table 6-21 provides additional information of effects for the Proposed Action and all alternatives. Potential effects from timber hauling include the total number of loads, loads per day, time between loads, and the haul duration.

Table 6-21: Haul Route Use Facts.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PROPOSED ACTION</th>
<th>NO-ACTION</th>
<th>ALT A</th>
<th>ALT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Loads</td>
<td>2,760</td>
<td>0</td>
<td>1,976</td>
<td>2,760</td>
</tr>
<tr>
<td>Loads Day</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Minutes between loads</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Haul duration (months)</td>
<td>7</td>
<td>0</td>
<td>4-9</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6-21 estimates are based on the following assumptions: 1) Log haulings would utilize log trucks with a variable number of trip/loads, each load would contain approximately 6,000 board feet. 2) The hauling schedule would occur 4-8 hours per day (12 hour days). 22 hauling days per 30 day period. 3) The load frequencies calculated are for loaded trucks. Empty trucks would operate at similar frequencies in the opposite direction. 4) Sales would most likely be awarded to several contractors and haul routes may consequently vary.
AIR QUALITY

Impacts to air quality from prescribed burning and wildfires include the temporary visibility impairment caused by smoke and health problems that may be associated with short-term exposure to low-level criteria pollutants.

Because of the dynamic nature of the air resource, effects on air quality at a given location are highly unpredictable. Sources of pollutants such as dust and smoke may be many miles from the location that is experiencing diminished air quality. Recognized sources of pollutants that are important to the air quality within the project area are discussed in this section.

EFFECTS COMMON TO ALL ACTION ALTERNATIVES

DIRECT/INDIRECT EFFECTS

Direct effects on air quality within the project area and for smoke sensitive areas in Wyoming are expected to be slight. Under all action alternatives, adverse effects to air quality within 5 miles of the proposal area may occur from the incomplete combustion of fuels in motorized equipment and vehicles from road dust produced by construction and moving vehicles. From smoke generated by prescribed burning, area displacement is expected.

Due to current fuel loadings on the site (average 3 torr/acre) and additional fuels created through logging (5 to 10 tons/acre), slash would be treated by piling and burning, jackpot burning or broadcast burning. Fuels deposited at landing locations will be sold as firewood, chopped and scattered or piled and burned. The fires and road dust produced by the project activities would be short-term, but would occur on an intermittent basis. Individual events of slash burning may cause temporary visible degradation of air quality than flames. This would be mitigated through a dust abatement provision in the timber sale contract that requires the purchaser to periodically dampen haul roads.

Air Quality in the closest class-3 area, Zion National Park and Bryce canyon National Park, may be affected during periods of prescribed burning. This would only occur during periods of unexpected weather changes. Visual quality, looking outside the park towards the burn, may be affected for short periods of time (1-3 hour day).

Approximately 214 acres of pile/jackpot burning and 3,065 acres of broadcast burning would be completed under the Proposed Action. Approximately 131 pile/jackpot burn acres and 2,792 broadcast burning under Alternative B. Pile/jackpot burning sites would range in size from 1,000 to 10 acres in size. Approximately 5 to 10 tons of slash/acre become available for processing in early spring to late fall. Burning would be accomplished with visual smoke dispersal as outlined in the Proposed Fire Plan Burn Smoke Management regulations. "Clearing Index" for the State of Utah would be followed during all Proposed Fire activities.

CUMULATIVE EFFECTS

No measurable long-term cumulative effects occur within the identified cumulative effects area. From implementation of any of the action alternatives (See: SASEM outputs, Project File, exhibit 25). No measurable long-term cumulative effects would occur in Zion Head town, Zion National Park, Bryce Canyon National Park or the Grand Staircase-Escalante National Monument areas. Smoke from prescribed fire would be short-term and disperse north after the project implementation. A minimal increase in carbon monoxide, TSP, and PM10 pollutants would be expected as a result of implementing any action alternative. The burning of slash accumulations would result in short-term cumulative impacts relative to the production of carbon monoxide, TSP, and PM10 pollutants.

SPECIAL USES

SPECIAL USES

A total of 40 special use permits were identified in the Affected Environment section in Chapter Three. Of the 40 permits, nine special use permits may be affected by the Proposed Action or two Action Alternatives. The special use permits discussed in this section include six recreational events (3 permits), and six outfitter and guide permits. Effects associated with these special use permits will be discussed by alternative.

PROPOSED ACTION

SPECIAL USES

The Spruces Focus Area contains no fixed special use permits, FLPMA easements, or recreational event permits. However, six outfitter and guide permits may be affected as a results of commercial tree harvest and aspen regeneration treatment. The four outfitter and guide permits include three district wide big game hunting permits (#5295, 5426, and 9037) and one district wide mountain biking permit #5460. The direct effects to the outfitter and guide permits would likely result in displacing the permitted use outside of the two Focus Areas. The potential displacement is not likely to adversely affect the visibility of the permittee. No recreational events are located within either the Hacker or Lower/State Focus Areas.

The Spruces Focus Area contains no fixed special use permits, FLPMA easements, or recreational event permits. However, six outfitter and guide permits may be affected as a results of commercial tree harvest. Of the six outfitter and guide permits, three are district wide big game hunting permits (#5295, 5426, and 9037). The direct effects to these hunting permits would result in displacing the permitted use outside the Focus Areas. The potential displacement is not likely to adversely affect the visibility of the permittee. In addition to the hunting permits, there are two mountain bike outfitter and guides (#5446, 5462) that have permitted access to the Spruces Trail for the purpose of guided tours. The closure of the Spruces Trail would directly effect the permit holder #5446, as they will not have access to a previously marketed route during this time. While permit holder #5462 has permitted access, they have not utilized the Spruces Trail, nor indicated an interest to do so. Timelines for closure, and the outfitter and guides annual operating plans should be coordinated to reduce the potential impacts.

Additionally, outfitter and guide permit number #5462 may be directly effect from implementation of activities associated with the Spruces Focus Area, as the permittee uses the Sydney Valley Road for touring purposes. The potential displacement of heavy equipment or logging trucks on the Sydney Valley Road may present safety concerns. The timing of the Spruces Focus Area activities and the permittees annual operating plans should be coordinated to mitigate the potential impacts.

The Steam Engine Focus Area contains the Dark Hollow Trail that has the potential to impact six recreational events (permits: #5412, 1054) and three outfitter and guide permits (#5446, 5462, and 5469). The rerouting of the Dark Hollow Trail entirely onto National Forest lands is proposed with this action. The rerouting of the Dark Hollow Trail and trail buffer will have a beneficial impact on the outfitter and guide permits affected. Additionally, three big game hunting outfitter and guide permits may be affected because of commercial tree harvest within the Steam Engine Focus Area. They include permits #5295, 5426, and 9037. The direct effects to the big game hunting outfitter and guide permits would likely result in displacing the permitted use outside the Focus Areas. The potential displacement is not likely to adversely affect the visibility of the permittee. No fixed improvements or FLMPA easements will be impacted in the Steam Engine Focus Area. The Bunker Focus Area will implement a reroute on the Left Fork of Bunker Creek Trail. This reroute will benefit two permitted recreation events (#5412), and three outfitter and guide permits authorized to use this area (#5446, 5462, and 5469). However, three big game hunting outfitter and guide permits may be affected as a result of commercial tree harvest within the Bunker Focus Area. They include permits #5295, 5426, and 9037. The direct effects to the big game hunting outfitter and guide permits would likely result in displacing the permitted use outside the Focus Areas. The potential displacement is not likely to adversely affect the visibility of the permittee. No fixed improvements or FLMPA easements will be impacted in the Bunker Focus Area.

Within the Deer Creek Focus Area there are no fixed special use permits or FLMPMA easements. However, three outfitter and guide permits may be affected as a result of management activities. The three outfitter and guide permits include district wide big game hunting permits (#5295, 5426, and 9037). The direct effects to the outfitter and guide permits would likely result in displacing the permitted use outside the Deer Creek Focus Areas. The potential
displacement is not likely to adversely affect the viability of the permittee. No recreational events are located within either the Deer Creek Focus Area or Deer Creek Focus Area.

The Chicken Focus Area may impact recreation events and outreach activities involving the Deer Creek Focus Area. This includes permits #15, 5454, 5456, & 5460. The prescribed burning may restrict access due to smoke and fire activity. In addition, three outreach and guide permits may be affected as a result of management activities. The three outreach and guide permits include district-wide big game burning permits #5295, 5426, & 9037. The direct effects to the outreach and guide permits would likely result in displacing the permittee and their use of the Deer Creek Focus Area. The potential displacement is not likely to adversely affect the viability of the permittee. This impact is anticipated to be short-term in nature resulting in minor displacement. Coordination between the prescribed burning, recreational events, and outreach and guide operations plans should occur to reduce impacts.

Prescribed burning associated with the Roadless Focus Area may affect the Ata Quos Archery Club, Mitchell Sawmill, and Fire activities and smoke may affect the safety of the participants in this recreational event. Coordination through the permits annual operating plan should occur to mitigate the potential impacts. In addition, three outreach and guide permits may be affected as a result of management activities. The three outreach and guide permits include district-wide big game burning permits #5295, 5426, & 9037. The direct effects to the outreach and guide permits would likely result in displacing the permittee use of the Roadless Focus Area. The probable effect is not likely to adversely affect the viability of the permittee. This impact is anticipated to be short-term in nature resulting in minor displacement.

CUMULATIVE EFFECTS: There would be no cumulative effects associated with the Proposed Action to the Special Use discussed above. When the timber sale contract is complete, special use permits would continue as they have in the past.

NO ACTION

DIRECT AND INDIRECT EFFECTS: Under the No Action Alternative, the existing authorized special use permits would continue to operate as they have in previous years. Some permits would expire and may be renewed over longer time periods. New applications for special uses would be reviewed and analyzed. Trails used by outfitters and guides may change as new markets emerge, Fixed improvements would be maintained to the extent possible, and FLPSA easements would remain in place.

ALTERNATIVE A

DIRECT AND INDIRECT EFFECTS: The effects described for the Proposed Action are very similar to Alternative A. The main difference is the absence of a reduction in the volume removed and in management, used prescribed fire prescribed in Alternative A. However, the difference in effects previously described for the Proposed Action would not be measurable. Refer to the Environmental Effects discussion for the Proposed Action for effects to Special Uses.

CUMULATIVE EFFECTS: There would be no cumulative effects associated with Alternative A to the Special Use discussed above. When the timber sale contract is complete, special use permits would continue as they have in the past.

ALTERNATIVE B

DIRECT AND INDIRECT EFFECTS: The effects described for the Proposed Action are very similar to Alternative B. The main difference between these alternatives is a reduction in the management, used prescribed fire prescribed in Alternative A. However, the difference in effects previously described for the Proposed Action would not be measurable. Refer to the Environmental Effects discussion for the Proposed Action for effects to Special Uses.

CUMULATIVE EFFECTS: There would be no cumulative effects associated with Alternative B to the Special Use discussed above. When the timber sale contract is complete, special use permits would continue as they have in the past.

Space Ecosystem Recovery Project 4-76

Environmental Consequences

Cedar City Ranger District Dixie National Forest

FIRE/FUELS

Fire can best be addressed by differentiating wildfire from management ignited prescribed fire. Wildfire has the potential to affect many natural processes (Boyer and Del, 1980) including soil, plant succession, air quality, water, microclimate, wildlife, and fish. Wildfire effects can be both beneficial and destructive. The cumulative effects of wildfire are calculated by a ratio determined from suppression costs, plus the net present value change. The rate of spread and intensity of wildfires is reduced by roads and harvest, which create a mosaic of vegetation and fuel accumulation. Current wildfire risk in the SERP area is associated primarily with the dying of beetle-infested Engelmann spruce and the subsequent accumulation of large amounts of fuel. Of primary concern is the effect of the dead and dying Engelmann spruce and the respective accumulations of biomass from this mortality on the intensity, rate of spread, and the ability to control forest fires.

The risk of wildfire is particularly important in terms of fires that may occur on the National Forest lands and have the potential to burn onto private lands. Increased risk of wildfire would increase the potential loss of life and personal property on private lands and residences. With the high density of dead and live material adjacent to and within the SERP area, a favorable environment exists for ignition and rapid spread of wildfire during periods of extremes in temperatures, winds, and low fuel moisteres. Other potential impacts due to wildfire risk include losses of bird cover and thermal cover for big game species, potential loss of human life during suppression activities, and losses of water quality and quantity. Additionally, there is a high probability of uncontrolled alteration of vegetative communities which will result in regeneration of seral shrub species and/or regeneration of tree species that may not meet Forest Plan objectives.

PRESCRIBED FIRE

Prescribed fire is a management tool used for hazardous reduction to reduce the amount of timber harvesting slash and prepare the site for seed germination and seedling establishment. Prescribed fire has also been used to reduce the amount of fuel buildup under some species of trees to reduce the intensity of potential wildfires.

Fuels within the SERP area would be treated with a combination mechanical log and scatter; hand and machine piling, and burning.

Prescribed fire treatment in the "Chicken Head" and "Roadless Areas" is designed to emulate the natural role of fire in these vegetation types. Fire group 10.11 and 11.1 have long fire return intervals. Fire intervals between 50 to 130 years in fire group 10 (Arno 1980), 525 to 335 to fire group 11 (Crate 1982), and 50 to 300 years in fire group 12 (Arno 1969, 1990; Heinselmier 1981). When fire does return to these fire groups it is typically high severity crown fire rather than moderate severity fire.

FIRE HISTORY

No site-specific data was collected for the project area. However, using the accepted protocol described in Fire and Ecology of Forests and Woodlands in Utah (Bradesky, et al., 1992) and determining fire groups to fuel models, we can estimate fire return intervals. The project area contains two specific fire groups, Fire Group 10 and Fire Group 12. In fire group twelve, (Cold, upper subalpine habitat types) the intervals are between 50 and 300 years fire free (Arno 1980). In fire group 10-Dry lower subalpine habitat types the interval is estimated to be 50 to 130 years (Arno 1980). Upon review of the fire records for the SERP Project (1970 through 1994), 51 fires were suppressed. Eighteen of these were human caused while 13 were lightning caused. The largest of these fires was three acres in size. Mean acre size is 20 acres (Forest Plan Goals and Objectives).

EFFECTS COMMON TO ALL ACTIONS

Alternative effects are cumulative to those described above. In harvested areas, the fuel volumes would be reduced with removal of the larger fuels. Lowering the resistance to wildfire control efforts. Lopping and scattering the non-merchantable material on the ground would expedite the decay of the woody debris.

The resulting mosaic, created by the harvest and prescribed fire, would provide natural fuel breaks in the landscape. Harvesting spruce mortality areas would remove the larger dead and drying materials that provide...
additional fuel and increase fire intensities. Slash burning private lands would be easily accessible due to additional roads thereby enhancing suppression efforts and slash treatment.

PROPOSED ACTION

DIRECT/INDIRECT AND CUMULATIVE EFFECTS

Harvest

The Proposed Action would bring the total treated area under management. Timber harvest would occur on approximately 2872 acres.

The area would be treated with a combination of burning slash and scattering slash and site preparation. Existing fuels, approximately 15 tons/ac, combined with additional 7 to 10 tons/ac of logging slash would result in fuel loads above 20 to 25 tons/ac. After fuel treatments, approximately 10-15 tons/ac would be maintained to allow for nutrient recycling.

Under the Forest Plan (IV-541), fuels are to be reduced so as to potential fireline intensity of an area will not exceed 400 BTU/ft²/ft² within 90 percent of the days regular fire season or break up fuel concentrations exceeding the above. Stands to be treated under this plan are to be characterized as being in a state where fuels are present of sufficient accumulation to cause wildfire. Under this plan, fuels are treated in stages, progressively reducing the amount of fuels over a period of time to allow for the natural response of the forest. In addition, this plan allows for the use of prescribed fire to reduce fuels in high hazard areas. This will reduce the severity of wildfires that may occur in these stands by eliminating the ladder fuels.

Defensible Fire Suppression Zones

Zones around urban interface and primary travel routes where a high potential for fuel buildup could have been identified for high potential for fire buildup and potential for catastrophic fire growth. The Proposed Action would reduce fuels to a level where fire suppression personnel will have a chance to combat a wildfire. Fuel loading in these areas will be less than 10 tons/ac, with ladder fuels removed. Approximately 41 acres are proposed for treatment.

Reintroduction Of Fire

Management regulated prescribed fire will be used to reintroduce fire into two areas identified in the SERP project area. The Chicken Head 11229 acres and the Roadless area 12792 acres are areas identified to have some of the least fire history. Both areas have long interval stand replacement fire regimes. The goal of the reintroduction of fire to duplicating the way fire would naturally occur and to break up unburned blocks of fuels. Fuel treatments are applying levels that would contribute to ignition. Controlling the time of year management guided prescribed fire will let managers control the severity of the burn and safely reduce fuel loads. Stand replacement fires of 100% acres would be planned in the late summer and into the fall of the year. This time of year would be when fires would naturally occur and the best associated risk because of the season ending event reduces the fire risk.

NO ACTION ALTERNATIVE

DIRECT/INDIRECT AND CUMULATIVE EFFECTS. No fuel treatment would be accomplished under the no alternative. Standing fuel killed trees would be allowed to deteriorate and fall to the ground and accumulate naturally. The risk of large wildfire would increase as fuels from the beetle killed trees fall to the ground and become available fuel. This alternative fails to address the serious problem of long term fuel accumulation in the area which will average 30 to 40 tons/ac within 20 to 30 years. This alternative least addresses the purpose and need to reduce fuel loads to the desired condition in the Burn Head area which will reduce the risk of catastrophic fire. It's better than Alternative B however, for the entire SERP area.

ALTERNATIVE B

DIRECT/INDIRECT AND CUMULATIVE EFFECTS

This alternative would eliminate the reintroduction of fire in the Roadless Area. The risk of large wildfire would increase as fuels increase from beetle killed trees in the vicinity of this Focus Area. Regeneration of aspen from prescribed fire (557 acres) would not occur. This alternative least addresses the purpose and need of reducing fuel loads to the desired condition in the entire SERP area but does in the Burn Head area.

TRANSPORTATION

This report will address Focus Areas and access to them only. Road mileages for this report were obtained through GIS.

Road costs used for all alternatives:

<table>
<thead>
<tr>
<th>ROAD</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Road Construction</td>
<td>$3,000</td>
</tr>
<tr>
<td>Local Road Construction</td>
<td>$9,000</td>
</tr>
<tr>
<td>Recreational WordPress</td>
<td>$9,500</td>
</tr>
<tr>
<td>Temporary Road Construction</td>
<td>$12,000</td>
</tr>
</tbody>
</table>

These costs would include all necessary work to restore or construct road templates needed to access these areas. Also any necessary drainage other than intercepting ditches would not be included in these costs. If corrugated metal pipe, bridges, or other drainage access are required, the above costs would be higher. Surfacing costs are not included in these costs. If surfacing is required by some mitigating measure these costs would rise according to the quantity needed and the bar length. There exists a curving surface somewhat near the Focus Areas. It is located just west of the Seaside Valley (32048), U 143 junction. Surfacing costs could be kept to a minimum by using material encountered during construction or reconstruction. As no in-depth review of these areas have been completed, these areas will have to be identified either before or during road construction, reconstruction or reconninging. Road work and other related activities would be governed by Forest Service Standard Specifications. Mileages of construction, reconstruction & reconninging for each Focus Area are estimates taken from GIS maps, and could change according to the final project conditions.

PROPOSED ACTION AND ALTERNATIVE B

DIRECT/INDIRECT AND CUMULATIVE EFFECTS. The Proposed Action and Alternative B would include 4.30 miles of new construction, 4.75 miles of reconstruction, 20.17 miles of reconninging and 30 mile of temporary road construction.

Space Ecosystem Recovery Project 4-78

Cedar City Ranger District
Dixie National Forest

Environmental Consequences

ALTERNATIVE A

DIRECT/INDIRECT AND CUMULATIVE EFFECTS. With this alternative no treatment of Chicken Head Focus Area and sites near Rainbow Meadows would occur and so would eliminate the reintroduction of fire in the vicinity of Burn Head Town. The risk of large wildfire would increase in that area as fuels from the beetle killed trees fall to the ground and become available fuel. Regeneration of aspen from prescribed fire (156 acres) would not occur. This alternative fails to address the serious problem of long term fuel accumulation in the area which will average 30 to 40 tons/ac within 20 to 30 years. This alternative least addresses the purpose and need to reduce fuel loads to the desired condition in the Burn Head area which will reduce the risk of catastrophic fire. It’s better than Alternative B however, for the entire SERP area.
<table>
<thead>
<tr>
<th>Focus area</th>
<th>Total Miles</th>
<th>Miles Contract.</th>
<th>Dollars</th>
<th>Miles Reconstr.</th>
<th>Dollars</th>
<th>Miles Recon.</th>
<th>Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spruces</td>
<td>4.5</td>
<td>4.0</td>
<td>36,000</td>
<td>5</td>
<td>2,500</td>
<td>6.0</td>
<td>18,000</td>
</tr>
<tr>
<td>Banker</td>
<td>1.78</td>
<td></td>
<td></td>
<td>25</td>
<td>875</td>
<td>1.53</td>
<td>765</td>
</tr>
<tr>
<td>Lumber</td>
<td>4.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>1.0</td>
<td></td>
<td></td>
<td>3,500</td>
<td>3.98</td>
<td>1,990</td>
<td></td>
</tr>
<tr>
<td>Hammock</td>
<td>11.66</td>
<td></td>
<td></td>
<td>10,500</td>
<td>8.66</td>
<td>4.300</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>25.22</td>
<td>4.30</td>
<td>36,500</td>
<td>4.75</td>
<td>17,375</td>
<td>20.17</td>
<td>25,085</td>
</tr>
</tbody>
</table>

ALTERNATIVE A

DIRECT/INDIRECT EFFECTS. Alternative A eliminates the Spruces Focus Area. Under this alternative there would be 4.25 miles of reconstruction, 14.17 miles of reconditioning, and 30.00 miles of temporary road construction.

Table 4-23. Miles and cost of road construction, reconditioning and temporary roads for Alternative A.

<table>
<thead>
<tr>
<th>Focus area</th>
<th>Total Miles</th>
<th>Miles Contract.</th>
<th>Dollars</th>
<th>Miles Reconstr.</th>
<th>Dollars</th>
<th>Miles Recon.</th>
<th>Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banker</td>
<td>1.78</td>
<td></td>
<td></td>
<td>25</td>
<td>875</td>
<td>1.53</td>
<td>765</td>
</tr>
<tr>
<td>Lumber</td>
<td>4.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>1.0</td>
<td></td>
<td></td>
<td>3,500</td>
<td>3.98</td>
<td>1,990</td>
<td></td>
</tr>
<tr>
<td>Hammock</td>
<td>11.66</td>
<td></td>
<td></td>
<td>10,500</td>
<td>8.66</td>
<td>4.300</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>18.72</td>
<td>30</td>
<td>360</td>
<td>4.25</td>
<td>14,875</td>
<td>14.17</td>
<td>7,085</td>
</tr>
</tbody>
</table>

FOREST PLAN CONSISTENCY

As discussed in Chapter One, this FIS is tiered to the Final Environmental Impact Statement for the Dixie National Forest Land and Resource Management Plan (Forest Plans). It documents the analysis in the second level of planning. Changes in land use designation which have been established in the Forest Plan were not evaluated in this analysis.

In the Forest Plan, the National Forest land within the Dixie National Forest has been divided into Management Areas which differ from each other in resource emphasis. The Management Areas that fall within the SERP area were fully discussed in Chapter One of this FIS. Spatial location of these Management Areas within the SERP area can be found in Appendix 2 of this FIS.

A detailed discussion of the Forest Plan standard and guideline consistency for each resource area can be found in each resource report located in the Project File.

Disclosures within this FIS and Project File resource reports clearly display that implementation of the Proposed Action, or action alternatives to the Proposed Action, including their specific mitigation, would be consistent with the Forest Plan standards and guidelines, goals and objectives, and desired future conditions.

COMPLIANCE WITH OTHER LAWS AND REGULATIONS

Implementation of the Proposed Action is consistent with the Forest Plan Goals and Objectives for aquatic habitats (p. IV-5). The proposed road closures and rehabilitation will help move the aquatic habitats toward the desired future condition (DFC) as outlined in the Forest Plan (p. IV-20, IV-135, and IV-144). The Proposed Action is in compliance with the National Forest Management Act, as per the following: 219.27 (10)(4) protect streams, streambanks, and other bodies of water. 219.27 (10)(4) provide adequate habitat to maintain viable populations. 219.27 (10)(4) provide special attention to land and vegetation adjacent to perennial streams and other bodies of water. A more detailed discussion on consistency and compliance with the Forest Plan and other laws and regulations is provided in the Sierra Valley Recovery EA (p. 49-104).

Implementation of Alternative A is consistent with the Forest Plan Goals and Objectives for aquatic habitats (p. IV-5). The proposed road closures and rehabilitation will help move the aquatic habitats toward the desired future condition (DFC) as outlined in the Forest Plan (p. IV-20, IV-135, and IV-144). Alternative A is in compliance with the National Forest Management Act, as per the following: 219.27 (10)(4) protect streams, streambanks, and other bodies of water. 219.27 (10)(4) provide adequate habitat to maintain viable populations. 219.27 (10)(4) provide special attention to land and vegetation adjacent to perennial streams and other bodies of water.

NATIONAL FOREST MANAGEMENT ACT

Compliance with the National Forest Management Act (NFMA) is clearly displayed in resource discussions found within this FIS. A detailed discussion of NFMA compliance points, as outlined in the Code of Federal Regulations (CFR), 36 CFR 219.27a through 219.27g, can be found within each resource report found in the Project File. Because this FIS involves vegetative manipulation treatments NFMA compliance issues covered under 36 CFR 219.27b, "Vegetative Manipulation", and 36 CFR 219.27d, "Agricultural Practices", and 36 CFR 219.27e, "Agricultural Management" will be summarized below.

VEGETATIVE MANIPULATION

219.27b, "Vegetative Manipulation". The best suited to the multiple use goals established for the area with potential environmental biological, cultural resource, aesthetic, engineering, and economic impacts as stated in the regional guides and forest plans.

In Chapter Four, each resource is evaluated as to how each alternative addresses multiple use goals that are inherent in the Forest Plan standards and guides (NKs). As described in these discussions, all action alternatives comply with the Forest Plan NKs. The Forest Plan NKs are a product of the Regional Guides and these NKs were developed specifically for the Dixie National Forest.
No permanent openings are being created under any alternative. There are regeneration harvest treatments prescribed in aspen areas which provide reasonable assurances they will regenerate as described in Effects of Fire and Timber Harvesting on Vegetation (1997 Project File, exhibit 17). In the timber harvest Focus Areas, any areas requiring regeneration are a direct result of bark beetle activity and not directly caused by harvest activity. Practices are being employed in these areas that will provide reasonable assurances they too will be successfully regenerated. Reference Chapter Two and Four for disclosure of practices and expected outcomes.

29.27.4.4 (d) Not be chosen primarily because they will give the greatest dollar return or the greatest output of biomass although these factors will be considered.

While economics and outputs were considered in the decision process, other factors related to reducing the impacts of the bark beetle and protection of resources within the project area as described in Chapters Three and Four will be the primary focus to determine the best action to implement. The reasons for the decision will be fully described in the Record of Decision.

29.27.4.4 (e) Be chosen after considering the effects on residual trees and adjacent stands.

Ares proposed for treatment under the Action Alternatives were those most affected by the bark beetles, and/or had potential to put other stands at risk if beetle activity continues. Effects on other stands and residual trees are discussed in Capítulo Four - "Vegetation." Actions proposed to be implemented under each alternative are believed to best meet project purpose and need while meeting issues that drove alternative formulation.

29.27.4.5 Avoid permanent impairment of site productivity and ensure conservation of soil and water resources

SWCPs, implemented in project design and contract execution are designed to minimize impacts to site productivity and ensure conservation of soil and water resources. These are discussed in Chapter Four: "Soils and Hydrology." Contract clauses will be used that implement SWCPs, such as directional felling, designated trail, ending, etc.

29.27.4.6 Provide the desired effects on water quantity and quality, wildlife and fish habitat, and other resource yields.

The analysis of the Proposed Action and Action Alternatives show that there would be no change to water quantity or quality of the affected watersheds. The amount of created openings is well below the 30% threshold that is believed to be needed to significantly affect water yields. Affected to water quality and fish habitat would be negligible due to the implementation of the required SWCPs.

29.27.4.7 Be practiced in terms of transportation and harvesting requirements, and total cost of preparation, logging and administration.

The transportation and harvest methods described are capable of being implemented, based on the Silvicultural automation and transportation plan and feasibility report (Refer to the Project File, exhibit 16). The economic analysis outlined in Chapter Four demonstrates that all costs are within expected revenues.

SILVICULTURAL PRACTICES

29.27.4.8 No timber harvesting shall occur on lands classified as not suited for timber production pursuant to Section 19.14 except for salvage sales. These lands shall continue to be treated for reforestation purposes if necessary to achieve the multiple use objectives of the plan.

This has been discussed under the "Forest Land Suitability," section. Based on discussions in this section, all harvest activities proposed are in full compliance with this management requirement.
The Timber harvests designed to regenerate an even-aged stand of timber shall be carried out in a manner consistent with the protection of soil, watershed, fish and wildlife resources, and the reforestation of the timber resource.

No even-aged treatments are proposed under the Proposed Action or other Action Alternatives. However, as discussed in Chapters Three and Four, the SWC's, are designed to protect soil, water, and in-stream resources. Permanent restrictions are set in areas of adequate ground cover, harvest restrictions in critical soil and watersheded areas, wetland restrictions, desegregated skid trails, and ripping of skid trails.

"Timber harvest and other silvicultural treatments shall be used to prevent potential damaging population increases of forest pests. Silvicultural treatments shall not be applied where such treatments would make stands susceptible to pest-cause damage levels inconsistent with management objectives."

The Purpose and Need for this action in the Hancock Focus Area is driven by the need to reduce the potential damaging population increases of bark beetles. As described in Chapter Four, Vegetation, "Processes", the Proposed Action and Action Alternatives would move toward achieving this objective. The proposed silvicultural treatments would improve the existing situation.

EVEN-AGED MANAGEMENT

OFCLEARING AS APPLICABLE: The National Forest Management Act states that clearcutting is to be used on National Forest System lands only where it is determined to be the optimum method.

Salvage/cutover and improvement cuttings are the proposed treatments in forest areas under the Proposed Action or other Action Alternatives in the timber harvest Focus Areas. Clearcutting is used in some areas that have been heavily impacted by space beetles, and a portion of the dead trees would be removed. This method is also used for some areas being understocked, non-useful, mature stands. In the proposed cutovers, species composition goals due to their high value and potential for regenerating trees that may resemble a closecut. Only minor amounts of non-intended species would be removed from these areas. Damage to live trees that have survived the bark beetle infestation would be minimized by strict adherence to contract requirements for protection of residual green trees.

In the aspen regeneration areas, current literature indicates that clearcutting aspen clones provides the best conditions for aspen regeneration.

APPROPRIATENESS OF EVEN-AGED MANAGEMENT

The National Forest Management Act (NFMA) places special requirements on the use of even-aged silvicultural systems on National Forest Systems lands. This is contained in NFMA (10 USC 1504 a,b,c) and that states that "cuts designed to regenerate an even-aged stand of timber or areas used as a cutting method only where such a cutting is determined to be appropriate, to meet the objectives and requirements of relevant land management plans."

Long term management objectives have not been established for the project area. In some areas, space beetles have or are projected to kill a large proportion of the aspen, creating a more even-aged condition. However, a proposal will not exist in the future for managing these stands for an even-aged condition. It would take longer for them to achieve an uneven-aged distribution. All stands would have an option in the future to manage as even or uneven-aged depending on desired conditions at that time.

Proposed cutovers shall be located to achieve the desired combination of multiple use objectives. Regional forest managers shall provide options in the form of dispersal of cutovers. As a minimum, cutovers in forest stands are no longer to be consolidated-cutovers once a new forest is established. Forest plans may set forth variations to this minimum based on site-specific requirements for achieving multiple use objectives. Regional guidelines shall provide guidelines for determining variations to this minimum in the forest plan.

Referring to the discussion under 293.7 (d)(2)(b), below.

293.7 (d)(2)(b) Individual cut blocks, patches, or stops shall conform to the maximum size limits for areas to be cut in one harvest operation established by the regional guide. This limit may be less than, but will not exceed, 40 acres for all other forest types except as provided in paragraphs (d)(2)(b) through (iii) of this section. (i) - Cut openings in large areas, as specified in this section, may be permitted where larger units will produce a more desirable combination of net public benefits. (ii) - Size limits exceeding those established in paragraphs (d)(2)(b) and (d)(2)(c) of this section are permitted on an individual timber sale basis after 60 days' notice and review by the Regional Forest..."
For a complete discussion of the remaining 36 CFR 219.27(a) through (g) items not discussed above, refer to the resource reports in the Project File.

CLEAN WATER ACT

The Clean Water Act (CWA) requires each state to implement its own water quality standards. The State of Utah's Water Quality Antidegradation Policy requires maintenance of water quality to protect existing uses. Beneficial Uses on streams designated as Category I High Quality Waters. All surface waters geographically located within the outer boundaries of the Dixie National Forest, whether on private or public lands are designated as High Quality Waters (Category 1). This means they will be maintained at existing high quality. New point sources will not be allowed, and non-point sources will be controlled to the extent feasible through implementation of Best Management Practices (BMPs) or regulatory programs (Utah Division of Water Quality 1994). The State of Utah and the Forest Service have agreed through a 1993 Memorandum of Understanding to use Forest Plan Standards & Guidelines and the Forest Service Handbook (FPH) 2509.22 Soil and Water Conservation Practices (SWCPs) as the BMPs. The use of SWCPs as the BMPs meet the water quality protection elements of the Utah Nonpoint Source Management Plan.

The Beneficial Uses and High Quality water in the streams draining the Project Area would be maintained during and following project implementation through the proper implementation of BMPs (SWCPs) as described in Chapter 2 (Mitigation).

EXECUTIVE ORDER 11990 OF MAY, 1977

This order requires the Forest Service to take action to minimize destruction, loss, or degradation of wetlands and to preserve and enhance the natural and beneficial values of wetlands. In compliance with this order, Forest Service direction requires that an analysis be completed to determine whether adverse impacts would result.

The location of wetlands in the Project Area were identified in the delineation and inventory of critical watershed areas. No ground disturbing activities will occur within 50 feet of any wetland, seep, or spring. These areas have been identified on the critical watershed map. Impacts from adjacent or nearby areas will be prevented through implementation of SWCPs as described in Chapter 2 (Mitigation). With a 50 foot buffer area around any wetlands, seeps, or springs implementation of SWCPs, any of the alternatives would be in compliance with Executive Order 11990.

EXECUTIVE ORDER 11988 OF MAY, 1977

This order requires the Forest Service to provide leadership and to take action to (1) minimize adverse impacts associated with occupancy and modification of floodplains and reduce risks of flood loss, (2) minimize impacts of floods on human safety, health, and welfare, and (3) restore and preserve the natural and beneficial values served by flood plains. In compliance with this order, the Forest Service requires an analysis be completed to determine the significance of Proposed Actions in terms of impacts to flood plains.

No ground disturbing activities will be allowed within 50 feet of any stream channel (ephemeral, intermittent, and/or perennial) except at road crossings. Impacts related to road crossings will be minimized or prevented through implementation of SWCPs. All new roads proposed will be closed following project completion, and the natural stream courses will be reestablished. Therefore any of the proposed alternatives will be in compliance with Executive Order 11988.

ENDANGERED SPECIES ACT OF 1973, AS AMENDED

Based on discussions in Chapters Three and Four concerning threatened and endangered plant and wildlife species, correspondence with USFWS, and detailed discussions contained in the Biological Assessment located in the Project File (Exhibit 15), it has been determined that there would be no adverse effects to populations of threatened, endangered, or proposed wildlife or plant species relative to the Proposed Action or any alternative.

IRREVERSIBLE OR IRRETRIEVABLE COMMITMENT OF RESOURCES

Irreversible resource commitment applies to losses of production, harvest, or commitment of renewable natural resources. For example, some or all of the timber production from an area is irretrievably lost during the time an area is used as a winter sports site. If the use is changed, timber production can be resumed. The production lost is irreversible, but the action is not irreversible.

IRRETRIEVABLE RESOURCE COMMITMENTS

VEGETATION: Where permanent roads are constructed or reconstructed and the soil displaced, there is an irreversible loss of the type of vegetation that occurs. For temporary roads, skid trails and landings, vegetation is
restored on the disturbed areas, but the type of vegetation may be changed from timber to grasses and legumes if these areas are to be part of the permanent transportation system.

RECREATION/VISUALS: Where trees are harvested there would be an irretrievable loss of an unaltered environment from selected viewpoints in the short term (refer to Recreation/Visual sections for detailed disclosures). The time required for this condition to change would vary by the observer involved, dependent on the type of vegetation that a particular observer would require to meet their visual interest.

SOCIAL/ECONOMIC: Where there is no wood fiber recovered, such as No Action, there would be an irretrievable loss in income and employment in the local economy for a short period of time, or, until new sources of supply could be found. Refer to the Social/Economic section for detailed discussions by alternative. To compensate for a lack of supply of timber, terms reach outside their normal market area for sources of supply. This, in turn, drains resources available to other firms, who then must reach outside their market areas. This effect would ripple through the market of the zone of influence as identified in the Social/Economic section of this Chapter.

Refer to each resource section in this Chapter for detailed disclosures of these irreversible commitments of resources.

IRREVERSIBLE RESOURCE COMMITMENTS:

Irreversible resource commitment applies primarily to the use of nonrenewable resources, such as minerals or Heritage resources, or those factors that are renewable only over long time spans, such as soil productivity. Irreversible also includes loss of future options.

Two types of irreversible resource commitments would occur as a result of implementation of any of the action alternatives:

ENERGY RESOURCES: Food fuels used in processing wood products which would result from an action alternative would be an irreversible loss.

OTHER RESOURCES: There would be a limited irreversible loss in soil/sediment resources used in road re-construction/re-configuration through use of existing and potential borrow pits.

No other irreversible resource commitments were determined as a result of the implementation of an action alternative. This would result due to the adherence to Forest Plan S&G and alternative mitigation for resources involved. Refer to detailed disclosures for each resource in Chapter Four of this document for supporting documentation of this conclusion.

PROBABLE ADVERSE ENVIRONMENTAL EFFECTS THAT CANNOT BE AVOIDED

All activities that occur as the result of the implementation of an alternative would cause some degree of environmental impact. The degree and severity of the adverse effects are monitored through the adherence to Forest Plan S&G’s and alternative mitigation measures. Some impacts cannot be avoided if management activities occur regardless of the alternative implemented. These effects include:

- a) Intermittent decrease in air quality due to dust from road construction, maintenance and use, and smoke due to prescribed burning activities.
- b) Short term and localized increases in soil erosion due to land disturbing activities.
- c) Short term changes in the landscape from silviculture and road construction that may be disturbing to some Forest users.
- d) Short term conflicts between recreation use and timber harvest, aspen regeneration and prescribed burning.
- e) Temporary wildlife disturbance in some locations because of increased human activity.

For a complete disclosure of effects to each resource, refer to the detailed discussions for each resource found in this Chapter.

PLANS AND POLICIES OF OTHER JURISDICTIONS

As evidenced from responses to scoping, and other public involvement solicitations, no conflicts have been identified between the objectives of other Federal, State, and local governments and Indian tribes, and the Proposed Action or Action Alternatives. Not have any been identified relative to No Action.

MONITORING PLAN

Monitoring Plans, which would be part of the Proposed Action, or any Action Alternative to the Proposed Action, have been prepared. These plans include the item to be monitored, frequency of monitoring, person responsible, and projected costs. The monitoring plans are located in Appendix 12.
CHAPTER FIVE

LIST OF PREPARERS

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>SUBJECT AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phil Eisenbauer</td>
<td>Zone Silviculturist/Team Leader</td>
<td>Data Analysis and Design, Silviculture, NFMA/NEPA & Biodiversity</td>
</tr>
<tr>
<td>Craig Kendall</td>
<td>Zone Hydrologist</td>
<td>Hydrology, Water Quality</td>
</tr>
<tr>
<td>Nancy Brunswiek</td>
<td>Zone Landscape Architect</td>
<td>Recreation and Visuals, FOIA</td>
</tr>
<tr>
<td>Teresa Rigby</td>
<td>Information Assistant</td>
<td>Public Involvement, SocioEconomic</td>
</tr>
<tr>
<td>Priscilla Summers</td>
<td>Zone Wildlife Biologist/Engineer</td>
<td>Wildlife, T.E. & 5 Plants and Animals</td>
</tr>
<tr>
<td>Steve Hatch</td>
<td>Zone Fire Management Officer</td>
<td>Transportation Planning</td>
</tr>
<tr>
<td>Brett Fay</td>
<td></td>
<td>Prescribed Fire, Fuels</td>
</tr>
</tbody>
</table>

INTERDISCIPLINARY TEAM MEMBERS

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>SUBJECT AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah Quintana</td>
<td>Zone Environmental Coordinator</td>
<td>Data Analysis and Design, Silviculture, NFMA/NEPA & Biodiversity</td>
</tr>
<tr>
<td>Joseph Redman</td>
<td>Forest Environmental Coordinator</td>
<td>Hydrology, Water Quality</td>
</tr>
<tr>
<td>Steve Manson</td>
<td>Regional Entomologist</td>
<td>Recreation and Visuals, FOIA</td>
</tr>
<tr>
<td>Diana McGinn</td>
<td>Zone Forester</td>
<td>Public Involvement, SocioEconomic</td>
</tr>
<tr>
<td>Jim Bayer</td>
<td>Forest Soils Scientist</td>
<td>Wildlife, T.E. & 5 Plants and Animals</td>
</tr>
<tr>
<td>Laurie Parry</td>
<td>Forestry Technician</td>
<td>Transportation Planning</td>
</tr>
<tr>
<td>Randy Davis</td>
<td>Zone Sale Administrator</td>
<td>Prescribed Fire, Fuels</td>
</tr>
<tr>
<td>Dale Harris</td>
<td>District Range Conservationist</td>
<td>Hydrology, Water Quality</td>
</tr>
<tr>
<td>Randall Hayman</td>
<td>GIS Coordinator</td>
<td>Hydrology, Water Quality</td>
</tr>
</tbody>
</table>

TECHNICAL SUPPORT

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>SUBJECT AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marian Jacklin</td>
<td>Forest Archaeologist</td>
<td>Data Analysis and Design, Silviculture, NFMA/NEPA & Biodiversity</td>
</tr>
<tr>
<td>Trina Lowry</td>
<td>Forestry Technician</td>
<td>Hydrology, Water Quality</td>
</tr>
<tr>
<td>Mike Martin</td>
<td>Outdoor Recreation Planner</td>
<td>Recreation and Visuals, FOIA</td>
</tr>
<tr>
<td>Steve Robertson</td>
<td>Forestry Biologist</td>
<td>Public Involvement, SocioEconomic</td>
</tr>
<tr>
<td>Kevin Wheeler</td>
<td>Forestry Technician</td>
<td>Transportation Planning</td>
</tr>
<tr>
<td>Dayna Romine</td>
<td>Forestry Technician</td>
<td>Prescribed Fire, Fuels</td>
</tr>
<tr>
<td>Nanette Coutts</td>
<td>Forestry Technician</td>
<td>Hydrology, Water Quality</td>
</tr>
</tbody>
</table>

Spruce Ecosystem Recovery Project DEIS
CHAPTER SIX

LITERATURE CITATIONS

Bayer, J.T. 1997. Personal communication. Soil Scientist, Dixie National Forest, Cedar City, Utah

Bonebrake, Bruce. 1978. Personal conversation with Kate Grandison regarding Blue Grouse and elk and deer summer ranges.

Spruce Ecosystem Recovery Project FEIS

CHAPTER SIX

LITERATURE CITATIONS

Munson, S. 1997. Personal communication with Phil Eisenhauer concerning bark beetle activities in the SERP area.

Packer, P.E. and G.F. Christensen. 1977. Guides for controlling sediment from secondary logging roads. Intermountain Forest and Range Experiment Station. Ogden, UT. and Northern Regional Office. Missoula, MT.

Spruce Ecosystem Recovery Project FEIS

Rodriguez, R. 1993. Biological assessment for threatened, endangered, and proposed species for the spruce-bark beetle program within the spruce-fir cover type on the Cedar City Ranger District.

Spruce Ecosystem Recovery Project FEIS

Summers, P. 1997b. The effects of prescribed burning on selected wildlife species. Cedar City Ranger District, Dixie National Forest, Cedar City, Utah. 27 pp.

USDA Forest Service 1994. Sydney Valley Recovery Project microclimate section. p 3-1-2. 4-1 to 4-4.

CHAPTER SEVEN

GLOSSARY
CHAPTER SEVEN

GLOSSARY

affected environment - The natural environment that exists at the present time in an area being analyzed.

age class - An age grouping of trees according to an interval of years, usually 20 years. A single age class would have trees that are within 20 years of the same age, such as 1-20 years or 21-40 years.

airshed - A geographic area that shares the same air.

allotment (range allotment) - The area designated for use by a prescribed number of livestock for a prescribed period of time. Though an entire Ranger District may be divided into allotments, all land will not be grazed, because other uses, such as recreation or tree plantings, may be more important at a given time.

anadromous fish - Species of fish that mature in the sea and migrate into streams to spawn.

aspect - The direction a slope or watershed faces. A hillside facing east has an eastern aspect.

AQI (allowable sale quantity) - The amount of timber that may be sold within a certain time period from an area of suitable land. The suitability of the land and the time period are specified in the Forest Plan.

aquatic macroinvertebrates - Invertebrates living within aquatic systems that are large enough to be seen with the naked eye (e.g. most aquatic insects).

aquifer - A body of rock that is saturated with water or transmits water.

AUM (animal unit month) - The quantity of forage required by one mature cow and her calf for the equivalent, in sheep or horses, for instance, for one month.

bark beetle - An insect that bores through the bark of forest trees to eat the inner bark and lay its eggs. Bark beetles are important killers of forest trees.

basal area - The area of the cross-section of a tree trunk near its base, usually 4 and 1/2 feet above the ground. Basal area is a way to measure how much of a site is occupied by trees. The term basal area is often used to describe the collective basal area of trees per acre.

big game - Large mammals, such as deer, elk, bear, and antelope that are hunted for sport.

biological diversity - The number and abundance of species found within a common environment. This includes the variety of genes, species, ecosystems, and the ecological processes that connect everything in a common environment.

biota - The plant and animal life of a particular region.

BMP (Best Management Practices) - Practices designed to prevent or reduce water pollution. Also, referred to as Soil and Water Conservation Practices (SWCPs).

board foot - A measurement term for lumber or timber. It is the amount of wood contained in an unfinished board 1-inch thick, 12 inches long, and 12 inches wide.

broadcast burn - A prescribed fire that burns a designated area. These controlled fires can reduce wildfire hazards, improve forage for wildlife and livestock, or encourage successful regeneration of trees.

browse - Twigs, leaves, and young shoots of trees and shrubs that animals eat. Browse is often used to refer to the shrubs eaten by big game, such as elk and deer.

buffer - A land area that is designated to block or absorb unwanted impacts to the area beyond the buffer. Buffer strips along a trail could block views that may be undesirable. Buffers may be set aside next to wildlife habitat to reduce abrupt change to the habitat.

canopy - The part of any stand of trees represented by the tree crowns. It usually refers to the uppermost layer of foliage, but it can be used to describe lower layers in a multi-storied forest.

canopy cover - See cover class.

capture (impact) - One of the ways functions are described: resources (organisms, materials, and energy) brought into the system (i.e., photosynthesis, migration onto summer range, pollution brought in by wind or water).

cavity - A hole in a tree often used by wildlife species, usually birds, for nesting, roosting, and reproduction.

clear cut - A harvest in which all or almost all of the trees are removed in one cutting.

climate - The culminating stage in plant succession for a given site. Climax vegetation is stable, self-maintaining, and self-reproducing.

collector roads - These roads serve small land areas and are usually connected to a Forest System Road, a county road, or a state highway.

common (Class B) landscape - Areas where features contain variety in form, line, color, and texture or combinations thereof, but which tend to be common throughout the character type and are not outstanding in visual quality.

composition - What an ecosystem is composed of. Composition could include water, minerals, trees, snags, wildlife, soil, microorganisms, and certain plant species.

conifer - A tree that produces cones, such as a pine, spruce, or fir tree.

connectivity - The linkage of similar but separated vegetation stands by patches, corridors, or "stepping stones" of like vegetation. This term can also refer to the degree to which similar vegetation are linked.

contour - A line drawn on a map connecting points of the same elevation.

corridor - Elements of the landscape that connect similar areas. Streamsides vegetation may create a corridor of willows and hardwoods between meadows where wildlife feed.

cover - Any feature that protects or consumes wildlife or fish from view or elements. Cover may be dead or live vegetation, boulders, or undercut streambanks. Animals use cover to escape from predators, reproduce, rest, or feed.

cover class - Represents a percentage range for a fixed area covered by the crowns of plants. It is measured as a vertical projection of the outermost portion of the foliage. Cover Class A = 0-40% canopy cover, cover class B = 40-60% canopy cover, cover class C = 60-80% canopy cover, cover class D = 80-100% canopy cover.

cover type (forest cover type) - Stands of a particular vegetation type that are composed of similar species. The Aspen cover type contains plants distinct from the Ponderosa Juniper cover type.

created opening - An opening in the forest cover created by the application of even-aged silvicultural practices.

critical habitat - Areas designated by the U.S. Fish and Wildlife Service for the survival and recovery of Federally listed threatened or endangered species.

Spruce Ecosystem Recovery Project DEIS

7-1

Spruce Ecosystem Recovery Project DEIS

7-2
crown closure - see cover class.
crown height - The distance from the ground to the base of the crown of a tree.
cultural resource - The remains of sites, structures, or objects used by people in the past; this can be historical or prehistoric.
cumulative effects - Effects on the environment that result from separate, individual actions that, collectively, become significant over time.
cycling - One of the ways functions are described, resources which are transported within the system (i.e., animal migration, nutrient cycling in a forest stand, snow melt becoming part of the surface or groundwater flow).
dbh (diameter at breast height) - The diameter of a tree 4 and 1/2 feet above the ground on the uphill side of the tree.
decision criteria - The rules and standards used to evaluate alternatives to a proposed action on National Forest land. Decision criteria are designed to help a decision maker identify a preferred choice from the array of alternatives.
DIEIS (Draft Environmental Impact Statement) - The draft version of the Environmental Impact Statement that is released to the public and other agencies for review and comment.
desired future condition - Land or resource conditions that are expected to result if goals and objectives are fully achieved.
developed recreation - Recreation that requires facilities that, in turn, result in concentrated use of the area. For example, skiing requires ski lifts, parking lots, buildings, and roads. Campgrounds require roads, picnic tables, and toilet facilities.
dispersed recreation - Recreation that does not occur in a developed recreation site, such as hunting, backpacking, and scenic driving.
distinctive (Class A) landscape - Areas where features of landform, vegetative patterns, water forms, and rock formations are of unusual or outstanding visual quality.
disturbance - Any event, such as forest fire or insect infestations that alter the structure, composition, or functions of an ecosystem. Disturbance can also mean disruption to an animal’s behavior or well being.
ecology - The interrelationships of living things to one another and to their environment, or the study of these interrelationships.
ecosystem - An arrangement of living and nonliving things and the forces that move among them. Living things include plants and animals. Nonliving parts of ecosystems may be rocks and minerals. Weather and wildlife are two of the forces that act within ecosystems.
ecosystem management - An ecological approach to natural resource management to assure productive, healthy ecosystems by blending social, economic, physical, and biological needs and values.
ecotype - A population of a species in a given ecosystem that is adapted to a particular set of environmental conditions.
edge - The margin where two or more vegetation patches meet, such as a meadow opening next to a mature forest stand, or a ponderosa pine stand next to an aspen stand.
edge effect - the increased richness of plants and animals resulting from the mixing of two communities where they join.
ecosystem - An identifiable component, process, or condition of an ecosystem.
edangered species - A plant or animal that is in danger of extinction throughout all or a significant portion of its range. Endangered species are identified by the Secretary of the Interior in accordance with the Endangered Species Act of 1973.
edemic plant/organism - A plant or animal that occurs naturally in a certain region and whose distribution is relatively limited geographically.
environmental analysis - An analysis of alternative actions and their predictable long and short-term environmental effects. Environmental analyses include physical, biological, social, and economic factors.
environmental impact statement - A statement of environmental effects of a proposed action and alternatives to it. The EIS is released to other agencies and the public for comment and review.
ephemeral streams - Streams that flow only as the direct result of rainfall or snowmelt. They have no permanent flow.
erosion - The wearing away of the land surface by wind or water.
even aged management - Timber management actions that result in the creation of stands of trees in which the trees are essentially the same age.
eryie - A ledge along a cliff used for nesting by raptors.
fauna - The animal life of a given area.
felling - Cutting down trees.
fire regime - The characteristics of fire in a given ecosystem, such as the frequency, predictability, intensity, and seasonality of fire.
fisheries habitat - Streams, lakes, and reservoirs that support fish, or have the potential to support fish.
flood plain - A lowland adjoining a watercourse. At a minimum, the area is subject to a 1/4% or greater chance of flooding in a given year.
flora - The plant life of a given area.
forage - All browse and non-woody plants that are eaten by wildlife and livestock.
forb - A broadleaf plant that has little or no woody material in it.
foreground - The part of a scene or landscape that is nearest to the viewer.
forest cover type - See cover type.
Forest Vegetation Simulation - A computer model for timber growth and yield. It projects per acre growth and volume yield for commercial timber stands. Formerly known as 'Prognosis'.
forest health - A measure of the robustness of forest ecosystems. Aspects of forest health include biological diversity, soil, air, and water productivity, natural disturbances, and the capacity of the forest to provide a sustaining flow of goods and services for people.

Forest Roads and Trails - Roads and trails under the jurisdiction of the Forest Service.

Forest Supervisor - The official responsible for administering National Forest lands on an administrative unit, usually one or more National Forests. The Forest Supervisor reports to the Region, Forester.

fragmentation - The splitting or isolating of patches of similar habitat, typically forest cover, but including other types of habitat. Habitat can be fragmented naturally or from forest management activities, such as clearcut logging.

fuels - Plants and woody vegetation, both living and dead, that are capable of burning.

fuels management - The treatment of fuels that would otherwise interfere with effective fire management or control. For instance, prescribed fire can reduce the amount of fuels that accumulate on the forest floor before the fuels become so heavy that a natural wildfire in the area would be explosive and impossible to control.

fuelwood - Wood cut into short lengths for burning.

function - All the processes within an ecosystem through which the elements interact, such as succession, the food chain, fire, weather, and the hydrologic cycle.

game species - Any species of wildlife or fish that is hunted or harvested according to prescribed limits and seasons.

geospatial processes - Processes that change the character and form of the earth's surface such as volcanic activity, running water, and glacial action.

GIS (geographic information systems): GIS is both a database designed to handle geographic data as well as a set of computer operations that can be used to analyze the data. In a sense, GIS can be thought of as a higher order map.

ground fire - A fire that burns along the forest floor and does not affect trees with thick bark or high crowns.

habitat - The area where a plant or animal lives and grows under natural conditions.

habitat type - A way to classify land area. A habitat type can support certain climax vegetation, both tree and undergrowth species. Habitat typing can indicate the biological potential of a site.

hiding cover - Vegetation capable of hiding 50% of an adult elk or deer from human's view at a distance of 200 feet or less.

hydrology - The science of water distribution and movement in the earth, on the surface, and in the atmosphere.

igneous rock - Rocks formed when high temperature, molten mineral matter cooled and solidified.

indicator species - A plant or animal species related to a particular kind of environment. Its presence indicates that specific habitat conditions are also present. (See also MIS.)

integrated pest management - IPM evaluates alternatives for managing forest pest populations, based on consideration of pest-host relationships.

interdisciplinary team - A team of individuals with skills from different disciplines that focuses on the same task or project.

intermittent stream - A stream that only flows during wet periods of the year (spring and early summer).

irretrievable - One of the categories of impacts mentioned in the National Environmental Policy Act to be included in statements of environmental impacts. An irreversible effect applies to losses of production or commitment of renewable natural resources. For example, while an area is used as a ski area, some or all of the timber production there is irretrievably lost. If the ski area closes, timber production could resume; the loss of timber production during the time that the area was devoted to winter sports is irreversible. However, the loss of timber production during that time is not irreversible, because it is possible for timber production to resume if the area is no longer used as a ski area.

irreversible - A category of impacts mentioned in statements of environmental impacts that applies to non-renewable resources, such as minerals and archaeological sites. Irreversible effects can also refer to effects of actions that can be renewed only after a very long period of time, such as the loss of soil productivity.

ladder fuels - Vegetation located below the crown level of forest trees which can carry fire from the forest floor to tree crowns. Ladder fuels may be low-growing tree branches, shrubs, or smaller trees.

landing - Any place where cut timber is assembled for further transport from the timber sale area.

landscape - A large land area composed of interacting ecosystems that are repeated due to factors such as geology, soils, climate, and human impacts. Landscapes are often used for coarse grain analyses.

litter (forest litter) - The freshly fallen or only slightly decomposed plant material on the forest floor. This layer includes foliage, bark fragments, bugs, flowers, and fruit.

logging residue (slash) - The residue left on the ground after timber cutting. It includes unused logs, uprooted stumps, broken branches, bark, and leaves. Certain amounts of slash provide important ecosystem roles, such as soil protection, nutrient cycling, and wildlife habitat.

long-term - Unless otherwise defined, long-term refers to longer than 10 years.

M - Thousand. Five thousand feet of timber can be expressed as 5M board feet.

mass movement/wasting - The down-slope movement of large masses of earth material by the force of gravity. Also called a landslide.

MBF - Thousand Board Feet (See board feet.)

microclimate - The climate of a small site. It may differ from the climate at large of the area due to aspect, tree cover, or exposure to winds.

middleground - A term used the management of visual resources, or scenery. It refers to the visible terrain beyond the foreground where individual trees are still visible but do not stand out distinctly from the stand.

mineral soil - Soil that consists mainly of inorganic material, such as weathered rock, rather than organic matter.

MIS (management indicator species) - A wildlife species whose population will indicate the health of the ecosystem to which it lives and, consequently, the effects of forest management activities to that ecosystem. MIS species are selected by land management agencies. (See "indicator species").

mitigation - Actions taken to avoid, minimize, or rectify the impact of a land management practice.

mixed stand - A stand consisting of two or more tree species.

MMBF - Million Board Feet (See board feet.)
modification - A visual quality objective, management activities may visually dominate the original characteristic landscape, but they must borrow from naturally established form, line, color, or texture so that the activity blends with the surrounding area.

monitoring and evaluation - The periodic evaluation of forest management activities to determine how well objectives were met and how management practices should be adjusted. See "adaptive management."

mortality - Trees that were merchantable and have died within a specified period of time. The term mortality can also refer to the rate of death of a species in a given population or community.

mosaic - Areas with a variety of plant communities over a landscape, such as areas with trees and areas without trees occurring over a landscape.

natural barrier - A natural feature, such as a lava flow, road or mountain range, that will restrict animal travel or spread of a plant population.

natural disturbance - See disturbance.

natural range of variability - See range of variability.

natural resource - A feature of the natural environment that is of value to serving human needs.

NEPA (National Environmental Policy Act) - Congress passed NEPA in 1969 to encourage productive and enjoyable harmony between people and their environment. One of the major tenets of NEPA is its emphasis on public disclosure of possible environmental effects of any major action on public lands. Section 102 of NEPA requires a statement of possible environmental effects to be released to the public and other agencies for review and comment.

NFLRMP (National Forest Land and Resource Management Plan) - Also called the Forest Plan or just the Plan. This document guides the management of a particular National Forest and establishes management standards and guidelines for all lands that National Forest.

NFMA (National Forest Management Act) - This law was passed in 1976 and requires the preparation of Regional Guides and Forest Plans.

No Action alternative - The most likely condition expected to exist in the future if management practices continue unchanged.

nongame - Wildlife species that are not hunted with prescribed seasons for sport.

nonsource pollution - Pollution whose source is not specific in location. The sources of the discharge are dispersed, not well defined, or constant. Rain storms and snowmelt often make this type of pollution worse. Examples include sediments from logging activities and runoff from agricultural chemicals.

non renewable resource - A resource whose total quantity does not increase measurably over time, so that each use of the resource diminishes the supply.

notice of intent - A notice in the federal register of intent to prepare an environmental impact statement on a proposed action.

old growth - Old forests often containing several canopy layers, variety in tree sizes and species, decaden old trees, and standing and dead woody material.

opening - An opening in the forest created by even-aged silvicultural practices.

OHV- Off-road vehicles, such as motor cycles, 4-wheel drive vehicles, and 4-wheelers. May also be called OHV (off-highway vehicles).

output - One of the ways functions are described; resources which leave a system (i.e. animals migrating out of an area, mass erosion, removal of commercial timber from an area).

overstory - The upper canopy layer; the plants below comprise the understory.

parent material - The mineral or organic matter from which the upper layers of soil are formed.

park like structure - Stands with large scattered trees and open growing conditions, usually maintained by ground fires.

partial retention - A visual quality objective which, in general, means human activities may be evident, but must remain subordinate to the characteristic landscape.

patch - An area of homogeneous vegetation, in structure and composition.

patch cut - A clearing that creates small openings in a stand of trees, usually between 15 and 40 acres in size. On the Dixie National Forest and elsewhere, patch cuts are used to provide the disturbance needed to regenerate aspen.

percolation - Downward flow or infiltration of water through the pores or spaces of rock or soil.

perennial stream - A stream that flows throughout the year.

permitted grazing - Grazing on a National Forest range allotment under the terms of a grazing permit.

personal use - The use of a forest product, such as firewood, for home use and not for commercial use.

persons-at-one-time (PAMT) - A recreation capacity measurement term indicating the number of people who can use a facility or area at one time.

planning area - The area of National Forest land covered by a Regional Guide or Forest Plan.

planning period - The 50 year time frame for which goods, services, and effects were projected in the development of the Forest Plan.

pole sapling - The stage of forest succession in which trees are between 3 and 7 inches in diameter and are the dominant vegetation.

pole timber - Trees at least 5 inches in diameter, but smaller than the minimum size for sawtimber.

PNV - See present net value.

precommercial thinning - Removing some of the trees from a stand that are too small to be sold for lumber or house logs, so the remaining trees will grow faster.

predator - An animal that lives by preying on other animals. Predators are at or near the tops of food chains.

prescribed fire - Fire set intentionally in wildland fuels under prescribed conditions and circumstances. Prescribed fire can rejuvenate forage for livestock and wildlife or prepare sites for natural regeneration of trees.

prescription - Management practices selected to accomplish specific land and resource management objectives.

present net value (PNV), also called present net worth - The measure of the economic value of a project when costs and revenues occur in different time periods. Future revenues and costs are "discounted" to the present by an interest rate that reflects the changing value of a dollar over time. The assumption is that dollars today are more valuable than dollars in the future. PNV is used to compare project alternatives that have different cost and revenue flows.

Spruce Ecosystem Recovery Project DEIS Spruce Ecosystem Recovery Project DEIS
production - one of the ways functions are described; resources which are "manufactured" within the system (i.e. plant growth, animal reproduction, snags falling and becoming down woody material).

productive - The ability of an area to sustain ecological values and to provide goods and services.

public land - Land for which title and control rests with a government—Federal, state, regional, county, or municipal.

public involvement - The use of appropriate procedures to inform the public, obtain early and continuing public participation, and consider the views of interested parties in planning and decision making.

range - Land on which the principle natural plant cover is composed of native grasses, forbs, and shrubs that are valuable as forage for livestock and big game.

range management - The art and science of planning and directing range use intended to yield the sustained maximum annual production and perpetuation of the natural resources.

range of variability (Also called the historic range of variability or natural range of variation.) - The components of healthy ecosystems fluctuate over time. An ecosystem within its historic range of variability is resilient to natural and man-caused disturbances. The range of sustainable conditions in an ecosystem is determined by time, processes (such as fire), native species, and the land itself. For instance, ecosystems that have a 10 year fire cycle have a narrower range of variation than ecosystems with 200-300 year fire cycle. Past management has placed some ecosystems outside their range of variability. Future management should move such ecosystems back toward their natural, sustainable range of variation.

Ranger District - The administrative sub-unit of a National Forest that is supervised by a District Ranger who reports directly to the Forest Supervisor.

raptor - A bird of prey, such as a eagle, owl, or hawk.

RARE II - Roadless Area Review and Evaluation. The national inventory of roadless and undeveloped areas within the National Forests and Grasslands.

recharge - The addition of water to ground water by natural or artificial processes.

recreation visitor days (RVD) - Twelve visitor hours, which may be aggregated continuously, intermittently, or simultaneously by one or more people.

reforestation - The restocking of an area with forest trees, by either natural or artificial means, such as planting.

re-generation - The renewal of a tree crop by either natural or artificial means. The term is also used to refer to the young crop itself.

Regional Forester - The official of the USDA Forest Service responsible for administering an entire region of the Forest Service.

residual stand - The trees remaining standing after an event such as selection cutting.

resilience - The ability of an ecosystem to maintain diversity, integrity, and ecological processes following a disturbance.

Responsible official - The Forest Service employee who has been delegated the authority to carry out a specific planning action.

restoration (of ecosystems) - Actions taken to modify an ecosystem to achieve a desired, healthy, and functioning condition.

retention - A visual quality objective; management activities are not clearly evident; activities repeat form, line, color, and texture characteristics found in the landscape.

revegetation - The re-establishment and development of a plant cover by either natural or artificial means, such as re-seeding.

riparian area - Riparian areas consist of riparian ecosystems, aquatic ecosystems, and wetlands. They are generally associated with lakes, reservoirs, estuaries, potholes, marshes, springs, bogs, wet meadows, and intermittent or perennial streams where free and unbound water is available.

riparian ecosystem - The ecosystems around or next to water areas that support unique vegetation and animal communities as a result of the influence of water.

ROD - Record of Decision. A official document in which a deciding official states the alternative that will be implemented from a prepared EIS.

ROS - Recreation Opportunity Spectrum. The land classification system that categorizes land by its setting and the probable recreation experiences and activities it affords.

rotation - The number of years required to establish and grow timber crops to a specified condition of maturity.

salvage harvest - Harvest of trees that are dead, dying, or deteriorating because they are overmature or have been materially damaged by fire, wind, insects, fungi or other injurious agents, before the wood becomes unmerchantable.

sanitation harvest - The harvest of dead, damaged or susceptible trees done primarily to prevent the spread of pests or disease and to promote forest health.

sapping - A loose term for a young tree more than a few feet tall and an inch or so in diameter that is typically growing vigorously.

sawtimber - Trees that are 9 inches in diameter at breast height or larger that can be made into lumber.

scale - In ecosystem management, it refers to the degree of resolution at which ecosystems are observed and measured.

scoping - The ongoing process to determine public opinion, receive comments and suggestions, and determine issues during the environmental analysis process. It may involve public meetings, telephone conversations, or letters.

second growth - Forest growth that was established after some kind of interference with the previous forest crop, such as cutting, fire, or insect attack.

sensitive species - Plant or animal species which are susceptible to habitat changes or impacts from activities. The official designation is made by the USDA Forest Service at the Regional level and is not part of the designation of Threatened or Endangered Species made by the US Fish and Wildlife Service under the Endangered Species Act.

seral - The stage of succession of a plant or animal community that is transitional. If left alone, the seral stage will give way to another plant or animal community that represents a further stage of succession.

shelterwood - A cutting method used in a more or less mature stand, designed to establish a new crop under the protection of the old.

short-term - Unless otherwise defined, short-term refers to less than 10 years.
silvicultural system - The cultivation of forests; the result is a forest of a distinct form. Silvicultural systems are classified according to harvest and regeneration methods and the type of forest that results.

silviculture - The art and science that promotes the growth of single trees and the forest as a biological unit.

site preparation - The general term for removing unwanted vegetation, slash, roots, and stones from a site before reforestation. Naturally occurring wildfire, as well as prescribed fire can prepare a site for natural regeneration.

size class - One of the three intervals of tree stem diameters used to classify timber in the Forest Plan data base. The size classes are: Seedling/Sapling (less than 5 inches in diameter); Pole Timber (5 to 7 inches in diameter); Sawtimber (greater than 7 inches in diameter)

skidding - Hauling logs by sliding, not on wheels, from stump to a collection point.

skid trail - narrow path on which logging equipment travel when moving logs from the forest to a designated landing location.

skier days - Twelve skier hours, which may be aggregated continuously, intermittently, or simultaneously by one or more persons.

skyline logging - A logging system used to remove timber from steep slopes. Logs are brought up-slope on a suspended cable, or skyline. Since the weight of the log is completely or partially supported by the cable, there is little disturbance to soil or other vegetation.

slash - The residue left on the ground after timber cutting or left after a storm, fire, or other event. Slash includes unused logs, uprooted stumps, broken or uprooted stems, branches, bark, etc.

slump - A landslide where the underlying rock masses tilt back as they slide from a cliff or escarpment.

snag - A standing dead tree. Snags are important as habitat for a variety of wildlife species and their prey.

soil compaction - The reduction of soil volume. For instance, the weight of heavy equipment on soils can compact the soil and thereby change it in some ways, such as in its ability to absorb water.

soil productivity - The capacity of a soil to produce a specific crop. Productivity depends on adequate moisture and soil nutrients, as well as favorable climate.

special use permit - A permit issued to an individual or group by the USDA Forest Service for use of National Forest land for a special purpose. Examples might be a Boy Scout Jamboree or a mountain bike race.

stand - A group of trees that occupies a specific area and is similar in species, age, and condition.

standards and guidelines - Requirements found in a Forest Plan which impose limits on natural resource management activities, generally for environmental protection.

stocking level - The number of tree in an area as compared to the desirable number of trees for best results, such as maximum wood production.

stringer - A strip of vegetation different from surrounding vegetation, such as a stringer of aspen in a area of spruce.

structure - How the parts of ecosystems are arranged, both horizontally and vertically. These parts include vegetation patches, edge, fragmentation, canopy layers, snags, down wood, steep canyons, rocks in streams, and roads. For example, structure might reveal a pattern, or mosaic, or total randomness of vegetation.

suitability - The appropriateness of certain resource management to an area of land. Suitability can be determined by environmental and economic analysis of management practices.
successional stage - A stage of development of a plant community as it moves from bare ground to climax. The grass-forb stage of succession precedes the woody shrub stage.

succession - The natural replacement, in time, of one plant community with another. Conditions of the prior plant community (or successional stage) create conditions that are favorable for the establishment of the next stage.

sustainability - The ability of an ecosystem to maintain ecological processes and functions, biological diversity, and productivity over time.

sustainable - The yield of a natural resource that can be produced continually at a given intensity of management is said to be sustainable.

sustained yield - The yield that a renewable resource can produce continually at a given intensity of management.

Soil and Water Conservation Practices (SWCP) - Refer to BMPs.

target - A National Forest's annual goals for accomplishment for natural resource programs. Targets represent the commitment the Forest Service has with Congress to accomplish the work Congress has funded, and are often used as a measure of the agency's performance.

thermal cover - Cover used by animals against weather. For elk, thermal cover can be found in a stand of coniferous trees at least 40 feet tall with a crown closure of at least 70%.

thinning - A cutting made in an immature stand of trees to accelerate growth of the remaining trees or to improve the form of the remaining trees.

threatened species - Those plant or animal species likely to become endangered throughout all or a specific portion of their range within the foreseeable future as designated by the U.S. Fish and Wildlife Service under the Endangered Species Act of 1973.

tractor logging - A logging method that uses tractors to carry or drag logs from the stump to a collection point.

treatment area - The site-specific location of a resource improvement activity.

understory - The trees and woody shrubs growing beneath the overstory in a stand of trees.

uneven-aged management - Actions that maintain a forest or stand of trees composed of intermingling trees that differ markedly in age. Cutting methods that develop and maintain uneven-aged stands are single-tree selection and group selection.

unsuitable lands - Forest land that is not managed for timber production. Reasons may be matters of policy, ecology, technology, subsurface, or economics.

vegetation management - Activities designed primarily to promote the health of forest vegetation for multiple-use purposes.

vegetation type - A plant community with distinguishable characteristics.

vegetative structural stage - A method of describing the growth stages of a stand of living trees. It is based on tree size (DBH, diameter at breast height) and total canopy cover. The stages are: Grass/forb/brb (VSS 1) = 0-1 inch DBH, Seeding/forb/brb (VSS 2) = 1-5 inches DBH, Young Forest (VSS 3) = 5-12 inches DBH, Mid-Aged Forest (VSS 4) = 12-18 inches DBH, Mature Forest (VSS 5) = 18-24 inches DBH, Old Forest (VSS 6) = 24+ inches DBH.

vertical diversity - The diversity in a stand that results from the different layers or tiers of vegetation. It is a measure of structure.

visible population - The number of individuals of a species sufficient necessary to ensure the long-term existence of the species in natural, self-sustaining populations, adequately distributed throughout its range.

visual quality objective - A set of measurable goals for the management of forest visual resources used to measure the amount of visual contrast with the natural landscape caused by human activities.

visual resource - A part of the landscape important for its scenic quality. It may include a composite of terrain, geologic features, or vegetation.

watershed - The entire region drained by a waterway (or into a lake or reservoir). More specifically, a watershed is an area of land above a given point on a stream that contributes water to the streamflow at that point.

water table - The upper surface of groundwater. Below it, the soil is saturated with water.

water yield - The runoff from a watershed, including groundwater outflow.

wetlands - Areas that are permanently wet or are intermittently covered with water.

wilderness (Wilderness Areas) - Undeveloped federal land retaining its primeval character, without permanent human habitation or improvements. It is protected and managed to preserve its natural condition. Wilderness Areas are designated by Congress.

wildfire - Any wildland fire that is not a prescribed fire.

windthrow - Trees uprooted by wind.

yarding - Moving the cut trees from where they fell to a centralized place (landings) for hauling away from the stand.

ZOI (Zone of Influence) - The area influenced by Forest Service management activities.
CHAPTER EIGHT

PROPOSED FOREST PLAN AMENDMENT

A Forest Plan Amendment is also proposed. This amendment is proposed for the purpose of clarifying “Opening Size”, public review, and Regional Forester approval when responding to catastrophic events, such as windstorms, fire, insects and disease.

BACKGROUND

On January 8, 1996, Forest Supervisor Hugh C. Thompson sent a letter to Regional Forester Dale N. Bosworth requesting “elimination of the need for the Forest to seek Regional approval of openings created by the removal of salvage timber from areas harvested as a result of catastrophic conditions (bark beetle infestations).” The basis for requesting this exemption stems from review of CFR regulations (CFR 219.27 (d) (2) (i) and (iii)) which describe the limitation and requirements for openings created as a result of the application of even-aged silviculture, and monitoring of bark recovery projects. It is to be noted that paragraph (iii) of the CFR regulations specifically exempts size limitations on areas affected by insect and disease attack. Decisions to implement recovery activities on bark beetle infestation areas on the Dixie National Forest, as verified by monitoring of implementation activities, demonstrate the Forest is not applying even-aged silvicultural treatments in its sanitation salvage prescriptions, and the openings being created are not the result of even-age management.

In a letter dated January 26, 1996, Regional Forester Dale N. Bosworth granted a programmatic exemption “of Regional approval of openings created by the removal of salvage timber from areas harvested as a result of catastrophic bark beetle infestations. This request was granted for the following reasons: In the past several years the Forest has requested size of opening exemptions for several areas on a case-by-case basis. These have been granted largely because the situations on the Dixie are legal under the National Forest Management Act of 1976 (NFMA) [Public Law 94-588 Section 6 (iv) and (v)] and the resulting Code of Federal Regulations of 1982 [36 CFR 219.27 (d) (2) (i) and (iii)]. In the Regional Guide, policy is set on page 3-21 (i) and (c) that “Regional Forester review and approval is required for harvesting larger units under catastrophic condition must be reviewed and approved by the Regional Forester, if created openings exceed 60 acres.” This administrative policy requirement is beyond that specified in NFMA and CFR 219. The Regional Guide goes on to state in paragraph (f) “The established limit will not apply to the size of area harvested as a result of natural catastrophic condition, such as fire, insect attack, or windstorms.”

Regional Forester Bosworth goes on to say in this letter that “We remain aware that the definition of ‘opening’ contained in the Dixie National Forest Plan is more inclusive than that in NFMA. The Forest should address this issue and amend the Forest Plan on a case-by-case basis or perhaps through a forest-wide amendment to the Forest Plan that allows an exemption to the opening definition for catastrophic situations.”

PROPOSED FOREST-WIDE PLAN AMENDMENT

Proposed changes to the Dixie National Forest Plan Management Direction and Standards and Guidelines relative to the opening definition for catastrophic situations. The effects of this change in management direction and in Forest Plan Standards and Guides will be detailed each time these new standards are implemented.

The following changes are proposed to general direction E03, 06 and 07, section 6(a), (b) and (c) found on page IV-40 of the Forest Plan. Replace the existing E03, 06, and 07, section 6(a), (b) and (c) with the following:

Spruce Ecosystem Recovery Project FEIS
CHAPTER NINE
RESPONSES TO COMMENTS TO THE DRAFT ENVIRONMENTAL IMPACT STATEMENT

GENERAL DIRECTION

6. The maximum size of openings created by the application of clearcut even-aged silvicultural treatments will be 40 acres regardless of forest cover type. A proposal for larger openings created by the application of clearcut even-aged silvicultural treatment are subject to a 60-day public review and require approval by the Regional Forester as specified in the Regional Guide of 1984. Exceptions to this are:

(a) Larger openings which are the result of natural catastrophic events such as fire, insect or disease events and landslides. These larger openings may be commercially salvaged in blocks larger than 60 acres without requirement for 60-day public review and approval by the Regional Forester. This does not preclude public notification and participation requirements as outlined under the National Environmental Policy Act (NEPA).

(b) The area does not meet the definition of a created opening.

The effects of the new management direction and Forest Plan Standards and Guidelines will be analyzed each time these new standards are applied. The changes are shown on Table 8-1

Table 8-1. Proposed changes to Standards and Guidelines.

<table>
<thead>
<tr>
<th>STANDARD AND GUIDELINE</th>
<th>SIZE OF OPENING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch Clearcuts</td>
<td>1-10 acres (No change)</td>
</tr>
<tr>
<td>Clearcuts</td>
<td>10-40 acres (No change)</td>
</tr>
<tr>
<td>Sanitation/Salvage (for catastrophic events)</td>
<td>No acre limitation (Change)</td>
</tr>
</tbody>
</table>
CHAPTER NINE
RESPONSES TO COMMENTS TO THE DRAFT ENVIRONMENTAL IMPACT STATEMENT

INTRODUCTION

This Chapter responds to the comments received during the comment period of the Spruce Ecosystem Recovery Project (SERP) Draft Environmental Impact Statement (DEIS). The objective of the public comment period for the DEIS is to use the comments to improve the environmental analysis. An analysis of the public comments identifies public opinions and values relative to the project, new information about resources, geographic areas, alternatives, or even new issues.

On September 12, 1997 the DEIS was sent to members of the public who had commented during scoping on the project, affected or cooperating agencies, and elected officials. Fifteen written comments were received from individuals, groups, and agencies. This list of respondents is found on page 14 of this Chapter and the letters submitted are listed in the chronological order that they were received by the Ranger District. The letter numbers listed below correspond to that list.

Comments were received from the United States Environmental Protection Agency (EPA) and the State of Utah Division of Wildlife Resources (UDWR). The EPA gave the DEIS a rating of 1-O-Lack of Objections which is the highest rating given. The definition of this rating is: "The EPA review has not identified any potential environmental impacts requiring substantive changes to the proposal. The review may have disclosed opportunities for application of mitigation measures that could be accomplished with no more than minor changes to the proposal." The UDWR "supports the USFS's proposed action ... within the SERP area. We feel the USFS has evaluated and addressed effects of the proposed activities on wildlife very well."

The letters were reviewed and 83 separate comments were identified in 15 categories and are all addressed individually. Unless cited as additional analysis, the responses to the comments explain or clarify the management practices that are questioned or disputed. Many of the comments received are addressed in various resource white papers (hereafter called Effects White Papers) and the watershed assessment that were incorporated by reference (FEIS 1-8) and were cited throughout the DEIS. These documents were available for review upon request during the comment period. We received no requests for these documents during the comment period. The following responses to the comments clarify or explain the information disclosed in the DEIS. Effects White Papers, and the watershed assessment and to identify any errors corrected or other changes made to the FEIS.

Multiple Resource

Letter # 1

Comment 1: "The roads that are constructed and reconstructed, regardless of whether they are closed, will contribute to sediment runoff, erosion, wildlife habitat fragmentation, loss of semi-primitive recreational opportunities, water quality problems, and other adverse impacts associated with road construction, regardless of Dixie's attempts at closure Not until the roads are effectively annihilated, that is, completely revegetated to a point where they are no longer visible, can the Dixie claim that they do not contribute to increased road density. The EIS should reflect this point." (page 7)

Response: Road densities displayed in the EIS were determined by the miles of open roads which include all the Forest Development Roads (FDR). FDR's are recognized by the Forest as necessary for access management. These roads are also called "system" roads and are shown on the Forest's transportation plan map.

Closed and open roads affect many resources. The degree of effect varies temporally and spatially by resource. As described in the Wildlife Effects White Paper (Project File, Exhibit 37), the wildlife density guideline was established to define a habitat effectiveness threshold for big game (elk and deer) and is based on open roads. The effects of the proposed road construction on affected resources is described in Chapter Four of the FEIS.

As shown on page 4-34 the proposed road construction will occur in watersheds (Clear and Center Creeks) that are well above the 2.0 miles per square mile threshold. See the Response to Comment #10 below for a discussion on road densities upon implementation of the Proposed Action.

The effects to semi-primitive non-motorized recreational opportunities are discussed in the FEIS on pages 4-16 and 4-17.

Comment 2: "Spruces lies in the headwaters of the Clear Creek Watershed ... The EIS states that Clear Creek watershed is at a low risk of cumulative watershed impacts, but states that they have no information on current conditions of stream channels and associated riparian areas within the watershed. How can the EIS conclude that Clear Creek is at low risk of impact, if no information exists on current conditions? ... Please explain in greater clarity how the Dixie can determine there will be a low risk of cumulative impacts when they have no information on current conditions, no specification of how much timber will come off, no assurance that new road construction will not contribute to water quality problems because of illegal OHV use, and no determination of whether aspen treatments will be clearcutting and will involve tractor skidding." (pages 14-15)

Response: The cumulative effects model (risk model) used in the analysis is described on page 4-33 of the FEIS. The model only addresses watershed variables that have the potential to indirectly affect stream channels. The portion of the model used in the analysis does not incorporate data from stream channels. The risk level (low, moderate, or high) is a simple, non- watershed condition rating, and does not include stream channels directly. However, based on the visual observations of the District Hydrologist, Clear Creek itself appears to be in stable condition.

Spruce Ecosystem Recovery Project FEIS
The current conditions of the Clear Creek watershed are described on pages 4-34 to 4-36 of the FEIS. The amount of timber to be harvested is estimated in each alternative and is expressed in treatment acres rather than volume estimates. In salvage harvest situations, the treatment acres are more useful in hydrologic analyses to estimate the amount of ground disturbance associated with skidding. The proposed treatment acres in the Clear Creek watershed for the Proposed Action and Alternative B are on pages 4-35 and 4-42 of the FEIS. The potential effects of the road construction on water quality within the Clear Creek watershed were addressed based on the assumption that the road would be effectively closed following project completion.

Whether aspen stands are burned or cleared, appropriate steps (FEIS page 2-4 and Appendix 5) stand are to ensure the protection of soil and water resources. The clearcut, applicable SWCPs will be implemented to minimize surface runoff and erosion. If the stands are to be burned, soil and water protection will be incorporated into the prescription through consultation with the District Hydrologist. See comment #6 for a discussion of aspen regeneration methods.

14 Comment 3: "We are concerned about the potential for the Forest Service to circumvent a complete analysis of cumulative effects to the area by permitting incremental roadless area entries. The cumulative effects of the proposed SERP must be examined as a whole with other potential sales, and other sales that may have adversely affected the Spruces Roadless Area." (page 5)

14 "...we request that the Forest Service provide the public with a full description of the roadless areas impacted, the specific wildlife, recreation, wilderness and esthetic values of the area, and a detailed assessment to how these values will be impacted." (page 5)

Response: The cumulative effects of past, present, and foreseeable future actions on the undeveloped areas are discussed in Chapter Four of the FEIS.

1 Comment 4: "What is the Dixie’s rationale for failing to specify volume to be taken off of each focus area? This error must be remedied in the final EIS. Please specify exactly how much timber is slated to be cut from each focus area." (page 2)

12 "The most serious concern with the analysis of the SERP project relates to the lack of specificity on volume of wood product removed from the project area...The lack of specificity in the DEIS could lead up to almost four square miles of clearcuts. This lack of specificity not only robs the public of an opportunity to comment intelligently on the project but also cripples the Forest Service in evaluating impacts...it is impossible to project social and economic impacts of a project when a volume is not specified." (page 1)

14 "The DEIS merely states acres that will be 'treated.' No more details are provided on amount of timber that will be harvested, or what specific silvicultural techniques will be used on what acreages... the true impacts of SERP cannot be adequately analyzed without these details. This omission of information is a violation of the purposes of NEPA and limits meaningful public participation... the lack of specification regarding the amount of timber to be removed creates the opportunity for uncertainty and even abuse." (pages 3-4)
Maintaining a diverse forest structure and increasing diversity will reduce forest susceptibility to catastrophic events such as bark beetle epidemics rather than increase them.

Page 4-31 of the FEIS describes cumulative impacts of management activities on soils relative to thresholds.

Comment 6: "Please include a discussion of what Aspen treatments will be implemented, whether they will be clearcutting or burning, and where those specific treatments will occur, in the final EIS, as well as a discussion of environmental impacts expected from each Aspen treatment." (page 3)

Comment 7: "...the DEIS, while noting that Aspen treatments will involve either clearcutting or prescribed burning, fails to note for any alternatives what percentage of clearcutting or burning will be used, and where on the landscape such treatment types will be employed. This lack of description makes it impossible for the public, and the Forest Service as well, to adequately determine the impacts of the Aspen treatment component of the SERP proposal... The Forest Service's omission of detailed information implies that clearcutting and prescribed fire have similar impacts. This is an unsupported conclusion." (page 8)

Response: The effects of the Aspen regeneration treatments are discussed in the various resource Effects White Papers in Exhibit 37 and in Chapter Four of the FEIS. Moderate intensity fires would produce the best Aspen regeneration so where fuel conditions allow, fire will be used in conjunction with commercial or fuelwood treatments. Areas where mechanical treatments will not be part of the regeneration prescription and only fire will be used are in the Chicken Head, Roadless Area, and Deer Creek Focus Areas and sites 110003 and 110004 in the Lower State Focus Area. Mechanical treatments with or without fire are proposed occur in the Aspen sites in remaining Focus Areas (Spruces - 143 acres, Hancock Peak - 96, Lower State - 67).

Comment 7: "...in discussion potential impacts to wildlife, the EIS states that dead trees will fall down gradually, yet when discussing old growth, the EIS states that within five years the amount of old growth may be less than one percent. (p. 4-5) This seems inconsistent and fails to recognize that dead trees are an integral part of old growth forests." (page 14)

Response: Dead trees are indeed an integral part of old growth forests, however, old growth stands as defined by Hamilton (1993) contain greater than 15 live trees per acre greater than 15 inches in diameter and greater than 150 years old AND greater than 10 dead trees per acre plus other stand characteristics. Thus, the beetle affected stands are no longer classified as old growth but can remain standing as dead trees for many decades. Dead trees do provide structure for wildlife however, and the effects of removing this component is discussed on pages 4-48 to 4-66. Also see comment # 9, 29 and 30.
use. Because the Dixie knows this has occurred in the past, is occurring in the present, and will likely occur in the future, its claim that road density will not increase because roads will be closed is oversimplifying the matter, at best. In this respect, the EIS fails to consider the environmental impacts of increasing the road density.” (page 6)

"... the DEIS and Forest have not adequately addressed the effect on wildlife and recreation of road use and subsequent illegal road use... The DEIS is simply inadequate in addressing these issues.” (page 3)

"... NEPA requires that the Forest Service must describe the effectiveness of all proposed mitigation measures, such as road closures. We expect to see such thorough discussion of road impacts and mitigation measures in the final EIS.” (page 7)

Response: Implementation of any of the Action Alternatives will result in a reduction in the open road density within the SERP area from 2.43 miles per square mile to 2.33.

A short-term increase in open road density will occur under the Proposed Action and Alternative B to 2.49 miles per square mile from 2.43. The Forest acknowledges that transportation management is a challenging issue. The FEIS (page 2-14 and 2-15) specifies the closure of newly constructed and selected existing roads. There are many examples of effective road closures on National Forest System lands and the Forest is committed to utilizing any of these methods to effectively close these roads. Methods used will be determined at each individual site by assessing the topographic relief, adjacent vegetation, and other terrain features of the site. The closures will be monitored by law enforcement and District personnel and modifications maintenance will be made as appropriate to maintain effectiveness.

The Forest acknowledges that only recontouring and reseeding may not effectively stop travel violations so additional measures may be necessary to effectively close roads as described above. The FEIS discloses the effects of building closing roads for each resource area in Chapter Four.

The proposed road into the Spruces Focus Area is proposed to be used as a non-motorized trail following completion of harvest activities. While it is not possible to guarantee that there will be no trespass by ATV users, every effort will be made to deter motorized use. Mitigation for this road is described in the FEIS on page 2-9 item 32. This includes gating, reducing the width of the road for the first 300 feet and signing. Also law enforcement would be utilized to reduce the incidence of trespass. The effects on recreation, including anticipated changes in experiences are described in the FEIS 4-13 through 4-22 and the Scenic, Recreation, and Wildlife Effects White Papers (available in the project file).

Hydrology / Water Quality

Comment 11: “While it is clear that harvest activities will impact water quantity and water quality, the extent or location of impacts is totally unclear.” (page 14)

Response: Long term adverse impacts to water quantity and quality are not expected to result from any of the alternatives. The effects of harvest activities on water quantity and
quality for each alternative are discussed on pages 4-32 - 4-45 of the FEIS. The extent and locations of proposed activities under each alternative are shown in Appendix 12 of the FEIS.

Comment 12: The EIS claims that the Blue Springs Creek CEW is at a low risk of cumulative impacts from the action alternatives, but then discusses the degraded nature of one of its tributaries. Deer Creek. The water quality problems associated with Deer Creek runoff into Blue Springs may be exacerbated with the proposed actions. Again the Blue Springs Creek assessment contains uncertainties, such as how much salvage, what types of aspen treatments, will the road be effectively rehabilitated or will it be subject to illegal OHV use, which make the conclusion that "no long term impacts to water quality are expected" questionable. Please clarify these uncertainties in the final EIS in order to detail in greater certainty the proposed actions' expected impacts. (page 15)

Response: It is unlikely that changes in long term sediment load (FEIS page 4-36) in Blue Springs Creek resulting from any of the action alternatives would be detected. The proposed vegetation treatments within this watershed will break up the continuity of vegetation, which will decrease the likelihood of wildfire affecting large percentages of the watershed. This, in turn, will reduce the risk of large sediment loads entering perennial waters.

The treatment actives of salvage harvest for the Proposed Action and Alternatives A and B are shown on pages 4-36, 4-39, and 4-43 of the FEIS, respectively. Discussions of the road construction and what will be done to the road following project completion for each alternative are on pages 4-36, 4-39, and 4-43 of the FEIS.

Comment 13: "Is there a conflict with the current staging area at Lower Ponds and Executive Order 11990 May 1977 i.e. degradation to wetlands?"

Response: There are no proposed activities immediately adjacent to Lower Ponds under the SERP FEIS. The landing areas near Lower Pond are associated with the Sydney Valley timber sale project and there is no conflict with Executive Order 11990.

Comment 14: "We are struck by the fact that much of the SERP project is located in watersheds. Watersheds are so valuable and fragile they should be protected and preserved form destructive actions of logging and grazing." (page 2)

Response: Watersheds form wherever precipitation and runoff occur. therefore, it is impossible to propose management activities that are not within watersheds. Watersheds are often the basis for integrated land management decisions and natural resource analysis. The use of the term "watershed" should not be confused with domestic culinary water sources.

Comment 15: We understand that additional spruce beetle infestation is expected to continue within the SERP project area for the next 10 to 15 years. Selected roads will be closed and reopened as necessary to meet future dead timber harvest needs. Upon project termination we recommend that elimination of road cuts be done to reduce sedimentation during spring runoff." (page 2)

Response: This recommendation will be considered if subsequent activities are proposed.
"Please specify if FWS participated in the determinations that Mexican spotted owl guidelines should not apply, and a different approach to recovery is needed." Has the Dixie consulted with FWS on the non-application of the [Mexican spotted owl] guidelines? (Page 9.)

Response: See project file (exhibit 12) letter dated August 13, 1997 to Forest Supervisors from Ron Rodriguez, Subject: Critical Habitat Designation for the Mexican Spotted Owl. The Forest Service has obtained concurrence from U.S. Fish and Wildlife Service on the determination of the biological Assessment regarding Mexican spotted owl. Section 7 consultation with U.S. Fish and Wildlife Service has been conducted.

Comment 20: "Please specify whether or not the project area has been surveyed for Mexican spotted o~ls and what those results have been." (Page 9.)

Response: See the Project File (exhibit 14) "Mexican Spotted Owl Survey Boundaries" (map) with calculations: 11.189 acres surveyed in 1990, 15.489 acres in 1991, 12.931 acres in 1992 in the SERP area. (Survey conducted in 1993 were on the Cedar City Ranger District but not in the SERP area.)

Comment 21: "The Dixie should choose Alternative A, which does not include the Chicken Head prescribed burn, in order to reduce the impact to Mexican spotted owl who may use the area." (Page 10.) The fact that Alternative A will be least impacting to endangered and sensitive wildlife should be reason enough to proceed with that alternative." (Page 7.) "The Dixie should adopt Alternative A as the preferred course of action to avoid such drastic impacts to three-toed woodpecker viability and habitat." (Page 12.) "Until northern goshawk reach a sustainable level, the Dixie should be very careful about short-term impacts, and choose alternatives that are least impacting to goshawk viability. At present, short-term impacts may be more impacting because of the species, tenuous survival rate." (Page 12.)

Response: An endorsement of Alternative A. This alternative has been evaluated by the Responsible Official and rationale provided for why it was selected or not selected.

Comment 22: "Has the Dixie looked at specific requirements [for the northern goshawk] for Utah?" (Page 10.)

Response: There are no specific requirements for the northern goshawk. The best scientific data and recommendations available are in the Management Recommendations for the Northern Goshawk in the Southwestern United States (Reynolds et. al 1992). Although these recommendations are not specific to Utah, the Dixie National Forest uses them as a tool for habitat analysis and the intent of the recommendations to maintain goshawk habitat.

Comment 23: "While [large diameter trees will continue to decline as the spruce beetle causes mortality] does not justify annihilating large segments of goshawk territory when goshawks have been shown to utilize dead trees." (Page 10.)

"The Dixie must not underestimate the impact to entire goshawk populations that [large treatments] may cause. The EIS should acknowledge that the sanitation may have severe implications to viability of goshawks or explain in greater clarity what the Dixie feels the overall impacts to goshawks will be." (Page 11.)

Response: The action alternatives do not propose to annihilate large segments of goshawk territory. Goshawk habitat is changing due to spruce mortality and would also change from the proposed activities. The effects of the No Action alternative are disclosed on pages 4-58 to 4-61. The effects of the proposed activities are disclosed on pages 4-52 to 4-53, and pages 4-45 to 4-58.

The watershed assessment conducted for the National Forest Management Act (NFMA) portion of our analysis included risk assessments to wildlife species including the northern goshawk. These watersheds were used as cumulative effects areas and the alternatives were measured against the risk assessments to determine if the action would change any of the ratings. The rationale is stated for the risk of effects on the pages cited above.

Comment 24: "The EIS fails to specify whether activities will occur at the same time. Without specifying what will happen and when, the public cannot determine whether the actions will have a greater . . . risk of affecting goshawks adversely." (Page 11.)

Response: Pages 2-5, 2-6, 2-8 to 2-9, 2-11 and 2-12 describe timing of activities. Page 4-52, and the Biological Evaluation for Sensitive Animal Species address the effects to the northern goshawk, and see "Recommended Goshawk Effects Analysis to Determine Mitigation Measure Use" in the Project File. The Biological Evaluation for Sensitive Animal Species is completed after an alternative is selected.

Comment 25: "The EIS should affirmatively specify whether timing restrictions [for goshawks] will be implemented so the public can determine the given risk to goshawk viability involved. The EIS should also require timing restrictions to be implemented to avoid, to the maximum extent possible, goshawk nest failure and territory abandonment." (Page 12.)

Response: The effects of the proposed activities are disclosed on page 4-52, and see "Recommended Goshawk Effects Analysis to Determine Mitigation Measure Use" in the Project File.

Comment 26: "The status of the Northern Goshawk is likely to change prior to or during the proposed action."

Response: As cited on page 3-16 the northern goshawk is both a management indicator species and sensitive species on the Dixie National Forest. We will continue to manage for viable populations of goshawks and will make appropriate adjustments in our actions where necessary if the status changes.

Comment 27: "The SERP project will have significant impacts on habitat for fish and wildlife, as well as on populations of sensitive and listed species of plants and animals. We are especially concerned about the project's impacts on the Arizona willow, northern goshawk, Mexican spotted owl, peregrine falcon and three-toed woodpeckers. We incorporate the extensive comments of SUWA and WLFC on these important issues." (Page 13)
Response: We have consulted with the U. S. Fish and Wildlife Service (Section 7(c) of the Endangered Species Act). They are in concurrence that there may be effects, but no adverse effects to MSO and peregrine falcon (Federally listed species). The determination for northern goshawk, three-toed woodpecker, and Arizona willow are that there may be impacts to individuals or their habitats, but would not likely contribute to a trend toward Federal listing or cause loss of viability to the populations or species. The Utah Division of Wildlife Resources supports our evaluation and the project.

Vegetation Resource

Comment 28: "The EIS claims that there would likely be no effects to these [Arizona willow] populations because mitigating buffer zones will be implemented. The EIS ignores the fact that the mitigating buffer zones have been required in the past but disregarded because of economic desires. The final EIS should mandate that the conservation strategy, mitigating buffer zone be adhered to, regardless of whether or not it is 'desirable to recover the economic value of the wood.'" (Page 13.)

Response: We concur that the Forest allowed the removal of an estimated 50 trees within Arizona willow buffer zone during implementation of the Rainbow Meadows timber sale (1995). The original Rainbow Meadows sale (1993) was a density reduction prescription designed to remove the beetle infested trees and sanitize the area to reduce susceptibility to subsequent beetle attack in the early stages of the beetle epidemic. As with other project areas (Sidney Valley and Brian Head), this prescription was unsuccessful so reentry into the sale to remove additional beetle mortality was initiated. During sale preparation, Forest personnel inadvertently marked infested trees within a buffer area that contributed to confusion with identifying unit boundaries on the ground and the trees were subsequently harvested.

The removal of a small number of trees in the Sidney Valley area was done with the concurrence of the U. S. Fish and Wildlife Service. Upon implementation, only one buffer area was entered and 20 trees were removed. The Forest is committed to maintaining the viability of Arizona willow by incorporating the recommendations of the Arizona Willow Interagency Technical Team into implementation design (FEIS 2.6, 4.11 and 4.12). No timber harvest reentries will occur in the proposed treatment sites within the SERP Focus Areas under this decision and the unit design will be monitored to ensure compliance with this mitigation.

Comment 29: "The Dixie’s forest plan states that 7.10% of the forested acres within a drainage should be managed to meet old growth characteristics and structure. SWA is concerned with the EIS’ lack of clarity as to whether this management goal will be met, and the broad conclusory statements made regarding what “no action” may mean for old growth.” (Page 13)

Response: An error was discovered on page 4-5 of the DEIS regarding this issue. The second sentence of the page now reads “Silvicultural treatments in green. UNINFESTED stands...” rather than infested stands. No treatments will occur in sites classified as old growth (FEIS 4.4) as defined by Hamilton et al. (1993). The spruce beetle is rapidly changing sites with old growth characteristics (DFEIS 4-2). Sides with a surviving, mature green forest component will likely be the first sites where old growth status is reestablished. A definition of “short term” versus “long term” discussed on page 4-4 and 4-5 may help clarify this concern. Short term would be considered less than 50 years and long term more than 100 years in this case. The spruce beetle flight in 1997 had affected the Hancock Peak Focus Area to the degree that the opportunity to reduce risk to beetle infestation as described in the FEIS (page 2-12, 2-13, 4-2, 4-3, 4-4, and 4-5) has been reduced. Thus, the opportunity to maintain or create old growth conditions with silvicultural treatments can not be accomplished in this Focus Area at the scale initially proposed.

Due to the scale of the epidemic it appears that the effects of all the alternatives (action and no action on old growth) are similar. The artificial reforestation associated with the action alternatives may accelerate the establishment of old growth in the SERP area in the long term (greater than 100 years).

Comment 30: The EIS’ treatment of impacts to old growth and compliance with the forest plan is entirely speculative... Not only are the estimations based on assumptions made, due to Dixie’s incomplete data, but the proposed silvicultural treatments are experimental. Thus, the claim that silvicultural treatments may maintain old growth or create conditions where old growth will establish in the short term is entirely without foundation." (Page 14)

14 "...the Forest Service fails to incorporate old growth values into the SERP proposal. Existing old growth levels in the project area for both aspen and conifer forests are currently below desired levels [Dixie National Forest standards and guides], and will only decrease under the proposed alternative... Trying to analyze how the SERP will actually affect old growth in the project area is next to impossible based on the lack of information, and the manner in which the little information that is provided is scattered throughout the DEIS... it is nonetheless clear that the project does nothing to improve the project area’s old growth deficit, and in fact appears to greatly exacerbate this problem. Table 2-2... states that all alternative values have exactly no impact on old growth... We challenge this conclusion..." (page 9)

14 "...this conclusion of no impact on old growth contradicts information presented in the DEIS indicating a major decrease in old growth values and function as a result of the proposed alternative. According to the Forest Service’s definition of old growth (which is not presented in the DEIS), the amount of conifer "old growth" left on the project area’s landscape will not be affected by the salvage of over 2,872 acres of beetle-killed, old growth spruce trees... in actuality the salvage removal of these large spruce from the landscape, as well as associated sanitation logging of large green trees, will have major impacts on old growth habitat and the old growth species that depend on these areas..." (page 9)

14 "...the conclusion of no impact on old growth conflicts with the DEIS analysis of cumulative effects, in which the Forest Service admits only guessing at the impacts... (DEIS 4-4). We question how the Forest Service can conclude that there will be no impacts when the..."
state of the existing resource is unknown, and no logging prescriptions are presented to ensure that old growth areas are not harvested." (page 11)

14

"The Forest Service needs to redo its analysis of 5 impacts. In addition, we reiterate that without more specific logging prescriptions and board foot levels, it will be impossible to assert the actual impacts of this project – or ensure that the SERP proposal is actually implemented as envisioned." (page 11)

Response: Please see the old growth definition summarized previously in the response to comment #7. The Forest concurs that the proposed silvicultural treatments to reduce risk of spruce beetle infestation and thus maintain or create old growth conditions are experimental (FEIS page 2-12 and 2-13). The Forest and the Forest Health Protection Office in Ogden, Utah, interested in learning from the spruce beetle epidemic and determining of silvicultural treatments is effective in reducing susceptibility. Retention of any green, mature spruce component will help establish a foundation from which to implement treatments in areas currently unfettered within the SERP or in other Engelmann spruce forests in the West.

The Project File (Exhibit 18, doc. 37) contains a description of the data base reliability. Large portions of the SERP area are located within unroaded rocky areas and formal stand description has not occurred. These areas were compared to stands where stand examination has been completed and the data from those exams were correlated to them. Correlations were determined by a certified silviculturist. In making the determination as to whether a stand contained old growth characteristics, all stands that were questionable were classified as old growth.

No treatments are proposed in conifer stands classified as old growth as defined by Hamilton et al. (1993). As disclosed on page 3-6 of the FEIS the percentage of old growth within the project area is estimated at 18 which exceeds the Forest Plan S&D of 7-10. These old growth stands are located in areas that have not yet been affected by the spruce beetle (southern portion of the SERP area). Prior to the outbreak of the spruce beetle epidemic this percentage of old growth was even higher. As stated on page 4-5 and 4-9 the spruce beetle is expected to continue its rapid damaging effects. Retreating forests affected areas and retaining some of mature spruce component through the density reduction treatments in the Hancock Peak Focus Area would accelerate the successional, compositional, and structural trend of these sites.

Comment 31: "A major concern for us in the SERP project is the lack of protection of the unique nature of the spruce fir stands in the fragile, high altitude environment range with a short growing season. That these stands are in valuable water sheds presupposes intrinsic protection." (page 1)

Response: Proposed management activities will be implemented with the design criteria and mitigation measures identified in Chapter Two (FEIS 2-4 to 2-11). The spruce fir forests comprise an estimated 122,273 acres (Vegetation Effects White Paper) within the four geographic subsections represented on the Dixie National Forest which is more than 30 percent of the acreage. These forests are also well represented throughout most of the Forests in the intermountain West.

7

Comment 32: Regarding "Undeveloped roadless areas, the small tracts of remaining wilderness and OGL growth", "We urge that you withdraw these areas to be preserved forever in their natural condition. Preserving these few remaining primeval ecosystems, for example, Spruce and the roadless Hancock should be a primary goal." (page 1)

Response: The effects of no treatment in the Spruces Focus Area are discussed under Alternative A. The effects of no treatment in the Roadless Area Focus Area are discussed under Alternative B. The primary objectives of the proposed activities is ecosystem rehabilitation through timber harvest, fuel reduction, reforestation and aspen regeneration.

7

Comment 33: "We urge that you allow timber to grow on long rotations and permit dominant trees to achieve physiological maturity and produce a higher quality of wood and fiber." (page 2)

Response: In green tree silvicultural prescriptions, trees are allowed to grow to physiological maturity before being harvested and the stands regenerated. In spruce stands this extends 120 years old. The age of the trees being affected by the spruce beetle is up to 300 years old. These ages represent physiological maturity for Engelmann spruce and will produce high quality wood products.

7

Comment 34: "Leave Aspen groves natural without interference" (page 2)

Response: An endorsement of the No Action Alternative in respect to aspen treatments. This alternative has been evaluated by the Responsible Official and rationale provided in the Record of Decision for why it was selected or not selected. Aspen is a disturbance dependent species. See the Vegetation Effects White Paper, the FEIS Chapter Four and comment 9.

14

Comment 35: "The DEIS notes that fire suppression has created changes in vegetation and forest structure... and that within the proposed project area, 'more aspen is currently being lost than replaced by aspen regeneration'... No further information is provided to document this alleged decrease in aspen, or to note how and or where this trend might be occurring across the Dixie National Forest." (page 7)

Response: Within the SERP area the distribution of structural stages is displayed on page 1 of the FEIS. This compares the existing to the desired or properly functioning condition as defined by Amundson et al. (1996 - Project File, Exhibit 25, doc. 31). Analysis of stand examination data (on file at District office) also indicates a decline in the abundance of aspen in both the aspen and conifer stands. Aspen trees tend to be old (400+ years) with very few individuals in the seedling sapling stage. Much of the fuel on the ground consists of fallen aspen in many of the conifer stands which indicates that more aspen was present earlier in the trees successional stages of the stand.

14

Comment 36: "The DEIS also fails to address whether merely returning fire to the landscape, as is proposed in the SERP, will adequately address aspen regeneration issues without further intervention such as cutting. The implied assumption that aspen will essentially disappear from the forest landscape without the active intervention of forest managers is without basis. This disturbance species will continue to regenerate, as it has throughout its evolution, as disease, insects, fire and windthrow create openings. Returning the landscape to historic
natural resource regimes will further facilitate this process. Clearcutting, however, is not scientifically justified nor adequately documented in the DEIS." (pages 7-8)

Response: As previously described, the representation of aspen in the SERP area is declining although will always be present at some level due to the disturbance factors cited. Reintroducing fire into the SERP area and clearcutting some aspen stands will accelerate the return of aspen to levels that are desired. As cited in Eisenbauer and McGinn (1996 - Exhibit 37) clearcutting is a well documented and proven method to regenerate aspen clones.

14 Comment 37: "... we note that the conclusion of no old growth impact does not add up based on the impacts of proposed aspen treatments. The proposed alternative would up to 21% (1,934 acres) of the estimated 9,181 acres of aspen type identified in the SRLP area through clearcutting or prescribed burning (DEIS, 2-15). The result, as identied in Table 4-1 (Table 4-13) and again in Table 4-16 (DEIS, 4-63), would be to decrease the percentage of old growth aspen (VSS 6) from 2% to 1%. It should be noted, however, that the findings in Table 4-1 contradict the findings in Table 4-10, which states that the proposed action maintains the SERP area as an aspen stand. This discrepancy should be addressed in the final EIS. 11 decrease should be reflected as an overall decrease in old growth when comparing alternatives. Decreasing the amount of aspen old growth, which is already in quite short demand within the project area, is obviously the wrong direction to be headed in reaching desired conditions or forest plan standards and guidelines." (page 10)

Response: Table 4-10 was in error and should be a one percent decrease in VSS 6 as described in other tables in the DEIS. This has been corrected in the FEIS. This one percent area (one site) is a serial aspen stand and so is not considered to be an old growth stand (Hamilton et al., 1993, page 45, exhibit 27, doc. 34). A stand classified as VSS 6 means that the average stand diameter is larger than 21 inches. Also see response to comment 9.

14 Comment 38: "... no information is provided about what role fir trees play in maintaining the spruce-fir old growth component in the project area. ... No mention is made in the old growth analysis about percentage of fir versus spruce trees in the project area's spruce-fir forests. ... Some spruce beetles do not attack fir trees, it is possible that old growth patches characterized by live fir trees and dead spruce trees may remain -- if not logged. Unfortunately, while the definition of old growth is loosely defined in the DEIS, the specific criteria for spruce-fir old growth is not presented; only a citation for Hamilton, 1993 is given (FEIS, 3-6). Without this information, the public cannot estimate whether enough standing mature fir trees will be standing after project implementation to still meet the criteria for spruce-fir old growth. This information and analysis must be provided in the final EIS." (page 11)

Response: Based on stand exam data, and reconnaissance of the project area no old growth subpine fir stands have been identified within the SERP area. No timber harvest treatments are proposed in sites classified as subpine fir (greater than 50 percent of the basal area).

Roadless/Wilderness Concerns

1 Comment 39: "The Dixie should adopt Alternative A because it would preserve the undeveloped character of an 8,000 acre roadless area, known as Spruces. ... The Spruces area will likely be eligible for wilderness designation in the next forest plan revision, as it is a roadless area over 5,000 acres with no evidence of human development, or management activities. Yet if current trends continue, the Dixie will systematically shatter its remaining roadless areas." (page 3)

7 Regarding "Undeveloped roadless areas, the small tracts of remaining wilderness and Old Growth": "We urge that you withdraw these areas to be preserved forever in their natural condition. Preserving these few remaining primeval ecosystems, for example, Spruce and the roadless Hancock should be a primary goal." (page 1)

12 "Given the upcoming forest planning process, it is timely to reserve options for potential wilderness designation by protecting the wild character of unroaded landscapes. Therefore, we urge the Dixie National Forest to implement Alternative A." (page 3)

Response: Endorsements of Alternative A. This alternative has been evaluated by the Responsible Official and rationale provided in the Record of Decision for why it was or was not selected. The Dixie National Forest Land and Resource Management Plan (DNFRMP 1986) assigned management areas to all National Forest acres managed by the Dixie National Forest.

1 Comment 40: "... the EIS does not address impacts to the wilderness qualities that Spruces possesses. The EIS should be altered to address each of the action alternatives' impacts to Spruces' wilderness characteristics and impacts to its potential wilderness designation." (page 4)

14 "The Wilderness Society strongly objects to the Forest Service's proposed degradation of existing roadless areas ... Although the DEIS notes that the "Proposed activities and the effects of undeveloped character of Forested Roadless Areas" is an issue, the DEIS wholly fails to consider the impact of the SERP sale on the undeveloped character of this roadless area or how it will affect its potential as future wilderness, and provides no compelling evidence or arguments as to why this trade off should be made." (page 4)

14 The Forest Service's description of the Spruces Roadless Area values consists of a single sentence: "The landscape of this Focus Area is dominated by dense ancient spruce that provide a cathedral like canopy, and aspen with a spruce and fir understory" (DEIS, 3-20). Additional wilderness characteristics of the area, including esthetic and scenic values, backcountry recreational values, and fish and wildlife values, are not mentioned or are so scattered throughout the DEIS as to be insufficient to provide the reader with a thorough review of the specific characteristics and values of the area." (page 5)

14 "The SERP could render the Spruces Roadless Area and remaining roadless portions of the Hancock Peak Roadless Area ineligible for wilderness consideration by reducing the size of these areas below the 5,000-acre threshold for free-standing wilderness areas, or by significantly impacting the wild character of these areas. It is disingenuous for the Forest Service to degrade this roadless area right before it will be reconsidered for possible wilderness recommendation, especially with no discussion whatsoever of the wilderness values at stake." (page 6)
Response: Evaluations for determination of potential wilderness recommendation for the area in and adjacent to the Spruces Focus Area is outside the scope of this document. (The 1984 Utah Wilderness Act, which outlines the procedures for wilderness evaluation is located in the Project File Exhibit 34, Doc. 1) The project was analyzed as an EIS as a result of the Regional Office draft guidelines for "Project Analysis in Roadless Areas" dated April 21, 1997. This RO memo recommended that any project that proposes altering the undeveloped character in areas where 5,000 acres or greater are roadless be analyzed as an EIS. The anticipated alteration to the undeveloped character of the Spruces Focus Area is disclosed in the applicable resource discussions in the FEIS, the resource Effects White Papers, and the Watershed Assessment.

14 Comment 43: "The DEIS also fails to provide the reader with an accurate depiction of the impacts on the Spruces Roadless Area. The reader is unable to discern how much of the roadless area will be left after the sale; we are told only how much acreage will be impacted within the project area. Without a proper map delineating the full extent of roadless areas affected by the project, we cannot see if the roadless area involved in this sale will reduce the total amount of roadless area enough to prevent designation of a wilderness area. We urge the Forest Service to include in any subsequently prepared NEPA document such a description and a map showing how much of the roadless area will remain unroaded inside and outside of the project area. In order to more clearly depict the loss of wilderness values, we request the Forest Service to include in any subsequently prepared NEPA document, maps showing potential wilderness (i.e., roadless areas) before the SERP sale and after the sale, and the ecological landscape impacts of losing that acreage from the potential wilderness land base." (page 5)

Response: A map is included in Appendix 11 in the FEIS showing areas with undeveloped characteristics. The Spruces Focus Area is not located in an area designated as an inventoried Roadless Area. The acreage of undeveloped character that would be altered with the Proposed Action and Alternative B is 801 in the Spruces Focus Area and the effects are discussed in Chapter Four. This would leave 6,671 acres that would retain undeveloped character. The evaluation or potential wilderness recommendation is beyond the scope of this document. The evaluation for wilderness recommendations will be addressed during Forest Plan revision, per the 1984 Utah Wilderness Act (Exhibit 34, Doc. 1).

Social/Economic

1 Comment 42: "The Dixie's rationale for harvesting Spruces is to recover the economic value of dying timber. This rationale is extremely suspect when the costs of roadbuilding are taken into account. Spruces understory is so dense that walking in the project area is difficult. The amount of money involved in clearing a roadbed of dense understory and ancient trees, grading and leveling the roadbed, may make the economic value recovered minimal at best. (pages 3-4)

8 "This logging will not make money if value is given to the roadless area or if road costs, tree planting, erosion, watershed destruction, and administrative overhead are included. This looks like another taxpayer rip-off that fiscal conservatives keep complaining about." (page 1)

Response: Effects disclosed on page 4-68 and 4-69 are based on the Economic Efficiency Analysis, Project File, Exhibit 24, doc. 31.

Soils and hydrology were not analyzed in the context of economics, but the effects to soils and hydrology for all alternatives and are discussed on pages 4-30 to 4-45 of the FEIS. Further documentation is contained in the Project File.

10 Comment 43: ". . . the infestation is already out-of-control and hope that the infestation can be logged thereby helping the local communities and keeping our tax dollars to a minimum." (page 1)

Response: Endorsement of the Proposed Action. The Proposed Action has been evaluated by the Responsible Official and rationale provided in the Record of Decision for why it was selected or not selected.

11 Comment 44: ". . . the infestation should be logged, instead of controlled burning, and used by the American people through sales and wages. Logging would help the local economies and keep the costs of the recovery to a minimum." (page 1)

Response: A partial endorsement of the Proposed Action with respect to proposed harvesting.

Harvesting of dead and dying spruce is proposed, in part, to recover the economic value of the wood fiber. If and when spruce become infested in only the Roadless Area Focus Area, prescribed fire would be used as the management tool rather than harvesting. Prescribed fire is proposed in addition to harvesting to reduce fuel loadings and wildfire risk and stimulate growth of younger aspen stands. A combination of harvesting and the reintroduction of fire would best improve the biodiversity necessary to reduce the risk of future catastrophic events such as wildfire or insect and disease epidemics.

12 Comment 45: "Given what we predict volume to be and the costs associated with the proposed logging, we question how this sale will impact small independent loggers. The DEIS fails to address the potential impact to adjacent communities if an out-of-state, corporate timber company purchases the SERP volume. Again, given the potential volume from this project, it is conceivable that small operators will be unable to either afford or process this sale. Thus, the loggers themselves will be negatively impacted by the purchase of this sale from outside corporate interests." (page 2)

Response: Because of law and regulation, the Forest Service has no control over where qualified bidders choose to purchase and manufacture wood products. Regardless of whether sales are large or small, open to competitive bidding or restricted to a Small Business Administration set-aside sale, the manufacturing point is determined by the successful bidder. In the event that a timber sale is sold to a purchaser outside of the Zone of Influence (Z0I), local timber operators and manufacturing facilities lose an opportunity to process the product locally. However, subcontracting work for cutting, skidding, hauling, brush disposal, etc. generally utilizes local labor and thus benefits the local community. The effects of not harvesting timber on local communities are discussed on page 4-68, 4-69, 4-71, and 4-72 of the FEIS and in the Social Economic Effects White Paper.
The size and number of sales that would result from the implementation of an action alternative are part of the decision. The Forest recognizes that local sources rely on the sale of National Forest timber. Upon implementation of the selected alternative the number, size, and type of sales will be determined.

Comment 4: "...we do not at all agree with your assessment of the Present Net Value of the SERP project... By using stumps figures from the latest cut and sold reports from Engelmann Spruce and Fiscal Year 1995 cost records, we predicted a huge loss from cutting within the Spruces area. We urge the Dore to take a close look at the validity of their economic analysis given the long history of below cost sales." (page 21)

Response: As disclosed in the Intermountain Region 1995 Timber Sale Program Information, the National Forest timber program was negative $1,148,000 when comparing direct revenues versus direct costs. This figure appears to be the basis for the conclusions made in this comment. The report also contains the reasons for that deficit and shows the present net value of timber at a positive $257,000. The economic effects disclosed in the FEIS are not based upon cost figures and the economic and industry conditions at the Forest level in 1995 but on current conditions and only on the SERP. Please also see response to comment 47.

Comment 47: "...we must question the economic calculations presented in Table 2-2, which compares the "economic measures" of the different alternatives. The calculations of jobs that will be generated by the project is based on the assumption of 3.3 jobs per million board feet harvested, and the calculation of income generated is based on the assumption of $387,000 mmbf, the calculation of Present Net Value is also based these assumptions (DEIS 2-18). Not only is the basis for these assumptions not discussed, but since the DEIS provides no estimation of board feet to be harvested, we must question how these figures were calculated. The only hard figure provided is the cost of the environmental assessment. Additional information on the costs of roadbuilding and road rehabilitation, the amount and economic value of timber to be harvested, and the actual net return to American taxpayers from the sale must be provided in the final EIS." (page 12)

Response: An economic efficiency analysis was completed for this project based on the costs and benefits of timber outputs and the cost of the analysis. Present Net Value is the measure of economic efficiency, in which all the monetary flows occurring during different time periods are adjusted to reflect the effects of time on their value. For this analysis, preliminary volumes were used to compute the economic efficiency of the alternatives. Jobs and income multipliers were used to demonstrate the jobs and income created by the sale of the timber. Present Net Value is not based on the job and income multipliers, but both are part of the economic efficiency analysis. The full economic efficiency analysis is located in the Project File, Exhibit 24.

Comment 48: "The Forest Service ... notes that [the] benefits and costs of non-commodity resources (i.e., recreation) are difficult to quantify," and that this as a justification, just briefly describes some of the social and economic impacts of the project in qualitative terms (DEIS 4-68). While we appreciate the acknowledgment that non-commodity values are relevant, simply putting the ball on attempting to measure or even chart or list the costs and benefits of logging versus nonlogging alternatives is unacceptable. ... While the Cedar City Ranger District

Dixie National Forest

DEIS notes that the project may result in negative impacts on tourism and recreation, no attempt is made to quantify or even catalog these impacts." (page 13)

Response: Quantitative and qualitative data on the recreation and tourism industries were used in the analysis. On the Cedar City Ranger District, decreases in visitation have not occurred due to bark beetle associated logging according to available data (Project File, Exhibits 21 and 24). On other forests where insects have caused landscape level mortality, a reduction in visitation has been documented in some instances. Where logging has been used to address the effects of the insects on these forests, a reduction in visitation has also been documented, although the reason for the decrease in visitation has not been substantiated as resulting from the tree mortality or logging specifically. As described in the Scenic, Recreation, and Social Economic sections of the FEIS, the corresponding Effects White Papers, and the Watershed Assessment, the effects of logging on recreation and tourism are expected to be short-term (<5 years), thereby causing short-term displacement of recreationists and visitors. Displaced recreation users are expected to remain in the general area. Increases in regional and State recreation and tourism tax, income, and visitation figures indicate a continued growth in these sectors in the recreation projects (Project File, Exhibit 24). Due to the wide spectrum of the recreation and tourism providers, social economic effects have been described largely in qualitative terms. All data used in the assessment and effects to non-commodity industry are located in the Project File, Exhibits 21 and 24.

Comment 49: "...the DEIS fails to analyze the quality of life benefits that draw visitors and retain residents in this area -- including such amenities as clean water and air, scenic vistas, and wild backcountry opportunities." (page 13)

Response: For discussions on the amenities of the Zone of Influence, Cedar City Ranger District, and Spruce Ecosystem Recovery Project, see the Recreation, Scenic, and Social Economic sections of the FEIS, pages 4-12 to 4-22, 3-41 to 3-44, and the Watershed Assessment 1997, located in the Project File. For effects to these amenities, see the Recreation, Scenic, and Social Economic sections of the FEIS, pages 4-13 to 4-30, 4-67 to 4-73, and the Effects White Papers located in the Project File.

Comment 50: "...as the DEIS notes, only Garfield County will benefit directly from timber harvesting because of the sawmill in Escalante, but will only if the sale goes to this local sawmill (DEIS, 4-70). The likelihood of this outcome should be incorporated into the assessment of costs and benefits to the local community." (page 13)

"A final purpose given for this project is to "recover valuable wood products" ... If indeed the justification for this sale is to recover economical value, it should be evaluated from a community viewpoint. Unfortunately, not enough information is provided to determine whether this sale will result in a net benefit to the U.S. treasury and will be in the economic interest of the American public. If the justification is to provide wood to the local community, we note that there is only one timber mill in the economic Cumulative Effects Area (CEA). The DEIS should provide an analysis of the capacity of this mill, and whether this sale is likely to go to this local mill, in evaluating the real economic justifications for this sale." (page 3)
Response: As discussed on page 4-70, the FEIS states that Garfield County will receive the most economic benefit of timber is purchased by the mill in Escalante. A benefit to the largest timber manufacturing facility in the Zone of Influence does not preclude other logging operators or small logging and manufacturing operations from benefiting economically in Iron, Kane, or Garfield Counties. The effects of selling or not selling timber to local timber operations are further discussed in Social Economic Effects White Paper. The capacity of the Utah Forest Products sawmill located in Escalante, Garfield County and dependence on Dixie National Forest timber have been discussed in the Watershed Assessment. There will be several timber sales created from the Spruce Ecosystem Recovery Project and, therefore, opportunities for timber sales offered by the Cedar City Ranger District to be purchased by local timber operations. It is anticipated that Utah Forest Products, Jeff Middleton, Kevin Frandsen, Mountain Valley Timber, and Danny Peterson Logging will participate in the bidding process for sales offered from the Spruce Ecosystem Recovery Project area.

An economic efficiency analysis was completed for this project in which all costs and benefits were considered in the formulation of the Present Value. The full economic efficiency analysis is located in the Project File, Exhibit 24.

Scenic Resource

1 Comment 51: "the Dixie claims that Spruces will lose its scenic integrity as tree mortal ity increases. The claim fails to justify harvesting the ancient, pristine roadless area. Beauty is in the eye of the beholder, and many would prefer to see a dead forest than a forest devastated by chainsaws and roadsbeds." (page 4)

Response: Existing and projected scenic integrity is a measure of the "intactness" of the scenic resources in the landscape. The highest scenic integrity ratings are given to landscapes which are visually perceived to be complete, or which have little or no deviation from the character valued by constituents for its aesthetic appeal (USDA 1995, exhibit 19). The scenic integrity descriptions in the FEIS analysis are based on research available in the project file exhibit 191 that has found that the majority of people prefer a forest dominated by green trees to a forest dominated by dead trees. The analysis includes in 4-22 to 4-30 in the FEIS and in the Scenic and Recreation Effects White Papers (available in the project file) addresses loss of scenic integrity in both areas that are harvested, and area that are not harvested but where the landscape is dominated by dead trees. The FEIS acknowledges that there is a range of preferences and sensitivity among forest visitors.

2 Comment 52: "Is logging debris lopped and scattered so it will decay rapidly and return to the soil, minimizing hazards from fire and insects? We have real concern here because areas we observed such as Rainbow Meadows and Tippets Valley were not attractive after logging." (page 2)

Response: Proposed mitigation is described in FEIS 2-4 through 2-8. The mitigation that specifically addresses scenic resources is included on pages 2-7 through 2-8. The Scenic and Recreation Effects White Papers include photos of related timber harvest activities and additional description of the effects, in addition to analysis included in the FEIS.

Insects and Disease

1 Comment 53: "... the spruce bark beetle is a naturally evolving occurrence. The Dixie has been responding to the 'beetle epidemic,' which they acknowledge occurs approximately every 300 years, by increasing the amount of timber taken off the forest. The result may be devastation far worse than the beetle would have caused. The Dixie should use Spruces as a case study to see what happens when the natural cycle of beetle kill is allowed to run its course." (page 4)

Response: An endorsement of Alternative A or No Action. Personnel from the Forest Health Protection office have established several long-term monitoring plots within Cedar Breaks National Monument and the Ashdown Gorge Wilderness area as well as other areas where salvage activities have occurred or would occur under the SERP.

5 Comment 54: Mr. Roth included an Associated Press article published in the Las Vegas Review Journal, 11/13/97, in which the University of Nevada, Reno was cited as experimenting with pheromones to lure bark beetles into traps in the Lake Tahoe Basin as method bark beetle control. Referencing this article Mr. Roth stated, "Thought this might help you in your battle against the spruce beetle. Maybe you could form a cooperative effort with UNR." (page 1)

6 Mr. Marr included a Associated Press article published in the Las Vegas Review Journal, 11/13/97, in which the University of Nevada, Reno was cited as experimenting with pheromones to lure bark beetles into traps in the Lake Tahoe Basin as a method for bark beetle
control. Referencing this article Mr. Marr inquired, "Are you aware of the activities of the U.N.R.?" (page 1)

Response: This treatment is most effective when beetle populations are at less than epidemic levels. Exhibit 3. Personnel from the USDA Forest Service Forest Health Protection office in Ogden have provided recommendations to control the bark beetles from the beginning of the epidemic. Based on current information, it appears that management activities, including use of trap trees are ineffective at controlling the spread of epidemic levels of spruce bark beetles.

Comment 55: "We have learned that uprooted and broken trees are excellent breeding places for beetles and that it was found that bark beetles are attracted to stumps, slash and injured trees and later through residual stands." (page 2)

Response: We concur with this statement. In areas where a green, residual stand can be retained, brush disposal measures must properly dispose of logging slash to reduce to potential habitat for bark beetles.

Comment 56: These proposed actions have been shown to be inconsequential in stopping the beetles. The catastrophic nature is overplayed by the industry." (page 1)

Response: We concur with the first sentence. The proposed action and analysis are based on entomology and other scientific sources. The purpose is economic recovery, reduce fuel levels, and more rapidly rehabilitate a conifer forest except in the Hancock Peak Focus Area where it is hoped that silvicultural treatments may prove successful in retaining a live, green conifer forest.

Comment 57: "Restoration and preservation of nearby habitat will be needed to help make up for the beetle losses. This should include halting development, obliterating roads, stopping logging and grazing, and protecting remaining natural stands, as well as restoration." (page 1)

Response: Portions of this comment are outside the scope of this project (halting development and stopping logging and grazing). Portions are addressed in the proposed actions mitigations.

Comment 58: "The DEIS notes repeatedly that the spruce-fir forest ecosystem of the SERP area has a historical successional pattern that involves periodic stand-replacement episodes from natural disturbance, including insect epidemics . . . The Forest Service thus admits that the current beetle outbreak is an inevitable and natural phenomenon . . . Despite this admission that beetle outbreaks are a function of ecosystem functioning, and, indeed, has even been facilitated by past management practices, the Forest Service appears determined to "fix" this natural process by further logging intervention." (page 2)

Response: Timber harvest is one of the discretionary activities under the Forest Service's multiple use mandate that occur on National Forest System lands. The purpose of the proposed timber harvest is economic recovery of wood products, reduction of fuels to desired levels and to allow for a more rapid rate of reforestation which will lead to the rehabilitation of a conifer-aspen forested system. (FEIS page 1-4)

Comment 59: "We . . . oppose strongly the Forest Service's proposal to "treat" (no cut levels area provided) such a large acreage of forest land, including building roads into previously pristine areas, to prevent a beetle outbreak that appears inevitable and unstoppable. As the DEIS notes, the beetle outbreak will most likely end when host trees are used up, or a severe winter occurs (DEIS, 3-8). The Forest Service offers no evidence in the DEIS that proposed treatments will be able to prevent the spread of beetles on the landscape level, thus, the logging treatments proposed by SERP cannot be justified as a means of restoring so-called "forest health." At best, the DEIS only provides rationale that warrants experimental cutting in the Hancock Area in order to gain further understanding of ecosystem processes." (pages 2-3)

Response: Exclusive of the Hancock Peak Focus Area, proposed treatments for the purposes described are on page 1-4 and 1-5. There is indeed little evidence that with the current spruce beetle populations silvicultural treatments can be effective in controlling infestations. The activities would improve forest health in terms of the protection of the soil resource from the effects of catastrophic fire which can adversely affect productivity and stability and delay the establishment of regeneration, and, allow for a more rapid rate of reforestation which would provide cover for the wildlife, soil, recreation, and scenic resources (FEIS Chapter Four). Planting spruce will increase the representation of spruce in areas deficient of seed sources. This will contribute to diversifying the species composition and increase the representation of a species that grows to larger diameters and will provide better forest structure in the long-term (100 years).

Transportation

Comment 60: "The Dixie has stated that no road construction will occur in the Roadless Area Focus Area that is slated for fire reintroduction. The EIS should state this fact in the description of the proposed action." (page 6)

Response: We concur, to clarify: no road construction is proposed to occur in areas associated with the prescribed fire proposal (Chicken Head and Roadless Area Focus Areas).

Comment 61: "Where do you address "returning logging roads to original condition," which ones and where? In particularly the road built to Lowder - from my subdivision (Rainbow Meadow) to Lowder Ponds. This road must return to "trail" status in order to preserve the environment. (area 2A and MA1)" (page 1)

Response: The roads that are currently open and will require pre-haul maintenance (18.5 miles) are associated with harvesting within the Focus Areas. These roads will be left in a condition to ensure proper drainage following completion of project activities. The road into
the Lower Pond will be managed according to the direction contained in the Sidney Valley Recovery Project EA and the timber sales contracts associated with the Sidney Valley Recovery Project.

14 Comment 62: “We c.iterate our strong opposition to any additional road construction, especially within the Spruces Roadless Area, and urge the Forest Service to reconfigure the SERP proposal to avoid this pristine area.” (page 6)

Response: An endorsement of Alternative A. This alternative has been evaluated by the Responsible Official and rationale provided in the Record of Decision for why it was selected or not selected. Alternative A was de- signed to address the undeveloped character issue. Also see response to comment 41.

1 Comment 63: “Road density on the Dixie already exceeds the recommended two miles of road per square mile. The Dixie should refrain, then, from constructing or reconstructing roads which will add to its excessive road density.” (page 5)

14 “Given that the project area already has too many roads, the Forest Service should not construct any more roads. The Forest Service’s arguments that constructed roads will be later c.ased are not at all convincing in light of the current difficulties in controlling illegal motorized vehicle use on the Forest. The proposed prescription to close roads by revegetation and recontouring for the first 300 feet of the road has not proven to be effective” (pages 6-7)... “Often funds are not later available for road closures. Meanwhile motorized uses become estab.lished and subsequent road closure efforts are often unsuccessful” (page 7).

Response: An endorsement of the No Action alternative in respect to road construction and reconstruction. This alternative has been evaluated by the Responsible Official and rationale provided in the Record of Decision for why it was selected or not selected. Please also see response to comment 1.

Recreation

7 Comment 64: It was edifying to read that area emphasis is recreation under the forest plan direction. The desired future condition of providing users with high probability of experiencing a feeling of isolation, tranquility and self reliance in a natural environment was an inspiratio.ion and a value which I assure you will rate high with many forest users.” (page 2)

Soils

7 Comment 65: “We ask that extreme care be used to avoid damage to soils, an all important resource. Destruction of vegetation by fire can also lead to deterioration of stabilized root systems. Some questions regarding soil, we have are: Is logging conducted with light small equipment that does not disturb the soil especially in SERP’s fragile environment? Is erosion kept to a minimum? Are there any restrictions applied to logging equipment in order to

protect young trees? Is logging debris lopped and scattered so it will decay rapidly and return to the soil, minimizing hazards from fire and insects? (page 2)

Response: Pages 4-30 to 4-45 of the FEIS describe effects of the proposal on the soil and hydrology resource. Reference is made to the Effects White Papers describing the effects on soil and hydrology (Exhibit 37). Page 2-4 and Appendix 5 of the FEIS discuss mitigation recommended to reduce damage to the soil and hydrology resources to within an acceptable range. Slash will be treated as described on page 2-4 to 2-9 of the FEIS.

Forest Plan Amendment

1 Comment 66: “This forest plan amendment is overly broad and will be very for reaching, considering that nearly all timber sales emerging from the Dixie currently have as a rationale an “insect” component (i.e., the timber harvest is necessary because of mortality caused by insect attack). If present trends continue, nearly all timber sales coming out of the Dixie will be exempt from the opening size limitation. SERP, a site-specific project, is not the forum to amend the forest plan.” (page 7)

1 “The proposed forest plan amendment will eliminate the 60-day public review and approval by the regional forester required for openings larger than 40 acres if such openings are a result of beetle attacks. Continuing to justify exemptions to the opening size limitation on a case-by-case basis should be the rule of thumb until the forest plan is amended. Especially since the Dixie National Forest Plan definition of opening is more inclusive than that in NFMA. If the Dixie wants to amend its forest plan, it should do it through the forest planning process with full public involvement that would come with forest planning, which may not be involved in site-specific project analysis.” (page 7)

8 “The Forest Plan should not be amended and sets bad precedent.” (page 1)

12 “… we adamantly oppose any amendment to the Forest Plan which will limit public input and allow larger openings to be created… A limitation on opening size was enacted to reduce the impacts of logging activities… This proposed amendment appears to be a back door attempt to increase wood volume output and limit public involvement. It is unarranged and unneeded.” (page 3)

14 “The NFMA sets up a formal procedure for amending forest plans, which requires that issues and results be thoroughly analyzed and submitted for public review before an amendment is adopted. The DEIS, however, provides no analysis whatsoever of the proposed forest plan amendment... the case-by-case application of a forest plan amendment is not an adequate forum for analyzing the relative benefits of a forest-wide amendment.” (page 11)

14 “… the SERP DEIS is not the place to propose a forest plan amendment which is not necessary to achieve the project proposal. As the DEIS notes, Regional Forester Dale N. Bosworth already granted a programmatic exemption... and notes that in past years exemptions have
been also granted on a case-by-case basis (DEIS, 8-1). This forest plan amendment is not needed for this project to proceed.” (page 12)

14 "The forest plan revision process is the appropriate forum for analyzing forest-wide policy, and will draw a much larger level of public participation than a particular timber sale. Given the lack of urgency surrounding this proposed amendment - since a programmatic exemption is currently in place - the Forest Service should raise the issue opening size limitations during the revision process.” (page 12)

Response: The Responsible Official believes that the proposed amendment to the existing standards and guidelines is important to better meet existing Forest Plan (LRMP) multiple-use goals and objectives, desired future conditions and management area direction. The amendment is nonsignificant because it will not alter or change the LRMP goals and objectives, management area allocations, direction or prescriptions. Therefore, completion of this amendment through the SERP analysis, public review and disclosure, and future decision process is appropriate.

The proposed forest plan amendment is specific to the type of event where the requirement for 60-day public review and approval by the Regional Forester would no longer apply. The amendment would remove the requirement for a review and approval process only for openings caused by a catastrophic event (i.e. - fire, insect and disease, and windstorm). The 60-day public review and Regional Forester approval requirement for openings greater than 60 acres found in the Intermountain Regional Guide (Exhibit 28, document 7) is beyond that which is specified in NFMA and 36 CFR 219. The requirements in National Forest Management Act and 36 CFR 219 were intended to be used when proposed even-aged harvest operations (i.e. - clearcuts) in a live forest would exceed the 40 acre limitation. By removing a live forest through even-aged harvest treatments, management has made a conscious decision; in other words the agency had a choice on what size opening would produce a more desirable combination of net public benefits (36 CFR 219.27(d)).

Where a catastrophic event causes the larger opening, there is no choice relative to whether a larger opening is in the best public interest because the extent of the insect epidemic or fire already generated the opening size. The choices to make are how to respond to the aftermath of a catastrophic event and involvement and disclosure is outlined in NEPA (40 CFR 1900-1908). The 40 CFR 1900-1908 make it clear that if a catastrophic event occurs, a reasonable range of alternatives (i.e. - alternatives as displayed in the SERP FEIS). Public review and involvement in determining what the most appropriate response to this catastrophic event is the purpose of the SERP environmental analysis and disclosure process.

It should be noted, the proposed amendment does not change the definition of what is considered an opening under the LRMP, but defines procedures to follow when the agency has a choice in whether to create larger openings (i.e. - even-aged harvest treatments in a live forest) vs. when a catastrophic event has caused the opening.

The SERP environmental analysis, public involvement and disclosure process, and future decision document are appropriate means by which to amend the existing DNF-LRMP. Section 1604 of NFMA clarifies that forest plans will not only be developed and revised but also

maintained. The planning regulations at 36 CFR 219.10(a)(3) state that the interdisciplinary team ... shall continue to function even though membership may change and monitor and evaluate planning results and recommend revisions and amendments.

Determination of whether an amendment to the existing plan, or revision of the plan is needed depends on the significance of the identified "need-to-change". Forest Service Handbook 1909.12, chapter 5, section 5.32, defines the process for amending the Forest Plan. Documentation of this assessment are located in the project file (Exhibit 28, document 8). This analysis found no measurable change would occur relative to the 6 decision points of the DNF-LRMP. However, it did recommend that additional follow-up with the Regional Office and Office of General Council should be done to assure further documentation relative to the Regional Guide was not required prior to completion of the amendment to the Forest Plan. Therefore, the Forest Supervisor has decided to defer making the decision on this amendment until such time that this follow-up work is completed.

Comment 67: "SERP's forest plan amendment is unnecessary at this time. Intermountain Region forester Dule N. Bosworth granted a programmatic exemption of Regional approval of openings created by the removal of salvage timber form areas harvested as a result of catastrophic bark beetle infestations. The programmatic exemption of Regional approval makes a forest plan amendment unnecessary." (page 7)

Response: It is correct that the Regional Forester has granted a programmatic exemption relative to the requirements in the Intermountain Regional Guide for openings caused by insect epidemics. However, in this same letter the Regional Forester recommended that the Forest should address this issue and amend the Forest Plan on a case-by-case basis or perhaps through a forest-wide amendment to the Forest Plan that allows an exemption to the opening definition for catastrophic situations (Exhibit 28, Document 3).

Taking this advice under consideration the Dixie National Forest Supervisor believed that the public would best be served through a forest-wide amendment. This is because the choices surrounding the aftermath of a catastrophic event are relative to the size of opening to create (because the event dictated that), but rather alternatives on the amount of dead and dying trees to salvage, number of acres to rehabilitate actively through management, or amount of area to leave in whatever condition the event dictated. The 60-day public review and approval process presently required in the Regional Guide for openings caused by catastrophic events is duplicative of existing NEPA project level public review and disclosure requirements and therefore unnecessary.

Comment 68: "... the NEPA requires agencies in preparing EIS's to examine an array of alternatives that propose a range of options for addressing management issues. The Forest Service, however, proposes the same forest plan amendment for all alternatives in the DEIS; consequently, no action alternative is considered that does not amend the current forest plan. There is no discussion of a "no action" forest plan amendment alternative. This is a clear violation of NEPA.” (pages 11-12)

Response: The process for amending a forest plan has been previously described. During the implementation of forest plans "needs-to-change" are identified and analyzed based on
procedures previously outlined above. This process was followed and an amendment proposed. The decision is whether to amend or not amend for the reasons documented during the completion of this process, which includes public review through the original scoping period prior to completion of the FEIS and DEIS comment period. The range of alternatives is represented by either implementing the change for reasons identified, or continuing with the present plan requirements. Relative to the SERP project, a programmatic exemption from the requirements in the DNF-LRMP to follow Regional Guide procedures has been provided (Regional Forester letter dated 1/26/98: Exhibit 28, Document 3). Therefore, there will be no different effect on resources or uses of the area, and alternatives need not be considered.

14 Comment 69: “On a substantive basis, the proposed forest plan amendment is overly broad, and will create an opportunity for future abuse. In recent years, the purpose of virtually all . . . proposed timber sales on the Dixie National Forest has included as a justification for logging salvage logging in order to address insect mortality. Under this proposed amendment, all of these sales would be exempted from an opening size limitation. Thus, in the future . . . all of the sales on the Dixie National Forest would have unlimited size openings.” (page 12)

Response: Refer to responses for the first two comments in this section. In addition, the proposed amendment does not affect all proposed timber sales on the Dixie National Forest involving insect mortality. It would only be pertinent if the project involved a catastrophic event which caused large openings. Many of the timber sales on the Dixie National Forest respond to insect mortality levels that are at less than epidemic proportions in order to attempt to keep them from every reaching catastrophic proportions.

Fisheries Resource

1 Comment 70: SUWA is also concerned with the uncertain impacts to water quality as they may affect fish bearing streams and fish habitat in the project area. The class 3 trout streams in the project area comprise about half of the total stream fishery habitat in Utah, and support a significant amount of angling. (p. 3-28) The habitat conditions for Bunker Creek and Deer Creek are already considered poor. (pp. 3-28 - 3-29) SUWA is concerned with the proposed actions’ impacts on this resource.”

Response: To clarify, Class 3 trout streams are found throughout Utah and comprise about half of the total stream fishery habitat in the State. Within the project area, there are several Class 3 streams including Mammoth Creek, Lower Deer Creek, Castle Creek, and Bunker Creek (p. 3-28). These streams only comprise a small portion of the Class 3 streams in the state, not half.

Direct, indirect, and cumulative effects to the fishery resources within the analysis area are discussed in Chapter 4, pp. 4.45 - 4.47.

Fire/Fuels

7 Comment 71: “Some regime of controlled burning is essential to maintain balance and to prevent disastrous fires. The SERP project places far too much emphasis on the use of fire.” (page 2)

Response: The purpose of prescribed fire is primarily to increase species and structural diversity across the landscape and to reduce the risk of catastrophic fire. Up to 4,908 acres or 13 percent of the forested area within SERP is proposed for burning. The Parameters for Management Ignited Prescribed Fire document is located in the Project File (Exhibit 30, doc. 2). Ignitions will be timed to produce a mixed severity fire regime which will produce natural vegetation mosaics, retain large diameter trees and down logs, and minimize soil and hydrological impacts. Forests evolve with disturbance regimes such as insect epidemics and wildfire and implementation of a controlled disturbance like prescribed fire can create the desired vegetative conditions and reduce the risk of catastrophic events.

14 Comment 72: “We . . . support the Forest Service’s efforts to address fuel loadings in the urban/wildland interface, although we note that thinning in order to reduce fuel loading, while necessary from a public safety point of view, should not be confused with forest restoration; evenly spaced trees may be less susceptible to fire, and hence are appropriate in fuel buffer areas, but do not mimic natural complexities.” (page 3)

Response: A qualified endorsement of the actions proposed in the Defensible Fire Suppression zones. The intent of DFS zones are to create fuel conditions where fire suppression personnel can stop a slow wildfire along urban interfaces. The establishment of DFS zones is intended to be permanent and will be required to be maintained at regular intervals.

Range Resource

7 Comment 73: “Although production and range conditions will be improved with water development and fences, we are sorry to note livestock grazing will remain the same. The project area is already at risk from beetle attack, it would seem prudent to greatly reduce grazing allotments and give an already degraded forest a rest.” (page 2)

Response: This is outside the scope of the Spruce Ecosystem Recovery Project. However, livestock grazing will be deferred in aspen regeneration areas and areas naturally reforested or planted from sheep grazers for up to five (5) years (page 2-5, FEIS). Grazing allotments are administered as described in the individual allotment management plans and the terms and conditions listed in the term grazing permits.

General Comment

3 Comment 74: “I want to go on record as supporting your Spruce Ecosystem Recovery Project proposal, to cut down the beetle-infested spruce trees, cut down or burn the aspen trees and burn overgrown trees in the proposed areas to reduce the threat of an uncontrolled conflagration in the future.” (page 1)

Response: An endorsement of the Proposed Action. This alternative has been evaluated by the Responsible Official and rationale provided for why it was selected or not selected.

6 Comment 75: “I agree with alternative “A” page 4-29 and 4-19. (page 1)
6 Comment 76: "Error page 3-27 - Rainbow Meadow Subdivision gets their water from a spring." (pages 1-2)
Response: Error is confirmed and corrected in the FEIS.

7 Comment 77: "We urge you to practice the kind of excellent forestry that safeguards the management of all the various renewable resources of the Dixie, so that they are utilized in the combination that will best meet the needs of the American people." (page 1)

7 . . . we ask that you manage the Dixie for the Preservation of ecosystems, wildlife and scenic integrity for it is what the American people expect." (page 2)

8 Comment 78: "Going into a Roadless Area to do logging in the name of forest health is a hoax. Utah has very few Forest Roadless Areas. Cumulative Effects have been ignored. Forest Health necessitates preservation of roadless areas." (page 1)
Response: The cumulative effects of activities proposed in the roadless areas are disclosed in Chapter Four of the FEIS.

9 Comment 79: "Yes we feel it is most important for the dying spruce trees and other trees which have the bark beetles be cut for timber. Those not good for timber should be burned to keep the forest recover. Yes, we think ... the Spruce Ecosystem Recovery Project is good for the Dixie National Forest; good for the environment; good for the working Americans and good for Utah's people." (page 1)
Response: An endorsement of the Proposed Action. This alternative has been evaluated by the Responsible Official and rationale provided for why it was selected or not selected.

10 Comment 80: "We have studied the Environmental Impact Study and also travelled the area of beetle infestation and agree that Alternative B should be implemented with more logging and less controlled burning and feel that roads are necessary to control the beetle infestation." (page 1)

11 "I believe that Alternative B should be implemented. However, I don't feel that it will totally alleviate the beetle infestation and believe that much more should be done before the forest is no more. As it is now, because of the lawsuit with the Friends of the Dixie Forest, the forest is dotted with dead and dying trees. If drastic measures are not taken soon and if SUWA appeals as did Friends of the Dixie Forest, the beetle infestation will become out-of-control if it isn't already." (page 1)
Response: Endorsements of Alternative B. This alternative has been evaluated by the Responsible Official and rationale provided for why it was selected or not selected.

Comments Received After November 24 Deadline

Comments Received from Utah Division of Wildlife Resources

Transportation Resource

15 Comment 81: "Currently the SERP area contains 2.43 linear miles of road per square mile, and after the proposed action it will have 2.46 miles of road per square mile. UDWU encourages the USFS to make every effort to bring this area into compliance with the Dixie LRMP." (page 1)
Response: Errors were discovered on Table 2-2 (page 2-18) in the Road Closure category and is corrected in the FEIS. Existing road density is 2.43 miles per square mile (No Action). Road densities upon completion of project activities would be 2.33 miles per square mile (Action alternatives). Road densities during project implementation would be 2.49 for the Proposed Action and Alternative B and, 2.44 for Alternative A and the modified Proposed Action. An additional 27 miles of road would require closure in order to comply with the 2.0 miles per square mile standard and guideline for the entire SERP area. This is not practical in the northern portion of the SERP area where the activities are proposed to occur. Subsequent activities proposed in the southern portion of the SERP area could include additional road closures.

15 Comment 82: "We recommend the four miles of new road into the Spruces also be obliterated and reseeded with a native seed mixture." (page 1)
Response: We will consider this recommendation as part of the decision to be made.

15 Comment 83: "We recommend leaving a minimum of 300 feet of live or dead trees for vegetation buffer screens, wildlife movement corridors, and riparian habitat protection zones." (page 1)
Response: The buffers incorporated into sale design will be a minimum distance that maintain the integrity of the resources they protect. Buffers incorporate topography, vegetation, and Focus Area design and location.
Spruce Ecosystem Recovery Project
DEIS Respondents

1. Jennifer Lupton
 Southern Utah Wilderness Alliance
 P.O. Box 2703
 St. George, UT 84771

2. Amelia Fine Jenkins
 Issues Coordinator
 Wild Utah Forest Campaign
 165 South Main Street, Lower Level
 Salt Lake City, UT 84111

3. Representative DeMar "Bud" Bowman
 Utah House of Representatives
 109 North 800 West
 Cedar City, UT 84720

4. Robert F. Stewart,
 Regional Environmental Coordinator
 USDl, Office of Environmental
 Policy and Compliance
 Denver Federal Center, Bldg 56, Rm 1003
 P.O. Box 25007 (D-108)
 Denver, CO 80225-0007

5. Ron Roth
 2301 Zafra Ct.
 Las Vegas, NV 89102

6. Howard Marr
 5000 Redrock #213
 Las Vegas, NV 89118

7. Cathy O’Leary and John Carey
 5119 Fontaine St. #206
 San Diego, CA 92120-1204

8. Scott Hatfield
 P.O. Box 18421
 Boulder, CO 80308-8421

9. Errol and Clarene Hoyt
 P.O. Box 114
 Frederica, AZ 86022

10. People For the West
 110 South Bluff Street
 St. George, UT 84770

11. Tina Esplin
 1069 East Loblolly Circle
 St. George, UT 84790

12. Amelia Fine Jenkins
 Issues Coordinator
 Wild Utah Forest Campaign
 165 South Main, Lower Level
 Salt Lake City, UT 84111

13. United States EPA
 Region VIII
 999 15th Street - Suite 500
 Denver, CO 80202-2466

14. Suzanne Jones
 The Wilderness Society
 Four Corners States Office
 7475 Dakin Street, Suite 410
 Denver, CO 80221

15. Brad T. Barber*
 State of Utah (for UDWR)
 116 State Capitol Building
 Salt Lake City, UT 84114

*Received after November 24, 1997 comment period deadline.
APPENDICES

1. Forest land Suitability/Soil Type Map
2. Forest Plan Management Area Map
3. Forest Plan Standards and Guidelines for Management Areas 1, 1B, 2A, 2B, 6A, 7A and 9A*
4. Critical Watershed/Riparian Conservation Areas Map
5. Soil and Water Conservation practices*
6. Location/Site map
7. Canopy Closure Map
8. Watershed Assessment Map
9. Transportation System Map
10. Cumulative Effects Maps/Tables:
 a) Vegetation Cumulative Effects Map;
 b) Watershed Cumulative Effects Map;
 c) Recreation Cumulative Effects Map;
 d) Scenic Resources Cumulative Effects Map;
 e) Range Cumulative Effects Map;
 f) Air Quality Cumulative Effects Map;
 g) Wildlife Cumulative Effects Map;
 h) Summary Table of Vegetation management Activities Within Cumulative Effects Areas That Were Considered in the Analysis.
11. Areas with Undeveloped Characteristics Map
12. Monitoring Plans

* See DEIS for this Appendix

APPENDIX 1

FOREST LAND SUITABILITY/SOIL TYPE MAP
APPENDIX 10

CUMULATIVE EFFECTS MAPS/TABLES:

a) Vegetation Cumulative Effects Map;
b) Watershed Cumulative Effects Map;
c) Recreation Cumulative Effects Map;
d) Scenic Resources Cumulative Effects Map;
e) Range Cumulative Effects Map;
f) Air Quality Cumulative Effects Map;
g) Wildlife Cumulative Effects Map;
h) Summary Table of Vegetation Management Activities Within Cumulative Effects Areas that were Considered in the Analysis

APPENDIX 11

AREAS WITH UNDEVELOPED CHARACTERISTICS MAP
APPENDIX 12
MONITORING PLANS
APPENDIX 12

MONITORING PLANS

HYDROLOGY/SOILS

OBJECTIVE: Determine if SWCPs associated with road construction and skid trails were implemented and determine their effectiveness in meeting the desired goals of soil and water resource protection.

ITEM TO MONITOR: SWCPs associated with road construction and maintenance.

TYPE OF MONITORING: Implementation and Effectiveness.

METHODS/PARAMETERS: Field review, visual observation, and photographs.

FREQUENCY/DURATION: Annually, during project implementation.

OBJECTIVE: Determine if SWCPs associated with road construction and skid trails were implemented and determine their effectiveness in meeting the desired goals of soil and water resource protection.

ITEM TO MONITOR: SWCPs associated with road construction and maintenance.

TYPE OF MONITORING: Implementation and Effectiveness.

METHODS/PARAMETERS: Field review, visual observation, and photographs.

FREQUENCY/DURATION: Annually, during project implementation.

PROJECTED COSTS: Salary for field reviews and writing reports.

REPORTING PROCEDURES: Results will be reported in the annual water quality monitoring report.

RESPONSIBILITY: West Zone Hydrologist and Forest Soil Scientist

HYDROLOGY/SOILS

OBJECTIVE: Determine if SWCPs associated with road obliteration, rehabilitation, and closure were implemented and determine their effectiveness meeting the desired goals of soil and water resource protection.

ITEM TO MONITOR: SWCPs associated with road obliteration, rehabilitation, and closure.

TYPE OF MONITORING: Implementation and Effectiveness.

METHODS/PARAMETERS: Field review, visual observation and photographs.

FREQUENCY/DURATION: Annually for 2 years following project completion.

PROJECTED COSTS: Salary for field reviews and writing reports.

REPORTING PROCEDURES: Results will be reported in the annual water quality monitoring report.

RESPONSIBILITY: West Zone Hydrologist and Forest Soil Scientist
HYDROLOGY/SOILS/FISHERIES

OBJECTIVE: Monitor the effects of spruce mortality, timber harvest, and road construction on water quality within the Center Creek watershed and determine the effectiveness of SWCPs in preventing or minimizing non-point source pollution.

ITEM TO MONITOR: Aquatic macroinvertebrates.

TYPE OF MONITORING: Baseline and effectiveness.

METHODS/PARAMETERS: Samples will be sent to the National Aquatic Ecosystem Monitoring Center in Provo, Utah or Logan Utah.

FREQUENCY/DURATION: 1-2 years following project completion.

PROJECTED COSTS: Salary for field sampling and laboratory analysis of samples ($500).

REPORTING PROCEDURES: Results will be compared to pre-project data and reported in the annual water quality monitoring report.

RESPONSIBILITY: West Zone Hydrologist.

HYDROLOGY/SOILS

OBJECTIVE: Monitor the effects of timber harvest and skidding on water quality within the Mammoth Creek watershed and determine the effectiveness of SWCPs in preventing or minimizing non-point source pollution, determine if water quality is within State Standards.

ITEM TO MONITOR: Physical and chemical characteristics of stream water. This monitoring will be completed through the Cooperative Water Quality Monitoring Program with the Utah Division of Water Quality.

TYPE OF MONITORING: Baseline and effectiveness.

METHODS/PARAMETERS: Samples will be sent to the Utah Division of Water Quality in Salt Lake City for analysis.

FREQUENCY/DURATION: Once following project completion.

PROJECTED COSTS: Salary for field sampling.

REPORTING PROCEDURES: Results will be reported in the annual water quality monitoring report.

RESPONSIBILITY: West Zone Hydrologist.

RECREATION

OBJECTIVE: Monitor recreation use to determine if harvest activities have reduced or shifted use.

ITEMS TO MONITOR: 1) Shore days and lift and shuttle use as reported by Brian Head Ski Resort. 2) Trail Counters on Sydney Peaks Trail, Rattlesnake, and Virgin River Rim Trail. 3) Traffic counters operated by Cedar Breaks National Monument and UDOT's permanent traffic counter on Highway 14. 4) Quarterly Sales Tax Receipts for Brian Head Town. 5) Campground receipts for campgrounds located on the Cedar City Ranger District.

TYPE OF MONITORING: Implementation

METHODS/PARAMETERS: Assemble information reported by Brian Head Ski Resort, Brian Head Town, Cedar Breaks National Monument and Utah Department of Transportation. Monitor trail counters on the Virgin River Rim, Rattlesnake, and Sydney Peaks trails.

FREQUENCY/DURATION: Implementation-Before sale operations begin, both summer and winter. Compile information once a year for 10 years to determine if changes in use and location occur.

PROJECTED COSTS: Implementation-$500. Effectiveness-$500

REPORTING PROCEDURES: Forest Monitoring Report and or Project File

RESPONSIBILITY: District Ranger and Zone Landscape Architect.

VISUAL RESOURCES

OBJECTIVE: Maintenance and or enhancement of visual variety in the landscape

ITEM TO MONITOR: Percent of aspen in the stands; presence of large trees with high canopies and snags. Recovery of forest floor in areas where stocking is reduced below 30%: Crown Closure

TYPE OF MONITORING: Implementation or Effectiveness

METHODS/PARAMETERS: Establish photo points and monitor changes in color and texture of vegetation and forest floor at yearly intervals.

FREQUENCY/DURATION: Implementation-Before sale operations begin, both summer and winter seasons. Effectiveness-yearly for five years, 3 year intervals after the first five years.

PROJECTED COSTS: Implementation-$300. Effectiveness-$600

REPORTING PROCEDURES: Forest Monitoring Report and or Project File

RESPONSIBILITY: District Ranger and Zone Landscape Architect.
VISUAL RESOURCES

OBJECTIVE: Maintenance and/or enhancement of immediate foreground views adjacent to trails, roads, and summer recreation sites.

ITEMS TO MONITOR: Removal of less than 3" slash from immediate foreground. and replanting and reseeding of disrupted areas from slash pile burning.

TYPE OF MONITORING: Implementation

METHODS/PARAMETERS: On site inspections while areas adjacent to trail corridors and recreation sites are being marked to help determine best choices to protect visual quality and character. On site inspections of trail corridors and recreation sites at the end of slash disposal to ensure that area is meeting visual quality objectives.

FREQUENCY/DURATION: Implementation. On site inspections while areas adjacent to trail corridors and summer recreation sites are being marked. On site inspections at the end of slash clean up period in each area.

PROJECTED COSTS: Implementation-$500

REPORTING PROCEDURES: Forest Monitoring Report and - Project File

RESPONSIBILITY: District Ranger and Zone Landscape Architect.

SPECIAL USES

Monitoring relating to Special Use permits will be done as part of the special use administration and in the processes outlined in the timber sale contracts. Contractual requirements will be monitored with special emphasis placed on protecting improvements and maintaining recreational areas.

SOCIAL ECONOMIC

Monitor TSPIR's Report for sales associated with this analysis.

VEGETATION

OBJECTIVE: Monitor stand structure to determine if the alternative implemented met projections stated in the document for stocking, beetle risk, vegetative structural stage distribution, old growth, and down coarse woody debris.

ITEMS TO MONITOR: Vegetation structure on treated stands.

TYPE OF MONITORING: Implementation and effectiveness

METHODS/PARAMETERS: Current stand exam requirements.

FREQUENCY/DURATION: After follow-up activities are complete (within 5 years).

PROJECTED COSTS: 2 people for 8 days at $225/day = $1800.

REPORTED PROCEDURES: District stand exam file.

RESPONSIBILITY: District Silviculturist, District Wildlife Biologist.

VEGETATION

OBJECTIVE: Monitor planted areas to assure meeting survival requirements for first and third years and stocking certification requirements in Silvicultural Prescription within 3 years. This includes monitoring for damage to seedlings caused by livestock, wildlife, or other causes.

ITEMS TO MONITOR: Planted areas.

TYPE OF MONITORING: Implementation and effectiveness

METHODS/PARAMETERS: Field review before sale contract is complete to assure adequate slash clean up and site preparation. Survival and stocking must meet R4 guidelines.

FREQUENCY/DURATION: One day before timber sale contract completion and at 1st and 3rd years after planting.

PROJECTED COSTS: 2 people for 3 days at $225/day = $675.

REPORTED PROCEDURES: R4 RMRS reporting forms.

RESPONSIBILITY: District Silviculturist, District Wildlife Biologist.
AIR QUALITY

OBJECTIVE: Meet Utah State and Federal Air Quality Standards.

ITEMS TO MONITOR: Clearing Index, wind direction and speed. Visuals at all smoke sensitive areas listed in Chapter Three.

TYPE OF MONITORING: Implementation

METHODS/PARAMETERS: FMO monitor visual quality at Brian Head and Cedar Breaks National Monument

FREQUENCY/DURATION: During Prescribed Fire activities

PROJECTED COSTS: $500

RESPONSIBILITY: Fire Management Officer

RANGE

OBJECTIVE: Monitor livestock grazing to determine if and when it will be excluded from aspen regeneration and conifer tree planting areas.

ITEMS TO MONITOR: Fuel loading prior to burning to determine if grazing should be excluded for one year prior to burning, and height and abundance of regeneration to determine if grazing should be excluded or when it can resume. Grazing will be excluded by the use of herding or, if necessary, fencing.

TYPE OF MONITORING: One year prior to implementation in aspen burn areas and 3-5 years following aspen regeneration treatments and conifer seedling planting

METHODS/PARAMETERS: Occasional estimation by FMO prior to burning. R4 stocking exam in regenerating sites and ocellar estimation

FREQUENCY/DURATION: Prior to burning treatments and 3-5 years following treatments, annually if necessary. Include an annual operating plan for affected allotments.

PROJECTED COSTS: $1500 - cost of stocking exams included in vegetation monitoring

RESPONSIBILITY: Fire Management Officer. Silviculturist. Range Management Specialist

FIRE / FUELS

OBJECTIVE: Monitor fuel loading and vegetation composition to determine if treatment by prescribed fire was effective and if further treatment is necessary.

ITEMS TO MONITOR: Fuel loading prior to burning to determine what prescription parameters and fuel consumption is necessary. Post fire monitoring to determine post fire fuel loading and how it fits into natural fire patterns and cycles.

TYPE OF MONITORING: Prior to implementation in burn areas and 3-5 years following aspen regeneration treatments and broadcast burns.

METHODS/PARAMETERS: Occasional estimation by FMO prior to burning. Down fuel loading transects where necessary. Fuel loading photos series and photo points.

FREQUENCY/DURATION: Prior to burning treatments and 1-2 years following treatments.

PROJECTED COSTS: $4500 - cost of down woody transects and photo points

RESPONSIBILITY: Fire Management Officer. Fuels Management Specialist

WILDLIFE

OBJECTIVE: Assess effectiveness of road closures in order to learn the most effective methods for future closures.

TO MONITOR: Monitor road closures one and five years after implementation

TYPE OF MONITORING: Implementation and effectiveness.

METHODS/PARAMETERS: Visually inspect road closures for evidence of violations of the closures.

FREQUENCY/DURATION: Monitor one and five years after implementation

PROJECTED COSTS: Year 1 = Wages for two days and vehicle costs = $400. Year 2 = Same plus inflation = $455. TOTAL COST $835

REPORTING PROCEDURES: Document findings and label photographs. Note type of closure (gate, earthen barrier, sign) and type of violation (driving over the closure, removal of the barrier or sign, driving around closure, etc) Take photographs of closures to document the most effective and ineffective type of closures

RESPONSIBILITY: Zone Wildlife Biologist
WILDLIFE

OBJECTIVE: Determine effectiveness of signing and or painting snags to prevent fuelwood cutters from cutting and removing them and thereby maintain wildlife habitat and productivity.

TYPE TO MONITOR: Snags that are signed and or painted and snags unsigned or unpainted.

METHOD/PARAMETERS: Select 5-10% of the project area for monitoring. Select areas for monitoring along roads where access is easy for woodcutters and areas more difficult. Document on maps or aerial photos the locations of snags marked with signs or paint and some control snags of the same size that are not marked with paint or signs. Monitor trees still standing, trees felled and trees removed by cutting in year one and year five.

FREQUENCY/DURATION: Year one and year five after implementation (signing and or painting and mapping).

PROJECTED COSTS: $600 for one year $635 year five.

REPORTING PROCEDURES: Document outcome of results in District files and project file after completion.

RESPONSIBILITY: Zone Wildlife Biologist.

WILDLIFE

OBJECTIVE: Assess validity of conclusion that harvest and burning would increase grasses, forbs and shrubs.

TO MONITOR: Amount of grasses, forbs and shrubs.

TYPE OF MONITORING: Effectiveness.

METHOD/PARAMETERS: Linear transects and count hits of grass, forb, shrub by pacing.

FREQUENCY/DURATION: Monitor prior to treatment and after implementation.

PROJECTED COSTS: Year 1 = Wages for two days and vehicle costs = Year 1 $400. Year 2 = Same plus inflation = $435. TOTAL COST $835.

REPORTING PROCEDURES: Tally hits, summarize and compare.

RESPONSIBILITY: Zone Wildlife Biologist.

WILDLIFE

OBJECTIVE: Assess validity of conclusion that three-toed woodpeckers use harvest and burn treatment areas for foraging and not nesting.

TO MONITOR: Three-toed woodpecker use.

TYPE OF MONITORING: Validation.

METHOD/PARAMETERS: Use Three-toed woodpecker protocol.

FREQUENCY/DURATION: Monitor one and five years after implementation.

PROJECTED COSTS: Year 1 = Wages for two days and vehicle costs = Year 1 $400. Year 2 = Same plus inflation = $435. TOTAL COST $835.

REPORTING PROCEDURES: Summarize results and compare years.

RESPONSIBILITY: Zone Wildlife Biologist.
WILDLIFE

OBJECTIVE: Assess effectiveness of methods used to retain snags.

TO MONITOR: Average snags per acre and general distribution.

TYPE OF MONITORING: Effectiveness.

METHODS/PARAMETERS: Linear transects with plots, .25 acre each. Compare success of methods used in each area where different methods are used.

FREQUENCY/DURATION: Monitor after implementation has been completed.

PROJECTED COSTS: Year 1 = Wages for five days and vehicle costs = $1,200.

DATA LOGGING PROCEDURES: Tally snags, evaluate success of methods and whether snag objectives were met.

RESPONSIBILITY: Zone Wildlife Biologist.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call 1-800-245-9340 (voice) or 202-720-1127 (TDD). USDA is an equal employment opportunity employer.
Figure 2: Spruce Ecosystem Recovery Project
Cedar City Ranger District

Legend:
- Spruce Ecosystem Recovery Project
- Salvage Treatment Areas
- Focus Area Boundary
- Private Land
- Project Regeneration Areas
- Gravel and Improved Roads
- Proposed Road Construction
- Trails
- Defensible Fire Suppression Zones

BEST COPY AVAILABLE
Figure: 3

Spruce Ecosystem Recovery Project
Alternative A Treatment Summary

Legend

- Spruce Ecosystem Recovery Project
- Salvage Treatment Areas
- Open Regeneration Areas
- Focus Area Boundary
- Paved Roads
- Gravel and Improved Roads
- Proposed Road Construction
- Trails
- Defensible Fire Suppression Zones

BEST COPY AVAILABLE
Figure: 4

Spruce Ecosystem Recovery Project
Alternative B Treatment Summary

Legend:
- Spruce Ecosystem Recovery Project
- Salvage Treatment Areas
- Focus Area Boundary
- Paved Roads
- Gravel and Improved Roads
- Proposed Road Construction
- Trails
- Defensible Fire Suppression Zones

BEST COPY AVAILABLE
Appendix: 1
Cedar City Ranger District
Spruce Ecosystem Recovery Project
Soil Type/Suitability Map

Prepared by USDA Forest Service
Dixie National Forest GIS Staff
Using ARCS/FO GIS
July 1997

The Forest Service uses the most current and complete data
available. GIS data and product accuracy may vary. They may be
developed from sources of differing quality, accuracy, error or
contain errors, based on modeling or interpretation, inaccuracies
valid during creation or revision, etc.

Using GIS products for purposes other than those for which they
were created, may yield erroneous or misleading results. The
Forest Service reserves the right to correct, update, modify,
or replace, GIS products utilized herein.

For specific data source data and additional digital
information, contact the Forest Supervisor, Dixie National
Forest, Cedar City, Utah.

Legend

- Spruce Ecosystem Recovery Project
- Soil Type Units
- Unsuitable Areas

Adequate Restocking cannot be adequately
assured or irreversible damage to soils or
watershed conditions may occur

BEST COPY AVAILABLE
Prepared by USDA Forest Service
Dixie National Forest GIS Staff
Using ARCGIS GIS
July 1997

The Forest Service uses the most current and complete data available. GIS data and product accuracy may vary. They may be developed from sources of differing accuracy, accounts only of certain aspects, based on confidentiality or interpretation, incomplete while being created or updated, etc.

Using GIS products for purposes other than those for which they were created may yield misleading or misleading results. The Forest Service reserves the right to correct, update, modify, or replace GIS products without notification.

For specific data source data and additional information, contact the Forest Supervisor, Dixie National Forest, Cedar City, Utah.
Appendix: 4
Cedar City Ranger District

Spruce Ecosystem Recovery Project
Critical Watershed Areas

Prepared by USFS Forest Service
Dixie National Forest GIS Staff
Using ARC/INFO GIS
July 1997

The Forest Service uses the most current and complete data available. GIS data and product accuracy may vary. These may be affected by sources of differing accuracy, accuracy only of current maps, based on modeling or interpretation, incomplete data and being created or revised, etc.

Using GIS products for purposes other than those for which they were created, may yield inaccurate or misleading results. The Forest Service reserves the right to correct, update, redact, or replace GIS products without notification.

For specific data source dates and/or additional digital information, contact the Forest Supervisor, Dixie National Forest, Cedar City, Utah.

Legend

- Project Area

- Biparian Habitat Conservation Areas

- Sensitive Aquifers

- Private Land

- Springs

BEST COPY AVAILABLE
Appendix: 7

Spruce Ecosystem Recovery Project
Canopy Closure

Prepared by USDA Forest Service
Dixie National Forest GIS Staff
Using ARC/INFO GIS
July 1997

The Forest Service uses the most current and complete data available. GIS data and product accuracy may vary. They may be developed from sources of differing accuracy, accuracy only at certain scales, based on modeling or interpretation, incomplete with being created or redrawn, etc.

Using GIS products for purposes other than those for which they were created, may yield inaccurate or misleading results. The Forest Service reserves the right to correct, update, modify, or replace, GIS products without notification.

For specific data source data and/or additional digital information, contact the Forest Supervisor, Dixie National Forest, Cedar City, Utah.
Appendix: 10A
Cedar City Ranger District

Spruce Ecosystem Recovery Project
Vegetation Cumulative Effects Area

Numbers correspond to Appendix 10H
Vegetation Management Activities

Prepared by USDA Forest Service
Dixie National Forest GIS Staff
Using ARC/INFO GIS
July 1997

The Forest Service uses the most current and complete data available. GIS tiles and product accuracy may vary. Data are not developed from sources of differing accuracy, accurate only at specific scales, based on readings or interpretations, incomplete or being created or revised, etc.

Using GIS products for purposes other than those for which they were created, may yield inaccurate or misleading results. The Forest Service reserves the right to correct, update, modify, or replace GIS products without notification.

For specific data source data and/or additional digital information, contact the Forest Supervisor, Dixie National Forest, Cedar City, UT.
Appendix: 10D

Cedar City Ranger District

Spruce Ecosystem Recovery Project
Scenic resources Cumulative Effects Area

Legend

Spruce Ecosystem Recovery Project
Scenic Resources Cumulative Effects Area
Private Land
Focus Area Boundaries

Prepared by USDA Forest Service
Dixie National Forest GIS Staff
Using ARC/INFO GIS
July 1997

The Forest Service uses the most current and complete data available. GIS data and product accuracy may vary. They may be in error at the time these maps were created. GIS data and products may be in error at the time these maps were created. GIS data and products may be in error at the time these maps were created. GIS data and products may be in error at the time these maps were created.

Using GIS products for purposes other than those for which they were created, may yield inaccurate or misleading results. The Forest Service reserves the right to correct, update, modify, or replace GIS products without notification.

For specific data source data or additional digital information, contact the Forest Service, Dixie National Forest GIS Program.
Appendix 10 h - Vegetation Management Activities

<table>
<thead>
<tr>
<th>Num</th>
<th>Site Name/Project</th>
<th>Decision Date</th>
<th>Analysis Acres</th>
<th>Total Treated Acres</th>
<th>Treatment Type</th>
<th>Reburning Acres/Year</th>
<th>Thinned Acres/Year</th>
<th>New Road Cons. Mils/Year</th>
<th>Other RV</th>
<th>Sprout/Fire Zone</th>
<th>Game/Pond</th>
<th>MDC</th>
<th>Page Numbers</th>
<th>Veg</th>
<th>Range</th>
<th>Bass</th>
<th>Air</th>
<th>Culture</th>
<th>Soil</th>
<th>Habitat Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adair Hollow</td>
<td>1983</td>
<td>1628</td>
<td>1612/23</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bear Flat</td>
<td>1996</td>
<td>2232</td>
<td>75/96</td>
<td>Sat/Sun</td>
<td></td>
<td>5/97</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Brian Head</td>
<td>1995</td>
<td>2232</td>
<td>153/96</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Brian Head II</td>
<td>1995</td>
<td>2232</td>
<td>153/97</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Big Rock</td>
<td>*</td>
<td>334</td>
<td>309/89</td>
<td>CC-open</td>
<td></td>
<td></td>
<td>5.2/80</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Biltmore Creek</td>
<td>1977</td>
<td>140</td>
<td>140/82</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/277</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Birch Spring</td>
<td>1976</td>
<td>1255</td>
<td>95/70</td>
<td>Int</td>
<td>20/97</td>
<td>10/77</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Black Mountain</td>
<td>1969</td>
<td>5724</td>
<td>315/70</td>
<td>Int</td>
<td>40/76</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bloodwood</td>
<td>1984</td>
<td>2600</td>
<td>1335/89</td>
<td>Int</td>
<td>200/87</td>
<td>10/284</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Blue Springs</td>
<td>*</td>
<td>3523</td>
<td>1183/75</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Blue Springs/Reeds</td>
<td>Preposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Buck Knoll</td>
<td>*</td>
<td>120</td>
<td>55/90</td>
<td>Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Cameron Wash</td>
<td>1985</td>
<td>468</td>
<td>311/87</td>
<td>Int</td>
<td></td>
<td>185/99</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cascade Falls</td>
<td>*</td>
<td>1000</td>
<td>760/80</td>
<td>Int</td>
<td>60/91</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cooper Knoll</td>
<td>1996</td>
<td>45,000</td>
<td>59/84</td>
<td>Spec/Val</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Copper Peak</td>
<td>*</td>
<td>6400</td>
<td>3700/66</td>
<td>Ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Deer Salvage</td>
<td>1976</td>
<td>800</td>
<td>340/76</td>
<td>Sat</td>
<td></td>
<td>35/74</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Deer Valley</td>
<td>*</td>
<td>5304</td>
<td>1532/69</td>
<td>CCR/P/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Deer Valley II</td>
<td>1976</td>
<td>700</td>
<td>325/86***</td>
<td>Sat</td>
<td>20/76</td>
<td>10/276</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Devil's Flat</td>
<td>1980</td>
<td>920</td>
<td>318/87</td>
<td>Int</td>
<td>350/90</td>
<td>3.3/90</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Dry Valley</td>
<td>*</td>
<td>2958</td>
<td>971/71***</td>
<td>Int</td>
<td>60/71</td>
<td>13/271</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Duck Creek</td>
<td>1996</td>
<td>45,000</td>
<td>2,575</td>
<td>Spec/Val</td>
<td>10000</td>
<td>15000</td>
<td>1.5/77</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Duck Creek Sinks</td>
<td>1982</td>
<td>2200</td>
<td>2030/89</td>
<td>Int</td>
<td>98/92</td>
<td>7.2/82</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Hance Creek Peak</td>
<td>1987</td>
<td>4160</td>
<td>1849/91</td>
<td>Int</td>
<td>1259/72</td>
<td>7.8/72</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Harris Flat</td>
<td>1977</td>
<td>1250</td>
<td>1211/83</td>
<td>Int</td>
<td>150/81</td>
<td>98/81</td>
<td>4.7/77</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Horsecrook Knoll</td>
<td>1977</td>
<td>2500</td>
<td>1761/83</td>
<td>Int</td>
<td>1500/75</td>
<td>15.5/77</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Houston Flat</td>
<td>1972</td>
<td>714</td>
<td>430/73</td>
<td>Int</td>
<td>9076</td>
<td>414/76</td>
<td>2.1/73</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Houston Bluff</td>
<td>*</td>
<td>419</td>
<td>178/99</td>
<td>CC-open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Ice Caves</td>
<td>*</td>
<td>2800</td>
<td>1200/62</td>
<td>Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Inn Valley</td>
<td>1978</td>
<td>1800</td>
<td>1600/70</td>
<td>Ch</td>
<td>150/81</td>
<td>80/81</td>
<td>3.2/78</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Ireland (private)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Lake Hollow</td>
<td>1972</td>
<td>6000</td>
<td>2800/75</td>
<td>Int</td>
<td>4700</td>
<td>1000</td>
<td>16.2/75</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Lake Fork</td>
<td>1983</td>
<td>3395</td>
<td>920/89</td>
<td>Shel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Loveland Creek</td>
<td>1978</td>
<td>350</td>
<td>235/80</td>
<td>Spec/Val</td>
<td>137/82</td>
<td>120/81</td>
<td>1.6/70</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Mannebach</td>
<td>1996</td>
<td>45,000</td>
<td>213/800</td>
<td>Spec/Val</td>
<td>10000</td>
<td>15000</td>
<td>1.5/77</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Midway Fens</td>
<td>*</td>
<td>975</td>
<td>475/95</td>
<td>Cl-14, Pos-15, 12, 129</td>
<td>192/90</td>
<td>422/90</td>
<td>3.8/95</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Num</td>
<td>Sale Name/Project</td>
<td>Decision Date</td>
<td>Analysis Acres</td>
<td>Total Treated Acres</td>
<td>Treatment Type</td>
<td>Reforestation Acres/Year</td>
<td>Thinned Acres/Year</td>
<td>New Road Const.</td>
<td>Miller Year</td>
<td>Other KV</td>
<td>Special Fire Zone</td>
<td>Cheat & F. Oval</td>
<td>MDO</td>
<td>Pogie Butte</td>
<td>Veg.</td>
<td>Range</td>
<td>Soil</td>
<td>Cultivat</td>
<td>Hydr.</td>
<td>Fish</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>37</td>
<td>Miller Seep</td>
<td>1995</td>
<td>1600/55</td>
<td>Int</td>
<td>0/585</td>
<td></td>
<td>0.585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Varano Ridge</td>
<td>1995</td>
<td>2232</td>
<td>65/499</td>
<td>San/Sal</td>
<td>50/499</td>
<td>0.896</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Old Highway</td>
<td>1978</td>
<td>150</td>
<td>142/79</td>
<td>Int</td>
<td>120/80</td>
<td>0.896</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Purgall Lake</td>
<td>1995</td>
<td>2446</td>
<td>245/446</td>
<td>Sal</td>
<td>40/458</td>
<td>0.114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Rainbow Meadows</td>
<td>1995</td>
<td>495</td>
<td>459/93</td>
<td>San/Sal</td>
<td>190/95</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Road Canyon</td>
<td>1990</td>
<td>58</td>
<td>68/93</td>
<td>Int</td>
<td>3.3/95</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sage Valley</td>
<td>1982</td>
<td>231</td>
<td>1450/55</td>
<td>Int</td>
<td>4.5/85</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>School Wash</td>
<td>*</td>
<td>2620</td>
<td>2620/69</td>
<td>Or</td>
<td>11.2/68</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Seaman Canyon</td>
<td>1987</td>
<td>457</td>
<td>120/45</td>
<td>Int</td>
<td>28/90</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Sidney Valley</td>
<td>1994</td>
<td>6192</td>
<td>178/95</td>
<td>San/Sal</td>
<td>348/94</td>
<td>6.754</td>
<td>trail improvement</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Smith (private)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>weed sprays 10 m,</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>State Section</td>
<td>*</td>
<td>140</td>
<td>Int</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Stull Canyon</td>
<td>*</td>
<td>1580</td>
<td>530/96</td>
<td>Or</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Sweet Ridge</td>
<td>*</td>
<td>1380</td>
<td>500/97</td>
<td>Or</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Strawberry Ridge</td>
<td>*</td>
<td>295</td>
<td>203/38</td>
<td>Int</td>
<td>8.3/38</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Strawberry Ridge</td>
<td>*</td>
<td>165</td>
<td>497/35</td>
<td>Int</td>
<td>152/35</td>
<td>152/35</td>
<td>540/93</td>
<td>152/35</td>
<td>540/93</td>
<td>540/93</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Swift's Hollow</td>
<td>1990</td>
<td>2355</td>
<td>2400/90</td>
<td>Int</td>
<td>2400/90</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Tippers Valley</td>
<td>1993</td>
<td>1727</td>
<td>146/94*</td>
<td>Int</td>
<td>146/94</td>
<td>146/94</td>
<td>350/92</td>
<td>146/94</td>
<td>350/92</td>
<td>350/92</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Tommy Creek</td>
<td>1982</td>
<td>500</td>
<td>500/83</td>
<td>CC-Aspen</td>
<td>48/90</td>
<td>6.852</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Unita Flat</td>
<td>1989</td>
<td>4050</td>
<td>1160</td>
<td>Sal</td>
<td>1.3</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Upper Swains</td>
<td>1987</td>
<td>1240</td>
<td>1243/88</td>
<td>Int</td>
<td>335/88</td>
<td>3.778</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Upper Tippers</td>
<td>*</td>
<td>20</td>
<td>490/91</td>
<td>CC-Aspen</td>
<td>100/91</td>
<td>1.1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>West Fork Swamp</td>
<td></td>
<td>1000</td>
<td>281/09</td>
<td>Sal</td>
<td>2.1/99</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>White Face</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Wilson Creek</td>
<td>1979</td>
<td>1167</td>
<td>1167/81</td>
<td>Int</td>
<td>50/82</td>
<td>548/82</td>
<td>3.12/80</td>
<td>small game habitat</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Pe-Patch Cut, CC-Clear cut, EV-Even Aged, Gr-Group Selection, Imp Rec Site-Improved Recreational Site, In-Intermediate, In-Individual Tree, In-John, Un-Uneven Aged are acronyms for different types of treatment and selection methods.
- Copo-Commercial Precommercial Harvest, Cheo-Overstory Removal, Pae-Patch Cut Aspen, Pen-Precommercial Harvest, Rip-Riparian Protection, Sal-Salvage, Sh-Sherwood Seed Cut, Su-Shrub, Tr-Traffic Improvement are acronyms for different types of treatments.

Species included under "special f" are 1 Woodpecker blue grouse.
Appendix: 11
Spruce Ecosystem Recovery Project
Areas with Undeveloped Characteristics

Legend
Spruce Ecosystem Recovery Project
Roadless Areas
Focus Area Boundaries
Private Land

Prepared by USFS Forest Service
Dixie National Forest GIS Staff
Using ARCVIEWS 3.0
January 1998
The Forest Service owns the most current and complete data available. GIS data and product accuracy vary. Users may be
developed from sources of differing accuracy, accuracy only at
users' risk. Neither the Forest Service nor the U.S. Government makes
any warranty of accuracy or assumes any liability for results
obtained from use of this data or results obtained from use of this
data.

Using GIS products for purposes other than those for which they were
intended may yield incorrect or misleading results. The Forest Service
reserves the right to convert, modify, or remove GIS products without
annunciation.

For specific data source, please contact the Forest Supervisor, Dixie National
Forest, Cedar City, Utah.

BEST COPY AVAILABLE