1-1-1975

Twilight Transition Spectra of Atmospheric O2 IR Emissions

Doran Baker
Utah State University

Allan Steed
Utah State University

Ronald Huppi
Utah State University

Kay Baker
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs

Recommended Citation

Baker, Doran; Steed, Allan; Huppi, Ronald; and Baker, Kay, "Twilight Transition Spectra of Atmospheric O2 IR Emissions" (1975).
https://digitalcommons.usu.edu/sdl_pubs/6

This Article is brought to you for free and open access by the Space Dynamics Lab at DigitalCommons@USU. It has been accepted for inclusion in Space Dynamics Lab Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact rebecca.nelson@usu.edu.
TWILIGHT TRANSITION SPECTRA OF ATMOSPHERIC O₂ IR EMISSIONS

Doran Baker, Allan Steed, Ronald Huppi, and Kay Baker

Center for Research in Aeronomy, Utah State University
Logan, Utah 84322

Abstract. Resolved spectra have been obtained from the ground of the O₂(əAng) emissions from the upper atmosphere utilizing a wide-field interferometer with a cryogenically cooled germanium detector. The rotational structure of both the (0,0) band at 1.27 μm and the (0,1) band at 1.58 μm are clearly separable from the hydroxyl airglow. The decay rate of the O₂(əAng) during the twilight transition has been observed.

O₂ IR Atmospheric Band Airglow

The metastable excited state (əAng) of molecular oxygen is of considerable importance in aeronomical processes. The state is particularly interesting because its long lifetime of 3.8 x 10^3 seconds [Badger et al., 1965] makes its 0.98 eV of excitation energy available in atmospheric interactions of many types. These interactions include ionization and charge transfer in addition to photochemical reactions. The high throughput of the wide-field infrared interferometer-spectrometer has made it possible to resolve the spectrum of the infrared atmospheric emission bands of O₂ at 1.27 and 1.58 μm. These bands originate from transitions from the v' = 0 energy level of the əAng state to the v'' = 0 and v'' = 1 levels of the ground state X1Σg⁻.

Extensive radiometric observations of this infrared atmospheric band system have been made as summarized in the fine review articles of Evans and Llewellyn (1970) and Vallance Jones (1973). The O₂(0,0) infrared atmospheric band at 1.58 μm was first discovered in the twilight airglow by Vallance Jones and Harrison (1958) using a grating spectrometer; they observed this band as an asymmetry, which decayed during twi- light, in the spectral profile of the 0 branch of the (4,2) band of the hydroxyl airglow.

The O₂(0,0) band at 1.27 μm has been observed in laboratory experiments [Whittow and Findlay, 1967; Becker et al., 1971] a factor of 50 times brighter than the O₂(0,1) band at 1.58 μm. However, unlike the situation at 1.58 μm, the atmospheric absorption at 1.27 μm is severe [Browne et al., 1970]. In fact, the first identification of the (əAng + X1Σg⁻) electronic transition in O₂ was first identified by Herrberg (1934) from observing the strong terrestrial atmospheric absorption of the solar spectrum at 1.27 μm.

Apparently, the O₂ 1.27-μm band was first detected (but not identified) by Geophysics and Hydrolog (1965) on a daytime balloon flight. Positive identification of this band was made in the day and twilight airglow by Noxon and Vallance Jones (1962) who flew a grating spectrometer aboard an aircraft. The (0,0) band at 1.27 μm was first resolved from the ground by Lowe (1969) who used a standard Michelson interferometer.

Observational Technique

The twilight-airglow spectra of the O₂ infrared atmospheric system obtained by Utah State University resulted from using a field-widened interferometer-spectrometer developed under grants from the National Science Foundation [No. GA 786] and the Air Force Cambridge Research Laboratories. Two small-angle compensating wedge prisms are used in such a way that incident light rays which may be as oblique as 6 degrees are still accepted by the interferometer even when driven to high resolution. The back surface of the prisms are reflective and serve as the end mirrors of the interferometer. The change of optical path difference to obtain an interferogram is accomplished by driving one of the prisms parallel with its apparent mirror position [Despain et al., 1971]. This instrument uses an electromagnetically driven, gas-lubricated, precision platform for the movable prism. The details of the instrument have been reported elsewhere [Haycock and Baker, 1974]. The detector used for this study was an intrinsic-germanium photoconductor operated at liquid-nitrogen temperature (77°K). The optics of the interferometer were operated at ambient temperature. The interferometer-spectrometer was calibrated using a controlled blackbody source.

Interferograms from the spectrometer were fed into the data system of the USU Argus aeronomy observatory. Analog-to-digital (A/D) conversions were made, and fast Fourier transforms (FFT) were computed in near real time as the interferograms were generated.

Figure 1. Zenith spectral radiance at Logan, Utah at 02:19 hrs UT (19:19 hrs local) on September 5, 1975. Spectral resolution = 5 cm⁻¹; observing time = 1/4 min.; viewing field = 0.02 sr. [The instrument response function is normalized to 1.27 μm, to obtain the kR/cm⁻³ of the spectrum at any other wavelength divided by the relative instrument response (right-hand scale) at that wavelength.]
Spectral Measurements

The near-infrared interferometer-spectrometer was operated to observe the airglow from a location at Logan, Utah, on September 5, 1974, local time. The latitude of this observing site is 41°44'34" North, the longitude is 111°48'24" West, and the elevation is 4790 feet above sea level.

Figures 1 and 2 show the overhead (zenith) spectral radiance at two different times during the evening twilight. The spectral coverage is from 1.1 through 1.7 µm. The optical resolution of each reduced spectrum is 3 cm⁻¹, and the total observing time to obtain the spectrum was 15 minutes. Four 15-second transformed interferograms were signal averaged (coadded) to obtain each of the two spectrograms shown. In each case, the viewing aspect was the geometrical zenith with the spectrometer operated in the case at a 9-degree full angle field-of-view.

A two-channel radiometer was used to obtain the absolute zenith radiance in selected wavelength bands for continuous monitoring and calibration purposes. One filter was used to measure the radiance of the (0,0) band of O₂(αA); a second was used to monitor that part of the Δν = 2 band sequence of OH between 1.57 and 1.70 µm.

Figure 3.

The spectrum of the O₂(αA) (0,0) band during the twilight transition from day to night is shown in more detail in Figure 3. The decay of the O₂(0,0) band at 1.27 µm relative to the surrounding OH bands is clearly evident. At a longer wavelength is the (8,5) band of the OH Meinel sequence, and at a shorter wavelength is the OH(7,4) band. The rotational lines of these bands are indicated on Figure 4. The sequence of spectra of Figure 4 are the same twilight transition shown with an expanded ordinate.

Discussion

The dominant twilight airglow emission species in the 1.1 to 1.7-µm spectral region, in addition to the O₂(αA) infrared atmospheric system at 1.27 and 1.58 µm (Figure 1), are the first and second overtone rotation-vibration band sequences (Meinel Δν = 2 + Δν = 7) of the ground electronic state of the hydronyl (OH) molecule. In spite
of the atmospheric extinction [Selby and McClatchey, 1972; Baker et al., 1973], clearly evident from left to right in Figure 1, are the (4,2), (3,1), and (2,0) bands of the $\Delta v = 2$ sequence and the (8,5), (7,4), and (6,3) bands of the $\Delta v = 3$ sequence. The location of the Q lines are indicated on the figures for each of these bands.

The $\text{O}_2(0,0)$ band (whose dominant line is at 1.268 μm) occurs to the right of the Q line of the OH(8,5) band at 1.290 μm. Since the R rotational lines of the OH(8,5) band overlay directly on the $\text{O}_2(0,0)$ band, it is evident that exceptional care must be exercised in using fixed bandpass filter radiometers to study $\text{O}_2(a^1\Sigma_g^+)$ airglow. Valid conclusions drawn about the variations and enhancements of $\text{O}_2(a^1\Sigma_g^+)$ emissions based only upon radiometric measurements are difficult to achieve.

In the first spectrum of Figure 4, the OH and the O_2 IR emissions can be seen superimposed upon the spectrum of the scattered sunlight as seen through the absorbing lower atmosphere. The subsequent spectra through the twilight transition clearly show the decay of the $\text{O}_2(0,0)$ emissions from the high daytime levels. A detailed analysis must, of course, take into account the extinction due to absorption and scattering of the lower layers of atmosphere [Evans et al., 1970]. However, the apparent radiance of the $\text{O}_2(0,0)$ band observed from the ground in the zenith at various times during the twilight transition is given in Table 1. The effective decay time constant of the decay simply modeled as an exponential is about 61 minutes.

Figure 5 shows the twilight transition behavior of the (0,1) Q line $\text{O}_2(a^1\Delta_g)$ at 1.582 μm. This line lies immediately to the right of the OH(4,2) Q line at 1.583 μm; however, its decay relative to the OH can clearly be distinguished. The effective decay time constant of the $\text{O}_2(0,1)$ appears to be 56 minutes. Part of the remainder of the rotational structure of the $\text{O}_2(0,1)$ band can be delineated immediately after the solar scattering diminishes.

References

Becker, K.H., W. Groth and U. Schurath, The ratio of the Franck-Condon factors $q(0,0)/q(0,1)$ of the infrared atmospheric band system of oxygen, Planetary Space Sci., 19, 1009, 1971.

Evans, W.F.J., H.C. Wood and E.J. Llewellyn, Transmission of the infrared oxygen emission at 1.27 μm in the atmosphere, Canadian Journal of Physics, 45, 747, 1967.

Gospodin, N.M., and V.I. Kushpil, Dayglow of the upper layers of the earth's atmosphere in the 1.27 μm region, Planetary Space Sci., 15, 457, 1965.

Noxon, J.F., and A. Vallance Jones, Observation of the (0,0) band of the (1A_g⁻→1Σ_g⁻) system of oxygen in the day and twilight airglow, Nature, 196, 157, 1962.

(Received February 4, 1975; accepted March 28, 1975.)